WO2015063888A1 - Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens - Google Patents

Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens Download PDF

Info

Publication number
WO2015063888A1
WO2015063888A1 PCT/JP2013/079409 JP2013079409W WO2015063888A1 WO 2015063888 A1 WO2015063888 A1 WO 2015063888A1 JP 2013079409 W JP2013079409 W JP 2013079409W WO 2015063888 A1 WO2015063888 A1 WO 2015063888A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass
lens blank
glass material
lens
Prior art date
Application number
PCT/JP2013/079409
Other languages
French (fr)
Japanese (ja)
Inventor
幹男 池西
Original Assignee
Hoya株式会社
幹男 池西
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, 幹男 池西 filed Critical Hoya株式会社
Priority to JP2015544694A priority Critical patent/JPWO2015063888A1/en
Priority to PCT/JP2013/079409 priority patent/WO2015063888A1/en
Priority to KR1020157022153A priority patent/KR20150124445A/en
Priority to JP2015501540A priority patent/JP5892452B2/en
Priority to TW103106449A priority patent/TWI623502B/en
Priority to PCT/JP2014/054561 priority patent/WO2014129657A1/en
Priority to US14/768,161 priority patent/US9868661B2/en
Priority to CN201480010217.9A priority patent/CN105008292B/en
Publication of WO2015063888A1 publication Critical patent/WO2015063888A1/en
Priority to JP2016024745A priority patent/JP6087454B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical glass material, a polishing glass lens blank and an optical lens, and a polishing glass lens blank and an optical lens manufacturing method.
  • an optical glass material hereinafter sometimes simply referred to as “glass material”.
  • glass material A method of obtaining a lens by grinding and polishing a glass lens blank for polishing (hereinafter sometimes simply referred to as “lens blank”) is known.
  • molten glass is poured into a mold to produce a square or plate-like glass material (so-called glass block), and then the glass block is cut out by machining and is subdivided into a cubic shape. A so-called cut piece is produced.
  • rough polishing barrel polishing
  • the roughly polished cut piece is reheated and softened, and the softened glass is press-molded to form a lens blank that approximates the shape of the target lens.
  • a lens is manufactured by grinding and polishing the lens blank.
  • This method can produce and store multiple plate glass blocks with different glass types in advance, and can cut and press plate glass blocks of the desired glass type into the desired quantity and volume as needed. Suitable for small volume production.
  • the surface defect extends to the deep part of the lens blank as described above, or when the surface waviness is large, the surface of the lens blank is deeply cut (a lot of machining allowance is taken, for example, the machining allowance is 500 ⁇ m).
  • the time required for grinding / polishing becomes longer and the material is wasted, resulting in an increase in production cost.
  • Patent Document 1 Japanese Patent No. 3806288
  • the molten glass supplied from the nozzle is received by a mold and molded to obtain a glass lump, the surface of the glass lump is subjected to a rough polishing process, and the surface of the glass lump is powdered. It has the process of forming a mold release agent, and the process of press-molding by reheating a glass lump.
  • This method can produce a large number of glass lumps as glass materials and store them in stock, so press molding using multiple molds with different molding surfaces from multiple glass lumps of the same shape according to the order. It is suitable for multi-product production.
  • the present invention has been made in view of such a situation, and its object is to reduce the amount of machining allowance of a glass lens blank for polishing after press molding when manufacturing a lens, and the processing time required for grinding and polishing.
  • Glass material blank, polishing glass lens blank and optical lens, and a manufacturing method of polishing glass lens blank and optical lens are provided.
  • polishing glass obtained by press molding the optical glass material according to the present invention. It has been found for the first time that the amount of machining allowance for grinding and polishing can be significantly reduced by using a lens blank, and the present invention has been completed.
  • the gist of the present invention is as follows. [1] A polishing glass lens blank in which at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 ⁇ m or less.
  • the central portion is a region inside the outer periphery of the main surface, The glass lens blank for polishing according to the above [1], wherein the radius of the central portion is 2/3 or less of the radius of the main surface.
  • a first main surface and a second main surface which form a trapezoid and are parallel to each other; A first side surface connecting short sides of the first main surface and the second main surface and a second side surface connecting long sides of the first main surface and the second main surface; The first side surface and the second side surface are connected to each other, and there are two inclined surfaces each having an obtuse angle with the first side surface, An optical glass material in which the first side surface and the two inclined surfaces are molding surfaces.
  • a polishing glass lens blank formed by press-molding the softened optical glass material by reheating and softening the optical glass material according to [6] above in an air atmosphere.
  • the optical glass material reheated in the reheating step is press-molded in a press mold in an air atmosphere to obtain a glass molded product, and
  • the glass molded article has a press-molded surface at least on the main surface,
  • a mold release agent that applies a release agent to at least one of the surface of the optical glass material fragmented in the cutting step and the holding concave portion in which the optical glass material is disposed in the reheating step.
  • polishing as described in said [11] which further has an agent application
  • the release agent coating step after the release agent is applied to the holding recess in which the optical glass material is disposed, the optical glass material is disposed in the holding recess.
  • polishing glass lens blank according to any one of [1], [2], [8] and [9] is subjected to spherical grinding and smoothing, and in the smoothing, A process for producing an optical lens, wherein an optical lens is obtained by processing using a resin bond grindstone without using a metal bond grindstone.
  • the machining allowance of the glass lens blank for polishing after press molding can be greatly reduced, and the time required for grinding and polishing can be extremely shortened.
  • FIG. 1A is a perspective view of an optical glass material (optical glass material piece) according to an embodiment of the present invention
  • FIG. 1B is an optical glass material (optical glass material block) according to another embodiment of the present invention
  • FIG. FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the optical glass material shown in FIGS. 1 (A) and 1 (B).
  • FIG. 3 is a schematic sectional view taken along line III-III shown in FIG. 4A is a schematic cross-sectional view showing a convection state of the molten glass according to one embodiment of the present invention
  • FIG. 4B is a schematic cross-sectional view showing a convection state of the molten glass according to the conventional example.
  • FIG. 5 is a schematic perspective view showing a cutting process of the optical glass material according to one embodiment of the present invention.
  • 6 (A) to 6 (E) are schematic cross-sectional views showing a process of manufacturing a polishing lens blank using the glass material shown in FIG. 1 (A).
  • FIG. 7A is a side view showing an example of the shape of the polishing glass lens blank according to one embodiment of the present invention
  • FIG. 7B is the polishing glass lens blank according to one embodiment of the present invention. It is a front view which shows an example of a shape.
  • FIG. 8 is a schematic view schematically showing a portion to be removed by a grinding step and a polishing step in a partial cross section of the surface of the polishing glass lens blank shown in FIG.
  • FIG. 9 is a flowchart showing a process of manufacturing an optical lens from the blank shown in FIG.
  • FIG. 10 is a diagram illustrating the results of bright spot observation according to Examples and Comparative Examples.
  • the optical glass material of the present invention (hereinafter sometimes simply referred to as “glass material”) includes a first main surface and a second main surface that are trapezoidal and parallel to each other, and the first main surface. And the first side surface connecting the short sides of the second main surface, the second side surface connecting the long sides of the first main surface and the second main surface, the first side surface and the first side surface. Two inclined surfaces that connect the two side surfaces and have an obtuse angle with each of the first side surfaces, and the first side surface and the two inclined surfaces are molding surfaces. And
  • a glass optical element blank for polishing (especially, an amount of machining allowance when producing a glass optical element such as an optical lens can be greatly reduced and a time required for grinding and polishing can be extremely shortened (particularly, , Glass lens blank for polishing, etc.) can be obtained.
  • optical glass materials 2 and 20 shown in FIGS. 1A and 1B will be described using the optical glass materials 2 and 20 shown in FIGS. 1A and 1B as examples.
  • the segmented optical glass material 2 shown in FIG. 1 (A) is referred to as an “optical glass material piece”, and the length shown in FIG. 1 (B).
  • the optical glass material 20 having a scale is sometimes referred to as an “optical glass material block”.
  • an optical glass material according to an embodiment of the present invention will be described by taking as an example an optical glass material piece 2 (hereinafter, simply referred to as “glass material piece 2”) shown in FIG.
  • the glass raw material piece 2 which concerns on one Embodiment of this invention is parallel to this 1st main surface 4 with the trapezoid 1st main surface 4, and the same trapezoid shape.
  • a second main surface 6 a second main surface 6.
  • the glass material piece 2 of the present embodiment includes a first side surface 8 that connects the short sides of the first main surface 4 and the short sides of the second main surface 6, and the long side of the first main surface 4. And a second side surface 10 connecting the long sides of the second main surface 6 to each other.
  • the glass material piece 2 of the present embodiment connects the first side surface 8 and the second side surface 10, and the two first inclinations in which the angles ⁇ 1 and ⁇ 2 formed with the first side surface 8 are both obtuse angles. It has a surface 12 and a second inclined surface 14.
  • the angle ⁇ 1 and the angle ⁇ 2 are preferably the same as each other, but may be slightly different.
  • the angle ⁇ 1 and the angle ⁇ 2 are each preferably greater than 90 to 135 degrees, more preferably 100 to 130 degrees, and even more preferably 110 to 120 degrees. Note that the corner formed by the first inclined surface 12 and the first side surface 8 and the corner formed by the second inclined surface 14 and the first side surface 8 may be slightly rounded.
  • the first side surface 8, the first inclined surface 12, and the second inclined surface 14 are molding surfaces.
  • the first main surface 4 and the second main surface 6 are cut surfaces, and the second side surface 10 is a free surface.
  • the molding surface is a molding surface formed by contacting the mold.
  • the free surface is a surface formed by softening glass solidified without contacting other objects (solid, liquid) during the cooling process.
  • the cut surface is a surface formed by cutting glass.
  • the first main surface 4 and the second main surface 6 are parallel to the YZ plane.
  • the trapezoidal short and long sides of the first main surface 4 and the second main surface are parallel to the Y axis.
  • the Z axis corresponds to the height of the trapezoid.
  • the X axis, the Y axis, and the Z axis are perpendicular to each other.
  • the distance L1 (X-axis direction thickness) in the X-axis direction between the first main surface 4 and the second main surface 6 is preferably It is shorter than the distance H1 (Z-axis direction height) between the second side surface 10 and the Z-axis direction.
  • Such a glass material piece 2 is easy to handle because it is fragmented to a desired width, and processing such as pressing is easy.
  • Such a glass material piece 2 of this embodiment is suitable as a glass material for press molding.
  • the distance H1 (the height in the Z direction) between the first side surface 8 and the second side surface 10 is the length W1 of the first side surface 8 in the Y-axis direction or the second side surface 10. It is preferable that the following conditional expression (1) is satisfied, which is determined by the relationship with the length W2 in the Y-axis direction. W1 ⁇ 0.8 ⁇ H1 ⁇ W2 (1)
  • the distance H1 is preferably 25 to 60 mm
  • W1 is preferably 20 to 50 mm
  • W2 is preferably 35 to 60 mm.
  • the glass material piece 2 When the glass material piece 2 satisfies such conditions, the height and width are balanced, and the glass material piece 2 is easy to handle when softened or press-molded.
  • the glass which comprises the glass raw material piece 2 does not specifically limit as a material of the glass which comprises the glass raw material piece 2, (1) The fluorophosphate type glass which contains at least P, O, and F as a glass component, (2) In a glass component Lanthanum borate glass containing a relatively large amount of B 2 O 3 and La 2 O 3 , (3) SiO 2 —TiO 2 containing a relatively large amount of SiO 2 and TiO 2 in the glass component 2 based glass, (4) Nb and P 2 O 5 as a main component, Ti, Bi, and the like niobium phosphate optical glass containing readily reducing component from W is exemplified.
  • optical glass material block 20 shown in FIG. 1B (hereinafter sometimes simply referred to as “glass material block 20”) as an example.
  • glass material block 20 has the structure and effect similar to one above-mentioned embodiment except the part shown below, and the description which overlaps is partially abbreviate
  • the glass material of the present invention may be a glass material block 20 shown in FIG.
  • the difference between the glass material block 20 according to the present embodiment and the glass material piece 2 exemplified in the above-described embodiment is that the distance between the first main surface 4 and the second main surface 6 in the X-axis direction. It is the length of L0.
  • the distance L0 in the X-axis direction between the first main surface 4 and the second main surface 6 is such that the first side surface 8 and the second side surface 10 Longer than the distance H1 in the Z-axis direction. Since such a glass material block 20 can be managed with a certain fixed size, it is suitable for storage and movement.
  • the glass raw material block 20 of this embodiment is cut
  • the method for producing an optical glass material according to the present embodiment is preferably continuously cast in a mold while continuously casting molten glass and moving the cast glass in one direction from the upstream side to the downstream side. A trapezoidal glass material is formed.
  • the manufacturing apparatus includes a nozzle 30 that causes the glass 20 a that has been heated and melted to flow toward the injection start position of the fixed mold 32.
  • the fixed mold 32 includes a bottom wall 34, an end wall 36 formed on the upstream side of the injection start position in the bottom wall 34 in the X-axis direction, and predetermined positions above both ends of the bottom wall 34 in the Y-axis direction in the Z-axis direction. And a side wall 38 that is inclined at an angle. The upper part of the fixed mold 32 is opened above the Z axis.
  • the bottom wall 34, the end wall 36, and the side wall 38 of the fixed mold 32 are integrally formed so as to prevent the molten glass from leaking between them, but they need to be made of the same material. There may be no separate member.
  • a material of the fixed mold 32 for example, cast iron, stainless steel, carbon material, nickel material or the like is used.
  • a release agent may be applied to the inner peripheral surface of the fixed mold 32. This is to facilitate the movement of the solidified glass material block 20 from the fixed mold 34 to the conveyor belt 40.
  • a powder release agent such as boron nitride, alumina, silicon oxide, magnesium oxide or the like is used.
  • the inclination angles of the pair of side walls 38 with respect to the bottom wall 34 correspond to the inclination angles ⁇ 1 and ⁇ 2 shown in FIG.
  • the height H0 of the side wall 38 from the inner bottom surface of the bottom wall 34 in the Z-axis direction is larger than the height H1 of the glass material piece 2 (same for the glass material block 20) shown in FIG.
  • 38 is larger than the maximum width W2 of the glass material piece 2 (the same is the glass material block 20).
  • the molten glass 20a to be cast is molded while being convected smallly in the vicinity of the side wall along the inclined side wall 38. Therefore, a wide range of convection does not occur and no striae are generated inside the glass.
  • the end wall 36 is connected to the bottom wall 34 at an angle substantially perpendicular to the bottom wall 34, but the end wall 36 is also obtuse at a predetermined inclination angle, like the side wall 38. It may be inclined to.
  • the downstream side of the fixed mold 32 in the X-axis direction is open, and the molten glass 20a is gradually cooled and solidified as the fixed mold 32 is moved downstream in the X-axis direction. Go.
  • a transport belt 40 as an X-axis direction transport device is disposed at the downstream position in the X-axis direction where the molten glass 20a is hardened by slow cooling and the glass 20a is hardened to the extent that the molten glass 20a can be held by itself.
  • a transport belt 40 as an X-axis direction transport device is disposed.
  • the glass 20a solidified to such an extent that the shape can be maintained can be conveyed further downstream in the X-axis direction.
  • the glass 20a conveyed on the conveying belt 40 is cooled to a predetermined temperature or lower (for example, Tg or lower) and solidified.
  • the moving speed in the X-axis direction by the transport belt 40 is not particularly limited, but is, for example, about 10 to 50 mm / min.
  • a roller (not shown) that presses the upper surface of the molten glass 20a inside the fixed mold 32 may be disposed immediately downstream of the nozzle 30 in the X-axis direction.
  • the thickness of the glass 20a in particular, the height H1 shown in FIG. 1 can be easily made constant.
  • an annealing device (not shown) may be installed across the fixed mold 32 connected to the transfer device 40.
  • the annealing device has a role of removing distortion by gradually cooling the molded glass 20a.
  • the glass material block 20 after being conveyed by the conveying belt 40 is shown in FIG.
  • the glass material piece 2 shown in FIG. 1 (A) can be obtained by cutting the glass material block 20 after conveyance at equal intervals in the X-axis direction.
  • the method for manufacturing the glass material piece 2 according to the present embodiment further includes a step of cutting the glass material block 20 in a direction orthogonal to the longitudinal direction.
  • the cutting tool used for cutting the glass material block 20 shown in FIG. 1 (B) is not particularly limited, and a cutting blade, a wheel cutter, a wire saw, or the like is used.
  • a cutting device (multi-wire saw) 70 shown in FIG. 5 is used.
  • the plurality of wire saws 72 simultaneously travel at high speed as the plurality of rollers 74 rotate. If the wire saw 72 that runs at high speed is pressed against the first side surface 8 of the glass material block 20, the glass material block 20 is cut into an equal width at the arrangement interval (predetermined interval in the X-axis direction) of the wire saw 72.
  • disconnected by the wire saw 72 of the cutting device 70 turns into a cut surface.
  • disconnected are molding surfaces, and the 2nd side surface 10 is a free surface.
  • the free surface is a surface formed by solidifying a softened glass without contacting other objects (solid, liquid) during the cooling process, and the molding surface is obtained by contacting the mold. It is the shape
  • a rod-shaped glass material block 20 having a trapezoidal cross section is formed, and a glass piece (glass material piece 2) having a trapezoidal cross section is produced by cutting at most twice.
  • the weight accuracy of the individual glass pieces can be greatly increased, and a glass piece with little surface alteration can be obtained while suppressing material loss. That is, the glass material piece 2 which is a trapezoidal cut piece having a uniform weight accuracy can be obtained by cutting the rod-shaped glass material block 20 at equal intervals substantially without the altered layer except for the cut surface. .
  • the conventional glass material with a rectangular cross-section and narrow and narrow shape is prone to striae due to internal convection, and in order to suppress the occurrence of striae, the glass outflow speed is reduced, or the glass material Molding to reduce the plate thickness (for example, to 25 mm or less) is necessary, which is not economical.
  • the cross section by making the cross section into a trapezoidal shape, the area of the bottom surface where the temperature is low can be reduced, and the influence of the temperature difference between the surface and the bottom surface which is the driving force of convection can be reduced. Shaping is possible at the same outflow speed as the conventional wide glass material.
  • board thickness (height H1 of a Z-axis direction) of a glass raw material can be shape
  • the glass material piece 2 can be cut out by a maximum of two cuttings, compared to the conventional case where four or more cuttings are required.
  • the weight accuracy can be greatly improved.
  • the glass material piece 2 obtained in this way has fewer cut surfaces than a conventional cut piece, there is little weight variation and material loss can be reduced. Further, by performing weight management in the manufacturing process of the glass material block 20, the weight variation can be further reduced, preferably within ⁇ 1%, and more preferably within ⁇ 0.5%.
  • the method of weight management is not particularly limited, and examples thereof include the size of the fixed mold 32, adjustment of the viscosity and outflow speed of the molten glass, selection of a cutting method and apparatus, and the like.
  • the surface alteration that becomes a problem during reheat pressing promotes the alteration of the cut surface.
  • the alteration is unlikely to occur because there are few cut surfaces.
  • the glass material piece 2 has high weight accuracy at the time of cutting, it is not necessary to adjust the weight by barrel polishing, and is a surface (molded surface, free surface) that is a surface other than the cut surface and has almost no surface defects. The state can be maintained.
  • the trapezoidal glass piece 2 according to the present embodiment does not have a ridge or a corner at the central portion of the main surface, a folded portion is unlikely to occur at the central portion of the reheat-pressed lens blank. Therefore, the amount of removal during grinding and polishing can be reduced, and the processing time can be shortened.
  • the polishing glass lens blank according to the present embodiment is formed by reheating and softening the optical glass material according to the present embodiment in an air atmosphere, and press-molding the softened optical glass material.
  • optical glass material piece 2 that has been segmented in advance into a predetermined size by the above-described cutting method.
  • the optical glass material 2 according to the present embodiment (hereinafter, simply referred to as “glass material”) is reheat-pressed to form a polishing glass lens blank (hereinafter referred to as “glass glass blank”).
  • a method for manufacturing simply “lens blank” may be described.
  • the glass material 2 is supplied to a tray (softening tray) 50 having a holding recess 52. At this time, the material 2 is supplied in such a posture that the first main surface 4 or the second main surface 6 of the material 2 faces the recess 52 of the tray 50. Further, a release agent such as boron nitride is preferably applied between the glass material 2 and the tray 50. Further, at this time, it is preferable to apply the release agent while maintaining the surface state of the glass material 2 after cutting.
  • a release agent such as boron nitride
  • the glass material 2 together with the receiving tray 50 is put into a heating furnace and reheated in an air atmosphere to soften the glass material 2 to a viscosity of 10 4 to 10 6 dPa ⁇ s. As shown in FIG. 6C, it is deformed into a predetermined shape.
  • the glass material 2a that has been softened and deformed into a biconvex curved shape is press-molded into a desired shape using a molding die.
  • This press molding is also performed in the atmosphere.
  • the molding die is composed of an upper die 66 and a lower die 60 having a molding surface, and an annular body die 64 that regulates them substantially coaxially, and is heated in advance. Further, a release agent (boron nitride or the like) is applied to the molding surface in order to prevent the glass and the mold from being fused.
  • the softened glass material 2a is supplied onto the molding surface 62 of the lower mold 60 while maintaining the viscosity of 10 4 to 10 6 dPa ⁇ s, and immediately thereafter, the upper mold 66 is inserted into the barrel mold 64. .
  • the glass raw material 2a is maintaining the shape shown in FIG.6 (C).
  • the upper die 66 is lowered to press the glass material 2a, the glass material 2a is press-molded into a shape following the molding surface shape of the upper and lower molds, and the lens blank 2b is formed. obtain.
  • (A) to (C) can be referred to as a reheating process or a resoftening process, and (D) to (E) can be referred to as a pressing process.
  • the shape of the lens blank 2b is not only a shape having a convex surface and a concave surface as shown in FIG. 6E, but also a biconvex shape, a shape having a convex surface and a plane, a shape having a concave surface and a plane, and a biconcave shape.
  • a shape having a convex surface and a plane a shape having a concave surface and a plane
  • a shape having a concave surface and a plane a shape having a concave surface and a plane
  • a biconcave shape there is no particular limitation as long as the shape approximates the shape of the optical lens (hereinafter, simply referred to as “lens”).
  • the glass raw material 2 which concerns on this embodiment has high weight precision, in the process from obtaining a glass raw material to reheat press molding, the process of roughening the surface for the weight adjustment of a glass raw material ( Barrel polishing step) and polishing / grinding step may be omitted.
  • the present embodiment there is no process (barrel polishing process or the like) for roughening the surface of the glass material 2 in the process from obtaining the glass material 2 to press molding. Since the glass material 2 can be press-molded while maintaining the surface state of the first main surface 4 and the second main surface 6 by not performing the surface roughening treatment, generation of surface defects in the lens blank after molding is effective. Can be prevented.
  • the glass material 2 according to the present embodiment has high weight accuracy, even when a large number (for example, 1000 or more) of glass lens blanks are produced at one time, weight variation can be suppressed.
  • the weight variation of the lens blank after molding is ⁇ 1.0% or less, and in some cases, ⁇ 0.5% or less.
  • the optical glass material 2 according to the present embodiment is a plate-shaped optical glass material (a main surface is a trapezoidal glass piece) unlike a conventional cubic shaped cut piece, It is possible to manufacture a lens blank that suppresses the occurrence of folding and ridge (side) alteration (thin alteration region is thin and grinding / polishing cost is small).
  • the polishing glass lens blank according to the present embodiment includes an optical glass material 2 having a molding surface, a cutting surface, and a free plane formed by a molding die, that is, a first main surface 4 and a second main surface 6.
  • a glass material having a distance L1 (X-axis direction thickness) between the first side surface 8 and the second side surface 10 shorter than a distance H1 (Z-axis direction height) between the first side surface 8 and the second side surface 10. Is a molded product obtained by reheat press molding.
  • Such a polishing glass lens blank according to this embodiment is characterized in that at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 ⁇ m or less. To do.
  • the defect-containing layer is a portion where the glass component has changed due to contact with a crack or processing liquid generated when the optical glass material is roughly polished, or a crystallization portion which is generated from softening to press molding. including.
  • the central portion is a region on the inner side of the outer periphery of the main surface, and is a region not more than two thirds of the radius of the main surface from the center point of the main surface.
  • polishing glass lens blank according to an embodiment of the present invention (hereinafter, simply referred to as “lens blank”) will be described in detail with reference to FIGS. 7 and 8.
  • FIGS. 7A and 7B are a side view and a front view, respectively, showing an example of the shape of the lens blank according to an embodiment of the present invention.
  • FIG. 8 is a schematic view schematically showing a portion to be removed by a grinding step and a polishing step in a partial cross section of the surface central portion of the lens blank shown in FIG.
  • the lens blank 2b has substantially spherical press-molded surfaces 80 and 82 as main surfaces.
  • the press molding surfaces 80 and 82 are surfaces to which the molding surface shapes of the lower mold 60 and the upper mold 66 are transferred, respectively (see FIG. 6E).
  • the main surface 80 is a convex curved surface and the main surface 82 is a concave curved surface, but the shape of the lens blank of the present invention is not particularly limited, and either one or both are concave. It may be a curved surface or a flat surface.
  • the side peripheral surface 84 of the lens blank 2b may be a press-molded surface that is molded on the inner peripheral surface of the barrel die 64, or may be a free surface that does not contact the barrel die 64 (FIG. 6). (See (E)).
  • the central portion 80a is a region on the inner side of the outer periphery of the main surface 80, and the radius R1 of the main surface 80 from the center point 0 of the main surface 80.
  • the area 80a is 2/3 or less. That is, the center point 0 of the center portion 80a is the same position as the center point 0 of the main surface 80, and the radius R2 of the center portion 80a is 2/3 or less, more preferably 1/2 or less of the radius R1 of the main surface. It is. The same applies to the main surface 82.
  • Lens blank 2b of the present embodiment at its central portion 80a, following the thickness t 0 of the defect-containing layer 90a is 50 [mu] m, preferably 30 ⁇ m or less.
  • the defect-containing layer 90a is expected to have a thickness of at least 1 ⁇ m or more, but is obtained by a conventional manufacturing method. In comparison, the thickness t 0 of the defect-containing layer 90a is extremely thin.
  • the defect-containing layer 90a is a layer having a defect that forms a bright spot of reflected light as compared with the bulk portion 90b (a portion that becomes an optical lens) of the lens blank 2b. By removing the defect-containing layer 90a, defects that form bright spots of reflected light are eliminated.
  • a crystallization portion generated by a reheating step and a pressing step in the above-described lens blank manufacturing method can be cited.
  • angular part of the glass raw material 2 does not exist substantially.
  • an optical lens (hereinafter sometimes simply referred to as a “lens”) is formed on the surface of a lens blank after press molding by grinding and polishing the lens blank to form a target lens shape. It is manufactured by removing the defect-containing layer.
  • the lens obtained in this way becomes a defective product if defects that become bright spots remain on the surface thereof. Therefore, it is necessary to grind and polish (a large amount of machining allowance) until the defect-containing layer formed on the surface of the lens blank is removed.
  • the thickness of the defect-containing layer in the central portion of the main surface is 50 ⁇ m or less, the allowance when performing lens surface spherical grinding (generation grinding) and polishing on this lens blank.
  • the amount can be greatly reduced.
  • the processing time required for grinding and polishing for obtaining the lens can be extremely shortened, and the tact time for manufacturing the lens can be greatly reduced.
  • the amount of machining allowance can be greatly reduced when grinding and polishing to obtain a lens, so that it is possible to minimize grinding scraps and polishing scraps.
  • material waste can be reduced.
  • the amount of processing is small, the lens thickness accuracy is also improved.
  • the amount of machining allowance at the time of manufacturing the lens is, for example, 200 ⁇ m or less, further 150 ⁇ m or less.
  • An excellent non-defective product rate can be achieved (no surface defects or the like remain on the obtained lens).
  • the smaller the machining allowance the shorter the time required for grinding and polishing, which is preferable.
  • the amount of machining allowance is more preferably 100 ⁇ m or more. .
  • the size and weight of the lens blank 2b are not particularly limited, but the effect of the present invention is great when the lens blank has a weight of 5 grams or more, more preferably 10 grams or more.
  • the lens blank of the present invention is particularly suitable for molding glass lenses having medium and large diameters. The reason for this is that medium- and large-diameter glass lenses require a longer processing time for grinding and polishing than small-diameter glass lenses. According to the present invention, this processing time can be shortened, resulting in material loss. It is because it can reduce, and the effect by this invention can be exhibited further.
  • optical lens according to the present embodiment is a polishing glass lens blank (hereinafter also simply referred to as “lens blank”) obtained according to the present embodiment. It is formed by grinding and polishing.
  • step S10 shown in FIG. 9 first, a spherical grinding step (CG processing) of the main surface of the lens blank 2b shown in FIG. 7A is performed.
  • the curve generator used for CG processing is not particularly limited, and a known one is used.
  • the CG processing region 92 (CG processing allowance) including the defect-containing layer 90a at the center of the main surface of the lens blank 2b is ground.
  • grinding is performed using a grindstone having an abrasive grain portion of # 400 to # 800 in terms of grain size while supplying a grinding fluid.
  • the main surface of the lens blank 2b becomes a shape close to a spherical surface having a predetermined curvature.
  • the thickness of the defect-containing layer 90a formed in the central portion 80a of the main surface 80 is as small as 50 ⁇ m or less (the same is true in the main surface 82), the main surface is removed at the stage of CG processing. It is not necessary to sharpen a large amount (that is, remove most of the defect-containing layer). In other words, even if the processing amount of CG processing is greatly reduced (and excluding CG processing), surface defects formed on the main surface (especially the central portion) are sufficiently removed through all grinding and polishing processes. it can.
  • a grindstone having a relatively fine particle size can be used as a grindstone for CG processing.
  • a grindstone with a fine grain size it is difficult to perform a large amount of processing at a time, so that it cannot be processed when the target processing amount is large.
  • the lens blank 2b according to the present embodiment can reduce the target processing amount in the CG processing, the CG processing can be completed even with a relatively fine grindstone.
  • CG processing can be performed with a relatively fine grindstone, it is possible to prevent micro cracks generated by CG processing from reaching the deep part of the glass.
  • the thickness of the CG processing region 92 is not particularly limited, but is preferably 50 to 200 ⁇ m.
  • the processing time required for CG processing is not particularly limited, but is about 45 to 90 seconds.
  • SM processing by a precision grinding process is performed.
  • the SM processing may be one-step processing, but may be multi-step processing.
  • SM machining is performed twice under different conditions. That is, in the first SM machining, the first SM machining area 94a (SM machining allowance) shown in FIG. 8 is removed by machining, and in the second SM machining, the second SM machining area 94b is machined. Removed. Therefore, the micro cracks generated by the CG processing are almost removed by these SM processing.
  • processing using only a resin bond grindstone is preferably performed without using a metal bond grindstone.
  • the base portion or abrasive grain portion of the grindstone and the lens blank come into contact with each other, and innumerable micro cracks are newly generated on the surface of the processed lens blank.
  • a small crack of several tens of microns (for example, 30 to 40 ⁇ m) is formed on the surface of the lens blank by contacting the metal base of the grindstone with the lens blank during SM processing. appear.
  • the impact caused by the contact between the base portion of the grindstone and the lens blank is significantly reduced as compared with a metal bond grindstone.
  • the depth can be kept to a few microns or less (eg, 5 ⁇ m or less).
  • the depth of micro cracks caused by SM processing can be greatly reduced.
  • a resin bond grindstone it is preferable to use a grindstone of # 1200 to # 2500 in terms of particle size.
  • the roughness of the grindstone used in the second SM machining is fine compared to the roughness of the grindstone used in the first SM machining.
  • the processing amount of the post-process can be set to 10 ⁇ m or less.
  • the machining time required for SM machining is not particularly limited, but is about 80 to 240 seconds in total. In the present embodiment, the machining time for the second SM machining is longer than the machining time for the first SM machining.
  • the thickness of the SM processing regions 94a and 94b is not particularly limited, but is preferably 10 to 70 ⁇ m in total, and in this embodiment, the thickness of the first SM processing region 94a is the second SM processing region. Although it is longer than the thickness of 94b, it may be the same or shorter.
  • step S12 polishing is performed.
  • the surface is polished with a polishing liquid containing abrasive grains having a particle size of 5 ⁇ m or less, and the polishing region 96 (polishing allowance) shown in FIG. 8 is polished.
  • the thickness of the polishing region 96 is preferably 3 to 10 ⁇ m, and the processing time is about 2 to 10 minutes.
  • the centering process is performed in step S13 shown in FIG. 9, but the centering process may be omitted in some cases.
  • the lens body 90b is sandwiched between a pair of lens holders to perform centering, and the lens body 90b is rotated around the center line, and the side peripheral surface of the lens body 90b is rounded with a diamond grindstone or the like. It is a process to grind.
  • the grinding and polishing process shown in FIG. 9 has been described as an example.
  • the manufacturing process of the optical lens using the lens blank 2b according to the present embodiment is not limited to such a process. It can be performed in the process.
  • the thickness of the defect-containing layer 90a formed in the central portion 80a of the main surface 80 is as small as 50 ⁇ m or less (same in the main surface 82), and grinding and polishing are performed. In the first place, the thickness of the main surface to be removed is small. In such a lens blank 2b according to the present embodiment, it is not necessary to perform a large amount of processing in order to remove the defect-containing layer, and the surface defect layer can be sufficiently removed only by processing after SM processing.
  • a metal bond grindstone may be used during SM processing.
  • a metal bond grindstone there exists a problem which the above micro cracks become deep, but it is effective at the point which can set many process amounts compared with a resin bond grindstone.
  • various optical lenses such as a biconvex lens, a biconcave lens, a planoconvex lens, a planoconcave lens, a convex meniscus lens, and a concave meniscus lens can be obtained.
  • the thickness of the defect-containing layer 90a in the central portion 80a is 50 ⁇ m or less. Therefore, the processing time required for grinding and polishing for obtaining a lens for the lens blank 2b can be extremely shortened.
  • the processing time required for grinding and polishing when obtaining the optical lens as compared with the case where the polishing glass lens blank obtained by the conventional cut piece method is used. Can be reduced to approximately half or less. Further, even when using a polishing glass lens blank obtained by the method described in Patent Document 1 (Japanese Patent No. 3806288), the processing time required for grinding and polishing for obtaining an optical lens is approximately half or less. Can be shortened.
  • an optical lens According to the method of manufacturing an optical lens according to the present embodiment, it becomes possible to minimize grinding waste and polishing waste at the time of grinding and polishing, thereby eliminating material waste. In addition, since the processing amount is small, the thickness accuracy of the optical lens is also improved.
  • optical functional surface of the obtained lens may be coated with an antireflection film, a total reflection film or the like according to the purpose of use.
  • first main surface 4 and the second main surface 6 of the optical glass material are parallel to each other. It means, and may deviate somewhat from the parallel without departing from the present invention.
  • the glass lens blank for polishing according to the present embodiment can be suitably used for various production processes and conditions of optical lenses that have been conventionally performed.
  • the glass glass blank for polishing and the aspect which produces an optical lens using the optical glass raw material which concerns on this invention were illustrated, the optical glass raw material which concerns on this invention is limited to these uses. It can be used for the production of various polishing glass optical element blanks, and thus glass optical elements. Examples of such optical elements include prisms and diffraction gratings in addition to the various optical lenses described above.
  • the present invention is suitable for optical lenses, particularly spherical lenses.
  • Example 1 The raw materials are prepared and melted so as to have a predetermined composition, and the obtained lanthanum borate-based molten glass is continuously flowed down from a platinum alloy outflow pipe at a constant speed, as shown in FIGS.
  • the glass material 20 (hereinafter referred to as a glass material block) shown in FIG. 1B was molded by pouring toward the fixed mold 34 and cooling. In this molding process, the glass material block 20 was annealed through an annealing furnace slightly higher than the transition temperature (Tg) or Tg of the molten glass, and then the glass material block 20 was cooled to about room temperature.
  • Tg transition temperature
  • Tg transition temperature
  • the annealed cross section is a trapezoidal glass material block 20 (short side width (W1) 38 mm, long side width (W2) 50 mm, height (H1) 34 mm, angle ( ⁇ 1) 100 °. , ( ⁇ 2) 100 °) was cut with a diamond cutter to produce a plurality of rod-shaped glass material blocks having a length (L0) of about 400 mm.
  • each rod-shaped glass material block is cut into a certain width, and the glass material 2 (thickness (thickness (thickness)) shown in FIG. L1) 6 mm, and other sizes were the same as those of the glass material block 20, and hereinafter, 100 pieces of glass material pieces) were prepared.
  • a release agent was applied to the softening tray 50 of the reheating device used in the reheating process.
  • the glass material piece 2 prepared in advance was supplied on a receiving tray 50 coated with a release agent in such a posture that the main surface 4 faces upward.
  • the glass material piece 2 supplied on the saucer 50 was put together with the saucer 50 into a heating furnace set at 500 to 750 ° C. and reheated in an air atmosphere.
  • the reheated glass material was softened to a viscosity of about 10 5 dPa ⁇ s.
  • 100 glass blanks having a single-sided convex shape (diameter 35 mm, height 14 mm) were produced by press-molding a glass material softened by reheating in a press-molding mold in an air atmosphere.
  • molding die, and heated to the temperature of 500 degreeC was used.
  • Comparative Example 1 In Comparative Example 1, the molten glass melted in the same manner as in Example 1 was continuously flowed from a platinum alloy outflow pipe at a constant speed, and the flowed glass was used as a mold for forming a glass lump. A glass lump was continuously formed by using one after another. When the temperature of the glass drops below the glass transition temperature, the glass lump is taken out from the mold, annealed in an annealing furnace slightly higher than the transition temperature (Tg) or Tg of the molten glass, and then cooled to about room temperature. 100 glass lumps (diameter: about 33 mm, thickness: about 10 mm) were produced.
  • Tg transition temperature
  • Tg transition temperature
  • the obtained glass lump was barrel-polished to roughen the surface to make it easier to apply the release agent, and the weight was adjusted to be equal to the weight of the target lens blank.
  • the glass that had been sufficiently annealed was not damaged.
  • the surface of the glass lump which passed through such a preliminary process was a rough shear surface.
  • barrel polishing is a method in which a particulate abrasive and a compound and water are put in a polishing container together with a glass lump, and polishing is performed by rotating and moving the polishing container up and down. Made by law.
  • a powdery release agent (boron nitride) was applied to the surface of the glass lump subjected to barrel polishing, placed on the softening tray 50, and reheated in a heating furnace. After this reheating step, 100 lens blanks B were produced in the same manner as in Example 1.
  • Comparative Example 2 molten glass melted by the same method as in Example 1 is continuously supplied from a platinum alloy outflow pipe to a mold having one side open, and cooled to have a certain width and thickness.
  • the plate glass which has is shape
  • the sheet glass was annealed through a transition temperature (Tg) of the molten glass or an annealing furnace slightly higher than Tg.
  • the annealed glass plate was cut into a certain size (length 20 mm ⁇ width 20 mm ⁇ height 20 mm) to obtain 100 pieces of glass called cut pieces. Further, the cut piece was barrel-polished to round the edge, and the weight was adjusted to be equal to the weight of the target lens blank. During this process, the glass that had been sufficiently annealed did not break.
  • the barrel polishing conditions are the same as the barrel polishing for the glass lump described above.
  • lens blanks A to C obtained were prepared, and the surface of the lens blank was polished from the main surface of each lens blank to a depth of 50 ⁇ m, 80 ⁇ m and 100 ⁇ m.
  • Polishing performed in Evaluation 1 is polishing for confirming the thickness of the defect-containing layer on the main surface of the lens blank. Therefore, the final lens shape is ignored, and the surface of the lens blank is polished stepwise by only polishing. Note that grinding / polishing in evaluation 2 described later is grinding / polishing that creates the shape of the optical lens, and is different from the polishing treatment in this evaluation. Further, the diameter of the lens after polishing is the same as the diameter of the lens blank before processing.
  • the surface-finished lens blanks (25 points each) polished from the main surface of the lens blank to a predetermined depth were irradiated with an argon lamp to observe bright spots. The results are shown in FIG.
  • FIG. 10 is a diagram showing the results of bright spot observation according to the example.
  • the thickness of the defect-containing layer varies somewhat for each lens blank. Therefore, when a plurality of lens blanks are polished from the main surface to the same depth, the defect-containing layer cannot be sufficiently removed in the lens blank having a relatively thick defect-containing layer, and the lens after polishing has a defect-containing layer. May remain. Such a defect-containing layer remaining on the processed lens scatters light and causes bright spots.
  • the non-defective product was calculated as a non-defective product in which no bright spot was observed in the center of the lens after processing (in the region from the center point of the lens to 2/3 of the lens radius).
  • a good product rate of 100% after processing was considered good. The results are shown in Table 1.
  • the non-defective rate was already 100% with a surface processing amount of 50 ⁇ m depth from the main surface of the lens blank. For this reason, polishing with a surface processing amount of 80 ⁇ m and 100 ⁇ m in depth from the main surface of the lens blank was not performed.
  • the lens blank A according to the present invention has a non-defective product rate of 100% with a surface processing amount (polishing amount) of 50 ⁇ m, and as shown in FIG. No bright spot was observed in the part. That is, in the lens blank A according to the present invention, it was confirmed that all the defect-containing layers at the center of the main surface can be removed by polishing at least 50 ⁇ m from the main surface.
  • the thickness of the defect-containing layer formed at the center portion of the main surface of the lens blank is 50 ⁇ m or less even when the variation for each lens blank is included.
  • the non-defective rate is 0%, and all the samples are also in the center of the lens A bright spot was observed. That is, in the case of the lens blank B, even if polishing is performed at a depth of about 50 ⁇ m from the main surface of the lens blank, it is not possible to remove all the defect-containing layers present in the central portion of the main surface.
  • the thickness of the defect-containing layer formed in the central portion of the main surface of the lens blank exceeds 50 ⁇ m even when the lens blank B includes variations for each lens blank.
  • the non-defective product rate was improved by polishing the main surface to a depth of 80 ⁇ m and further to 100 ⁇ m.
  • lens blanks A to C the amount of machining allowance was confirmed by the following method. First, 20 lens blanks A to C obtained were prepared, and ground and polished with the machining allowances at the center of each lens blank being 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m and 500 ⁇ m.
  • the machining allowance in this evaluation means the machining allowance on the lens blank surface that is lost in all grinding and polishing processes when an optical lens is produced from the lens blank.
  • the observation point of the machining allowance was the center of the lens blank (polished optical lens).
  • the grinding / polishing performed in the evaluation 2 is grinding / polishing that creates the shape of the optical lens
  • the conditions are different from those of the evaluation 1 in which the polishing is performed so as to follow the surface shape of the lens blank.
  • An optical lamp (20 pieces each) obtained by processing the lens blank so as to obtain a predetermined machining allowance was irradiated with an argon lamp to observe a bright spot. Light is scattered and becomes a bright spot at the portion where the defect-containing layer remains. Since such a bright spot becomes defective as an optical lens, a product having no bright spot was regarded as a non-defective product, and the yield rate was calculated. In this example, a good product rate of 100% was considered good. The results are shown in Table 2.
  • the thickness of the defect-containing layer formed in the central portion of the main surface is as thin as 50 ⁇ m or less. Therefore, if an optical lens is produced using such a lens blank A, the machining allowance set for removing the defect-containing layer can be greatly reduced while forming the lens shape.
  • the lens blank A there are few surface defects and waviness on the entire surface of the lens blank, and in particular, it is considered that there is no deep defect extending to the deep part of the lens blank at the center of the lens blank surface. Therefore, if an optical lens is produced using such a lens blank A, the machining allowance set for removing surface defects and waviness can be greatly reduced while forming a lens shape.
  • the thickness of the defect-containing layer formed in the central portion of the main surface exceeds 50 ⁇ m (see Evaluation 1).
  • the corner of the cut piece is crystallized by heating from the time of softening to the time of molding, and is folded into the inside of the glass, and a defect extending deeply is formed in the center of the lens blank surface. Conceivable. Therefore, when an optical lens is manufactured using such lens blanks B and C, it is necessary to set a large machining allowance in order to completely remove the surface defect layer.
  • the amount of machining allowance can be greatly reduced as compared with the lens blank B and the lens blank C.
  • the time required can be extremely shortened.
  • the lens blank A according to the present invention has a yield rate of 40% when the machining allowance is 50 ⁇ m. This means that even if the lens blank A is processed with a machining allowance of 50 ⁇ m, the defect-containing layer has not yet been removed with a 40% sample. However, with this, it cannot be evaluated that the thickness of the defect-containing layer in the central portion of the main surface of the lens blank exceeds 50 ⁇ m, and there is no contradiction with Evaluation 1.
  • the range to be evaluated differs between the machining amount in Evaluation 1 and the machining allowance in Evaluation 2. That is, while the processing amount in Evaluation 1 evaluates the thickness of the defect-containing layer on the main surface of the lens blank itself, Evaluation 2 evaluates the amount of machining allowance when producing the optical lens. .
  • the amount of machining allowance in Evaluation 2 is not only determined solely by the thickness of the defect-containing layer formed on the main surface of the lens blank, but it is also necessary to consider the influence of other factors such as waviness of the lens blank surface. There is.
  • the thickness of the defect-containing layer formed in the central portion of the main surface is as thin as 50 ⁇ m or less, the defect-containing layer is removed when an optical lens is produced using this.
  • the amount of machining allowance required for the process can be greatly reduced (see Evaluation 2).
  • the grinding amount of the lens blank can be reduced. Therefore, even if CG processing is performed with a relatively fine # 600 grindstone, the grinding time is not significantly extended. In addition, by performing grinding using such a fine grindstone, it is possible to effectively reduce the occurrence and progression of microcracks in the depth direction on the lens surface accompanying grinding, and the glass surface after CG processing (Here, including a region from the outermost surface to about 50 ⁇ m) can be maintained relatively well.
  • the # 2500 resin bond grindstone for example, alpha Even when using Diamond Industrial Co., Ltd., the processing damage layer due to grinding can be sufficiently removed.
  • the resin bond grindstone can extremely reduce the depth of microcracks generated by the SM processing itself as compared with the metal bond grindstone.
  • the surface condition after SM processing is maintained well, and the processing time of PO processing can be greatly reduced.
  • the processing amount of PO processing can be reduced to 10 ⁇ m or less.
  • the thickness of the defect-containing layer formed in the central portion of the main surface exceeds 50 ⁇ m. Therefore, when producing an optical lens using these lens blanks, the defect-containing layer must be completely removed in order to increase the yield rate, and for that purpose, a large machining allowance needs to be set. (See Evaluation 2).
  • the thickness of the defect-containing layer formed in the central portion of the main surface is 50 ⁇ m or less.
  • the machining allowance can be significantly reduced, a relatively fine grinding stone (# 600) can be used in CG processing.
  • the subsequent SM processing can be performed sufficiently with a fine resin bond grindstone (# 2500), and the processing amount and processing time in the final process can be reduced.
  • the processing amount and the processing time can be greatly reduced throughout the grinding and polishing processes, so that the production cost can be improved.
  • Examples 2 to 7 In Examples 2 to 7, the evaluation of Example 1 was performed except that the glass blank constituting the lens blank and the conditions for grinding and polishing the lens blank until the optical lens were manufactured were changed as shown in Tables 4 and 5. The same confirmation as 3 was performed. The results are shown in Tables 4 and 5.
  • a lens blank using a lanthanum borate glass material was prepared in the same manner as the lens blank A of Example 1.
  • a lens blank using a fluorophosphate-based glass material was prepared in the same manner as the lens blank A of Example 1 except that the raw material was changed and the glass material block 20 was formed from a fluorophosphate-based molten glass.
  • a fluorophosphate glass is a soft material as glassy compared with a lanthanum borate glass.
  • the entire processing amount and processing time are greatly increased regardless of the glass material, and even when the grinding and polishing conditions of the lens blank until the optical lens is manufactured are variously changed. It was confirmed that it can be reduced. In particular, it has been confirmed that the processing amount in PO processing can be reduced to 10 ⁇ m or less.
  • the thickness of the defect-containing layer on the main surface is thin, even if CG processing is omitted (only processing after SM processing), surface defects are sufficient. It was confirmed that a good optical lens could be produced.
  • the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 ⁇ m or less.
  • the central portion is a region inside the outer periphery of the main surface,
  • the radius of the central portion is 2/3 or less of the radius of the main surface.
  • the optical glass material according to the present embodiment includes a first main surface and a second main surface that are trapezoidal and parallel to each other.
  • the first side surface and the second side surface are connected to each other, and there are two inclined surfaces each having an obtuse angle with the first side surface,
  • the first side surface and the two inclined surfaces are molding surfaces.
  • the second side surface is a free surface.
  • the first and second main surfaces are cut surfaces.
  • the distance between the first and second main surfaces is such that the first side surface and the second side surface are the same. Shorter than the distance between.
  • the distance between the first and second main surfaces is such that the first side surface and the second side surface are Longer than the distance between.
  • the glass lens blank for polishing according to the present embodiment softens the optical glass material according to the above [6] by reheating in the air and softens the optical glass material. Is formed by press molding.
  • At least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 ⁇ m or less. is there.
  • the optical lens of the present embodiment is formed by grinding and polishing the polishing glass lens blank described in [8] or [9].
  • the manufacturing method of the glass lens blank for polishing continuously casts molten glass into a mold and moves the cast glass from the upstream side to the downstream side.
  • An optical glass material molding process for continuously molding a trapezoidal optical glass material while moving in the direction, Cutting the optical glass material in a direction perpendicular to the longitudinal direction, and cutting into small pieces,
  • the optical glass material reheated in the reheating step is press-molded in a press mold in an air atmosphere to obtain a glass molded product, and
  • the glass molded article has a press-molded surface at least on the main surface, The thickness of the defect-containing layer formed in the central portion of the main surface is 50 ⁇ m or less.
  • the surface of the optical glass material fragmented in the cutting step and the optical glass material in the reheating step are used.
  • a release agent is placed in the holding recess in which the optical glass material is disposed. After coating, the optical glass material is placed in the holding recess.
  • the optical lens manufacturing method of the present embodiment is applied to the polishing glass lens blank according to any one of [1], [2], [8], and [9].
  • spherical grinding and smoothing are performed.
  • processing is performed using a resin bond grindstone without using a metal bond grindstone to obtain an optical lens.
  • the method for producing an optical glass material of the present embodiment is a method in which molten glass is continuously cast into a mold, and the cast glass is continuously cross-sectioned while moving in one direction from the upstream side to the downstream side. Mold trapezoidal glass material.
  • the method for producing a glass optical material for press molding according to the present embodiment continuously casts molten glass into a mold and continuously moves the cast glass from the upstream side to the downstream side in one direction. And forming a trapezoidal glass material, Cutting the glass material along the longitudinal direction.
  • the method for producing a polishing glass optical element blank according to the present embodiment is a press-molding optical material obtained by the method for producing a press-molding glass optical material according to [B1] above.
  • the method further includes a step of reheat pressing.
  • the method for manufacturing the glass optical element according to the present embodiment is performed by grinding the glass optical element blank for polishing obtained by the method for manufacturing the glass optical element blank for polishing described in [B2] above. And a polishing step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

[Problem] To provide an optical glass material, a glass lens blank for polishing and an optical lens, and a production method for a glass lens blank for polishing and an optical lens, that can sufficiently reduce the allowance for the glass lens blank for polishing after press molding, when producing an optical lens, and capable of reducing the machining time required for grinding and polishing. [Solution] A glass lens blank (2b) for polishing, having at least a main surface being a press-molded surface, and the thickness of a defect-containing layer (90a) formed in the center section of the main surface being no more than 50 µm.

