WO2015064497A1 - In-vehicle projection device - Google Patents

In-vehicle projection device Download PDF

Info

Publication number
WO2015064497A1
WO2015064497A1 PCT/JP2014/078337 JP2014078337W WO2015064497A1 WO 2015064497 A1 WO2015064497 A1 WO 2015064497A1 JP 2014078337 W JP2014078337 W JP 2014078337W WO 2015064497 A1 WO2015064497 A1 WO 2015064497A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
mirror
light
screen
vehicle
Prior art date
Application number
PCT/JP2014/078337
Other languages
French (fr)
Japanese (ja)
Inventor
染野 義博
酒井 重史
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2015064497A1 publication Critical patent/WO2015064497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/2213Diffusing screen revealing the real holobject, e.g. container filed with gel to reveal the 3D holobject
    • G03H2001/2215Plane screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/202D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/32Phase only

Definitions

  • the present invention relates to an in-vehicle projector that projects a display image on a display area that functions as a semi-reflective surface such as a windshield of an automobile.
  • Patent Document 1 discloses an invention related to an in-vehicle projection device called a head-up display.
  • This projection device is composed of an optical scanning device, and a first mirror and a second mirror that apply light from the optical scanning device to a semi-transmissive mirror that is a windshield.
  • the optical scanning device includes three light source elements that emit laser beams of different wavelengths, a combining element that combines the three types of laser light, and an optical deflector that applies the laser light combined by the combining element to the semi-transmissive mirror.
  • the optical deflector includes a minute mirror that swings with respect to two orthogonal axes.
  • a micro mirror is vibrated in a two-dimensional direction in an optical deflector, and a display image is generated when a laser beam scans a semi-transmissive mirror.
  • laser light is directly applied to a semi-transparent mirror such as a windshield, so it is dangerous because the laser light may be directly irradiated to the human eye when wiping and cleaning the outer surface of the windshield. is there.
  • the optical axes from the light source element toward the semi-transmissive mirror are all included in the same plane.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide an in-vehicle projection apparatus that can perform a safe and clear display on a display area such as a windshield by using a laser beam. .
  • Another object of the present invention is to provide an in-vehicle projection apparatus that can be configured to be thin and small.
  • the present invention relates to an in-vehicle projection device that projects a display image onto a display area that functions as a semi-reflective surface in a vehicle interior of an automobile.
  • a laser light source a phase modulation array that phase-modulates laser light emitted from the laser light source, a screen that forms an image of a modulated light beam phase-modulated by the phase modulation array as a hologram image, and an image formed on the screen
  • a projection unit for enlarging the hologram image and projecting the hologram image onto the display area as the display image.
  • the on-vehicle projector of the present invention is safe because the hologram image generated from the laser beam is projected onto a semi-reflective surface such as a windshield, so that the laser beam does not directly enter the human eye.
  • a display image with a hologram image the dynamic range of luminance change can be expanded, and three-dimensional display changes such as changing the distance of the virtual image displayed in front of the display area can be performed. It is possible to give.
  • the projection light is applied upward from the projection unit to the display area, and the optical path of the modulated light beam directed from the phase modulation array to the screen is directed substantially horizontally.
  • the optical path of the laser light from the laser light source toward the phase modulation array is also directed substantially horizontally.
  • the in-vehicle projector can be made thin and can be easily embedded in a dashboard or the like in the vehicle interior.
  • the modulated light beam phase-modulated by the phase modulation array intersects with other light in the process of reaching the projection unit.
  • the projection unit is configured so that a first projection mirror and a second projection mirror are opposed to each other, and projection light including a hologram image formed on the screen receives the first projection mirror and the second projection mirror.
  • the modulated light beam reflected by the projection mirror and projected onto the display area and phase-modulated by the phase modulation array passes between the first projection mirror and the second projection mirror and passes through the screen.
  • the optical path of the projection light directed from the first projection mirror to the second projection mirror can be configured to intersect the modulated light flux.
  • first intermediate mirror and a second intermediate mirror are provided for directing the modulated light flux that has passed between the first projection mirror and the second projection mirror to the screen, and the second intermediate mirror is provided.
  • the screen is disposed on an optical path from an intermediate mirror toward the first projection mirror.
  • optical path from the second intermediate mirror to the first projection mirror and the optical path of the modulated light beam from the phase modulation array to the first intermediate mirror are opposite to each other.
  • the present invention Although it is possible to increase the magnification of the display image by lengthening the optical path for imaging the modulated light beam phase-modulated by the phase modulation array on the screen, in the present invention, by crossing the optical path in the apparatus, Even if the optical path is long, the apparatus can be made compact.
  • a plurality of apertures are arranged on an optical path from the phase modulation array to the screen.
  • the in-vehicle projector of the present invention does not directly apply laser light to a display area such as a windshield, it is safe for human eyes.
  • various display forms can be selected by using the hologram image.
  • the entire apparatus can be configured to be thin and small.
  • Explanatory drawing which shows the state with which the vehicle-mounted projection apparatus of embodiment of this invention was mounted in the vehicle
  • Explanatory drawing which shows an example of the display image by the vehicle projector.
  • 1 is an exploded perspective view of an in-vehicle projector according to an embodiment of the present invention
  • the top view which shows arrangement
  • the partial perspective view which shows the structure of a phase modulation part, and was seen from the V arrow direction shown in FIG.
  • FIG. 4 is a partial perspective view showing the configuration of the hologram imaging unit, seen from the direction of arrow VIII shown in FIG.
  • an in-vehicle projector 10 As shown in FIG. 1, an in-vehicle projector 10 according to an embodiment of the present invention is used by being embedded in a dashboard 2 in front of a passenger compartment of an automobile 1. A display image 70 shown in FIG. 2 is projected from the in-vehicle projection device 10 onto the display area 3 a of the windshield 3.
  • the display area 3a functions as a semi-reflective surface
  • the display image 70 projected on the display area 3a is reflected toward the driver 5 in the display area 3a, and a virtual image 6 is formed in front of the windshield 3. To do.
  • the virtual image 6 in front of the windshield 3 it appears to the driver 5 that various information is displayed in front of the steering wheel 4.
  • FIG. 3 and 4 show the overall structure of the in-vehicle projector 10.
  • the case of the in-vehicle projector 10 is separated into a lower case 11 and an upper case 12, and the optical unit 20 is housed inside the case.
  • the optical unit 20 has an optical base 21, and the optical base 21 is supported inside the lower case 11 via an elastic member such as an elastomer or a metal spring.
  • the lower case 11 is fixed to the interior of the dashboard 2 in the passenger compartment, but since the optical base 21 is supported via an elastic member, it is possible to prevent the vehicle body vibration from directly affecting the optical unit 20. .
  • the lower case 11 and the upper case 12 are positioned with respect to each other by concave and convex fitting by positioning pins 15 formed integrally with the lower case 11.
  • Female screw holes 16 are formed at a plurality of locations in the lower case 11, and fixing screws inserted through the upper case 12 are screwed into the female screw holes 16, so that the lower case 11 and the upper case 12 are fixed to each other.
  • the projection window 13 is opened in the upper case 12.
  • the projection window 13 is disposed so as to be exposed on the upper surface of the dashboard 2, and the display image 70 is projected from the projection window 13 onto the display area 3 a of the windshield 3.
  • a transparent cover plate 14 is attached to the projection window 13.
  • the cover plate 14 prevents dust from entering the case.
  • the cover plate 14 is configured with an optical filter that suppresses transmission of light having a wavelength other than the display light of the hologram image projected onto the display region 3a so that external light does not directly enter the case from the projection window 13. Is preferred.
  • the optical unit 20 includes a phase modulation unit 20A, a hologram imaging unit 20B, and a projection unit 20C due to the configuration of the optical components.
  • the reference base 22 is provided in the phase modulation unit 20A, and the reference base 22 is fixed on the optical base 21 by screws.
  • the first light emitting unit 23A and the second light emitting unit 23B are arranged so as to overlap each other.
  • the first light emitting unit 23A has a first positioning block 24A
  • the second light emitting unit 23B has a second positioning block 24B.
  • the first positioning block 24A is installed on a positioning reference surface 22A formed on the reference base 22, and is fixed to the reference base 22 with a plurality of fixing screws 25A.
  • the second positioning block 24B is installed on the first positioning block 24A, and is fixed to the first positioning block 24A with a plurality of fixing screws 25B.
  • FIG. 6 shows the internal structure of the second positioning block 24B.
  • An optical path 26B is formed in the positioning block 24B.
  • a second laser unit 27B which is a laser light source, is attached to the closed side end portion (the end portion on the right side of FIG. 6) of the optical path 26B.
  • the second laser unit 27B is configured by housing a semiconductor laser chip in a case.
  • a collimating lens 28B is fixed inside the light path 26B.
  • the laser beam B0 emitted from the second laser unit 27B is divergent light, and as shown in FIG. 7, the cross-sectional shape of the laser beam B0 is elliptical or oval.
  • the major axis of the laser beam B 0 is directed in the horizontal direction (i) parallel to the upper surface of the reference base 22, and the minor axis is directed in the vertical direction (ii) perpendicular to the upper surface of the reference base 22.
  • the effective diameter (effective region) of the collimator lens 28B is rectangular, and the long side of the rectangle is oriented in the same horizontal direction (i) as the major axis direction of the cross section of the laser beam B0. Yes. Therefore, when the laser beam B0 passes through the collimating lens 28B, it is converted into a collimated beam B1 having a rectangular cross section.
  • the opening end (opening end on the left side in FIG. 6) of the light path 26B of the positioning block 24B is closed by the light transmitting cover 29B.
  • the translucent cover 29B is preferably composed of a half-wave plate. When the half-wave plate is used, the polarization direction is changed by 90 degrees, and in the collimated light beam B1, the P wave component whose polarization direction is the horizontal direction (i) increases.
  • the luminous flux of the display image projected on the display area 3a is such that the polarization direction of many P-wave components is directed in the horizontal direction (i) with respect to the windshield 3.
  • the display image 70 is easily semi-reflected.
  • the first laser unit 27A is provided at the closed end of the internal optical path 26A (not shown in the drawing).
  • a collimating lens 28A (not shown) is housed in the optical path 26A, and the laser beam emitted from the first laser unit 27A has a rectangular cross section with a long side in the horizontal direction (i). Converted to B1.
  • a translucent cover 29A (not shown in the drawing) is provided at the opening end of the light passage 26A.
  • the phase modulation unit 20A is provided with a heat radiation cooling unit 37 that radiates heat generated from the first laser unit 27A and the second laser unit 27B.
  • the laser unit 27A of the first light emitting unit 23A and the laser unit 27B of the second light emitting unit 23B have different wavelengths of emitted laser light.
  • the wavelength of the collimated light beam B1 emitted from the first light emitting unit 23A is red at 642 nm
