WO2015062072A1 - 异系统测量方法、终端及网络设备 - Google Patents

异系统测量方法、终端及网络设备 Download PDF

Info

Publication number
WO2015062072A1
WO2015062072A1 PCT/CN2013/086419 CN2013086419W WO2015062072A1 WO 2015062072 A1 WO2015062072 A1 WO 2015062072A1 CN 2013086419 W CN2013086419 W CN 2013086419W WO 2015062072 A1 WO2015062072 A1 WO 2015062072A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
system measurement
idle time
configuration information
network device
Prior art date
Application number
PCT/CN2013/086419
Other languages
English (en)
French (fr)
Inventor
宋平
吴晓波
张欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003533.9A priority Critical patent/CN105027605B/zh
Priority to PCT/CN2013/086419 priority patent/WO2015062072A1/zh
Publication of WO2015062072A1 publication Critical patent/WO2015062072A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a heterogeneous system measurement method, a terminal, and a network device.
  • LTE Long Term Evolution
  • CS Circuit Switch
  • CSFB Circuit Swithed Fallback
  • UE User Equipment
  • the cell of the specific 2G/3G network is generally not specified, but the UE needs to perform the different system on the 2G/3G network. Measurement, the best cell is obtained by different system measurements and rolled back. However, there is no specific heterogeneous system measurement technique in the prior art.
  • Embodiments of the present invention provide a heterogeneous system measurement method, a terminal, and a network device, which implement heterogeneous system measurement in a reliable CSFB process.
  • an embodiment of the present invention provides a method for measuring a different system, including:
  • the terminal receives, by the terminal, the radio resource control RRC connection reconfiguration message sent by the network device when the circuit domain falls back to the CSFB trigger, where the RRC connection reconfiguration message carries the different system measurement idle time configuration signal
  • the terminal performs the inter-system measurement in the idle S time indicated by the different system measurement idle time configuration information
  • the terminal sends a different system measurement report to the network device.
  • the idle time indicated by the idle system measurement idle time configuration information is a dormant period of discontinuous reception
  • the terminal performs the different system measurement in the idle time indicated by the different system measurement idle time configuration information, including:
  • the terminal performs an inter-system measurement during the dormant period of the discontinuous reception.
  • the idle time indicated by the different system measurement idle time configuration information is time slot information
  • the terminal performs the different system measurement in the idle time indicated by the different system measurement idle time configuration information, including:
  • the terminal performs an inter-system measurement within a time indicated by the time slot information.
  • the dormant period of the discontinuous reception is a part of the discontinuous reception period of the network device
  • the sleep period is forced to remain generated during the sleep period.
  • an embodiment of the present invention provides a method for measuring a different system, including:
  • the network device generates a radio resource control RRC connection reconfiguration message for the terminal when the circuit domain falls back to the CSFB trigger, where the RRC connection reconfiguration message carries the different system measurement idle time configuration information; the network device sends the RRC connection to the terminal Reconfiguring the message, so that the terminal performs the inter-system measurement within the time indicated by the different system measurement idle time configuration information;
  • the network device receives a different system measurement report sent by the terminal.
  • the idle time indicated by the different system measurement idle time configuration information is a dormant period of discontinuous reception.
  • the idle time indicated by the different system measurement idle time configuration information is time slot information.
  • the network device sends the RRC connection reconfiguration message to the terminal After that, it also includes:
  • the network device forcibly maintains a partial sleep period in the discontinuous reception period of the terminal in a sleep period.
  • an embodiment of the present invention provides a terminal, including:
  • a receiving module configured to receive a radio resource control RRC connection reconfiguration message sent by the network device when the circuit domain falls back to the CSFB triggering, where the RRC connection reconfiguration message carries the idle system measurement idle time configuration information;
  • a processing module configured to perform an inter-system measurement in an idle time indicated by the different system measurement idle time configuration information carried by the RRC connection reconfiguration message received by the receiving module
  • a sending module configured to send to the network The device sends a different system measurement report.
  • the receiving module receives the
  • the idle time indicated by the different system carrying the idle time configuration information carried by the RRC connection reconfiguration message is a dormant period of discontinuous reception
  • the processing module is configured to perform an inter-system measurement during the dormant period of the discontinuous reception.
  • the receiving module receives the
  • the idle time indicated by the different system measurement idle time configuration information carried in the RRC connection reconfiguration message is time slot information
  • the processing module is configured to perform an inter-system measurement within a time indicated by the time slot information.
  • the dormant period of the discontinuous reception is a part of the discontinuous reception period of the network device
  • the sleep period is forced to remain generated during the sleep period.
  • an embodiment of the present invention provides a network device, including:
  • a processing module configured to generate a radio resource control RRC connection reconfiguration message for the terminal when the circuit domain falls back to the CSFB triggering, where the RRC connection reconfiguration message carries the different system measurement idle time configuration information;
  • a sending module configured to send, to the terminal, the RRC connection reconfiguration message generated by the processing module, to enable the terminal to perform an inter-system measurement in a time indicated by the different system measurement idle time configuration information;
  • a receiving module configured to receive a different system measurement report sent by the terminal.
  • the processing module is configured to The terminal generates an RRC reconfiguration message in which the idle time indicated by the idle system measurement idle time configuration information is a discontinuous reception sleep period.
  • the processing module is configured to generate, for the terminal, an RRC reconfiguration message that the idle time indicated by the different system measurement idle time configuration information is time slot information.
  • the processing module is further configured to: before generating a radio resource control RRC connection reconfiguration message for the terminal , the partial sleep period in the discontinuous reception cycle is forced to remain in the sleep period.
  • an embodiment of the present invention provides a terminal, including:
  • a receiver configured to receive, by the network device, the RRC connection reconfiguration message sent by the network device when the CSFB is triggered to fall back, the RRC connection reconfiguration message carrying the different system measurement idle time configuration information;
  • a processor configured to perform an inter-system measurement during an idle time indicated by the different system measurement idle time configuration information
  • a transmitter configured to send a different system measurement report to the network device.
  • the idle time indicated by the idle system measurement idle time configuration information is a dormant period of discontinuous reception
  • the processor is configured to perform an inter-system measurement during the dormant period of the discontinuous reception.
  • the idle time indicated by the different system measurement idle time configuration information is time slot information
  • the processor is configured to perform an inter-system measurement within a time indicated by the time slot information.
  • the dormant period of the discontinuous reception is that the network device sends the RRC to the terminal After the reconfiguration message is connected, a part of the sleep period in the discontinuous reception period of the terminal is forcibly maintained during the sleep period.
  • an embodiment of the present invention provides a network device, including:
  • a processor configured to generate a radio resource control RRC connection reconfiguration message for the terminal when the circuit domain falls back to the CSFB trigger, where the RRC connection reconfiguration message carries the different system measurement idle time configuration information;
  • a transmitter configured to send the RRC connection reconfiguration message to the terminal, to enable the terminal Performing an inter-system measurement in a time indicated by the different system measurement idle time configuration information; and receiving, by the receiver, an inter-system measurement report sent by the terminal.
  • the idle time indicated by the different system measurement idle time configuration information is a dormant period of discontinuous reception.
  • the idle time indicated by the different system measurement idle time configuration information is time slot information.
  • the processor is further configured to send the RRC connection reconfiguration message to the terminal And forcibly maintaining a part of the sleep period in the discontinuous reception period of the terminal in the sleep period.
  • the method for measuring the system, the terminal, and the network device provided by the embodiment of the present invention, the terminal that needs to perform the CSFB, and the terminal that receives the measurement task and the idle time configuration information of the different system, such as the RRC connection reconfiguration message configured by the DRX or the GAP, so that the terminal Different system measurements are performed during the DRX sleep period or GAP to determine the best 2G/3G neighboring cell, and the system measurement in the CSFB process is implemented to ensure the success rate of CSFB.
  • the terminal that needs to perform the CSFB and the terminal that receives the measurement task and the idle time configuration information of the different system, such as the RRC connection reconfiguration message configured by the DRX or the GAP, so that the terminal Different system measurements are performed during the DRX sleep period or GAP to determine the best 2G/3G neighboring cell, and the system measurement in the CSFB process is implemented to ensure the success rate of CSFB.
  • Embodiment 1 of a network device A schematic structural diagram of Embodiment 1 of a network device
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for measuring a different system according to the present invention.
  • the embodiment is applicable to a scenario in which a system in the LTE network initiates a CS service and triggers the CSFB. In order to ensure that the system can be switched or redirected to the best cell, the system performs the measurement of the different system.
  • the execution entity of this embodiment is the terminal. Specifically, the embodiment includes the following steps:
  • the terminal receives the radio resource control RRC connection reconfiguration message sent by the network device when the CSFB is triggered to fall back.
  • the RRC connection reconfiguration message carries the different system measurement idle time configuration information.
  • the terminal initiates the CS service in the LTE cell, and the network device needs to trigger the CSFB process.
  • the network device controls the RRC connection reconfiguration message by sending the radio resource, and configures the measurement task and the corresponding idle time for the terminal. Perform heterogeneous system measurements.
  • a terminal that needs to perform CSFB for example, a terminal that is in an idle state in an LTE cell; or a terminal that is in an active state in an LTE cell needs to initiate a voice service (CS service), and adopts a CSFB mode.
  • the network device configures a reconfiguration message (Radio Resource Control Connection Reconfiguration) to configure the terminal.
