WO2015063965A1 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
WO2015063965A1
WO2015063965A1 PCT/JP2014/002586 JP2014002586W WO2015063965A1 WO 2015063965 A1 WO2015063965 A1 WO 2015063965A1 JP 2014002586 W JP2014002586 W JP 2014002586W WO 2015063965 A1 WO2015063965 A1 WO 2015063965A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
insulating film
pixel
pixels
semiconductor substrate
Prior art date
Application number
PCT/JP2014/002586
Other languages
French (fr)
Japanese (ja)
Inventor
平田 達也
中村 哲也
良平 宮川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015063965A1 publication Critical patent/WO2015063965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Definitions

  • the present disclosure relates to a solid-state imaging device including a light-receiving unit such as a photoelectric conversion unit, and more particularly, to a solid-state imaging device that can generate image signals captured at different light-receiving incident angles with one solid-state imaging device.
  • a light-receiving unit such as a photoelectric conversion unit
  • imaging devices such as video cameras and electronic still cameras have been widely used.
  • solid-state imaging devices such as CCDs and MOS sensors are used.
  • a photodiode is provided for each pixel arranged in a two-dimensional matrix on a light receiving surface, and a signal charge generated and accumulated in each photodiode at the time of light reception is converted into a floating diffusion by driving a CMOS circuit. The signal is transferred and converted into a signal voltage and read.
  • the above-described photodiode is formed on a semiconductor substrate, and an insulating film such as silicon oxide is formed so as to cover the upper layer thereof.
  • a wiring layer is formed in the insulating film in a region excluding the photodiode region so as not to prevent light incidence.
  • an imaging apparatus such as a camera
  • a focus detection element has been provided separately from the solid-state imaging device.
  • the cost increases or the size of the apparatus increases by the amount of the focus detection element and the focus detection optical system that guides light to the focus detection element.
  • the pupil division phase difference method detects the defocus amount of the photographing lens by forming a pair of divided images by dividing the luminous flux passing through the photographing lens into pupils and detecting the pattern shift (phase shift amount). is there.
  • a plurality of focus detection pixels for generating a focus detection signal for detecting a focus adjustment state are arranged separately from the image pickup pixels for outputting an image pickup signal for forming an image signal indicating a subject.
  • Patent Document 1 discloses a light-shielding unit that uses a metal such as aluminum or tungsten between a on-chip lens and a photodiode as a focus detection pixel that forms a pair of divided images by pupil-dividing a light beam passing through a photographing lens. Is disclosed.
  • the area of the light receiving surface has been reduced due to the miniaturization of the element, and there is a problem in that the incident light rate is lowered and sensitivity is deteriorated. This is a serious and serious problem in output reduction in focus detection pixels that block part of incident light of the solid-state imaging device as described above.
  • the distance between the pixels has been reduced due to the miniaturization of the element, and accordingly, there is a problem that leakage into adjacent pixels increases. This is a problem that in the focus detection pixel that blocks a part of the incident light of the solid-state imaging device as described above, the detection accuracy is lowered due to the false signal to the adjacent pixel or the false signal from the adjacent pixel.
  • the present disclosure has been made in view of such circumstances, and solid-state imaging that suppresses a decrease in sensitivity and reduces a false signal between adjacent pixels even in a focus detection pixel that blocks a part of incident light. Providing equipment.
  • the solid-state imaging device is a solid-state imaging device having a plurality of pixels arranged two-dimensionally, and the plurality of pixels include a light shielding member that blocks a part of incident light. Accordingly, the first pixel that varies the light-receiving incident angle and the second pixel that does not include the light-shielding member and does not vary the light-receiving incident angle are formed on the semiconductor substrate.
  • Forming an optical waveguide for guiding the bottom surface of the core layer of the first pixel is adjacent to the light shielding member.
  • a focus detection pixel that blocks a part of incident light can suppress a decrease in sensitivity and reduce a false signal between adjacent pixels.
  • the bottom surface of the core layer and the light shielding member are in contact with each other, false signals due to leakage into adjacent pixels are reduced compared to the case where an insulating film is interposed between the core layer and the light shielding member, and the light shielding is inherently performed. It is possible to reduce the leakage of light to the own pixel.
  • the light shielding member may be a metal film formed on a metal wiring layer.
  • the light shielding member is a metal film, high light shielding properties can be secured, and furthermore, since the light shielding member can be formed simultaneously with the metal wiring in the process of forming the metal wiring layer, an increase in manufacturing cost can be suppressed. it can.
  • the metal wiring layer on which the light shielding member is formed may be a metal wiring layer closest to the semiconductor substrate among a plurality of metal wiring layers.
  • the sensitivity is less decreased and leakage to adjacent pixels can be reduced.
  • a liner film having a refractive index higher than that of the cladding layer may be provided at a height of an interface between the metal wiring layer on which the light shielding member is formed and the core layer from the semiconductor substrate surface. Good.
  • the bottom surface of the core layer of the first pixel may be different from the bottom surface of the core layer of the second pixel from the surface of the semiconductor substrate.
  • each of the plurality of pixels has a color filter layer, and the distance from the semiconductor substrate surface of the bottom surface of the core layer of the second pixel may be different for each color of the color filter. Good.
  • the height (distance) from the bottom surface of the core layer and the surface of the semiconductor substrate can be optimized to a film thickness that minimizes the reflection of light by the wavelength (color) of received light.
  • the decrease in light sensitivity can be reduced for each wavelength, and the decrease in image quality can be reduced.
  • the core layer may be formed of silicon nitride having a higher refractive index than the silicon oxide.
  • sensitivity reduction due to light diffraction and attenuation due to miniaturization of focus detection pixels and false signals between adjacent pixels can be reduced.
  • FIG. 6 is a schematic cross-sectional view of a focus detection pixel when a light shielding member and a bottom surface of a high refractive insulating film that is a bottom surface of an optical waveguide (core layer) are separated without contact.
  • A is a schematic cross section of the imaging pixel according to the second embodiment
  • (b) is a schematic cross section of the focus detection pixel according to the second embodiment.
  • CMOS image sensor MOS image sensor
  • FIG. 1 is a plan view illustrating an example of a solid-state imaging device (14 ⁇ 14 pixels) according to the first embodiment.
  • a scale of several million pixels is regularly used in this arrangement.
  • the pixel size is 2.0 ⁇ m or less, and 1.1 ⁇ m in this embodiment.
  • This solid-state imaging device has a plurality of pixels arranged two-dimensionally.
  • the plurality of pixels include two types of pixels, an imaging pixel 201 and focus detection pixels 211L and 211R.
  • Each pixel has a microlens 202 (on-chip lens), and the letters “R”, “G”, and “B” written on each pixel indicate light components (red, green, and blue) received by each pixel.
  • the color filter of the imaging pixel 201 has a three primary color Bayer arrangement, and a plurality of focus detection pixels 211L and 211R are arranged therein.
  • the arrangement of the focus detection pixels 211L and 211R in the figure is an example, and is not limited to this.
  • the focus detection pixels 211L and 211R are pixels that each have a light receiving incident angle by providing a light shielding member that blocks a part of incident light, and are also referred to as first pixels.
  • a light shielding member 212 is disposed in the pixel in order to form a pair of divided images by dividing the light beam passing through the photographing lens into pupils.
  • the focus detection pixel 211L the right side of the pixel is shielded by the light shielding member 212.
  • the left side is shielded by the light shielding member 212.
  • the light shielding member 212 is arranged on the left and right of the focus detection pixels 211R and 211L to divide the pupil into left and right, but by passing the light shielding member 212 above and below the pixels, the passing light flux is A pair of divided images may be formed by dividing.
  • the focus detection pixels 211L and 211R are arranged so as to receive the “G” component, but other “R” and “B” components may be used for focus detection. It may be colorless (no component restriction).
  • the imaging pixel 201 is a pixel that does not include a light blocking member and does not change the light incident angle, and is also referred to as a second pixel.
  • the focus detection pixel 211L has the same configuration as the focus detection pixel 211R except that the arrangement position of the light shielding member 212 is different from the focus detection pixel 211R as described above. The description will focus on the pixel 211R.
  • FIG. 2 is a schematic cross-sectional view of the focus detection pixel 211R according to the first embodiment.
  • the focus detection pixel 211R is formed on the semiconductor substrate 301, and includes a photodiode 302, a gate electrode 303, an insulating film 304, a copper wiring 305, a liner film 306, and a copper wiring 307. , A liner film 308, a high refractive insulating film 309, a color filter 310, and a partition wall 311.
  • the photodiode 302 that accumulates charges for each pixel is configured in the imaging region serving as the light receiving surface in the semiconductor substrate 301, and further, the gate electrode is formed on the semiconductor substrate 301 adjacent to the photodiode 302. 303 is formed.
  • a signal reading unit that reads a signal charge generated or accumulated in the photodiode 302 in the floating diffusion or a voltage corresponding to the signal charge is formed, and the signal is applied by applying the voltage to the gate electrode 303. An electric charge is transferred.
  • an insulating film 304 made of, for example, silicon oxide, and silicon carbide (with a refractive index of 1.7 to 1.9) or silicon nitride (with a refractive index of 1..
  • the liner film 306 made of 9 to 2.1) and the liner film 308 are laminated to form an insulating film.
  • the copper wirings 305 and 307 are copper wirings formed in different metal wiring layers. However, for example, a barrier metal layer made of tantalum / tantalum nitride formed by a damascene process may be formed on the outer periphery of the copper wiring.
  • the copper wiring 305 is formed in the lowermost metal wiring layer closest to the semiconductor substrate 301 among the metal wiring layers.
  • the liner films 306 and 308 are etch stop films at the time of forming vias and are films for preventing diffusion of copper constituting the metal wiring layer.
  • the wiring layer is embedded in the laminated insulating film.
  • Each of the copper wiring 305 and the copper wiring 307 may have a wiring structure formed integrally with the via portion in the opening from the bottom surface of the wiring groove to the lower layer wiring by, for example, a dual damascene process.
  • a high refractive insulating film 309 having a refractive index higher than that of silicon oxide (refractive index: 1.4 to 1.5) is formed on the side wall and bottom surface of the recess.
  • the high refractive insulating film 309 is formed of a silicon nitride film (refractive index 1.9 to 2.0) or the like.
  • the cross section of the high refractive insulating film 309 is narrow on the semiconductor substrate 301 side and wide on the microlens 202 side. That is, in the cross-sectional view shown in FIG. 2, the width of the high-refractive insulating film 309 becomes smaller as it approaches the semiconductor substrate 301 side.
  • the insulating film 304 serves as a cladding layer
  • the high refractive insulating film 309 serves as a core layer. It has a function as an optical waveguide guided to the diode 302.
  • the portion of the insulating film 304 that is located at the same height from the semiconductor substrate 301 as the high refractive insulating film 309 (core layer) is used as a cladding layer, and the high refractive insulating film 309 (core layer) is incident on the cladding layer.
  • An optical waveguide that guides light by reflection of light is formed.
  • the color filter 310 selects the light incident on the photodiode 302 according to the wavelength (RGB color in the example of FIG. 1).
