WO2016049868A1 - 一种异系统测量的方法、相关装置及系统 - Google Patents

一种异系统测量的方法、相关装置及系统 Download PDF

Info

Publication number
WO2016049868A1
WO2016049868A1 PCT/CN2014/087977 CN2014087977W WO2016049868A1 WO 2016049868 A1 WO2016049868 A1 WO 2016049868A1 CN 2014087977 W CN2014087977 W CN 2014087977W WO 2016049868 A1 WO2016049868 A1 WO 2016049868A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
drx cycle
measurement
duration
parameter
Prior art date
Application number
PCT/CN2014/087977
Other languages
English (en)
French (fr)
Inventor
吴晓波
吕阳明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14903406.8A priority Critical patent/EP3193532B1/en
Priority to PCT/CN2014/087977 priority patent/WO2016049868A1/zh
Priority to CN201480038244.7A priority patent/CN105659664B/zh
Priority to JP2017517084A priority patent/JP6378430B2/ja
Publication of WO2016049868A1 publication Critical patent/WO2016049868A1/zh
Priority to US15/473,414 priority patent/US20170208521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a related device, and a system for measuring different systems.
  • Second Generation (Second Generation, 2G) or Third Generation (3G) networks such as Global System of Mobile Communication (GSM) or Wideband Code Division Multiple Access (WCDMA) Basic coverage has been basically achieved.
  • GSM Global System of Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • LTE networks have covered some urban areas and traffic hotspots, so that in the current communication networks, LTE networks coexist with 2G/3G networks.
  • some LTE networks may only support data services and do not support voice services.
  • UE User Equipment
  • the 2G/3G network in the (Circuit Switched, CS) domain performs voice services on the 2G/3G network with the CS domain.
  • circuit domain fallback The above-mentioned technology for switching from the CS domain of the LTE network to the CS domain of the 2G/3G network is called circuit domain fallback.
  • VoLTE Voice over LTE
  • the embodiments of the present invention provide a method, a related device, and a system for measuring different systems, which can reduce measurement time and accelerate measurement of different systems, thereby reducing call switching preparation time and avoiding interruption of a voice session.
  • an embodiment of the present invention provides a method for measuring a different system, the method comprising:
  • the evolved base station eNodeB determines that the UE supports the LTE network from the process of performing the circuit domain fallback CSFB in the user equipment UE located in the long term evolution LTE network, or providing the UE with the VoIP network based voice VoLTE service process. Switching of circuit switched CS domains of 2G or 3G networks;
  • the eNodeB Sending, by the eNodeB, a measurement control message to the UE, where the measurement control message includes a discontinuous reception C-DRX parameter and a measurement configuration parameter in a first continuous state, the first C-DRX parameter and the measurement configuration parameter And configured to instruct the UE to measure signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the measurement control message includes a discontinuous reception C-DRX parameter and a measurement configuration parameter in a first continuous state, the first C-DRX parameter and the measurement configuration parameter And configured to instruct the UE to measure signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the first C-DRX cycle is determined by the first C-DRX parameter, and a dormant period of the first C-DRX cycle
  • the duration of the sleep period of the first C-DRX cycle is not less than 100 ms; or the duration of the sleep period of the first C-DRX cycle is not less than 80 ms; or the first C-DRX cycle
  • the ratio of the duration of the sleep period to the duration of the first C-DRX cycle is greater than 0.6; or the ratio of the duration of the sleep period of the first C-DRX cycle to the duration of the first C-DRX cycle is greater than 0.8
  • the ratio of the duration of the sleep period of the first C-DRX cycle to the duration of the first C-DRX cycle is greater than 0.9.
  • the method further includes: the eNodeB Sending a second C-DRX parameter to the UE.
  • the duration of the dormant period of the first C-DRX cycle is greater than the duration of the dormant period of the second C-DRX cycle; or, the first C-DRX cycle a ratio of a duration of the sleep period to a duration of the first C-DRX cycle is greater than a ratio of a duration of the sleep period of the second C-DRX cycle to a duration of the second C-DRX cycle; wherein the first C The -DRX cycle is determined by the first C-DRX and the second C-DRX cycle is determined by the second C-DRX parameter.