  • the system measurement task that is, the neighboring area measurement configuration, and configures the idle time for performing the different system measurement, such as the discontinuous reception (DRX) or the measurement gap (GAP) related parameters, so that the terminal utilizes the DRX sleep period or the GAP.
  • the idle time is used to perform related heterogeneous neighbor measurement.
  • the terminal calculates the idle time configuration information according to the neighboring area measurement configuration and the different system.
  • System measurement idle time configuration information indication Different system measurements are taken during idle time.
  • the terminal performs 2G/3G neighboring area measurement according to the frequency point or the adjacent area specified in the measurement configuration, and generates an abnormal system measurement report according to the measured result.
  • the terminal sends a different system measurement report to the network device.
  • the terminal When the terminal is in idle time, such as the configured DRX sleep period or GAP period, the system measurement is completed and an inter-system measurement report is generated. After generating the heterogeneous system measurement report, if the terminal is still in the dormant period, it can immediately transfer to the activation period to send the different system measurement report to the network device, and if the GAP measurement is used, the different system measurement can be sent to the network device at the end of the GAP period. report.
  • the terminal After generating the heterogeneous system measurement report, if the terminal is still in the dormant period, it can immediately transfer to the activation period to send the different system measurement report to the network device, and if the GAP measurement is used, the different system measurement can be sent to the network device at the end of the GAP period. report.
  • the method for measuring the different system requires the CSFB terminal to receive the measurement task and the idle system configuration idle time configuration information, such as the RRC connection reconfiguration message configured by the DRX or the GAP, so that the terminal is in the DRX sleep period or Different system measurements are performed within the GAP to determine the best 2G/3G neighbor cell, and the system measurement in the CSFB process is implemented to ensure the success rate of CSFB.
  • the idle system configuration idle time configuration information such as the RRC connection reconfiguration message configured by the DRX or the GAP
  • Embodiment 2 is a flow chart of Embodiment 2 of the method for measuring different systems according to the present invention.
  • the embodiment is applicable to a scenario in which the system is triggered by the terminal in the LTE network to trigger the CS service and the CSFB is triggered. .
  • the embodiment includes the following steps:
  • the network device generates a radio resource control RRC connection reconfiguration message for the terminal when the CSFB is triggered in the circuit domain, and the RRC connection reconfiguration message carries the idle system configuration idle time configuration information.
  • the network device In this step, the network device generates an RRC connection reconfiguration message including a neighboring cell measurement configuration and a different system measurement idle time configuration information, such as DRX or GAP configuration information, for the terminal that needs to perform CSFB.
  • RRC connection reconfiguration message including a neighboring cell measurement configuration and a different system measurement idle time configuration information, such as DRX or GAP configuration information, for the terminal that needs to perform CSFB.
  • DRX system measurement idle time configuration information
  • GAP configuration information for the terminal that needs to perform CSFB.
  • the network device sends an RRC connection reconfiguration message to the terminal, so that the terminal performs the inter-system measurement in the idle time indicated by the idle system measurement idle time configuration information.
  • the network device After the RRC connection reconfiguration message is generated, the network device sends the generated RRC connection reconfiguration message to the terminal, so that the terminal measures the idle time configuration information according to the different system, and performs the different system measurement in the specific idle time.
  • the network device receives a different system measurement report sent by the terminal.
  • the terminal After the terminal completes the measurement of the different system in the idle time and generates the measurement report of the different system, the terminal The network device sends a different system measurement report; correspondingly, the network device receives the different system measurement report.
  • the method for measuring the different system provided by the embodiment of the present invention, the network device generates an RRC connection reconfiguration message carrying the neighboring area measurement configuration and the idle system measurement idle time configuration information, such as DRX or GAP configuration information, and sends the message to the terminal that needs to perform the CSFB.
  • the terminal enables the terminal to perform different system measurement during the sleep period or the GAP of the DRX, thereby determining the best 2G/3G neighboring cell, and implementing the system measurement in the CSFB process to ensure the success rate of the CSFB.
  • the first embodiment and the second embodiment respectively describe the present invention from the perspective of the terminal and the network device being the execution subject.
  • the present invention will be described in detail through interaction of a terminal with a network device.
  • FIG. 3 is a signaling diagram of Embodiment 3 of the different system measurement according to the present invention.
  • the terminal has no packet switching service, and the idle time indicated by the idle system configuration idle time configuration information carried by the RRC connection reconfiguration message is specifically a dormant period of discontinuous reception, and the network device is specifically an evolved node (eNodeB, eNB).
  • eNodeB evolved node
  • the embodiment includes the following steps:
  • the terminal sends a NAS extended service request to a Mobile Management Entity (MME).
  • MME Mobile Management Entity
  • the terminal in the idle state in the LTE cell that is, the terminal without the packet switching (PS) service, sends a Non-Access Stadium (NAS) extended service request to the MME.
  • PS packet switching
  • NAS Non-Access Stadium
  • this step includes the following sub-steps:
  • the terminal sends a NAS extended service request to the eNB.
  • the eNB sends a NAS extended service request to the MME.
  • the MME sends a Sl-AP UE context initialization with a CS fallback indicator to the eNB.
  • the eNB sends a Sl-AP Initial UE Context Response message to the MME.
  • the eNB sends an RRC connection reconfiguration message to the terminal.
  • the eNB sends an RRC connection reconfiguration message carrying a neighboring cell measurement configuration and discontinuous reception information to the terminal, where the discontinuous reception information may include a DRX parameter indicating a dormancy period.
  • the discontinuous reception information may include a DRX parameter indicating a dormancy period.
  • a DRX parameter configuration is as follows:
  • Period The length of the long-period DRX is recorded as Long Drx Cycle, for example, the value is 320ms ;
  • On Duration Timer The terminal wakes up from DRX every time. The waking time, during which the terminal monitors the PDCCH, for example, the value is 5 ms;
  • Drx Inactivity Timer If the terminal successfully monitors the PDCCH in the continuous working timer and needs to remain active, for example, the value is 10ms.
  • the network device may send the 2G/3G neighbor cell information of the LTE cell where the terminal is currently located to the terminal by using an RRC connection reconfiguration message.
  • the neighboring cell ⁇ L1 table of the Universal Mobile Telecommunications System (UMTS), the neighboring cell point group of the Global System for Mobile communication (GSM), and the like may also be reconfigured through the RRC connection reconfiguration message.
  • the terminal is sent to the terminal, so that the terminal only measures the cells in the neighboring cell list, or only the frequency points in the neighboring cell group.
  • the terminal performs an inter-system measurement during a sleep period of the DRX cycle.
  • the terminal performs measurement on the specified cell or frequency point of the neighboring cell measurement configuration to obtain a different system measurement report.
  • the terminal sends a different system measurement report to the eNB.
  • the terminal When the terminal completes the measurement within the dormant period, it can immediately transfer to the activation period, or send a measurement report to the eNB after entering the activation period.
  • FIG. 4 is a signaling diagram of Embodiment 4 of the different system measurement according to the present invention.
  • the terminal has a packet switching service, and the idle time indicated by the idle system configuration idle time configuration information carried by the RRC connection reconfiguration message is specifically a time slot (GAP) information, and the terminal performs different system measurement in the time slot.
  • the device is specifically an evolved node (eNodeB, eNB).
  • eNodeB evolved node
  • the embodiment includes the following steps: 401.
  • the terminal sends a NAS extended service request to the MME.
  • the terminal in the active state in the LTE cell that is, the terminal in which the PS service exists, sends a NAS extended service request to the MME.
  • this step includes the following sub-steps:
  • the terminal sends a NAS extended service request to the eNB.
  • the eNB sends a NAS extended service request to the MME.
  • the MME sends a Sl-AP UE context modification with a CS fallback indicator to the eNB.
  • the eNB sends a Sl-AP UE Context Modification Response message (S1-AP UE Context Modification Response message) to the MME.
  • S1-AP UE Context Modification Response message S1-AP UE Context Modification Response message
  • the eNB sends an RRC connection reconfiguration message to the terminal.
  • the eNB sends an RRC connection reconfiguration message carrying the neighboring cell measurement configuration and the slot information to the terminal.
  • the terminal performs an inter-system measurement in the time indicated by the time slot information.
  • the terminal measures the specified cell or frequency point within the time indicated by the time slot information to obtain an inter-system measurement report.
  • the terminal sends a different system measurement report to the eNB.
  • the measurement report may be sent to the eNB after the GAP ends.
  • FIG. 5 is a signaling diagram of Embodiment 5 of the differential system measurement of the present invention.
  • the terminal has a packet switching service, and the idle time indicated by the idle system configuration idle time configuration information carried in the RRC connection reconfiguration message is specifically discontinuous reception information, and the terminal performs different system measurement during the discontinuous reception sleep period.
  • the network device is specifically an evolved node (eNodeB, eNB). Specifically, the embodiment includes the following steps:
  • the terminal sends a NAS extended service request to the MME.
  • the terminal in the active state in the LTE cell that is, the terminal in which the PS service exists, sends a NAS extended service request to the MME.
  • this step includes the following sub-steps:
  • the terminal sends a NAS extended service request to the eNB.
  • the eNB sends a NAS extended service request to the MME.
  • the MME sends a Sl-AP UE context modification with a CS fallback indicator to the eNB.
  • the eNB sends a Sl-AP UE Context Modification Response message to the MME.
  • the eNB sends an RRC connection reconfiguration message to the terminal.
  • the eNB sends an RRC connection reconfiguration message carrying the discontinuous reception information of the neighbor measurement configuration to the terminal, and the discontinuous reception information may include a DRX parameter indicating a sleep period.
  • the terminal performs an inter-system measurement during a sleep period of the DRX cycle.
  • the terminal measures the specified cell or frequency point during the sleep period of the DRX cycle to obtain a different system test.
  • the terminal sends a different system measurement report to the eNB.
  • FIG. 3 it may be related to other network elements, such as a Mobile Switching Centre (MSC), a Serving GPRS Support Node (SGSN), etc.
  • MSC Mobile Switching Centre
  • SGSN Serving GPRS Support Node