Description

光学ガラス素材、研磨用ガラスレンズブランクおよび光学レンズ、並びに、研磨用ガラスレンズブランクおよび光学レンズの製造方法Optical glass material, polishing glass lens blank and optical lens, and polishing glass lens blank and optical lens manufacturing method
 本発明は、光学ガラス素材、研磨用ガラスレンズブランクおよび光学レンズ、並びに、研磨用ガラスレンズブランクおよび光学レンズの製造方法に関する。 The present invention relates to an optical glass material, a polishing glass lens blank and an optical lens, and a polishing glass lens blank and an optical lens manufacturing method.
 光学レンズ(以下、単に「レンズ」ということがある。)の製造方法の一つとして、光学ガラス素材(以下、単に「ガラス素材」ということがある。)をリヒートプレス(Reheat Press)し、成形後の研磨用ガラスレンズブランク(以下、単に「レンズブランク」ということがある。)を研削・研磨加工してレンズを得る方法が知られている。 As one method of manufacturing an optical lens (hereinafter, sometimes simply referred to as “lens”), an optical glass material (hereinafter sometimes simply referred to as “glass material”) is reheat pressed and molded. A method of obtaining a lens by grinding and polishing a glass lens blank for polishing (hereinafter sometimes simply referred to as “lens blank”) is known.
 具体的には、熔融ガラスを型に流し込んで、角状または板状のガラス素材(いわゆる、ガラスブロック)を作製し、次にこのガラスブロックを機械加工で切り出し、立方体形状に細分化したガラス素材(いわゆる、カットピース)を作製する。次いで、各カットピースの重量を均等化するとともに表面に離型剤を付着しやすくするために、粗研磨加工(バレル研磨)を行う。その後、粗研磨加工したカットピースを再加熱して軟化させ、軟化したガラスをプレス成形して、目的とするレンズの形状に近似したレンズブランクを成形する。最後に、そのレンズブランクを研削・研磨してレンズを製造する方法である。 More specifically, molten glass is poured into a mold to produce a square or plate-like glass material (so-called glass block), and then the glass block is cut out by machining and is subdivided into a cubic shape. A so-called cut piece is produced. Next, rough polishing (barrel polishing) is performed in order to equalize the weight of each cut piece and to easily attach the release agent to the surface. Thereafter, the roughly polished cut piece is reheated and softened, and the softened glass is press-molded to form a lens blank that approximates the shape of the target lens. Finally, a lens is manufactured by grinding and polishing the lens blank.
 この方法は、ガラス種の異なる板状ガラスブロックを予め複数製作し、保管でき、必要に応じて所望のガラス種の板状ガラスブロックを所望の数量・体積に切り出してプレス加工できるので、多品種少量生産に適している。 This method can produce and store multiple plate glass blocks with different glass types in advance, and can cut and press plate glass blocks of the desired glass type into the desired quantity and volume as needed. Suitable for small volume production.
 しかしながら、この方法では、カットピースを軟化する際の加熱により、その角部が結晶化しやすく、さらにガラスの軟化に伴って結晶化した角部がガラス内部へと折り込まれる問題があった(以下、「折れ込み部」ということがある。)。このような折れ込み部は、得られるレンズブランクに深い表面欠陥(例えば、300μm以上の折れ込み)を形成する要因となっていた。 However, in this method, there is a problem that the corner portion is easily crystallized by heating when softening the cut piece, and the corner portion crystallized with the softening of the glass is folded into the glass (hereinafter, Sometimes referred to as “folded part”.) Such a fold portion has been a factor for forming deep surface defects (for example, folds of 300 μm or more) in the obtained lens blank.
 また、この方法では、粗面研磨加工時に、カットピースが研磨用加工液と接触することによりその表面のガラス成分が変質するとともに、加工時のカットピース同士の衝突によりクラックが生じる問題があった。このような、カットピースの表面におけるガラス成分の変質やクラックは、軟化時からプレス成形時の加熱によりガラス表面に結晶化が起こる(ひいては、レンズブランク表面に欠陥が形成される)、あるいは、プレス成形後のレンズブランク表面のうねりが大きくなる等の要因となっていた。 In addition, in this method, there is a problem in that the glass component on the surface of the cut piece comes into contact with the polishing processing liquid during the rough surface polishing process, and cracks are generated due to the collision of the cut pieces during the processing. . Such alteration or cracking of the glass component on the surface of the cut piece is caused to crystallize on the glass surface by heating from the time of softening to press molding (as a result, defects are formed on the surface of the lens blank), or press This was a factor such as an increase in waviness on the surface of the lens blank after molding.
 一般に、レンズを製造する場合には、レンズブランクの表面を研削・研磨することで、レンズブランクの表面に形成された欠陥を除去するとともに凹凸のない平滑な面を形成する必要がある。 Generally, when a lens is manufactured, it is necessary to remove a defect formed on the surface of the lens blank and to form a smooth surface without irregularities by grinding and polishing the surface of the lens blank.
 そのため、上述のようにレンズブランクの深部まで表面欠陥が及んでいる場合や、表面のうねりが大きい場合には、レンズブランクの表面を深く削る(取り代量を多く取る、例えば取り代量を500μm以上とする)必要があり、研削・研磨に要する時間が長くなるとともに、材料の無駄も生じ、生産コストが増す問題があった。 Therefore, when the surface defect extends to the deep part of the lens blank as described above, or when the surface waviness is large, the surface of the lens blank is deeply cut (a lot of machining allowance is taken, for example, the machining allowance is 500 μm). There is a problem that the time required for grinding / polishing becomes longer and the material is wasted, resulting in an increase in production cost.
 一方、研削・研磨の際の取り代量を少なくとすると、特に、レンズブランクの表面欠陥が深部まで及んでいる場合、欠陥を十分に除去できず、レンズの表面に欠陥が残ってしまう。このような欠陥が残ったレンズは不良品となり、良品率が低下する問題があった。 On the other hand, if the machining allowance at the time of grinding / polishing is reduced, especially when the surface defect of the lens blank extends to the deep part, the defect cannot be sufficiently removed, and the defect remains on the surface of the lens. A lens in which such a defect remains is a defective product, resulting in a problem that the yield rate is reduced.
 そのため、プレス成形後のレンズブランクを研削・研磨してレンズを作製するにあたっては、レンズの良品率を低下させることなく、レンズブランクの取り代量を低減することが求められていた。 Therefore, when manufacturing a lens by grinding and polishing the lens blank after press molding, it has been required to reduce the amount of lens blank removal without reducing the yield rate of the lens.
 また、最近では、特許文献1(特許第3806288号公報)に示すように、下記に示す工程で研磨用ガラスレンズブランクを製造する方法が提案されている。 Recently, as shown in Patent Document 1 (Japanese Patent No. 3806288), a method for manufacturing a glass lens blank for polishing in the following steps has been proposed.
 すなわち、この方法では、ノズルから供給される熔融ガラスを成形型で受けて成形してガラス塊を得る工程と、ガラス塊の表面を粗面研磨加工する工程と、ガラス塊の表面に粉末状の離型剤を形成する工程と、ガラス塊を再加熱してプレス成形する工程とを有する。 That is, in this method, the molten glass supplied from the nozzle is received by a mold and molded to obtain a glass lump, the surface of the glass lump is subjected to a rough polishing process, and the surface of the glass lump is powdered. It has the process of forming a mold release agent, and the process of press-molding by reheating a glass lump.
 この方法は、ガラス素材として多数のガラス塊を製造し、在庫として保管できるため、注文に応じて、同じ形状の複数のガラス塊から、異なった成形面を有する複数の成形型を用いてプレス成形でき、多品種生産に適している。 This method can produce a large number of glass lumps as glass materials and store them in stock, so press molding using multiple molds with different molding surfaces from multiple glass lumps of the same shape according to the order. It is suitable for multi-product production.
 また、この方法では、ガラス塊の表面において、カットピースのような角張った部分の発生を抑えられるので、次工程の再加熱工程において折れ込み部を生じることなく成形できる。そのため、折れ込み部に起因して発生するレンズブランクの深部にまで至るような表面欠陥は防止できる。 Moreover, in this method, since the generation of square portions such as cut pieces on the surface of the glass lump can be suppressed, it is possible to form without forming a fold in the next reheating step. Therefore, it is possible to prevent a surface defect that extends to the deep part of the lens blank that occurs due to the folded portion.
 しかしながら、この方法においても、上記の製法と同様に、粗面研磨加工が行われている。そのため、得られるレンズブランクの表面には全体的に表面欠陥が形成されており、未だ十分な取り代量を設定する必要があり、取り代量の大幅な低減には至っていなかった。 However, also in this method, similar to the above-described manufacturing method, rough surface polishing is performed. Therefore, surface defects are formed entirely on the surface of the lens blank to be obtained, and it is necessary to set a sufficient machining allowance amount, and the machining allowance amount has not been significantly reduced.
 このように、いずれの従来技術でも、レンズブランクの取り代量を十分に低減できず、研削・研磨に要する時間も十分に短縮できていなかった。 As described above, none of the prior arts can sufficiently reduce the machining allowance of the lens blank, and the time required for grinding and polishing cannot be sufficiently shortened.
 そのため、プレス成形後の研磨用ガラスレンズブランクを研削・研磨してレンズを作製する場合には、研削・研磨に要する加工時間が、レンズの全体工程の約半分程度を占めており、加工時間の短縮が求められていた。 Therefore, when grinding and polishing a glass lens blank for polishing after press molding to produce a lens, the processing time required for grinding and polishing occupies about half of the entire lens process. There was a need for shortening.
特許第3806288号公報Japanese Patent No. 3806288
 本発明は、このような実状に鑑みてなされ、その目的は、レンズを製造する際に、プレス成形後の研磨用ガラスレンズブランクの取り代量を十分に低減でき、研削・研磨に要する加工時間を短縮できる光学ガラス素材、研磨用ガラスレンズブランクおよび光学レンズ、並びに、研磨用ガラスレンズブランクおよび光学レンズの製造方法を提供することである。 The present invention has been made in view of such a situation, and its object is to reduce the amount of machining allowance of a glass lens blank for polishing after press molding when manufacturing a lens, and the processing time required for grinding and polishing. Glass material blank, polishing glass lens blank and optical lens, and a manufacturing method of polishing glass lens blank and optical lens.
 本発明者は、プレス成形後の研磨用ガラスレンズブランクの研削・研磨に要する加工時間を短縮することについて鋭意検討した結果、本発明に係る光学ガラス素材をプレス成形して得られた研磨用ガラスレンズブランクを用いることで、研削・研磨する際の取り代量を大幅に低減できることを初めて見出し、本発明を完成させるに至った。 As a result of intensive studies on shortening the processing time required for grinding and polishing of a glass lens blank for polishing after press molding, the present inventor has obtained polishing glass obtained by press molding the optical glass material according to the present invention. It has been found for the first time that the amount of machining allowance for grinding and polishing can be significantly reduced by using a lens blank, and the present invention has been completed.
 すなわち、本発明の要旨は以下のとおりである。
[1] 少なくとも主表面がプレス成形面であって、上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である研磨用ガラスレンズブランク。
That is, the gist of the present invention is as follows.
[1] A polishing glass lens blank in which at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less.
[2] 上記中央部は、上記主表面の外周よりも内側の領域であり、
上記中央部の半径は、上記主表面の半径の3分の2以下である上記[1]に記載の研磨用ガラスレンズブランク。
[2] The central portion is a region inside the outer periphery of the main surface,
The glass lens blank for polishing according to the above [1], wherein the radius of the central portion is 2/3 or less of the radius of the main surface.
[3] 台形状を成し、互いに平行である第1の主面および第2の主面と、
上記第1の主面および第2の主面の短辺同士をつなぐ第1の側面と
上記第1の主面および第2の主面の長辺同士をつなぐ第2の側面と、
上記第1の側面と上記第2の側面とをつなぎ、上記第1の側面と成す角度がいずれも鈍角である2つの傾斜面とを有し、
 上記第1の側面および上記2つの傾斜面が、成形面である光学ガラス素材。
[3] A first main surface and a second main surface which form a trapezoid and are parallel to each other;
A first side surface connecting short sides of the first main surface and the second main surface and a second side surface connecting long sides of the first main surface and the second main surface;
The first side surface and the second side surface are connected to each other, and there are two inclined surfaces each having an obtuse angle with the first side surface,
An optical glass material in which the first side surface and the two inclined surfaces are molding surfaces.
[4] 上記第2の側面が、自由表面である上記[3]に記載の光学ガラス素材。 [4] The optical glass material according to [3], wherein the second side surface is a free surface.
[5] 上記第1および第2の主面が、切断面である上記[3]または[4]に記載の光学ガラス素材。 [5] The optical glass material according to [3] or [4], wherein the first and second main surfaces are cut surfaces.
[6] 上記第1および第2の主面間の距離が、上記第1の側面と上記第2の側面との間の距離よりも短い上記[3]~[5]のいずれかに記載の光学ガラス素材。 [6] The distance according to any one of [3] to [5], wherein a distance between the first and second main surfaces is shorter than a distance between the first side surface and the second side surface. Optical glass material.
[7] 上記第1および第2の主面間の距離が、上記第1の側面と上記第2の側面との間の距離よりも長い上記[3]~[5]のいずれかに記載の光学ガラス素材。 [7] The distance described in any one of [3] to [5], wherein a distance between the first and second main surfaces is longer than a distance between the first side surface and the second side surface. Optical glass material.
[8] 上記[6]に記載の光学ガラス素材を大気雰囲気中で再加熱して軟化させ、軟化した上記光学ガラス素材をプレス成形することにより形成された研磨用ガラスレンズブランク。 [8] A polishing glass lens blank formed by press-molding the softened optical glass material by reheating and softening the optical glass material according to [6] above in an air atmosphere.
[9] 少なくとも主表面がプレス成形面であって、上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である上記[8]に記載の研磨用ガラスレンズブランク。 [9] The polishing glass lens blank according to [8], wherein at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less.
[10] 上記[8]または[9]に記載の研磨用ガラスレンズブランクを研削および研磨することにより形成された光学レンズ。 [10] An optical lens formed by grinding and polishing the glass lens blank for polishing according to [8] or [9] above.
[11] 鋳型内に、熔融ガラスを連続して鋳込み、鋳込まれたガラスを上流側から下流側へ一方向に移動させながら連続して断面台形の光学ガラス素材を成形する光学ガラス素材成形工程と、
 上記光学ガラス素材を、長手方向と直交する方向に切断して、小片化する切断工程と、
 上記切断工程で小片化した上記光学ガラス素材を、大気雰囲気下で10~10dPa・sの粘度に再加熱する再加熱工程と、
 上記再加熱工程で再加熱した上記光学ガラス素材を、プレス成形用の成形型で大気雰囲気下においてプレス成形して、ガラス成形品を得るプレス工程と、を備え、
 上記ガラス成形品は、少なくとも主表面にプレス成形面を有し、
 上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である、研磨用ガラスレンズブランクの製造方法。
[11] An optical glass material forming step of continuously casting molten glass into a mold and continuously forming a trapezoidal optical glass material while moving the cast glass in one direction from the upstream side to the downstream side. When,
Cutting the optical glass material in a direction perpendicular to the longitudinal direction, and cutting into small pieces,
A reheating step of reheating the optical glass material fragmented in the cutting step to a viscosity of 10 4 to 10 6 dPa · s in an air atmosphere;
The optical glass material reheated in the reheating step is press-molded in a press mold in an air atmosphere to obtain a glass molded product, and
The glass molded article has a press-molded surface at least on the main surface,
The manufacturing method of the glass lens blank for grinding | polishing whose thickness of the defect content layer formed in the center part of the said main surface is 50 micrometers or less.
[12] 上記切断工程で小片化した上記光学ガラス素材の表面、および上記再加熱工程の際に上記光学ガラス素材を配置する保持用凹部の少なくともいずれか一方に、離型剤を塗布する離型剤塗布工程をさらに有する、上記[11]に記載の研磨用ガラスレンズブランクの製造方法。
[13] 上記離型剤塗布工程において、上記光学ガラス素材を配置する保持用凹部に離型剤を塗布した後、上記保持用凹部に上記光学ガラス素材を配置する、上記[11]または[12]に記載の研磨用ガラスレンズブランクの製造方法。
[12] A mold release agent that applies a release agent to at least one of the surface of the optical glass material fragmented in the cutting step and the holding concave portion in which the optical glass material is disposed in the reheating step. The manufacturing method of the glass lens blank for grinding | polishing as described in said [11] which further has an agent application | coating process.
[13] In the release agent coating step, after the release agent is applied to the holding recess in which the optical glass material is disposed, the optical glass material is disposed in the holding recess. ] The manufacturing method of the glass lens blank for grinding | polishing of description.
[14] 上記[1]、[2]、[8]および[9]のいずれかに記載の研磨用ガラスレンズブランクに対して、球面研削加工およびスムージング加工(smoothing)を行い、スムージング加工では、金属ボンド砥石を用いることなく樹脂ボンド砥石を用いて加工を行い、光学レンズを得ることを特徴とする光学レンズの製造方法。 [14] The polishing glass lens blank according to any one of [1], [2], [8] and [9] is subjected to spherical grinding and smoothing, and in the smoothing, A process for producing an optical lens, wherein an optical lens is obtained by processing using a resin bond grindstone without using a metal bond grindstone.
 本発明によれば、レンズを製造する際に、プレス成形後の研磨用ガラスレンズブランクの取り代量を大幅に低減でき、研削および研磨に要する時間を、極端に短くできる。 According to the present invention, when a lens is manufactured, the machining allowance of the glass lens blank for polishing after press molding can be greatly reduced, and the time required for grinding and polishing can be extremely shortened.
図1(A)は本発明の一実施形態に係る光学ガラス素材(光学ガラス素材片)の斜視図、図1(B)は本発明の他の実施形態に係る光学ガラス素材(光学ガラス素材ブロック)の斜視図である。1A is a perspective view of an optical glass material (optical glass material piece) according to an embodiment of the present invention, and FIG. 1B is an optical glass material (optical glass material block) according to another embodiment of the present invention. FIG. 図2は図1(A)および図1(B)に示す光学ガラス素材の製造工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the optical glass material shown in FIGS. 1 (A) and 1 (B). 図3は図2に示すIII-III線に沿う概略断面図である。FIG. 3 is a schematic sectional view taken along line III-III shown in FIG. 図4(A)は本発明の一実施形態に係る熔融ガラスの対流状態を示す概略断面図、図4(B)は従来例に係る熔融ガラスの対流状態を示す概略断面図である。4A is a schematic cross-sectional view showing a convection state of the molten glass according to one embodiment of the present invention, and FIG. 4B is a schematic cross-sectional view showing a convection state of the molten glass according to the conventional example. 図5は本発明の一実施形態に係る光学ガラス素材の切断工程を示す概略斜視図である。FIG. 5 is a schematic perspective view showing a cutting process of the optical glass material according to one embodiment of the present invention. 図6(A)~図6(E)は図1(A)に示すガラス素材を用いて研磨用レンズブランクを製造する工程を示す概略断面図である。6 (A) to 6 (E) are schematic cross-sectional views showing a process of manufacturing a polishing lens blank using the glass material shown in FIG. 1 (A). 図7(A)は、本発明の一実施形態に係る研磨用ガラスレンズブランクの形状の一例を示す側面図、図7(B)は、本発明の一実施形態に係る研磨用ガラスレンズブランクの形状の一例を示す正面図である。FIG. 7A is a side view showing an example of the shape of the polishing glass lens blank according to one embodiment of the present invention, and FIG. 7B is the polishing glass lens blank according to one embodiment of the present invention. It is a front view which shows an example of a shape. 図8は、図7に示す研磨用ガラスレンズブランクの表面の一部断面で、研削工程および研磨工程により除去する部分を模式的に示した概略図である。FIG. 8 is a schematic view schematically showing a portion to be removed by a grinding step and a polishing step in a partial cross section of the surface of the polishing glass lens blank shown in FIG. 図9は、図7に示すブランクから光学レンズを製造する工程を示すフローチャート図である。FIG. 9 is a flowchart showing a process of manufacturing an optical lens from the blank shown in FIG. 図10は、実施例および比較例に係る輝点観察の結果を示す図である。FIG. 10 is a diagram illustrating the results of bright spot observation according to Examples and Comparative Examples.
<光学ガラス素材>
 本発明の光学ガラス素材(以下、単に「ガラス素材」ということがある。)は、台形状を成し互いに平行である第1の主面および第2の主面と、上記第1の主面および第2の主面の短辺同士をつなぐ第1の側面と、上記第1の主面および第2の主面の長辺同士をつなぐ第2の側面と、上記第1の側面と上記第2の側面とをつなぎ、上記第1の側面と成す角度がいずれも鈍角である2つの傾斜面とを有し、上記第1の側面および上記2つの傾斜面が、成形面であることを特徴とする。
<Optical glass material>
The optical glass material of the present invention (hereinafter sometimes simply referred to as “glass material”) includes a first main surface and a second main surface that are trapezoidal and parallel to each other, and the first main surface. And the first side surface connecting the short sides of the second main surface, the second side surface connecting the long sides of the first main surface and the second main surface, the first side surface and the first side surface. Two inclined surfaces that connect the two side surfaces and have an obtuse angle with each of the first side surfaces, and the first side surface and the two inclined surfaces are molding surfaces. And
 このようなガラス素材によれば、光学レンズ等のガラス光学素子を作製する際の取り代量を大幅に低減できるとともに、研削・研磨に要する時間を極端に短くできる研磨用ガラス光学素子ブランク(特に、研磨用ガラスレンズブランク等)を得ることができる。 According to such a glass material, a glass optical element blank for polishing (especially, an amount of machining allowance when producing a glass optical element such as an optical lens can be greatly reduced and a time required for grinding and polishing can be extremely shortened (particularly, , Glass lens blank for polishing, etc.) can be obtained.
 以下、図1(A)および(B)に示す光学ガラス素材2および20を例に、本発明の一形態について説明する。なお、以下では、光学ガラス素材2と20とを区別するため、図1(A)に示す小片化された光学ガラス素材2を「光学ガラス素材片」と称し、図1(B)に示す長尺の光学ガラス素材20を「光学ガラス素材ブロック」と称することがある。 Hereinafter, an embodiment of the present invention will be described using the optical glass materials 2 and 20 shown in FIGS. 1A and 1B as examples. In the following, in order to distinguish between the optical glass materials 2 and 20, the segmented optical glass material 2 shown in FIG. 1 (A) is referred to as an “optical glass material piece”, and the length shown in FIG. 1 (B). The optical glass material 20 having a scale is sometimes referred to as an “optical glass material block”.
光学ガラス素材2
 まず、図1(A)に示す光学ガラス素材片2(以下、単に「ガラス素材片2」ということがある。)を例に、本発明の一実施形態に係る光学ガラス素材について説明する。図1(A)に示すように、本発明の一実施形態に係るガラス素材片2は、台形状の第1の主面4と、この第1の主面4と平行で、同じ台形状の第2の主面6とを有する。
Optical glass material 2
First, an optical glass material according to an embodiment of the present invention will be described by taking as an example an optical glass material piece 2 (hereinafter, simply referred to as “glass material piece 2”) shown in FIG. As shown to FIG. 1 (A), the glass raw material piece 2 which concerns on one Embodiment of this invention is parallel to this 1st main surface 4 with the trapezoid 1st main surface 4, and the same trapezoid shape. And a second main surface 6.
 さらに、本実施形態のガラス素材片2は、第1の主面4の短辺と第2の主面6の短辺同士をつなぐ第1の側面8と、第1の主面4の長辺と第2の主面6の長辺同士をつなぐ第2の側面10と、を有する。 Furthermore, the glass material piece 2 of the present embodiment includes a first side surface 8 that connects the short sides of the first main surface 4 and the short sides of the second main surface 6, and the long side of the first main surface 4. And a second side surface 10 connecting the long sides of the second main surface 6 to each other.
 また、本実施形態のガラス素材片2は、第1の側面8と第2の側面10とをつなぎ、第1の側面8と成す角度θ1およびθ2がいずれも鈍角である2つの第1の傾斜面12および第2の傾斜面14を有する。角度θ1および角度θ2は、相互に同じであることが好ましいが、多少異なっていても良い。角度θ1および角度θ2は、それぞれ90度超~135度であることが好ましく、100度~130度であることがより好ましく、110度~120度であることがさらに好ましい。なお、第1の傾斜面12と第1の側面8とが成す角部や、第2の傾斜面14と第1の側面8とが成す角部は、多少の丸みを帯びていてもよい。 Further, the glass material piece 2 of the present embodiment connects the first side surface 8 and the second side surface 10, and the two first inclinations in which the angles θ1 and θ2 formed with the first side surface 8 are both obtuse angles. It has a surface 12 and a second inclined surface 14. The angle θ1 and the angle θ2 are preferably the same as each other, but may be slightly different. The angle θ1 and the angle θ2 are each preferably greater than 90 to 135 degrees, more preferably 100 to 130 degrees, and even more preferably 110 to 120 degrees. Note that the corner formed by the first inclined surface 12 and the first side surface 8 and the corner formed by the second inclined surface 14 and the first side surface 8 may be slightly rounded.
 本実施形態では、第1の側面8と、第1の傾斜面12および第2の傾斜面14が成形面である。また、好ましくは、第1の主面4および第2の主面6は、切断面であり、第2の側面10は、自由表面である。 In the present embodiment, the first side surface 8, the first inclined surface 12, and the second inclined surface 14 are molding surfaces. Preferably, the first main surface 4 and the second main surface 6 are cut surfaces, and the second side surface 10 is a free surface.
 ここで、成形面とは、成形型に接することにより形成される成形面である。また、自由表面とは、軟化したガラスが冷却過程で他の物体(固体、液体)に接することなく固化して形成された面である。さらに、切断面とは、ガラスを切断することによって形成された面である。 Here, the molding surface is a molding surface formed by contacting the mold. The free surface is a surface formed by softening glass solidified without contacting other objects (solid, liquid) during the cooling process. Further, the cut surface is a surface formed by cutting glass.
 本実施形態では、第1の主面4と第2の主面6とは、Y-Z平面に平行である。第1の主面4および第2の主面における台形の短辺および長辺は、Y軸に平行である。また、Z軸は、台形の高さに対応する。なお、図面において、X軸、Y軸およびZ軸は、相互に垂直である。 In the present embodiment, the first main surface 4 and the second main surface 6 are parallel to the YZ plane. The trapezoidal short and long sides of the first main surface 4 and the second main surface are parallel to the Y axis. The Z axis corresponds to the height of the trapezoid. In the drawings, the X axis, the Y axis, and the Z axis are perpendicular to each other.
 本実施形態のガラス素材片2は、好ましくは、第1の主面4と第2の主面6との間のX軸方向の距離L1(X軸方向厚み)が、第1の側面8と第2の側面10との間のZ軸方向の距離H1(Z軸方向高さ)よりも短い。このようなガラス素材片2は、所望の幅に小片化されているため取扱いが便利で、プレス加工等の加工処理が容易である。このような本実施形態のガラス素材片2は、プレス成形用ガラス素材として好適である。 In the glass material piece 2 of the present embodiment, the distance L1 (X-axis direction thickness) in the X-axis direction between the first main surface 4 and the second main surface 6 is preferably It is shorter than the distance H1 (Z-axis direction height) between the second side surface 10 and the Z-axis direction. Such a glass material piece 2 is easy to handle because it is fragmented to a desired width, and processing such as pressing is easy. Such a glass material piece 2 of this embodiment is suitable as a glass material for press molding.
