WO2012099172A1 - Method for producing fatty acid ester - Google Patents

Method for producing fatty acid ester Download PDF

Info

Publication number
WO2012099172A1
WO2012099172A1 PCT/JP2012/050975 JP2012050975W WO2012099172A1 WO 2012099172 A1 WO2012099172 A1 WO 2012099172A1 JP 2012050975 W JP2012050975 W JP 2012050975W WO 2012099172 A1 WO2012099172 A1 WO 2012099172A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
fatty acid
temperature
algae
alcohol
Prior art date
Application number
PCT/JP2012/050975
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 茂雄
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2012553754A priority Critical patent/JP5924268B2/en
Publication of WO2012099172A1 publication Critical patent/WO2012099172A1/en
Priority to US13/944,197 priority patent/US20130302864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a fatty acid ester using algae.
  • Fatty acid esters are used in various fields such as food additives, chemical products, cosmetics, and pharmaceuticals.
  • Fatty acid esters are industrially produced from animals, plants, fish, and oils and fats derived from waste oil by transesterification.
  • methods utilizing a catalyst such as acid, alkali, metals, or lipase are known.
  • a catalyst such as acid, alkali, metals, or lipase
  • a supercritical method is used in addition to a method using a catalyst.
  • the methods described in Non-Patent Documents 5 to 7 can be mentioned.
  • fats and oils used in the production method by transesterification of fatty acid esters, oils and fats derived from higher plants such as soybean and palm palm are often used. These are fats and oils that can be easily obtained from seeds by pressing or solvent extraction.
  • the fats and oils contained in microalgae have a content comparable to that of soybeans and palm oil seeds per dry weight, but the dry alga body weight per algal culture is less than 1%. The process of separating the alga bodies, dehydrating them, crushing the cells, taking out the fats and oils, and further purifying them is complicated and difficult.
  • Patent Document 1 Non-Patent Documents 8 to 9
  • Patent Document 2 alcohol is added to microalgae and the fats and oils are directly transesterified in the cells, but both methods require an acid or an alkali catalyst for the transesterification reaction.
  • Synechocystis which is a typical recombinable algae, can produce a large amount of fatty acids by expressing acetyl-CoA carboxylase and thioesterase (Non-patent Document 10), and by expressing diacylglycerol acetyltransferase. It is known to produce triglycerides (Patent Document 5). Therefore, it is easy to produce fatty acid esters from Synecocystis fats and oils using a catalyst such as acid, alkali or lipase.
  • Synechocystis can express pyruvate decarboxylase and alcohol dehydrogenase, produce ethanol, and produce fatty acid esters in cells by ethanol acetyltransferase (Patent Document 6). Without the method, a method for producing fatty acid esters from fats and oils in algal cells is not known.
  • Non-patent Document 11 Generally, algae use lipase to decompose lipids and fats in cell membranes (Non-patent Document 11). In diatoms, it has been confirmed that lipase activity increases due to starvation of silica and that fats and oils are decomposed into fatty acids (Non-Patent Document 12), but it is possible to produce fatty acid esters in algal cells by adding alcohols to them. There is no report so far.
  • Patent Documents 7, 8, and 9 it has been known that cells are crushed and organic substances are extracted by treating chlorella at high temperature (Patent Documents 7, 8, and 9), but there is no report that directly converts intracellular fats and oils into fatty acid esters.
  • Patent Document 10 low-molecular-weight nucleic acid-related substances increase by maintaining chlorella at 40 to 55 ° C. and self-digesting.
  • the present invention provides a more efficient method for producing a fatty acid ester, in particular, an acid or alkali catalyst that has been conventionally used mainly with fats and oils derived from animals, plants, fish and waste liquids as substrates.
  • the present invention provides a cheaper fatty acid ester production method that does not require addition of a catalyst to the fatty acid ester production method.
  • the present inventors reacted algal culture at an intermediate temperature before reacting with alcohol, thereby adding algal cells without adding acid or alkali. And found that fatty acid esters can be produced efficiently. Based on this finding, the present invention has been completed. (1) (a) reacting a culture obtained by culturing microalgae in a medium at medium temperature; (B) Then, an alcohol is added and reacted at a temperature lower than the intermediate temperature, (C) A method for producing a fatty acid ester, wherein the fatty acid ester is collected from the reaction product obtained. (2) The method as described above, wherein the temperature of the reaction (a) is 40 ° C. or higher.
  • the organic solvent treatment is performed with methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, or hexane.
  • the method as described above, wherein the microalgae are algae belonging to the green plant phylum.
  • the microalgae is an algae belonging to a green alga, a treboxya algae, or a platino alga steel.
  • the microalgae are algae belonging to the green alga class.
  • the fatty acid ester can be efficiently produced by using the present invention.
  • Microalgae used in the present invention and its culture method Any microalgae can be used in the present invention, but it is a microalgae that accumulates starch and / or fats and oils in the algae. It is preferable.
  • Algae refers to all organisms that perform oxygen-generating photosynthesis, excluding moss plants, fern plants, and seed plants that inhabit the ground. Algae includes prokaryotes, cyanobacteria, eukaryotes, gray plant gate (Glaucophyta), red plant gate (Rhodophyta), green plant gate (Chlorophyta), cryptophyte Gates (Cryptophyta), Haptophyta (Haptophyta), Hetero sparklephyta, Dinophyta, Euglenophyta, Euglenaphyta Included are various unicellular and multicellular organisms that are classified as Chlorarachniophyta. Microalgae refers to algae with a microscopic structure excluding seaweeds that are multicellular organisms from these algae (Biodiversity Series (3) Diversity and strains of algae: edited by Mitsuo Senbara 1999)).
  • Plants including microalgae are known to accumulate oils and fats as storage substances (Chisti, Y. 2007. Biotechnol Adv. 25: 294-306). As such algae, those belonging to the green plant gates and the unequal hairy plant gates are well known.
  • the green plant gates there are algae belonging to the Chlorophyceae, and the algae belonging to the Chlorophyceae are Chlorella minutissima (Bhatnagar A, 2010 Appl Biochem Biotechnol. 161: 523-36) Senedesmus ⁇ Scenedesmus obliquus (Shovon, M. et al. 2009. Appl Microbiol Biotechnol.
  • Neochloris oleoabundans (Tornabene, TG et al. 1983. Enzyme and Microb. Technol. 5: 435-440) Nanonochloris sp. (Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol. 54: 112-117).
  • Chlorella minutissima Chlorella minutissima UTEX 2314, Senedesmus oblicus, specifically as Scenedesmus obliquus UTEX393, Neochloris oleo abundance, specifically Neochloris oleoabundans UTEX 1185, Nanochloris
  • SP examples include Nannochloris sp. UTEX LB 1999 strain, and examples of Thalassiosira sudonana include Thalassiosira pseudonana UTEX LB FD2. These strains can be obtained from The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA.
  • EPA / DHA-producing algae which are high-functional fatty acids, are well known that belong to the green plant gate, the alien hair plant gate, the red plant gate, or the hapto plant gate.
  • the green plant gates there are algae belonging to the class of green algae, Plasinophyta, and Trevoxia algae, and the well-known algae belonging to the class of green algae Chlorella minutissima (Rema, V et al. 1998. (JAOCS. 75: 393-397)
  • Examples of the alien phytophytes include algae belonging to the diatom class (Bacillariophyceae) and the true eye-point algae class (Eustigmatophyceae). Thalassiosira pseudonana (Tonon, T et al. 2002. Phytochemistry 61: 15-24), Eustigmatophyceae includes the nanochloropsis oculata.
  • Neochloris Oreo abundance and Nanochloris SP are modified NORO medium (Yamaberi, K. et al. 1998. J. Mar. Biotechnol. 6: 44-48; .54: 112-117) and Bold's Basal Medium (Tornabene, T. G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440; Archibald, P. A. and Bold, H. C. 1970.
  • Phytomorphology (20: 383-389) and Daigo IMK medium (Ota, M. et al. 2009. Bioresource Technology. 100: 5237-5242).
  • F / 2 medium (Lie, C.-P. and Lin, L.-P. 2001. Bot. Bull. Acad. Sin. 42: 207-214) Etc. can be used suitably.
  • a photobioreactor can also be used for culturing microalgae (WO2003 / 094598 pamphlet).
  • the initial pH is preferably around 7-9 neutral, and pH adjustment is often not performed during culturing, but it may be done as needed.
  • the culture temperature is preferably 25-35 ° C., and particularly around 28 ° C. is a commonly used temperature, but the culture temperature may be any temperature suitable for the algae used.
  • air is blown into the culture medium, and an aeration rate of 0.1-2 vvm (volume per volume per minute) per one minute of the culture solution volume is often used as the aeration rate. Further, CO 2 is blown in order to accelerate the growth, but it is preferable to blow about 0.5-5% with respect to the aeration amount.
  • the optimal intensity of light irradiation varies depending on the type of microalgae, but about 1,000-30,000 lux is often used.
  • a white fluorescent lamp is generally used indoors, but is not limited thereto. It is also possible to incubate outdoors with sunlight. If necessary, the culture solution may be stirred or circulated with an appropriate strength.
  • Algae are known to accumulate fats and oils in the algae when the nitrogen source is depleted (Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45), which limits the concentration of the nitrogen source.
  • the medium can also be used for the main culture.
  • the culture of microalgae includes a culture solution containing algal bodies and algal bodies recovered from the culture solution.
  • the method for recovering the algal cells from the culture solution is possible by general centrifugation, filtration, or sedimentation by gravity using a flocculant (Grima, E. M. et al. 2003). Biotechnol. Advances 20: 491-515).
  • microalgae by centrifugation or the like before the reaction at medium temperature.
  • concentration of algal bodies the solution components are removed, and the concentration per unit solution of the dry weight of microalgae is 25 g / L or more, preferably 250 g / L or more (separated from the medium by a method such as centrifugation). Including suspending the algal bodies in a liquid to a desired concentration) and precipitating and separating the algal bodies from the medium.
  • microalgae culture is subjected to a two-stage reaction at a medium temperature and a medium to low temperature (a temperature lower than the medium temperature) after addition of alcohol. (Ie, subjected to a two-step reaction), and the processed microalgae (reactant) is used to collect fatty acid esters.
  • the reaction product of microalgae means a reaction solution obtained by subjecting a culture of microalgae to a two-stage reaction at a medium temperature and a medium to low temperature after addition of alcohol.
  • the treated product may be subjected to further extraction or fractionation and / or another treatment from the reaction solution subjected to the two-stage reaction as long as subsequent collection of the fatty acid ester is not prevented.
  • by-products are produced in addition to fatty acid esters.
  • glycerol produced by transesterification of fats and oils is L-amino acid produced by bacteria having L-amino acid producing ability and chemical products. You may use it.
  • the second stage reaction of the two stage reaction is a reaction that produces a fatty acid ester.
  • the first-stage reaction is a reaction that changes the state of the microalgae culture so as to promote the formation reaction of the second-stage fatty acid ester.
  • the temperature in the two-stage reaction may be a temperature sufficient to increase the fatty acid ester in the reaction product after the medium temperature reaction and the medium to low temperature reaction after addition of the alcohol, and after the first stage reaction, Lower the temperature and perform the second stage reaction.
  • the lower limit of the temperature of the first stage reaction is usually 40 ° C. or higher, preferably 45 ° C. or higher, more preferably 50 ° C. or higher, and the upper limit is usually 70 ° C.
  • the lower limit of the temperature of the second-stage reaction is usually 5 ° C or higher, preferably 20 ° C or higher, more preferably 30 ° C or higher, and the upper limit is usually 60 ° C or lower, preferably 50 ° C or lower, more preferably Is 45 ° C or lower.
  • the first-stage reaction in the two-stage reaction may be performed by reacting the culture obtained by the above-described algal culture method as it is, but may be used after being concentrated as described above.
  • the alga bodies that have been once centrifuged and then precipitated may be used as the reactant.
  • pH during the reaction may be adjusted to weakly acidic or weakly alkaline before the first stage reaction.
  • the pH of weak acid is preferably 3.0 to 6.5, more preferably 4.0 to 6.0. Further, the pH of the weak alkali is preferably 7.5 to 12.0, more preferably 9.0 to 11.0.
  • alcohol may be added to the reaction liquid of the first stage reaction, or after removing the liquid phase of the reaction liquid of the first stage reaction by centrifugation or the like.
  • a reaction solution for the eye reaction may be added.
  • the concentration of the alcohol added before the second stage reaction is preferably at least 5% or more, preferably 10% or more, more preferably 20% or more.
  • the upper limit is usually 70% or less, preferably 60%, more preferably 50% or less.
  • the alcohol to be added is a lower alcohol having 5 or less carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, ethylene glycol, or hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, and the like.
  • Higher alcohols having 6 or more carbon atoms such as knoll may be used.
  • the first-stage reaction (treatment at intermediate temperature) is preferably performed for at least 5 minutes or more, preferably 10 minutes or more, more preferably 20 minutes or more.
  • the first stage reaction is usually 120 minutes or less, more preferably 60 minutes or less.
  • the second-stage reaction (treatment at medium and low temperatures) has a lower limit of at least 10 minutes, preferably 30 minutes or more, more preferably 120 minutes or more, and an upper limit of usually 15 hours or less, preferably It is preferably 10 hours or less, more preferably 5 hours or less.
  • a method for extracting fats and oils from general algae can be applied.
  • organic solvent treatment ultrasonic treatment, bead crushing treatment, acid treatment, alkali treatment
  • methods such as treatment, enzyme treatment, hydrothermal treatment, supercritical treatment, microwave treatment, electromagnetic field treatment, or pressing treatment. It is preferable that the fatty acid ester is eluted extracellularly and the fatty acid ester is collected from the eluate.
  • the organic solvent treatment after the two-step reaction is methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, hexane, etc. Is mentioned.
  • the reaction solution is preferably separated into a precipitate and a supernatant by centrifugation. Further, after the two-step reaction, an organic solvent may be added, and an extraction method using two layers of an aqueous layer and an organic solvent layer may be used.
  • the reason why the addition of the catalyst is not required is that the lipase in the cells of microalgae is likely to act on the lipid by the first-stage reaction, and by the lipase, fat, ceramide (Ceramide), phospholipid soot ( This is probably because Phospholipid) and Glycolipid are transesterified with externally added alcohol.
  • transesterification with lipase is promoted by the addition of an organic solvent other than alcohols.
  • an organic solvent in an amount effective for promoting the reaction in the second stage reaction may be added.
  • organic solvents include hexane, heptane, isooctane chloroform, ethyl acetate, petroleum ether, and the like.
  • Chlorella kessleri ⁇ 11h strain obtained from University of Texas Algae Culture Collection (The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA) ( UTEX 263) and Scenedesmus abundans UTEX 1358 strain were used.
  • Example 1 Culture of microalgae Chlorella kessleri 11h strain Chlorella kessleri 11h strain at 30 ° C in a 1000 mL medium bottle containing 800 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical), light intensity 7,000 lux (manufactured by TOMY) Culturing apparatus CL-301) was cultured for 7 days while blowing a mixed gas of air and 3% CO 2 at 400 mL / min, and this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source.
  • Example 2 Examination of the temperature conditions of the first-stage reaction in the two-stage reaction of algae
  • the culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. .
  • 1 ml was placed in a 1.5 ml Eppendorf tube and pre-incubated for 10 minutes at 45 ° C., 50 ° C., 55 ° C., and 60 ° C. at rest.
  • each sample was centrifuged, and 200 ⁇ l of a 10% methanol solution was added to the precipitate.
  • Example 3 Examination of the time of the first stage reaction in the two-stage reaction of algae
  • the culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension.
  • After adjusting the pH of the suspension to 4.5 with 1N HCl solution put 1 ml in a 1.5 ml Eppendorf tube, preincubate for 10 min at 55 ° C, then 55 ° C, 1000 rpm, 10 min, 20 min, 30 min, 40 min, After incubation for 50 min or 60 min, each sample was centrifuged and 200 ⁇ l of 10% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C.
  • Example 4 Examination of pH of first-stage reaction in two-stage reaction of algae
  • the culture solution obtained in Example 1 was centrifuged, sterilized water was added to the precipitate, and a 1-fold suspension was prepared.
  • the suspension was adjusted to each pH with 1N HCl solution or 1N NaOH, then 1 ml was put into a 1.5 ml Eppendorf tube, pre-incubated for 5 min at 55 ° C., then incubated at 55 ° C., 1000 rpm, 20 min.
  • Samples were centrifuged and 200 ⁇ l of 10% methanol solution was added to the precipitates. Each sample was incubated at 42 ° C. and 1000 rpm for 5 hours, and an ester exchange reaction between oil and methanol was performed.
  • Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. Production of fatty acid methyl esters was confirmed in the pH range of 3.0 to 10.5, and high yields were shown under two conditions, pH 4.5 in the weakly acidic region and pH 10.5 in the weakly alkaline region.
  • Example 5 Examination of methanol addition concentration in two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 ⁇ l of 5-50% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C. and 1000 rpm for 5 hours, and an ester exchange reaction between oil and methanol was performed.
  • Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. At methanol addition concentrations up to 30%, the yield of fatty acid methyl ester production increased with increasing addition concentrations. On the other hand, in a high concentration methanol solution of 35% or more, the yield decreased as the concentration increased.
  • Example 6 Examination of the time of the second stage reaction of the two stage reaction of algae The culture solution obtained in Example 1 was centrifuged, sterilized water was added to the precipitate, and a 1-fold suspension was prepared. . Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 ⁇ l of 30% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C. and 1000 rpm for each time, and a transesterification reaction between fat and methanol was performed.
  • Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. Compared with the reaction time of 30 min, the yield of fatty acid methyl ester production increased gradually with the elapse of 60 min, 90 min, 120 min, and 240 min. On the other hand, at the reaction temperature after 360 min, the yield tended to decrease gradually as the reaction time passed.
  • Example 7 Examination of the temperature of the second stage reaction of the two stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. . After adjusting the pH of the suspension to 4.5 with 1N HCl solution, 1 ml was placed in a 1.5 ml Eppendorf tube and pre-incubated for 5 minutes by standing at 55 ° C. Next, each sample was incubated at 55 ° C, 1000rpm, 20min, then centrifuged, 200 ⁇ l of 30% methanol solution was added to the precipitate, and incubated at 1000rpm for 2hr at each temperature, and the transesterification of oil and methanol Reaction was performed.
  • Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. Production of fatty acid esters was confirmed even at a reaction temperature of 5 ° C., and the yield of fatty acid esters increased to a reaction temperature of 35 ° C. as the temperature increased. On the other hand, at a reaction temperature of 40 ° C. or higher, the yield tended to decrease with increasing temperature.
  • Example 8 Examination of added alcohol in two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 ⁇ l of 10% methanol, 10% ethanol or 10% butanol solution was added to the precipitate. Each sample was incubated at 42 ° C., 1000 rpm, for 5 hours, and an ester exchange reaction between fat and alcohol was performed.
  • Lipids were extracted from the obtained samples, and fatty acid alcohol esters were measured. The measurement results are shown in FIG. Compared to the case where 10% methanol was added, almost the same yield was confirmed even when 10% ethanol was added. Further, as in the case of adding methanol and ethanol, a plurality of fatty acid butanol ester bands were confirmed by the addition of butanol.
  • Example 9 Qualitative analysis of fatty acid alcohol ester produced by two-step reaction
  • the culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. Then, 200 ⁇ l of 10% methanol / 10% ethanol solution was added to the precipitate. Each sample was incubated at 42 ° C., 1000 rpm, for 5 hours, and an ester exchange reaction between fat and alcohol was performed.
  • Lipids were extracted from the obtained samples to qualify fatty acid alcohol esters. The results are shown in FIG. Almost the same fatty acid alcohol ester composition was shown in the experimental section of methanol and ethanol addition. However, myristic acid ethyl ester with ethanol addition has not been analyzed (denoted NA). The content of ⁇ -linolenic acid alcohol ester was the highest, and in addition, myristic acid methyl ester, palmitic acid alcohol ester, linoleic acid alcohol ester, oleic acid alcohol ester and stearic acid alcohol ester were confirmed.
  • NaNO 3 750 mg / L MgSO 4 ⁇ 7H 2 O 75 mg / L KH 2 PO 4 175 mg / L K 2 HPO 4 75 mg / L CaCl 2 ⁇ 2H 2 O 25 mg / L NaCl 25 mg / L Na 2 EDTA ⁇ 2H 2 O 4.5 mg / L FeCl 3 ⁇ 6H 2 O 0.582 mg / L MnCl 2 ⁇ 4H 2 O 0.246 mg / L ZnCl 2 0.03 mg / L CoCl 2 ⁇ 6H 2 O 0.012 mg / L Na 2 MoO 4 ⁇ 2H 2 O 0.024 mg / L HEPES 0.036 mg / L Thiamine 1.1 mg / L Biotin 0.025 mg / L VitaminB 12 0.12 mg / L CaCO 3 0.2 mg / L Green house soil 0.2 tsp / L After adjusting to pH 6.2, autoclave sterilization at 120 ° C for 15 minutes
  • Example 11 Two-step reaction with Scenedesmus abundans UTEX 1358 strain
  • the 100 ml culture solution obtained in Example 10 was centrifuged, and sterile water was added to the precipitate to prepare a 1-fold cell suspension. Adjust the pH of the suspension to 4.2 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 ⁇ l of 20% methanol solution was added to the precipitate. It was incubated at 42 ° C. and 1000 rpm for 6 hours to carry out a transesterification reaction between fat and alcohol. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The results are shown in FIG. Production of fatty acid methyl esters was also confirmed in Scenedesmus abundans UTEX 1358 strain.
  • the fatty acid ester can be produced efficiently by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method for producing a fatty acid ester, characterized in that a culture obtained by culturing microalgae in a culture medium is made to react at a medium temperature and subsequently alcohol is added for a reaction at a lower temperature than the medium temperature, and a fatty acid ester is collected from the resulting reaction product.