  • the above-mentioned FIG. 5 is explained in detail from the perspective of interaction between the terminal and the eNB, but the terminal may have a PS service. It will be woken up to the active period during the sleep period of the DRX cycle. In order to ensure that there is a certain sleep period for the different system measurement in the DRX cycle, it is necessary to perform special processing on the DRX cycle that can perform different system measurement, that is, through scheduling coordination.
  • FIG. 6 is a schematic diagram of processing of the DRX of the present invention, which includes the following steps:
  • Step A The network device reconfigures the DRX parameters for the terminal.
  • the network device in the normal operation for example, the network device in the DRX cycle with a shorter period, or the network device not in the DRX cycle, reconfigures the DRX parameter for the terminal after receiving the specific DRX on indication.
  • the specific DRX turn-on indication is, for example, an indication that the terminal needs to perform an inter-system measurement during the CSFB process.
  • Step B The terminal receives the DRX parameter reconfigured by the network device.
  • the terminal After receiving the actual parameter configuration delay, the terminal receives the DRX parameters reconfigured by the network device. Assume that the DRX parameters in step A are configured as follows:
  • a) period the length of the long-period DRX is recorded as Long Drx Cycle, for example, the value is 160 ms;
  • On Duration Timer The terminal maintains the awake time after waking up from the DRX. During this period, the terminal monitors the PDCCH, for example, the value is 5ms.
  • Drx Inactivity Timer If the terminal successfully monitors the PDCCH in the continuous working timer and needs to remain active, for example, the value is 10ms.
  • drxstartof fset [(SFN * 10) + Framenu mber + n mod( LongDrxCyc le).
  • SFN and the subframe number are the frame number and the subframe number when the specific DRX start indication is received, and n is the estimated parameter configuration delay (this value is often greater than the actual parameter configuration delay ⁇ '). According to this formula, it is possible to control when the terminal enters the DRX state.
  • the time m that does not need to be forced to stay in the dormant period can be expressed as 7 ⁇ ⁇ . ⁇ , for example, the value is 15mS o
  • the DRX cycles 1 and 2 on the network side and the DRX cycles 1' and 2' corresponding to the terminal side shown in FIG. 6 will be described as an example.
  • the network device needs to process the DRX cycle 1'.
  • the terminal performs the different system measurement in the DRX cycle 1 '.
  • the DRX cycle 2 does not need to perform the different system measurement. Therefore, the network device does not need to process the DRX cycle.
  • the activation period and the dormancy period indication are output according to the actual operation instructions.
  • the terminal does not perform the heterogeneous system measurement in the DRX cycle 2' corresponding to the DRX cycle 2.
  • Step C The network device reconfigures the DRX parameters again to restore normal operations.
  • Step D The terminal receives the reconfigured DRX parameters again, and returns to normal operation.
  • the terminal performs the corresponding operation according to the DRX parameters reconfigured by the network device to resume normal operation.
  • the interval indicated by DRX cycle 2 and DRX cycle 2′ in FIG. 6 is a complete DRX cycle
  • the interval indicated by DRX cycle 1 and DRX cycle 1′ is a partial DRX cycle, that is, a section indicated by DRX cycle 1 .
  • the interval indicated by 1' of the DRX cycle only shows the partial sleep period after the special processing, that is, the sleep period for the heterogeneous system measurement that is forced to stay in the sleep period.
  • the DRX cycle 1 and its corresponding DRX cycle 1 ′ can perform the different system measurement; the DRX cycle 2 and its corresponding DRX cycle 2 ′ can not perform the different system measurement as an example.
  • the DRX cycle in which the system measurement can be performed and the DRX cycle in which the system measurement cannot be performed can be flexibly set according to the formula in the above d) or other means.
  • the network device configures the terminal to receive the discontinuous reception information, so that the terminal performs the different system measurement during the sleep period of the DRX, and in the embodiment shown in FIG. 4, when the network device is configured for the terminal.
  • the slot information allows the terminal to perform heterogeneous system measurements within the time slot.
  • the measurement delay of the different system is relatively large, for example, a heterochronous measurement of 6 ms is performed in a period of 40 ms, and the measurement delay generally takes several hundred milliseconds, and the whole The CSFB delay is usually 3 ⁇ 5s.
  • the method of the embodiment of FIG. 4 may cause the time required for the measurement of the different system to become longer, thereby causing CSFB.
  • the delay is large. Therefore, when there are a large number of neighboring cells, the mode shown in Figure 3 or Figure 5 is generally used according to the state of the terminal, the idle state or the active state.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a terminal according to the present invention.
  • the terminal 100 provided in this embodiment may implement various steps of the method applied to the terminal provided by any embodiment of the present invention, and the specific implementation process is not described herein again.
  • the terminal 100 provided by the embodiment of the present invention may specifically include:
  • the receiving module 11 is configured to receive, by the network device, a radio resource control RRC connection reconfiguration message sent by the network device when the CSFB is triggered to fall back, and the RRC connection reconfiguration message carries the idle system measurement idle time configuration information;
  • the processing module 12 is configured to be carried by the RRC connection reconfiguration message received by the receiving module 11
  • the idle system performs the different system measurement in the idle time indicated by the idle time configuration information
  • the sending module 13 is configured to send the different system measurement report to the network device.
  • the terminal when the CSFB is triggered, receives the measurement task and the idle system configuration idle time configuration information, such as the RRC connection reconfiguration message configured by the DRX or the GAP, so that the terminal performs the DRX sleep period or the GAP.
  • the idle system configuration idle time configuration information such as the RRC connection reconfiguration message configured by the DRX or the GAP
  • the 2G/3G neighboring cell implements the measurement of the different system in the CSFB process to ensure the success rate of CSFB.
  • the idle time indicated by the different system measurement idle time configuration information carried in the RRC connection reconfiguration message received by the receiving module 11 is a dormant period of discontinuous reception
  • the processing module 12 is configured to perform an inter-system measurement during a sleep period of discontinuous reception.
  • the idle time indicated by the different system measurement idle time configuration information carried in the RRC connection reconfiguration message received by the receiving module 11 is time slot information
  • the processing module 12 is configured to perform an inter-system measurement within a time indicated by the time slot information.
  • the sleep period of the discontinuous reception is generated by the network device forcibly maintaining a part of the sleep period in the discontinuous reception period in the sleep period.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a network device according to the present invention.
  • the network device 200 provided in this embodiment may implement various steps of the method for applying to the network device according to any embodiment of the present invention. The specific implementation process is not described herein.
  • the network device 200 provided by the embodiment of the present invention may specifically include:
  • the processing module 21 is configured to generate a radio resource control RRC connection reconfiguration message for the terminal when the CSBF triggers in the circuit domain, and the RRC connection reconfiguration message carries the different system measurement idle time configuration information;
  • the sending module 22 is configured to send the RRC connection reconfiguration message generated by the processing module 21 to the terminal, so that the terminal performs the inter-system measurement in the time indicated by the idle system configuration idle time configuration information, and the receiving module 23 is configured to receive the sending by the terminal. Different system measurement report.
  • processing module 21 is configured to generate, for the terminal, an RRC reconfiguration message that the idle time indicated by the idle system measurement idle time configuration information is a discontinuous reception sleep period.
  • processing module 21 is configured to generate, for the terminal, an RRC reconfiguration message whose idle time indicated by the idle system measurement idle time configuration information is slot information.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a terminal according to the present invention.
  • the terminal 300 provided in this embodiment may implement various steps of the method applied to the terminal according to any embodiment of the present disclosure. The specific implementation process is not described herein again.
  • the terminal 300 provided by the embodiment of the present invention may specifically include:
  • the receiver 31 is configured to receive, by the network device, a radio resource control RRC connection reconfiguration message sent by the network device when the circuit domain falls back, and the RRC connection reconfiguration message carries the different system measurement idle time configuration information;
  • the processor 32 is configured to perform the different system measurement during the idle time indicated by the idle system measurement idle time configuration information
  • the transmitter 33 is configured to send a different system measurement report to the network device.
  • the idle time indicated by the idle system configuration idle time configuration information is a dormant period of discontinuous reception
  • the processor 32 is configured to perform an inter-system measurement during a sleep period of discontinuous reception.
  • the idle time indicated by the idle system measurement idle time configuration information is time slot information; and the processor 32 is configured to perform the different system measurement within the time indicated by the time slot information.
  • the sleep period of the discontinuous reception is generated by the network device forcibly maintaining a part of the sleep period in the discontinuous reception period in the sleep period.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • the network device 400 provided in this embodiment may implement various steps of the method for applying to the network device according to any embodiment of the present invention. The specific implementation process is not described herein.
  • the network device 400 provided by the embodiment of the present invention may specifically include:
  • the processor 41 is configured to generate a radio resource control RRC connection reconfiguration message for the terminal when the circuit domain falls back CSFB triggering, where the RRC connection reconfiguration message carries the different system measurement idle time configuration information;
  • the transmitter 42 is configured to send an RRC connection reconfiguration message to the terminal, so that the terminal performs the inter-system measurement in the time indicated by the idle system measurement idle time configuration information;
  • the receiver 43 is configured to receive a different system measurement report sent by the terminal.
  • the idle time indicated by the idle system measurement idle time configuration information is a sleep period of discontinuous reception.
  • the idle time indicated by the idle system measurement idle time configuration information is time slot information.
  • the processor 41 is further configured to, after the transmitter 42 sends the RRC connection reconfiguration message to the terminal, forcibly maintain the partial sleep period in the discontinuous reception period of the terminal in the sleep period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种异系统测量方法、终端及网络设备,该方法包括:终端在电路域回落CSFB触发时接收网络设备发送的无线资源控制RRC连接重配置消息,RRC连接重配置消息携带异系统测量空闲时间配置信息;终端在异系统测量空闲时间配置信息指示的空闲时间内进行异系统测量并向网络设备发送异系统测量报告。该过程中,需要进行CSFB的终端,通过接收携带测量任务以及异系统测量空闲时间配置信息,如DRX或GAP配置的RRC连接重配置消息,并在DRX休眠期或GAP内进行异系统测量,从而确定出最佳的2G/3G邻小区,实现CSFB过程中的异系统测量,以保证CSFB的成功率。