  • the wavelength of the collimated light beam B1 emitted from the second light emitting unit 23B is 515 nm.
  • the collimated light beam obtained from the first light emitting unit 23A will be described with reference symbol B1r
  • the collimated light beam obtained from the second light emitting unit 23B will be described with reference character B1g.
  • the reference base 22 is integrally formed with a positioning holding portion 22B, and the phase modulation array 31 is held inside a holding frame portion 22C formed in the positioning holding portion 22B. Since the positioning reference surface 22A for positioning the first light emitting part 23A and the second light emitting part 23B and the holding frame part 22C are integrally formed on the same reference base 21, the first light emitting part 23A and The collimated light beams B1r and B1g emitted from the second light emitting units 23B can be incident on the optical surface 31a of the phase modulation array 31 at an optimal incident angle.
  • the phase modulation array 31 is LCOS (Liquid Crystal On On Silicon).
  • LCOS is a reflective panel having a liquid crystal layer and an electrode layer such as aluminum.
  • electrodes that apply an electric field to a liquid crystal layer are regularly arranged to form a plurality of pixels. The tilt angle in the thickness direction of the crystal layer in the liquid crystal layer changes due to the change in electric field strength applied to each electrode, and the phase of the reflected laser light is changed for each pixel.
  • the phase modulation unit 20A is provided with a heat radiation cooling unit 38 that radiates heat generated in the phase modulation array 31.
  • the collimated light beam B1r converted by the collimating lens 28A in the first light emitting unit 23A is given to the region below the phase modulation array 31, and the collimating lens 28B in the second light emitting unit 23B.
  • the collimated light beam B1g converted in (1) is given to the upper region of the phase modulation array 31.
  • the region to which the collimated light beam B1r is given becomes the first modulation region M1
  • the region to which the collimated light beam B1g is given becomes the second modulation region M2.
  • the first modulation region M1 and the second modulation region M2 are also rectangular.
  • the first modulation region M1 and the second modulation region M2 are set so as not to overlap each other.
  • the phase of the collimated light beam B1r given to the first modulation region M1 is modulated by passing through each of the plurality of pixels of the phase modulation array 31, and the collimated light beam B1g given to the second modulation region M2 is also The phase is modulated by passing through each of the plurality of pixels.
  • the modulated light beam B ⁇ b> 2 reflected from the phase modulation array 31 becomes interference light in which lights that have passed through the respective pixels interfere with each other.
  • the interference light includes interference between light components of the red collimated light beam B1r, interference between light components of the green collimated light beam B1g, and further, light components of the collimated light beam B1r and the collimated light beam B1g. Interference.
  • a lens holder 32 is provided in the phase modulation unit 20A.
  • the lens holder 32 is positioned and fixed on the reference base 22.
  • An FT lens (Fourier transform lens) 33 is held on the lens holder 32.
  • the modulated light beam B2 reflected by the phase modulation array 31 is transmitted through the FT lens 33 to become a modulated light beam B3 subjected to Fourier transform.
  • the phase modulator 20A is provided with a light transmission mirror 34 held by a mirror holder 34a.
  • the light transmission mirror 34 is a plane mirror, and the optical axis of the FT lens 33 is incident on the reflection surface at a predetermined angle.
  • the modulated light beam B3 Fourier-transformed by the FT lens 33 is reflected by the light transmission mirror 34, and the reflected modulated light beam B4 passes through the optical unit 20 and is sent to the hologram imaging unit 20B.
  • the hologram imaging unit 20B is provided with a first intermediate mirror 35 held by the mirror holding unit 35a and a second intermediate mirror 36 held by the mirror holding unit 36a. Yes.
  • the first intermediate mirror 35 and the second intermediate mirror 36 are plane mirrors.
  • the reflection surface of the first intermediate mirror 35 faces the reflection surface of the light transmission mirror 34 provided in the phase modulation unit 20A. Further, the reflecting surfaces of the first intermediate mirror 35 and the second intermediate mirror 36 face each other at a predetermined angle.
  • the screen 51 is arranged in the reflection direction by the reflection surface of the second intermediate mirror 36.
  • the modulated light beam B4 reflected by the light transmission mirror 34 travels in the right direction in the figure after being reflected in the first intermediate mirror 35, and the reflected modulated light beam B5 is second reflected. Are reflected by the intermediate mirror 36. Then, the modulated light beam B 6 reflected by the second intermediate mirror 36 is given to the screen 51.
  • the phase of the red laser light is modulated for each pixel in the first modulation region M1, and the green laser light is modulated for each pixel in the second modulation region M2.
  • the light in which the interference light of the red and green laser beams is mixed is Fourier-transformed by the FT lens, and the modulated light beams B3, B4, B5, and B6 are defocused on the screen 51 through the optical path in the case.
  • the hologram image is formed on the screen 51.
  • the first-order diffracted light is imaged on the screen 51.
  • a hologram image having substantially the same content as the display image 70 posted in the display area 3a shown in FIG.
  • This hologram image is formed with a red color and a green color and a mixed color of two hues. Since the modulated light beams B3, B4, B5, and B6 contain light interference components, a large number of stray light images generated by second-order diffracted light, third-order diffracted light, and the like exist in the space from the phase modulation array 31 to the screen 51. . Therefore, a plurality of apertures are formed on the optical path from the phase modulation array 31 to the screen 51 so that only the first-order diffracted light can reach the screen 51.
  • a light shielding wall 41a is provided at a light emitting portion from the phase modulation unit 20A, and a rectangular first aperture 41 is opened in the light shielding wall 41a.
  • a light shielding wall 42a is provided at a light incident portion on the hologram imaging portion 20B, and a rectangular second aperture 42 is opened in the light shielding wall 42a.
  • a light shielding wall 43a is provided between the second intermediate mirror 36 and the screen 51, and a rectangular third aperture 43 is opened in the light shielding wall 43a.
  • the third aperture 43 is also shown in FIG.
  • Three-stage apertures 41, 42, and 43 are provided on the optical path from the modulated light beam reflected by the light transmission mirror 34 to the screen 51, and stray light other than the first-order diffracted light is shielded. Only the first-order diffracted light that forms the image can be reached.
  • a screen 51 is disposed on the front side (light emission side) of the third aperture 43.
  • the modulated light beam B ⁇ b> 6 reflected by the second intermediate mirror 36 passes through the third aperture 43 and reaches the screen 51, and a hologram image by the first-order diffracted light is generated on the screen 51.
  • the screen 51 is a transmissive diffuser having fine irregularities formed on the surface, and light including a hologram image formed on the screen 51 passes through the screen 51 and becomes divergent projection light B7. .
  • the projection light B7 passes through the fourth aperture 44 formed in the light shielding wall 42a and is given to the projection unit 20C.
  • the motor 52 is fixed to the light shielding wall 43 a in which the third aperture 43 is opened, and the disk-shaped screen 51 is always rotated by the power of the motor 52. It has been made. By rotating the screen 51, speckle noise that causes flickering of the display image 70 can be reduced.
  • a monitor detection unit 53 is provided on the light shielding wall 43a.
  • the monitor detection unit 53 is provided below the third aperture 43.
  • the monitor detection unit 53 includes three detection units: a red wavelength detection unit 53a, a green wavelength detection unit 53b, and a position detection unit 53c.
  • Each of the detectors 53a, 53b, and 53c has a light receiving element such as a pin photodiode housed in a closed space, and an opening is formed on the side facing the second intermediate mirror 36.
  • the opening is covered with a wavelength filter that transmits red light
  • the green wavelength detection unit 53b the opening is covered with a wavelength filter that transmits green light.
  • Each detection unit 53a, 53b, 53c is irradiated with either the first-order diffracted light or multi-order diffracted light other than the first-order diffracted light. Based on the detection output of the position detection unit 53c, the positions of the first light emitting unit 23A, the second light emitting unit 23B, and other optical components are adjusted. Further, the emission intensity of the first laser unit 27A and the second laser unit 27B is automatically adjusted based on the detection outputs from the red wavelength detection unit 53a and the green wavelength detection unit 53b, and the phase modulation by the phase modulation array 31 is performed. Operation is also automatically controlled.
  • the projection unit 20C is provided with a first projection mirror 55 and a second projection mirror 56 facing each other.
  • the reflecting surface 55a of the first projection mirror 55 and the reflecting surface 56a of the second projection mirror 56 are concave mirrors (magnifying mirrors).
  • the projection light B 7 including the hologram image formed on the screen 51 is diverged by the screen 51 and given to the first projection mirror 55.
  • the projection light B8 obtained by enlarging the hologram image by the first projection mirror 55 is given to the second projection mirror 56, and the hologram image is further enlarged.
  • the projection light B9 reflected by the reflecting surface 56a of the second projection mirror 56 becomes an upward light beam, passes through the cover plate 14, and, as shown in FIG. 1, the display area of the windshield 3 3a is projected.
  • the display image 70 various information associated with the traveling of the vehicle such as a vehicle speed display 71, a shift lever position information 72, and navigation information 73 are displayed.
  • the display image 70 is displayed with red light or green light, or is displayed with a mixed color of red light and green light.
  • the windshield 3 functions as a semi-reflective surface, it appears to the driver 5 that the display image 70 exists at the imaging position of the virtual image 6 ahead of the windshield 3.
  • the optical base 21 of the optical unit 20 is oriented almost horizontally.
  • collimated light beams B1r and B1g emitted from the first light emitting unit 23A and the second light emitting unit 23B, the modulated light beam B2 modulated by the phase modulation array 31, and the modulated light beam B3 through the FT lens.
  • These optical axes extend horizontally so as to be parallel to the optical base 21.
  • the optical axes of the modulated light beam B4 reflected by the light transmission mirror 34, the modulated light beam B5 reflected by the first intermediate mirror 35, and the modulated light beam B6 reflected by the second intermediate mirror 36 are also represented by the optical base. 21 and extends horizontally.
  • the optical axis of the projection light B7 that has passed through the screen 51 is also horizontal, and the projection light B8 reflected by the first projection mirror 55 is given slightly upward to the second projection mirror 56, so that the second projection mirror 56
  • the projection light B ⁇ b> 9 reflected by 56 is irradiated upward toward the windshield 3.
  • the in-vehicle projector 10 can be configured to be thin, It becomes easy to embed inside the dashboard 2.
  • the modulated light beam B ⁇ b> 4 from the light transmission mirror 34 to the first intermediate mirror 35 passes between the first projection mirror 55 and the second projection mirror 56, and the first The projection light B8 directed from the projection mirror 55 to the second projection mirror 56 intersects the modulated light beam B4.
  • a long optical path from the FT lens 33 to the screen 51 can be secured, and a hologram image can be formed on the screen 51 at an appropriate magnification.
  • the in-vehicle projector 10 can be made compact even if the optical path is long.
  • the direction of the light is opposite between the modulated light beam B4 directed from the light transmission mirror 34 to the first intermediate mirror 35 and the modulated light beam B6 directed from the second intermediate mirror 36 to the screen 51.
  • the direction of the projection light B7 from the screen 51 toward the first projection mirror 55 is also opposite to the direction of the modulated light beam B4.
  • the entire apparatus can also be made compact by reversing the direction of the light beam in the case.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Instrument Panels (AREA)