Description

脂肪酸エステルの製造法Production method of fatty acid ester
 本発明は、藻類を用いた脂肪酸エステルの製造法に関する。脂肪酸エステルは、食品添加物、化学製品、化粧品、医薬品などの様々な分野に利用される。 The present invention relates to a method for producing a fatty acid ester using algae. Fatty acid esters are used in various fields such as food additives, chemical products, cosmetics, and pharmaceuticals.
 脂肪酸エステルは、動物、植物、魚類及び廃液油由来の油脂からエステル交換反応法により工業生産されている。これらのエステル交換反応としては、酸、アルカリ、金属類又はリパーゼ等の触媒を利用する方法が知られている。例えば、非特許文献1~4に記載された方法を挙げることができる。一方、触媒を利用する方法以外には、超臨界法が用いられている。例えば、非特許文献5~7に記載された方法を挙げることができる。 Fatty acid esters are industrially produced from animals, plants, fish, and oils and fats derived from waste oil by transesterification. As these transesterification reactions, methods utilizing a catalyst such as acid, alkali, metals, or lipase are known. For example, the methods described in Non-Patent Documents 1 to 4 can be mentioned. On the other hand, a supercritical method is used in addition to a method using a catalyst. For example, the methods described in Non-Patent Documents 5 to 7 can be mentioned.
 エステル交換反応による脂肪酸エステルの工業生産においては、油脂として魚油、動物油、植物油、廃液油等が使用されている。脂肪酸エステルのエステル交換反応による製造法に用いる油脂源として、よく用いられるのは大豆やパームヤシ等の高等植物に由来する油脂である。これらは種子から圧搾又は溶剤抽出によって工業的に得ることが容易な油脂である。これに対して、微細藻類に含まれる油脂は、乾燥重量当たりでは、大豆やパーム油種子に匹敵する含量となるが、藻類の培養液当たりの乾燥藻体重量は、1%に満たない。藻体を分離し、脱水をして、細胞を破砕して油脂を取り出し、さらに精製する工程は煩雑かつ困難である。藻類から精製された油脂から、酸、アルカリ又はリパーゼを用いて脂肪酸エステルを生産すること(特許文献1、非特許文献8~9)は可能である。また、特許文献2から4には、微細藻類にアルコールを添加し、油脂を細胞内で直接エステル交換するが、いずれの方法もエステル交換反応に酸やアルカリ触媒を必要とする。 In the industrial production of fatty acid esters by transesterification, fish oil, animal oil, vegetable oil, waste liquid oil, etc. are used as fats and oils. As fats and oils used in the production method by transesterification of fatty acid esters, oils and fats derived from higher plants such as soybean and palm palm are often used. These are fats and oils that can be easily obtained from seeds by pressing or solvent extraction. On the other hand, the fats and oils contained in microalgae have a content comparable to that of soybeans and palm oil seeds per dry weight, but the dry alga body weight per algal culture is less than 1%. The process of separating the alga bodies, dehydrating them, crushing the cells, taking out the fats and oils, and further purifying them is complicated and difficult. It is possible to produce fatty acid esters from fats and oils purified from algae using acid, alkali or lipase (Patent Document 1, Non-Patent Documents 8 to 9). Further, in Patent Documents 2 to 4, alcohol is added to microalgae and the fats and oils are directly transesterified in the cells, but both methods require an acid or an alkali catalyst for the transesterification reaction.
 代表的な組換え可能な藻類であるシネコシスティスは、アセチルCoAカルボキシラーゼ、チオエステラーゼの発現によって大量に脂肪酸を生産することが可能であること(非特許文献10)、及び、ジアシルグリセロールアセチルトランスフェラーゼの発現によってトリグリセリドを生産すること(特許文献5)が知られている。従って、シネコシスティスの油脂から、酸、アルカリ又はリパーゼなどの触媒を用いて脂肪酸エステルを生産することは容易である。また、シネコシスティスに、ピルビン酸デカルボキシラーゼとアルコールデヒドロゲナーゼを発現し、エタノールを生産させ、エタノールアセチルトランスフェラーゼによって細胞内で脂肪酸エステルを生産できること(特許文献6)が知られているが、遺伝子組み換え技術を利用せずに、藻類細胞内で油脂から脂肪酸エステルを製造する方法は知られていない。 Synechocystis, which is a typical recombinable algae, can produce a large amount of fatty acids by expressing acetyl-CoA carboxylase and thioesterase (Non-patent Document 10), and by expressing diacylglycerol acetyltransferase. It is known to produce triglycerides (Patent Document 5). Therefore, it is easy to produce fatty acid esters from Synecocystis fats and oils using a catalyst such as acid, alkali or lipase. In addition, it is known that Synechocystis can express pyruvate decarboxylase and alcohol dehydrogenase, produce ethanol, and produce fatty acid esters in cells by ethanol acetyltransferase (Patent Document 6). Without the method, a method for producing fatty acid esters from fats and oils in algal cells is not known.
 一般的に、藻類は、細胞膜の脂質や油脂の分解にリパーゼを利用している (非特許文献11)。また、珪藻において、シリカ飢餓によるリパーゼ活性の増加と油脂から脂肪酸への分解が確認されているが(非特許文献12)、それにアルコール類を添加して藻類細胞中で脂肪酸エステルを生産することはこれまで報告はない。 Generally, algae use lipase to decompose lipids and fats in cell membranes (Non-patent Document 11). In diatoms, it has been confirmed that lipase activity increases due to starvation of silica and that fats and oils are decomposed into fatty acids (Non-Patent Document 12), but it is possible to produce fatty acid esters in algal cells by adding alcohols to them. There is no report so far.
 またクロレラを高温処理することで、細胞を破砕し有機物を抽出することは知られていたが(特許文献7、8、9)、細胞内の油脂を直接脂肪酸エステルに変換する報告はない。また、クロレラを40~55℃に保って自己消化させることで、低分子の核酸関連物質が増加することも知られていたが(特許文献10)、この処理法によって脂肪酸エステルを生産する報告はこれまでにない。 Further, it has been known that cells are crushed and organic substances are extracted by treating chlorella at high temperature (Patent Documents 7, 8, and 9), but there is no report that directly converts intracellular fats and oils into fatty acid esters. In addition, it has been known that low-molecular-weight nucleic acid-related substances increase by maintaining chlorella at 40 to 55 ° C. and self-digesting (Patent Document 10). Never before.
国際公開2010/000416号International Publication No. 2010/000416 米国特許出願公開第20080241902号US Patent Application Publication No. 20080241902 中国特許出願公開第101580857号Chinese Patent Application No. 1015580857 米国特許出願公開第20090158638号US Patent Application Publication No. 20090158638 米国特許出願公開第20100081178号US Patent Application Publication No. 2011081178 国際公開2010/011754号International Publication No. 2010/011754 特開平9-75094号JP-A-9-75094 国際公開2006/095964号International Publication No. 2006/095964 米国特許出願公開第20070202582号US Patent Application Publication No. 20070202582 特開昭62-278977号JP 62-278777 A
 本発明は、より効率のよい脂肪酸エステルの製造法を提供するものであり、特には、従来、主として動物、植物、魚類及び廃液由来の油脂を基質として行われてきた酸又はアルカリ触媒を用いた脂肪酸エステル製造法に対し、触媒の添加を必要としない、より安価な脂肪酸エステルの製造法を提供するものである。 The present invention provides a more efficient method for producing a fatty acid ester, in particular, an acid or alkali catalyst that has been conventionally used mainly with fats and oils derived from animals, plants, fish and waste liquids as substrates. The present invention provides a cheaper fatty acid ester production method that does not require addition of a catalyst to the fatty acid ester production method.
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、アルコールと反応させる前に、藻類培養物を中温度で反応させることにより、酸又はアルカリを添加することなく、藻類細胞内で効率よく脂肪酸エステルを生産できることを見出した。この知見に基づき本発明は完成された。
(1)(a)微細藻類を培地で培養して得た培養物を中温度で反応させ、
(b)次いで、アルコールを添加して、前記中温度よりも低い温度で反応させ、
(c)得られる反応物から脂肪酸エステルを採取することを特徴とする脂肪酸エステルの製造法。
(2)前記(a)の反応の温度が40℃以上である、上記に記載の方法。
(3)前記(a)の反応の温度が70℃以下である、上記に記載の方法。
(4)前記(a)の反応のpHが弱酸性から弱アルカリである、上記に記載の方法。
(5)前記(b)の反応の温度が5℃以上である、上記に記載の方法。
(6)前記(b)の反応の温度が60℃以下である、上記に記載の方法。
(7)前記(b)の反応のアルコール濃度が5%以上である、上記に記載の方法。
(8)前記(b)の反応のアルコール濃度が70%以下である、上記に記載の方法。
(9)前記(b)の反応に添加するアルコールが、炭素数5以下の低級アルコールであることを特徴とする、上記に記載の方法。
(10)前記(b)の反応に添加するアルコールが、炭素数6以上の高級アルコールであることを特徴とする、上記に記載の方法。
(11)前記(a)及び(b)の二段階反応後にさらに有機溶剤処理することにより、脂肪酸エステルを抽出し、その抽出物から脂肪酸エステルを採取する上記に記載の方法。
(12)上記二段階反応後に遠心分離した沈殿物を有機溶剤処理する上記に記載の方法。
(13) 上記有機溶剤処理が、メタノール、エタノール、2-プロパノール、アセトン、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、クロロホルム、酢酸メチル、酢酸エチル、ジメチルエーテル、ジエチルエーテル、又はヘキサンで行われることを特徴とする、上記に記載の方法。
(14)前記微細藻類が緑色植物門に属する藻類である、上記に記載の方法。
(15)前記微細藻類が緑藻綱、トレボキシア藻綱、又はプラシノ藻鋼に属する藻類である、上記に記載の方法。
(16)前記微細藻類が緑藻綱に属する藻類である、上記に記載の方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors reacted algal culture at an intermediate temperature before reacting with alcohol, thereby adding algal cells without adding acid or alkali. And found that fatty acid esters can be produced efficiently. Based on this finding, the present invention has been completed.
(1) (a) reacting a culture obtained by culturing microalgae in a medium at medium temperature;
(B) Then, an alcohol is added and reacted at a temperature lower than the intermediate temperature,
(C) A method for producing a fatty acid ester, wherein the fatty acid ester is collected from the reaction product obtained.
(2) The method as described above, wherein the temperature of the reaction (a) is 40 ° C. or higher.
(3) The method as described above, wherein the temperature of the reaction (a) is 70 ° C or lower.
(4) The method as described above, wherein the pH of the reaction (a) is from weakly acidic to weakly alkaline.
(5) The method as described above, wherein the temperature of the reaction of (b) is 5 ° C or higher.
(6) The method as described above, wherein the temperature of the reaction (b) is 60 ° C. or lower.
(7) The method as described above, wherein the alcohol concentration in the reaction (b) is 5% or more.
(8) The method as described above, wherein the alcohol concentration in the reaction (b) is 70% or less.
(9) The method as described above, wherein the alcohol added to the reaction (b) is a lower alcohol having 5 or less carbon atoms.
(10) The method as described above, wherein the alcohol added to the reaction (b) is a higher alcohol having 6 or more carbon atoms.
(11) The method as described above, wherein the fatty acid ester is extracted by further treating with an organic solvent after the two-step reaction of (a) and (b), and the fatty acid ester is collected from the extract.
(12) The method according to the above, wherein the precipitate separated by centrifugation after the two-stage reaction is treated with an organic solvent.
(13) The organic solvent treatment is performed with methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, or hexane. A method as described above, characterized.