  • the color filter 310 is formed, for example, by mixing pigments for each color into an organic material (for example, acrylic resin). In this case, the refractive index of the color filter 310 is 1.5 to 1.7.
  • the color filter 310 is formed in an island shape (in a state of being individually formed corresponding to each pixel portion). In the example of FIG. 1, the focus detection pixel 211R is arranged so as to receive the “G” component. However, in order to detect the focus, other “R” and “B” components may be used. A transparent film “W” that is not selected may be used.
  • the semiconductor substrate 301 side is narrow and the microlens 202 side is wide. That is, in the cross-sectional view shown in FIG. 2, the width of the color filter 310 becomes smaller as it approaches the semiconductor substrate 301 side.
  • the cross-sectional shape of the color filter 310 has an inverted trapezoidal shape. That is, the bottom side on the semiconductor substrate 301 side has a trapezoidal shape with a smaller width than the upper side on the microlens 202 side.
  • the partition 311 prevents light incident from the micro lens 202 or the color filter 310 from entering the adjacent pixel portion.
  • the partition 311 has a lattice shape (mesh shape) in which a portion corresponding to the color filter 310 is opened in a plan view.
  • each of the partition walls 311 seems to be independent.
  • the cross-sectional shape of the partition wall 311 has a trapezoidal shape as a whole.
  • the trapezoidal shape here is a shape in which the bottom side on the semiconductor substrate 301 side is longer than the upper side on the microlens 202 side. That is, the width becomes narrower as the distance from the semiconductor substrate 301 increases.
  • the partition 311 is made of a material having a refractive index lower than that of the material constituting the color filter 310, for example, a silicon oxide film (TEOS (Tetra Ethyl Ortho Silicate) film, refractive index 1.4 to 1.5). For this reason, the light traveling in the oblique direction in the color filter 310 is reflected when it reaches the surface of the partition 311. At this time, since the partition 311 has a shape that becomes narrower as the distance from the semiconductor substrate 301 increases, the reflected light travels toward the photodiode 302.
  • TEOS Tetra Ethyl Ortho Silicate
  • the microlens 202 collects light incident from above on the photodiode 302 of the corresponding pixel portion.
  • the microlens 202 is a convex lens protruding in a direction away from the semiconductor substrate 301.
  • the light shielding member 212 is configured to shield incident light at an angle from the diagonally upper right direction by shielding the left side of the pixel.
  • the light shielding member 212 can be formed at the same time in the same layer as the lowermost copper wiring 305 in the metal wiring layer. At this time, the light shielding member 212 is in contact with the bottom surface of the high refractive insulating film 309 which is the bottom surface of the optical waveguide core layer.
  • FIG. 3 is a schematic cross-sectional view of the focus detection pixel when the light shielding member 212 and the bottom surface of the high-refractive insulating film 309 that is the bottom surface of the optical waveguide (core layer) are separated without contact.
  • the clad layer of the insulating film 304 exists between the bottom surface of the high refractive insulating film 309 that is the bottom surface of the optical waveguide core layer and the interface of the light shielding member 212, the optical waveguide effect cannot be exhibited.
  • the focus detection pixel 211R a part of the incident light having an angle from the upper right oblique direction leaks into the adjacent pixel or the lower photodiode 302 as a lower layer and becomes a false signal. .
  • a recess is formed above the photodiode 302 in the insulating film 304 formed in the upper layer of the photodiode 302, and the high refractive insulation is provided in the recess.
  • the optical waveguide is configured by embedding the film 309, and compared with a case where there is no optical waveguide, the sensitivity can be reduced due to light attenuation and the color mixing between adjacent pixels can be reduced.
  • the light shielding member 212 uses the metal wiring film of the lowermost metal wiring layer, the sensitivity is less lowered than the case where the upper wiring layer is used, and leakage to adjacent pixels can be reduced.
  • the bottom surface of the high-refractive insulating film 309 which is the core layer of the optical waveguide formed by the buried layer, is in contact with the light shielding member 212 that blocks a part of the incident light for varying the light incident angle.
  • the insulating film 304 exists between the bottom surface of the high-refractive insulating film 309, which is the bottom surface of the layer, and the interface of the light shielding member 212, leakage into adjacent pixels and the self pixel of light that should originally be shielded from light Leakage into the water can be reduced (that is, the light shielding property can be increased).
  • the refractive index is higher than that of the cladding layer formed of the insulating film 304.
  • a high liner film 306 may be interposed.
  • the refractive index of the liner film 306 is higher than that of the clad layer and the thickness is as thin as 60 nm or less, so that the optical waveguide effect is only slightly reduced and leakage into adjacent pixels hardly occurs.
  • FIG. 4A is a schematic cross-sectional view of the imaging pixel 201 according to the second embodiment
  • FIG. 4B is a schematic cross-sectional view of the focus detection pixel 211R according to the second embodiment. .
  • the height (distance) Hnorm from the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 of the imaging pixel 201 shown in FIG. 4A is shown in FIG.
  • the focus detection pixel 211 ⁇ / b> R is different from the height (distance) Haf from the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301.
  • FIG. 5 is a diagram illustrating the dependency between the reflectance of the imaging pixel 201 according to the second embodiment and the height of the bottom surface of the optical waveguide. That is, the dependence of the incident light reflectance in the imaging pixel 201 on the height (distance) Hnorm from the bottom surface of the high refractive insulating film 309 which is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 is shown.
  • the wavelength (color) depends on the correlation between the refractive index of the high refractive insulating film 309, the height (distance) from the bottom surface of the high refractive insulating film 309 and the surface of the semiconductor substrate 301, and the refractive index of the insulating film 304 interposed therebetween.
  • the height Hnorm at which the reflectivity is minimized is different (Hnorm_B, Hnorm_G, Hnorm_R).
  • the focus detection pixel 211R of the solid-state imaging device has a height (distance) between the bottom surface of the high-refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301.
  • a height (distance) between the bottom surface of the high-refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 By making Hnorm different from the height (distance) Haf from the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 of the focus detection pixel 211R, the sensitivity of the imaging pixel is reduced. Further reduction can be achieved.
  • the distance from the bottom surface of the core layer of the imaging pixel 201 and the surface of the semiconductor substrate 301 may be different for each wavelength of received light (for example, for each RGB color).
  • the height (distance) Hnorm from the bottom surface of the core layer and the surface of the semiconductor substrate 301 can be set to a film thickness that minimizes reflection of light by the wavelength (for example, color) of the received light.
  • the decrease in light sensitivity can be reduced for each wavelength, and the decrease in image quality can be reduced.
  • 6A to 6H are schematic cross-sectional views showing one step of the manufacturing method for forming the optical waveguide of the solid-state imaging device according to the second embodiment.
  • FIG. 6A shows a cross-sectional view after copper wiring is formed in the manufacturing process.
  • a plurality of photodiodes 302 are formed inside the surface layer of one main surface (upper surface) of the semiconductor substrate 301.
  • the semiconductor substrate 301 is, for example, a silicon substrate, and the photodiode 302 is formed by ion implantation of impurities such as boron (B) from the upper surface of the semiconductor substrate 301.
  • the photodiode 302 is configured by a pn junction of an n-type charge injection layer and a p + type surface layer (detailed illustration is omitted).
  • the plurality of photodiodes 302 are arranged in a matrix, for example, when the semiconductor substrate 301 is viewed from above in the Z-axis direction.
  • the imaging pixel 201 and the focus detection pixel 211R are both arranged in a matrix arrangement.
  • a gate electrode 303 for charge transfer and the like are formed.
  • the photodiode 302, the gate electrode 303, and the like are formed by appropriately using a general photolithography process, an ion implantation process, a film forming process, and a thermal diffusion process.
  • an insulating film 304 is stacked on the semiconductor substrate 301, and a copper wiring 305 is formed from the upper surface of the insulating film 304 toward the inside (the lower side in the Z-axis direction).
  • a copper wiring 305 is formed by performing a general damascene wiring process, after laminating the insulating film 304, a portion where the copper wiring 305 is to be formed is subjected to a lithography process and an etching process to form a groove, This is done by embedding copper (Cu) in the groove and executing a CMP (Chemical Mechanical Polishing) process or the like.
  • the liner film 306 is formed thereafter.
  • a light shielding member 212 is formed on the focus detection pixel 211R.
  • a wiring layer having a plurality of insulating films 304, a plurality of copper wirings 305 and 307, and liner films 306 and 308 can be formed.
  • FIG. 6B shows a form after the resist film 401 is formed on the wiring using a lithography process and then the resist on the upper surface of the photodiode 302 of the imaging pixel 201 is removed. At this time, the focus detection pixel 211R is not provided with a resist opening.
  • FIG. 6C shows a cross section after the insulating film 304 and the liner films 306 and 308 are opened by etching using the opening of the resist film 401 as a mask.
  • the etching is performed first using the liner film 306 as an etch stop film, and then by adjusting the time, the height from the bottom surface of the high refractive insulating film which is the core layer of the optical waveguide optimum for the imaging pixel and the surface from the semiconductor substrate surface ( The etching is adjusted in detail so that the distance becomes Haf.
  • the resist film 401 is removed by ashing and cleaning (FIG. 6D).
  • FIG. 6E shows a form after the resist film 401 is generated using a lithography process and then the resist on the upper surface of the photodiode 302 of the focus detection pixel 211R is removed. At this time, the opening portion opened in the imaging pixel 201 is filled with the resist film 401, and the opening portion is protected during the next etching.
  • FIG. 6F shows a cross section after opening the insulating film 304 liner films 306 and 308 by etching using the opening of the resist film 401 as a mask. At this time, the etching is first performed using the liner film 306 as an etch stop film. Thereafter, the resist film 401 and the liner film 306 (or a partial upper layer of the liner film 306) are removed by ashing and cleaning (FIG. 6G).
  • the core portion of the optical waveguide structure can be formed by embedding a high-refractive insulating film 309 such as SiN in the openings opened in the imaging pixel 201 and the focus detection pixel 211R (FIG. 6H).
  • a high-refractive insulating film 309 such as SiN
  • a film such as SiN is formed for the purpose of protecting the side wall of the opening, and then the focus detection pixel 211R is opened. Even if the flow and structure are used, it is suitable as a structure that achieves the object of the present disclosure.
  • the solid-state imaging device shown in FIG. 4 is formed.
  • a concave portion is formed above the photodiode 302 in an insulating film formed in an upper layer of the photodiode, and high refractive insulation is provided in the concave portion.
  • the optical waveguide is configured by embedding the film 309, and compared with the case where there is no optical waveguide, the sensitivity can be reduced due to light attenuation and the color mixture between adjacent pixels can be reduced.
  • the bottom surface of the core layer (high refractive insulating film 309) of the optical waveguide formed by the buried layer is in contact with the light shielding member 212 that blocks a part of incident light for varying the incident light incident angle.
  • the light shielding member 212 that blocks a part of incident light for varying the incident light incident angle.