 本実施形態では、第1の側面8と第2の側面10との間の距離H1(Z方向の高さ)は、第1の側面8のY軸方向の長さW1または第2の側面10のY軸方向の長さW2との関係で決定され、下記の条件式(1)を満たすことが好ましい。
 W1×0.8 ≦ H1 ≦ W2 ・・・(1)
In the present embodiment, the distance H1 (the height in the Z direction) between the first side surface 8 and the second side surface 10 is the length W1 of the first side surface 8 in the Y-axis direction or the second side surface 10. It is preferable that the following conditional expression (1) is satisfied, which is determined by the relationship with the length W2 in the Y-axis direction.
W1 × 0.8 ≦ H1 ≦ W2 (1)
 なお、距離H1は、好ましくは25~60mmであり、W1は、好ましくは20~50mmであり、W2は、好ましくは35~60mmである。 Note that the distance H1 is preferably 25 to 60 mm, W1 is preferably 20 to 50 mm, and W2 is preferably 35 to 60 mm.
 ガラス素材片2がこのような条件を満たすことで、高さと幅のバランスがとれ、ガラス素材片2を軟化もしくはプレス成形する際に取扱いが容易にある。 When the glass material piece 2 satisfies such conditions, the height and width are balanced, and the glass material piece 2 is easy to handle when softened or press-molded.
 本実施形態では、ガラス素材片2を構成するガラスの材質としては、特に限定されず、(1)ガラス成分として少なくともP、OおよびFを含むフツリン酸塩系ガラス、(2)ガラス成分中に、B、Laが比較的多く含まれているホウ酸ランタン系ガラス、(3)ガラス成分中に、SiO、TiOが、比較的多く含まれているSiO-TiO系ガラス、(4)Pを主成分としてNb、Ti、Bi、およびWからなる易還元成分を含有するリン酸ニオブ系光学ガラスなどが例示される。 In this embodiment, it does not specifically limit as a material of the glass which comprises the glass raw material piece 2, (1) The fluorophosphate type glass which contains at least P, O, and F as a glass component, (2) In a glass component Lanthanum borate glass containing a relatively large amount of B 2 O 3 and La 2 O 3 , (3) SiO 2 —TiO 2 containing a relatively large amount of SiO 2 and TiO 2 in the glass component 2 based glass, (4) Nb and P 2 O 5 as a main component, Ti, Bi, and the like niobium phosphate optical glass containing readily reducing component from W is exemplified.
光学ガラス素材20
 次に、図1(B)に示す光学ガラス素材ブロック20(以下、単に「ガラス素材ブロック20」ということがある。)を例に、本発明に係る光学ガラス素材について別の一形態を説明する。なお、以下に示す部分以外は、上述の一実施形態と同様な構成および作用効果を有し、重複する記載は一部省略する。
Optical glass material 20
Next, another embodiment of the optical glass material according to the present invention will be described using the optical glass material block 20 shown in FIG. 1B (hereinafter sometimes simply referred to as “glass material block 20”) as an example. . In addition, it has the structure and effect similar to one above-mentioned embodiment except the part shown below, and the description which overlaps is partially abbreviate | omitted.
 本発明のガラス素材は、図1(B)に示すガラス素材ブロック20であっても良い。本実施形態に係るガラス素材ブロック20と、上述の一実施形態で例示したガラス素材片2との違いは、第1の主面4と第2の主面6との間のX軸方向の距離L0の長さである。 The glass material of the present invention may be a glass material block 20 shown in FIG. The difference between the glass material block 20 according to the present embodiment and the glass material piece 2 exemplified in the above-described embodiment is that the distance between the first main surface 4 and the second main surface 6 in the X-axis direction. It is the length of L0.
 好ましくは、本実施形態のガラス素材ブロック20は、第1の主面4と第2の主面6との間のX軸方向の距離L0が、第1の側面8と第2の側面10との間のZ軸方向の距離H1よりも長い。このようなガラス素材ブロック20は、まとまった一定の大きさで管理できるため、保管や移動に適している。 Preferably, in the glass material block 20 of the present embodiment, the distance L0 in the X-axis direction between the first main surface 4 and the second main surface 6 is such that the first side surface 8 and the second side surface 10 Longer than the distance H1 in the Z-axis direction. Since such a glass material block 20 can be managed with a certain fixed size, it is suitable for storage and movement.
 また、本実施形態のガラス素材ブロック20を、長手方向に直交する方向で切断して小片化すれば、必要なときに、所望の幅(L1)で、上述の一実施形態で例示したガラス素材片2を得ることができる。 Moreover, if the glass raw material block 20 of this embodiment is cut | disconnected in the direction orthogonal to a longitudinal direction and cut into pieces, when necessary, the glass raw material illustrated in the above-mentioned one embodiment with a desired width (L1). Piece 2 can be obtained.
<光学ガラス素材の製造方法>
 次に、光学ガラス素材2および20の製造方法について説明する。
 本実施形態に係る光学ガラス素材の製造方法は、好ましくは、鋳型内に、熔融ガラスを連続して鋳込み、鋳込まれたガラスを上流側から下流側へ一方向に移動させながら連続して断面台形のガラス素材を成形することを特徴とする。
<Method for producing optical glass material>
Next, a method for manufacturing the optical glass materials 2 and 20 will be described.
The method for producing an optical glass material according to the present embodiment is preferably continuously cast in a mold while continuously casting molten glass and moving the cast glass in one direction from the upstream side to the downstream side. A trapezoidal glass material is formed.
 図2および図3は、光学ガラス素材2(以下、単に「ガラス素材片2」という。)および光学ガラス素材20(以下、単に「ガラス素材ブロック20」という。)の製造装置を示す。図2および図3に示すように、この製造装置は、加熱熔融されたガラス20aを、固定鋳型32の注入開始位置に向けて流出させるノズル30を有する。 2 and 3 show a manufacturing apparatus for the optical glass material 2 (hereinafter simply referred to as “glass material piece 2”) and the optical glass material 20 (hereinafter simply referred to as “glass material block 20”). As shown in FIGS. 2 and 3, the manufacturing apparatus includes a nozzle 30 that causes the glass 20 a that has been heated and melted to flow toward the injection start position of the fixed mold 32.
 固定鋳型32は、底壁34と、底壁34における注入開始位置のX軸方向上流側に形成してある端壁36と、底壁34のY軸方向の両端からZ軸方向の上方に所定角度で傾斜して形成してある側壁38とを有する。固定鋳型32の上方は、Z軸の上方に開放してある。 The fixed mold 32 includes a bottom wall 34, an end wall 36 formed on the upstream side of the injection start position in the bottom wall 34 in the X-axis direction, and predetermined positions above both ends of the bottom wall 34 in the Y-axis direction in the Z-axis direction. And a side wall 38 that is inclined at an angle. The upper part of the fixed mold 32 is opened above the Z axis.
 固定鋳型32における底壁34と端壁36と側壁38とは、一体的に形成され、それらの間から熔融ガラスが漏れないように構成してあるが、これらは、必ずしも同一材質で構成する必要はなく、別部材で構成されても良い。固定鋳型32の材質としては、例えば鋳鉄、ステンレス、カーボン材、ニッケル材などが用いられる。 The bottom wall 34, the end wall 36, and the side wall 38 of the fixed mold 32 are integrally formed so as to prevent the molten glass from leaking between them, but they need to be made of the same material. There may be no separate member. As a material of the fixed mold 32, for example, cast iron, stainless steel, carbon material, nickel material or the like is used.
 なお、固定鋳型32の内周面には、離型剤を塗布しても良い。固形化された後のガラス素材ブロック20を固定鋳型34から搬送ベルト40に移動させやすくするためである。離型剤としては、例えば、窒化ホウ素、アルミナ、酸化ケイ素、酸化マグネシウム等の粉末状離型剤が用いられる。 Note that a release agent may be applied to the inner peripheral surface of the fixed mold 32. This is to facilitate the movement of the solidified glass material block 20 from the fixed mold 34 to the conveyor belt 40. As the release agent, for example, a powder release agent such as boron nitride, alumina, silicon oxide, magnesium oxide or the like is used.
 図3に示すように、底壁34に対する一対の側壁38の傾斜角度は、図1(A)に示す傾斜角度θ1およびθ2に対応する。また、底壁34の内底面からの側壁38のZ軸方向の高さH0は、図1に示すガラス素材片2(ガラス素材ブロック20も同じ)の高さH1よりも大きく、一対の側壁38,38間の最大開放幅W0は、ガラス素材片2(ガラス素材ブロック20も同じ)の最大幅W2よりも大きい。 As shown in FIG. 3, the inclination angles of the pair of side walls 38 with respect to the bottom wall 34 correspond to the inclination angles θ1 and θ2 shown in FIG. Further, the height H0 of the side wall 38 from the inner bottom surface of the bottom wall 34 in the Z-axis direction is larger than the height H1 of the glass material piece 2 (same for the glass material block 20) shown in FIG. , 38 is larger than the maximum width W2 of the glass material piece 2 (the same is the glass material block 20).
 本実施形態では、固定鋳型32をこのように構成することで、図4(A)に示すように、鋳込まれる熔融ガラス20aが傾斜する側壁38に沿って側壁近傍で小さく対流しながら成形されるため、広範囲の対流が生じることなく、ガラスの内部に脈理が発生しない。 In the present embodiment, by configuring the fixed mold 32 in this way, as shown in FIG. 4A, the molten glass 20a to be cast is molded while being convected smallly in the vicinity of the side wall along the inclined side wall 38. Therefore, a wide range of convection does not occur and no striae are generated inside the glass.
 これに対して、図4(B)に示す従来のように、底壁34aの底面に垂直な側壁38aを有する固定鋳型32aを用いてガラスを成形した場合、側壁38aに沿って広範囲の対流が生じ、ガラスの内部に脈理が発生する。 On the other hand, when the glass is formed using the fixed mold 32a having the side wall 38a perpendicular to the bottom surface of the bottom wall 34a as in the conventional case shown in FIG. 4B, a wide range of convection flows along the side wall 38a. This creates striae inside the glass.
 なお、図2では、端壁36は、底壁34に対して略垂直な角度で、底壁34に連結してあるが、端壁36も、側壁38と同様に、所定の傾斜角度で鈍角に傾斜させても良い。 In FIG. 2, the end wall 36 is connected to the bottom wall 34 at an angle substantially perpendicular to the bottom wall 34, but the end wall 36 is also obtuse at a predetermined inclination angle, like the side wall 38. It may be inclined to.
 図2に示すように、固定鋳型32のX軸方向下流側は、開放してあり、熔融ガラス20aは、固定鋳型32をX軸方向の下流側に移動するにしたがって、徐冷されて固まっていく。熔融ガラス20aが徐冷により固まっていき、それ自体で形状保持が可能な程度にまでガラス20aが固まっているX軸方向の下流位置では、X軸方向搬送装置としての搬送ベルト40が配置してあり、形状が保持できる程度に固形化されたガラス20aを、X軸方向のさらに下流側に搬送可能になっている。搬送ベルト40の上で搬送されるガラス20aは、所定温度以下(例えばTg以下)に冷えて固形化している。なお、搬送ベルト40によるX軸方向の移動速度は、特に限定されないが、例えば、10~50mm/分程度である。 As shown in FIG. 2, the downstream side of the fixed mold 32 in the X-axis direction is open, and the molten glass 20a is gradually cooled and solidified as the fixed mold 32 is moved downstream in the X-axis direction. Go. At the downstream position in the X-axis direction where the molten glass 20a is hardened by slow cooling and the glass 20a is hardened to the extent that the molten glass 20a can be held by itself, a transport belt 40 as an X-axis direction transport device is disposed. The glass 20a solidified to such an extent that the shape can be maintained can be conveyed further downstream in the X-axis direction. The glass 20a conveyed on the conveying belt 40 is cooled to a predetermined temperature or lower (for example, Tg or lower) and solidified. The moving speed in the X-axis direction by the transport belt 40 is not particularly limited, but is, for example, about 10 to 50 mm / min.
 本実施形態では、ノズル30のX軸方向の直ぐ下流位置には、固定鋳型32の内部で、熔融ガラス20aの上面を押圧するローラ(図示省略)が配置してあっても良い。このローラを設けることで、ガラス20aの板厚(特に図1に示す高さH1)を一定にすることが容易になる。 In this embodiment, a roller (not shown) that presses the upper surface of the molten glass 20a inside the fixed mold 32 may be disposed immediately downstream of the nozzle 30 in the X-axis direction. By providing this roller, the thickness of the glass 20a (in particular, the height H1 shown in FIG. 1) can be easily made constant.
 また、本実施形態では、搬送装置40と連結された固定鋳型32とにまたがって、アニール装置(図示省略)を設置しても良い。アニール装置は、成形されたガラス20aを徐々に冷却することで歪みを除去する役割を有する。 In this embodiment, an annealing device (not shown) may be installed across the fixed mold 32 connected to the transfer device 40. The annealing device has a role of removing distortion by gradually cooling the molded glass 20a.
 搬送ベルト40により搬送された後のガラス素材ブロック20を図1(B)に示す。搬送後のガラス素材ブロック20をX軸方向に等間隔に切断することにより、図1(A)に示すガラス素材片2を得ることができる。 The glass material block 20 after being conveyed by the conveying belt 40 is shown in FIG. The glass material piece 2 shown in FIG. 1 (A) can be obtained by cutting the glass material block 20 after conveyance at equal intervals in the X-axis direction.
 したがって、本実施形態に係るガラス素材片2の製造方法は、ガラス素材ブロック20を長手方向に直交する方向に切断する工程をさらに有することが好ましい。 Therefore, it is preferable that the method for manufacturing the glass material piece 2 according to the present embodiment further includes a step of cutting the glass material block 20 in a direction orthogonal to the longitudinal direction.
 図1(B)に示すガラス素材ブロック20の切断に際して用いられる切断具としては、特に限定されず、切断刃、ホィールカッター(wheel cutter)、ワイヤーソー(wire saw)などが用いられる。好ましくは、図5に示す切断装置(マルチワイヤーソー)70が用いられる。この切断装置70は、複数のワイヤーソー72が複数のローラ74の回転に伴って同時に高速走行する。そして、高速走行するワイヤーソー72を、ガラス素材ブロック20の第1側面8に押し付ければ、ガラス素材ブロック20は、ワイヤーソー72の配置間隔(X軸方向所定間隔)で均等の幅に切断される。 The cutting tool used for cutting the glass material block 20 shown in FIG. 1 (B) is not particularly limited, and a cutting blade, a wheel cutter, a wire saw, or the like is used. Preferably, a cutting device (multi-wire saw) 70 shown in FIG. 5 is used. In the cutting device 70, the plurality of wire saws 72 simultaneously travel at high speed as the plurality of rollers 74 rotate. If the wire saw 72 that runs at high speed is pressed against the first side surface 8 of the glass material block 20, the glass material block 20 is cut into an equal width at the arrangement interval (predetermined interval in the X-axis direction) of the wire saw 72. The
 なお、切断装置70のワイヤーソー72により切断される面が切断面となる。切断されない第1の側面8、第1の傾斜面12および第2の傾斜面14が成形面であり、第2の側面10が自由表面である。前述したように、自由表面とは、軟化したガラスが冷却過程で他の物体(固体、液体)に接することなく固化して形成された面であり、成形面とは、成形型に接することにより成形された面であり、切断面とは、ガラスを切断することによって形成された面である。 In addition, the surface cut | disconnected by the wire saw 72 of the cutting device 70 turns into a cut surface. The 1st side surface 8, the 1st inclined surface 12, and the 2nd inclined surface 14 which are not cut | disconnected are molding surfaces, and the 2nd side surface 10 is a free surface. As described above, the free surface is a surface formed by solidifying a softened glass without contacting other objects (solid, liquid) during the cooling process, and the molding surface is obtained by contacting the mold. It is the shape | molded surface and a cut surface is a surface formed by cut | disconnecting glass.
 本実施形態では、断面が台形の棒状のガラス素材ブロック20を成形し、最多で2回の切断により断面が台形のガラス片(ガラス素材片2)を作製する。これにより個々のガラス片の重量精度を極めて高めることできるとともに、表面変質の少ないガラス片を、材料ロスを抑えて得ることができる。すなわち、切断面以外は実質的に変質層を有さず、棒状のガラス素材ブロック20を等間隔で切断することにより、極めて重量精度の均一な台形のカットピースであるガラス素材片2が得られる。 In this embodiment, a rod-shaped glass material block 20 having a trapezoidal cross section is formed, and a glass piece (glass material piece 2) having a trapezoidal cross section is produced by cutting at most twice. As a result, the weight accuracy of the individual glass pieces can be greatly increased, and a glass piece with little surface alteration can be obtained while suppressing material loss. That is, the glass material piece 2 which is a trapezoidal cut piece having a uniform weight accuracy can be obtained by cutting the rod-shaped glass material block 20 at equal intervals substantially without the altered layer except for the cut surface. .
 なお、従来の断面が長方形の形状で幅が狭く細長い形状のガラス素材は、内部の対流による脈理が発生しやすく、脈理の発生を抑えるためにガラス流出速度を低速にしたり、ガラス素材の板厚を薄く(例えば、25mm以下に)したりする成形が必要であり経済的でなかった。 In addition, the conventional glass material with a rectangular cross-section and narrow and narrow shape is prone to striae due to internal convection, and in order to suppress the occurrence of striae, the glass outflow speed is reduced, or the glass material Molding to reduce the plate thickness (for example, to 25 mm or less) is necessary, which is not economical.
 それに対して、本実施形態では、断面を台形形状にすることで、温度が低い底面の面積を減少させ対流の原動力である表面と底面の温度差の影響を低減させることができ、細い形状でも従来の幅広ガラス素材と同等の流出速度で整形が可能になる。また、ガラス素材の板厚(Z軸方向の高さH1)を、例えば25mm以上の厚さに成形できる。 On the other hand, in this embodiment, by making the cross section into a trapezoidal shape, the area of the bottom surface where the temperature is low can be reduced, and the influence of the temperature difference between the surface and the bottom surface which is the driving force of convection can be reduced. Shaping is possible at the same outflow speed as the conventional wide glass material. Moreover, the plate | board thickness (height H1 of a Z-axis direction) of a glass raw material can be shape | molded to thickness of 25 mm or more, for example.
 また、本実施形態では、細長い形状のガラス素材ブロック20を作製することで、最多で2回の切断でガラス素材片2を切り出すことができ、4回以上の切断が必要とされた従来に比較して、大幅に重量精度を高めることができる。 Moreover, in this embodiment, by producing the glass material block 20 having a long and narrow shape, the glass material piece 2 can be cut out by a maximum of two cuttings, compared to the conventional case where four or more cuttings are required. Thus, the weight accuracy can be greatly improved.
 このようにして得られたガラス素材片2は、従来のカットピースに比べて切断面が少ないため、重量バラつきが少なく、材料ロスを低減できる。また、ガラス素材ブロック20の製造工程において、重量管理を行うことで、重量バラつきをさらに低減でき、好ましくは±1%以内、より好ましくは±0.5%以内とすることができる。重量管理の方法は、特に限定されるものではないが、例えば、固定鋳型32の大きさ、熔融ガラスの粘度や流出速度の調節、切断方法および装置の選択等が挙げられる。 Since the glass material piece 2 obtained in this way has fewer cut surfaces than a conventional cut piece, there is little weight variation and material loss can be reduced. Further, by performing weight management in the manufacturing process of the glass material block 20, the weight variation can be further reduced, preferably within ± 1%, and more preferably within ± 0.5%. The method of weight management is not particularly limited, and examples thereof include the size of the fixed mold 32, adjustment of the viscosity and outflow speed of the molten glass, selection of a cutting method and apparatus, and the like.
 さらに、リヒートプレス時に問題になる表面変質は、切断面の変質が助長するが、本実施形態に係るガラス素材片2では、切断面が少ないため変質が起こり難い。また、ガラス素材片2は、切断時で重量精度が高いため、バレル研磨による重量調整の必要がなく、切断面以外の面であって表面欠陥がほとんどない面(成形面、自由表面)の表面状態を維持できる。また、本実施形態に係る台形型ガラス片2は、主表面の中央部に稜部や角部がないため、リヒートプレスされたレンズブランクの中央部に折れ込み部が生じ難い。したがって、研削・研磨加工時の除去量を削減できるとともに、加工時間を短縮することができる。 Furthermore, the surface alteration that becomes a problem during reheat pressing promotes the alteration of the cut surface. However, in the glass material piece 2 according to the present embodiment, the alteration is unlikely to occur because there are few cut surfaces. Further, since the glass material piece 2 has high weight accuracy at the time of cutting, it is not necessary to adjust the weight by barrel polishing, and is a surface (molded surface, free surface) that is a surface other than the cut surface and has almost no surface defects. The state can be maintained. In addition, since the trapezoidal glass piece 2 according to the present embodiment does not have a ridge or a corner at the central portion of the main surface, a folded portion is unlikely to occur at the central portion of the reheat-pressed lens blank. Therefore, the amount of removal during grinding and polishing can be reduced, and the processing time can be shortened.
 本実施形態では、切断回数が少ないためホイールカッターなどの切断に変えて、図5に示すワイヤーソー72による高精度且つ高品質の切断も低コストで可能になり、切断面の変質を抑えることができる。 In this embodiment, since the number of times of cutting is small, high-accuracy and high-quality cutting by the wire saw 72 shown in FIG. 5 can be performed at low cost instead of cutting with a wheel cutter or the like, and deterioration of the cut surface can be suppressed. it can.
<研磨用ガラスレンズブランク>
 本実施形態に係る研磨用ガラスレンズブランクは、本実施形態に係る光学ガラス素材を、大気雰囲気中で再加熱して軟化させ、軟化した上記光学ガラス素材をプレス成形することにより形成される。
<Grinding glass lens blank>
The polishing glass lens blank according to the present embodiment is formed by reheating and softening the optical glass material according to the present embodiment in an air atmosphere, and press-molding the softened optical glass material.
 なお、このようなリヒートプレスに際しては、上述の切断方法にて、予め所定の大きさに小片化された光学ガラス素材(光学ガラス素材片2)を用いることが好ましい。 In such a reheat press, it is preferable to use an optical glass material (optical glass material piece 2) that has been segmented in advance into a predetermined size by the above-described cutting method.
 以下、図6を参照しながら、本実施形態に係る光学ガラス素材2(以下、単に「ガラス素材」ということがある。)をリヒートプレス(Reheat Press)して、研磨用ガラスレンズブランク(以下、単に「レンズブランク」ということがある。)を製造する方法を説明する。 Hereinafter, with reference to FIG. 6, the optical glass material 2 according to the present embodiment (hereinafter, simply referred to as “glass material”) is reheat-pressed to form a polishing glass lens blank (hereinafter referred to as “glass glass blank”). A method for manufacturing simply “lens blank” may be described.
 図6(A)に示すように、保持用凹部52を有する受け皿(軟化盆)50にガラス素材2を供給する。このとき、素材2の第1の主面4または第2の主面6が受け皿50の凹部52に向くような姿勢で供給する。また、ガラス素材2と受け皿50との間には、窒化ホウ素等の離型剤が塗布されていることが好ましい。さらに、このとき、切断後のガラス素材2の表面状態を維持しつつ、離型剤を塗布することが好ましい。 As shown in FIG. 6A, the glass material 2 is supplied to a tray (softening tray) 50 having a holding recess 52. At this time, the material 2 is supplied in such a posture that the first main surface 4 or the second main surface 6 of the material 2 faces the recess 52 of the tray 50. Further, a release agent such as boron nitride is preferably applied between the glass material 2 and the tray 50. Further, at this time, it is preferable to apply the release agent while maintaining the surface state of the glass material 2 after cutting.
 次に、受け皿50と共にガラス素材2を加熱炉に投入して、大気雰囲気下にて再加熱し、ガラス素材2を10~10dPa・sの粘度に軟化させ、図6(B)および図6(C)に示すように、所定形状に変形させる。 Next, the glass material 2 together with the receiving tray 50 is put into a heating furnace and reheated in an air atmosphere to soften the glass material 2 to a viscosity of 10 4 to 10 6 dPa · s. As shown in FIG. 6C, it is deformed into a predetermined shape.
 次に、図6(D)に示すように、軟化して両凸曲面形状に変形したガラス素材2aを、成形型で所望形状にプレス成形する。このプレス成形も大気中で行われる。成形型は、成形面を有する上型66と下型60と、これらを略同軸状に規制する環状の胴型64とからなり、予め加熱されている。また成形面にはガラスと型との融着を防ぐために離型剤(窒化ホウ素等)が塗布されている。 Next, as shown in FIG. 6 (D), the glass material 2a that has been softened and deformed into a biconvex curved shape is press-molded into a desired shape using a molding die. This press molding is also performed in the atmosphere. The molding die is composed of an upper die 66 and a lower die 60 having a molding surface, and an annular body die 64 that regulates them substantially coaxially, and is heated in advance. Further, a release agent (boron nitride or the like) is applied to the molding surface in order to prevent the glass and the mold from being fused.
 まず、軟化したガラス素材2aを、10~10dPa・sの粘度を保ったまま、下型60の成形面62上に供給し、その直後に、胴型64に上型66を挿入する。図6(D)では、ガラス素材2aには上型66による荷重がかかっていないので、ガラス素材2aは図6(C)に示す形状を保っている。次いで、図6(E)に示すように、上型66を降下させてガラス素材2aを押圧し、ガラス素材2aを上下型の成形面形状に倣った形状にプレス成形して、レンズブランク2bを得る。 First, the softened glass material 2a is supplied onto the molding surface 62 of the lower mold 60 while maintaining the viscosity of 10 4 to 10 6 dPa · s, and immediately thereafter, the upper mold 66 is inserted into the barrel mold 64. . In FIG. 6 (D), since the load by the upper mold | type 66 is not applied to the glass raw material 2a, the glass raw material 2a is maintaining the shape shown in FIG.6 (C). Next, as shown in FIG. 6 (E), the upper die 66 is lowered to press the glass material 2a, the glass material 2a is press-molded into a shape following the molding surface shape of the upper and lower molds, and the lens blank 2b is formed. obtain.
 なお、図6において、(A)~(C)を再加熱工程もしくは再軟化工程と称し、(D)~(E)をプレス工程と称することができる。 In FIG. 6, (A) to (C) can be referred to as a reheating process or a resoftening process, and (D) to (E) can be referred to as a pressing process.
 また、レンズブランク2bの形状は、図6(E)に示すような凸面と凹面を有する形状の他、両凸形状、凸面と平面を有する形状、凹面と平面を有する形状、両凹形状など目的とする光学レンズ(以下、単に「レンズ」ということがある。)の形状に近似する形状であれば、特に限定されない。 The shape of the lens blank 2b is not only a shape having a convex surface and a concave surface as shown in FIG. 6E, but also a biconvex shape, a shape having a convex surface and a plane, a shape having a concave surface and a plane, and a biconcave shape. There is no particular limitation as long as the shape approximates the shape of the optical lens (hereinafter, simply referred to as “lens”).
 なお、本実施形態に係るガラス素材2は、重量精度が高いので、ガラス素材を得てからリヒートプレス成形するまでの工程において、ガラス素材の重量調整のために表面を粗面化処理する工程(バレル研磨工程など)や研磨・研削工程を省略しても構わない。 In addition, since the glass raw material 2 which concerns on this embodiment has high weight precision, in the process from obtaining a glass raw material to reheat press molding, the process of roughening the surface for the weight adjustment of a glass raw material ( Barrel polishing step) and polishing / grinding step may be omitted.