(14) The method as described above, wherein the microalgae are algae belonging to the green plant phylum.
(15) The method according to the above, wherein the microalgae is an algae belonging to a green alga, a treboxya algae, or a platino alga steel.
(16) The method according to the above, wherein the microalgae are algae belonging to the green alga class.
 本発明の利用により、効率よく脂肪酸エステルが生産できる。 The fatty acid ester can be efficiently produced by using the present invention.
藻類培養物の二段階反応における一段目反応の温度条件の検討Examination of temperature conditions of first stage reaction in two stage reaction of algae culture 藻類培養物の二段階反応における一段目反応の時間の検討Examination of time of first stage reaction in two stage reaction of algae culture 藻類培養物の二段階反応における一段目反応のpHの検討Examination of pH of first stage reaction in two stage reaction of algae culture 藻類培養物の二段階反応における二段目反応のメタノール添加濃度の検討Examination of methanol addition concentration in second stage reaction in two stage reaction of algae culture 藻類培養物の二段階反応における二段目反応の時間の検討Examination of the second stage reaction time in the two stage reaction of algae culture 藻類培養物の二段階反応における二段目反応の温度の検討Examination of temperature of second stage reaction in two stage reaction of algae culture 藻類培養物の二段階反応における二段目反応の添加アルコールの検討Examination of added alcohol in second-stage reaction in two-stage reaction of algae culture 藻類培養物の二段階反応によって生成した脂肪酸アルコールエステルの定性Qualitative properties of fatty acid alcohol esters produced by two-step reaction of algae cultures Scenedesmus abundans UTEX 1358株での二段階反応の結果Results of a two-step reaction with Scenedesmus abundans UTEX 1358
 以下、本発明を詳細に説明する。
<1>本発明で使用する微細藻類とその培養法
 本発明における微細藻類(microalgae)は、どのようなものでも用いることが出来るが、スターチ及び/または油脂を藻体内に蓄積する微細藻類であることが好ましい。
Hereinafter, the present invention will be described in detail.
<1> Microalgae used in the present invention and its culture method Any microalgae can be used in the present invention, but it is a microalgae that accumulates starch and / or fats and oils in the algae. It is preferable.
 藻類(algae)とは、酸素発生型光合成を行う生物のうち、主に地上に生息するコケ植物、シダ植物、種子植物を除いたものを全て指す。藻類には、原核生物であるシアノバクテリア(藍藻)(cyanobacteria)から、真核生物である灰色植物門 (Glaucophyta)、紅色植物門(紅藻)(Rhodophyta)、緑色植物門 (Chlorophyta)、クリプト植物門(クリプト藻)(Cryptophyta)、ハプト植物門(ハプト藻)(Haptophyta)、不等毛植物門(Heterokontophyta)、渦鞭毛植物門(渦鞭毛藻)(Dinophyta)、ユーグレナ植物門(Euglenophyta)、 クロララクニオン植物門(Chlorarachniophyta)に分類される様々な単細胞生物及び多細胞生物が含まれる。微細藻類は、これら藻類から多細胞生物である海藻類を除いた微視的な構造を持つ藻類を指す(バイオディバーシティ・シリーズ(3)藻類の多様性と系統:千原光雄 編 裳華房(1999))。 Algae refers to all organisms that perform oxygen-generating photosynthesis, excluding moss plants, fern plants, and seed plants that inhabit the ground. Algae includes prokaryotes, cyanobacteria, eukaryotes, gray plant gate (Glaucophyta), red plant gate (Rhodophyta), green plant gate (Chlorophyta), cryptophyte Gates (Cryptophyta), Haptophyta (Haptophyta), Heterokontophyta, Dinophyta, Euglenophyta, Euglenaphyta Included are various unicellular and multicellular organisms that are classified as Chlorarachniophyta. Microalgae refers to algae with a microscopic structure excluding seaweeds that are multicellular organisms from these algae (Biodiversity Series (3) Diversity and strains of algae: edited by Mitsuo Senbara 1999)).
 微細藻類をはじめとする植物は、油脂を貯蔵物質として蓄積するものがあることが知られている(Chisti, Y. 2007. Biotechnol Adv. 25: 294-306)。このような藻類としては、緑色植物門や不等毛植物門に属するものが、よく知られている。緑色植物門の中では、緑藻綱(Chlorophyceae)に属する藻類が挙げられ、緑藻綱に属する藻類としては、クロレラ・ミヌティッシマ(Chlorella minutissima)(Bhatnagar A , 2010 Appl Biochem Biotechnol. 161:523-36) セネデスムス・オブリカス(Scenedesmus obliquus) (Shovon, M. et al. 2009. Appl Microbiol Biotechnol. 84:281-91) ネオクロリス・オレオアバンダンス(Neochloris oleoabundans)(Tornabene, T.G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440)ナノクロリス・エスピー(Nannochloris sp.)(Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol. 54: 112-117)等を挙げることが出来る。不等毛植物門には黄金色藻綱(Chrysophyceae)、ディクチオカ藻綱(Dictyochophyceae)、ペラゴ藻綱(Pelagophyceae)、ラフィド藻綱(Rhaphidophyceae)、珪藻綱(Bacillariophyceae)、褐藻綱(Phaeophyceae)、黄緑藻綱(Xanthophyceae)、真正眼点藻綱(Eustigmatophyceae)が分類されるが、よく用いられる珪藻綱に属する藻類としては、タラシオシラ・スードナナ(Thalassiosira pseudonana)(Tonon, T et al. 2002. Phytochemistry 61: 15-24)を挙げることが出来る。具体的にはクロレラ・ミヌティッシマとして、Chlorella minutissima UTEX 2314株、セネデスムス・オブリカスとして、具体的には、Scenedesmus obliquus UTEX393株、ネオクロリス・オレオアバンダンスとして、具体的には、Neochloris oleoabundans UTEX 1185株、ナノクロリス・エスピーとしては、Nannochloris sp. UTEX LB 1999株、タラシオシラ・スードナナとしては、Thalassiosira pseudonana UTEX LB FD2株が挙げられる。これらの菌株は、テキサス大学藻類カルチャーコレクション(The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA)より入手することができる。
 また、高機能性の脂肪酸であるEPA・DHA生産藻類として緑色植物門、不等毛植物門、紅色植物門、又はハプト植物門に属するものが、よく知られている。緑色植物門の中では、緑藻綱、プラシノ藻綱、トレボウクシア藻綱に属する藻類が挙げられ、よく知られる緑藻綱に属する藻類としてはクロレラ・ミヌティッシマ(Chlorella minutissima)(Rema, V et al. 1998. JAOCS. 75: 393-397) 不等毛植物門には珪藻綱(Bacillariophyceae)、真正眼点藻綱(Eustigmatophyceae)に属する藻類が挙げられ、よく用いられる珪藻綱に属する藻類としてはタラシオシラ・スードナナ(Thalassiosira pseudonana)(Tonon, T et al. 2002. Phytochemistry 61: 15-24)、真正眼点藻綱(Eustigmatophyceae)にはナノクロロプシス・オクラータNannochloropsis oculataが挙げられる。
Plants including microalgae are known to accumulate oils and fats as storage substances (Chisti, Y. 2007. Biotechnol Adv. 25: 294-306). As such algae, those belonging to the green plant gates and the unequal hairy plant gates are well known. Among the green plant gates, there are algae belonging to the Chlorophyceae, and the algae belonging to the Chlorophyceae are Chlorella minutissima (Bhatnagar A, 2010 Appl Biochem Biotechnol. 161: 523-36) Senedesmus・ Scenedesmus obliquus (Shovon, M. et al. 2009. Appl Microbiol Biotechnol. 84: 281-91) Neochloris oleoabundans (Tornabene, TG et al. 1983. Enzyme and Microb. Technol. 5: 435-440) Nanonochloris sp. (Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol. 54: 112-117). There are golden algae (Chrysophyceae), Dictyochophyceae, Pelagophyceae, Rhaphidophyceae, Diatomae (Bacillariophyceae), Brown algae (Phaeophyceae), yellow green algae Class Xanthophyceae and Eustigmatophyceae are classified, but as algae belonging to the commonly used diatom class, Thalassiosira pseudonana (Tonon, T et al. 2002. Phytochemistry 61: 15 -24). Specifically, as Chlorella minutissima, Chlorella minutissima UTEX 2314, Senedesmus oblicus, specifically as Scenedesmus obliquus UTEX393, Neochloris oleo abundance, specifically Neochloris oleoabundans UTEX 1185, Nanochloris Examples of SP include Nannochloris sp. UTEX LB 1999 strain, and examples of Thalassiosira sudonana include Thalassiosira pseudonana UTEX LB FD2. These strains can be obtained from The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA.
Further, EPA / DHA-producing algae, which are high-functional fatty acids, are well known that belong to the green plant gate, the alien hair plant gate, the red plant gate, or the hapto plant gate. Among the green plant gates, there are algae belonging to the class of green algae, Plasinophyta, and Trevoxia algae, and the well-known algae belonging to the class of green algae Chlorella minutissima (Rema, V et al. 1998. (JAOCS. 75: 393-397) Examples of the alien phytophytes include algae belonging to the diatom class (Bacillariophyceae) and the true eye-point algae class (Eustigmatophyceae). Thalassiosira pseudonana (Tonon, T et al. 2002. Phytochemistry 61: 15-24), Eustigmatophyceae includes the nanochloropsis oculata.
 微細藻類の培養については多くの知見があり、Chlorella属、Arthrospira属(Spirulina)、あるいは、Dunaliella salinaなどは、食用として大規模な工業的な培養が行われている(Spolaore, P. et al. 2006. J. Biosci. Bioeng. 101: 87-96)。クラミドモナス・レインハルディには、例えば、0.3×HSM培地(Oyama, Y. et al. 2006. Planta 224: 646-654)を用いることが出来るし、クロレラ・ケッサレリには、0.2×ガンボーグ培地(Izumo, A. et al. 2007. Plant Science 172: 1138-1147)などを用いることが出来る。クロレラ・ブルガリスには、BG-11培地又はM8培地(Ramkumar、K.M et al. 1998. Biotech. Bioeng. 59: 605-611)などを用いることができる。ネオクロリス・オレオアバンダンスやナノクロリス・エスピーは、modified NORO培地(Yamaberi, K. et al. 1998. J. Mar. Biotechnol. 6: 44-48; Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol. 54: 112-117)やBold's Basal Medium(Tornabene, T. G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440; Archibald, P. A. and Bold, H. C. 1970. Phytomorphology 20: 383-389)、ダイゴIMK培地(Ota, M. et al. 2009. Bioresource Technology. 100: 5237-5242)を用いて培養することが出来る。珪藻綱に属する藻類としては、タラシオシラ・スードナナには、F/2培地(Lie, C.-P. and Lin, L.-P. 2001. Bot. Bull. Acad. Sin. 42: 207-214)などを好適に用いることが出来る。また微細藻類の培養には、フォトバイオリアクターを用いることも出来る(WO2003/094598号パンフレット)。 There is a lot of knowledge about the culture of microalgae, and Chlorella, Arthrospira (Spirulina), Dunaliella salina, etc. are edible on a large scale industrial culture (Spolaore, P. et al. 2006. J. Biosci. Bioeng. 101: 87-96). For example, 0.3 × HSM medium (Oyama, Y. et al. 2006. Planta 224: 646-654) can be used for Chlamydomonas reinhardi, and 0.2 × Gumborg medium (Izumo, A. et al. 2007. Plant Science 172: 1138-1147) can be used. For Chlorella vulgaris, BG-11 medium or M8 medium (Ramkumar, K.M et al. 1998. Biotech. Bioeng. 59: 605-611) can be used. Neochloris Oreo abundance and Nanochloris SP are modified NORO medium (Yamaberi, K. et al. 1998. J. Mar. Biotechnol. 6: 44-48; .54: 112-117) and Bold's Basal Medium (Tornabene, T. G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440; Archibald, P. A. and Bold, H. C. 1970. Phytomorphology (20: 383-389) and Daigo IMK medium (Ota, M. et al. 2009. Bioresource Technology. 100: 5237-5242). As for the algae belonging to the diatom class, F / 2 medium (Lie, C.-P. and Lin, L.-P. 2001. Bot. Bull. Acad. Sin. 42: 207-214) Etc. can be used suitably. A photobioreactor can also be used for culturing microalgae (WO2003 / 094598 pamphlet).