  • the light shielding member 212 that blocks a part of the incident light for varying the light receiving incident angle of the focus detection pixel of the solid-state imaging device is normally a photodiode so as not to prevent the light from entering the photodiode 302.
  • a metal film of a metal wiring layer such as aluminum, tungsten, or copper that forms wiring in the insulating film 304 in a region other than the region 302 may be used.
  • the sensitivity of the metal wiring layer in which the metal film of the lowermost metal wiring layer having the shortest distance from the semiconductor substrate is the light shielding member 212 is higher than that in the case where the light shielding member is provided in the upper metal wiring layer. There is little decrease, and leakage to adjacent pixels can be reduced.
  • a liner film 306 having a higher refractive index than that of the cladding layer made of the insulating film 304 may be interposed between the lowermost metal wiring layer as the light shielding member 212 and the core layer of the buried layer. Since the liner film 306 is as thin as 60 nm or less and the refractive index is higher than that of the cladding layer, even in this case, leakage to the adjacent pixels is caused as compared with the case where the cladding layer exists between the bottom surface of the core layer and the light shielding member. Can be reduced.
  • the bottom surface of the core layer of the imaging pixel 201 (second pixel) that does not change the light incident angle without providing the normal light shielding member 212 is the core of the focus detection pixels 211R and 211L.
  • the bottom surface of the layer and the height from the surface of the semiconductor substrate may be different.
  • the bottom surface of the core layer of the imaging pixel 201 (second pixel) that does not vary the light receiving incident angle without providing the normal light blocking member 212 is for each wavelength of incident light (for example, for each color of the color filter 310). ) May be different.
  • the distance between the bottom surface of the core layer and the surface of the semiconductor substrate 301 can be set to a film thickness that minimizes the reflection of light according to the wavelength of incident light, so that the reflection is minimized for each wavelength of incident light. Image quality deterioration can be reduced.
  • half of the imaging pixel 201 may be configured as the focus detection pixel 211R and the remaining half as 211L. In this way, two images (two images having parallax) with different light receiving incident angles can be taken, and can be used for a 3D camera.
  • the focus detection pixel 211R and the focus detection pixel 211L can be used for automatic focus adjustment (autofocus).
  • the present disclosure can be used for a solid-state imaging device, and can be used for an imaging device such as a video camera or an electronic still camera having automatic focusing, and is industrially useful.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is a solid-state imaging device that minimizes decreases in sensitivity and reduces false signals between adjacent pixels even when said pixels are focus detection pixels that block one part of incident light. A plurality of pixels comprise: first pixels that cause the incidence angle of received light to vary as a result of being provided with a light blocking member that blocks one part of incident light; and second pixels that are not provided with the light blocking member and that do not cause the incidence angle of received light to vary. Each of the pixels is provided with a photodiode, an insulating film, and a core layer (a highly refractive insulating film) that has a higher refraction index than the insulating film. A part of the insulating film that is positioned at the same height from a semiconductor substrate as the core layer serves as a cladding layer. The core layer forms an optical waveguide that guides light by the reflection of incident light at the cladding layer. The bottom surfaces of the core layers of the first pixels are in contact with the light blocking member.

Description

固体撮像装置Solid-state imaging device
 本開示は、光電変換部等の受光部を備えた固体撮像装置、詳しくは、1つの固体撮像装置で異なる受光入射角で撮像された画像信号を生成することのできる固体撮像装置に関する。 The present disclosure relates to a solid-state imaging device including a light-receiving unit such as a photoelectric conversion unit, and more particularly, to a solid-state imaging device that can generate image signals captured at different light-receiving incident angles with one solid-state imaging device.
 近年、ビデオカメラや電子スチルカメラ等の撮像装置が広く一般に普及している。これらのカメラには、CCDやMOSセンサなどの固体撮像装置が使用されている。 In recent years, imaging devices such as video cameras and electronic still cameras have been widely used. For these cameras, solid-state imaging devices such as CCDs and MOS sensors are used.
 一般に、MOSセンサでは、例えば、受光面において2次元マトリクス状に並べられた画素ごとにフォトダイオードが設けられ、受光時に各フォトダイオードに発生及び蓄積される信号電荷をCMOS回路の駆動でフローティングディフュージョンに転送し、信号電荷を信号電圧に変換して読み取る構成となっている。 In general, in a MOS sensor, for example, a photodiode is provided for each pixel arranged in a two-dimensional matrix on a light receiving surface, and a signal charge generated and accumulated in each photodiode at the time of light reception is converted into a floating diffusion by driving a CMOS circuit. The signal is transferred and converted into a signal voltage and read.
 上記のようなCMOSセンサなどの固体撮像装置は、例えば、半導体基板に上述のフォトダイオードが形成されており、その上層を被覆して酸化シリコンなどの絶縁膜が形成されており、フォトダイオードへの光の入射を妨げないようにフォトダイオード領域を除く領域において絶縁膜中に配線層が形成された構成となっている。 In the solid-state imaging device such as the above-described CMOS sensor, for example, the above-described photodiode is formed on a semiconductor substrate, and an insulating film such as silicon oxide is formed so as to cover the upper layer thereof. A wiring layer is formed in the insulating film in a region excluding the photodiode region so as not to prevent light incidence.
 ところで、カメラなどの撮像装置では、自動焦点調節を実現するため、撮影レンズの焦点調節状態を検出する必要がある。従来は、固体撮像装置とは別個に焦点検出素子が設けられていた。しかし、その場合には、焦点検出素子やこれに光を導く焦点検出用の光学系の分だけコストが増大したり装置が大型になったりする。 Incidentally, in an imaging apparatus such as a camera, it is necessary to detect the focus adjustment state of the taking lens in order to realize automatic focus adjustment. Conventionally, a focus detection element has been provided separately from the solid-state imaging device. However, in that case, the cost increases or the size of the apparatus increases by the amount of the focus detection element and the focus detection optical system that guides light to the focus detection element.
 そこで、近年、焦点検出方式としていわゆる瞳分割位相差方式(瞳分割方式、または位相差方式などと呼ばれる場合もある)を採用しつつ、焦点検出素子としても用いることができるように構成した固体撮像装置が提案されている。瞳分割位相差方式は、撮影レンズの通過光束を瞳分割して一対の分割像を形成し、そのパターンずれ(位相シフト量)を検出することで、撮影レンズのデフォーカス量を検出するものである。被写体を示す画像信号を形成するための撮像用信号を出力する撮像用画素とは別に、焦点調節状態を検出するための焦点検出信号を生成する焦点検出用画素を複数配置する。 Therefore, in recent years, a so-called pupil division phase difference method (sometimes called a pupil division method or a phase difference method) is adopted as a focus detection method, and a solid-state image pickup configured to be used as a focus detection element. A device has been proposed. The pupil division phase difference method detects the defocus amount of the photographing lens by forming a pair of divided images by dividing the luminous flux passing through the photographing lens into pupils and detecting the pattern shift (phase shift amount). is there. A plurality of focus detection pixels for generating a focus detection signal for detecting a focus adjustment state are arranged separately from the image pickup pixels for outputting an image pickup signal for forming an image signal indicating a subject.
 特許文献1には、撮影レンズの通過光束を瞳分割して一対の分割像を形成する焦点検出用画素として、オンチップレンズとフォトダイオードとの間にアルミやタングステンなどの金属を用いた遮光部が設けられた固体撮像装置が開示されている。 Patent Document 1 discloses a light-shielding unit that uses a metal such as aluminum or tungsten between a on-chip lens and a photodiode as a focus detection pixel that forms a pair of divided images by pupil-dividing a light beam passing through a photographing lens. Is disclosed.
特開2003-7994号公報JP 2003-7994 A
 しかしながら、素子の微細化により受光面の面積が縮小されてきており、これに伴って入射光率が低下して感度が悪化するという問題がある。これは上記のような固体撮像装置の入射光の一部を遮光する焦点検出用画素においては、出力低下が顕著で深刻な課題である。 However, the area of the light receiving surface has been reduced due to the miniaturization of the element, and there is a problem in that the incident light rate is lowered and sensitivity is deteriorated. This is a serious and serious problem in output reduction in focus detection pixels that block part of incident light of the solid-state imaging device as described above.
 また、素子の微細化により画素間の距離が縮小されてきており、これに伴って隣接画素への漏れこみが増加するという問題がある。これは上記のような固体撮像装置の入射光の一部を遮光する焦点検出用画素においては、隣接画素への偽信号や、隣接画素からの偽信号により検出精度が低下するという課題となる。 Further, the distance between the pixels has been reduced due to the miniaturization of the element, and accordingly, there is a problem that leakage into adjacent pixels increases. This is a problem that in the focus detection pixel that blocks a part of the incident light of the solid-state imaging device as described above, the detection accuracy is lowered due to the false signal to the adjacent pixel or the false signal from the adjacent pixel.
 本開示は、このような事情に鑑みてなされたもので、入射光の一部を遮光する焦点検出用画素であっても、感度低下を抑制し、隣接画素間の偽信号を低減する固体撮像装置を提供する。 The present disclosure has been made in view of such circumstances, and solid-state imaging that suppresses a decrease in sensitivity and reduces a false signal between adjacent pixels even in a focus detection pixel that blocks a part of incident light. Providing equipment.
 上記課題を解決するため本開示における固体撮像装置は、2次元状に配置された複数の画素を有する固体撮像装置であって、前記複数の画素は、入射光の一部を遮る遮光部材を備えることで受光入射角度を異ならせる第1の画素と、前記遮光部材を備えずに受光入射角度を異ならせない第2の画素とを有し、前記複数の画素のそれぞれは、半導体基板に形成されたフォトダイオードと、前記半導体基板上に形成された絶縁膜と、前記フォトダイオードの上方部分において前記絶縁膜に形成された凹部に埋め込まれて形成され、前記絶縁膜よりも高い屈折率を有するコア層とを備え、前記絶縁膜のうち前記コア層と前記半導体基板から同じ高さに位置する部分をクラッド層として、前記コア層は、前記クラッド層での前記入射光の反射により光を導く光導波路を形成し、前記第1の画素のコア層の底面は、前記遮光部材に接する。 In order to solve the above problems, the solid-state imaging device according to the present disclosure is a solid-state imaging device having a plurality of pixels arranged two-dimensionally, and the plurality of pixels include a light shielding member that blocks a part of incident light. Accordingly, the first pixel that varies the light-receiving incident angle and the second pixel that does not include the light-shielding member and does not vary the light-receiving incident angle are formed on the semiconductor substrate. A photodiode, an insulating film formed on the semiconductor substrate, and a core having a refractive index higher than that of the insulating film formed by being embedded in a recess formed in the insulating film in an upper portion of the photodiode A portion of the insulating film located at the same height from the core layer and the semiconductor substrate as a cladding layer, and the core layer is formed by reflecting the incident light on the cladding layer. Forming an optical waveguide for guiding the bottom surface of the core layer of the first pixel is adjacent to the light shielding member.