Description

异系统测量方法、 终端及网络设备
技术领域
本发明涉及通信技术领域, 尤其涉及一种异系统测量方法、 终端及网络 设备。
背景技术
长期演进(Long Term Evolution, LTE) 网络虽然为全分组交换网络, 但 其不支持电路域 (Circuit Switch, CS ) 业务。 然而, 语音业务在很长一段时 间内仍将是不可或缺的重要业务, 为确保在 LTE网络上顺利开展高质量的语 音业务, 通常采用电路域回落 (Circuit Swithed Fallback, CSFB) 方式。 具体 的,具有 LTE以及第二代移动通信(the 2nd Generation Mobile Communication, 2G) 网络 /第三代移动通信 (the 3rd Generation Mobile Communication, 3G) 网络接入功能的双模或多模终端 (User Equipment, UE) , 在使用 LTE接入 处理语音业务时, 采用切换或重定向方式回退到 2G/3G网络, 并在 2G/3G网 络发起 CS业务。
为保证 CSFB的成功率, 即保证切换或重定向到的小区的信号强度等满 足 UE的 CS业务需求,一般不指定特定 2G/3G网络的小区, 而是需要 UE对 2G/3G 网络进行异系统测量, 通过异系统测量获取最佳小区并进行回退。 然 而, 现有技术中并没有具体的异系统测量技术。
因此, 如何对异系统进行测量确定出最佳小区, 从而实现可靠的 CSFB, 实为业界亟待解决的问题。 发明内容 本发明实施例提供一种异系统测量方法、 终端及网络设备, 实现可靠的 CSFB过程中的异系统测量。
第一个方面, 本发明实施例提供一种异系统测量方法, 包括:
终端在电路域回落 CSFB触发时接收网络设备发送的无线资源控制 RRC 连接重配置消息,所述 RRC连接重配置消息携带异系统测量空闲时间配置信 所述终端在所述异系统测量空闲时间配置信息指示的空闲 S时间内进行 异系统测量;
所述终端向所述网络设备发送异系统测量报告。
在第一个方面的第一种可能的实现方式中,
所述异系统测量空闲时间配置信息指示的空闲时间为非连续接收的休眠 期;
所述终端在所述异系统测量空闲时间配置信息指示的空闲时间内进行异 系统测量, 包括:
所述终端在所述非连续接收的休眠期内进行异系统测量。
在第一个方面的第二种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为时隙信息;
所述终端在所述异系统测量空闲时间配置信息指示的空闲时间内进行异 系统测量, 包括:
所述终端在所述时隙信息指示的时间内进行异系统测量。
结合第一个方面的第一种可能的实现方式, 在第一个方面的第三种可能 的实现方式中, 所述非连续接收的休眠期为所述网络设备将非连续接收周期 中的部分休眠期强制保持在休眠期生成的。
第二个方面, 本发明实施例提供一种异系统测量方法, 包括:
网络设备在电路域回落 CSFB触发时为终端生成无线资源控制 RRC连接 重配置消息, 所述 RRC连接重配置消息携带异系统测量空闲时间配置信息; 所述网络设备向所述终端发送所述 RRC连接重配置消息, 以使所述终端 在所述异系统测量空闲时间配置信息指示的时间内进行异系统测量;
所述网络设备接收所述终端发送的异系统测量报告。
在第二个方面的第一种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为非连续接收的休眠期。
在第二个方面的第二种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为时隙信息。
结合第二个方面的第一种可能的实现方式, 在第二个方面的第三种可能 的实现方式中, 所述网络设备向所述终端发送所述 RRC 连接重配置消息之 后, 还包括:
所述网络设备将所述终端的非连续接收周期中的部分休眠期强制保持在 休眠期。
第三个方面, 本发明实施例提供一种终端, 包括:
接收模块, 用于在电路域回落 CSFB触发时接收网络设备发送的无线资 源控制 RRC连接重配置消息, 所述 RRC连接重配置消息携带异系统测量空 闲时间配置信息;
处理模块,用于在所述接收模块接收到的所述 RRC连接重配置消息携带 的所述异系统测量空闲时间配置信息指示的空闲时间内进行异系统测量; 发送模块, 用于向所述网络设备发送异系统测量报告。
在第三个方面的第一种可能的实现方式中, 所述接收模块接收到的所述
RRC连接重配置消息携带的所述异系统测量空闲时间配置信息指示的空闲时 间为非连续接收的休眠期;
所述处理模块, 用于在所述非连续接收的休眠期内进行异系统测量。 在第三个方面的第二种可能的实现方式中, 所述接收模块接收到的所述
RRC连接重配置消息携带的所述异系统测量空闲时间配置信息指示的空闲时 间为时隙信息;
所述处理模块, 用于在所述时隙信息指示的时间内进行异系统测量。 结合第三个方面的第一种可能的实现方式, 在第三个方面的第三种可能 的实现方式中, 所述非连续接收的休眠期为所述网络设备将非连续接收周期 中的部分休眠期强制保持在休眠期生成的。
第四个方面, 本发明实施例提供一种网络设备, 包括:
处理模块, 用于在电路域回落 CSFB 触发时为终端生成无线资源控制 RRC连接重配置消息, 所述 RRC连接重配置消息携带异系统测量空闲时间 配置信息;
发送模块,用于向所述终端发送所述处理模块生成的所述 RRC连接重配 置消息, 以使所述终端在所述异系统测量空闲时间配置信息指示的时间内进 行异系统测量;
接收模块, 用于接收所述终端发送的异系统测量报告。
在第四个方面的第一种可能的实现方式中, 所述处理模块, 用于为所述 终端生成所述异系统测量空闲时间配置信息指示的空闲时间为非连续接收的 休眠期的 RRC重配置消息。
在第四个方面的第二种可能的实现方式中, 所述处理模块, 用于为所述 终端生成所述异系统测量空闲时间配置信息指示的空闲时间为时隙信息的 RRC重配置消息。
结合第四个方面的第一种可能的实现方式, 在第四个方面的第三种可能 的实现方式中, 所述处理模块, 还用于在为终端生成无线资源控制 RRC连 接重配置消息之前, 将非连续接收周期中的部分休眠期强制保持在休眠期。
第五个方面, 本发明实施例提供一种终端, 包括:
接收器, 用于在电路域回落 CSFB触发时接收网络设备发送的无线资源 控制 RRC连接重配置消息, 所述 RRC连接重配置消息携带异系统测量空闲 时间配置信息;
处理器, 用于在所述异系统测量空闲时间配置信息指示的空闲时间内进 行异系统测量;
发送器, 用于向所述网络设备发送异系统测量报告。
在第五个方面的第一种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为非连续接收的休眠期;
所述处理器, 用于在所述非连续接收的休眠期内进行异系统测量。
在第五个方面的第二种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为时隙信息;
所述处理器, 用于在所述时隙信息指示的时间内进行异系统测量。
结合第五个方面的第一种可能的实现方式, 在第五个方面的第三种可能 的实现方式中, 所述非连续接收的休眠期为所述网络设备向所述终端发送所 述 RRC连接重配置消息之后,将所述终端的非连续接收周期中的部分休眠期 强制保持在休眠期生成的。
第六个方面, 本发明实施例提供一种网络设备, 包括:
处理器, 用于在电路域回落 CSFB触发时为终端生成无线资源控制 RRC 连接重配置消息,所述 RRC连接重配置消息携带异系统测量空闲时间配置信 息;
发送器, 用于向所述终端发送所述 RRC连接重配置消息, 以使所述终端 在所述异系统测量空闲时间配置信息指示的时间内进行异系统测量; 接收器, 用于接收所述终端发送的异系统测量报告。
在第六个方面的第一种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为非连续接收的休眠期。
在第六个方面的第二种可能的实现方式中, 所述异系统测量空闲时间配 置信息指示的空闲时间为时隙信息。
结合第六个方面的第一种可能的实现方式, 在第六个方面的第三种可能 的实现方式中, 所述处理器, 还用于向所述终端发送所述 RRC连接重配置消 息之后, 将所述终端的非连续接收周期中的部分休眠期强制保持在休眠期。
本发明实施例提供的异系统测量方法、终端及网络设备,需要进行 CSFB 的终端, 通过接收携带测量任务以及异系统测量空闲时间配置信息, 如 DRX 或 GAP配置的 RRC连接重配置消息, 使得终端在 DRX休眠期或 GAP内进 行异系统测量, 从而确定出最佳的 2G/3G邻小区, 实现 CSFB过程中的异系 统测量, 以保证 CSFB的成功率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 明异系统测量方法实施例一的流程图;
明异系统测量方法实施例二的流程图;
明异系统测量实施例三的信令图
明异系统测量实施例四的信令图
明异系统测量实施例五的信令图
明 DRX的处理示意图;
明终端实施例一的结构示意图;
明网络设备实施例一的结构示意图;
Figure imgf000007_0001
明终端实施例二的结构示意图; 图 10为本发明网络设备实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明异系统测量方法实施例一的流程图。 本实施例适用于处于 LTE网络中的终端发起 CS业务而触发 CSFB的过程中, 为保证能够切换或 重定向到最佳小区, 需要进行异系统测量的场景, 本实施例的执行主体为终 端。 具体的, 本实施例包括如下步骤:
101、终端在电路域回落 CSFB触发时接收网络设备发送的无线资源控制 RRC连接重配置消息, RRC连接重配置消息携带异系统测量空闲时间配置信 息。
终端在 LTE小区内发起 CS业务, 网络设备需触发 CSFB过程, 为使终 端选择到最合的小区, 网络设备通过发送无线资源控制 RRC 连接重配置消 息, 为终端配置测量任务及相应的空闲时间以进行异系统测量。
具体的, 需要进行 CSFB的终端, 例如, 在 LTE小区处于空闲 (idle) 态的终端; 或者, 在 LTE 小区处于活动 (active) 态的终端, 需要发起语音 业务(CS业务) , 在采用 CSFB方式回退到 2G/3G网络的过程中, 当需要选 定具体的目标 2G/3G 小区时, 网络设备通过无线资源控制连接重配置消息 (Radio Resource Control Connection Reconfiguration, RRC连接重配置)为终 端配置异系统测量任务, 即邻区测量配置, 并配置进行异系统测量的空闲时 间, 如非连续接收 (Discontinuous Reception, DRX) 或者测量间隙 (GAP) 相关参数, 以使终端利用 DRX的休眠期或 GAP这些空闲时间进行相关的异 系统邻区测量。
102、终端在异系统测量空闲时间配置信息指示的空闲时间内进行异系统 在接收到网络设备发送的 RRC连接重配置消息后,终端根据邻区测量配 置以及异系统测量空闲时间配置信息, 在异系统测量空闲时间配置信息指示 的空闲时间内进行异系统测量。 该异系统测量过程中, 终端根据测量配置中 指定的频点或邻区进行 2G/3G邻区测量, 并根据测量所得的结果生成异系统 测量报告。
103、 终端向网络设备发送异系统测量报告。
当终端在空闲时间, 如配置的 DRX的休眠期或 GAP期间完成异系统测 量并生成异系统测量报告。 在生成异系统测量报告后, 若终端仍处在休眠期 则可即时转入激活期向网络设备发送该异系统测量报告,若利用 GAP测量则 可在 GAP期结束向网络设备发送该异系统测量报告。
本发明实施例提供的异系统测量方法, 需要进行 CSFB的终端, 通过接 收携带测量任务以及异系统测量空闲时间配置信息, 如 DRX或 GAP配置的 RRC连接重配置消息, 使得终端在 DRX休眠期或 GAP内进行异系统测量, 从而确定出最佳的 2G/3G邻小区, 实现 CSFB过程中的异系统测量, 以保证 CSFB的成功率。
图 2为本发明异系统测量方法实施例二的流程图。 本实施例适用于处于 LTE网络中的终端发起 CS业务而触发 CSFB的过程中, 为保证能够切换或 重定向到最佳小区, 需要进行异系统测量的场景, 本实施例的执行主体为网 络设备。 具体的, 本实施例包括如下步骤:
201、网络设备在电路域回落 CSFB触发时为终端生成无线资源控制 RRC 连接重配置消息, RRC连接重配置消息携带异系统测量空闲时间配置信息。
本步骤中, 网络设备为需要进行 CSFB的终端生成包含邻区测量配置以 及异系统测量空闲时间配置信息,如 DRX或 GAP配置信息的 RRC连接重配 置消息。 其中, RRC连接重配置消息、 DRX及 GAP配置的相关描述请参见 图 1所示实施例一步骤 101, 此处不再赘述。
202、 网络设备向终端发送 RRC连接重配置消息, 以使终端在异系统测 量空闲时间配置信息指示的空闲时间内进行异系统测量。
在生成 RRC连接重配置消息后, 网络设备将生成的 RRC连接重配置消 息发送给终端, 使得终端根据异系统测量空闲时间配置信息, 在具体的空闲 时间内进行异系统测量。
203、 网络设备接收终端发送的异系统测量报告。
当终端在空闲时间内完成异系统测量并生成异系统测量报告后, 终端向 网络设备发送异系统测量报告; 相应的, 网络设备接收该异系统测量报告。 本发明实施例提供的异系统测量方法, 网络设备为需要进行 CSFB的终 端生成携带邻区测量配置及异系统测量空闲时间配置信息, 如 DRX或 GAP 配置信息的 RRC连接重配置消息并下发给终端, 使得终端在 DRX的休眠期 或 GAP内进行异系统测量,从而确定出最佳的 2G/3G邻小区,实现 CSFB过 程中的异系统测量, 以保证 CSFB的成功率。
上述实施例一、 实施例二分别从终端、 网络设备为执行主体的角度对本 发明进行了说明。下面, 通过终端与网络设备的交互对本发明进行详细阐述。
图 3为本发明异系统测量实施例三的信令图。 本实施例中, 终端无分组 交换业务, RRC连接重配置消息携带的异系统测量空闲时间配置信息指示的 空闲时间具体为非连续接收的休眠期, 网络设备具体为演进节点 (eNodeB, eNB) 。 具体的, 本实施例包括如下步骤:
301、 终端向移动管理实体 (Mobile Managenment Entity, MME) 发送 NAS扩展服务请求。
处于 LTE小区内的 idle态的终端, 即无分组交换(Packet switching, PS) 业务的终端, 向 MME发送非接入层 (Non-Access Stadium, NAS )扩展服务 请求 (Extended Service Request) 。
具体的, 本步骤包括如下子步骤:
3011、 终端向 eNB发送 NAS扩展服务请求;
3012、 eNB向 MME发送 NAS扩展服务请求。
302、 MME向 eNB发送具有 CS回退指示符的 Sl-AP UE上下文初始化
303、 eNB向 MME发送 Sl-AP UE上下文初始化响应消息(Sl-AP Initial UE Context Response message ) 。
304、 eNB向终端发送 RRC连接重配置消息。
具体的, eNB向终端发送携带邻区测量配置及非连续接收信息的 RRC连 接重配置消息, 该非连续接收信息可以包括指示休眠期的 DRX参数。 其中, 一种 DRX参数配置如下:
a)周期:长周期的 DRX的长度记为 Long Drx Cycle,例如取值为 320ms; b) 持续工作定时器 (On Duration Timer) : 终端每次从 DRX醒来后维 持醒着的时间, 在该段时间内终端会监听 PDCCH, 例如取值为 5ms;
c) 停止定时器 (Drx Inactivity Timer) : 若终端在持续工作定时器内成 功监听到 PDCCH而需要保持 active的时间, 例如取值为 10ms。
当终端接收到非连续接收信息后, 对于可以进行异系统测量的 DRX周 期, 若终端在持续工作定时器内成功监听到 PDCCH, 则需要在保持 10ms的 active态才进入休眠期, 在剩余的 305ms ( 320ms-5ms- 10ms=305ms ) 的休眠 期内进行异系统测量; 否则, 若终端在持续工作定时器内未能成功监听到 PDCCH, 则直接接入休眠期, 在剩余的 315ms (320ms-5ms=315ms) 的休眠 期内进行异系统测量。
可选的,网络设备可以将终端当前所处 LTE小区的 2G/3G的邻居小区信 息也通过 RRC连接重配置消息发送给终端。例如, 可以将通用移动通信系统 (Universal Mobile Telecommunications System, UMTS )的邻区歹 Ll表、全球移 动通信系统 (Global System for Mobile communication, GSM)的邻区频点组 等也通过 RRC连接重配置消息发送给终端,使得终端仅对邻区列表中的小区 进行测量, 或者, 仅对邻区频点组中的频点进行测量。
305、 终端在 DRX周期的休眠期内进行异系统测量。
终端在 DRX周期的休眠期内,对邻区测量配置的指定小区或频点进行测 量得到异系统测量报告。
306、 终端向 eNB发送异系统测量报告。
当终端在休眠期内完成测量后, 则可以即时转入激活期, 或者在进入激 活期后将异系统测量报告 (Measurement report) 发送给 eNB。
图 4为本发明异系统测量实施例四的信令图。 本实施例中, 终端有分组 交换业务, RRC连接重配置消息携带的异系统测量空闲时间配置信息指示的 空闲时间具体为时隙 (GAP ) 信息, 终端在该时隙内进行异系统测量, 网络 设备具体为演进节点 (eNodeB, eNB) 。 具体的, 本实施例包括如下步骤: 401、 终端向 MME发送 NAS扩展服务请求。
处于 LTE小区内的 active态的终端, 即存在 PS业务的终端, 向 MME 发送 NAS扩展服务请求。
具体的, 本步骤包括如下子步骤:
4011、 终端向 eNB发送 NAS扩展服务请求; 4012、 eNB向 MME发送 NAS扩展服务请求。
402、 MME向 eNB发送具有 CS回退指示符的 Sl-AP UE上下文修改请
403、 eNB 向 MME 发送 Sl-AP UE上下文修改响应消息 (Sl-AP UE Context Modification Response message ) 。
404、 eNB向终端发送 RRC连接重配置消息。
具体的, eNB向终端发送携带邻区测量配置及时隙信息的 RRC连接重配 置消息。
405、 终端在时隙信息指示的时间内进行异系统测量。
终端在时隙信息指示的时间内, 对指定小区或频点进行测量得到异系统 测量报告。
406、 终端向 eNB发送异系统测量报告。
当终端在时隙信息指示的休眠期内完成测量后,则可以在 GAP结束后将 异系统测量报告 (Measurement report) 发送给 eNB。
图 5为本发明异系统测量实施例五的信令图。 本实施例中, 终端有分组 交换业务, RRC连接重配置消息携带的异系统测量空闲时间配置信息指示的 空闲时间具体为非连续接收信息, 终端在该非连续接收的休眠期内进行异系 统测量, 网络设备具体为演进节点 (eNodeB, eNB) 。 具体的, 本实施例包 括如下步骤:
501、 终端向 MME发送 NAS扩展服务请求。