  • an embodiment of the present invention provides a method for measuring a different system, where the method includes: performing, in a process of performing a circuit domain fallback CSFB, a user equipment UE located in a long term evolution LTE network, or in the eNodeB, in an evolved base station eNodeB
  • the UE receives a measurement control message sent by the eNodeB, where the measurement control message includes discontinuous reception C-DRX parameters and measurement configurations in a first continuous state.
  • the first C-DRX parameter and the measurement configuration parameter are used to indicate that the UE measures a signal quality of a 2G or 3G network during a sleep period of the first C-DRX cycle;
  • the UE measures signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the first C-DRX cycle is determined by the first C-DRX parameter, and the dormant period of the first C-DRX cycle
  • the duration of the sleep period of the first C-DRX cycle is not less than 100 ms; or the duration of the sleep period of the first C-DRX cycle is not less than 80 ms; or the first C-DRX cycle
  • the ratio of the duration of the sleep period to the duration of the first C-DRX cycle is greater than 0.6; or the ratio of the duration of the sleep period of the first C-DRX cycle to the duration of the first C-DRX cycle is greater than 0.8
  • the ratio of the duration of the sleep period of the first C-DRX cycle to the duration of the first C-DRX cycle is greater than 0.9.
  • the method before the UE receives the measurement control message sent by the eNodeB, the method further includes the UE Receiving a second C-DRX parameter sent by the eNodeB.
  • the duration of the dormant period of the first C-DRX cycle is greater than The duration of the sleep period of the second C-DRX cycle; or the sleep period of the first C-DRX cycle And a ratio of a duration of the first C-DRX period to a duration of a sleep period of the second C-DRX period and a duration of the second C-DRX period; wherein the first C-DRX The period is determined by the first C-DRX, and the second C-DRX period is determined by the second C-DRX parameter.
  • an evolved base station including:
  • a determining unit configured to determine, by the evolved base station, in a process of performing a circuit domain fallback CSFB for a user equipment UE located in a long term evolution LTE network, or providing an LTE network based voice VoLTE service process for the UE Switching from the LTE network to a circuit switched CS domain of a 2G or 3G network;
  • An interaction unit configured to send a measurement control message to the UE, where the measurement control message includes a discontinuous reception C-DRX parameter and a measurement configuration parameter in a first continuous state, the first C-DRX parameter and the measurement
  • the configuration parameter is used to indicate that the UE measures the signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the embodiment of the present invention provides a user equipment, including an interaction unit, in the process of performing a circuit domain fallback CSFB on the user equipment by the evolved base station eNodeB, or providing the user equipment in the eNodeB.
  • a processing unit configured to measure a signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • an embodiment of the present invention provides a measurement system, including the evolved base station according to the third aspect, and the user equipment in the fourth aspect.
  • the embodiment of the invention provides a method, a related device and a system for measuring different systems.
  • the evolved base station eNodeB can send a measurement control message to the UE when determining that the UE supports handover from the LTE network to the CS domain of the 2G or 3G network.
  • the measurement control message carries a Connected-Discontinuous Reception (C-DRX) parameter and a measurement control parameter in a first continuous state, where the first C-DRX parameter and the measurement control parameter are used.
  • C-DRX Connected-Discontinuous Reception
  • the signal quality of the 2G or 3G network is measured during the sleep period, so that the UE can continuously measure the signal quality of the 2G or 3G network during the sleep period of the first C-DRX cycle, avoiding the 40 ms. Only 6ms measurement can be performed in the period of /80ms, that is, avoiding measurement by GAP mode, speeding up the measurement process and shortening the measurement time, thereby effectively reducing the call switching preparation time and avoiding the interruption of the voice session during the CSFB call time. Or the voice session is interrupted when VoLTE is performed.
  • FIG. 1 is a flowchart of a method for measuring different systems according to an embodiment of the present invention
  • FIG. 3 is a flowchart of still another method for measuring different systems according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an evolved base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a device for measuring different systems according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a measurement system according to an embodiment of the present invention.