 この構成によれば、入射光の一部を遮光する焦点検出用画素であっても、感度低下を抑制し、隣接画素間の偽信号を低減することができる。具体的には、光導波路がない場合に比べて、光の減衰による感度低下と隣接画素との混色を低減できる。さらに、コア層の底面と遮光部材とが接していることから、コア層と遮光部材との間に絶縁膜が介在する場合に比べて隣接画素への漏れこみによる偽信号を低減し、本来遮光すべき光の自画素への漏れこみを低減できる。 According to this configuration, even a focus detection pixel that blocks a part of incident light can suppress a decrease in sensitivity and reduce a false signal between adjacent pixels. Specifically, compared with a case where there is no optical waveguide, it is possible to reduce sensitivity reduction due to light attenuation and color mixture between adjacent pixels. Furthermore, since the bottom surface of the core layer and the light shielding member are in contact with each other, false signals due to leakage into adjacent pixels are reduced compared to the case where an insulating film is interposed between the core layer and the light shielding member, and the light shielding is inherently performed. It is possible to reduce the leakage of light to the own pixel.
 ここで、前記遮光部材は、金属配線層に形成された金属膜であってもよい。 Here, the light shielding member may be a metal film formed on a metal wiring layer.
 この構成によれば、遮光部材が金属膜であることによって高い遮光性を確保でき、しかも、遮光部材は金属配線層を形成するプロセスで金属配線と同時に形成できるので製造コストの上昇を抑えることができる。 According to this configuration, since the light shielding member is a metal film, high light shielding properties can be secured, and furthermore, since the light shielding member can be formed simultaneously with the metal wiring in the process of forming the metal wiring layer, an increase in manufacturing cost can be suppressed. it can.
 ここで、前記遮光部材が形成される前記金属配線層は、複数の金属配線層のうち前記半導体基板に最も近い金属配線層であってもよい。 Here, the metal wiring layer on which the light shielding member is formed may be a metal wiring layer closest to the semiconductor substrate among a plurality of metal wiring layers.
 この構成によれば、半導体基板に最も近い金属配線層以外の金属配線層を用いた場合に比べて、感度低下が少なく、隣接画素への漏れこみを低減できる。 According to this configuration, compared with the case where a metal wiring layer other than the metal wiring layer closest to the semiconductor substrate is used, the sensitivity is less decreased and leakage to adjacent pixels can be reduced.
 ここで、前記半導体基板表面から、前記遮光部材が形成される前記金属配線層と、前記コア層との界面の高さに、前記クラッド層よりも高い屈折率を有するライナー膜を備えていてもよい。 Here, a liner film having a refractive index higher than that of the cladding layer may be provided at a height of an interface between the metal wiring layer on which the light shielding member is formed and the core layer from the semiconductor substrate surface. Good.
 この場合でもコア層底面が遮光部材との間にクラッド層が存在する場合に比べて隣接画素への漏れこみを低減できる。 Even in this case, it is possible to reduce leakage to adjacent pixels as compared with the case where a clad layer exists between the bottom surface of the core layer and the light shielding member.
 ここで、前記第1の画素の前記コア層の底面は、前記第2の画素の前記コア層の底面と、前記半導体基板表面からの距離が異なっていてもよい。 Here, the bottom surface of the core layer of the first pixel may be different from the bottom surface of the core layer of the second pixel from the surface of the semiconductor substrate.
 この構成によれば、第2の画素の感度低下をさらに低減できる。 According to this configuration, a decrease in sensitivity of the second pixel can be further reduced.
 ここで、前記複数の画素のそれぞれは、カラーフィルタ層を有し、前記第2の画素の前記コア層の底面の前記半導体基板表面からの距離は、前記カラーフィルタの色毎に異なっていてもよい。 Here, each of the plurality of pixels has a color filter layer, and the distance from the semiconductor substrate surface of the bottom surface of the core layer of the second pixel may be different for each color of the color filter. Good.
 この構成によれば、コア層の底面と半導体基板表面からの高さ(距離)を、受光する光の波長(色)により光の反射を最小化する膜厚に最適化できるので、入射される光の感度低下を波長毎に低減でき、画質低下を軽減することができる。 According to this configuration, the height (distance) from the bottom surface of the core layer and the surface of the semiconductor substrate can be optimized to a film thickness that minimizes the reflection of light by the wavelength (color) of received light. The decrease in light sensitivity can be reduced for each wavelength, and the decrease in image quality can be reduced.
 ここで、前記コア層は、前記酸化シリコンよりも高い屈折率を有する窒化シリコンにより形成されてもよい。 Here, the core layer may be formed of silicon nitride having a higher refractive index than the silicon oxide.
 この構成によれば、特別な材料と使用することなく通常のプロセスで製造することができる。 According to this configuration, it can be manufactured by a normal process without using any special material.
 本開示における固体撮像装置によれば、焦点検出用画素の微細化による、光の回折と減衰による感度低下と隣接画素間の偽信号を低減できる。 According to the solid-state imaging device of the present disclosure, sensitivity reduction due to light diffraction and attenuation due to miniaturization of focus detection pixels and false signals between adjacent pixels can be reduced.
第1の実施形態に係る固体撮像装置(14×14画素)の例の例を示す平面図である。It is a top view which shows the example of the example of the solid-state imaging device (14x14 pixel) which concerns on 1st Embodiment. 第1の実施形態に係る焦点検出用画素の模式断面図である。It is a schematic cross section of the focus detection pixel according to the first embodiment. 遮光部材と、光導波路(コア層)の底面である高屈折絶縁膜の底面が接することなく離れた場合の焦点検出用画素の模式断面図である。FIG. 6 is a schematic cross-sectional view of a focus detection pixel when a light shielding member and a bottom surface of a high refractive insulating film that is a bottom surface of an optical waveguide (core layer) are separated without contact. (a)は第2の実施の形態に係る撮像用画素の模式断面図であり、(b)は第2の実施の形態に係る焦点検出用画素の模式断面図である。(A) is a schematic cross section of the imaging pixel according to the second embodiment, and (b) is a schematic cross section of the focus detection pixel according to the second embodiment. 第2の実施形態に係る撮像用画素の反射率と光導波路底面の高さとの依存性を示す図である。It is a figure which shows the dependence of the reflectance of the imaging pixel which concerns on 2nd Embodiment, and the height of an optical waveguide bottom face. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment. 第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。It is a schematic cross section which shows one process of the manufacturing method which forms the optical waveguide of the solid-state imaging device which concerns on 2nd Embodiment.
 以下、各実施形態に係る固体撮像装置について、MOSイメージセンサ(CMOSイメージセンサ)を例として図面を参照しながら説明する。 Hereinafter, the solid-state imaging device according to each embodiment will be described using a MOS image sensor (CMOS image sensor) as an example with reference to the drawings.
 [第1の実施形態]
 図1は、第1の実施形態に係る固体撮像装置(14×14画素)の例を示す平面図である。実際の固体撮像装置では数百万画素の規模で、この配列で規則正しく配置して使用している。画素サイズは2.0μm以下であり、本実施例では1.1μmである。
[First Embodiment]
FIG. 1 is a plan view illustrating an example of a solid-state imaging device (14 × 14 pixels) according to the first embodiment. In an actual solid-state image pickup device, a scale of several million pixels is regularly used in this arrangement. The pixel size is 2.0 μm or less, and 1.1 μm in this embodiment.
 この固体撮像装置は、2次元状に配置された複数の画素を有する。複数の画素は、撮像用画素201と、焦点検出用画素211L、211Rの2種類の画素を有している。各画素はマイクロレンズ202(オンチップレンズ)を有し、各画素に表記された「R」「G」「B」の文字は、各画素が受光する光の成分(赤色、緑色、青色)を示す。撮像用画素201のカラーフィルタは3原色ベイヤ配列のもので、その中に焦点検出用画素211L、211Rが複数配置されている。同図における焦点検出用画素211L、211Rの配置の仕方は一例であり、この限りではない。 This solid-state imaging device has a plurality of pixels arranged two-dimensionally. The plurality of pixels include two types of pixels, an imaging pixel 201 and focus detection pixels 211L and 211R. Each pixel has a microlens 202 (on-chip lens), and the letters “R”, “G”, and “B” written on each pixel indicate light components (red, green, and blue) received by each pixel. Show. The color filter of the imaging pixel 201 has a three primary color Bayer arrangement, and a plurality of focus detection pixels 211L and 211R are arranged therein. The arrangement of the focus detection pixels 211L and 211R in the figure is an example, and is not limited to this.
 焦点検出用画素211L、211Rはそれぞれ、入射光の一部を遮る遮光部材を備えることで受光入射角度を異ならせる画素であり、第1の画素とも呼ぶ。焦点検出用画素211L、211Rは、撮影レンズの通過光束を瞳分割して一対の分割像を形成するため、画素の中に遮光部材212を配置している。焦点検出用画素211Lは画素の右側を遮光部材212により遮光しており、逆に、焦点検出用画素211Rは左側を遮光部材212により遮光している。本例では、遮光部材212を焦点検出用画素211R、211Lの左、右に配置して左右に瞳分割しているが、遮光部材212を画素の上下に配置することで通過光束を上下に瞳分割して一対の分割像を形成してもよい。また、本例では、焦点検出用画素211L、211Rは「G」成分を受光するような配置にしているが、焦点検出をするためには、その他の「R」「B」成分でも良いし、無色(成分制限なし)でもよい。 The focus detection pixels 211L and 211R are pixels that each have a light receiving incident angle by providing a light shielding member that blocks a part of incident light, and are also referred to as first pixels. In the focus detection pixels 211L and 211R, a light shielding member 212 is disposed in the pixel in order to form a pair of divided images by dividing the light beam passing through the photographing lens into pupils. In the focus detection pixel 211L, the right side of the pixel is shielded by the light shielding member 212. Conversely, in the focus detection pixel 211R, the left side is shielded by the light shielding member 212. In this example, the light shielding member 212 is arranged on the left and right of the focus detection pixels 211R and 211L to divide the pupil into left and right, but by passing the light shielding member 212 above and below the pixels, the passing light flux is A pair of divided images may be formed by dividing. In this example, the focus detection pixels 211L and 211R are arranged so as to receive the “G” component, but other “R” and “B” components may be used for focus detection. It may be colorless (no component restriction).
 撮像用画素201は、遮光部材を備えずに受光入射角度を異ならせない画素であり、第2の画素とも呼ぶ。 The imaging pixel 201 is a pixel that does not include a light blocking member and does not change the light incident angle, and is also referred to as a second pixel.
 なお、焦点検出用画素211Lは、上記のように、焦点検出用画素211Rとは遮光部材212の配置位置が異なっている以外は、焦点検出用画素211Rと同様の構成なので、以下では、焦点検出用画素211Rを中心に説明する。 The focus detection pixel 211L has the same configuration as the focus detection pixel 211R except that the arrangement position of the light shielding member 212 is different from the focus detection pixel 211R as described above. The description will focus on the pixel 211R.