 好ましくは、本実施形態では、ガラス素材2を得てからプレス成形するまでの工程において、ガラス素材2の表面を粗面化処理する工程(バレル研磨工程など)を有さない。ガラス素材2について粗面化処理を行わないことにより、第1の主面4および第2の主面6表面状態を維持しながらプレス成形できるため、成形後のレンズブランクにおける表面欠陥の発生を有効に防止できる。 Preferably, in the present embodiment, there is no process (barrel polishing process or the like) for roughening the surface of the glass material 2 in the process from obtaining the glass material 2 to press molding. Since the glass material 2 can be press-molded while maintaining the surface state of the first main surface 4 and the second main surface 6 by not performing the surface roughening treatment, generation of surface defects in the lens blank after molding is effective. Can be prevented.
 また、本実施形態に係るガラス素材2は、重量精度が高いので、一度に多数(例えば1000個以上)のガラスレンズブランクを作製した場合であっても、重量バラつきを抑えることができる。例えば、成形後のレンズブランクの重量バラつきは、±1.0%以下、場合によっては±0.5%以下である。 In addition, since the glass material 2 according to the present embodiment has high weight accuracy, even when a large number (for example, 1000 or more) of glass lens blanks are produced at one time, weight variation can be suppressed. For example, the weight variation of the lens blank after molding is ± 1.0% or less, and in some cases, ± 0.5% or less.
 さらに、本実施形態に係る光学ガラス素材2は、従来のような立方体形状のカットピースと異なり、板状の光学ガラス素材(主面が台形のガラス片)であるために、軟化時に角部の折れ込みや、稜部(辺)の変質等の発生を抑えた(変質領域の薄い、研削・研磨代の少ない)レンズブランクを製造できる。 Furthermore, since the optical glass material 2 according to the present embodiment is a plate-shaped optical glass material (a main surface is a trapezoidal glass piece) unlike a conventional cubic shaped cut piece, It is possible to manufacture a lens blank that suppresses the occurrence of folding and ridge (side) alteration (thin alteration region is thin and grinding / polishing cost is small).
 すなわち、本実施形態に係る研磨用ガラスレンズブランクは、成形型によって形成された成形面、切断面および自由平面を有する光学ガラス素材2、すなわち第1の主面4と第2の主面6との間のX軸方向の距離L1(X軸方向厚み)が、第1の側面8と第2の側面10との間のZ軸方向の距離H1(Z軸方向高さ)よりも短いガラス素材を、リヒートプレス成形して得られた成形品である。 That is, the polishing glass lens blank according to the present embodiment includes an optical glass material 2 having a molding surface, a cutting surface, and a free plane formed by a molding die, that is, a first main surface 4 and a second main surface 6. A glass material having a distance L1 (X-axis direction thickness) between the first side surface 8 and the second side surface 10 shorter than a distance H1 (Z-axis direction height) between the first side surface 8 and the second side surface 10. Is a molded product obtained by reheat press molding.
 このような本実施形態に係る研磨用ガラスレンズブランクは、少なくとも主表面がプレス成形面であって、上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下であることを特徴とする。 Such a polishing glass lens blank according to this embodiment is characterized in that at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less. To do.
 本実施形態において、欠陥含有層は、光学ガラス素材を粗研磨加工する際に生じたクラックや加工液と接触したことによるガラス成分が変質した部分、あるいは軟化時からプレス成形時に発生する結晶化部分を含む。 In the present embodiment, the defect-containing layer is a portion where the glass component has changed due to contact with a crack or processing liquid generated when the optical glass material is roughly polished, or a crystallization portion which is generated from softening to press molding. including.
 本実施形態において、中央部とは、主表面の外周よりも内側の領域であり、主表面の中心点から、主表面の半径の3分の2以下の領域である。 In the present embodiment, the central portion is a region on the inner side of the outer periphery of the main surface, and is a region not more than two thirds of the radius of the main surface from the center point of the main surface.
 以下、図7および図8を参照しながら、本発明の一実施形態に係る研磨用ガラスレンズブランク(以下、単に「レンズブランク」ということがある。)について詳しく説明する。 Hereinafter, a polishing glass lens blank according to an embodiment of the present invention (hereinafter, simply referred to as “lens blank”) will be described in detail with reference to FIGS. 7 and 8.
 図7(A)および(B)は、それぞれ、本発明の一実施形態に係るレンズブランクの形状の一例を示す側面図および正面図である。また、図8は、図7(A)に示すレンズブランクの表面中央部の一部断面で、研削工程および研磨工程により除去する部分を模式的に示した概略図である。 FIGS. 7A and 7B are a side view and a front view, respectively, showing an example of the shape of the lens blank according to an embodiment of the present invention. FIG. 8 is a schematic view schematically showing a portion to be removed by a grinding step and a polishing step in a partial cross section of the surface central portion of the lens blank shown in FIG.
 図7(A)に示すように、本発明の一実施形態に係るレンズブランク2bは、主表面となる略球面状のプレス成形面80および82を有する。このプレス成形面80および82は、それぞれ下型60および上型66の成形面形状が転写された面である(図6(E)参照)。 As shown in FIG. 7A, the lens blank 2b according to one embodiment of the present invention has substantially spherical press-molded surfaces 80 and 82 as main surfaces. The press molding surfaces 80 and 82 are surfaces to which the molding surface shapes of the lower mold 60 and the upper mold 66 are transferred, respectively (see FIG. 6E).
 図6(E)では、主表面80が凸形状の曲面、主表面82が凹形状の曲面となっているが、本発明のレンズブランクの形状は特に限定されず、いずれか一方または双方が凹形状の曲面もしくは平面であっても良い。なお、レンズブランク2bの側周面84は、胴型64の内周面で成形されるプレス成形面であっても良いし、胴型64に当接しない自由表面であっても良い(図6(E)参照)。 In FIG. 6E, the main surface 80 is a convex curved surface and the main surface 82 is a concave curved surface, but the shape of the lens blank of the present invention is not particularly limited, and either one or both are concave. It may be a curved surface or a flat surface. In addition, the side peripheral surface 84 of the lens blank 2b may be a press-molded surface that is molded on the inner peripheral surface of the barrel die 64, or may be a free surface that does not contact the barrel die 64 (FIG. 6). (See (E)).
 図7(B)に示すように、本実施形態において、中央部80aとは、主表面80の外周よりも内側の領域であり、主表面80の中心点0から、主表面80の半径R1の2/3以下の領域80aである。すなわち、中央部80aの中心点0は、主表面80の中心点0と同じ位置であり、中央部80aの半径R2は、主表面の半径R1の2/3以下、より好ましくは1/2以下である。なお、主表面82においても同様である。 As shown in FIG. 7B, in the present embodiment, the central portion 80a is a region on the inner side of the outer periphery of the main surface 80, and the radius R1 of the main surface 80 from the center point 0 of the main surface 80. The area 80a is 2/3 or less. That is, the center point 0 of the center portion 80a is the same position as the center point 0 of the main surface 80, and the radius R2 of the center portion 80a is 2/3 or less, more preferably 1/2 or less of the radius R1 of the main surface. It is. The same applies to the main surface 82.
 本実施形態のレンズブランク2bは、図8に示すように、その中央部80aにおいて、欠陥含有層90aの厚みtが50μm以下、好ましくは30μm以下である。 Lens blank 2b of the present embodiment, as shown in FIG. 8, at its central portion 80a, following the thickness t 0 of the defect-containing layer 90a is 50 [mu] m, preferably 30μm or less.
 本実施形態では、上述の製造方法によりレンズブランク2bが製造されることから、欠陥含有層90aは、少なくとも1μm以上の厚みを有することが予想されるが、従来の製造方法で得られたものに比較して、欠陥含有層90aの厚みtが極端に薄い。 In the present embodiment, since the lens blank 2b is manufactured by the above-described manufacturing method, the defect-containing layer 90a is expected to have a thickness of at least 1 μm or more, but is obtained by a conventional manufacturing method. In comparison, the thickness t 0 of the defect-containing layer 90a is extremely thin.
 本実施形態において、欠陥含有層90aとは、レンズブランク2bのバルク部分90b(光学レンズとなる部分)に比較して、反射光の輝点を形成する欠陥を有する層である。この欠陥含有層90aを除去することで、反射光の輝点を形成する欠陥がなくなる。 In the present embodiment, the defect-containing layer 90a is a layer having a defect that forms a bright spot of reflected light as compared with the bulk portion 90b (a portion that becomes an optical lens) of the lens blank 2b. By removing the defect-containing layer 90a, defects that form bright spots of reflected light are eliminated.
 反射光の輝点を形成する欠陥の具体例としては、例えば上述のレンズブランクの製造方法における再加熱工程およびプレス工程より生じる結晶化部分などが上げられる。 As a specific example of the defect that forms a bright spot of reflected light, for example, a crystallization portion generated by a reheating step and a pressing step in the above-described lens blank manufacturing method can be cited.
 なお、本実施形態に係るレンズブランク2bの主表面中央部80aには、ガラス素材2の角部に由来する折れ込み部は、実質的に存在しない。 In addition, in the main surface central part 80a of the lens blank 2b which concerns on this embodiment, the folding part originating in the corner | angular part of the glass raw material 2 does not exist substantially.
 一般に、光学レンズ(以下、単に「レンズ」ということがある。)は、レンズブランクを研削加工および研磨加工して、目的とするレンズ形状を形成すると共に、プレス成形後のレンズブランクの表面に形成された欠陥含有層を除去することで、製造される。このようにして得られたレンズは、その表面に輝点となるような欠陥が残存していると不良品となる。そのため、レンズブランクの表面に形成されている欠陥含有層が除去されるまで研削・研磨する(取り代量を多く取る)必要がある。 In general, an optical lens (hereinafter sometimes simply referred to as a “lens”) is formed on the surface of a lens blank after press molding by grinding and polishing the lens blank to form a target lens shape. It is manufactured by removing the defect-containing layer. The lens obtained in this way becomes a defective product if defects that become bright spots remain on the surface thereof. Therefore, it is necessary to grind and polish (a large amount of machining allowance) until the defect-containing layer formed on the surface of the lens blank is removed.
 本実施形態のレンズブランクでは、主表面の中央部における欠陥含有層の厚みが50μm以下であることから、このレンズブランクに対して、レンズ面球面研削(創成研削)および研磨を行う際の取り代量を大幅に低減できる。その結果、レンズを得る際の研削および研磨に要する加工時間を、極端に短くすることができ、レンズを製造する際のタクトを大幅に短縮できる。 In the lens blank of this embodiment, since the thickness of the defect-containing layer in the central portion of the main surface is 50 μm or less, the allowance when performing lens surface spherical grinding (generation grinding) and polishing on this lens blank. The amount can be greatly reduced. As a result, the processing time required for grinding and polishing for obtaining the lens can be extremely shortened, and the tact time for manufacturing the lens can be greatly reduced.
 さらに、本実施形態のレンズブランクによれば、レンズを得るための研削・研磨の際に、取り代量を大幅に低減できることから、研削屑および研磨屑を必要最小限にすることが可能になり、材料の無駄も低減できる。加えて、加工量が少ないために、レンズの厚み精度も向上する。 Furthermore, according to the lens blank of the present embodiment, the amount of machining allowance can be greatly reduced when grinding and polishing to obtain a lens, so that it is possible to minimize grinding scraps and polishing scraps. In addition, material waste can be reduced. In addition, since the amount of processing is small, the lens thickness accuracy is also improved.
 このような本実施形態に係るレンズブランクは、レンズを製造する際の取り代量(レンズブランク表面の中心部における削り代量)を、例えば200μm以下、さらには150μm以下とした場合であっても、優れた良品率を達成できる(得られるレンズに表面欠陥等が残らない)。取り代量が少ないほど研削や研磨に要する時間を短縮できて好ましい。なお、本実施形態に係るレンズブランクであっても、取り代量が少なすぎると、得られるレンズの表面に欠陥が残り良品率が低下するため、取り代量を100μm以上とすることがより好ましい。 In such a lens blank according to the present embodiment, even when the amount of machining allowance at the time of manufacturing the lens (the amount of machining at the center of the lens blank surface) is, for example, 200 μm or less, further 150 μm or less. , An excellent non-defective product rate can be achieved (no surface defects or the like remain on the obtained lens). The smaller the machining allowance, the shorter the time required for grinding and polishing, which is preferable. Even in the case of the lens blank according to the present embodiment, if the amount of machining allowance is too small, defects remain on the surface of the obtained lens and the yield rate decreases, so that the amount of machining allowance is more preferably 100 μm or more. .
 レンズブランク2bのサイズや重量について特に制限はないが、重量が5グラム以上、さらに好ましくは10グラム以上であるレンズブランクの場合に、本発明の作用効果が大きい。本発明のレンズブランクは、特に中口径および大口径のガラスレンズを成形するのに適している。その理由としては、中口径および大口径のガラスレンズは、小径のガラスレンズに比べて研削および研磨に要する加工時間が長くなるところ、本発明によればこの加工時間を短縮でき、ひいては材料ロスを低減できるので、本発明による効果を一層発揮できるからである。 The size and weight of the lens blank 2b are not particularly limited, but the effect of the present invention is great when the lens blank has a weight of 5 grams or more, more preferably 10 grams or more. The lens blank of the present invention is particularly suitable for molding glass lenses having medium and large diameters. The reason for this is that medium- and large-diameter glass lenses require a longer processing time for grinding and polishing than small-diameter glass lenses. According to the present invention, this processing time can be shortened, resulting in material loss. It is because it can reduce, and the effect by this invention can be exhibited further.
<光学レンズ>
 本実施形態に係る光学レンズ(以下、単に「レンズ」ということがある。)は、本実施形態によって得られた研磨用ガラスレンズブランク(以下、単に「レンズブランク」ということがある。)を、研削および研磨することにより形成される。
<Optical lens>
The optical lens according to the present embodiment (hereinafter sometimes simply referred to as “lens”) is a polishing glass lens blank (hereinafter also simply referred to as “lens blank”) obtained according to the present embodiment. It is formed by grinding and polishing.
 以下、図8および図9を参照しながら、図7(A)に示す研磨用ガラスレンズブランク2bの研削および研磨工程について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施できる。 Hereinafter, the grinding and polishing process of the polishing glass lens blank 2b shown in FIG. 7A will be described in detail with reference to FIGS. 8 and 9, but the present invention is not limited to the following embodiment. However, the present invention can be implemented with appropriate modifications within the scope of the object of the present invention.
 図9に示すステップS10では、まず、図7(A)に示すレンズブランク2bの主表面の球面研削工程(CG加工)が行われる。CG加工に用いられるカーブジェネレータ(curve generator)としては、特に限定されず、公知のものが用いられる。 In step S10 shown in FIG. 9, first, a spherical grinding step (CG processing) of the main surface of the lens blank 2b shown in FIG. 7A is performed. The curve generator used for CG processing is not particularly limited, and a known one is used.
 CG加工では、図8に示すように、レンズブランク2bの主表面の中央部における欠陥含有層90aを含むCG加工領域92(CG加工代)が研削される。CG加工は、粒度表示で#400~#800の砥粒部を有する砥石を用いて、研削液を供給しながら研削する。 In the CG processing, as shown in FIG. 8, the CG processing region 92 (CG processing allowance) including the defect-containing layer 90a at the center of the main surface of the lens blank 2b is ground. In the CG processing, grinding is performed using a grindstone having an abrasive grain portion of # 400 to # 800 in terms of grain size while supplying a grinding fluid.
 このようなCG加工を経ることで、レンズブランク2bの主表面は所定の曲率を有する球面に近い形状になる。 Through such CG processing, the main surface of the lens blank 2b becomes a shape close to a spherical surface having a predetermined curvature.
 また、このようなCG加工では、レンズブランクの主表面に形成された表面欠陥の除去も行う。通常、レンズブランクの主表面(特に中央部)に形成された表面欠陥が深部にまで及んでいる(すなわち、主表面(特に中央部)における欠陥含有層が厚い)場合には、研削・研磨後のレンズに、表面欠陥を残さないように、CG加工の段階で主表面を比較的多量に削り取る必要がある。 Also, in such CG processing, surface defects formed on the main surface of the lens blank are also removed. Usually, when the surface defect formed on the main surface (especially the central part) of the lens blank extends to the deep part (that is, the defect-containing layer on the main surface (especially the central part) is thick), after grinding and polishing It is necessary to scrape a relatively large amount of the main surface at the stage of CG processing so as not to leave surface defects in the lens.
 本実施形態に係るレンズブランク2bでは、主表面80の中央部80aに形成される欠陥含有層90aの厚みが50μm以下と少ない(主表面82において同じ)ため、CG加工の段階で、主表面を多量に削る(すなわち、欠陥含有層の大半を取り除く)必要がない。すなわち、CG加工の加工量を大幅に低減しても(ひいては、CG加工を除いても)、研削・研磨の全工程を通して、主表面(特に中央部)に形成された表面欠陥を十分に除去できる。 In the lens blank 2b according to the present embodiment, since the thickness of the defect-containing layer 90a formed in the central portion 80a of the main surface 80 is as small as 50 μm or less (the same is true in the main surface 82), the main surface is removed at the stage of CG processing. It is not necessary to sharpen a large amount (that is, remove most of the defect-containing layer). In other words, even if the processing amount of CG processing is greatly reduced (and excluding CG processing), surface defects formed on the main surface (especially the central portion) are sufficiently removed through all grinding and polishing processes. it can.
 このような本実施形態に係るレンズブランク2bでは、CG加工用砥石として、比較的粒度の細かい砥石を用いることができる。通常、粒度の細かい砥石では、一度に多量な加工は困難であるため、目的とする加工量が多い場合には処理できない。しかし、本実施形態に係るレンズブランク2bは、CG加工で目的とする加工量を低減できるため、比較的粒度の細かい砥石であってもCG加工を完了できる。 In the lens blank 2b according to the present embodiment, a grindstone having a relatively fine particle size can be used as a grindstone for CG processing. Usually, with a grindstone with a fine grain size, it is difficult to perform a large amount of processing at a time, so that it cannot be processed when the target processing amount is large. However, since the lens blank 2b according to the present embodiment can reduce the target processing amount in the CG processing, the CG processing can be completed even with a relatively fine grindstone.
 また、本実施形態に係るレンズブランク2bでは、比較的粒度の細かい砥石でCG加工を行うことができるので、CG加工により生じる微小クラックがガラスの深部にまで及ぶのを防止できる。 Moreover, in the lens blank 2b according to the present embodiment, since CG processing can be performed with a relatively fine grindstone, it is possible to prevent micro cracks generated by CG processing from reaching the deep part of the glass.
 通常、CG加工などの研削処理では、加工したレンズブランクの表面に、新たに無数の微小クラックが発生する。特に、粒度が大きい砥石を用いる場合には、一度に加工できる量は増えるが、一方で、CG加工により発生する微小クラックが、レンズブランクの深部に及ぶ傾向があり、後工程(精研削等)で微小クラックを除去するのが困難となる。 Usually, in grinding processing such as CG processing, innumerable micro cracks are newly generated on the surface of the processed lens blank. In particular, when a grindstone with a large particle size is used, the amount that can be processed at a time increases, but on the other hand, micro cracks generated by CG processing tend to reach the deep part of the lens blank, and subsequent processes (such as fine grinding) This makes it difficult to remove microcracks.
 これに対し、比較的粒度の細かい砥石を用いる場合には、一度に加工できる量は少ないが、加工により生じる微小クラックも極端に深くならず(例えば、表面から15μm以下に留まり)、後工程で十分に微小クラックを除去できる。 On the other hand, when a grindstone having a relatively fine grain size is used, the amount that can be processed at a time is small, but microcracks generated by processing do not become extremely deep (for example, remain at 15 μm or less from the surface), and in a later step Micro cracks can be removed sufficiently.
 なお、CG加工領域92の厚みは、特に限定されないが、好ましくは50~200μmである。CG加工に要する加工時間は、特に限定されないが、45~90秒程度である。 The thickness of the CG processing region 92 is not particularly limited, but is preferably 50 to 200 μm. The processing time required for CG processing is not particularly limited, but is about 45 to 90 seconds.
 次に、図9に示すように、ステップS11では、精研削工程によるスムージング加工(SM加工)が行われる。SM加工は、一段階の加工でも良いが、多段階の加工でも良い。図8に示す例では、SM加工を、条件を変えて2回行っている。すなわち、第1回目のSM加工では、図8に示す第1のSM加工領域94a(SM加工代)が加工により除去され、第2回目のSM加工では、第2のSM加工領域94bが加工により除去される。したがって、これらのSM加工により、CG加工で生じた微小クラックは、ほとんど除去される。 Next, as shown in FIG. 9, in step S11, a smoothing process (SM process) by a precision grinding process is performed. The SM processing may be one-step processing, but may be multi-step processing. In the example shown in FIG. 8, SM machining is performed twice under different conditions. That is, in the first SM machining, the first SM machining area 94a (SM machining allowance) shown in FIG. 8 is removed by machining, and in the second SM machining, the second SM machining area 94b is machined. Removed. Therefore, the micro cracks generated by the CG processing are almost removed by these SM processing.
 また、本実施形態では、これらのSM加工においては、好ましくは金属ボンドの砥石を用いることなく樹脂ボンド砥石のみを用いる加工を行う。これにより、本実施形態では、SM加工時にレンズブランクの表面に生じる微小クラックの深さを、極めて浅く抑えることができる。 Further, in the present embodiment, in these SM processing, processing using only a resin bond grindstone is preferably performed without using a metal bond grindstone. Thereby, in this embodiment, the depth of the micro crack which arises on the surface of a lens blank at the time of SM process can be suppressed very shallowly.
 通常、CG加工と同様に、SM加工でも、砥石のベース部や砥粒部と、レンズブランクとが接触することにより、加工したレンズブランクの表面に、新たに無数の微小クラックが発生する。特に、金属ボンド砥石を用いる場合には、SM加工の際に、砥石の金属ベース部がレンズブランクと接触することにより、レンズブランクの表面に数十ミクロン(例えば、30~40μm)の微小クラックが発生する。 Usually, as in CG processing, in SM processing, the base portion or abrasive grain portion of the grindstone and the lens blank come into contact with each other, and innumerable micro cracks are newly generated on the surface of the processed lens blank. In particular, when a metal bond grindstone is used, a small crack of several tens of microns (for example, 30 to 40 μm) is formed on the surface of the lens blank by contacting the metal base of the grindstone with the lens blank during SM processing. appear.
 これに対し、樹脂ボンド砥石を用いる場合には、金属ボンド砥石に比べて、砥石のベース部分とレンズブランクとの接触による衝撃が、格段に低減されるため、SM加工の際に生じる微小クラックの深さを、数ミクロン以下(例えば、5μm以下)に留めることができる。 On the other hand, when using a resin bond grindstone, the impact caused by the contact between the base portion of the grindstone and the lens blank is significantly reduced as compared with a metal bond grindstone. The depth can be kept to a few microns or less (eg, 5 μm or less).
 このように金属ボンド砥石を用いることなく、樹脂ボンド砥石のみを用いる本実施形態では、SM加工により生じる微小クラックの深さを大幅に低減できる。このような樹脂ボンド砥石としては、粒度表示で#1200~#2500の砥石を用いることが好ましい。また、本実施形態では、第2のSM加工で用いる砥石の粗さは、第1のSM加工で用いる砥石の粗さに比較して細かい。 In this embodiment using only a resin bond grindstone without using a metal bond grindstone as described above, the depth of micro cracks caused by SM processing can be greatly reduced. As such a resin bond grindstone, it is preferable to use a grindstone of # 1200 to # 2500 in terms of particle size. In the present embodiment, the roughness of the grindstone used in the second SM machining is fine compared to the roughness of the grindstone used in the first SM machining.
 さらに、本実施形態では、第2のSM加工の際に、比較的細かい粒度の樹脂ボンド砥石を用いるため、粒度の大きな砥石を用いる場合に比べて、発生する微小クラックの深さをさらに低減できる。このような本実施形態によれば、後工程(研磨加工)の加工量を10μm以下とすることができる。 Furthermore, in this embodiment, since the resin bond grindstone having a relatively fine particle size is used in the second SM processing, the depth of the generated microcracks can be further reduced as compared with the case of using a grindstone having a large particle size. . According to the present embodiment as described above, the processing amount of the post-process (polishing process) can be set to 10 μm or less.
 SM加工に要する加工時間は、特に限定されないが、トータルで80~240秒程度である。本実施形態では、第2のSM加工の加工時間は、第1のSM加工の加工時間に比較して長い。SM加工領域94a,94bの厚みは、特に限定されないが、トータルで、好ましくは10~70μmであり、本実施形態では、第1のSM加工領域94aの厚みの方が、第2のSM加工領域94bの厚みよりも長いが、同じでも短くても良い。 The machining time required for SM machining is not particularly limited, but is about 80 to 240 seconds in total. In the present embodiment, the machining time for the second SM machining is longer than the machining time for the first SM machining. The thickness of the SM processing regions 94a and 94b is not particularly limited, but is preferably 10 to 70 μm in total, and in this embodiment, the thickness of the first SM processing region 94a is the second SM processing region. Although it is longer than the thickness of 94b, it may be the same or shorter.
 次に、図9に示すように、ステップS12では、研磨加工が行われる。研磨工程では、5μm以下の粒径の研磨砥粒を含む研磨液で表面を研磨して、図8に示す研磨領域96(研磨代)を研磨する。研磨領域96の厚みは、好ましくは3~10μmであり、加工時間は2~10分程度である。この研磨工程により、光学レンズ本体90bの光学レンズ面90c(主表面)が形成される。 Next, as shown in FIG. 9, in step S12, polishing is performed. In the polishing step, the surface is polished with a polishing liquid containing abrasive grains having a particle size of 5 μm or less, and the polishing region 96 (polishing allowance) shown in FIG. 8 is polished. The thickness of the polishing region 96 is preferably 3 to 10 μm, and the processing time is about 2 to 10 minutes. By this polishing process, the optical lens surface 90c (main surface) of the optical lens body 90b is formed.
 最後に、図9に示すステップS13にて芯取り工程が行われるが、場合によっては芯取り工程は省略することもできる。芯取り工程では、例えばレンズ本体90bを一対のレンズホルダで挟持して心出しを行い、その中心線周りにレンズ本体90bを回転させながら、レンズ本体90bの側周面をダイヤモンド砥石等で真円に研削する加工である。 Finally, the centering process is performed in step S13 shown in FIG. 9, but the centering process may be omitted in some cases. In the centering step, for example, the lens body 90b is sandwiched between a pair of lens holders to perform centering, and the lens body 90b is rotated around the center line, and the side peripheral surface of the lens body 90b is rounded with a diamond grindstone or the like. It is a process to grind.
 ここまで、図9に示す研削および研磨工程を例に説明してきたが、本実施形態に係るレンズブランク2bを用いた光学レンズの製造工程は、このような工程に限定されるものではなく、種々の工程で行うことができる。 Up to this point, the grinding and polishing process shown in FIG. 9 has been described as an example. However, the manufacturing process of the optical lens using the lens blank 2b according to the present embodiment is not limited to such a process. It can be performed in the process.