Abstract

[Problem] To provide an in-vehicle projection device that can safely project a display image onto a windshield even when using laser light and can be made small in size. [Solution] A collimated beam of laser light emitted by a light-emitting unit (23A, 23B) is converted by an FT lens (33), reflected by a light-transmission mirror (34), and reflected by a first intermediate mirror (35) and a second intermediate mirror (36) such that a holographic image is formed on a screen (51). Projection light (B7) that contains said holographic image is reflected by a first projection mirror (55) and the reflected projection light (B8) is further reflected by a second projection mirror (56) such that a display image is projected onto a windshield. Since the modulating light beam (B4) and the projection light (B8) intersect each other between the first projection mirror (55) and the second projection mirror (56), the device as a whole can be made small in size even if the light path is long.

Description

車載用投影装置In-vehicle projector
 本発明は、自動車のウインドシールドなどのような半反射面として機能する表示領域に表示画像を投影する車載用投影装置に関する。 The present invention relates to an in-vehicle projector that projects a display image on a display area that functions as a semi-reflective surface such as a windshield of an automobile.
 特許文献1に、ヘッドアップディスプレイと称される車載用の投影装置に関する発明が開示されている。 Patent Document 1 discloses an invention related to an in-vehicle projection device called a head-up display.
 この投影装置は、光走査装置と、光走査装置からウインドシールドである半透過鏡へ光を与える第1ミラーならびに第2ミラーとから構成されている。 This projection device is composed of an optical scanning device, and a first mirror and a second mirror that apply light from the optical scanning device to a semi-transmissive mirror that is a windshield.
 光走査装置は、それぞれ異なる波長のレーザ光を発する3種の光源素子と、3種のレーザ光を合成する合成素子と、合成素子で合成されたレーザ光を半透過鏡に与える光偏向器を有している。光偏向器は、直交する2軸に対して揺動する微小なミラーを備えている。 The optical scanning device includes three light source elements that emit laser beams of different wavelengths, a combining element that combines the three types of laser light, and an optical deflector that applies the laser light combined by the combining element to the semi-transmissive mirror. Have. The optical deflector includes a minute mirror that swings with respect to two orthogonal axes.
特開2013-61554号公報JP 2013-61554 A
 特許文献1に記載された車載用の投影装置は、光偏向器において微小なミラーが二次元方向へ振動させられて、レーザ光が半透過鏡を走査することで、表示画像が生成される。この構造では、レーザ光がウインドシールドなどの半透過鏡に直接に与えられるため、ウインドシールドの外面の拭き取り清掃などの際に、レーザ光が人の目に直接に照射されることがあり危険である。 In the on-vehicle projector described in Patent Document 1, a micro mirror is vibrated in a two-dimensional direction in an optical deflector, and a display image is generated when a laser beam scans a semi-transmissive mirror. In this structure, laser light is directly applied to a semi-transparent mirror such as a windshield, so it is dangerous because the laser light may be directly irradiated to the human eye when wiping and cleaning the outer surface of the windshield. is there.
 また、微小なミラーを使用してレーザ光で半透過鏡を走査する方法では、生成する画像の輝度を大きく変化させることが難しく、さらには三次元的な表示を行うことも困難である。 Also, in the method of scanning a semi-transparent mirror with a laser beam using a minute mirror, it is difficult to greatly change the brightness of an image to be generated, and it is also difficult to perform a three-dimensional display.
 また、特許文献1に記載された投影装置は、光源素子から半透過鏡に向かう光軸が全て同じ平面内に含まれている。車載用の投影装置では、第2ミラーからウインドシールドなどの半透過鏡に対して走査光を上向きに与える必要があり、光軸を含む前記平面をほぼ垂直に向けることが必要になる。そのため、各種光学部材の配置方向が上下方向となり、投影装置の上下の高さ寸法が大きくなる。その結果、投影装置を車室内のダッシュボードに埋設できないなどの問題が生じやすくなる。 Further, in the projection apparatus described in Patent Document 1, the optical axes from the light source element toward the semi-transmissive mirror are all included in the same plane. In an in-vehicle projection apparatus, it is necessary to apply scanning light upward from a second mirror to a semi-transmissive mirror such as a windshield, and it is necessary to direct the plane including the optical axis almost vertically. Therefore, the arrangement direction of various optical members is the vertical direction, and the vertical height dimension of the projection apparatus is increased. As a result, problems such as the inability to embed the projection device in the dashboard in the vehicle cabin are likely to occur.
 本発明は上記従来の課題を解決するものであり、レーザ光を使用して、ウインドシールドなどの表示領域に安全で鮮明な表示を行うことができる車載用投影装置を提供することを目的としている。 SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide an in-vehicle projection apparatus that can perform a safe and clear display on a display area such as a windshield by using a laser beam. .
 また、本発明は、薄型で小型に構成することができる車載用投影装置を提供することを目的としている。 Another object of the present invention is to provide an in-vehicle projection apparatus that can be configured to be thin and small.
 本発明は、自動車の車室内で半反射面として機能する表示領域へ表示画像を投影する車載用投影装置において、
 レーザ光源と、前記レーザ光源から発せられたレーザ光を位相変調する位相変調アレイと、前記位相変調アレイで位相変調された変調光束をホログラム画像として結像させるスクリーンと、前記スクリーンに結像されたホログラム画像を拡大して前記表示領域へ前記表示画像として投影する投影部と、が設けられていることを特徴とするものである。
The present invention relates to an in-vehicle projection device that projects a display image onto a display area that functions as a semi-reflective surface in a vehicle interior of an automobile.
A laser light source, a phase modulation array that phase-modulates laser light emitted from the laser light source, a screen that forms an image of a modulated light beam phase-modulated by the phase modulation array as a hologram image, and an image formed on the screen A projection unit for enlarging the hologram image and projecting the hologram image onto the display area as the display image.
 本発明の車載用投影装置は、レーザ光から生成されたホログラム画像がウインドシールドなどの半反射面に投影されるため、レーザ光が直接に人の目に入ることがなく、安全である。また、ホログラム画像で表示画像を生成することにより、輝度変化のダイナミックレンジを広げることができ、また表示領域の前方に表示される虚像の距離に変化を与えるなどの、三次元的な表示変化を与えることが可能である。 The on-vehicle projector of the present invention is safe because the hologram image generated from the laser beam is projected onto a semi-reflective surface such as a windshield, so that the laser beam does not directly enter the human eye. In addition, by generating a display image with a hologram image, the dynamic range of luminance change can be expanded, and three-dimensional display changes such as changing the distance of the virtual image displayed in front of the display area can be performed. It is possible to give.
 本発明は、前記投影部から前記表示領域へ投影光が上向きに与えられ、前記位相変調アレイから前記スクリーンへ向かう変調光束の光路がほぼ水平に向けられていることが好ましい。 In the present invention, it is preferable that the projection light is applied upward from the projection unit to the display area, and the optical path of the modulated light beam directed from the phase modulation array to the screen is directed substantially horizontally.
 また、前記レーザ光源から前記位相変調アレイへ向かうレーザ光の光路もほぼ水平に向けられていることが好ましい。 Further, it is preferable that the optical path of the laser light from the laser light source toward the phase modulation array is also directed substantially horizontally.
 前記各光路を水平に向けることで、車載用投影装置を薄型にでき、車室内のダッシュボードなどに埋設しやすくなる。 ¡By directing each optical path horizontally, the in-vehicle projector can be made thin and can be easily embedded in a dashboard or the like in the vehicle interior.
 本発明では、前記位相変調アレイで位相変調された変調光束が、前記投影部に至る過程で他の光と交差していることが好ましい。 In the present invention, it is preferable that the modulated light beam phase-modulated by the phase modulation array intersects with other light in the process of reaching the projection unit.
 例えば、前記投影部は、第1の投影ミラーと第2の投影ミラーとが対向して構成され、前記スクリーンに結像したホログラム画像を含む投影光が、前記第1の投影ミラーと前記第2の投影ミラーで反射されて前記表示領域へ投影され、前記位相変調アレイで位相変調された変調光束が、前記第1の投影ミラーと前記第2の投影ミラーとの間を通過して前記スクリーンに与えられ、前記第1の投影ミラーから前記第2の投影ミラーへ向かう投影光の光路が、前記変調光束と交差しているものとして構成できる。 For example, the projection unit is configured so that a first projection mirror and a second projection mirror are opposed to each other, and projection light including a hologram image formed on the screen receives the first projection mirror and the second projection mirror. The modulated light beam reflected by the projection mirror and projected onto the display area and phase-modulated by the phase modulation array passes between the first projection mirror and the second projection mirror and passes through the screen. Given, the optical path of the projection light directed from the first projection mirror to the second projection mirror can be configured to intersect the modulated light flux.
 また、前記第1の投影ミラーと前記第2の投影ミラーとの間を通過した変調光束を前記スクリーンに向ける第1の中間ミラーと第2の中間ミラーとが設けられており、前記第2の中間ミラーから前記第1の投影ミラーに向かう光路上に、前記スクリーンが配置されているものである。 Further, a first intermediate mirror and a second intermediate mirror are provided for directing the modulated light flux that has passed between the first projection mirror and the second projection mirror to the screen, and the second intermediate mirror is provided. The screen is disposed on an optical path from an intermediate mirror toward the first projection mirror.
 さらに、前記第2の中間ミラーから前記第1の投影ミラーに向かう光路と、前記位相変調アレイから前記第1の中間ミラーに向かう変調光束の光路とが、互いに逆向きであることが好ましい。 Furthermore, it is preferable that the optical path from the second intermediate mirror to the first projection mirror and the optical path of the modulated light beam from the phase modulation array to the first intermediate mirror are opposite to each other.
 位相変調アレイで位相変調した変調光束をスクリーンに結像させる光路を長くすることで、表示画像の拡大倍率を上げることが可能であるが、本発明では、装置内で光路を交差させることで、前記光路が長くても装置を小型に構成することが可能になる。 Although it is possible to increase the magnification of the display image by lengthening the optical path for imaging the modulated light beam phase-modulated by the phase modulation array on the screen, in the present invention, by crossing the optical path in the apparatus, Even if the optical path is long, the apparatus can be made compact.
 さらに、本発明は、前記位相変調アレイから前記スクリーンに至る光路上に複数のアパーチャーが配置されているものである。 Further, in the present invention, a plurality of apertures are arranged on an optical path from the phase modulation array to the screen.
 本発明の車載用投影装置は、ウインドシールドなどの表示領域にレーザ光を直接に与えるものではないので、人の目に安全である。また、ホログラム画像を使用することで、多様な表示形態を選択できる。
 さらに本発明では、装置全体を薄型で小型に構成することが可能になる。
Since the in-vehicle projector of the present invention does not directly apply laser light to a display area such as a windshield, it is safe for human eyes. Moreover, various display forms can be selected by using the hologram image.
Furthermore, according to the present invention, the entire apparatus can be configured to be thin and small.
本発明の実施の形態の車載用投影装置が車両に搭載された状態を示す説明図、Explanatory drawing which shows the state with which the vehicle-mounted projection apparatus of embodiment of this invention was mounted in the vehicle, 車両用投影装置による表示画像の一例を示す説明図、Explanatory drawing which shows an example of the display image by the vehicle projector. 本発明の実施の形態の車載用投影装置の分解斜視図、1 is an exploded perspective view of an in-vehicle projector according to an embodiment of the present invention; 本発明の実施の形態の車載用投影装置の主要部品の配置を示す平面図、The top view which shows arrangement | positioning of the main components of the vehicle-mounted projection apparatus of embodiment of this invention, 位相変調部の構成を示すものであり、図4に示すV矢視方向から見た部分斜視図、The partial perspective view which shows the structure of a phase modulation part, and was seen from the V arrow direction shown in FIG. 位相変調部の構成を示す部分拡大平面図、Partial enlarged plan view showing the configuration of the phase modulation unit, 図6のVII矢視図、VII arrow view of FIG. 6, ホログラム結像部の構成を示すものであり、図4に示すVIII矢視方向から見た部分斜視図、FIG. 4 is a partial perspective view showing the configuration of the hologram imaging unit, seen from the direction of arrow VIII shown in FIG.