 図2は、第1の実施形態に係る焦点検出用画素211Rの模式断面図である。同図のように、焦点検出用画素211Rは、半導体基板301上に形成され、フォトダイオード302と、ゲート電極303と、絶縁膜304と、銅配線305と、ライナー膜306と、銅配線307と、ライナー膜308と、高屈折絶縁膜309と、カラーフィルタ310と、隔壁311とを備える。 FIG. 2 is a schematic cross-sectional view of the focus detection pixel 211R according to the first embodiment. As shown in the figure, the focus detection pixel 211R is formed on the semiconductor substrate 301, and includes a photodiode 302, a gate electrode 303, an insulating film 304, a copper wiring 305, a liner film 306, and a copper wiring 307. , A liner film 308, a high refractive insulating film 309, a color filter 310, and a partition wall 311.
 このように、半導体基板301内に、受光面となる撮像領域において、画素ごとに電荷を蓄積するフォトダイオード302が構成されており、さらに、フォトダイオード302に隣接して半導体基板301上にゲート電極303が形成されている。 As described above, the photodiode 302 that accumulates charges for each pixel is configured in the imaging region serving as the light receiving surface in the semiconductor substrate 301, and further, the gate electrode is formed on the semiconductor substrate 301 adjacent to the photodiode 302. 303 is formed.
 上記の半導体基板301には、フローティングディフュージョンにフォトダイオード302に生成及び蓄積される信号電荷または信号電荷に応じた電圧を読み取る信号読み取り部が形成されており、ゲート電極303への電圧の印加によって信号電荷が転送されるように構成されている。 In the semiconductor substrate 301, a signal reading unit that reads a signal charge generated or accumulated in the photodiode 302 in the floating diffusion or a voltage corresponding to the signal charge is formed, and the signal is applied by applying the voltage to the gate electrode 303. An electric charge is transferred.
 また、フォトダイオード302を被覆して、半導体基板301上に、それぞれ例えば酸化シリコンからなる絶縁膜304と、例えば炭化シリコン(屈折率1.7~1.9)、または窒化シリコン(屈折率1.9~2.1)からなるライナー膜306、及び、ライナー膜308が積層して、絶縁膜が構成されている。 Further, an insulating film 304 made of, for example, silicon oxide, and silicon carbide (with a refractive index of 1.7 to 1.9) or silicon nitride (with a refractive index of 1.. The liner film 306 made of 9 to 2.1) and the liner film 308 are laminated to form an insulating film.
 また、銅配線305、307は、異なる金属配線層に形成された銅配線である。ただし、例えばダマシンプロセスで形成された、タンタル/窒化タンタルからなるバリアメタル層が銅配線の外周部に形成される場合もある。銅配線305は、金属配線層のうち半導体基板301に最も近い最下層の金属配線層に形成されている。 The copper wirings 305 and 307 are copper wirings formed in different metal wiring layers. However, for example, a barrier metal layer made of tantalum / tantalum nitride formed by a damascene process may be formed on the outer periphery of the copper wiring. The copper wiring 305 is formed in the lowermost metal wiring layer closest to the semiconductor substrate 301 among the metal wiring layers.
 上記のライナー膜306、308は、ビア形成時のエッチストップ膜であるとともに金属配線層を構成する銅の拡散を防止するための膜でもある。 The liner films 306 and 308 are etch stop films at the time of forming vias and are films for preventing diffusion of copper constituting the metal wiring layer.
 上記のようにして、上記の積層された絶縁膜中に配線層が埋め込まれている。上記の銅配線305、銅配線307は、それぞれ、例えばデュアルダマシンプロセスによる、配線用溝の底面から下層配線への開口部内におけるビア部と一体に形成された配線構造であってもよい。 As described above, the wiring layer is embedded in the laminated insulating film. Each of the copper wiring 305 and the copper wiring 307 may have a wiring structure formed integrally with the via portion in the opening from the bottom surface of the wiring groove to the lower layer wiring by, for example, a dual damascene process.
 フォトダイオード302の上方部分において、上記のように積層して形成された絶縁膜304及びライナー膜306、308に対して凹部が形成されている。上記凹部の側壁および底面に、酸化シリコン(屈折率1.4~1.5)よりも高い屈折率を有する高屈折絶縁膜309が形成されている。高屈折絶縁膜309は、窒化シリコン膜(屈折率1.9~2.0)などで形成する。高屈折絶縁膜309は、その断面において、半導体基板301側が狭く、マイクロレンズ202側が広く形成されている。つまり、図2に示す断面図において、半導体基板301側に近づくに従って、高屈折絶縁膜309の幅が小さくなっている。 In the upper part of the photodiode 302, recesses are formed with respect to the insulating film 304 and the liner films 306 and 308 formed by stacking as described above. A high refractive insulating film 309 having a refractive index higher than that of silicon oxide (refractive index: 1.4 to 1.5) is formed on the side wall and bottom surface of the recess. The high refractive insulating film 309 is formed of a silicon nitride film (refractive index 1.9 to 2.0) or the like. The cross section of the high refractive insulating film 309 is narrow on the semiconductor substrate 301 side and wide on the microlens 202 side. That is, in the cross-sectional view shown in FIG. 2, the width of the high-refractive insulating film 309 becomes smaller as it approaches the semiconductor substrate 301 side.
 上記のように、屈折率が絶縁膜304よりも高い高屈折絶縁膜309を用いることで、絶縁膜304がクラッド層、高屈折絶縁膜309がコア層となり、カラーフィルタ310を通過した光をフォトダイオード302に導く光導波路としての機能を有することとなる。言い換えれば、絶縁膜304のうち高屈折絶縁膜309(コア層)と半導体基板301から同じ高さに位置する部分をクラッド層として、高屈折絶縁膜309(コア層)は、クラッド層での入射光の反射により光を導く光導波路を形成している。 As described above, by using the high refractive insulating film 309 having a refractive index higher than that of the insulating film 304, the insulating film 304 serves as a cladding layer, and the high refractive insulating film 309 serves as a core layer. It has a function as an optical waveguide guided to the diode 302. In other words, the portion of the insulating film 304 that is located at the same height from the semiconductor substrate 301 as the high refractive insulating film 309 (core layer) is used as a cladding layer, and the high refractive insulating film 309 (core layer) is incident on the cladding layer. An optical waveguide that guides light by reflection of light is formed.
 カラーフィルタ310は、フォトダイオード302への入射光を波長(図1の例ではRGBの色)により選択する。カラーフィルタ310は、例えば各色用の顔料が有機材料(例えば、アクリル樹脂)に混入されてなる。この場合のカラーフィルタ310の屈折率は、1.5~1.7である。カラーフィルタ310は、島状(各画素部に対応して個別に形成された状態である。)に形成されている。図1の例では、焦点検出用画素211Rは「G」成分を受光するような配置にしているが、焦点検出をするためには、その他の「R」「B」成分でも良いし、波長を選択しない透明膜「W」でもよい。カラーフィルタ310は、その断面において、半導体基板301側が狭く、マイクロレンズ202側が広く形成されている。つまり、図2に示す断面図において、半導体基板301側に近づくに従って、カラーフィルタ310の幅が小さくなっている。このようにカラーフィルタ310の断面形状は、逆台形形状をしている。つまり、半導体基板301側の底辺が、マイクロレンズ202側の上辺より幅の小さな台形状をしている。 The color filter 310 selects the light incident on the photodiode 302 according to the wavelength (RGB color in the example of FIG. 1). The color filter 310 is formed, for example, by mixing pigments for each color into an organic material (for example, acrylic resin). In this case, the refractive index of the color filter 310 is 1.5 to 1.7. The color filter 310 is formed in an island shape (in a state of being individually formed corresponding to each pixel portion). In the example of FIG. 1, the focus detection pixel 211R is arranged so as to receive the “G” component. However, in order to detect the focus, other “R” and “B” components may be used. A transparent film “W” that is not selected may be used. In the cross section of the color filter 310, the semiconductor substrate 301 side is narrow and the microlens 202 side is wide. That is, in the cross-sectional view shown in FIG. 2, the width of the color filter 310 becomes smaller as it approaches the semiconductor substrate 301 side. Thus, the cross-sectional shape of the color filter 310 has an inverted trapezoidal shape. That is, the bottom side on the semiconductor substrate 301 side has a trapezoidal shape with a smaller width than the upper side on the microlens 202 side.
 隔壁311は、マイクロレンズ202やカラーフィルタ310から入射した光が、隣の画素部に入射するのを防止する。隔壁311は、平面視において、カラーフィルタ310に相当する部分が開口する格子状(網の目状)をしている。なお、図2の断面図では、隔壁311それぞれは独立したように見える。隔壁311の断面形状は、ここでは、全体として台形状をしている。ここでの台形状は、半導体基板301側の底辺がマイクロレンズ202側の上辺より長い形状である。つまり、半導体基板301から離れるに従って幅が細くなる形状をしている。隔壁311は、カラーフィルタ310を構成する材料よりも屈折率が低い材料、例えばシリコン酸化膜(TEOS(Tetra Ethyl Ortho Silicate)膜、屈折率1.4~1.5)により構成されている。このため、カラーフィルタ310内を斜め方向に進行する光は、隔壁311の表面に達した際に反射する。この際、隔壁311は半導体基板301から離れるに従って幅が細くなる形状をしているため、反射した光がフォトダイオード302側へと向かう。 The partition 311 prevents light incident from the micro lens 202 or the color filter 310 from entering the adjacent pixel portion. The partition 311 has a lattice shape (mesh shape) in which a portion corresponding to the color filter 310 is opened in a plan view. In the cross-sectional view of FIG. 2, each of the partition walls 311 seems to be independent. Here, the cross-sectional shape of the partition wall 311 has a trapezoidal shape as a whole. The trapezoidal shape here is a shape in which the bottom side on the semiconductor substrate 301 side is longer than the upper side on the microlens 202 side. That is, the width becomes narrower as the distance from the semiconductor substrate 301 increases. The partition 311 is made of a material having a refractive index lower than that of the material constituting the color filter 310, for example, a silicon oxide film (TEOS (Tetra Ethyl Ortho Silicate) film, refractive index 1.4 to 1.5). For this reason, the light traveling in the oblique direction in the color filter 310 is reflected when it reaches the surface of the partition 311. At this time, since the partition 311 has a shape that becomes narrower as the distance from the semiconductor substrate 301 increases, the reflected light travels toward the photodiode 302.
 マイクロレンズ202は、上方から入射する光を対応する画素部のフォトダイオード302に集光させるものである。マイクロレンズ202は、ここでは、半導体基板301から離れる方向に突出する凸レンズである。 The microlens 202 collects light incident from above on the photodiode 302 of the corresponding pixel portion. Here, the microlens 202 is a convex lens protruding in a direction away from the semiconductor substrate 301.
 遮光部材212は、図2に示すように、焦点検出用画素211Rでは、画素の左側を遮光することにより、右斜め上方向からの角度の入射光を遮光する構成となっている。遮光部材212は、金属配線層のうちの最下層の銅配線305と同層で、同時に形成することが可能である。このとき、遮光部材212と、光導波路コア層の底面である高屈折絶縁膜309の底面は接している。 As shown in FIG. 2, in the focus detection pixel 211R, the light shielding member 212 is configured to shield incident light at an angle from the diagonally upper right direction by shielding the left side of the pixel. The light shielding member 212 can be formed at the same time in the same layer as the lowermost copper wiring 305 in the metal wiring layer. At this time, the light shielding member 212 is in contact with the bottom surface of the high refractive insulating film 309 which is the bottom surface of the optical waveguide core layer.