  • the embodiment of the invention provides a method, a related device and a system for measuring different systems, which can accelerate the measurement of the different system and reduce the measurement time, thereby reducing the call switching preparation time and avoiding the interruption of the voice session.
  • the embodiments of the present invention also provide corresponding devices and systems.
  • the first, second, third, fourth, fifth, etc. in the embodiments of the present invention are only used to distinguish different indication information, messages, or other objects, and do not represent sequential relationships.
  • C-DRX Connected-Discontinuous Reception
  • the basic mechanism of C-DRX is to configure a Connected-Discontinuous Reception Cycle for UEs in the RRC_CONNECTED state.
  • the C-DRX cycle consists of "On Duration” and "Opportunity for DRX": During the "On Duration” time (ie, during the activation period), the UE is allowed to listen and receive the Physical Downlink Control Channel (PDCCH). Data; during the "Opportunity for DRX" time (ie, during the sleep period), the UE does not receive data of the physical downlink control channel to save power.
  • PDCCH Physical Downlink Control Channel
  • VoLTE The existing 2G/3G core network consists of a PS domain and a CS domain. Voice and other CS supplementary services are supported by the CS domain.
  • the LTE core network does not include the CS domain, only the PS domain. Therefore, it is called Evolved Packet System (EPS).
  • EPS Evolved Packet System
  • the LTE network In order to provide voice services, the LTE network must include an IP Multimedia Subsystem (IMS), and the IMS is a session control layer. Therefore, the voice service in the LTE/EPS system is called VoLTE service or IMS voice over IP (voice over IP). VoIP) business.
  • IMS IP Multimedia Subsystem
  • Different system measurement refers to the measurement of the signal quality of other network standards by UEs located in a certain network standard.
  • the UE located in the LTE network measures the signal quality of the 2G/3G network, and the heterogeneous system measurement usually occurs before the network handover.
  • the GAP mode is usually adopted, that is, the measurement is performed by using 6 ms in each 40 ms/80 ms period, which can avoid the impact on the service.
  • a long measurement time is required for multiple 2G/3G neighbors.
  • the call handover preparation time is too long, causing a voice session interruption during the CSFB call time or a voice session interruption when the UE performs the VoLTE service.
  • the embodiment of the present invention provides a method, a related device, and a system for measuring a different system, which can include a C-DRX parameter and a measurement control parameter in a measurement control message sent by an evolved NodeB (eNodeB) to a UE located in an LTE network.
  • the C-DRX parameter and the measurement control parameter may indicate that the UE continuously measures the signal quality of the 2G/3G network during the sleep period of the C-DRX cycle, for example, the C-DRX cycle may be performed by the C-DRX
  • the parameter determines that the C-DRX parameter can be configured as follows: during the entire C-DRX cycle, the duration of the activation period is as short as possible, and the duration of the sleep period is less than the C-DRX period.
  • the length of time is as long as possible,
  • the UE can stay in the sleep period of the C-DRX cycle for a long time to continuously measure the signal quality of the 2G/3G network.
  • the above method effectively accelerates the measurement of the signal quality of the 2G/3G network of the UE located in the LTE network, shortens the measurement time, and solves the problem that the call handover preparation time caused by the different system measurement using the GAP mode in the prior art is too long. Or a problem with a voice session interruption.
  • FIG. 1 is a method for measuring a different system according to an embodiment of the present invention, where the method includes:
  • the eNodeB determines that the UE supports handover from the LTE network to a CS domain of the 2G or 3G network.
  • the eNodeB may first determine whether the UE supports handover from the LTE network to a CS domain of the 2G or 3G network, if the UE supports a CS domain from the LTE network to the 2G or 3G network Switching requires measurement of the signal quality of the 2G or 3G network before switching.
  • the eNodeB may determine whether the UE supports the slave before moving the UE from the LTE network to the CS domain of the 2G or 3G network in the process of performing the circuit domain fallback CSFB for the UE located in the LTE network.
  • determining whether the UE supports handover from the LTE network to the CS domain of the 2G or 3G network determining whether the UE supports handover from the LTE network to the CS domain of the 2G or 3G network.