 培養は、本培養の体積に対し、1-50%の前培養液を添加して行うことが多い。初発のpHは7-9の中性付近が好ましく、培養中はpH調整を行わないことが多いが、必要に応じてすることもある。培養温度は、25-35℃が好ましく、特に28℃付近が一般的によく用いられる温度であるが、培養温度は、用いる藻類に適した温度であれば構わない。培養液には、空気を吹き込むことが多く、通気量としては、1分間の培養液体積当たりの通気量0.1-2vvm(volume per volume per minute)がよく用いられる。さらにCO2を吹き込むことも、生育を早めるために行われるが、通気量に対して、0.5-5%程度吹き込むのが好ましい。光の照射強度も微細藻類の種類によって、至適が異なるが、1,000-30,000 lux程度がよく用いられる。光源は、屋内では白色の蛍光灯を用いることが一般的であるが、これに制限されない。屋外にて太陽光で培養することも可能である。必要に応じて、培養液を適切な強度で撹拌、あるいは循環することもある。 また、藻類は、窒素源が枯渇すると油脂を藻体内に蓄積することが知られており(Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45)、窒素源の濃度をより制限した培地を本培養に用いることもできる。 In many cases, 1-50% of the preculture solution is added to the volume of the main culture. The initial pH is preferably around 7-9 neutral, and pH adjustment is often not performed during culturing, but it may be done as needed. The culture temperature is preferably 25-35 ° C., and particularly around 28 ° C. is a commonly used temperature, but the culture temperature may be any temperature suitable for the algae used. In many cases, air is blown into the culture medium, and an aeration rate of 0.1-2 vvm (volume per volume per minute) per one minute of the culture solution volume is often used as the aeration rate. Further, CO 2 is blown in order to accelerate the growth, but it is preferable to blow about 0.5-5% with respect to the aeration amount. The optimal intensity of light irradiation varies depending on the type of microalgae, but about 1,000-30,000 lux is often used. As a light source, a white fluorescent lamp is generally used indoors, but is not limited thereto. It is also possible to incubate outdoors with sunlight. If necessary, the culture solution may be stirred or circulated with an appropriate strength. Algae are known to accumulate fats and oils in the algae when the nitrogen source is depleted (Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45), which limits the concentration of the nitrogen source. The medium can also be used for the main culture.
 本発明において微細藻類の培養物とは、藻体を含む培養液、培養液から回収した藻体を包含する。 In the present invention, the culture of microalgae includes a culture solution containing algal bodies and algal bodies recovered from the culture solution.
 藻体を培養液から回収する方法は、一般的な遠心分離や濾過、あるいは、凝集剤(flocculant)を用いた重力による沈降などの方法で可能である(Grima, E. M. et al. 2003. Biotechnol. Advances 20: 491-515)。 The method for recovering the algal cells from the culture solution is possible by general centrifugation, filtration, or sedimentation by gravity using a flocculant (Grima, E. M. et al. 2003). Biotechnol. Advances 20: 491-515).
 特に本発明においては、中温度で反応させる前に、微細藻類を遠心分離等で濃縮しておくことが好ましい。藻体の濃縮には、溶液成分を除去して、微細藻類の乾燥重量の溶液あたりの濃度として25g/L以上、好ましくは250g/L以上にすること(遠心分離などの方法により培地から分離した藻体を液体に懸濁して所望の濃度にすることを含む)、及び、沈殿させて藻体を培地から分離して用いることを含む。 Particularly in the present invention, it is preferable to concentrate microalgae by centrifugation or the like before the reaction at medium temperature. For concentration of algal bodies, the solution components are removed, and the concentration per unit solution of the dry weight of microalgae is 25 g / L or more, preferably 250 g / L or more (separated from the medium by a method such as centrifugation). Including suspending the algal bodies in a liquid to a desired concentration) and precipitating and separating the algal bodies from the medium.
<2>本発明の微細藻類の培養物の反応方法と反応物
 本発明においては、微細藻類の培養物を中温度とアルコール添加後の中低温度(前記中温度より低い温度)の二段階反応で処理し(即ち、二段階反応に付し)、その微細藻類の処理物(反応物)を、脂肪酸エステルを採取するために用いる。
<2> Reaction method and reaction product of microalgae culture of the present invention In the present invention, the microalgae culture is subjected to a two-stage reaction at a medium temperature and a medium to low temperature (a temperature lower than the medium temperature) after addition of alcohol. (Ie, subjected to a two-step reaction), and the processed microalgae (reactant) is used to collect fatty acid esters.
 本発明において、微細藻類の反応物とは、微細藻類の培養物を中温度とアルコール添加後の中低温度の二段階反応に付した反応液を意味する。処理物は、その後の脂肪酸エステルの採取を妨げない限り、二段階反応に付した反応液をさらに抽出もしくは分画及び/又は別の処理に付してもよい。本発明の処理物中には、脂肪酸エステルの他に副生物が生じるが、その中でも油脂のエステル交換反応によって生成したグリセロールは、L-アミノ酸生産能を有する細菌によるL-アミノ酸の生産や化成品に利用してもよい。 In the present invention, the reaction product of microalgae means a reaction solution obtained by subjecting a culture of microalgae to a two-stage reaction at a medium temperature and a medium to low temperature after addition of alcohol. The treated product may be subjected to further extraction or fractionation and / or another treatment from the reaction solution subjected to the two-stage reaction as long as subsequent collection of the fatty acid ester is not prevented. In the treated product of the present invention, by-products are produced in addition to fatty acid esters. Among them, glycerol produced by transesterification of fats and oils is L-amino acid produced by bacteria having L-amino acid producing ability and chemical products. You may use it.
 二段階反応の二段目の反応は、脂肪酸エステルを生成する反応である。また、一段目の反応は、二段目の脂肪酸エステルの生成反応を促進するように微細藻類の培養物の状態を変化させる反応である。
 本発明において、二段階反応における温度は、中温度反応とアルコール添加後の中低温度反応後の反応物中の脂肪酸エステルが増加するのに十分な温度であればよく、一段目の反応後、温度を低下させて二段目の反応を行う。ここでの一段目反応の温度の下限としては、通常には40℃以上、好ましくは45℃以上、さらに好ましくは50℃以上、上限としては、通常には70℃以下、好ましくは65℃以下、さらに好ましくは60℃以下である。二段目反応の温度の下限としては、通常には5℃以上、好ましくは20℃以上、さらに好ましくは30℃以上、上限としては、通常には60℃以下、好ましくは50℃以下、さらに好ましくは45℃以下である。
The second stage reaction of the two stage reaction is a reaction that produces a fatty acid ester. The first-stage reaction is a reaction that changes the state of the microalgae culture so as to promote the formation reaction of the second-stage fatty acid ester.
In the present invention, the temperature in the two-stage reaction may be a temperature sufficient to increase the fatty acid ester in the reaction product after the medium temperature reaction and the medium to low temperature reaction after addition of the alcohol, and after the first stage reaction, Lower the temperature and perform the second stage reaction. Here, the lower limit of the temperature of the first stage reaction is usually 40 ° C. or higher, preferably 45 ° C. or higher, more preferably 50 ° C. or higher, and the upper limit is usually 70 ° C. or lower, preferably 65 ° C. or lower, More preferably, it is 60 ° C. or lower. The lower limit of the temperature of the second-stage reaction is usually 5 ° C or higher, preferably 20 ° C or higher, more preferably 30 ° C or higher, and the upper limit is usually 60 ° C or lower, preferably 50 ° C or lower, more preferably Is 45 ° C or lower.
 本発明において、二段階反応での一段目反応は、上記藻類の培養方法で得られた培養物をそのまま反応させてもよいが、前述のように濃縮して用いてもよい。例えば、一旦遠心分離した後、沈殿した藻体を反応物として用いてもよい。 In the present invention, the first-stage reaction in the two-stage reaction may be performed by reacting the culture obtained by the above-described algal culture method as it is, but may be used after being concentrated as described above. For example, the alga bodies that have been once centrifuged and then precipitated may be used as the reactant.
 また一段目反応前に、反応中のpHを弱酸性又は弱アルカリに調整してもよい。 Further, the pH during the reaction may be adjusted to weakly acidic or weakly alkaline before the first stage reaction.
 ここで弱酸性のpHは、好ましくは3.0~6.5、さらに好ましくは4.0~6.0である。さらに、弱アルカリのpHは、好ましくは7.5から12.0、さらに好ましくは9.0~11.0である。 Here, the pH of weak acid is preferably 3.0 to 6.5, more preferably 4.0 to 6.0. Further, the pH of the weak alkali is preferably 7.5 to 12.0, more preferably 9.0 to 11.0.
 二段目反応の前にアルコールを添加する方法としては、一段目反応の反応液にアルコールを添加してもよいし、一段目反応の反応液の液相を遠心分離などにより除去した後に二段目反応用の反応液を加えてもよい。 As a method of adding alcohol before the second stage reaction, alcohol may be added to the reaction liquid of the first stage reaction, or after removing the liquid phase of the reaction liquid of the first stage reaction by centrifugation or the like. A reaction solution for the eye reaction may be added.
 二段目反応の前に添加するアルコールの濃度は、少なくても5%以上、好ましくは10%以上、さらに好ましくは20%以上で反応させることが好ましい。また、上限として、通常70%以下、好ましくは60%、さらに好ましくは50%以下であることが好ましい。 The concentration of the alcohol added before the second stage reaction is preferably at least 5% or more, preferably 10% or more, more preferably 20% or more. The upper limit is usually 70% or less, preferably 60%, more preferably 50% or less.
 また、添加するアルコールは、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、エチレングリコールなどの炭素数5以下の低級アルコール又はヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノールなど炭素数6以上の高級アルコールを用いてもよい。 The alcohol to be added is a lower alcohol having 5 or less carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, ethylene glycol, or hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, and the like. Higher alcohols having 6 or more carbon atoms such as knoll may be used.
 本発明において、一段目反応(中温での処理)は、少なくても5分以上、好ましくは10分以上、さらに好ましくは20分以上反応させることが好ましい。一段目反応は、通常120分以下、さらに好ましくは60分以下であることが好ましい。さらに、二段目反応(中低温での処理)は、下限としては、少なくても10分以上、好ましくは30分以上、さらに好ましくは120分以上、上限としては、通常15時間以下、好ましくは10時間以下、さらに好ましくは5時間以下であることが好ましい。 In the present invention, the first-stage reaction (treatment at intermediate temperature) is preferably performed for at least 5 minutes or more, preferably 10 minutes or more, more preferably 20 minutes or more. The first stage reaction is usually 120 minutes or less, more preferably 60 minutes or less. Further, the second-stage reaction (treatment at medium and low temperatures) has a lower limit of at least 10 minutes, preferably 30 minutes or more, more preferably 120 minutes or more, and an upper limit of usually 15 hours or less, preferably It is preferably 10 hours or less, more preferably 5 hours or less.