 図1に示すように、本発明の実施の形態の車載用投影装置10は、自動車1の車室内前方のダッシュボード2の内部に埋設されて使用される。車載用投影装置10からウインドシールド3の表示領域3aに、図2に示す表示画像70が投影される。 As shown in FIG. 1, an in-vehicle projector 10 according to an embodiment of the present invention is used by being embedded in a dashboard 2 in front of a passenger compartment of an automobile 1. A display image 70 shown in FIG. 2 is projected from the in-vehicle projection device 10 onto the display area 3 a of the windshield 3.
 表示領域3aは半反射面として機能するため、表示領域3aに投影された表示画像70は、表示領域3aにおいて運転者5に向けて反射されるとともに、ウインドシールド3の前方に虚像6が結像する。ウインドシールド3の前方の虚像6を目視することで、運転者5には、ステアリングホイール4の上方の前方に各種の情報が表示されているように見える。 Since the display area 3a functions as a semi-reflective surface, the display image 70 projected on the display area 3a is reflected toward the driver 5 in the display area 3a, and a virtual image 6 is formed in front of the windshield 3. To do. By viewing the virtual image 6 in front of the windshield 3, it appears to the driver 5 that various information is displayed in front of the steering wheel 4.
 図3と図4に車載用投影装置10の全体構造が示されている。
 図3に示すように、車載用投影装置10のケースは、下部ケース11と上部ケース12とに分離されており、ケースの内部に光学ユニット20が収納されている。光学ユニット20は光学ベース21を有しており、光学ベース21は、下部ケース11の内部で、エラストマーや金属ばねなどの弾性部材を介して支持されている。下部ケース11は、車室内のダッシュボード2の内部に固定されるが、光学ベース21が弾性部材を介して支持されているため、車体振動が光学ユニット20に直接に影響を与えるのを防止できる。
3 and 4 show the overall structure of the in-vehicle projector 10.
As shown in FIG. 3, the case of the in-vehicle projector 10 is separated into a lower case 11 and an upper case 12, and the optical unit 20 is housed inside the case. The optical unit 20 has an optical base 21, and the optical base 21 is supported inside the lower case 11 via an elastic member such as an elastomer or a metal spring. The lower case 11 is fixed to the interior of the dashboard 2 in the passenger compartment, but since the optical base 21 is supported via an elastic member, it is possible to prevent the vehicle body vibration from directly affecting the optical unit 20. .
 光学ユニット20が内部に収納された状態で、下部ケース11と上部ケース12は、下部ケース11に一体に形成された位置決めピン15による凹凸嵌合で互いに位置決めされる。下部ケース11の複数か所に雌ねじ穴16が形成されており、上部ケース12に挿通された固定ねじが雌ねじ穴16に螺着されて、下部ケース11と上部ケース12とが互いに固定される。 In the state in which the optical unit 20 is housed inside, the lower case 11 and the upper case 12 are positioned with respect to each other by concave and convex fitting by positioning pins 15 formed integrally with the lower case 11. Female screw holes 16 are formed at a plurality of locations in the lower case 11, and fixing screws inserted through the upper case 12 are screwed into the female screw holes 16, so that the lower case 11 and the upper case 12 are fixed to each other.
 上部ケース12に、投影窓13が開口している。この投影窓13がダッシュボード2の上面に露出して配置され、投影窓13からウインドシールド3の表示領域3aに表示画像70が投影される。投影窓13には透光性のカバー板14が装着されている。カバー板14によってケース内部に塵埃が侵入するのが防止されている。投影窓13からケース内部に外光が直接入り込まないように、カバー板14は、表示領域3aに投影されるホログラム画像の表示光以外の波長の光の透過を抑制する光学フィルターで構成されることが好ましい。 The projection window 13 is opened in the upper case 12. The projection window 13 is disposed so as to be exposed on the upper surface of the dashboard 2, and the display image 70 is projected from the projection window 13 onto the display area 3 a of the windshield 3. A transparent cover plate 14 is attached to the projection window 13. The cover plate 14 prevents dust from entering the case. The cover plate 14 is configured with an optical filter that suppresses transmission of light having a wavelength other than the display light of the hologram image projected onto the display region 3a so that external light does not directly enter the case from the projection window 13. Is preferred.
 図3と図4に示すように、光学ユニット20では光学ベース21上に各種光学部品が実装されている。図4に示すように、光学部品の構成により、光学ユニット20は、位相変調部20Aとホログラム結像部20Bならびに投影部20Cとで構成されている。 As shown in FIGS. 3 and 4, in the optical unit 20, various optical components are mounted on the optical base 21. As shown in FIG. 4, the optical unit 20 includes a phase modulation unit 20A, a hologram imaging unit 20B, and a projection unit 20C due to the configuration of the optical components.
 図5に示すように、位相変調部20Aには、基準ベース22が設けられており、この基準ベース22が、光学ベース21の上にねじ止めにより固定されている。 As shown in FIG. 5, the reference base 22 is provided in the phase modulation unit 20A, and the reference base 22 is fixed on the optical base 21 by screws.
 基準ベース22上に、第1の発光部23Aと第2の発光部23Bとが重ねて配置されている。第1の発光部23Aは第1の位置決めブロック24Aを有し、第2の発光部23Bは第2の位置決めブロック24Bを有している。第1の位置決めブロック24Aは、基準ベース22に形成された位置決め基準面22Aの上に設置され、複数の固定ねじ25Aで基準ベース22に固定されている。第2の位置決めブロック24Bは、第1の位置決めブロック24Aの上に設置され、複数の固定ねじ25Bで第1の位置決めブロック24Aに固定されている。 On the reference base 22, the first light emitting unit 23A and the second light emitting unit 23B are arranged so as to overlap each other. The first light emitting unit 23A has a first positioning block 24A, and the second light emitting unit 23B has a second positioning block 24B. The first positioning block 24A is installed on a positioning reference surface 22A formed on the reference base 22, and is fixed to the reference base 22 with a plurality of fixing screws 25A. The second positioning block 24B is installed on the first positioning block 24A, and is fixed to the first positioning block 24A with a plurality of fixing screws 25B.
 図6に、第2の位置決めブロック24Bの内部構造が示されている。位置決めブロック24Bには、内部に光通路26Bが形成されている。光通路26Bの閉鎖側端部(図6の図示右側の端部)に、レーザ光源である第2のレーザユニット27Bが取り付けられている。第2のレーザユニット27Bは、ケース内に半導体レーザチップが収納されて構成されている。光通路26Bの内部にはコリメートレンズ28Bが固定されている。 FIG. 6 shows the internal structure of the second positioning block 24B. An optical path 26B is formed in the positioning block 24B. A second laser unit 27B, which is a laser light source, is attached to the closed side end portion (the end portion on the right side of FIG. 6) of the optical path 26B. The second laser unit 27B is configured by housing a semiconductor laser chip in a case. A collimating lens 28B is fixed inside the light path 26B.
 第2のレーザユニット27Bから発せられるレーザ光束B0は発散光であり、図7に示すように、レーザ光束B0の断面形状は楕円形または長円形である。レーザ光束B0の長軸は基準ベース22の上面と平行な水平方向(i)に向けられ、短軸が基準ベース22の上面に垂直な垂直方向(ii)に向けられている。 The laser beam B0 emitted from the second laser unit 27B is divergent light, and as shown in FIG. 7, the cross-sectional shape of the laser beam B0 is elliptical or oval. The major axis of the laser beam B 0 is directed in the horizontal direction (i) parallel to the upper surface of the reference base 22, and the minor axis is directed in the vertical direction (ii) perpendicular to the upper surface of the reference base 22.
 図7に示すように、コリメートレンズ28Bの有効径(有効領域)の形状は長方形であり、長方形の長辺が、レーザ光束B0の断面の長軸方向と同じ水平方向(i)に向けられている。したがって、レーザ光束B0がコリメートレンズ28Bを通過すると、断面が長方形のコリメート光束B1に変換される。 As shown in FIG. 7, the effective diameter (effective region) of the collimator lens 28B is rectangular, and the long side of the rectangle is oriented in the same horizontal direction (i) as the major axis direction of the cross section of the laser beam B0. Yes. Therefore, when the laser beam B0 passes through the collimating lens 28B, it is converted into a collimated beam B1 having a rectangular cross section.
 図6に示すように、位置決めブロック24Bの光通路26Bの開口端(図6の図示左側の開口端)が透光カバー29Bで塞がれている。図7に示すレーザ光束B0において、S波成分に対するP波成分の比率が短軸方向(垂直方向(ii))に多い場合、すなわちP波成分の光の偏光方向が主に短軸方向に向けられている場合には、透光カバー29Bが1/2波長板で構成されることが好ましい。1/2波長板が使用されると、偏光方向が90度変化させられ、コリメート光束B1では、偏光方向が水平方向(i)となるP波成分が多くなる。その結果、図2に示すように、表示領域3aに投影される表示画像の光束は、多くのP波成分の偏光方向がウインドシールド3に対して水平方向(i)に向けられるようになり、表示領域3aで、表示画像70が半反射しやすくなる。 As shown in FIG. 6, the opening end (opening end on the left side in FIG. 6) of the light path 26B of the positioning block 24B is closed by the light transmitting cover 29B. In the laser beam B0 shown in FIG. 7, when the ratio of the P wave component to the S wave component is large in the short axis direction (vertical direction (ii)), that is, the polarization direction of the light of the P wave component is mainly directed to the short axis direction. In such a case, the translucent cover 29B is preferably composed of a half-wave plate. When the half-wave plate is used, the polarization direction is changed by 90 degrees, and in the collimated light beam B1, the P wave component whose polarization direction is the horizontal direction (i) increases. As a result, as shown in FIG. 2, the luminous flux of the display image projected on the display area 3a is such that the polarization direction of many P-wave components is directed in the horizontal direction (i) with respect to the windshield 3. In the display area 3a, the display image 70 is easily semi-reflected.
 図5に示す第1の発光部23Aに設けられた第1の位置決めブロック24Aの内部構造は、図示されていないが、図6に示される第2の位置決めブロック24Bと実質的に同じである。第1の位置決めブロック24Aにおいても、内部の光通路26A(図に現れていない)の閉鎖端部に第1のレーザユニット27Aが装備されている。光通路26Aの内部にコリメートレンズ28A(図示せず)が収納されており、第1のレーザユニット27Aから発せられるレーザ光束が、水平方向(i)に長辺が向く長方形の断面を有するコリメート光束B1に変換される。また、光通路26Aの開口端部に透光カバー29A(図に現れていない)が設けられている。 Although the internal structure of the first positioning block 24A provided in the first light emitting unit 23A shown in FIG. 5 is not shown, it is substantially the same as the second positioning block 24B shown in FIG. Also in the first positioning block 24A, the first laser unit 27A is provided at the closed end of the internal optical path 26A (not shown in the drawing). A collimating lens 28A (not shown) is housed in the optical path 26A, and the laser beam emitted from the first laser unit 27A has a rectangular cross section with a long side in the horizontal direction (i). Converted to B1. Further, a translucent cover 29A (not shown in the drawing) is provided at the opening end of the light passage 26A.
 図3と図4に示すように、位相変調部20Aには、第1のレーザユニット27Aと第2のレーザユニット27Bから発せられる熱を放熱する放熱冷却部37が設けられている。 As shown in FIGS. 3 and 4, the phase modulation unit 20A is provided with a heat radiation cooling unit 37 that radiates heat generated from the first laser unit 27A and the second laser unit 27B.
 第1の発光部23Aのレーザユニット27Aと第2の発光部23Bのレーザユニット27Bとでは、発せられるレーザ光の波長が相違している。実施の形態の車載用投影装置10では、第1の発光部23Aから発せられるコリメート光束B1の波長が642nmで赤色系であり、第2の発光部23Bから発せられるコリメート光束B1の波長が515nmであり緑色系である。 The laser unit 27A of the first light emitting unit 23A and the laser unit 27B of the second light emitting unit 23B have different wavelengths of emitted laser light. In the in-vehicle projector 10 according to the embodiment, the wavelength of the collimated light beam B1 emitted from the first light emitting unit 23A is red at 642 nm, and the wavelength of the collimated light beam B1 emitted from the second light emitting unit 23B is 515 nm. There is a green system.