处于 LTE小区内的 active态的终端, 即存在 PS业务的终端, 向 MME 发送 NAS扩展服务请求。
具体的, 本步骤包括如下子步骤:
5011、 终端向 eNB发送 NAS扩展服务请求;
5012、 eNB向 MME发送 NAS扩展服务请求。
502、 MME向 eNB发送具有 CS回退指示符的 Sl-AP UE上下文修改请
503、 eNB 向 MME 发送 Sl-AP UE上下文修改响应消息 (Sl-AP UE Context Modification Response message ) 。
504、 eNB向终端发送 RRC连接重配置消息。 eNB向终端发送携带邻区测量配置的非连续接收信息的 RRC连接重配置 消息, 该非连续接收信息可以包括指示休眠期的 DRX参数。
505、 终端在 DRX周期的休眠期内进行异系统测量。
终端在 DRX周期的休眠期内,对指定小区或频点进行测量得到异系统测
506、 终端向 eNB发送异系统测量报告。
可以在进入激活期后将异系统测量报
Figure imgf000013_0001
需要说明的是, 上述图 3、 图 4及图 5中, 可能会涉及到与其他网元, 如移动交换中心 (Mobile Switching Centre, MSC) 、 服务 GPRS 支持节点 ( Serving GPRS Support Node, SGSN) 等的交互, 图中并未列出。
对于处于 Active态终端在空闲时间, 即 DRX的休眠期内进行异系统测 量的过程, 上述图 5是从终端、 eNB与 MME交互的角度进行详细阐述的, 然而, 由于终端存在 PS业务时, 可能会在 DRX周期的休眠期内被唤醒进入 激活期, 为保证 DRX周期内存在一定的用于异系统测量的休眠期, 需要对可 进行异系统测量的 DRX周期进行特殊处理, 即通过调度协调,在终端接收到 RRC重配置消息进入非连续接收状态后, 网络设备强制将所述终端用于异系 统测量的休眠期在测量期间一直保持在休眠期, 以保证进行异系统测量的休 眠期不会被打断。 下面, 从 eNB对 DRX周期处理、 终端在相应的 DRX周期 进行异系统测量的角度对本发明进行详细阐述, 具体的, 可参见图 6。 图 6 为本发明 DRX的处理示意图, 其包括如下步骤:
步骤 A、 网络设备为终端重新配置 DRX参数。
具体的, 正常操作下的网络设备, 例如, 处于周期较短的 DRX周期内的 网络设备, 或未处于 DRX周期内的网络设备, 在接收到特定 DRX开启指示 后, 为终端重新配置 DRX参数。 其中, 特定 DRX开启指示例如为发现终端 在 CSFB过程中需要进行异系统测量的指示。
步骤 B、 终端接收网络设备重新配置的 DRX参数。
终端经过实际的参数配置时延 n'后接收网络设备重新配置的 DRX参数。 假设步骤 A中 DRX参数配置如下:
a)周期:长周期的 DRX的长度记为 Long Drx Cycle,例如取值为 160ms; b) 持续工作定时器 (On Duration Timer) : 终端每次从 DRX醒来后维 持醒着的时间, 在该段时间内终端会监听 PDCCH, 例如取值为 5ms;
c) 停止定时器 (Drx Inactivity Timer) : 若终端在持续工作定时器内成 功监听到 PDCCH而需要保持 active的时间, 例如取值为 10ms。
d ) Long DRX start offset 的 值 配 置 方 案 为 : drxstartof fset = [(SFN * 10) + subframenu mber + n mod( LongDrxCyc le)。 其中, SFN 和 subframe number为收到特定 DRX开启指示时的帧号和子帧号, n为估计的参 数配置时延 (该值往往大于实际参数配置时延 η' ) 。 根据该公式, 可控制终 端何时进入 DRX状态。
e) 不需要强制停留在休眠期内的时间 m, 可表示为7^ ^。~ , 例如取 值为 15mS o
下面, 以图 6所示网络侧的 DRX周期①、 ②, 以及终端侧对应的 DRX 周期①'、 ②'为例进行说明。
例如, 根据上述 d) 中的公式计算出终端在哪帧进入 DRX周期, 则网络 设备需要对 DRX周期① '进行处理。 假设终端在持续工作定时器内成功监听 到 PDCCH, 则需要在保持 10ms的 active态才进入休眠期, 即整个休眠期的 时长为 145ms ( 160ms-5ms-10ms= 145ms) , 由于上述 e) 中 "賺 。„騰層的耳又值 (如图中所示 m ) 为 15ms, 则网络设备需要将剩下的 130ms ( 145ms-15ms=130ms) 休眠期进行处理, 强制使其一直停留在休眠期除非 UE完成测量要进行测量报告上报。 相应的, 终端在 DRX周期① '中, 进行异 系统测量。
请参照图 6, DRX周期②中无需进行异系统测量, 因此, 网络设备无需 对该 DRX周期进行处理, 在 DRX周期②中, 按照实际的操作指示, 输出激 活期和休眠期指示。 相应的, 终端在与 DRX周期②对应的 DRX周期② '中, 不进行异系统测量。
步骤 C、 网络设备再次重新配置 DRX参数, 恢复到正常操作。
具体的, 当异系统测量完毕后, 或是需要停止异系统测量时, 例如, 处 于周期较长的 DRX周期内的网络设备, 在接收到特定 DRX关闭指示后, 再 次为终端重新配置 DRX参数以恢复到正常操作。 其中, 特定 DRX关闭指示 例如为异系统测量完毕指示、 停止异系统测量指示等。 步骤 D、 终端再次接收重新配置的 DRX参数, 恢复到正常操作。
终端根据网络设备再次重新配置的 DRX参数执行相应的操作,以恢复到 正常操作。
需要说明的是, 图 6 中 DRX周期②、 DRX周期② '所示区间为完整的 DRX周期, 而 DRX周期①、 DRX周期① '所示的区间为部分 DRX周期, 即 DRX周期①所示区间仅为一个 DRX周期的休眠期, DRX周期① '所示区间仅 示出特殊处理后的部分休眠期, 即强制使其一直停留在休眠期的用于异系统 测量的休眠期。
另外, 还需要说明的是, 上述图 6中仅以 DRX周期①与其相应的 DRX 周期①'可进行异系统测量; DRX周期②与其相应的 DRX周期② '不可以进行 异系统测量为例对本发明进行详细说明的, 然而, 实际可行的实施方式中, 可进行异系统测量的 DRX周期、 不可进行异系统测量的 DRX周期可根据上 述 d) 中的公式或其他方式灵活的进行设定。
上述图 3、 图 5所示实施例中, 网络设备为终端配置非连续接收信息, 使得终端在 DRX的休眠期内进行异系统测量, 而图 4所示实施例中, 网络设 备为终端配置时隙信息, 使得终端在时隙内进行异系统测量。 然而, 一般来 说, 图 4所示实施例中, 异系统测量时延会比较大, 例如, 在 40ms的周期中 进行 6ms的异系统测量, 其测量时延一般占到几百毫秒, 而整个 CSFB的时 延通常为 3〜5s。 因此, 倘若邻区个数较多, 例如全球移动通信系统 (Global System for Mobile Communications, GSM) , 则采用图 4实施例的方式会导 致异系统测量所需的时间会变长, 进而导致 CSFB的时延较大。 所以, 当在 邻区个数较多等情况下,一般根据终端所处的状态, idle态或 active态而采用 图 3或图 5所示方式。
图 7为本发明终端实施例一的结构示意图。 本实施例提供的终端 100具 体可实现本发明任意实施例提供的应用于终端的方法的各个步骤, 具体实现 过程在此不再赘述。 本发明实施例提供的终端 100具体可以包括:
接收模块 11, 用于在电路域回落 CSFB触发时接收网络设备发送的无线 资源控制 RRC连接重配置消息, RRC连接重配置消息携带异系统测量空闲 时间配置信息;
处理模块 12, 用于在接收模块 11接收到的 RRC连接重配置消息携带的 异系统测量空闲时间配置信息指示的空闲时间内进行异系统测量; 发送模块 13, 用于向网络设备发送异系统测量报告。
本发明实施例提供的终端, 在 CSFB触发时, 通过接收携带测量任务以 及异系统测量空闲时间配置信息,如 DRX或 GAP配置的 RRC连接重配置消 息, 使得终端在 DRX休眠期或 GAP内进行异系统测量, 从而确定出最佳的
2G/3G邻小区, 实现 CSFB过程中的异系统测量, 以保证 CSFB的成功率。
进一步的, 接收模块 11接收到的 RRC连接重配置消息携带的异系统测 量空闲时间配置信息指示的空闲时间为非连续接收的休眠期;
处理模块 12, 用于在非连续接收的休眠期内进行异系统测量。
进一步的, 接收模块 11接收到的 RRC连接重配置消息携带的异系统测 量空闲时间配置信息指示的空闲时间为时隙信息;
处理模块 12, 用于在时隙信息指示的时间内进行异系统测量。
进一步的, 非连续接收的休眠期为网络设备将非连续接收周期中的部分 休眠期强制保持在休眠期生成的。
图 8为本发明网络设备实施例一的结构示意图。 本实施例提供的网络设 备 200具体可实现本发明任意实施例提供的应用于网络设备的方法的各个步 骤, 具体实现过程在此不再赘述。 本发明实施例提供的网络设备 200具体可 以包括:
处理模块 21, 用于在电路域回落 CSFB触发时为终端生成无线资源控制 RRC连接重配置消息, RRC连接重配置消息携带异系统测量空闲时间配置信 息;
发送模块 22,用于向终端发送处理模块 21生成的 RRC连接重配置消息, 以使终端在异系统测量空闲时间配置信息指示的时间内进行异系统测量; 接收模块 23, 用于接收终端发送的异系统测量报告。
进一步的, 处理模块 21, 用于为终端生成异系统测量空闲时间配置信息 指示的空闲时间为非连续接收的休眠期的 RRC重配置消息。