 二段階反応後の反応物から脂肪酸エステルを抽出する方法は、一般的な藻類から油脂を抽出する方法が適用可能であり、例えば、有機溶剤処理や超音波処理、ビーズ破砕処理、酸処理、アルカリ処理、酵素処理、水熱処理、超臨界処理、マイクロ波処理、電磁場処理、あるいは、圧搾処理などの方法がある。細胞外に脂肪酸エステルを溶出させ、該溶出物から脂肪酸エステルを採取する処理をすることが好ましい。 As a method for extracting a fatty acid ester from a reaction product after the two-step reaction, a method for extracting fats and oils from general algae can be applied. For example, organic solvent treatment, ultrasonic treatment, bead crushing treatment, acid treatment, alkali treatment There are methods such as treatment, enzyme treatment, hydrothermal treatment, supercritical treatment, microwave treatment, electromagnetic field treatment, or pressing treatment. It is preferable that the fatty acid ester is eluted extracellularly and the fatty acid ester is collected from the eluate.
 本発明において、二段階反応後の有機溶剤処理は、メタノール、エタノール、2-プロパノール、アセトン、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、クロロホルム、酢酸メチル、酢酸エチル、ジメチルエーテル、ジエチルエーテル、ヘキサンなどが挙げられる。 In the present invention, the organic solvent treatment after the two-step reaction is methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, hexane, etc. Is mentioned.
 二段階反応後、反応液は、遠心分離によって、沈殿物と上清液に分離することが好ましい。また二段階反応後、有機溶剤を加え、水層と有機溶剤層の二層での抽出法を用いてもよい。 After the two-stage reaction, the reaction solution is preferably separated into a precipitate and a supernatant by centrifugation. Further, after the two-step reaction, an organic solvent may be added, and an extraction method using two layers of an aqueous layer and an organic solvent layer may be used.
 本発明において、触媒の添加を必要としない理由は、一段目反応により、微細藻類の細胞中のリパーゼが脂質に作用しやすい状態になり、そのリパーゼによって、油脂、セラミド(Ceramide)、リン脂質 (Phospholipid)や糖脂質 (Glycolipid)が外部より添加したアルコールとエステル交換反応するためと考えられる。 In the present invention, the reason why the addition of the catalyst is not required is that the lipase in the cells of microalgae is likely to act on the lipid by the first-stage reaction, and by the lipase, fat, ceramide (Ceramide), phospholipid soot ( This is probably because Phospholipid) and Glycolipid are transesterified with externally added alcohol.
 一般的にリパーゼによるエステル交換反応は、アルコール類以外の有機溶剤の添加によって促進される。従って、二段目反応において反応促進に有効な量の有機溶剤を加えてもよい。このような有機溶剤としては、例えば、ヘキサン、ヘプタン、イソオクタンクロロホルム、酢酸エチル、石油エーテルなどがある。 Generally, transesterification with lipase is promoted by the addition of an organic solvent other than alcohols. Accordingly, an organic solvent in an amount effective for promoting the reaction in the second stage reaction may be added. Examples of such organic solvents include hexane, heptane, isooctane chloroform, ethyl acetate, petroleum ether, and the like.
 以下、実施例にて、本発明を更に具体的に説明する。本実施例には、テキサス大学藻類カルチャーコレクション(The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA)より入手したChlorella kessleri 11h株(UTEX 263)及びScenedesmus abundans UTEX 1358株を用いた。 Hereinafter, the present invention will be described in more detail with reference to examples. In this example, Chlorella kessleri 株 11h strain obtained from University of Texas Algae Culture Collection (The University of Texas at Austin, The Culture Collection of Algae (UTEX), 1 University Station A6700, Austin, TX 78712-0183, USA) ( UTEX 263) and Scenedesmus abundans UTEX 1358 strain were used.
<実施例1>微細藻類 Chlorella kessleri 11h株の培養
 Chlorella kessleri 11h株を、800mLの0.2×ガンボーグB5培地(日本製薬)を入れた1000mL容メディウムビンにて30℃、光強度7,000 lux(TOMY社製培養装置CL-301)、400mL/minで空気と3% CO2の混合ガスを吹き込みながら、7日間培養し、これを前培養液とした。尚、光源には、蛍光灯からの白色光を用いた。0.2×ガンボーグB5 培地800mLを入れた1000mL容メディウムビンに、前培養液16mLを添加し、培養温度30℃、光強度7,000 luxにて、400 mL/minで空気と3% CO2の混合ガスを吹き込みながら、14日間培養を行った。
<Example 1> Culture of microalgae Chlorella kessleri 11h strain Chlorella kessleri 11h strain at 30 ° C in a 1000 mL medium bottle containing 800 mL of 0.2 x Gamborg B5 medium (Nippon Pharmaceutical), light intensity 7,000 lux (manufactured by TOMY) Culturing apparatus CL-301) was cultured for 7 days while blowing a mixed gas of air and 3% CO 2 at 400 mL / min, and this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source. 0.2 × Gambog B5 Add 800 mL of preculture to a 1000 mL medium bottle containing 800 mL of medium, and mix air and 3% CO 2 at 400 mL / min at a culture temperature of 30 ° C and light intensity of 7,000 lux. The culture was carried out for 14 days while blowing.
(0.2×ガンボーグB5培地)
KNO3             500 mg/L
MgSO4・7H2O        50 mg/L
NaH2PO4・H2O       30 mg/L
CaCl2・2H2O        30 mg/L
(NH42SO4        26.8 mg/L
Na2-EDTA           7.46 mg/L
FeSO4・7H2O        5.56 mg/L
MnSO4・H2O         2 mg/L
H3BO3              0.6 mg/L
ZnSO4・7H2O        0.4 mg/L
KI                0.15 mg/L
Na2MoO2・2H2O      0.05 mg/L
CuSO4・5H2O        0.005 mg/L
CoCl2・6H2O        0.005 mg/L
120℃ 15分          オートクレーブ殺菌
(0.2 x Gamborg B5 medium)
KNO 3 500 mg / L
MgSO 4・ 7H 2 O 50 mg / L
NaH 2 PO 4・ H 2 O 30 mg / L
CaCl 2・ 2H 2 O 30 mg / L
(NH 4 ) 2 SO 4 26.8 mg / L
Na 2 -EDTA 7.46 mg / L
FeSO 4・ 7H 2 O 5.56 mg / L
MnSO 4・ H 2 O 2 mg / L
H 3 BO 3 0.6 mg / L
ZnSO 4・ 7H 2 O 0.4 mg / L
KI 0.15 mg / L
Na 2 MoO 2・ 2H 2 O 0.05 mg / L
CuSO 4・ 5H 2 O 0.005 mg / L
CoCl 2・ 6H 2 O 0.005 mg / L
120 15 minutes Autoclave sterilization
<実施例2>藻類の二段階反応における一段目反応の温度条件の検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、45℃、50℃、55℃、60℃の各温度、静置で10minプレインキュベーションした。次に、各サンプルを上記と同じ温度にて1000rpm、30minインキュベートした後、各サンプルを遠心分離し、それらの沈殿物に200μlの10%メタノール溶液を加えた。各サンプルを42℃、1000rpm、5hrインキュベートし、油脂とメタノールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの測定結果を図1に示した。45℃、30minの誘導後、42℃、5hrでは、ほとんど脂肪酸メチルエステルの生成が確認されないが、50℃以上30minの誘導処理後、42℃、5hr処理では、脂肪酸メチルエステルの生成が確認され、55℃の誘導温度で、最もその収率が増加した。
<Example 2> Examination of the temperature conditions of the first-stage reaction in the two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. . After adjusting the pH of the suspension to 4.5 with 1N HCl solution, 1 ml was placed in a 1.5 ml Eppendorf tube and pre-incubated for 10 minutes at 45 ° C., 50 ° C., 55 ° C., and 60 ° C. at rest. Next, after incubating each sample at 1000 rpm for 30 minutes at the same temperature as above, each sample was centrifuged, and 200 μl of a 10% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C. and 1000 rpm for 5 hours, and an ester exchange reaction between oil and methanol was performed. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. After induction at 45 ° C. for 30 minutes, almost no formation of fatty acid methyl ester was confirmed at 42 ° C. for 5 hours, but after induction treatment at 50 ° C. or higher for 30 minutes, formation of fatty acid methyl ester was confirmed at 42 ° C. for 5 hours, The yield increased most at an induction temperature of 55 ° C.
<実施例3>藻類の二段階反応における一段目反応の時間の検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で10minプレインキュベーションした後、55℃、1000rpm、10min、20min、30min、40min、50min又は60minインキュベートした後、各サンプルを遠心分離し、それらの沈殿物に200μlの10%メタノール溶液を加えた。各サンプルを42℃、1000rpm、5hrインキュベートし、油脂とメタノールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの測定結果を図2に示した。55℃、10minの誘導温度と比較して、55℃、20minで脂肪酸メチルエステル生産の収率が増加した。一方で、55℃、30min以降の誘導温度では、誘導時間の増加に伴って、収率が減少する傾向を示した。
<Example 3> Examination of the time of the first stage reaction in the two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. After adjusting the pH of the suspension to 4.5 with 1N HCl solution, put 1 ml in a 1.5 ml Eppendorf tube, preincubate for 10 min at 55 ° C, then 55 ° C, 1000 rpm, 10 min, 20 min, 30 min, 40 min, After incubation for 50 min or 60 min, each sample was centrifuged and 200 μl of 10% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C. and 1000 rpm for 5 hours, and an ester exchange reaction between oil and methanol was performed. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. The yield of fatty acid methyl ester production increased at 55 ° C for 20 min compared to the induction temperature of 55 ° C for 10 min. On the other hand, at 55 ° C. and induction temperature after 30 min, the yield tended to decrease as the induction time increased.
<実施例4>藻類の二段階反応における一段目反応のpHの検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液を1N HCl溶液又は1N NaOHで各pHに調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした後、55℃、1000rpm、20minインキュベートした後、各サンプルを遠心分離し、それらの沈殿物に200μlの10%メタノール溶液を加えた。各サンプルを42℃、1000rpm、5hrインキュベートし、油脂とメタノールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの測定結果を図3に示した。3.0から10.5のpH範囲で脂肪酸メチルエステルの生産が確認され、その中でも弱酸性領域のpH4.5と弱アルカリ領域のpH 10.5の2条件で、高い収率を示した。
<Example 4> Examination of pH of first-stage reaction in two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, sterilized water was added to the precipitate, and a 1-fold suspension was prepared. The suspension was adjusted to each pH with 1N HCl solution or 1N NaOH, then 1 ml was put into a 1.5 ml Eppendorf tube, pre-incubated for 5 min at 55 ° C., then incubated at 55 ° C., 1000 rpm, 20 min. Samples were centrifuged and 200 μl of 10% methanol solution was added to the precipitates. Each sample was incubated at 42 ° C. and 1000 rpm for 5 hours, and an ester exchange reaction between oil and methanol was performed. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. Production of fatty acid methyl esters was confirmed in the pH range of 3.0 to 10.5, and high yields were shown under two conditions, pH 4.5 in the weakly acidic region and pH 10.5 in the weakly alkaline region.
<実施例5>藻類の二段階反応のメタノール添加濃度の検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした後、55℃、1000rpm、20minインキュベートした後、遠心分離し、沈殿物に200μlの5から50%メタノール溶液を加えた。各サンプルを42℃、1000rpm、5hrインキュベートし、油脂とメタノールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの測定結果を図4に示した。30%までのメタノール添加濃度では、その添加濃度の増加に伴って、脂肪酸メチルエステル生産の収率が増加した。一方で、35%以上の高濃度メタノール溶液では、濃度の増加に伴って収率が低下した。