 次に、図2に示す焦点検出用画素211Rの比較対象例として、コア層の底面と遮光部材212との間に絶縁膜が介在する構成例について説明する。 Next, a configuration example in which an insulating film is interposed between the bottom surface of the core layer and the light shielding member 212 will be described as a comparative example of the focus detection pixel 211R shown in FIG.
 図3は、遮光部材212と、光導波路(コア層)の底面である高屈折絶縁膜309の底面が接することなく離れた場合の焦点検出用画素の模式断面図である。このとき、光導波路コア層の底面である高屈折絶縁膜309の底面と、遮光部材212の界面との間に、絶縁膜304のクラッド層が存在するため、光導波路効果が発揮できず、図3に示すように、焦点検出用画素211Rでは右斜め上方向からの角度の入射光の一部は、隣接画素、もしくは、下層である直下のフォトダイオード302に漏れこみ、偽信号となってしまう。 FIG. 3 is a schematic cross-sectional view of the focus detection pixel when the light shielding member 212 and the bottom surface of the high-refractive insulating film 309 that is the bottom surface of the optical waveguide (core layer) are separated without contact. At this time, since the clad layer of the insulating film 304 exists between the bottom surface of the high refractive insulating film 309 that is the bottom surface of the optical waveguide core layer and the interface of the light shielding member 212, the optical waveguide effect cannot be exhibited. As shown in FIG. 3, in the focus detection pixel 211R, a part of the incident light having an angle from the upper right oblique direction leaks into the adjacent pixel or the lower photodiode 302 as a lower layer and becomes a false signal. .
 第1の実施形態に係る固体撮像装置の焦点検出用画素211R、211Lは、フォトダイオード302の上層に形成された絶縁膜304にフォトダイオード302の上方において凹部が形成され、凹部内に高屈折絶縁膜309が埋め込まれて光導波路が構成されており、光導波路がない場合に比べて、光の減衰による感度低下と隣接画素との混色を低減できる構成である。また、遮光部材212は最下層の金属配線層の金属配線膜を用いているので、上層配線層を用いた場合に比べて、感度低下が少なく、隣接画素への漏れこみを低減できる。さらに、埋め込み層による光導波路のコア層である高屈折絶縁膜309の底面は、受光入射角度を異ならせるための入射光の一部を遮る遮光部材212に接しているので、光導波路であるコア層の底面である高屈折絶縁膜309の底面と、遮光部材212の界面との間に、絶縁膜304が存在する場合に比べて隣接画素への漏れこみや、本来遮光すべき光の自画素への漏れこみを低減(つまり遮光性を増大)できる。 In the focus detection pixels 211R and 211L of the solid-state imaging device according to the first embodiment, a recess is formed above the photodiode 302 in the insulating film 304 formed in the upper layer of the photodiode 302, and the high refractive insulation is provided in the recess. The optical waveguide is configured by embedding the film 309, and compared with a case where there is no optical waveguide, the sensitivity can be reduced due to light attenuation and the color mixing between adjacent pixels can be reduced. In addition, since the light shielding member 212 uses the metal wiring film of the lowermost metal wiring layer, the sensitivity is less lowered than the case where the upper wiring layer is used, and leakage to adjacent pixels can be reduced. Further, the bottom surface of the high-refractive insulating film 309, which is the core layer of the optical waveguide formed by the buried layer, is in contact with the light shielding member 212 that blocks a part of the incident light for varying the light incident angle. Compared with the case where the insulating film 304 exists between the bottom surface of the high-refractive insulating film 309, which is the bottom surface of the layer, and the interface of the light shielding member 212, leakage into adjacent pixels and the self pixel of light that should originally be shielded from light Leakage into the water can be reduced (that is, the light shielding property can be increased).
 遮光部材212である前記最下層の金属配線層の金属膜と、埋め込み層による光導波路のコア層である高屈折絶縁膜309の底面との間に、絶縁膜304によるクラッド層よりも屈折率が高いライナー膜306を介していてもよい。 Between the metal film of the lowermost metal wiring layer that is the light shielding member 212 and the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide formed by the buried layer, the refractive index is higher than that of the cladding layer formed of the insulating film 304. A high liner film 306 may be interposed.
 ライナー膜306の屈折率はクラッド層よりも高く、厚みも60nm以下と薄いため、光導波路効果の低下は軽微で、隣接画素への漏れこみはほとんど発生しないためである。 This is because the refractive index of the liner film 306 is higher than that of the clad layer and the thickness is as thin as 60 nm or less, so that the optical waveguide effect is only slightly reduced and leakage into adjacent pixels hardly occurs.
 [第2の実施形態]
 図4の(a)は第2の実施形態に係る撮像用画素201の模式断面図であり、図4の(b)は第2の実施形態に係る焦点検出用画素211Rの模式断面図である。
[Second Embodiment]
4A is a schematic cross-sectional view of the imaging pixel 201 according to the second embodiment, and FIG. 4B is a schematic cross-sectional view of the focus detection pixel 211R according to the second embodiment. .
 図4の(a)に示す撮像用画素201の、光導波路のコア層である高屈折絶縁膜309の底面と半導体基板301表面からの高さ(距離)Hnormは、図4の(b)に示す焦点検出用画素211Rの、光導波路のコア層である高屈折絶縁膜309の底面と半導体基板301表面からの高さ(距離)Hafと異なっている。 The height (distance) Hnorm from the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 of the imaging pixel 201 shown in FIG. 4A is shown in FIG. The focus detection pixel 211 </ b> R is different from the height (distance) Haf from the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301.
 図5は、第2の実施形態に係る撮像用画素201の反射率と光導波路底面の高さとの依存性を示す図である。つまり、撮像用画素201における入射光反射率の、光導波路のコア層である高屈折絶縁膜309の底面と半導体基板301表面からの高さ(距離)Hnorm依存性を示す。高屈折絶縁膜309の屈折率と、高屈折絶縁膜309の底面と半導体基板301表面からの高さ(距離)と、その間に介する絶縁膜304の屈折率との相互関係により、波長(色)により反射率が極小となる高さHnormが異なる(Hnorm_B、Hnorm_G、Hnorm_R)。 FIG. 5 is a diagram illustrating the dependency between the reflectance of the imaging pixel 201 according to the second embodiment and the height of the bottom surface of the optical waveguide. That is, the dependence of the incident light reflectance in the imaging pixel 201 on the height (distance) Hnorm from the bottom surface of the high refractive insulating film 309 which is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 is shown. The wavelength (color) depends on the correlation between the refractive index of the high refractive insulating film 309, the height (distance) from the bottom surface of the high refractive insulating film 309 and the surface of the semiconductor substrate 301, and the refractive index of the insulating film 304 interposed therebetween. The height Hnorm at which the reflectivity is minimized is different (Hnorm_B, Hnorm_G, Hnorm_R).
 第2の実施形態に係る固体撮像装置の焦点検出用画素211Rは、撮像用画素201の、光導波路のコア層である高屈折絶縁膜309の底面と半導体基板301表面からの高さ(距離)Hnormと、焦点検出用画素211Rの、光導波路のコア層である高屈折絶縁膜309の底面と半導体基板301表面からの高さ(距離)Hafと異ならせることで、撮像用画素の感度低下をさらに低減できる。 The focus detection pixel 211R of the solid-state imaging device according to the second embodiment has a height (distance) between the bottom surface of the high-refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301. By making Hnorm different from the height (distance) Haf from the bottom surface of the high refractive insulating film 309 that is the core layer of the optical waveguide and the surface of the semiconductor substrate 301 of the focus detection pixel 211R, the sensitivity of the imaging pixel is reduced. Further reduction can be achieved.
 さらに、撮像用画素201のコア層の底面と半導体基板301表面からの距離は、受光する光の波長毎(例えば、RGBの色毎)により異なってもよい。これにより、コア層の底面と半導体基板301表面からの高さ(距離)Hnormを、受光する光の波長(例えば、色)により光の反射を最小化する膜厚に設定できるので、入射される光の感度低下を波長毎に低減でき、画質低下を軽減することができる。 Furthermore, the distance from the bottom surface of the core layer of the imaging pixel 201 and the surface of the semiconductor substrate 301 may be different for each wavelength of received light (for example, for each RGB color). As a result, the height (distance) Hnorm from the bottom surface of the core layer and the surface of the semiconductor substrate 301 can be set to a film thickness that minimizes reflection of light by the wavelength (for example, color) of the received light. The decrease in light sensitivity can be reduced for each wavelength, and the decrease in image quality can be reduced.
 次に、第2の実施形態に係る固体撮像装置の特徴部分となる配線層部への光導波形成部分についての詳細な製造方法について、図6A~図6Hを用いて説明する。 Next, a detailed manufacturing method for the optical waveguide forming portion to the wiring layer portion, which is a characteristic portion of the solid-state imaging device according to the second embodiment, will be described with reference to FIGS. 6A to 6H.
 図6A~6Hはそれぞれ、第2の実施の形態に係る固体撮像装置の光導波路を形成する製造方法の一工程を示す模式断面図である。 6A to 6H are schematic cross-sectional views showing one step of the manufacturing method for forming the optical waveguide of the solid-state imaging device according to the second embodiment.
 図6Aは製造工程において銅配線が形成されたあとの断面図を示している。先ず、半導体基板301の一方の主面(上面)の表層内部に、複数のフォトダイオード302を形成する。半導体基板301は、例えば、シリコン基板であって、フォトダイオード302は、半導体基板301の上面からボロン(B)などの不純物をイオン注入することにより形成される。なお、フォトダイオード302は、n型の電荷注入層とp+型の表面層とのpn接合により構成される(詳細な図示を省略)。複数のフォトダイオード302は、半導体基板301をZ軸方向上方より平面視する場合、例えば、マトリクス状に配置されている。マトリクス状配置の中に撮像用画素201と焦点検出用画素211Rが両方配置されている構造となっている。 FIG. 6A shows a cross-sectional view after copper wiring is formed in the manufacturing process. First, a plurality of photodiodes 302 are formed inside the surface layer of one main surface (upper surface) of the semiconductor substrate 301. The semiconductor substrate 301 is, for example, a silicon substrate, and the photodiode 302 is formed by ion implantation of impurities such as boron (B) from the upper surface of the semiconductor substrate 301. The photodiode 302 is configured by a pn junction of an n-type charge injection layer and a p + type surface layer (detailed illustration is omitted). The plurality of photodiodes 302 are arranged in a matrix, for example, when the semiconductor substrate 301 is viewed from above in the Z-axis direction. The imaging pixel 201 and the focus detection pixel 211R are both arranged in a matrix arrangement.