 そこで、以下においては、第1の発光部23Aから得られるコリメート光束を符号B1rで説明し、第2の発光部23Bから得られるコリメート光束を符号B1gで説明する。 Therefore, in the following, the collimated light beam obtained from the first light emitting unit 23A will be described with reference symbol B1r, and the collimated light beam obtained from the second light emitting unit 23B will be described with reference character B1g.
 図5に示すように、基準ベース22には、位置決め保持部22Bが一体に形成されており、位置決め保持部22Bに形成された保持枠部22Cの内部に位相変調アレイ31が保持されている。同じ基準ベース21に、第1の発光部23Aと第2の発光部23Bとを位置決めする位置決め基準面22Aと、保持枠部22Cとが一体に形成されているため、第1の発光部23Aと第2の発光部23Bのそれぞれから発せられるコリメート光束B1r,B1gを位相変調アレイ31の光学面31aに対して最適な入射角度で入射させることができる。 As shown in FIG. 5, the reference base 22 is integrally formed with a positioning holding portion 22B, and the phase modulation array 31 is held inside a holding frame portion 22C formed in the positioning holding portion 22B. Since the positioning reference surface 22A for positioning the first light emitting part 23A and the second light emitting part 23B and the holding frame part 22C are integrally formed on the same reference base 21, the first light emitting part 23A and The collimated light beams B1r and B1g emitted from the second light emitting units 23B can be incident on the optical surface 31a of the phase modulation array 31 at an optimal incident angle.
 位相変調アレイ31は、LCOS(Liquid Crystal On Silicon)である。LCOSは、液晶層とアルミニウムなどの電極層とを有する反射型パネルである。LCOSは、液晶層に電界を与える電極が規則的に並んで複数のピクセルが構成されている。それぞれの電極に与えられる電界強度の変化により、液晶層内の結晶の層の厚さ方向への倒れ角度が変化し、反射されるレーザ光はピクセル毎に位相が変化させられる。 The phase modulation array 31 is LCOS (Liquid Crystal On On Silicon). LCOS is a reflective panel having a liquid crystal layer and an electrode layer such as aluminum. In LCOS, electrodes that apply an electric field to a liquid crystal layer are regularly arranged to form a plurality of pixels. The tilt angle in the thickness direction of the crystal layer in the liquid crystal layer changes due to the change in electric field strength applied to each electrode, and the phase of the reflected laser light is changed for each pixel.
 図3と図4に示すように、位相変調部20Aには、位相変調アレイ31で発生する熱を放熱する放熱冷却部38が設けられている。 3 and 4, the phase modulation unit 20A is provided with a heat radiation cooling unit 38 that radiates heat generated in the phase modulation array 31.
 図5に示すように、第1の発光部23A内のコリメートレンズ28Aで変換されたコリメート光束B1rは、位相変調アレイ31の下部の領域に与えられ、第2の発光部23B内のコリメートレンズ28Bで変換されたコリメート光束B1gは、位相変調アレイ31の上部の領域に与えられる。位相変調アレイ31では、コリメート光束B1rが与えられる領域が第1の変調領域M1となり、コリメート光束B1gが与えられる領域が第2の変調領域M2となる。 As shown in FIG. 5, the collimated light beam B1r converted by the collimating lens 28A in the first light emitting unit 23A is given to the region below the phase modulation array 31, and the collimating lens 28B in the second light emitting unit 23B. The collimated light beam B1g converted in (1) is given to the upper region of the phase modulation array 31. In the phase modulation array 31, the region to which the collimated light beam B1r is given becomes the first modulation region M1, and the region to which the collimated light beam B1g is given becomes the second modulation region M2.
 コリメート光束B1rとコリメート光束B1gは断面が長方形であるため、第1の変調領域M1と第2の変調領域M2も長方形となる。基準ベース22で、第1の発光部23Aと第2の発光部23Bとの垂直方向(ii)での相対位置が調整されることで、第1の変調領域M1と第2の変調領域M2とが互いに重複しないように設定される。 Since the cross section of the collimated light beam B1r and the collimated light beam B1g is rectangular, the first modulation region M1 and the second modulation region M2 are also rectangular. By adjusting the relative position in the vertical direction (ii) of the first light emitting unit 23A and the second light emitting unit 23B with the reference base 22, the first modulation region M1 and the second modulation region M2 Are set so as not to overlap each other.
 第1の変調領域M1に与えられたコリメート光束B1rは、位相変調アレイ31の複数のピクセルのそれぞれを通過することで位相が変調され、第2の変調領域M2に与えられたコリメート光束B1gも、複数のピクセルのそれぞれを通過することで位相が変調される。図6に示すように、位相変調アレイ31から反射される変調光束B2は、それぞれのピクセルを通過した光が互いに干渉した干渉光となる。この干渉光には、赤色系のコリメート光束B1rの光成分どうしの干渉と、緑色系であるコリメート光束B1gの光成分どうしの干渉、さらには、コリメート光束B1rの光成分とコリメート光束B1gの光成分との干渉も含まれる。 The phase of the collimated light beam B1r given to the first modulation region M1 is modulated by passing through each of the plurality of pixels of the phase modulation array 31, and the collimated light beam B1g given to the second modulation region M2 is also The phase is modulated by passing through each of the plurality of pixels. As shown in FIG. 6, the modulated light beam B <b> 2 reflected from the phase modulation array 31 becomes interference light in which lights that have passed through the respective pixels interfere with each other. The interference light includes interference between light components of the red collimated light beam B1r, interference between light components of the green collimated light beam B1g, and further, light components of the collimated light beam B1r and the collimated light beam B1g. Interference.
 図3に示すように、位相変調部20Aには、レンズホルダ32が設けられている。レンズホルダ32は基準ベース22上に位置決めされて固定されている。レンズホルダ32にFTレンズ(フーリエ変換レンズ)33が保持されている。位相変調アレイ31で反射された変調光束B2は、FTレンズ33を透過してフーリエ変換された変調光束B3となる。 As shown in FIG. 3, a lens holder 32 is provided in the phase modulation unit 20A. The lens holder 32 is positioned and fixed on the reference base 22. An FT lens (Fourier transform lens) 33 is held on the lens holder 32. The modulated light beam B2 reflected by the phase modulation array 31 is transmitted through the FT lens 33 to become a modulated light beam B3 subjected to Fourier transform.
 図3に示すように、位相変調部20Aには、ミラー保持部34aに保持された送光ミラー34が設けられている。送光ミラー34は平面ミラーであり、その反射面にFTレンズ33の光軸が所定の角度で入射している。FTレンズ33でフーリエ変換された変調光束B3は、送光ミラー34で反射され、反射された変調光束B4が、光学ユニット20内を通過して、ホログラム結像部20Bへ送られる。 As shown in FIG. 3, the phase modulator 20A is provided with a light transmission mirror 34 held by a mirror holder 34a. The light transmission mirror 34 is a plane mirror, and the optical axis of the FT lens 33 is incident on the reflection surface at a predetermined angle. The modulated light beam B3 Fourier-transformed by the FT lens 33 is reflected by the light transmission mirror 34, and the reflected modulated light beam B4 passes through the optical unit 20 and is sent to the hologram imaging unit 20B.
 図3に示すように、ホログラム結像部20Bには、ミラー保持部35aに保持された第1の中間ミラー35と、ミラー保持部36aに保持された第2の中間ミラー36とが設けられている。第1の中間ミラー35と第2の中間ミラー36は平面ミラーである。図4に示すように、第1の中間ミラー35の反射面は、位相変調部20Aに設けられた前記送光ミラー34の反射面に対向している。また、第1の中間ミラー35と第2の中間ミラー36の反射面は所定の角度で対向している。ホログラム結像部20Bでは、第2の中間ミラー36の反射面による反射方向にスクリーン51が配置されている。 As shown in FIG. 3, the hologram imaging unit 20B is provided with a first intermediate mirror 35 held by the mirror holding unit 35a and a second intermediate mirror 36 held by the mirror holding unit 36a. Yes. The first intermediate mirror 35 and the second intermediate mirror 36 are plane mirrors. As shown in FIG. 4, the reflection surface of the first intermediate mirror 35 faces the reflection surface of the light transmission mirror 34 provided in the phase modulation unit 20A. Further, the reflecting surfaces of the first intermediate mirror 35 and the second intermediate mirror 36 face each other at a predetermined angle. In the hologram imaging unit 20B, the screen 51 is arranged in the reflection direction by the reflection surface of the second intermediate mirror 36.
 図4に示すように、送光ミラー34で反射された変調光束B4は、ケース内を図示右方向へ進行してから第1の中間ミラー35で反射され、反射された変調光束B5が第2の中間ミラー36で反射される。そして、第2の中間ミラー36で反射された変調光束B6がスクリーン51に与えられる。 As shown in FIG. 4, the modulated light beam B4 reflected by the light transmission mirror 34 travels in the right direction in the figure after being reflected in the first intermediate mirror 35, and the reflected modulated light beam B5 is second reflected. Are reflected by the intermediate mirror 36. Then, the modulated light beam B 6 reflected by the second intermediate mirror 36 is given to the screen 51.
 位相変調アレイ31では、第1の変調領域M1において赤色系のレーザ光の位相が個々のピクセル毎に変調され、第2の変調領域M2において緑色系のレーザ光が個々のピクセル毎に変調される。赤色系と緑色系のレーザ光の干渉光が混在した光は、FTレンズでフーリエ変換され、その変調光束B3,B4,B5,B6がケース内の光路を経てスクリーン51にデフォーカス(defocus)状態で結像され、スクリーン51にホログラム画像が結像する。 In the phase modulation array 31, the phase of the red laser light is modulated for each pixel in the first modulation region M1, and the green laser light is modulated for each pixel in the second modulation region M2. . The light in which the interference light of the red and green laser beams is mixed is Fourier-transformed by the FT lens, and the modulated light beams B3, B4, B5, and B6 are defocused on the screen 51 through the optical path in the case. The hologram image is formed on the screen 51.
 位相変調アレイ31を経た干渉光がFTレンズ33を経て集光されると、1次回折光がスクリーン51に結像される。スクリーン51には、図2に示す表示領域3aに投稿される表示画像70とほぼ同じ内容のホログラム画像が結像する。このホログラム画像は、赤色系と緑色系ならびに2つの色相の混合色で形成される。変調光束B3,B4,B5,B6は光の干渉成分を含んでいるため、位相変調アレイ31からスクリーン51に至る空間に、2次回折光や3次回折光などが生成する多数の迷光画像が存在する。そこで、位相変調アレイ31からスクリーン51までの光路上に、複数段のアパーチャーが形成されて、1次回折光のみがスクリーン51に到達できるようにしている。 When the interference light that has passed through the phase modulation array 31 is condensed through the FT lens 33, the first-order diffracted light is imaged on the screen 51. On the screen 51, a hologram image having substantially the same content as the display image 70 posted in the display area 3a shown in FIG. This hologram image is formed with a red color and a green color and a mixed color of two hues. Since the modulated light beams B3, B4, B5, and B6 contain light interference components, a large number of stray light images generated by second-order diffracted light, third-order diffracted light, and the like exist in the space from the phase modulation array 31 to the screen 51. . Therefore, a plurality of apertures are formed on the optical path from the phase modulation array 31 to the screen 51 so that only the first-order diffracted light can reach the screen 51.
 図3と図4に示すように、位相変調部20Aからの光の出射部に遮光壁41aが設けられ、遮光壁41aに矩形状の第1のアパーチャー41が開口している。ホログラム結像部20Bへの光の入射部には、遮光壁42aが設けられ、遮光壁42aに矩形状の第2のアパーチャー42が開口している。第2の中間ミラー36とスクリーン51の間には遮光壁43aが設けられており、この遮光壁43aに矩形状の第3のアパーチャー43が開口している。第3のアパーチャー43は、図8にも示されている。 As shown in FIGS. 3 and 4, a light shielding wall 41a is provided at a light emitting portion from the phase modulation unit 20A, and a rectangular first aperture 41 is opened in the light shielding wall 41a. A light shielding wall 42a is provided at a light incident portion on the hologram imaging portion 20B, and a rectangular second aperture 42 is opened in the light shielding wall 42a. A light shielding wall 43a is provided between the second intermediate mirror 36 and the screen 51, and a rectangular third aperture 43 is opened in the light shielding wall 43a. The third aperture 43 is also shown in FIG.
 送光ミラー34で反射された変調光束がスクリーン51へ至るまでの光路上に、3段階のアパーチャー41,42,43が設けられて、1次回折光以外の迷光が遮光され、スクリーン51に、ホログラム画像を形成する1次回折光のみが到達できるようになっている。 Three- stage apertures 41, 42, and 43 are provided on the optical path from the modulated light beam reflected by the light transmission mirror 34 to the screen 51, and stray light other than the first-order diffracted light is shielded. Only the first-order diffracted light that forms the image can be reached.