  • the eNodeB sends a measurement control message to the UE, where the measurement control message includes a first C-DRX parameter and a measurement configuration parameter, where the first C-DRX parameter and the measurement configuration parameter are used to indicate the The UE measures the signal quality of the 2G or 3G network during the sleep period of the first C-DRX cycle.
  • the measurement control message may be a RRC Connection Reconfiguration (RRC Connection Reconfiguration) message. Due to the first C-DRX parameter and the measurement configuration parameter included in the measurement control message, the UE may be in the first C-DRX cycle according to the indication of the first C-DRX parameter and the measured configuration parameter The signal quality of the 2G or 3G network is continuously measured during the sleep period.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • the measuring configuration parameter may include performing signal quality on the 2G or 3G network. Measuring relevant information required, for example, the measurement configuration parameter may include an object, a cell list, a reporting mode, a measurement identifier, or an event parameter, etc., that the UE needs to measure; the first C-DRX cycle may be by the first The C-DRX parameter determines that the first C-DRX cycle may include a dormant period and an activation period, and during the dormant period of the first C-DRX cycle, the UE does not receive data of the physical downlink control channel, in the first C During the activation period of the DRX cycle, the UE monitors and receives data of the physical downlink control channel.
  • the measurement control message may be used to indicate that the UE is in the dormant period of the first C-DRX cycle
  • the signal quality of the 2G or 3G network is measured, that is, the measurement configuration parameter and the first C-DRX parameter are used to indicate that the UE is in the sleep period of the first C-DRX cycle to the 2G or 3G network.
  • Signal quality is measured.
  • the UE may continuously measure the signal quality of the 2G or 3G network during the sleep period of the first C-DRX cycle, and avoid performing only in the 40ms/80ms period.
  • the measurement of 6ms that is, avoiding the measurement by using the GAP mode, accelerates the measurement process and shortens the measurement time, thereby effectively reducing the call switching preparation time, avoiding the interruption of the voice session during the CSFB call time or the interruption of the voice session during VoLTE.
  • the first C-DRX parameter and the measurement configuration parameter may be further used to indicate that the UE adopts a GAP mode to the 2G or 3G network during an activation period of the first C-DRX cycle. Signal quality is measured.
  • the first C-DRX cycle may be determined by a first C-DRX parameter. Therefore, by adjusting the first C-DRX parameter, the time during which the UE continues to perform the inter-system measurement can be adjusted.
  • the first C-DRX parameter may be configured in such a manner that the duration of the activation period (ie, the duration of the activation period) is as short as possible in the case of greater than zero throughout the first C-DRX cycle.
  • the duration of the dormant period (ie, the duration of the dormant period) is as long as possible in a case of less than the duration of the first C-DRX cycle, so that the UE can stay in the dormant period of the first C-DRX cycle for a long time, in the first
  • the signal quality of the 2G/3G network is continuously measured during the sleep period of a C-DRX cycle, which greatly accelerates the measurement of the heterogeneous system.
  • the duration T 1s of the sleep period of the first C-DRX cycle may be not less than 51 ms; alternatively, T 1s may be greater than or equal to 80 ms or greater than or equal to 100 ms, so that the UE may complete the difference within one sleep period.
  • a ratio of a duration T 1s of the sleep period of the first C-DRX cycle to a duration T 1d of the first C-DRX cycle is greater than 0.6 (ie, T 1s /T 1d >60%);
  • T 1s /T 1d is greater than 0.8 or greater than 0.9, so as to ensure that the duration of the sleep period is as long as possible in the case of less than the duration of the period, so that the UE can effectively measure by using the C-DRX cycle, and accelerate the measurement of the different system.
  • step S102 the method may further include step S100:
  • the eNodeB sends a second C-DRX parameter to the UE.
  • the eNodeB may send a second C-DRX parameter to the UE for the purpose of reducing power consumption, etc.
  • the C-DRX parameter is used to configure a second C-DRX cycle for the UE, the second C-DRX
  • the period may include a sleep period and an activator, and the UE does not receive data of the physical downlink control channel during the sleep period of the second C-DRX cycle to save power consumption.
  • the second C-DRX cycle may be determined by the second C-DRX parameter.