 この後、ゲート絶縁膜を形成した後、電荷転送のためのゲート電極303などを形成する。これらフォトダイオード302やゲート電極303などの形成は、一般的なフォトリソグラフィ工程、イオン注入工程、成膜工程および熱拡散工程を適宜用いることでなされる。 Thereafter, after forming a gate insulating film, a gate electrode 303 for charge transfer and the like are formed. The photodiode 302, the gate electrode 303, and the like are formed by appropriately using a general photolithography process, an ion implantation process, a film forming process, and a thermal diffusion process.
 また、半導体基板301上に対して、絶縁膜304を積層し、絶縁膜304の上面から内部(Z軸方向下側)に向けて銅配線305を形成する。銅配線305の形成は、一般的なダマシン配線工程の実行による場合、絶縁膜304を積層した後、銅配線305を形成しようとする部分をリソグラフィ工程およびエッチング工程を実行して溝を形成し、当該溝内に銅(Cu)を埋め込んでCMP(Chemical Mechanical Polishing)工程などを実行することによりなされる。ライナー膜306はその後に形成される。なお、焦点検出用画素211Rには遮光部材212が形成されているが、これは銅配線305形成と同じタイミングで焦点検出用画素211Rを形成する部分をリソグラフィ工程およびエッチング工程を実行して溝を形成し、当該溝内に銅(Cu)を埋め込んでCMP(Chemical Mechanical Polishing)工程などを実行して形成している。 Further, an insulating film 304 is stacked on the semiconductor substrate 301, and a copper wiring 305 is formed from the upper surface of the insulating film 304 toward the inside (the lower side in the Z-axis direction). When the copper wiring 305 is formed by performing a general damascene wiring process, after laminating the insulating film 304, a portion where the copper wiring 305 is to be formed is subjected to a lithography process and an etching process to form a groove, This is done by embedding copper (Cu) in the groove and executing a CMP (Chemical Mechanical Polishing) process or the like. The liner film 306 is formed thereafter. A light shielding member 212 is formed on the focus detection pixel 211R. This is because a portion where the focus detection pixel 211R is formed at the same timing as the formation of the copper wiring 305 is subjected to a lithography process and an etching process to form a groove. It is formed by embedding copper (Cu) in the groove and executing a CMP (Chemical Mechanical Polishing) process or the like.
 上記のような工程を繰り返すことにより、複数の絶縁膜304と複数の銅配線305、307およびライナー膜306、308を有する配線層を形成することができる。 By repeating the steps as described above, a wiring layer having a plurality of insulating films 304, a plurality of copper wirings 305 and 307, and liner films 306 and 308 can be formed.
 図6Bでは、リソグラフィ工程を用いて配線上にレジスト膜401を形成した後、撮像用画素201のフォトダイオード302上面のレジストを除去した後の形態を示している。このとき焦点検出用画素211Rにはレジストの開口部は設けていない。 FIG. 6B shows a form after the resist film 401 is formed on the wiring using a lithography process and then the resist on the upper surface of the photodiode 302 of the imaging pixel 201 is removed. At this time, the focus detection pixel 211R is not provided with a resist opening.
 図6Cは上記レジスト膜401開口部をマスクとしてエッチング処理により絶縁膜304、ライナー膜306、308を開口した後に断面を示している。このとき、エッチングは、まずライナー膜306をエッチストップ膜としておこない、次に時間調整によって撮像用画素に最適な光導波路のコア層である高屈折絶縁膜の底面と半導体基板表面からの高さ(距離)Hafとなるようにエッチングの詳細調整をおこなう。 FIG. 6C shows a cross section after the insulating film 304 and the liner films 306 and 308 are opened by etching using the opening of the resist film 401 as a mask. At this time, the etching is performed first using the liner film 306 as an etch stop film, and then by adjusting the time, the height from the bottom surface of the high refractive insulating film which is the core layer of the optical waveguide optimum for the imaging pixel and the surface from the semiconductor substrate surface ( The etching is adjusted in detail so that the distance becomes Haf.
 この後アッシング処理および洗浄処理によりレジスト膜401を除去する(図6D)。 Thereafter, the resist film 401 is removed by ashing and cleaning (FIG. 6D).
 次に、図6Eはリソグラフィ工程を用いてレジスト膜401を生成した後、焦点検出用画素211Rのフォトダイオード302の上面のレジストを除去した後の形態を示している。このとき撮像用画素201に開口した開口部はレジスト膜401により埋め込まれており、次のエッチング時に開口部が保護されている状態になっている。 Next, FIG. 6E shows a form after the resist film 401 is generated using a lithography process and then the resist on the upper surface of the photodiode 302 of the focus detection pixel 211R is removed. At this time, the opening portion opened in the imaging pixel 201 is filled with the resist film 401, and the opening portion is protected during the next etching.
 図6Fは上記レジスト膜401開口部をマスクとしてエッチング処理により絶縁膜304ライナー膜306、308を開口した後に断面を示している。このとき、エッチングは、まずライナー膜306をエッチストップ膜としておこなう。この後アッシング処理および洗浄処理によりレジスト膜401と、ライナー膜306(もしくはライナー膜306の一部上層)を除去する(図6G)。 FIG. 6F shows a cross section after opening the insulating film 304 liner films 306 and 308 by etching using the opening of the resist film 401 as a mask. At this time, the etching is first performed using the liner film 306 as an etch stop film. Thereafter, the resist film 401 and the liner film 306 (or a partial upper layer of the liner film 306) are removed by ashing and cleaning (FIG. 6G).
 この後、撮像用画素201、焦点検出用画素211Rそれぞれに開口した開口部にSiN等の高屈折絶縁膜309を埋め込むことにより光導波路構造のコア部を形成することが出来る(図6H)。 Thereafter, the core portion of the optical waveguide structure can be formed by embedding a high-refractive insulating film 309 such as SiN in the openings opened in the imaging pixel 201 and the focus detection pixel 211R (FIG. 6H).
 なお、図6Dの状態で撮像用画素の絶縁膜に開口部を形成した後、開口部の側壁を保護する目的でSiN等の膜を形成し、その後、焦点検出用画素211R部の開口を行うというフローおよび構造を用いても本開示の目的を達成する構造として適当である。 6D, after an opening is formed in the insulating film of the imaging pixel, a film such as SiN is formed for the purpose of protecting the side wall of the opening, and then the focus detection pixel 211R is opened. Even if the flow and structure are used, it is suitable as a structure that achieves the object of the present disclosure.
 以上の工程により、図4に示す固体撮像装置が形成される。 Through the above steps, the solid-state imaging device shown in FIG. 4 is formed.
 本開示における固体撮像装置の焦点検出用画素211R、211L(第1の画素)は、フォトダイオードの上層に形成された絶縁膜にフォトダイオード302の上方において凹部が形成され、凹部内に高屈折絶縁膜309が埋め込まれて光導波路が構成されており、光導波路がない場合に比べて、光の減衰による感度低下と、隣接画素間の混色を低減できる構成である。このとき、埋め込み層による光導波路のコア層(高屈折絶縁膜309)の底面は、受光入射角度を異ならせるための入射光の一部を遮る遮光部材212に接しているので、コア層底面が遮光部材212との間にクラッド層が存在する場合に比べて隣接画素への漏れこみを低減できる。 In the focus detection pixels 211R and 211L (first pixels) of the solid-state imaging device according to the present disclosure, a concave portion is formed above the photodiode 302 in an insulating film formed in an upper layer of the photodiode, and high refractive insulation is provided in the concave portion. The optical waveguide is configured by embedding the film 309, and compared with the case where there is no optical waveguide, the sensitivity can be reduced due to light attenuation and the color mixture between adjacent pixels can be reduced. At this time, the bottom surface of the core layer (high refractive insulating film 309) of the optical waveguide formed by the buried layer is in contact with the light shielding member 212 that blocks a part of incident light for varying the incident light incident angle. Compared with the case where a cladding layer is present between the light shielding member 212 and the light shielding member 212, leakage to adjacent pixels can be reduced.
 また、前記固体撮像装置の焦点検出用画素の、受光入射角度を異ならせるための入射光の一部を遮る遮光部材212は、通常はフォトダイオード302への光の入射を妨げないようにフォトダイオード302の領域を除く領域において絶縁膜304中に配線を形成するアルミやタングステン、銅などの金属配線層の金属膜を使用してもよい。このとき、金属配線層は半導体基板からの距離が一番短い最下層の金属配線層の金属膜を遮光部材212にした方が、上層の金属配線層に遮光部材を備える場合に比べて、感度低下が少なく、隣接画素への漏れこみを低減できる。 Further, the light shielding member 212 that blocks a part of the incident light for varying the light receiving incident angle of the focus detection pixel of the solid-state imaging device is normally a photodiode so as not to prevent the light from entering the photodiode 302. A metal film of a metal wiring layer such as aluminum, tungsten, or copper that forms wiring in the insulating film 304 in a region other than the region 302 may be used. At this time, the sensitivity of the metal wiring layer in which the metal film of the lowermost metal wiring layer having the shortest distance from the semiconductor substrate is the light shielding member 212 is higher than that in the case where the light shielding member is provided in the upper metal wiring layer. There is little decrease, and leakage to adjacent pixels can be reduced.
 また、遮光部材212である前記最下層の金属配線層と、埋め込み層のコア層との間に、絶縁膜304によるクラッド層よりも屈折率が高いライナー膜306を介していてもよい。ライナー膜306の厚みは60nm以下と薄く、屈折率はクラッド層よりも高いので、この場合でもコア層底面と遮光部材との間にクラッド層が存在する場合に比べて隣接画素への漏れこみを低減できる。 Further, a liner film 306 having a higher refractive index than that of the cladding layer made of the insulating film 304 may be interposed between the lowermost metal wiring layer as the light shielding member 212 and the core layer of the buried layer. Since the liner film 306 is as thin as 60 nm or less and the refractive index is higher than that of the cladding layer, even in this case, leakage to the adjacent pixels is caused as compared with the case where the cladding layer exists between the bottom surface of the core layer and the light shielding member. Can be reduced.
 また、前記固体撮像装置は、通常の遮光部材212を設けずに受光入射角度を異ならせない撮像用画素201(第2の画素)のコア層の底面は、焦点検出用画素211R、211Lのコア層の底面と、半導体基板表面からの高さが異なってもよい。さらに、通常の遮光部材212を設けずに受光入射角度を異ならせない撮像用画素201(第2の画素)のコア層の底面は、入射する光の波長毎(例えば、カラーフィルタ310の色毎)により異なってもよい。これにより、コア層の底面と半導体基板301表面からの距離を、入射される光の波長により光の反射を最小化する膜厚に設定できるので、入射される光の波長毎に反射を最小化することができ、画質低下を軽減することができる。 In the solid-state imaging device, the bottom surface of the core layer of the imaging pixel 201 (second pixel) that does not change the light incident angle without providing the normal light shielding member 212 is the core of the focus detection pixels 211R and 211L. The bottom surface of the layer and the height from the surface of the semiconductor substrate may be different. Further, the bottom surface of the core layer of the imaging pixel 201 (second pixel) that does not vary the light receiving incident angle without providing the normal light blocking member 212 is for each wavelength of incident light (for example, for each color of the color filter 310). ) May be different. As a result, the distance between the bottom surface of the core layer and the surface of the semiconductor substrate 301 can be set to a film thickness that minimizes the reflection of light according to the wavelength of incident light, so that the reflection is minimized for each wavelength of incident light. Image quality deterioration can be reduced.