进一步的, 处理模块 21, 用于为终端生成异系统测量空闲时间配置信息 指示的空闲时间为时隙信息的 RRC重配置消息。
进一步的, 处理模块 21, 还用于向终端发送 RRC连接重配置消息之后, 将终端的非连续接收周期中的部分休眠期强制保持在休眠期。 图 9为本发明终端实施例二的结构示意图。 本实施例提供的终端 300具 体可实现本发明任意实施例提供的应用于终端的方法的各个步骤, 具体实现 过程在此不再赘述。 本发明实施例提供的终端 300具体可以包括:
接收器 31, 用于在电路域回落 CSFB触发时接收网络设备发送的无线资 源控制 RRC连接重配置消息, RRC连接重配置消息携带异系统测量空闲时 间配置信息;
处理器 32, 用于在异系统测量空闲时间配置信息指示的空闲时间内进行 异系统测量;
发送器 33, 用于向网络设备发送异系统测量报告。
进一步的, 异系统测量空闲时间配置信息指示的空闲时间为非连续接收 的休眠期;
处理器 32, 用于在非连续接收的休眠期内进行异系统测量。
进一步的, 异系统测量空闲时间配置信息指示的空闲时间为时隙信息; 处理器 32, 用于在时隙信息指示的时间内进行异系统测量。
进一步的, 非连续接收的休眠期为网络设备将非连续接收周期中的部分 休眠期强制保持在休眠期生成的。
图 10为本发明网络设备实施例二的结构示意图。本实施例提供的网络设 备 400具体可实现本发明任意实施例提供的应用于网络设备的方法的各个步 骤, 具体实现过程在此不再赘述。 本发明实施例提供的网络设备 400具体可 以包括:
处理器 41, 用于在电路域回落 CSFB 触发时为终端生成无线资源控制 RRC连接重配置消息, RRC连接重配置消息携带异系统测量空闲时间配置信 息;
发送器 42, 用于向终端发送 RRC连接重配置消息, 以使终端在异系统 测量空闲时间配置信息指示的时间内进行异系统测量;
接收器 43, 用于接收终端发送的异系统测量报告。
进一步的, 其特征在于, 异系统测量空闲时间配置信息指示的空闲时间 为非连续接收的休眠期。
进一步的, 其特征在于, 异系统测量空闲时间配置信息指示的空闲时间 为时隙信息。 进一步的, 处理器 41, 还用于在发送器 42向终端发送 RRC连接重配置 消息之后, 将终端的非连续接收周期中的部分休眠期强制保持在休眠期。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种异系统测量方法, 其特征在于, 包括:
终端在电路域回落 CSFB触发时接收网络设备发送的无线资源控制 RRC 连接重配置消息,所述 RRC连接重配置消息携带异系统测量空闲时间配置信 息;
所述终端在所述异系统测量空闲时间配置信息指示的空闲时间内进行异 系统测量;
所述终端向所述网络设备发送异系统测量报告。
2、 根据权利要求 1所述的方法, 其特征在于,
所述异系统测量空闲时间配置信息指示的空闲时间为非连续接收的休眠 期;
所述终端在所述异系统测量空闲时间配置信息指示的空闲时间内进行异 系统测量, 包括:
所述终端在所述非连续接收的休眠期内进行异系统测量。
3、 根据权利要求 1所述的方法, 其特征在于,
所述异系统测量空闲时间配置信息指示的空闲时间为时隙信息; 所述终端在所述异系统测量空闲时间配置信息指示的空闲时间内进行异 系统测量, 包括:
所述终端在所述时隙信息指示的时间内进行异系统测量。
4、 根据权利要求 2所述的方法, 其特征在于,
所述非连续接收的休眠期为所述网络设备将非连续接收周期中的部分休 眠期强制保持在休眠期生成的。
5、 一种异系统测量方法, 其特征在于, 包括:
网络设备在电路域回落 CSFB触发时为终端生成无线资源控制 RRC连接 重配置消息, 所述 RRC连接重配置消息携带异系统测量空闲时间配置信息; 所述网络设备向所述终端发送所述 RRC连接重配置消息, 以使所述终端 在所述异系统测量空闲时间配置信息指示的时间内进行异系统测量;
所述网络设备接收所述终端发送的异系统测量报告。
6、 根据权利要求 5所述的方法, 其特征在于,
所述异系统测量空闲时间配置信息指示的空闲时间为非连续接收的休眠 期。
7、 根据权利要求 5所述的方法, 其特征在于,
所述异系统测量空闲时间配置信息指示的空闲时间为时隙信息。
8、 根据权利要求 6所述的方法, 其特征在于,
所述网络设备向所述终端发送所述 RRC连接重配置消息之后, 还包括: 所述网络设备将所述终端的非连续接收周期中的部分休眠期强制保持在 休眠期。
9、 一种终端, 其特征在于, 包括:
接收模块, 用于在电路域回落 CSFB触发时接收网络设备发送的无线资 源控制 RRC连接重配置消息, 所述 RRC连接重配置消息携带异系统测量空 闲时间配置信息;
处理模块,用于在所述接收模块接收到的所述 RRC连接重配置消息携带 的所述异系统测量空闲时间配置信息指示的空闲时间内进行异系统测量; 发送模块, 用于向所述网络设备发送异系统测量报告。
10、 根据权利要求 9所述的终端, 其特征在于,
所述接收模块接收到的所述 RRC 连接重配置消息携带的所述异系统测 量空闲时间配置信息指示的空闲时间为非连续接收的休眠期;
所述处理模块, 用于在所述非连续接收的休眠期内进行异系统测量。
11、 根据权利要求 9所述的终端, 其特征在于, 所述接收模块接收到的 所述 RRC 连接重配置消息携带的所述异系统测量空闲时间配置信息指示的 空闲时间为时隙信息;
所述处理模块, 用于在所述时隙信息指示的时间内进行异系统测量。
12、 根据权利要求 10所述的终端, 其特征在于,
所述非连续接收的休眠期为所述网络设备将非连续接收周期中的部分休 眠期强制保持在休眠期生成的。
13、 一种网络设备, 其特征在于, 包括:
处理模块, 用于在电路域回落 CSFB 触发时为终端生成无线资源控制 RRC连接重配置消息, 所述 RRC连接重配置消息携带异系统测量空闲时间 配置信息;
发送模块,用于向所述终端发送所述处理模块生成的所述 RRC连接重配 置消息, 以使所述终端在所述异系统测量空闲时间配置信息指示的时间内进 行异系统测量;
接收模块, 用于接收所述终端发送的异系统测量报告。
14、 根据权利要求 13所述的网络设备, 其特征在于,
所述处理模块, 用于为所述终端生成所述异系统测量空闲时间配置信息 指示的空闲时间为非连续接收的休眠期的 RRC重配置消息。
15、 根据权利要求 13所述的网络设备, 其特征在于,
所述处理模块, 用于为所述终端生成所述异系统测量空闲时间配置信息 指示的空闲时间为时隙信息的 RRC重配置消息。
16、 根据权利要求 14所述的网络设备, 其特征在于,
所述处理模块, 还用于在向所述终端发送所述 RRC 连接重配置消息之 后, 将所述终端的非连续接收周期中的部分休眠期强制保持在休眠期。
17、 一种终端, 其特征在于, 包括:
接收器, 用于在电路域回落 CSFB触发时接收网络设备发送的无线资源 控制 RRC连接重配置消息, 所述 RRC连接重配置消息携带异系统测量空闲 时间配置信息;
处理器, 用于在所述异系统测量空闲时间配置信息指示的空闲时间内进 行异系统测量;
发送器, 用于向所述网络设备发送异系统测量报告。
18、 根据权利要求 17所述的终端, 其特征在于, 所述异系统测量空闲时 间配置信息指示的空闲时间为非连续接收的休眠期;
所述处理器, 用于在所述非连续接收的休眠期内进行异系统测量。
19、 根据权利要求 17所述的终端, 其特征在于, 所述异系统测量空闲时 间配置信息指示的空闲时间为时隙信息;
所述处理器, 用于在所述时隙信息指示的时间内进行异系统测量。
20、 根据权利要求 18所述的终端, 其特征在于, 所述非连续接收的休眠 期为所述网络设备将非连续接收周期中的部分休眠期强制保持在休眠期生成 的。
21、 一种网络设备, 其特征在于, 包括:
处理器, 用于在电路域回落 CSFB触发时为终端生成无线资源控制 RRC 连接重配置消息,所述 RRC连接重配置消息携带异系统测量空闲时间配置信 息;
发送器, 用于向所述终端发送所述 RRC连接重配置消息, 以使所述终端 在所述异系统测量空闲时间配置信息指示的时间内进行异系统测量;
接收器, 用于接收所述终端发送的异系统测量报告。
22、 根据权利要求 21所述的网络设备, 其特征在于, 所述异系统测量空 闲时间配置信息指示的空闲时间为非连续接收的休眠期。
23、 根据权利要求 21所述的网络设备, 其特征在于, 所述异系统测量空 闲时间配置信息指示的空闲时间为时隙信息。
24、 根据权利要求 22所述的网络设备, 其特征在于,
所述处理器, 还用于向所述终端发送所述 RRC连接重配置消息之后, 将 所述终端的非连续接收周期中的部分休眠期强制保持在休眠期。
PCT/CN2013/086419 2013-11-01 2013-11-01 异系统测量方法、终端及网络设备 WO2015062072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003533.9A CN105027605B (zh) 2013-11-01 2013-11-01 异系统测量方法、终端及网络设备
PCT/CN2013/086419 WO2015062072A1 (zh) 2013-11-01 2013-11-01 异系统测量方法、终端及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086419 WO2015062072A1 (zh) 2013-11-01 2013-11-01 异系统测量方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2015062072A1 true WO2015062072A1 (zh) 2015-05-07