 例えば、本実施形態に係るレンズブランク2bでは、図9に示すステップS10のCG加工を行わないことも可能である。 For example, in the lens blank 2b according to the present embodiment, it is possible not to perform the CG processing in step S10 shown in FIG.
 上述のように、本実施形態に係るレンズブランク2bは、主表面80の中央部80aに形成される欠陥含有層90aの厚みが50μm以下と少なく(主表面82において同じ)、研削・研磨加工により除去すべき主表面の厚みが、そもそも少ない。このような本実施形態に係るレンズブランク2bでは、欠陥含有層を除去するために多量の加工を行う必要がなく、SM加工以降の加工処理のみで、十分に表面欠陥層を除去できる。 As described above, in the lens blank 2b according to the present embodiment, the thickness of the defect-containing layer 90a formed in the central portion 80a of the main surface 80 is as small as 50 μm or less (same in the main surface 82), and grinding and polishing are performed. In the first place, the thickness of the main surface to be removed is small. In such a lens blank 2b according to the present embodiment, it is not necessary to perform a large amount of processing in order to remove the defect-containing layer, and the surface defect layer can be sufficiently removed only by processing after SM processing.
 なお、CG加工を除く場合には、SM加工の際に金属ボンド砥石を用いていても良い。なお、金属ボンド砥石を用いた場合には、上述のような微小クラックが深くなる問題があるが、樹脂ボンド砥石に比べて加工量を多く設定できる点で有効である。 In addition, when excluding CG processing, a metal bond grindstone may be used during SM processing. In addition, when a metal bond grindstone is used, there exists a problem which the above micro cracks become deep, but it is effective at the point which can set many process amounts compared with a resin bond grindstone.
 このようにして両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズ、凸メニスカスレンズ、凹メニスカスレンズなどの種々の光学レンズを得ることができる。 Thus, various optical lenses such as a biconvex lens, a biconcave lens, a planoconvex lens, a planoconcave lens, a convex meniscus lens, and a concave meniscus lens can be obtained.
 本実施形態に係る製造方法により得られるレンズブランク2bは、中央部80aにおける欠陥含有層90aの厚みが50μm以下である。そのため、このレンズブランク2bに対して、レンズを得る際の研削および研磨に要する加工時間を、極端に短くすることができる。 In the lens blank 2b obtained by the manufacturing method according to the present embodiment, the thickness of the defect-containing layer 90a in the central portion 80a is 50 μm or less. Therefore, the processing time required for grinding and polishing for obtaining a lens for the lens blank 2b can be extremely shortened.
 そのため、本実施形態に係る光学レンズの製造方法によれば、従来のカットピース工法により得られる研磨用ガラスレンズブランクを用いる場合と比較して、光学レンズを得る際の研削および研磨に要する加工時間を、略半分以下に短縮できる。また、特許文献1(特許第3806288号公報)に示す方法により得られる研磨用ガラスレンズブランクを用いる場合と比較しても、光学レンズを得る際の研削および研磨に要する加工時間を、略半分以下に短縮できる。 Therefore, according to the manufacturing method of the optical lens according to the present embodiment, the processing time required for grinding and polishing when obtaining the optical lens, as compared with the case where the polishing glass lens blank obtained by the conventional cut piece method is used. Can be reduced to approximately half or less. Further, even when using a polishing glass lens blank obtained by the method described in Patent Document 1 (Japanese Patent No. 3806288), the processing time required for grinding and polishing for obtaining an optical lens is approximately half or less. Can be shortened.
 また、本実施形態に係る光学レンズの製造方法によれば、研削加工および研磨加工時における研削屑および研磨屑を必要最小限にすることが可能になり、材料の無駄もなくせる。加えて、加工量が少ないために、光学レンズの厚み精度も向上する。 Further, according to the method of manufacturing an optical lens according to the present embodiment, it becomes possible to minimize grinding waste and polishing waste at the time of grinding and polishing, thereby eliminating material waste. In addition, since the processing amount is small, the thickness accuracy of the optical lens is also improved.
 また、得られたレンズの光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしても良い。 Further, the optical functional surface of the obtained lens may be coated with an antireflection film, a total reflection film or the like according to the purpose of use.
 本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。 The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.
 例えば、上記本発明の一実施形態では、光学ガラス素材の第1の主面4と第2の主面6とが平行である旨を説明したが、ここにいう平行とは実質的な平行を意味するもので、本発明を逸脱しない限り、平行から多少ずれても良い。 For example, in the above-described embodiment of the present invention, it has been described that the first main surface 4 and the second main surface 6 of the optical glass material are parallel to each other. It means, and may deviate somewhat from the parallel without departing from the present invention.
 また、上記本実施形態では、本発明に係る研磨用ガラスレンズブランクにより光学レンズを作製する際、CG加工後のSM加工において、好ましくは金属ボンド砥石を用いない態様を例示したが、CG加工後のSM加工において金属ボンド砥石を用いることを妨げるものではない。すなわち、本実施形態に係る研磨用ガラスレンズブランクは、従来から行われている光学レンズの種々の製造工程および条件にも、好適に用いることができる。 Further, in the present embodiment, when an optical lens is manufactured using the polishing glass lens blank according to the present invention, an example in which a metal bond grindstone is preferably not used in SM processing after CG processing is illustrated. This does not preclude the use of a metal bond grindstone in SM processing. That is, the glass lens blank for polishing according to the present embodiment can be suitably used for various production processes and conditions of optical lenses that have been conventionally performed.
 また、本実施形態では、本発明に係る光学ガラス素材を用いて研磨用ガラスレンズブランク、ひいては光学レンズを作製する態様を例示したが、本発明に係る光学ガラス素材はこれらの用途に限定されることはなく、種々の研磨用ガラス光学素子ブランク、ひいてはガラス光学素子の作製のために用いることができる。このような光学素子としては、上述した各種光学レンズの他、プリズム、回折格子などが例示できる。なお、本発明は、光学レンズ、特に球面レンズに好適である。 Moreover, in this embodiment, although the glass glass blank for polishing and the aspect which produces an optical lens using the optical glass raw material which concerns on this invention were illustrated, the optical glass raw material which concerns on this invention is limited to these uses. It can be used for the production of various polishing glass optical element blanks, and thus glass optical elements. Examples of such optical elements include prisms and diffraction gratings in addition to the various optical lenses described above. The present invention is suitable for optical lenses, particularly spherical lenses.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.
(実施例1)
 所定の組成となるように原材料を調合、熔解し、得られたホウ酸ランタン系の熔融ガラスを、白金合金製の流出パイプより一定スピードで連続的に流下して、図2および図3に示す固定鋳型34に向かって流し込み、冷却して図1(B)に示すガラス素材20(以下、ガラス素材ブロックという)を成形した。この成形の過程でガラス素材ブロック20は、熔融ガラスの転移温度(Tg)もしくはTgよりやや高温のアニール炉内を通してアニール処理され、その後、ガラス素材ブロック20を室温程度に降温した。
Example 1
The raw materials are prepared and melted so as to have a predetermined composition, and the obtained lanthanum borate-based molten glass is continuously flowed down from a platinum alloy outflow pipe at a constant speed, as shown in FIGS. The glass material 20 (hereinafter referred to as a glass material block) shown in FIG. 1B was molded by pouring toward the fixed mold 34 and cooling. In this molding process, the glass material block 20 was annealed through an annealing furnace slightly higher than the transition temperature (Tg) or Tg of the molten glass, and then the glass material block 20 was cooled to about room temperature.
 なお、熔融ガラス20aが鋳込まれる際、側壁38aに沿って広範囲の対流が生じることはなく、得られたガラス素材ブロック20において、内部に脈理が発生することもなかった。 In addition, when the molten glass 20a was cast, a wide range of convection did not occur along the side wall 38a, and no striae occurred inside the obtained glass material block 20.
 次に、アニール処理された断面が台形型のガラス素材ブロック20(短辺側の幅(W1)38mm、長辺側の幅(W2)50mm、高さ(H1)34mm、角度(θ1)100°、(θ2)100°)を、ダイヤモンドカッターで切断し、長さ(L0)約400mmの棒状のガラス素材ブロックを複数個作製した。次いで、図5に示す切断装置70のワイヤーソー72を用いて、それぞれの棒状のガラス素材ブロックを一定の幅に切断し、図1(A)に示す小片化されたガラス素材2(厚さ(L1)6mm、その他のサイズは、ガラス素材ブロック20と同じ、また、以下、ガラス素材片という)を100個準備した。 Next, the annealed cross section is a trapezoidal glass material block 20 (short side width (W1) 38 mm, long side width (W2) 50 mm, height (H1) 34 mm, angle (θ1) 100 °. , (Θ2) 100 °) was cut with a diamond cutter to produce a plurality of rod-shaped glass material blocks having a length (L0) of about 400 mm. Next, using the wire saw 72 of the cutting device 70 shown in FIG. 5, each rod-shaped glass material block is cut into a certain width, and the glass material 2 (thickness (thickness (thickness)) shown in FIG. L1) 6 mm, and other sizes were the same as those of the glass material block 20, and hereinafter, 100 pieces of glass material pieces) were prepared.
 次に、再加熱工程で用いる再加熱用装置の軟化用受け皿50に離型剤を塗布した。 Next, a release agent was applied to the softening tray 50 of the reheating device used in the reheating process.
 予め準備しておいたガラス素材片2を、主面4が上向きになるような姿勢で、離型剤が塗布された受け皿50上に供給した。受け皿50上に供給されたガラス素材片2を、受け皿50とともに500~750℃に設定された加熱炉に投入し、大気雰囲気下で再加熱した。再加熱されたガラス素材は約10dPa・sの粘度に軟化した。 The glass material piece 2 prepared in advance was supplied on a receiving tray 50 coated with a release agent in such a posture that the main surface 4 faces upward. The glass material piece 2 supplied on the saucer 50 was put together with the saucer 50 into a heating furnace set at 500 to 750 ° C. and reheated in an air atmosphere. The reheated glass material was softened to a viscosity of about 10 5 dPa · s.
 次いで、再加熱により軟化したガラス素材をプレス成形用の成形型で大気雰囲気下においてプレス成形して、片面凸形状のレンズブランクA(直径35mm、高さ14mm)を100個作製した。なお、成形型の成形面には予め離型剤を塗布しておき、500℃の温度に加熱した成形型を用いた。 Next, 100 glass blanks having a single-sided convex shape (diameter 35 mm, height 14 mm) were produced by press-molding a glass material softened by reheating in a press-molding mold in an air atmosphere. In addition, the mold which applied the mold release agent beforehand to the molding surface of a shaping | molding die, and heated to the temperature of 500 degreeC was used.
(比較例1)
 比較例1では、実施例1と同様の方法にて熔解された熔融ガラスを、白金合金製の流出パイプより一定スピードで連続的に流下して、流下したガラスをガラス塊成形用の成形型を用いて次々と受けて、ガラス塊を連続的に成形した。ガラスの温度がガラス転移温度以下に下がった時点でガラス塊を成形型から取り出し、熔融ガラスの転移温度(Tg)もしくはTgよりやや高温のアニール炉内でアニール処理した後、室温程度に降温し、ガラス塊(直径約33mm、厚さ約10mm)を100個作製した。
(Comparative Example 1)
In Comparative Example 1, the molten glass melted in the same manner as in Example 1 was continuously flowed from a platinum alloy outflow pipe at a constant speed, and the flowed glass was used as a mold for forming a glass lump. A glass lump was continuously formed by using one after another. When the temperature of the glass drops below the glass transition temperature, the glass lump is taken out from the mold, annealed in an annealing furnace slightly higher than the transition temperature (Tg) or Tg of the molten glass, and then cooled to about room temperature. 100 glass lumps (diameter: about 33 mm, thickness: about 10 mm) were produced.
 次に、得られたガラス塊にバレル研磨を施し、表面を荒らして離型剤を塗布しやすくするとともに、目的とするレンズブランクの重量と等しくなるよう重量調整を行った。なお、この工程中、アニール処理が十分施されたガラスは破損することはなかった。また、このような予備工程(バレル研磨)を経たガラス塊の表面は粗ずり面であった。 Next, the obtained glass lump was barrel-polished to roughen the surface to make it easier to apply the release agent, and the weight was adjusted to be equal to the weight of the target lens blank. During this step, the glass that had been sufficiently annealed was not damaged. Moreover, the surface of the glass lump which passed through such a preliminary process (barrel grinding | polishing) was a rough shear surface.
 ここで、バレル研磨は、研磨容器の中に、ガラス塊とともに粒子状の研磨剤とコンパウンドと水を入れて、研磨容器を回転・上下運動させることにより研磨を行う方法であり、周知のバレル研磨法により行われた。 Here, barrel polishing is a method in which a particulate abrasive and a compound and water are put in a polishing container together with a glass lump, and polishing is performed by rotating and moving the polishing container up and down. Made by law.
 次いで、バレル研磨が施されたガラス塊の表面に、粉末状の離型剤(窒化ホウ素)を塗して、軟化用受け皿50上に配置し、加熱炉で再加熱した。この再加熱工程以降は、実施例1と同様の方法により、レンズブランクBを100個作製した。 Next, a powdery release agent (boron nitride) was applied to the surface of the glass lump subjected to barrel polishing, placed on the softening tray 50, and reheated in a heating furnace. After this reheating step, 100 lens blanks B were produced in the same manner as in Example 1.
(比較例2)
 比較例2では、実施例1と同様の方法にて熔解された熔融ガラスを白金合金製の流出パイプから一方の側面が開口した鋳型に連続的に供給し、冷却して一定の幅および厚みを有する板状ガラスを成形した。この成形の過程で板状ガラスは、熔融ガラスの転移温度(Tg)もしくはTgよりやや高温のアニール炉内を通してアニール処理された。
(Comparative Example 2)
In Comparative Example 2, molten glass melted by the same method as in Example 1 is continuously supplied from a platinum alloy outflow pipe to a mold having one side open, and cooled to have a certain width and thickness. The plate glass which has is shape | molded. During the molding process, the sheet glass was annealed through a transition temperature (Tg) of the molten glass or an annealing furnace slightly higher than Tg.
 次に、アニール処理されたガラス板を一定のサイズ(縦20mm×横20mm×高さ20mm)に切断してカットピースと呼ばれるガラス片を100個得た。さらに、カットピースにバレル研磨を施してエッジを丸めるとともに、目的とするレンズブランクの重量と等しくなるよう重量調整を行った。この工程中、アニール処理が十分施されたガラスは破損することはなかった。なお、バレル研磨の条件は、上述のガラス塊に対するバレル研磨と同じである。 Next, the annealed glass plate was cut into a certain size (length 20 mm × width 20 mm × height 20 mm) to obtain 100 pieces of glass called cut pieces. Further, the cut piece was barrel-polished to round the edge, and the weight was adjusted to be equal to the weight of the target lens blank. During this process, the glass that had been sufficiently annealed did not break. The barrel polishing conditions are the same as the barrel polishing for the glass lump described above.
 このような予備工程(バレル研磨)を経たカットピースの表面は粗ずり面であった。次いで、このカットピースの表面に粉末状の離型剤(窒化ホウ素)を塗して、軟化用受け皿50上に配置し、加熱炉で再加熱した。この再加熱工程以降は、実施例1と同様の方法により、レンズブランクCを100個作製した。 The surface of the cut piece that had undergone such a preliminary process (barrel polishing) was a rough surface. Next, a powder release agent (boron nitride) was applied to the surface of the cut piece, placed on the softening tray 50, and reheated in a heating furnace. After this reheating step, 100 lens blanks C were produced by the same method as in Example 1.
 次に、得られたレンズブランクA~Cについて以下の評価を行った。 Next, the obtained lens blanks A to C were evaluated as follows.
(評価1;欠陥含有層の存在領域の確認)
 以下の方法により、レンズブランクA~Cの主表面の中央部における欠陥含有層の存在を確認した。
(Evaluation 1: Confirmation of existence area of defect-containing layer)
The presence of the defect-containing layer in the central portion of the main surface of the lens blanks A to C was confirmed by the following method.
 まず、得られたレンズブランクA~Cをそれぞれ25個ずつ準備し、各レンズブランクの主表面から深さ50μm、80μmおよび100μmまで、レンズブランクの表面を研磨した。 First, 25 lens blanks A to C obtained were prepared, and the surface of the lens blank was polished from the main surface of each lens blank to a depth of 50 μm, 80 μm and 100 μm.
 評価1で行った研磨は、レンズブランクの主表面における欠陥含有層の厚みを確認するための研磨である。したがって、最終レンズ形状を無視して、レンズブランクの表面を研磨加工のみで段階的に研磨している。なお、後述する評価2における研削・研磨は、光学レンズの形状を作り出す研削・研磨であり、本評価における研磨処理とは異なる。また、研磨加工後のレンズの直径は、加工前のレンズブランクの直径と同じである。 Polishing performed in Evaluation 1 is polishing for confirming the thickness of the defect-containing layer on the main surface of the lens blank. Therefore, the final lens shape is ignored, and the surface of the lens blank is polished stepwise by only polishing. Note that grinding / polishing in evaluation 2 described later is grinding / polishing that creates the shape of the optical lens, and is different from the polishing treatment in this evaluation. Further, the diameter of the lens after polishing is the same as the diameter of the lens blank before processing.
 レンズブランクの主表面から所定の深さまで研磨加工した、表面加工済みレンズブランク(各25点)に対し、アルゴンランプを照射し、輝点観察を行った。結果を図10に示す。 The surface-finished lens blanks (25 points each) polished from the main surface of the lens blank to a predetermined depth were irradiated with an argon lamp to observe bright spots. The results are shown in FIG.
 図10は、実施例に係る輝点観察の結果を示す図である。通常、欠陥含有層の厚みは、レンズブランク毎に多少のバラつきがある。そのため、複数のレンズブランクについて、主表面から同じ深さまで研磨加工すると、欠陥含有層の厚みが比較的厚いレンズブランクにおいては欠陥含有層が十分に除去しきれず、研磨後のレンズに欠陥含有層が残る場合がある。このような加工後のレンズに残存する欠陥含有層は、光を散乱させるため、輝点の原因となる。 FIG. 10 is a diagram showing the results of bright spot observation according to the example. Usually, the thickness of the defect-containing layer varies somewhat for each lens blank. Therefore, when a plurality of lens blanks are polished from the main surface to the same depth, the defect-containing layer cannot be sufficiently removed in the lens blank having a relatively thick defect-containing layer, and the lens after polishing has a defect-containing layer. May remain. Such a defect-containing layer remaining on the processed lens scatters light and causes bright spots.
 したがって、加工後のレンズの中央部(レンズの中心点から、レンズ半径の2/3までの領域内)において輝点が観察されないものを良品とし、レンズブランクの良品率を算出した。本実施例では、加工後の良品率100%を良好とした。結果を表1に示す。 Therefore, the non-defective product was calculated as a non-defective product in which no bright spot was observed in the center of the lens after processing (in the region from the center point of the lens to 2/3 of the lens radius). In this example, a good product rate of 100% after processing was considered good. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本発明に係るレンズブランクAでは、レンズブランクの主表面から深さ50μmの表面加工量で、既に、良品率100%となった。そのため、レンズブランクの主表面から深さ80μmおよび100μmの表面加工量での研磨加工は行わなかった。 As shown in Table 1, in the lens blank A according to the present invention, the non-defective rate was already 100% with a surface processing amount of 50 μm depth from the main surface of the lens blank. For this reason, polishing with a surface processing amount of 80 μm and 100 μm in depth from the main surface of the lens blank was not performed.
 このように、本発明に係るレンズブランクAは、50μmの表面加工量(研磨量)で良品率100%となり、図10(a)に示すように、いずれの試料でも加工後のレンズブランクの中央部には輝点は観察されなかった。すなわち、本発明に係るレンズブランクAでは、主表面から少なくとも深さ50μm研磨することで、主表面の中央部の欠陥含有層を全て除去できることが確認された。 Thus, the lens blank A according to the present invention has a non-defective product rate of 100% with a surface processing amount (polishing amount) of 50 μm, and as shown in FIG. No bright spot was observed in the part. That is, in the lens blank A according to the present invention, it was confirmed that all the defect-containing layers at the center of the main surface can be removed by polishing at least 50 μm from the main surface.
 このことから、レンズブランクAにおいて、レンズブランク毎のバラつきを含めてもなお、レンズブランクの主表面の中央部に形成されている欠陥含有層の厚みは、50μm以下であることが確認された。 From this, it was confirmed that in the lens blank A, the thickness of the defect-containing layer formed at the center portion of the main surface of the lens blank is 50 μm or less even when the variation for each lens blank is included.
 一方、図10(b)に示されるように、本発明の比較例に相当するレンズブランクBでは、表面加工量50μmの研磨では、良品率0%で、全ての試料でレンズの中央部にも輝点が観察された。すなわち、レンズブランクBの場合、レンズブランクの主表面から深さ50μm程度の研磨を行っても、その主表面の中央部に存在する欠陥含有層を全て取り除くことはできない。 On the other hand, as shown in FIG. 10B, in the lens blank B corresponding to the comparative example of the present invention, when polishing with a surface processing amount of 50 μm, the non-defective rate is 0%, and all the samples are also in the center of the lens A bright spot was observed. That is, in the case of the lens blank B, even if polishing is performed at a depth of about 50 μm from the main surface of the lens blank, it is not possible to remove all the defect-containing layers present in the central portion of the main surface.
 このように、レンズブランクBは、レンズブランク毎のバラつきを含めてもなお、レンズブランクの主表面の中央部に形成されている欠陥含有層の厚みは、少なくとも50μmを超えることが確認された。 Thus, it was confirmed that the thickness of the defect-containing layer formed in the central portion of the main surface of the lens blank exceeds 50 μm even when the lens blank B includes variations for each lens blank.
 なお、レンズブランクBについては、その主表面から深さ80μm、さらには100μmと研磨すると、良品率が向上することが確認された。 For the lens blank B, it was confirmed that the non-defective product rate was improved by polishing the main surface to a depth of 80 μm and further to 100 μm.
 また、本発明の比較例に相当するレンズブランクCについても、レンズブランクBと同様の傾向が確認された。 Also, the same tendency as the lens blank B was confirmed for the lens blank C corresponding to the comparative example of the present invention.
(評価2;取り代量の確認)
 レンズブランクA~Cについて、以下の方法により、取り代量の確認を行った。
 まず、得られたレンズブランクA~Cをそれぞれ20個ずつ準備し、各レンズブランクの中心部における取り代量を50μm、80μm、100μm、150μm、200μm、300μmおよび500μmとして研削・研磨した。
(Evaluation 2: Confirmation of stock removal amount)
For the lens blanks A to C, the amount of machining allowance was confirmed by the following method.
First, 20 lens blanks A to C obtained were prepared, and ground and polished with the machining allowances at the center of each lens blank being 50 μm, 80 μm, 100 μm, 150 μm, 200 μm, 300 μm and 500 μm.
 また、本評価における取り代量とは、レンズブランクから光学レンズを作製する際に、研削・研磨の全工程において損失するレンズブランク表面の削り代量を意味する。なお、取り代量の観測点は、レンズブランク(研磨後の光学レンズ)の中心部とした。 Further, the machining allowance in this evaluation means the machining allowance on the lens blank surface that is lost in all grinding and polishing processes when an optical lens is produced from the lens blank. In addition, the observation point of the machining allowance was the center of the lens blank (polished optical lens).
 また、評価2で行う研削・研磨は、光学レンズの形状を作り出す研削・研磨であるため、レンズブランクの表面形状に追従するように研磨を行う評価1とは、条件が異なる。 Further, since the grinding / polishing performed in the evaluation 2 is grinding / polishing that creates the shape of the optical lens, the conditions are different from those of the evaluation 1 in which the polishing is performed so as to follow the surface shape of the lens blank.
 レンズブランクを所定の取り代量となるように加工して得た光学レンズ(各20個)に対し、アルゴンランプを照射し、輝点観察を行った。欠陥含有層が残存している箇所は、光が散乱し、輝点となる。このような輝点は、光学レンズとしては不良となるため、輝点がないものを良品とし、良品率を算出した。本実施例においては、良品率100%を良好とした。結果を表2に示す。 An optical lamp (20 pieces each) obtained by processing the lens blank so as to obtain a predetermined machining allowance was irradiated with an argon lamp to observe a bright spot. Light is scattered and becomes a bright spot at the portion where the defect-containing layer remains. Since such a bright spot becomes defective as an optical lens, a product having no bright spot was regarded as a non-defective product, and the yield rate was calculated. In this example, a good product rate of 100% was considered good. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記評価1で確認されているように、本発明に係るレンズブランクAは、主表面の中央部に形成される欠陥含有層の厚みが50μm以下と非常に薄い。そのため、このようなレンズブランクAを用いて光学レンズを作製すれば、レンズ形状を形成しつつ、欠陥含有層を取り除くために設定される取り代量を大幅に低減させることができる。 As confirmed in Evaluation 1 above, in the lens blank A according to the present invention, the thickness of the defect-containing layer formed in the central portion of the main surface is as thin as 50 μm or less. Therefore, if an optical lens is produced using such a lens blank A, the machining allowance set for removing the defect-containing layer can be greatly reduced while forming the lens shape.
 本発明に係るレンズブランクAでは、レンズブランク表面全体において表面欠陥やうねりが少なく、特に、レンズブランク表面の中央部には、レンズブランクの深部に及ぶような深い欠陥がないと考えられる。そのため、このようなレンズブランクAを用いて光学レンズを作製すれば、レンズ形状を形成しつつ、表面欠陥やうねりを取り除くために設定される取り代量を大幅に低減できる。 In the lens blank A according to the present invention, there are few surface defects and waviness on the entire surface of the lens blank, and in particular, it is considered that there is no deep defect extending to the deep part of the lens blank at the center of the lens blank surface. Therefore, if an optical lens is produced using such a lens blank A, the machining allowance set for removing surface defects and waviness can be greatly reduced while forming a lens shape.
 表2に示されるように、本発明に係るレンズブランクAを用いて光学レンズを作製した場合には、レンズブランクの中心部における取り代量を150μmに設定した場合であっても、レンズ全面において欠陥含有層を十分に取り除くことができ、良品率が100%となることが確認された。 As shown in Table 2, when an optical lens was produced using the lens blank A according to the present invention, even when the amount of machining allowance at the center of the lens blank was set to 150 μm, It was confirmed that the defect-containing layer could be removed sufficiently and the yield rate was 100%.
 一方、本発明の比較例に相当するレンズブランクBおよびレンズブランクCは、主表面の中央部に形成される欠陥含有層の厚みが50μmを超える(評価1参照)。特にレンズブランクCでは、軟化時から成形時の加熱により、カットピースの角部が結晶化し、ガラス内部へと折れ込まれ、レンズブランク表面の中央部に、深部に及ぶ欠陥が形成されていると考えられる。そのため、このようなレンズブランクBおよびCを用いて光学レンズを作製した場合には、表面欠陥層を完全に除去するために、取り代量を大きく設定する必要がある。 On the other hand, in the lens blank B and the lens blank C corresponding to the comparative example of the present invention, the thickness of the defect-containing layer formed in the central portion of the main surface exceeds 50 μm (see Evaluation 1). In particular, in the lens blank C, the corner of the cut piece is crystallized by heating from the time of softening to the time of molding, and is folded into the inside of the glass, and a defect extending deeply is formed in the center of the lens blank surface. Conceivable. Therefore, when an optical lens is manufactured using such lens blanks B and C, it is necessary to set a large machining allowance in order to completely remove the surface defect layer.