 図8に示すように、ホログラム結像部20Bでは、第3のアパーチャー43の先側(出光側)に、スクリーン51が配置されている。第2の中間ミラー36で反射された変調光束B6は、第3のアパーチャー43を通過してスクリーン51に到達し、スクリーン51に1次回折光によるホログラム画像が生成される。スクリーン51は、表面に細かな凹凸が形成された透過型のディフューザ(Diffuser)であり、スクリーン51に結像したホログラム画像を含む光は、スクリーン51を透過して発散光の投影光B7となる。図4に示すように、投影光B7は、遮光壁42aに形成された第4のアパーチャー44を通過して投影部20Cに与えられる。 As shown in FIG. 8, in the hologram imaging unit 20 </ b> B, a screen 51 is disposed on the front side (light emission side) of the third aperture 43. The modulated light beam B <b> 6 reflected by the second intermediate mirror 36 passes through the third aperture 43 and reaches the screen 51, and a hologram image by the first-order diffracted light is generated on the screen 51. The screen 51 is a transmissive diffuser having fine irregularities formed on the surface, and light including a hologram image formed on the screen 51 passes through the screen 51 and becomes divergent projection light B7. . As shown in FIG. 4, the projection light B7 passes through the fourth aperture 44 formed in the light shielding wall 42a and is given to the projection unit 20C.
 図8に示すように、ホログラム結像部20Bでは、第3のアパーチャー43が開口している遮光壁43aにモータ52が固定されており、円板形状のスクリーン51がモータ52の動力で常に回転させられている。スクリーン51を回転させることで、表示画像70のチラツキの原因となるスペックルノイズ(speckle noise)を低減させることができる。 As shown in FIG. 8, in the hologram imaging unit 20 </ b> B, the motor 52 is fixed to the light shielding wall 43 a in which the third aperture 43 is opened, and the disk-shaped screen 51 is always rotated by the power of the motor 52. It has been made. By rotating the screen 51, speckle noise that causes flickering of the display image 70 can be reduced.
 図8に示すように、ホログラム結像部20Bでは、遮光壁43aにモニタ検知部53が設けられている。モニタ検知部53は第3のアパーチャー43の下側に設けられている。モニタ検知部53は、赤色波長検知部53aと緑色波長検知部53bならびに位置検知部53cの3つの検知部で構成されている。検知部53a,53b,53cのそれぞれは閉鎖空間の内部にピンフォトダイオードなどの受光素子が収納され、第2の中間ミラー36に対向する側に開口部が形成されている。赤色波長検知部53aでは、前記開口部が赤色光を透過させる波長フィルターで覆われ、緑色波長検知部53bでは、前記開口部が緑色光を透過させる波長フィルターで覆われている。 As shown in FIG. 8, in the hologram image forming unit 20B, a monitor detection unit 53 is provided on the light shielding wall 43a. The monitor detection unit 53 is provided below the third aperture 43. The monitor detection unit 53 includes three detection units: a red wavelength detection unit 53a, a green wavelength detection unit 53b, and a position detection unit 53c. Each of the detectors 53a, 53b, and 53c has a light receiving element such as a pin photodiode housed in a closed space, and an opening is formed on the side facing the second intermediate mirror 36. In the red wavelength detection unit 53a, the opening is covered with a wavelength filter that transmits red light, and in the green wavelength detection unit 53b, the opening is covered with a wavelength filter that transmits green light.
 各検知部53a,53b,53cには、1次回折光または1次回折光以外の多次回折光のいずれかが照射される。位置検知部53cの検知出力に基づいて、第1の発光部23Aと第2の発光部23Bおよびその他の各光学部品の位置調整が行われる。また、赤色波長検知部53aと緑色波長検知部53bからの検知出力に基づいて、第1のレーザユニット27Aと第2のレーザユニット27Bの発光強度が自動調整され、また位相変調アレイ31による位相変調動作も自動制御される。 Each detection unit 53a, 53b, 53c is irradiated with either the first-order diffracted light or multi-order diffracted light other than the first-order diffracted light. Based on the detection output of the position detection unit 53c, the positions of the first light emitting unit 23A, the second light emitting unit 23B, and other optical components are adjusted. Further, the emission intensity of the first laser unit 27A and the second laser unit 27B is automatically adjusted based on the detection outputs from the red wavelength detection unit 53a and the green wavelength detection unit 53b, and the phase modulation by the phase modulation array 31 is performed. Operation is also automatically controlled.
 図3と図4に示すように、投影部20Cには、第1の投影ミラー55と第2の投影ミラー56とが対向して設けられている。第1の投影ミラー55の反射面55aと第2の投影ミラー56の反射面56aは凹面鏡(拡大鏡)である。スクリーン51で結像したホログラム画像を含む投影光B7はスクリーン51で発散されて第1の投影ミラー55に与えられる。第1の投影ミラー55でホログラム画像を拡大した投影光B8は、第2の投影ミラー56に与えられてホログラム画像がさらに拡大される。図3に示すように、第2の投影ミラー56の反射面56aで反射された投影光B9は上向きの光束となり、カバー板14を透過し、図1に示すように、ウインドシールド3の表示領域3aに投影される。 3 and 4, the projection unit 20C is provided with a first projection mirror 55 and a second projection mirror 56 facing each other. The reflecting surface 55a of the first projection mirror 55 and the reflecting surface 56a of the second projection mirror 56 are concave mirrors (magnifying mirrors). The projection light B 7 including the hologram image formed on the screen 51 is diverged by the screen 51 and given to the first projection mirror 55. The projection light B8 obtained by enlarging the hologram image by the first projection mirror 55 is given to the second projection mirror 56, and the hologram image is further enlarged. As shown in FIG. 3, the projection light B9 reflected by the reflecting surface 56a of the second projection mirror 56 becomes an upward light beam, passes through the cover plate 14, and, as shown in FIG. 1, the display area of the windshield 3 3a is projected.
 図2に示すように、表示画像70では、自動車の速度表示71、シフトレバーのポジション情報72、ナビゲーション情報73など、自動車の走行に付随する各種情報が表示される。この表示画像70は、赤色光または緑色光で表示され、あるいは、赤色光と緑色光との混合色で表示される。 As shown in FIG. 2, in the display image 70, various information associated with the traveling of the vehicle such as a vehicle speed display 71, a shift lever position information 72, and navigation information 73 are displayed. The display image 70 is displayed with red light or green light, or is displayed with a mixed color of red light and green light.
 ウインドシールド3が半反射面として機能するため、運転者5には、表示画像70がウインドシールド3よりも前方の虚像6の結像位置に存在しているように見える。 Since the windshield 3 functions as a semi-reflective surface, it appears to the driver 5 that the display image 70 exists at the imaging position of the virtual image 6 ahead of the windshield 3.
 この車載用投影装置10は、スクリーン51に結像されたホログラム画像が拡大されて表示領域3aに投影されるため、ウインドシールド3の外部からカバー板14の内部を覗き見ることがあっても、人の目にレーザ光が直接に与えられることがなく、安全性を確保できる。 In this in-vehicle projector 10, since the hologram image formed on the screen 51 is enlarged and projected onto the display area 3 a, even if the inside of the cover plate 14 is viewed from the outside of the windshield 3, Laser light is not directly applied to human eyes, and safety can be ensured.
 この車載用投影装置10は、自動車に設置された状態で、光学ユニット20の光学ベース21がほぼ水平に向けられる。図4に示すように、第1の発光部23Aと第2の発光部23Bから発せられるコリメート光束B1r,B1gと、位相変調アレイ31で変調された変調光束B2、ならびにFTレンズを経た変調光束B3の光軸は、全て光学ベース21と平行となるように水平に延びている。また、送光ミラー34で反射された変調光束B4と、第1の中間ミラー35で反射された変調光束B5、ならびに第2の中間ミラー36で反射された変調光束B6の光軸も、光学ベース21と平行で水平に延びている。スクリーン51を通過した投影光B7の光軸も水平であり、第1の投影ミラー55で反射された投影光B8がやや上向きとなって第2の投影ミラー56に与えられ、第2の投影ミラー56で反射された投影光B9がウインドシールド3に向けて上向きに照射される。 In the in-vehicle projector 10 installed in a car, the optical base 21 of the optical unit 20 is oriented almost horizontally. As shown in FIG. 4, collimated light beams B1r and B1g emitted from the first light emitting unit 23A and the second light emitting unit 23B, the modulated light beam B2 modulated by the phase modulation array 31, and the modulated light beam B3 through the FT lens. These optical axes extend horizontally so as to be parallel to the optical base 21. The optical axes of the modulated light beam B4 reflected by the light transmission mirror 34, the modulated light beam B5 reflected by the first intermediate mirror 35, and the modulated light beam B6 reflected by the second intermediate mirror 36 are also represented by the optical base. 21 and extends horizontally. The optical axis of the projection light B7 that has passed through the screen 51 is also horizontal, and the projection light B8 reflected by the first projection mirror 55 is given slightly upward to the second projection mirror 56, so that the second projection mirror 56 The projection light B <b> 9 reflected by 56 is irradiated upward toward the windshield 3.
 投影光B8,B9以外の光成分の光束が、投影光B9の上向きの投影方向と交差してほぼ水平に向けられているため、車載用投影装置10を薄型に構成することが可能になり、ダッシュボード2の内部に埋設しやすくなる。 Since the light beams of the light components other than the projection lights B8 and B9 are directed almost horizontally across the upward projection direction of the projection light B9, the in-vehicle projector 10 can be configured to be thin, It becomes easy to embed inside the dashboard 2.
 図3と図4に示すように、送光ミラー34から第1の中間ミラー35に至る変調光束B4は、第1の投影ミラー55と第2の投影ミラー56との間を通過し、第1の投影ミラー55から第2の投影ミラー56に向かう投影光B8が、前記変調光束B4と交差している。投影部20Cで光を交差させることで、FTレンズ33からスクリーン51までの光路を長く確保でき、スクリーン51に適度な倍率でホログラム画像を結像させることができる。また光束を交差させることにより、光路が長くても、車載用投影装置10を小型に構成することが可能になる。 As shown in FIGS. 3 and 4, the modulated light beam B <b> 4 from the light transmission mirror 34 to the first intermediate mirror 35 passes between the first projection mirror 55 and the second projection mirror 56, and the first The projection light B8 directed from the projection mirror 55 to the second projection mirror 56 intersects the modulated light beam B4. By making the light intersect at the projection unit 20C, a long optical path from the FT lens 33 to the screen 51 can be secured, and a hologram image can be formed on the screen 51 at an appropriate magnification. Further, by crossing the light beams, the in-vehicle projector 10 can be made compact even if the optical path is long.
 図4に示すように、送光ミラー34から第1の中間ミラー35に向かう変調光束B4と、第2の中間ミラー36からスクリーン51に向かう変調光束B6とで、光の向きが逆である。また、スクリーン51から第1の投影ミラー55に向かう投影光B7の向きも前記変調光束B4の向きと逆である。このように、ケース内で光束の向きを逆にすることによっても、装置全体を小型に構成することができる。 As shown in FIG. 4, the direction of the light is opposite between the modulated light beam B4 directed from the light transmission mirror 34 to the first intermediate mirror 35 and the modulated light beam B6 directed from the second intermediate mirror 36 to the screen 51. In addition, the direction of the projection light B7 from the screen 51 toward the first projection mirror 55 is also opposite to the direction of the modulated light beam B4. As described above, the entire apparatus can also be made compact by reversing the direction of the light beam in the case.
1 自動車
2 ダッシュボード
3 ウインドシールド
5 運転者
10 車両用投影装置
11 下部ケース
12 上部ケース
14 カバー板
20 光学ユニット
20A 位相変調部
20B ホログラム結像部
20C 投影部
21 光学ベース
23A,23B 発光部
27A,27B レーザユニット
28A,28B コリメートレンズ
31 位相変調アレイ
33 FTレンズ
34 送光ミラー
35 第1の中間ミラー
36 第2の中間ミラー
41,42,43,44 アパーチャー
51 スクリーン
55 第1の投影ミラー
56 第2の投影ミラー
70 表示画像
B0 レーザ光束
B1r,B1g コリメート光束
B1,B2,B3,B4,B5,B6 変調光束
B7,B8 投影光
M1 第1の変換領域
M2 第2の変換領域
DESCRIPTION OF SYMBOLS 1 Car 2 Dashboard 3 Windshield 5 Driver 10 Vehicle projection device 11 Lower case 12 Upper case 14 Cover plate 20 Optical unit 20A Phase modulation unit 20B Hologram imaging unit 20C Projection unit 21 Optical bases 23A and 23B Light emitting unit 27A, 27B Laser units 28A, 28B Collimating lens 31 Phase modulation array 33 FT lens 34 Transmitting mirror 35 First intermediate mirror 36 Second intermediate mirror 41, 42, 43, 44 Aperture 51 Screen 55 First projection mirror 56 Second Projection mirror 70 Display image B0 Laser beam B1r, B1g Collimated beam B1, B2, B3, B4, B5, B6 Modulated beam B7, B8 Projected light M1 First conversion region M2 Second conversion region