  • the second C-DRX parameter that is sent may be configured to make the duration of the sleep period of the second C-DRX cycle shorter, or make the second C-DRX cycle, because the normal C2DR parameters are not affected.
  • the ratio of the duration of the sleep period to the duration of the second C-DRX cycle is relatively small.
  • the duration of the second C-DRX cycle may be set to 160 ms, and the duration of the sleep period may be set to 50 ms. Therefore, the first C-DRX parameter may be set such that the UE stays in the sleep period of the first C-DRX cycle for a longer period of time than the sleep period of the second C-DRX cycle in the same time.
  • the duration of the sleep period of the first C-DRX cycle may be made longer than the duration of the sleep period of the second C-DRX cycle; or the duration of the sleep period of the first C-DRX cycle may be made to be the first C
  • the ratio of the duration of the -DRX cycle is greater than the ratio of the duration of the sleep period of the second C-DRX cycle to the duration of the second C-DRX cycle.
  • the method may further include:
  • the eNodeB receives a measurement report returned by the UE.
  • the measurement report may include a measurement result obtained by the UE measuring a signal quality of the 2G or 3G network.
  • the eNodeB may determine, according to the measurement report, a CS domain handover that performs the LTE network to the 2G or 3G network, and perform step S104.
  • the eNodeB After receiving the measurement report, the eNodeB sends a mobile management entity (Mobile)
  • the Managed Entity (MME) sends a Handover Required message to trigger a CS domain handover procedure of the LTE network to the 2G or 3G network.
  • Mobile mobile management entity
  • MME Managed Entity
  • the method may also include:
  • the eNodeB sends the second C-DRX parameter to the UE, or sends a request message to the UE, where the request message is used to instruct the UE to disable the C-DRX function of the UE.
  • the eNodeB may reduce the power consumption by transmitting the second C-DRX parameter to the UE, so that the UE recovers to a C-DRX state before performing the inter-system measurement.
  • the UE may perform the normal service at the same time; or the eNodeB may disable the C-DRX function of the UE by sending a request message to the UE indicating that the UE turns off the C-DRX function of the UE, to avoid The impact of the business.
  • the eNodeB in S103 may send the The second C-DRX parameter is sent to the UE, or a request message is sent to the UE, and the request message is used to instruct the UE to disable the C-DRX function of the UE.
  • the embodiment of the invention provides a method for measuring different systems, the method comprising:
  • the UE located in the LTE network receives the measurement control message sent by the eNodeB, where the measurement control message carries the first C-DRX parameter and the measurement configuration parameter, where the first C-DRX parameter and the measurement configuration parameter are used to indicate The UE measures the signal quality of the 2G or 3G network during the sleep period of the first C-DRX cycle.
  • the UE receives the measurement control message sent by the eNodeB.
  • the measurement control message may be a radio resource control protocol connection reconfiguration (RRC) Connection Reconfiguration) message.
  • RRC radio resource control protocol connection reconfiguration
  • the UE may receive a second C-DRX parameter sent by the eNodeB, where the second C-DRX parameter is used by the UE to determine a second C-DRX cycle, that is, the UE
  • the second C-DRX cycle may be configured, and the UE may not receive data of the physical downlink control channel during the dormant period of the second C-DRX cycle to reduce power consumption and improve battery usage time of the UE.
  • the specific information of the first C-DRX parameter and the specific information of the measurement configuration parameter may be referred to other method embodiments, and details are not described herein again.
  • S202 The UE measures a signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the measurement of the signal quality of the 2G or 3G network may be performed by using Reference Singnal Received Power (RSRP) or Reference Singnal Received Quanness (RSRQ) of the 2G or 3G network.
  • RSRP Reference Singnal Received Power
  • RSRQ Reference Singnal Received Quanness
  • the UE may be according to the indication of the first C-DRX parameter and the measurement configuration parameter, or according to the The indication of the measurement control message continuously measuring the signal quality of the 2G or 3G network during the sleep period of the first C-DRX cycle, avoiding the measurement by using the GAP mode, accelerating the measurement process, and shortening the measurement time .