 すなわち、表1に示されるように、本発明の比較例に相当するレンズブランクBおよびレンズブランクCを用いて光学レンズを作製した場合に、レンズブランク毎のバラつきを踏まえた上で、レンズ全面の欠陥含有層を完全に取り除くため、取り代量を500μm以上に設定する必要があることが確認された。 That is, as shown in Table 1, when an optical lens was manufactured using the lens blank B and the lens blank C corresponding to the comparative example of the present invention, the variation of each lens blank was taken into consideration, and In order to completely remove the defect-containing layer, it was confirmed that the machining allowance must be set to 500 μm or more.
 これに対し、本発明に係るレンズブランクAを用いて光学レンズを作製する場合には、レンズブランクBおよびレンズブランクCと比較して、その取り代量を大幅に低減できるため、研削および研磨に要する時間を極端に短くできる。 On the other hand, when producing an optical lens using the lens blank A according to the present invention, the amount of machining allowance can be greatly reduced as compared with the lens blank B and the lens blank C. The time required can be extremely shortened.
 なお、本発明に係るレンズブランクAは、取り代量50μmの場合、良品率が40%である。これは、レンズブランクAを取り代量50μmで加工しても40%の試料で、未だ欠陥含有層を除去しきれていないことを意味している。しかし、このことをもって、レンズブランクの主表面の中央部における欠陥含有層の厚みが50μmを超えているとの評価ができるものではなく、評価1との間での矛盾はない。 The lens blank A according to the present invention has a yield rate of 40% when the machining allowance is 50 μm. This means that even if the lens blank A is processed with a machining allowance of 50 μm, the defect-containing layer has not yet been removed with a 40% sample. However, with this, it cannot be evaluated that the thickness of the defect-containing layer in the central portion of the main surface of the lens blank exceeds 50 μm, and there is no contradiction with Evaluation 1.
 すなわち、評価1における加工量と、評価2における取り代量とでは、評価している範囲が異なる。すなわち、評価1における加工量は、レンズブランクの主表面における欠陥含有層の厚みそのものを評価しているのに対し、評価2では、光学レンズを作製する際の取り代の量を評価している。 That is, the range to be evaluated differs between the machining amount in Evaluation 1 and the machining allowance in Evaluation 2. That is, while the processing amount in Evaluation 1 evaluates the thickness of the defect-containing layer on the main surface of the lens blank itself, Evaluation 2 evaluates the amount of machining allowance when producing the optical lens. .
 したがって、評価2の取り代量では、単にレンズブランクの主表面に形成される欠陥含有層の厚さによってのみ決まるのではなく、レンズブランク表面のうねり等の他の要因の影響も考慮する必要があるのである。 Therefore, the amount of machining allowance in Evaluation 2 is not only determined solely by the thickness of the defect-containing layer formed on the main surface of the lens blank, but it is also necessary to consider the influence of other factors such as waviness of the lens blank surface. There is.
(評価3;研削・研磨の条件および光学レンズの作製)
 レンズブランクA~Cについて、光学レンズを作製するまでのレンズブランクの研削・研磨の条件の確認を行った。具体的には、光学レンズを作製するまでの研削・研磨として、CG加工(レンズ面球面研削)、SM加工(スムージング加工。なお、必要に応じて複数段階の加工を行う。)およびPO加工(研磨加工)を行う際の各工程の最適な加工条件を確認した。結果を表3に示す。なお、工具、加工量および加工時間は、表3のとおりである。
(Evaluation 3: Grinding / polishing conditions and production of optical lens)
Regarding the lens blanks A to C, the conditions for grinding and polishing of the lens blank until the optical lens was manufactured were confirmed. Specifically, CG processing (lens surface spherical grinding), SM processing (smoothing processing, multi-step processing is performed as necessary), and PO processing (polishing as necessary) are performed as grinding and polishing until an optical lens is manufactured. The optimum processing conditions for each step when performing (polishing) were confirmed. The results are shown in Table 3. The tools, machining amount and machining time are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明に係るレンズブランクAは、主表面の中央部に形成される欠陥含有層の厚みが50μm以下と薄いため、これを用いて光学レンズを作製する場合には、欠陥含有層を除去するのに必要な取り代量を大幅に低減させることができる(評価2参照)。 In the lens blank A according to the present invention, since the thickness of the defect-containing layer formed in the central portion of the main surface is as thin as 50 μm or less, the defect-containing layer is removed when an optical lens is produced using this. The amount of machining allowance required for the process can be greatly reduced (see Evaluation 2).
 そのため、レンズブランクAを用いる場合には、レンズブランクの研削量を低減できるため、比較的目の細かい#600の砥石でCG加工を行っても、研削時間の著しい延長を招くことがない。また、このように目の細かな砥石を用いて研削を行うことにより、研削に伴いレンズ表面に生じる微小クラックの深さ方向への発生や進行を効果的に低減でき、CG加工後のガラス表面(ここでは、最表面から50μm程度までの領域を含む)を比較的良好に維持することができる。 Therefore, when the lens blank A is used, the grinding amount of the lens blank can be reduced. Therefore, even if CG processing is performed with a relatively fine # 600 grindstone, the grinding time is not significantly extended. In addition, by performing grinding using such a fine grindstone, it is possible to effectively reduce the occurrence and progression of microcracks in the depth direction on the lens surface accompanying grinding, and the glass surface after CG processing (Here, including a region from the outermost surface to about 50 μm) can be maintained relatively well.
 その結果、本発明に係るレンズブランクAを用いる場合には、CG加工後のレンズ表面にある研削による加工ダメージ層が少ないため、続いて行うSM加工で、#2500のレジンボンド砥石(例えば、アルファーダイヤモンド工業株式会社製)を用いても、十分に研削による加工ダメージ層を除去することができる。特に、レジンボンド砥石は金属ボンド砥石に比べてSM加工自体で生じる微小クラックの深さを極めて浅くできる。その結果、さらなるSM加工を行うことなく、最終工程である研磨加工(PO加工)に移行することができる。さらに、目の細かい#2500のレジンボンド砥石を用いているため、SM加工後の表面状態が良好に保たれており、PO加工の加工時間を大幅に低減することが可能となる。特にPO加工の加工量は、10μm以下に低減できる。 As a result, when the lens blank A according to the present invention is used, since there is little processing damage layer due to grinding on the lens surface after CG processing, the # 2500 resin bond grindstone (for example, alpha Even when using Diamond Industrial Co., Ltd., the processing damage layer due to grinding can be sufficiently removed. In particular, the resin bond grindstone can extremely reduce the depth of microcracks generated by the SM processing itself as compared with the metal bond grindstone. As a result, it is possible to shift to the polishing process (PO process) as the final process without further SM processing. Furthermore, since a fine # 2500 resin bond grindstone is used, the surface condition after SM processing is maintained well, and the processing time of PO processing can be greatly reduced. In particular, the processing amount of PO processing can be reduced to 10 μm or less.
 一方、本発明の比較例に係るレンズブランクBおよびCは、主表面の中央部に形成される欠陥含有層の厚みが50μmを超える。そのため、これらのレンズブランクを用いて光学レンズを作製する場合には、良品率を高めるにあたり、欠陥含有層を完全に除去しなければならず、そのためには取り代量は大きく設定する必要がある(評価2参照)。 On the other hand, in the lens blanks B and C according to the comparative example of the present invention, the thickness of the defect-containing layer formed in the central portion of the main surface exceeds 50 μm. Therefore, when producing an optical lens using these lens blanks, the defect-containing layer must be completely removed in order to increase the yield rate, and for that purpose, a large machining allowance needs to be set. (See Evaluation 2).
 このようにレンズブランクBおよびCでは、取り代量を大きく設定しなければならないため、研削時間の延長を招く。さらに、取り代量が多いレンズブランクBおよびCの場合、目詰まりを生じやすく、研削が滞るため、CG加工の際に目の細かい砥石(例えば#600以下)を用いることは困難である。そのため、加工時間当たりの研削量を増やすためにも、#230のような目の粗い砥石から、CG加工を開始する必要がある。しかし、目の粗い砥石を用いるため、研削に伴いレンズ表面に生じる深い微小クラック(加工ダメージ層)の発生が免れず、研削によって生じる欠陥層が大きくなる傾向にある。 As described above, in the lens blanks B and C, since the machining allowance must be set large, the grinding time is extended. Further, in the case of the lens blanks B and C having a large machining allowance, clogging is likely to occur, and grinding is delayed. Therefore, it is difficult to use a fine grindstone (for example, # 600 or less) during CG processing. Therefore, in order to increase the grinding amount per processing time, it is necessary to start CG processing from a coarse grinding stone such as # 230. However, since a coarse grindstone is used, the generation of deep microcracks (working damage layer) that occur on the lens surface during grinding is unavoidable, and the defect layer caused by grinding tends to increase.
 このような研削による加工ダメージ層を、その後の工程で除去していくためには、続くSM加工においても、研削量を増やす必要があり、複数回のSM加工が必要になる。特に、多くの研削量を除去するには、金属ボンド砥石を用いることとなり、金属ボンド砥石による研削に伴って新たな微小クラック(例えば、深さが30μm)が生じる。さらに、加工による目詰まりや加工時間の著しい延長を招くことから、レンズブランクAで用いたような目の細かいレジンボンド砥石(#2500)によるSM加工からの開始することも困難である。 In order to remove the processing damage layer due to grinding in the subsequent process, it is necessary to increase the amount of grinding in the subsequent SM processing, and a plurality of SM processings are required. In particular, in order to remove a large amount of grinding, a metal bond grindstone is used, and new microcracks (for example, a depth of 30 μm) are generated with the grinding by the metal bond grindstone. Further, since clogging due to processing and a significant increase in processing time are caused, it is difficult to start from SM processing using a fine resin bond grindstone (# 2500) as used in the lens blank A.
 そのため、SM加工でも、急激に粒度の細かい砥石の使用はできず、本発明に係るレンズブランクAを用いた場合に比べて、SM加工後のレンズ表面の状態は劣る。すなわち、CG加工や金属ボンド砥石を用いたSM加工によって生じた微小クラックを完全に除去できず、例えば10μm以上の研磨代が残ったまま最終工程である研磨工程に移行せざるを得ない。そのため、研磨加工においても、本発明に係るレンズブランクAを用いた場合よりも加工量および加工時間を長く設定する必要がある。 Therefore, even with SM processing, a grindstone with a fine particle size cannot be used rapidly, and the state of the lens surface after SM processing is inferior compared with the case where the lens blank A according to the present invention is used. That is, the microcracks generated by the CG process or the SM process using the metal bond grindstone cannot be completely removed, and for example, the polishing process must be shifted to the final process while the polishing allowance of 10 μm or more remains. Therefore, also in the polishing process, it is necessary to set the processing amount and the processing time longer than when the lens blank A according to the present invention is used.
 以上説明したように、本発明に係るレンズブランクAと、本発明の比較例に相当するレンズブランクBおよびCとでは、レンズの形成工程において、好適な工具、加工量および加工時間に違いが生じることが確認された。特に表3に示されるように、本発明に係るレンズブランクAを用いる場合には、研削・研磨の全工程を通して、加工量および加工時間が、レンズブランクBおよびCを用いた場合に比べて、大幅に低減されることが確認された。 As described above, in the lens blank A according to the present invention and the lens blanks B and C corresponding to the comparative examples of the present invention, a difference occurs in a suitable tool, processing amount, and processing time in the lens forming process. It was confirmed. In particular, as shown in Table 3, when the lens blank A according to the present invention is used, the processing amount and processing time through the entire grinding / polishing process are larger than those when the lens blanks B and C are used. It was confirmed that it was greatly reduced.
(総合評価)
 以上説明したように、本発明に係るレンズブランクAは、主表面の中央部に形成される欠陥含有層の厚みが50μm以下である。このようなレンズブランクAを用いて光学ガラスを作製する場合には、取り代量を大幅に低減した場合であっても、高い良品率を達成することが可能となる。さらに、取り代量を大幅に低減することができるため、CG加工にて比較的目の細かい砥石(#600)を用いることができる。その結果、続くSM加工は、目の細かいレジンボンド砥石(#2500)で十分な加工を行うことができ、最終工程の加工量および加工時間を低減することもできる。特に、本発明に係るレンズブランクAを用いた場合には、研削・研磨の全工程を通して、加工量および加工時間を大幅に低減することができることから、生産コストを向上することができる。
(Comprehensive evaluation)
As described above, in the lens blank A according to the present invention, the thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less. In the case of producing optical glass using such a lens blank A, it is possible to achieve a high yield rate even when the machining allowance is greatly reduced. Furthermore, since the machining allowance can be significantly reduced, a relatively fine grinding stone (# 600) can be used in CG processing. As a result, the subsequent SM processing can be performed sufficiently with a fine resin bond grindstone (# 2500), and the processing amount and processing time in the final process can be reduced. In particular, when the lens blank A according to the present invention is used, the processing amount and the processing time can be greatly reduced throughout the grinding and polishing processes, so that the production cost can be improved.
(実施例2~7)
 実施例2~7では、レンズブランクを構成する硝材と、光学レンズを作製するまでのレンズブランクの研削・研磨の条件を、表4および5に示すように変更した以外は、実施例1の評価3と同様の確認を行った。結果を表4および5に示す。
(Examples 2 to 7)
In Examples 2 to 7, the evaluation of Example 1 was performed except that the glass blank constituting the lens blank and the conditions for grinding and polishing the lens blank until the optical lens were manufactured were changed as shown in Tables 4 and 5. The same confirmation as 3 was performed. The results are shown in Tables 4 and 5.
 なお、ホウ酸ランタン系の硝材を用いたレンズブランクは、実施例1のレンズブランクAと同様の方法で準備した。 A lens blank using a lanthanum borate glass material was prepared in the same manner as the lens blank A of Example 1.
 また、フツリン酸系の硝材を用いたレンズブランクは、原材料を変更してフツリン酸系の熔融ガラスによりガラス素材ブロック20を成形した以外は、実施例1のレンズブランクAと同様の方法で準備した。なお、フツリン酸系ガラスは、ホウ酸ランタン系ガラスに比べて、ガラス質として柔らかい材料である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
In addition, a lens blank using a fluorophosphate-based glass material was prepared in the same manner as the lens blank A of Example 1 except that the raw material was changed and the glass material block 20 was formed from a fluorophosphate-based molten glass. . In addition, a fluorophosphate glass is a soft material as glassy compared with a lanthanum borate glass.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明に係るレンズブランクによれば、硝材によらず、また、光学レンズを作製するまでのレンズブランクの研削・研磨の条件をさまざまに変更しても、全体の加工量および加工時間を大幅に低減できることが確認された。特に、いずれもPO加工での加工量を10μm以下にできることが確認された。 According to the lens blank according to the present invention, the entire processing amount and processing time are greatly increased regardless of the glass material, and even when the grinding and polishing conditions of the lens blank until the optical lens is manufactured are variously changed. It was confirmed that it can be reduced. In particular, it has been confirmed that the processing amount in PO processing can be reduced to 10 μm or less.
 さらに、本発明に係るレンズブランクによれば、主表面(特に中央部)の欠陥含有層の厚みが薄いため、CG加工を省略しても(SM加工以降の処理だけで)、表面欠陥を十分に除去することができ、良好な光学レンズを作製できることが確認された。 Furthermore, according to the lens blank according to the present invention, since the thickness of the defect-containing layer on the main surface (particularly the central portion) is thin, even if CG processing is omitted (only processing after SM processing), surface defects are sufficient. It was confirmed that a good optical lens could be produced.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 最後に、本発明の実施の形態を総括する。
[1] 本実施の形態の研磨用ガラスレンズブランクは、少なくとも主表面がプレス成形面であって、上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である。
Finally, embodiments of the present invention will be summarized.
[1] In the polishing glass lens blank of the present embodiment, at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less.
[2] 好ましくは、上記[2]に記載の研磨用ガラスレンズブランクにおいて、上記中央部は、上記主表面の外周よりも内側の領域であり、
上記中央部の半径は、上記主表面の半径の3分の2以下である。
[2] Preferably, in the glass lens blank for polishing according to [2] above, the central portion is a region inside the outer periphery of the main surface,
The radius of the central portion is 2/3 or less of the radius of the main surface.
[3] また、別の局面では、本実施の形態の光学ガラス素材は、台形状を成し互いに平行である第1の主面および第2の主面と、
上記第1の主面および第2の主面の短辺同士をつなぐ第1の側面と
上記第1の主面および第2の主面の長辺同士をつなぐ第2の側面と、
上記第1の側面と上記第2の側面とをつなぎ、上記第1の側面と成す角度がいずれも鈍角である2つの傾斜面とを有し、
 上記第1の側面および上記2つの傾斜面が、成形面である。
[3] In another aspect, the optical glass material according to the present embodiment includes a first main surface and a second main surface that are trapezoidal and parallel to each other.
A first side surface connecting short sides of the first main surface and the second main surface and a second side surface connecting long sides of the first main surface and the second main surface;
The first side surface and the second side surface are connected to each other, and there are two inclined surfaces each having an obtuse angle with the first side surface,
The first side surface and the two inclined surfaces are molding surfaces.
[4] 好ましくは、上記[3]に記載の光学ガラス素材は、上記第2の側面が、自由表面である。 [4] Preferably, in the optical glass material according to [3] above, the second side surface is a free surface.
[5] 好ましくは、上記[3]または[4]に記載の光学ガラス素材は、上記第1および第2の主面が、切断面である。 [5] Preferably, in the optical glass material described in [3] or [4] above, the first and second main surfaces are cut surfaces.
[6] 好ましくは、上記[3]~[5]のいずれかに記載の光学ガラス素材は、上記第1および第2の主面間の距離が、上記第1の側面と上記第2の側面との間の距離よりも短い。 [6] Preferably, in the optical glass material according to any one of [3] to [5], the distance between the first and second main surfaces is such that the first side surface and the second side surface are the same. Shorter than the distance between.
[7] 好ましくは、上記[3]~[5]のいずれかに記載の光学ガラス素材は、上記第1および第2の主面間の距離が、上記第1の側面と上記第2の側面との間の距離よりも長い。 [7] Preferably, in the optical glass material according to any one of [3] to [5], the distance between the first and second main surfaces is such that the first side surface and the second side surface are Longer than the distance between.
[8] また、別の局面では、本実施の形態の研磨用ガラスレンズブランクは、上記[6]に記載の光学ガラス素材を大気雰囲気中で再加熱して軟化させ、軟化した上記光学ガラス素材をプレス成形することにより形成される。 [8] In another aspect, the glass lens blank for polishing according to the present embodiment softens the optical glass material according to the above [6] by reheating in the air and softens the optical glass material. Is formed by press molding.
[9] 好ましくは、上記[8]に記載の研磨用ガラスレンズブランクは、少なくとも主表面がプレス成形面であって、上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である。 [9] Preferably, in the glass lens blank for polishing according to [8] above, at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less. is there.
[10] また、別の局面では、本実施の形態の光学レンズは、上記[8]または[9]に記載の研磨用ガラスレンズブランクを研削および研磨することにより形成される。 [10] In another aspect, the optical lens of the present embodiment is formed by grinding and polishing the polishing glass lens blank described in [8] or [9].
[11] さらに、別の局面では、本実施の形態の研磨用ガラスレンズブランクの製造方法は、鋳型内に、熔融ガラスを連続して鋳込み、鋳込まれたガラスを上流側から下流側へ一方向に移動させながら連続して断面台形の光学ガラス素材を成形する光学ガラス素材成形工程と、
 上記光学ガラス素材を、長手方向と直交する方向に切断して、小片化する切断工程と、
 上記切断工程で小片化した上記光学ガラス素材を、大気雰囲気下で10~10dPa・sの粘度に再加熱する再加熱工程と、
 上記再加熱工程で再加熱した上記光学ガラス素材を、プレス成形用の成形型で大気雰囲気下においてプレス成形して、ガラス成形品を得るプレス工程と、を備え、
 上記ガラス成形品は、少なくとも主表面にプレス成形面を有し、
 上記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である。
[11] Furthermore, in another aspect, the manufacturing method of the glass lens blank for polishing according to the present embodiment continuously casts molten glass into a mold and moves the cast glass from the upstream side to the downstream side. An optical glass material molding process for continuously molding a trapezoidal optical glass material while moving in the direction,
Cutting the optical glass material in a direction perpendicular to the longitudinal direction, and cutting into small pieces,
A reheating step of reheating the optical glass material fragmented in the cutting step to a viscosity of 10 4 to 10 6 dPa · s in an air atmosphere;
The optical glass material reheated in the reheating step is press-molded in a press mold in an air atmosphere to obtain a glass molded product, and
The glass molded article has a press-molded surface at least on the main surface,
The thickness of the defect-containing layer formed in the central portion of the main surface is 50 μm or less.
[12] 好ましくは、上記[11]に記載の研磨用ガラスレンズブランクの製造方法は、上記切断工程で小片化した上記光学ガラス素材の表面、および上記再加熱工程の際に上記光学ガラス素材を配置する保持用凹部の少なくともいずれか一方に、離型剤を塗布する離型剤塗布工程をさらに有する。 [12] Preferably, in the method for producing a glass lens blank for polishing according to [11] above, the surface of the optical glass material fragmented in the cutting step and the optical glass material in the reheating step are used. There is further provided a release agent application step of applying a release agent to at least one of the holding recesses to be arranged.
[13] 好ましくは、上記[11]または[12]に記載の研磨用ガラスレンズブランクの製造方法では、上記離型剤塗布工程において、上記光学ガラス素材を配置する保持用凹部に離型剤を塗布した後、上記保持用凹部に上記光学ガラス素材を配置する。 [13] Preferably, in the method for producing a polishing glass lens blank described in [11] or [12] above, in the release agent coating step, a release agent is placed in the holding recess in which the optical glass material is disposed. After coating, the optical glass material is placed in the holding recess.
[14] また、別の局面では、本実施の形態の光学レンズの製造方法は、上記[1]、[2]、[8]および[9]のいずれかに記載の研磨用ガラスレンズブランクに対して、球面研削加工およびスムージング加工を行い、スムージング加工では、金属ボンド砥石を用いることなく樹脂ボンド砥石を用いて加工を行い、光学レンズを得ることを特徴とする。 [14] In another aspect, the optical lens manufacturing method of the present embodiment is applied to the polishing glass lens blank according to any one of [1], [2], [8], and [9]. On the other hand, spherical grinding and smoothing are performed. In the smoothing, processing is performed using a resin bond grindstone without using a metal bond grindstone to obtain an optical lens.
 さらに、本実施の形態の他の局面では、
[A1] 本実施の形態の光学ガラス素材の製造方法は、鋳型内に、熔融ガラスを連続して鋳込み、鋳込まれたガラスを上流側から下流側へ一方向に移動させながら連続して断面台形のガラス素材を成形する。
Furthermore, in another aspect of the present embodiment,
[A1] The method for producing an optical glass material of the present embodiment is a method in which molten glass is continuously cast into a mold, and the cast glass is continuously cross-sectioned while moving in one direction from the upstream side to the downstream side. Mold trapezoidal glass material.
 また、本実施の形態の他の局面では、
[B1] 本実施の形態のプレス成形用ガラス光学素材の製造方法は、鋳型内に、熔融ガラスを連続して鋳込み、鋳込まれたガラスを上流側から下流側へ一方向に移動させながら連続して断面台形のガラス素材を成形する工程と、
上記ガラス素材を長手方向に沿って切断する工程と、を有する。
In another aspect of the present embodiment,
[B1] The method for producing a glass optical material for press molding according to the present embodiment continuously casts molten glass into a mold and continuously moves the cast glass from the upstream side to the downstream side in one direction. And forming a trapezoidal glass material,
Cutting the glass material along the longitudinal direction.
[B2] また、別の局面では、本実施の形態の研磨用ガラス光学素子ブランクの製造方法は、上記[B1]に記載のプレス成形用ガラス光学素材の製造方法で得られるプレス成形用光学素材をリヒートプレスする工程をさらに有する。 [B2] In another aspect, the method for producing a polishing glass optical element blank according to the present embodiment is a press-molding optical material obtained by the method for producing a press-molding glass optical material according to [B1] above. The method further includes a step of reheat pressing.
[B3] また、別の局面では、本実施の形態のガラス光学素子の製造方法は、上記[B2]に記載の研磨用ガラス光学素子ブランクの製造方法で得られる研磨用ガラス光学素子ブランクを研削および研磨する工程をさらに有する。 [B3] In another aspect, the method for manufacturing the glass optical element according to the present embodiment is performed by grinding the glass optical element blank for polishing obtained by the method for manufacturing the glass optical element blank for polishing described in [B2] above. And a polishing step.
2,20… 光学ガラス素材
 2a… 軟化したガラス素材
 2b… 研磨用ガラスレンズブランク
 20a… 熔融ガラス
4… 第1の主面
6… 第2の主面
8… 第1の側面
10… 第2の側面
12… 第1の傾斜面
14… 第2の傾斜面
30… ノズル
32… 固定鋳型
34… 底壁
36… 端壁
38… 側壁
40… 搬送装置
50… 受け皿
52… 凹部
60… 下型
62… 成形面
64… 胴型
66… 上型
70… 切断装置
72… ワイヤーソー
74… ローラ
80… 主表面(プレス成形面)
 80a… 主表面中央部
82… 主表面(プレス成形面)
84… 側周面
90a… 欠陥含有層
90b… レンズ本体(バルク部分)
90c… 光学レンズ面
92… 研削(CG加工)領域
94a,94b… 研削(SM加工)領域
96… 研磨領域
2, 20 ... Optical glass material 2a ... Softened glass material 2b ... Polishing glass lens blank 20a ... Molten glass 4 ... First main surface 6 ... Second main surface 8 ... First side surface 10 ... Second side surface DESCRIPTION OF SYMBOLS 12 ... 1st inclined surface 14 ... 2nd inclined surface 30 ... Nozzle 32 ... Fixed mold 34 ... Bottom wall 36 ... End wall 38 ... Side wall 40 ... Conveying device 50 ... Receptacle 52 ... Concave 60 ... Lower mold 62 ... Molding surface 64 ... Body mold 66 ... Upper mold 70 ... Cutting device 72 ... Wire saw 74 ... Roller 80 ... Main surface (press molding surface)
80a ... Main surface central part 82 ... Main surface (press molding surface)
84 ... Side peripheral surface 90a ... Defect-containing layer 90b ... Lens body (bulk part)
90c ... Optical lens surface 92 ... Grinding (CG processing) region 94a, 94b ... Grinding (SM processing) region 96 ... Polishing region