Claims (8)

  1.  自動車の車室内で半反射面として機能する表示領域へ表示画像を投影する車載用投影装置において、
     レーザ光源と、前記レーザ光源から発せられたレーザ光を位相変調する位相変調アレイと、前記位相変調アレイで位相変調された変調光束をホログラム画像として結像させるスクリーンと、前記スクリーンに結像されたホログラム画像を拡大して前記表示領域へ前記表示画像として投影する投影部と、が設けられていることを特徴とする車載用投影装置。
    In an in-vehicle projection device that projects a display image onto a display area that functions as a semi-reflective surface in a vehicle interior
    A laser light source, a phase modulation array that phase-modulates laser light emitted from the laser light source, a screen that forms an image of a modulated light beam phase-modulated by the phase modulation array as a hologram image, and an image formed on the screen An in-vehicle projection apparatus, comprising: a projection unit that enlarges a hologram image and projects the hologram image onto the display area as the display image.
  2.  前記投影部から前記表示領域へ投影光が上向きに与えられ、前記位相変調アレイから前記スクリーンへ向かう変調光束の光路がほぼ水平に向けられている請求項1記載の車載用投影装置。 The in-vehicle projection apparatus according to claim 1, wherein projection light is given upward from the projection unit to the display area, and an optical path of a modulated light beam directed from the phase modulation array to the screen is directed substantially horizontally.
  3.  前記レーザ光源から前記位相変調アレイへ向かうレーザ光の光路もほぼ水平に向けられている請求項2記載の車載用投影装置。 3. The on-vehicle projector according to claim 2, wherein an optical path of the laser beam directed from the laser light source to the phase modulation array is also directed substantially horizontally.
  4.  前記位相変調アレイで位相変調された変調光束が、前記投影部に至る過程で他の光と交差する請求項1ないし3のいずれかに記載の車載用投影装置。 The in-vehicle projector according to any one of claims 1 to 3, wherein the modulated light beam phase-modulated by the phase modulation array intersects with other light in the process of reaching the projection unit.
  5.  前記投影部は、第1の投影ミラーと第2の投影ミラーとが対向して構成され、前記スクリーンに結像したホログラム画像を含む投影光が、前記第1の投影ミラーと前記第2の投影ミラーで反射されて前記表示領域へ投影され、
     前記位相変調アレイで位相変調された変調光束が、前記第1の投影ミラーと前記第2の投影ミラーとの間を通過して前記スクリーンに与えられ、前記第1の投影ミラーから前記第2の投影ミラーへ向かう投影光の光路が、前記変調光束と交差している請求項4記載の車載用投影装置。
    The projection unit is configured so that a first projection mirror and a second projection mirror are opposed to each other, and projection light including a hologram image formed on the screen is transmitted to the first projection mirror and the second projection. Reflected by the mirror and projected onto the display area,
    The modulated light beam phase-modulated by the phase modulation array passes between the first projection mirror and the second projection mirror and is given to the screen, and the second projection mirror transmits the second projection light from the first projection mirror. The in-vehicle projector according to claim 4, wherein an optical path of projection light directed to the projection mirror intersects the modulated light beam.
  6.  前記第1の投影ミラーと前記第2の投影ミラーとの間を通過した変調光束を前記スクリーンに向ける第1の中間ミラーと第2の中間ミラーとが設けられており、前記第2の中間ミラーから前記第1の投影ミラーに向かう光路上に、前記スクリーンが配置されている請求項5記載の車載用投影装置。 There are provided a first intermediate mirror and a second intermediate mirror for directing the modulated light flux that has passed between the first projection mirror and the second projection mirror to the screen, and the second intermediate mirror The in-vehicle projector according to claim 5, wherein the screen is disposed on an optical path from the projector toward the first projection mirror.
  7.  前記第2の中間ミラーから前記第1の投影ミラーに向かう光路と、前記位相変調アレイから前記第1の中間ミラーに向かう変調光束の光路とが、互いに逆向きである請求項6記載の車載用投影装置。 The in-vehicle use according to claim 6, wherein an optical path from the second intermediate mirror toward the first projection mirror and an optical path of a modulated light beam from the phase modulation array toward the first intermediate mirror are opposite to each other. Projection device.
  8.  前記位相変調アレイから前記スクリーンに至る光路上に複数のアパーチャーが配置されている請求項1ないし7のいずれかに記載の車載用投影装置。 The in-vehicle projector according to any one of claims 1 to 7, wherein a plurality of apertures are arranged on an optical path from the phase modulation array to the screen.
PCT/JP2014/078337 2013-10-31 2014-10-24 In-vehicle projection device WO2015064497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013226792 2013-10-31
JP2013-226792 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064497A1 true WO2015064497A1 (en) 2015-05-07