  • the first C-DRX cycle may be determined by the first C-DRX parameter, and the first C-DRX parameter may be configured as follows: during an entire first C-DRX cycle, enabling an activation period The duration (ie, the duration of the activation period) is as short as possible, and the duration of the sleep period (ie, the duration of the sleep period) is as long as possible for less than the duration of the first C-DRX cycle, thereby The UE stays in the sleep period of the first C-DRX cycle for a long time, and continuously measures the signal quality of the 2G/3G network during the sleep period of the first C-DRX cycle, which greatly accelerates the measurement of the different system.
  • the UE may be forced to exit the sleep period of the CDRX cycle. Therefore, after receiving the measurement control message, the UE may stop or suspend sending the uplink data.
  • the measurement control message may carry indication information for instructing the UE to stop or suspend sending uplink data, and the UE may stop or suspend sending uplink according to the indication information after receiving the measurement control message. Data; for example, the UE may receive After the measurement control message, the uplink data is automatically stopped or suspended.
  • S203 The UE generates a measurement report according to a measurement result obtained by measuring a signal quality of the 2G or 3G network, and the UE sends the measurement report to the eNodeB.
  • the UE may resume transmitting uplink data.
  • the switching process may be entered, and the method may further include:
  • the UE receives a handover command sent by the eNodeB, where the handover command is used to indicate that the UE is handed over from the LTE network to a CS domain of a 2G or 3G network, where the handover command includes the 2G or 3G
  • the network is information that the UE switches from the LTE network to the CS domain radio resource allocated by the CS domain of the 2G or 3G network; the UE switches from the LTE network to the 2G or according to the handover command The CS domain of the 3G network.
  • the eNodeB may not perform the CS domain handover of the LTE network to the 2G or 3G network.
  • the eNodeB may not The switching command that will be sent, the method may further include:
  • S204a' The UE receives the second C-DRX parameter sent by the eNodeB, and the UE recovers to a C-DRX state before performing an inter-system measurement according to the second C-DRX parameter.
  • the method may further be:
  • S204b' The UE receives a request message sent by the eNodeB, where the request message is used to instruct the UE to disable the C-DRX function of the UE.
  • step S204a' or step S204b' it is possible to reduce the impact on the service when the measurement of the different system is not required (for example, after the failure of the handover), and to improve the user experience.
  • the embodiment of the present invention provides a method for measuring a different system, which may be applied to a scenario in which the eNodeB needs to perform a different system measurement in a process of performing a circuit domain fallback CSFB for a UE located in an LTE network.
  • the method can include:
  • the eNodeB sends a second C-DRX parameter to the UE located in the LTE network.
  • the eNodeB may send a second C-DRX parameter to the UE to save power consumption by the UE.
  • the second C-DRX parameter is used to configure a second C-DRX cycle for the UE.
  • S301 The UE monitors and receives data of a PDCCH during an activation period of a second C-DRX cycle according to the second C-DRX parameter, and does not receive a PDCCH during a dormant period of the second C-DRX cycle. Data, the second C-DRX cycle is determined by the second C-DRX parameter.
  • the UE When receiving the second C-DRX parameter, the UE may stay in a dormant period or an activation period of the second C-DRX cycle.
  • S302 The UE sends a request message to the MME, where the request message is used to request CSFB.
  • the MME sends a notification message to the eNodeB, where the notification message is used to instruct the eNodeB to move the UE from the LTE network to a circuit switched CS domain of a 2G or 3G network.
  • the eNodeB determines that the UE supports handover from the LTE network to a CS domain of the 2G or 3G network.
  • the eNodeB may determine, according to a Feature Group Indicator (FGI) capability reported by the UE, whether the UE supports handover from the LTE network to the CS domain of the 2G or 3G network. If it is determined that the UE supports handover from the LTE network to the CS domain of the 2G or 3G network, the UE is instructed to perform an inter-system measurement for handover.
  • FGI Feature Group Indicator
  • the method for determining whether the UE supports the handover from the LTE network to the CS domain of the 2G or 3G network may be implemented in various manners, which is not limited herein.