<Example 5> Examination of methanol addition concentration in two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 μl of 5-50% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C. and 1000 rpm for 5 hours, and an ester exchange reaction between oil and methanol was performed. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. At methanol addition concentrations up to 30%, the yield of fatty acid methyl ester production increased with increasing addition concentrations. On the other hand, in a high concentration methanol solution of 35% or more, the yield decreased as the concentration increased.
<実施例6>藻類の二段階反応の二段目反応の時間の検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした後、55℃、1000rpm、20minインキュベートした後、遠心分離し、沈殿物に200μlの30%メタノール溶液を加えた。各サンプルを42℃、1000rpm、各時間インキュベートし、油脂とメタノールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの測定結果を図5に示した。30minの反応時間と比較して、60min、90min、120min、240minの時間の経過と伴に脂肪酸メチルエステル生産の収率が緩やかに増加した。一方で、360min以降の反応温度では、反応時間の経過に伴って、収率が緩やかに減少する傾向を示した。
<Example 6> Examination of the time of the second stage reaction of the two stage reaction of algae The culture solution obtained in Example 1 was centrifuged, sterilized water was added to the precipitate, and a 1-fold suspension was prepared. . Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 μl of 30% methanol solution was added to the precipitate. Each sample was incubated at 42 ° C. and 1000 rpm for each time, and a transesterification reaction between fat and methanol was performed. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. Compared with the reaction time of 30 min, the yield of fatty acid methyl ester production increased gradually with the elapse of 60 min, 90 min, 120 min, and 240 min. On the other hand, at the reaction temperature after 360 min, the yield tended to decrease gradually as the reaction time passed.
<実施例7>藻類の二段階反応の二段目反応の温度の検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした。次に、各サンプルを55℃、1000rpm、20minインキュベートした後、遠心分離し、沈殿物に200μlの30%メタノール溶液を加えた後、各温度で、1000rpm、2hrインキュベートし、油脂とメタノールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの測定結果を図6に示した。5℃の反応温度でも脂肪酸エステルの生産が確認され、さらに温度の上昇に伴って脂肪酸エステルの収率が35℃の反応温度まで増加した。一方、40℃以上の反応温度では、温度の上昇に伴って収率が低下する傾向を示した。
<Example 7> Examination of the temperature of the second stage reaction of the two stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. . After adjusting the pH of the suspension to 4.5 with 1N HCl solution, 1 ml was placed in a 1.5 ml Eppendorf tube and pre-incubated for 5 minutes by standing at 55 ° C. Next, each sample was incubated at 55 ° C, 1000rpm, 20min, then centrifuged, 200μl of 30% methanol solution was added to the precipitate, and incubated at 1000rpm for 2hr at each temperature, and the transesterification of oil and methanol Reaction was performed. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The measurement results are shown in FIG. Production of fatty acid esters was confirmed even at a reaction temperature of 5 ° C., and the yield of fatty acid esters increased to a reaction temperature of 35 ° C. as the temperature increased. On the other hand, at a reaction temperature of 40 ° C. or higher, the yield tended to decrease with increasing temperature.
<実施例8>藻類の二段階反応の添加アルコールの検討
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした後、55℃、1000rpm、20minインキュベートした後、遠心分離し、沈殿物に200μlの10%メタノール、10%エタノール又は10%ブタノール溶液を加えた。各サンプルを42℃、1000rpm、5hrインキュベートし、油脂とアルコールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸アルコールエステルの測定を行った。それらの測定結果を図7に示した。10%メタノールを添加した場合と比較して、10%エタノール添加でもほぼ同等の収率が確認された。また、メタノール及びエタノールを添加した場合と同様に、ブタノール添加によって脂肪酸ブタノールエステルのバンドが複数確認された。
<Example 8> Examination of added alcohol in two-stage reaction of algae The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 μl of 10% methanol, 10% ethanol or 10% butanol solution was added to the precipitate. Each sample was incubated at 42 ° C., 1000 rpm, for 5 hours, and an ester exchange reaction between fat and alcohol was performed. Lipids were extracted from the obtained samples, and fatty acid alcohol esters were measured. The measurement results are shown in FIG. Compared to the case where 10% methanol was added, almost the same yield was confirmed even when 10% ethanol was added. Further, as in the case of adding methanol and ethanol, a plurality of fatty acid butanol ester bands were confirmed by the addition of butanol.
<実施例9>二段階反応によって生成した脂肪酸アルコールエステルの定性
 実施例1で得られた培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.5に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした後、55℃、1000rpm、20minインキュベートした後、遠心分離し、沈殿物に200μlの10%メタノール、10%エタノール溶液を加えた。各サンプルを42℃、1000rpm、5hrインキュベートし、油脂とアルコールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸アルコールエステルの定性を行った。それらの結果を図8に示した。メタノールとエタノールの添加の実験区間で、ほぼ同じ脂肪酸アルコールエステルの組成を示した。ただし、エタノール添加でのミリスチン酸エチルエステルは未解析である(N.A.と表記)。α-リノレン酸アルコールエステル含量が最も多く、それ以外にミリスチン酸メチルエステル、パルミチン酸アルコールエステル、リノール酸アルコールエステル、オレイン酸アルコールエステル及びステアリン酸アルコールエステルが確認された。
<Example 9> Qualitative analysis of fatty acid alcohol ester produced by two-step reaction The culture solution obtained in Example 1 was centrifuged, and sterilized water was added to the precipitate to prepare a 1-fold suspension. Adjust the pH of the suspension to 4.5 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. Then, 200 μl of 10% methanol / 10% ethanol solution was added to the precipitate. Each sample was incubated at 42 ° C., 1000 rpm, for 5 hours, and an ester exchange reaction between fat and alcohol was performed. Lipids were extracted from the obtained samples to qualify fatty acid alcohol esters. The results are shown in FIG. Almost the same fatty acid alcohol ester composition was shown in the experimental section of methanol and ethanol addition. However, myristic acid ethyl ester with ethanol addition has not been analyzed (denoted NA). The content of α-linolenic acid alcohol ester was the highest, and in addition, myristic acid methyl ester, palmitic acid alcohol ester, linoleic acid alcohol ester, oleic acid alcohol ester and stearic acid alcohol ester were confirmed.
<実施例10>Scenedesmus abundans UTEX 1358株の培養
 Scenedesmus abundans UTEX 1358株を、100mLのModified Bold 3N培地を入れた500mL容三角フラスコにて30℃、光強度7,000 luxの日照条件で(明暗それぞれ11hrのグラディエント法) 、インキュベーター内のCO2濃度を1%に保ちながら、7日間培養し、これを前培養液とした。尚、光源には、蛍光灯からの白色光を用いた。Modified Bold 3N培地100mLを入れた500mL容三角フラスコに、前培養液5mLを添加し、同条件にて、16日間培養を行った。
<Example 10> Cultivation of Scenedesmus abundans UTEX 1358 strain Scenedesmus abundans UTEX 1358 strain was cultivated in a 500 mL Erlenmeyer flask containing 100 mL of Modified Bold 3N medium under sunshine conditions of 30 ° C and light intensity of 7,000 lux (light and dark for 11 hr each). Gradient method), while culturing for 7 days while maintaining the CO 2 concentration in the incubator at 1%, this was used as a preculture solution. Note that white light from a fluorescent lamp was used as the light source. To a 500 mL Erlenmeyer flask containing 100 mL of Modified Bold 3N medium, 5 mL of the preculture solution was added and cultured under the same conditions for 16 days.
(Modified Bold 3N培地)
NaNO3             750 mg/L
MgSO4・7H2O       75 mg/L
KH2PO4            175 mg/L
K2HPO4             75 mg/L
CaCl2・2H2O        25 mg/L
NaCl               25 mg/L
Na2EDTA・2H2O       4.5 mg/L
FeCl3・6H2O         0.582 mg/L
MnCl2・4H2O         0.246 mg/L
ZnCl2               0.03 mg/L
CoCl2・6H2O         0.012 mg/L
Na2MoO4・2H2O       0.024 mg/L
HEPES              0.036 mg/L
Thiamine           1.1 mg/L
Biotin             0.025 mg/L
VitaminB12              0.12 mg/L
CaCO3                     0.2 mg/L
Green house soil   0.2 tsp/L
pH6.2に調整後、120℃ 15分          オートクレーブ殺菌
(Modified Bold 3N medium)
NaNO 3 750 mg / L
MgSO 4・ 7H 2 O 75 mg / L
KH 2 PO 4 175 mg / L
K 2 HPO 4 75 mg / L
CaCl 2・ 2H 2 O 25 mg / L
NaCl 25 mg / L
Na 2 EDTA ・ 2H 2 O 4.5 mg / L
FeCl 3・ 6H 2 O 0.582 mg / L
MnCl 2・ 4H 2 O 0.246 mg / L
ZnCl 2 0.03 mg / L
CoCl 2・ 6H 2 O 0.012 mg / L
Na 2 MoO 4・ 2H 2 O 0.024 mg / L
HEPES 0.036 mg / L
Thiamine 1.1 mg / L
Biotin 0.025 mg / L
VitaminB 12   0.12 mg / L
CaCO 3   0.2 mg / L
Green house soil 0.2 tsp / L
After adjusting to pH 6.2, autoclave sterilization at 120 ° C for 15 minutes
<実施例11>Scenedesmus abundans UTEX 1358株での二段階反応
 実施例10で得られた100mlの培養液を遠心分離し、その沈殿物に滅菌水を加え、1倍細胞懸濁液を調製した。その懸濁液のpHを1N HCl溶液で4.2に調整後、1.5ml容量のエッペンチューブに1ml入れ、55℃静置で5minプレインキュベーションした後、55℃、1000rpm、20minインキュベートした後、遠心分離し、沈殿物に200μlの20%メタノール溶液を加えた。それを42℃、1000rpm、6hrインキュベートし、油脂とアルコールのエステル交換反応を行った。得られたサンプルから脂質の抽出を行い、脂肪酸メチルエステルの測定を行った。それらの結果を図9に示した。Scenedesmus abundans UTEX 1358株においても、脂肪酸メチルエステルの生産が確認された。
<Example 11> Two-step reaction with Scenedesmus abundans UTEX 1358 strain The 100 ml culture solution obtained in Example 10 was centrifuged, and sterile water was added to the precipitate to prepare a 1-fold cell suspension. Adjust the pH of the suspension to 4.2 with 1N HCl solution, add 1 ml to a 1.5 ml Eppendorf tube, preincubate at 55 ° C for 5 min, incubate at 55 ° C, 1000 rpm, 20 min, then centrifuge. 200 μl of 20% methanol solution was added to the precipitate. It was incubated at 42 ° C. and 1000 rpm for 6 hours to carry out a transesterification reaction between fat and alcohol. Lipids were extracted from the obtained samples, and fatty acid methyl esters were measured. The results are shown in FIG. Production of fatty acid methyl esters was also confirmed in Scenedesmus abundans UTEX 1358 strain.
 本発明により、効率よく脂肪酸エステルが生産できる。 The fatty acid ester can be produced efficiently by the present invention.