Family

ID=53003182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086419 WO2015062072A1 (zh) 2013-11-01 2013-11-01 异系统测量方法、终端及网络设备

Country Status (2)

Country Link
CN (1) CN105027605B (zh)
WO (1) WO2015062072A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792217A (zh) * 2016-02-25 2016-07-20 华为技术有限公司 用户设备和通信方法
CN110881193A (zh) * 2018-09-05 2020-03-13 中国移动通信有限公司研究院 一种针对语音起呼回落的测量方法、终端和网络设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568665B (en) * 2017-11-15 2020-11-25 Tcl Communication Ltd Improvements in or relating to reducing random access for paged User Equipment (UE) in New Radio (NR)
CN110290473B (zh) * 2018-03-19 2021-07-27 成都鼎桥通信技术有限公司 切换方法与装置
CN110324834B (zh) * 2018-03-28 2021-06-04 维沃移动通信有限公司 测量结果的指示方法、终端和基站
CN112042240B (zh) * 2018-06-25 2022-01-11 Oppo广东移动通信有限公司 网络设备配置终端设备的方法、终端设备和网络设备
CN110876152B (zh) * 2018-09-03 2023-06-27 中国移动通信有限公司研究院 一种连续测量实现方法、装置和计算机可读存储介质
CN111385841B (zh) * 2018-12-29 2022-08-12 大唐移动通信设备有限公司 辅节点的测量方法、测量配置方法、终端及网络设备
WO2023207433A1 (en) * 2022-04-29 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for communication in wireless communication system with network power saving feature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547467A (zh) * 2008-03-24 2009-09-30 华为技术有限公司 一种通信网络中建立连接的方法和用户终端及基站
CN102356662A (zh) * 2010-05-17 2012-02-15 高通股份有限公司 用于执行测量以实现无线网络之间的切换的控制信道不连续接收(drx)消息发送

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094554B2 (en) * 2006-10-26 2012-01-10 Qualcomm Incorporated Compressed mode operation and power control with discontinuous transmission and/or reception

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547467A (zh) * 2008-03-24 2009-09-30 华为技术有限公司 一种通信网络中建立连接的方法和用户终端及基站
CN102356662A (zh) * 2010-05-17 2012-02-15 高通股份有限公司 用于执行测量以实现无线网络之间的切换的控制信道不连续接收(drx)消息发送

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792217A (zh) * 2016-02-25 2016-07-20 华为技术有限公司 用户设备和通信方法
CN110881193A (zh) * 2018-09-05 2020-03-13 中国移动通信有限公司研究院 一种针对语音起呼回落的测量方法、终端和网络设备

Also Published As

Publication number Publication date
CN105027605A (zh) 2015-11-04
CN105027605B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2015062072A1 (zh) 异系统测量方法、终端及网络设备
US10912058B2 (en) Discontinuous reception communication synchronization method and apparatus
US10764806B2 (en) Method and apparatus for assisting terminal in measuring
WO2020147669A1 (zh) 终端节能方法、基站、终端、终端节能系统及计算机可读存储介质
US9661571B2 (en) Method of determining expiration period of timer, network node, and non-transitory computer readable medium
EP2983416B1 (en) Paging method, apparatus, and system
EP3900434A1 (en) Suspend-resume in conditional handover
JP5996769B2 (ja) デバイスの機能に基づく性能属性を修正することに関する方法およびデバイス
KR20210005547A (ko) Rrc 연결의 복구 방법, 디바이스 및 컴퓨터 기억 매체
WO2016161793A1 (zh) 异系统的测量方法、相关装置及测量系统
WO2017118179A1 (zh) 一种寻呼处理方法、装置和寻呼系统
WO2016049868A1 (zh) 一种异系统测量的方法、相关装置及系统
WO2014176780A1 (zh) 测量方法、测量控制方法及设备
TW201804858A (zh) 發送和接收尋呼消息的方法、接入網設備和終端設備
WO2019024812A1 (zh) 一种邻区测量方法及装置
CN110557765B (zh) 功耗模式调整方法及装置
US11968618B2 (en) EPC enhancement for long DRX and power saving state
WO2020164390A1 (zh) 一种测量的方法和通信装置
WO2012083703A1 (zh) 邻小区关系的测量方法和系统
US20150296367A1 (en) Mobility Estimation
WO2013123875A1 (zh) Drx的控制方法及设备
WO2013138995A1 (en) Method and apparatus for dormant state determination
WO2021142680A1 (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380003533.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896468

Country of ref document: EP

Kind code of ref document: A1