  • the eNodeB sends a radio resource control protocol connection reconfiguration message to the UE, where the RRC connection reconfiguration message carries a first C-DRX parameter and a measurement parameter, where the first C-DRX parameter and the The measurement configuration parameter is used to indicate that the UE measures the signal quality of the 2G or 3G network during the sleep period of the first C-DRX cycle.
  • the first C-DRX parameter and the measurement configuration parameter are used to indicate that the UE measures a signal quality of a 2G or 3G network during a sleep period of the first C-DRX cycle; that is, the RRC connection
  • the reconfiguration message is used to indicate that the UE measures the signal quality of the 2G or 3G network during the first C-DRX cycle.
  • the measurement parameters may include related information required to measure signal quality of the 2G or 3G network, and the UE may perform measurement configuration on itself according to the measurement configuration parameters.
  • the measurement configuration parameter may include information such as an object, a cell list, a report mode, a measurement identifier, or an event parameter that the UE needs to measure. Further, reference may be made to the 3GPP standard.
  • the first C-DRX parameter may be configured in such a manner that the UE stays in the sleep period of the first C-DRX cycle for a longer period of time than the sleep period of the second C-DRX cycle in the same time. Therefore, the time for the UE to continuously perform the measurement of the different system is increased, the time taken for the measurement of the different system is reduced, and the measurement of the different system is accelerated.
  • the duration T 1s of the sleep period of the first C-DRX cycle may be greater than the duration T 2s of the sleep period of the second C-DRX cycle, or the duration of the sleep period of the first C-DRX cycle may be The ratio of the duration of the first C-DRX cycle is greater than the ratio of the duration of the sleep period of the second C-DRX cycle to the duration of the second C-DRX cycle.
  • the duration T 1s of the sleep period of the first C-DRX cycle may be not less than 100 ms, or the first C
  • the ratio of the duration T 1s of the dormant period of the DRX cycle to the duration T 1d of the activation period of the first C-DRX cycle may be greater than 80% (ie, T 1s /T 1d >80%).
  • the duration of the sleep period is 160ms-8ms-80ms, that is, 72ms.
  • the duration of the sleep period is 160 ms - 2 ms - 2 ms, that is, 156 ms, so that the UE can continuously perform the inter-system measurement within 156 ms. It is possible to complete an inter-system measurement within one sleep period.
  • S306 The UE is configured according to the measurement configuration parameter, and after the configuration is completed, A measurement control acknowledgement message is sent to the eNodeB.
  • the measurement control acknowledgement message may be a RRC Connection Reconfiguration Complete message.
  • S307 The UE measures a signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the UE does not receive data of the physical downlink control channel, and can directly and continuously measure the signal quality of the 2G or 3G network, for example, RSRP or RSRQ of the 2G or 3G network. measuring.
  • the UE may also perform the heterogeneous system measurement by using the GAP mode during the activation period of the first C-DRX cycle.
  • S308 The UE generates a measurement report according to the measurement result, and sends the measurement report to the eNodeB.
  • the measurement report may include: a measurement identifier (ID) and a measurement result (eg, measurements of RSRP and RSRQ).
  • the eNodeB determines, according to the measurement report, whether the UE needs to perform handover, and when the eNodeB determines that handover is necessary, determines a target cell, and performs S310.
  • the eNodeB sends a handover request message to the mobility management entity MME to trigger a CS domain handover procedure of the LTE network to the 2G or 3G network.
  • the handover request message may be used to request the MME to switch the UE from the LTE network to a CS domain of the 2G or 3G network for CSFB.
  • the handover request message may be the CS domain handover request message from the LTE network to the 2G or 3G network, for example, an SRVCC HO Required (Single Radio Voice Call Continuity Handover Required) message.
  • S311 Perform a CS domain handover procedure of the LTE network to the 2G or 3G network.
  • the MME may request, by the mobile service switching center (MSC) of the 2G or 3G network, a base station (BS) of the 2G or 3G network as The UE switches to the CS domain of the 2G or 3G network to allocate a CS domain resource, and after acquiring the information of the CS domain radio resource allocated by the base station, the MME may send a handover request response message to the eNodeB, where the handover is performed.