Claims (16)

  1.  (a)微細藻類を培地で培養して得た培養物を中温度で反応させ、
     (b)次いで、アルコールを添加して、前記中温度より低い温度で反応させ、
     (c)得られる反応物から脂肪酸エステルを採取することを特徴とする脂肪酸エステルの製造法。
    (A) reacting a culture obtained by culturing microalgae in a medium at medium temperature;
    (B) Then, an alcohol is added and reacted at a temperature lower than the intermediate temperature,
    (C) A method for producing a fatty acid ester, wherein the fatty acid ester is collected from the reaction product obtained.
  2.  前記(a)の反応の温度が40℃以上である、請求項1に記載の方法。 The method according to claim 1, wherein the temperature of the reaction (a) is 40 ° C or higher.
  3.  前記(a)の反応の温度が70℃以下である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the temperature of the reaction (a) is 70 ° C or lower.
  4.  前記(a)の反応のpHが弱酸性から弱アルカリである、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the pH of the reaction (a) is from weakly acidic to weakly alkaline.
  5.  前記(b)の反応の温度が5℃以上である、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the temperature of the reaction (b) is 5 ° C or higher.
  6.  前記(b)の反応の温度が60℃以下である、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the temperature of the reaction (b) is 60 ° C or lower.
  7.  前記(b)の反応のアルコール濃度が5%以上である、請求項1~6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the alcohol concentration in the reaction (b) is 5% or more.
  8.  前記(b)の反応のアルコール濃度が70%以下である、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the alcohol concentration in the reaction (b) is 70% or less.
  9.  前記(b)の反応に添加するアルコールが、炭素数5以下の低級アルコールである、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the alcohol added to the reaction (b) is a lower alcohol having 5 or less carbon atoms.
  10.  前記(b)の反応に添加するアルコールが、炭素数6以上の高級アルコールである、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the alcohol added to the reaction (b) is a higher alcohol having 6 or more carbon atoms.
  11.  前記(a)及び(b)の二段階反応後にさらに有機溶剤処理することにより、脂肪酸エステルを抽出し、その抽出物から脂肪酸エステルを採取する請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the fatty acid ester is extracted by further treating with an organic solvent after the two-step reaction of (a) and (b), and the fatty acid ester is collected from the extract. .
  12.  二段階反応後に遠心分離した沈殿物を有機溶剤処理する請求項11に記載の方法。 The method according to claim 11, wherein the precipitate separated by centrifugation after the two-stage reaction is treated with an organic solvent.
  13.  上記有機溶剤処理がメタノール、エタノール、2-プロパノール、アセトン、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、クロロホルム、酢酸メチル、酢酸エチル、ジメチルエーテル、ジエチルエーテル、又はヘキサンで行われる、請求項11又は12に記載の方法。 The organic solvent treatment is performed in methanol, ethanol, 2-propanol, acetone, butanol, pentanol, hexanol, heptanol, octanol, chloroform, methyl acetate, ethyl acetate, dimethyl ether, diethyl ether, or hexane. The method described in 1.
  14.  前記微細藻類が緑色植物門に属する藻類である請求項1~13のいずれか1項に記載の方法。 The method according to any one of claims 1 to 13, wherein the microalgae are algae belonging to the green plant gate.
  15.  前記微細藻類が緑藻綱、トレボキシア藻綱、又はプラシノ藻綱に属する藻類である、請求項14に記載の方法。 The method according to claim 14, wherein the microalgae are algae belonging to the class of green algae, treboxya algae, or plastinophyceae.
  16.  前記微細藻類が緑藻綱に属する藻類である、請求項15に記載の方法。 The method according to claim 15, wherein the microalgae are algae belonging to the green alga class.
PCT/JP2012/050975 2011-01-18 2012-01-18 Method for producing fatty acid ester WO2012099172A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012553754A JP5924268B2 (en) 2011-01-18 2012-01-18 Production method of fatty acid ester
US13/944,197 US20130302864A1 (en) 2011-01-18 2013-07-17 Method for Producing a Fatty Acid Ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-008272 2011-01-18
JP2011008272 2011-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/944,197 Continuation US20130302864A1 (en) 2011-01-18 2013-07-17 Method for Producing a Fatty Acid Ester