 なお、撮像用画素201の半分を焦点検出用画素211R、残り半分を211Lとして構成してもよい。こうすれば、受光入射角度の異なる2つの映像(視差を有する2つの画像)を撮影することができ、3Dカメラに用いることができる。もちろん、この場合でも焦点検出用画素211Rと焦点検出用画素211Lを自動焦点調節(オートフォーカス)に用いることができる。 It should be noted that half of the imaging pixel 201 may be configured as the focus detection pixel 211R and the remaining half as 211L. In this way, two images (two images having parallax) with different light receiving incident angles can be taken, and can be used for a 3D camera. Of course, even in this case, the focus detection pixel 211R and the focus detection pixel 211L can be used for automatic focus adjustment (autofocus).
 本開示は、固体撮像装置に利用可能であり、特に自動焦点調節を有するビデオカメラや電子スチルカメラ等の撮像装置に利用可能であり、産業上有用である。 The present disclosure can be used for a solid-state imaging device, and can be used for an imaging device such as a video camera or an electronic still camera having automatic focusing, and is industrially useful.
 201 撮像用画素
 202 マイクロレンズ
 211L,211R 焦点検出用画素
 212 遮光部材
 301 半導体基板
 302 フォトダイオード
 303 ゲート電極
 304 絶縁膜
 305,307 銅配線
 306,308 ライナー膜
 309 高屈折絶縁膜
 310 カラーフィルタ
 311 隔壁
 401 レジスト膜
DESCRIPTION OF SYMBOLS 201 Imaging pixel 202 Microlens 211L, 211R Focus detection pixel 212 Light shielding member 301 Semiconductor substrate 302 Photodiode 303 Gate electrode 304 Insulating film 305,307 Copper wiring 306,308 Liner film 309 High refractive insulating film 310 Color filter 311 Partition 401 Resist film

Claims (7)

  1.  2次元状に配置された複数の画素を有する固体撮像装置であって、
     前記複数の画素は、
     入射光の一部を遮る遮光部材を備えることで受光入射角度を異ならせる第1の画素と、
     前記遮光部材を備えずに受光入射角度を異ならせない第2の画素とを有し、
     前記複数の画素のそれぞれは、
     半導体基板に形成されたフォトダイオードと、
     前記半導体基板上に形成された絶縁膜と、
     前記フォトダイオードの上方において前記絶縁膜に形成された凹部に形成され、前記絶縁膜よりも高い屈折率を有するコア層(309)とを備え、
     前記絶縁膜のうち前記コア層と前記半導体基板から同じ高さに位置する部分をクラッド層として、前記コア層は、前記クラッド層での前記入射光の反射により光を導く光導波路を形成し、
     前記第1の画素のコア層の底面は、前記遮光部材に接する
    固体撮像装置。
    A solid-state imaging device having a plurality of pixels arranged two-dimensionally,
    The plurality of pixels are:
    A first pixel that varies a light-receiving incident angle by including a light-shielding member that blocks part of incident light;
    A second pixel that does not include the light shielding member and does not vary the light incident angle;
    Each of the plurality of pixels is
    A photodiode formed on a semiconductor substrate;
    An insulating film formed on the semiconductor substrate;
    A core layer (309) formed in a recess formed in the insulating film above the photodiode and having a higher refractive index than the insulating film;
    A portion of the insulating film located at the same height from the core layer and the semiconductor substrate is a cladding layer, and the core layer forms an optical waveguide that guides light by reflection of the incident light at the cladding layer,
    The bottom surface of the core layer of the first pixel is a solid-state imaging device in contact with the light shielding member.
  2.  前記遮光部材は、金属配線層に形成された金属膜である
    請求項1に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the light shielding member is a metal film formed on a metal wiring layer.
  3.  前記遮光部材が形成される前記金属配線層は、複数の金属配線層のうち前記半導体基板に最も近い金属配線層である
    請求項2に記載の固体撮像装置。
    The solid-state imaging device according to claim 2, wherein the metal wiring layer on which the light shielding member is formed is a metal wiring layer closest to the semiconductor substrate among a plurality of metal wiring layers.
  4.  前記半導体基板表面から、前記遮光部材が形成される前記金属配線層と、前記コア層との界面の高さに、前記クラッド層よりも高い屈折率を有するライナー膜を備える
    請求項2または3に記載の固体撮像装置。
    The liner film having a refractive index higher than that of the cladding layer at a height of an interface between the metal wiring layer on which the light shielding member is formed and the core layer from the surface of the semiconductor substrate. The solid-state imaging device described.
  5.  前記半導体基板表面から前記第1の画素の前記コア層の底面までの距離は、前記半導体基板表面から前記第2の画素の前記コア層の底面までの距離と異なる
    請求項1~4のいずれか1項に記載の固体撮像装置。
    The distance from the semiconductor substrate surface to the bottom surface of the core layer of the first pixel is different from the distance from the semiconductor substrate surface to the bottom surface of the core layer of the second pixel. The solid-state imaging device according to item 1.
  6.  前記複数の画素のそれぞれは、カラーフィルタ層を有し、
     前記半導体基板表面から前記第2の画素の前記コア層の底面までの距離は、前記カラーフィルタの色毎に異なる
    請求項5に記載の固体撮像装置。
    Each of the plurality of pixels has a color filter layer,
    The solid-state imaging device according to claim 5, wherein a distance from a surface of the semiconductor substrate to a bottom surface of the core layer of the second pixel is different for each color of the color filter.
  7.  前記クラッド層は、酸化シリコンにより形成され、
     前記コア層は、前記酸化シリコンよりも高い屈折率を有する窒化シリコンにより形成される
    請求項1~6のいずれか1項に記載の固体撮像装置。
    The cladding layer is formed of silicon oxide;
    The solid-state imaging device according to any one of claims 1 to 6, wherein the core layer is formed of silicon nitride having a higher refractive index than the silicon oxide.
PCT/JP2014/002586 2013-10-31 2014-05-16 Solid-state imaging device WO2015063965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013227506A JP2016225324A (en) 2013-10-31 2013-10-31 Solid-state image pickup device
JP2013-227506 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015063965A1 true WO2015063965A1 (en) 2015-05-07

Family

ID=53003603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002586 WO2015063965A1 (en) 2013-10-31 2014-05-16 Solid-state imaging device

Country Status (2)

Country Link
JP (1) JP2016225324A (en)
WO (1) WO2015063965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150098006A1 (en) * 2013-10-08 2015-04-09 Sony Corporation Solid-state image pickup apparatus, method of manufacturing the same, and electronic apparatus
EP3633728A3 (en) * 2018-10-02 2020-11-11 Foveon, Inc. Imaging arrays having focal plane phase detecting pixel sensors and methods for performing focal plane phase detection in imaging arrays

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003681A1 (en) * 2018-06-29 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic device
JP7310130B2 (en) * 2018-12-17 2023-07-19 凸版印刷株式会社 Solid-state imaging device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166677A (en) * 2006-12-08 2008-07-17 Sony Corp Solid-state imaging device, method of manufacturing same, and camera
JP2010147965A (en) * 2008-12-22 2010-07-01 Sony Corp Solid-state imaging device and electronic apparatus
JP2010267675A (en) * 2009-05-12 2010-11-25 Sony Corp Solid-state imaging device, electronic apparatus, and method for manufacturing solid-state imaging device
JP2011023455A (en) * 2009-07-14 2011-02-03 Panasonic Corp Solid-state image-capture device
JP2013021168A (en) * 2011-07-12 2013-01-31 Sony Corp Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
JP2014082310A (en) * 2012-10-16 2014-05-08 Canon Inc Solid state image pickup device, method for manufacturing solid state image pickup divide, and image pickup system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166677A (en) * 2006-12-08 2008-07-17 Sony Corp Solid-state imaging device, method of manufacturing same, and camera
JP2010147965A (en) * 2008-12-22 2010-07-01 Sony Corp Solid-state imaging device and electronic apparatus
JP2010267675A (en) * 2009-05-12 2010-11-25 Sony Corp Solid-state imaging device, electronic apparatus, and method for manufacturing solid-state imaging device
JP2011023455A (en) * 2009-07-14 2011-02-03 Panasonic Corp Solid-state image-capture device
JP2013021168A (en) * 2011-07-12 2013-01-31 Sony Corp Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
JP2014082310A (en) * 2012-10-16 2014-05-08 Canon Inc Solid state image pickup device, method for manufacturing solid state image pickup divide, and image pickup system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150098006A1 (en) * 2013-10-08 2015-04-09 Sony Corporation Solid-state image pickup apparatus, method of manufacturing the same, and electronic apparatus
US9786713B2 (en) * 2013-10-08 2017-10-10 Sony Corporation Solid-state image pickup apparatus, method of manufacturing the same, and electronic apparatus
EP3633728A3 (en) * 2018-10-02 2020-11-11 Foveon, Inc. Imaging arrays having focal plane phase detecting pixel sensors and methods for performing focal plane phase detection in imaging arrays

Also Published As

Publication number Publication date
JP2016225324A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP7171652B2 (en) Solid-state image sensor and electronic equipment
US11749703B2 (en) Solid-state image pickup element, method of manufacturing solid-state image pickup element, and electronic apparatus
KR102506009B1 (en) Solid-state imaging device, method for manufacturing same, and electronic apparatus
JP5766663B2 (en) Backside image sensor pixel with silicon microlens and metal reflector
US8669632B2 (en) Solid-state imaging device and method for manufacturing the same
US9647026B2 (en) Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
US9064767B2 (en) Solid state imaging device and method of manufacturing the same
KR102197476B1 (en) Image sensor
JP2015128131A (en) Solid state image sensor and electronic apparatus
JP2015153975A (en) Solid state image sensor, manufacturing method of the same, and electronic apparatus
CN105280655A (en) Photoelectric conversion apparatus and imaging system
JP2009194340A (en) Photoelectric conversion device and manufacturing method of photoelectric conversion device
US20150244958A1 (en) Solid-state imaging device
JP2007181209A (en) Image sensor and manufacturing method thereof
JP2014232761A (en) Solid-state imaging device
WO2020158164A1 (en) Imaging element and method for manufacturing imaging element
JP2013229446A (en) Solid-state image sensor and method for manufacturing the same
JP2006245101A (en) Imaging apparatus having color filter
WO2015063965A1 (en) Solid-state imaging device
US10734433B2 (en) Solid-state imaging device
JP2018029170A (en) Imaging device and method for manufacturing the same, and camera
JP2014022649A (en) Solid-state image sensor, imaging device, and electronic apparatus
JP2011023455A (en) Solid-state image-capture device
KR20210078632A (en) Image sensor
JP5353356B2 (en) Solid-state imaging device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14858367

Country of ref document: EP

Kind code of ref document: A1