Claims (14)

  1.  少なくとも主表面がプレス成形面であって、前記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である研磨用ガラスレンズブランク。 A polishing glass lens blank in which at least the main surface is a press-molded surface and the thickness of the defect-containing layer formed at the center of the main surface is 50 μm or less.
  2. 前記中央部は、前記主表面の外周よりも内側の領域であり、
    前記中央部の半径は、前記主表面の半径の3分の2以下である請求項1に記載の研磨用ガラスレンズブランク。
    The central portion is a region inside the outer periphery of the main surface,
    The glass lens blank for polishing according to claim 1, wherein a radius of the central portion is 2/3 or less of a radius of the main surface.
  3.  台形状を成し、互いに平行である第1の主面および第2の主面と、
    前記第1の主面および第2の主面の短辺同士をつなぐ第1の側面と
    前記第1の主面および第2の主面の長辺同士をつなぐ第2の側面と、
    前記第1の側面と前記第2の側面とをつなぎ、前記第1の側面と成す角度がいずれも鈍角である2つの傾斜面とを有し、
     前記第1の側面および前記2つの傾斜面が、成形面である光学ガラス素材。
    A first main surface and a second main surface which are trapezoidal and parallel to each other;
    A first side surface connecting short sides of the first main surface and the second main surface and a second side surface connecting long sides of the first main surface and the second main surface;
    The first side surface and the second side surface are connected to each other, and there are two inclined surfaces each having an obtuse angle with the first side surface,
    An optical glass material in which the first side surface and the two inclined surfaces are molding surfaces.
  4.  前記第2の側面が、自由表面である請求項3に記載の光学ガラス素材。 The optical glass material according to claim 3, wherein the second side surface is a free surface.
  5.  前記第1および第2の主面が、切断面である請求項3または4に記載の光学ガラス素材。 The optical glass material according to claim 3 or 4, wherein the first and second main surfaces are cut surfaces.
  6.  前記第1および第2の主面間の距離が、前記第1の側面と前記第2の側面との間の距離よりも短い請求項3~5のいずれかに記載の光学ガラス素材。 6. The optical glass material according to claim 3, wherein a distance between the first and second main surfaces is shorter than a distance between the first side surface and the second side surface.
  7.  前記第1および第2の主面間の距離が、前記第1の側面と前記第2の側面との間の距離よりも長い請求項3~5のいずれかに記載の光学ガラス素材。 6. The optical glass material according to claim 3, wherein a distance between the first and second main surfaces is longer than a distance between the first side surface and the second side surface.
  8.  請求項6に記載の光学ガラス素材を大気雰囲気中で再加熱して軟化させ、軟化した前記光学ガラス素材をプレス成形することにより形成された研磨用ガラスレンズブランク。 A polishing glass lens blank formed by press-molding the softened optical glass material by reheating and softening the optical glass material according to claim 6 in an air atmosphere.
  9.  少なくとも主表面がプレス成形面であって、前記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である請求項8に記載の研磨用ガラスレンズブランク。 The glass lens blank for polishing according to claim 8, wherein at least the main surface is a press-molded surface, and the thickness of the defect-containing layer formed at the center of the main surface is 50 µm or less.
  10.  請求項8または9に記載の研磨用ガラスレンズブランクを研削および研磨することにより形成された光学レンズ。 An optical lens formed by grinding and polishing the glass lens blank for polishing according to claim 8 or 9.
  11.  鋳型内に、熔融ガラスを連続して鋳込み、鋳込まれたガラスを上流側から下流側へ一方向に移動させながら連続して断面台形の光学ガラス素材を成形する光学ガラス素材成形工程と、
     前記光学ガラス素材を、長手方向と直交する方向に切断して、小片化する切断工程と、
     前記切断工程で小片化した前記光学ガラス素材を、大気雰囲気下で10~10dPa・sの粘度に再加熱する再加熱工程と、
     前記再加熱工程で再加熱した前記光学ガラス素材を、プレス成形用の成形型で大気雰囲気下においてプレス成形して、ガラス成形品を得るプレス工程と、を備え、
     前記ガラス成形品は、少なくとも主表面にプレス成形面を有し、
     前記主表面の中央部に形成される欠陥含有層の厚みが50μm以下である、研磨用ガラスレンズブランクの製造方法。
    An optical glass material molding step in which molten glass is continuously cast into a mold, and the cast glass is continuously moved in one direction from the upstream side to the downstream side to form a trapezoidal optical glass material, and
    Cutting the optical glass material in a direction perpendicular to the longitudinal direction, and cutting into small pieces,
    A reheating step of reheating the optical glass material fragmented in the cutting step to a viscosity of 10 4 to 10 6 dPa · s in an air atmosphere;
    The optical glass material reheated in the reheating step is press-molded in a press mold in an air atmosphere to obtain a glass molded product, and
    The glass molded product has a press-molded surface at least on the main surface,
    The manufacturing method of the glass lens blank for grinding | polishing whose thickness of the defect content layer formed in the center part of the said main surface is 50 micrometers or less.
  12.  前記切断工程で小片化した前記光学ガラス素材の表面、および前記再加熱工程の際に前記光学ガラス素材を配置する保持用凹部の少なくともいずれか一方に、離型剤を塗布する離型剤塗布工程をさらに有する、請求項11に記載の研磨用ガラスレンズブランクの製造方法。 A release agent application step of applying a release agent to at least one of the surface of the optical glass material fragmented in the cutting step and the holding recess for arranging the optical glass material in the reheating step. The manufacturing method of the glass lens blank for grinding | polishing of Claim 11 which has further.
  13.  前記離型剤塗布工程において、前記光学ガラス素材を配置する保持用凹部に離型剤を塗布した後、前記保持用凹部に前記光学ガラス素材を配置する請求項11または12に記載の研磨用ガラスレンズブランクの製造方法。 The polishing glass according to claim 11 or 12, wherein, in the release agent coating step, the optical glass material is disposed in the holding recess after the release agent is applied to the holding recess in which the optical glass material is disposed. A method for manufacturing a lens blank.
  14.  請求項1、2、8および9のいずれかに記載の研磨用ガラスレンズブランクに対して、球面研削加工およびスムージング加工を行い、スムージング加工では、金属ボンド砥石を用いることなく樹脂ボンド砥石を用いて加工を行い、光学レンズを得ることを特徴とする光学レンズの製造方法。 The polishing glass lens blank according to any one of claims 1, 2, 8 and 9 is subjected to spherical grinding and smoothing, and in the smoothing, a resin bond grindstone is used without using a metal bond grindstone. An optical lens manufacturing method characterized in that processing is performed to obtain an optical lens.
PCT/JP2013/079409 2013-02-25 2013-10-30 Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens WO2015063888A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015544694A JPWO2015063888A1 (en) 2013-10-30 2013-10-30 Optical glass material, polishing glass lens blank and optical lens, and polishing glass lens blank and optical lens manufacturing method
PCT/JP2013/079409 WO2015063888A1 (en) 2013-10-30 2013-10-30 Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens
KR1020157022153A KR20150124445A (en) 2013-02-25 2014-02-25 Glass lens blank for polishing, manufacturing method therefor, and optical lens manufacturing method
JP2015501540A JP5892452B2 (en) 2013-02-25 2014-02-25 Glass lens blank for polishing, manufacturing method thereof, and manufacturing method of optical lens
TW103106449A TWI623502B (en) 2013-02-25 2014-02-25 Glass lens blank for polishing, manufacturing method thereof, and manufacturing method of optical lens
PCT/JP2014/054561 WO2014129657A1 (en) 2013-02-25 2014-02-25 Glass lens blank for polishing, manufacturing method therefor, and optical lens manufacturing method
US14/768,161 US9868661B2 (en) 2013-02-25 2014-02-25 Glass lens blank for polishing, manufacturing method therefore, and optical lens manufacturing method
CN201480010217.9A CN105008292B (en) 2013-02-25 2014-02-25 Grinding glass lens blank and its manufacturing method, the manufacturing method of optical lens
JP2016024745A JP6087454B2 (en) 2013-02-25 2016-02-12 Glass lens blank for polishing, manufacturing method thereof, and manufacturing method of optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079409 WO2015063888A1 (en) 2013-10-30 2013-10-30 Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens

Publications (1)

Publication Number Publication Date
WO2015063888A1 true WO2015063888A1 (en) 2015-05-07

Family

ID=53003536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079409 WO2015063888A1 (en) 2013-02-25 2013-10-30 Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens

Country Status (2)

Country Link
JP (1) JPWO2015063888A1 (en)
WO (1) WO2015063888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116214279A (en) * 2022-12-30 2023-06-06 北京创思工贸有限公司 Processing method of long-strip optical part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452619A (en) * 1988-05-12 1989-02-28 Ohara Kk Method for molding molded product of optical glass
JP2011153051A (en) * 2010-01-28 2011-08-11 Ishizuka Glass Co Ltd Forming method for glass formed product and apparatus for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467201B2 (en) * 2001-03-09 2010-05-26 Hoya株式会社 Manufacturing method of glass plate, manufacturing method of press molding material, and manufacturing method of optical component
JP3743749B2 (en) * 2001-07-12 2006-02-08 Hoya株式会社 Method for producing glass molded body, method for producing press-molding preform, method for producing press-molded product, and method for producing optical element
JP2004292274A (en) * 2003-03-28 2004-10-21 Hoya Corp Manufacturing method of glass plate, manufacturing method of base material for press molding, and manufacturing method of optical part
JP2006117454A (en) * 2004-10-20 2006-05-11 Canon Inc Method of producing glass molded product
JP4856027B2 (en) * 2007-08-21 2012-01-18 Hoya株式会社 Manufacturing method of glass plate, manufacturing method of glass material for press molding, and manufacturing method of optical component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452619A (en) * 1988-05-12 1989-02-28 Ohara Kk Method for molding molded product of optical glass
JP2011153051A (en) * 2010-01-28 2011-08-11 Ishizuka Glass Co Ltd Forming method for glass formed product and apparatus for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116214279A (en) * 2022-12-30 2023-06-06 北京创思工贸有限公司 Processing method of long-strip optical part
CN116214279B (en) * 2022-12-30 2023-11-07 北京创思工贸有限公司 Processing method of long-strip optical part

Also Published As

Publication number Publication date
JPWO2015063888A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6087454B2 (en) Glass lens blank for polishing, manufacturing method thereof, and manufacturing method of optical lens
CN107507632B (en) Method for manufacturing glass substrate for magnetic disk
JP5635636B2 (en) Precision glass sphere manufacturing method and glass optical element manufacturing method
JP6138042B2 (en) Manufacturing method of glass substrate for magnetic disk
TW201720581A (en) Molds and methods to control mold surface quality
CN103492328A (en) Method for producing glass blank for magnetic disc, method for producing glass substrate for magnetic disc, and glass blank for magnetic disc
JP5248740B2 (en) Precision glass sphere manufacturing method and glass optical element manufacturing method
WO2015063888A1 (en) Optical glass material, glass lens blank for polishing and optical lens, and production method for glass lens blank for polishing and optical lens
WO2015064684A1 (en) Optical glass material for press molding, glass optical element blank for polishing, glass optical element, and production method for optical glass material for press molding
WO2012111092A1 (en) Method for manufacturing glass blank for information recording medium substrate, substrate for information recording medium and information recording medium, and device for manufacturing glass blank for information recording medium substrate
JP5690540B2 (en) Manufacturing method of glass substrate for information recording medium
CN205590564U (en) Grind with glass lens blank
CN108779013B (en) Glass material, method for producing glass material, and method for producing glass substrate for magnetic disk
CN104470861A (en) Glass molded article and method for producing same, optical element blank, and optical element and method for producing same
WO2014013934A1 (en) Glass molded article and method for producing same, optical element blank, and optical element and method for producing same
JP7467759B2 (en) Magnetic disk substrate, magnetic disk, annular substrate, and method for manufacturing magnetic disk substrate
JP5476276B2 (en) Glass blank manufacturing method for magnetic recording medium glass substrate, magnetic recording medium glass substrate manufacturing method, magnetic recording medium manufacturing method, glass blank manufacturing apparatus for magnetic recording medium glass substrate
JP5386429B2 (en) Manufacturing method of glass blank, manufacturing method of magnetic recording medium substrate, and manufacturing method of magnetic recording medium
JP2017066018A (en) Polishing glass lens blank and method for manufacturing optical lens
JP2010195649A (en) Glass blank, method for producing the same, method for producing substrate for information recording medium, and method for producing information recording medium
JP2005097099A (en) Method of manufacturing optical device
JPH0717729A (en) Glass lens forming mold
JP2010205354A (en) Method for manufacturing glass blank, press forming device, method for manufacturing substrate for information recording medium, and method for manufacturing information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896720

Country of ref document: EP

Kind code of ref document: A1