Publications (1)

Publication Number Publication Date
WO2012099172A1 true WO2012099172A1 (en) 2012-07-26

Family

ID=46515794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050975 WO2012099172A1 (en) 2011-01-18 2012-01-18 Method for producing fatty acid ester

Country Status (3)

Country Link
US (1) US20130302864A1 (en)
JP (1) JP5924268B2 (en)
WO (1) WO2012099172A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064648A1 (en) * 2013-11-01 2015-05-07 味の素株式会社 Green algae that generates a fatty acid
WO2016092828A1 (en) * 2014-12-09 2016-06-16 花王株式会社 Method for rupture of algae

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244966A (en) * 1992-01-28 1993-09-24 Commiss Energ Atom Selective production of polyunsaturated lipid from culture product of microalgae of porphyridium cruentum type
JPH0930963A (en) * 1995-07-21 1997-02-04 Nisshin Oil Mills Ltd:The Medical oil and fat-containing composition
WO2009126843A2 (en) * 2008-04-09 2009-10-15 Solazyme, Inc. Direct chemical modification of microbial biomass and microbial oils
JP2010514446A (en) * 2006-12-28 2010-05-06 ソリックス バイオフューエルズ, インコーポレイテッド Excellent diffused light large surface area water-supported photobioreactor
JP2010538642A (en) * 2007-09-12 2010-12-16 マーテック バイオサイエンシーズ コーポレーション Biological oil and its production and use
WO2011013707A1 (en) * 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244966A (en) * 1992-01-28 1993-09-24 Commiss Energ Atom Selective production of polyunsaturated lipid from culture product of microalgae of porphyridium cruentum type
JPH0930963A (en) * 1995-07-21 1997-02-04 Nisshin Oil Mills Ltd:The Medical oil and fat-containing composition
JP2010514446A (en) * 2006-12-28 2010-05-06 ソリックス バイオフューエルズ, インコーポレイテッド Excellent diffused light large surface area water-supported photobioreactor
JP2010538642A (en) * 2007-09-12 2010-12-16 マーテック バイオサイエンシーズ コーポレーション Biological oil and its production and use
WO2009126843A2 (en) * 2008-04-09 2009-10-15 Solazyme, Inc. Direct chemical modification of microbial biomass and microbial oils
WO2011013707A1 (en) * 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064648A1 (en) * 2013-11-01 2015-05-07 味の素株式会社 Green algae that generates a fatty acid
WO2016092828A1 (en) * 2014-12-09 2016-06-16 花王株式会社 Method for rupture of algae
JPWO2016092828A1 (en) * 2014-12-09 2017-09-14 花王株式会社 Method for crushing algae
US10676690B2 (en) 2014-12-09 2020-06-09 Kao Corporation Method for rupture of algae

Also Published As

Publication number Publication date
JP5924268B2 (en) 2016-05-25
US20130302864A1 (en) 2013-11-14
JPWO2012099172A1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
Khan et al. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products
EP2292782B1 (en) Method for producing biodiesel by two-stage culture of chlorella from autotrophy to heterotrophy
US10465215B2 (en) Production of biofuel from tissue culture sources
JP5052652B2 (en) Production method of Euglena with high wax ester content
CN107287252B (en) Omega-7 fatty acid composition, method for culturing chrysophyceae to produce composition and application
López et al. Enzymatic production of biodiesel from Nannochloropsis gaditana lipids: Influence of operational variables and polar lipid content
CN110923185B (en) Culture method for improving oil content of microalgae cells
WO2013176261A1 (en) Method for producing nutritional additives using microalgae
Swain et al. Enhanced lipid production in Tetraselmis sp. by two stage process optimization using simulated dairy wastewater as feedstock
WO2012047120A1 (en) Heterotrophic microbial production of xanthophyll pigments
Martínez-Roldán et al. Employment of wastewater to produce microalgal biomass as a biorefinery concept
JP5924268B2 (en) Production method of fatty acid ester
Bi et al. Biodiesel from microalgae
Goyal et al. Targeting cyanobacteria as a novel source of biofuel
Anandapadmanaban et al. Enhanced production of lipid as biofuel feedstock from the marine diatom Nitzschia sp. by optimizing cultural conditions
Mohammady et al. Compromising between growth and oil production of Nannochloropsis oculata cultivated under halo-stress
RU2610675C1 (en) Method for extraction of lipids from biomass of microalgae chlorella and yeast yarrowia lipolytica
WO2017203959A1 (en) Algae treatment method
Ayil-Gútierrez et al. Consolidated Process for Bioenergy Production and Added Value Molecules from Microalgae
Rizwan et al. Influence of organic carbon sources on growth and lipid content of marine green alga Dunaliella tertiolecta
Chakraborty et al. MICROALGAE: UTILITIES AND PRODUCTION FOR COMMERCIALIZATION
Selvaraj et al. Potential of Oleaginous Microorganisms in Green Diesel Production
CN117265027A (en) Method for preparing UPU structural fat rich in DHA through microbial fermentation
KR102023756B1 (en) Novel microalgae Thraustochytrium sp. LA6 (KCTC 12389BP), and producing method for bio-oil by using thereof
Sulistyo et al. Biosynthesis of single cell oils extracted from microbial cultures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736697

Country of ref document: EP

Kind code of ref document: A1