Family

ID=53004103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078337 WO2015064497A1 (en) 2013-10-31 2014-10-24 In-vehicle projection device

Country Status (1)

Country Link
WO (1) WO2015064497A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133700A (en) * 2015-01-21 2016-07-25 パイオニア株式会社 Head-up display
FR3050039A1 (en) * 2016-04-12 2017-10-13 Valeo Comfort & Driving Assistance HIGH HEAD DISPLAY
CN109388016A (en) * 2017-08-02 2019-02-26 杜尔利塔斯有限公司 Holographic projector
EP3605191A4 (en) * 2017-11-14 2020-05-13 JVCKENWOOD Corporation Virtual image display device
US11644793B2 (en) 2019-04-11 2023-05-09 Dualitas Ltd. Diffuser assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226469A (en) * 2003-01-20 2004-08-12 Denso Corp Head-up display device for vehicle
JP2009042373A (en) * 2007-08-07 2009-02-26 Seiko Epson Corp Projector
WO2012007762A1 (en) * 2010-07-14 2012-01-19 Two Trees Photonics Limited 2d/3d holographic display system
JP2012501472A (en) * 2008-08-26 2012-01-19 マイクロビジョン,インク. Optical relay for small head-up display
JP2013015738A (en) * 2011-07-06 2013-01-24 Nippon Seiki Co Ltd Head-up display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226469A (en) * 2003-01-20 2004-08-12 Denso Corp Head-up display device for vehicle
JP2009042373A (en) * 2007-08-07 2009-02-26 Seiko Epson Corp Projector
JP2012501472A (en) * 2008-08-26 2012-01-19 マイクロビジョン,インク. Optical relay for small head-up display
WO2012007762A1 (en) * 2010-07-14 2012-01-19 Two Trees Photonics Limited 2d/3d holographic display system
JP2013015738A (en) * 2011-07-06 2013-01-24 Nippon Seiki Co Ltd Head-up display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133700A (en) * 2015-01-21 2016-07-25 パイオニア株式会社 Head-up display
FR3050039A1 (en) * 2016-04-12 2017-10-13 Valeo Comfort & Driving Assistance HIGH HEAD DISPLAY
WO2017178565A1 (en) * 2016-04-12 2017-10-19 Valeo Comfort And Driving Assistance Head-up display
CN109388016A (en) * 2017-08-02 2019-02-26 杜尔利塔斯有限公司 Holographic projector
GB2567408A (en) * 2017-08-02 2019-04-17 Dualitas Ltd Holographic projector
GB2567408B (en) * 2017-08-02 2020-12-02 Dualitas Ltd Holographic projector
CN109388016B (en) * 2017-08-02 2022-02-22 杜尔利塔斯有限公司 Holographic projector
US11409242B2 (en) 2017-08-02 2022-08-09 Dualitas Ltd Holographic projector
EP3605191A4 (en) * 2017-11-14 2020-05-13 JVCKENWOOD Corporation Virtual image display device
US11092804B2 (en) 2017-11-14 2021-08-17 Jvckenwood Corporation Virtual image display device
US11644793B2 (en) 2019-04-11 2023-05-09 Dualitas Ltd. Diffuser assembly

Similar Documents

Publication Publication Date Title
JP6087788B2 (en) In-vehicle projector
US20230168503A1 (en) Methods and devices for data projection
WO2015012138A1 (en) Scanning-type projection device
WO2015064497A1 (en) In-vehicle projection device
US20140204465A1 (en) Head-up display device
JP6287354B2 (en) Scanning display device
US20150116800A1 (en) Image processing apparatus
WO2016208379A1 (en) Screen device and head-up display device
JPH07270711A (en) Information display device
JP6203602B2 (en) Image processing apparatus and assembly method thereof
WO2014020858A1 (en) Image display device
US10955673B2 (en) Devices for data superimposition
WO2017187758A1 (en) Head-up display device
US11561396B2 (en) Head-up display device and transportation device
WO2020261830A1 (en) Head-up display device
JP5333781B2 (en) Head-up display device
JP2011158543A (en) Projector device and head-up display device
JP6922655B2 (en) Virtual image display device
CN112444998B (en) Display device for vehicle
JPH04128816A (en) Head-up display device
JP2015087596A (en) Image processor
JP2011158542A (en) Projector device and head-up display device
WO2016103869A1 (en) Image processing device
JP6683149B2 (en) Head-up display device
WO2014002394A1 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14858116

Country of ref document: EP

Kind code of ref document: A1