  • Request response message contains CS domain wireless Information of the resource, the information of the CS domain radio resource is used for the UE to switch from the LTE network to the CS domain of the 2G or 3G network.
  • the eNodeB may receive the handover request response message, and send a handover command to the UE, where the handover command is used to indicate that the UE switches from the LTE network to a CS domain of the 2G or 3G network,
  • the handover command includes information of the CS domain radio resource.
  • the UE may switch from the LTE network to the CS domain of the 2G or 3G network according to the handover command.
  • the method may further include:
  • S312 The eNodeB determines that the handover process fails.
  • the handover request response message carries a handover failure indication, where the handover failure indication is used to indicate that the handover procedure fails, determining that the handover procedure fails; or If the eNodeB does not receive the handover request response message sent by the MME within a preset time, the eNodeB determines that the handover process fails.
  • the eNodeB sends the second C-DRX parameter to the UE, so that the UE is restored to a C-DRX state before performing an inter-system measurement.
  • the UE may listen to and receive data of the PDCCH during the activation period of the second C-DRX cycle according to the second C-DRX parameter, and not receive the data of the PDCCH during the dormant period of the second C-DRX cycle.
  • An embodiment of the present invention provides a method for measuring a different system.
  • the eNodeB moves the UE from the LTE network to a CS domain of a 2G or 3G network in a process of performing a circuit domain fallback CSFB for a UE located in an LTE network. And transmitting, to the UE, a measurement control message, where the measurement control message includes a first C-DRX parameter and a measurement configuration parameter, and the UE may be configured according to the first C-DRX parameter and the indication of the measured configuration parameter.
  • the signal quality of the 2G or 3G network is continuously measured during the sleep period of the first C-DRX cycle, so that only 6 ms measurement can be performed in a period of 40 ms/80 ms, which effectively accelerates the UE located in the LTE network.
  • the measurement of the signal quality of the 2G/3G network shortens the measurement time and solves the call switching preparation caused by the different system measurement using the GAP mode in the prior art. A problem that is too long or the voice session is interrupted.
  • the first C-DRX parameter may be configured as follows: during the entire first C-DRX cycle, The duration of the activation period (ie, the duration of the activation period) is as short as possible with greater than zero, while the duration of the dormant period (ie, the duration of the dormant period) is as long as possible for less than the duration of the first C-DRX cycle. Therefore, the UE can stay in the sleep period of the first C-DRX cycle for a long time, and continuously measure the signal quality of the 2G/3G network during the sleep period of the first C-DRX cycle, which greatly accelerates the measurement of the different system.
  • the method for measuring the different system may also be applied to the process of providing the VoLTE service for the UE located in the LTE network, and the VoLTE needs to be switched to the CS domain of the 2G/3G network, and the system measurement is performed before the handover. Scenes. At this time, steps S302 and S303 may be replaced with S302'-S303'.
  • S302' The UE attached to the LTE network is performing VoLTE services.
  • the eNodeB determines that a CS domain handover from the LTE network to the 2G or 3G network needs to be performed on the UE.
  • the eNodeB may determine, according to the measurement report of the LTE network quality sent by the UE, that the LTE network cannot continue to provide services for the UE, that is, determine that the UE needs to be performed from the LTE network to the 2G or 3G. CS domain switching of the network.
  • the embodiment of the present invention provides an evolved base station eNodeB.
  • the evolved base station 40 includes a determining unit 401 and an interaction unit 402.
  • the determining unit 401 is configured to determine that the UE supports handover from the LTE network to a CS domain of a 2G or 3G network; for example, performing, by the eNodeB, a circuit domain fallback CSFB for a user equipment UE located in a long term evolution LTE network In the process of providing an LTE network-based voice VoLTE service for the UE, determining that the UE supports handover from the LTE network to a circuit switched CS domain of a 2G or 3G network.
  • the interaction unit 402 is configured to send a measurement control message to the UE, where the measurement control message includes a first C-DRX parameter and a measurement configuration parameter, the first C-DRX parameter and the measurement configuration
  • the parameter is used to indicate that the UE measures the signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the measurement control message may be a RRC Connection Reconfiguration (RRC Connection Reconfiguration) message.
  • the first C-DRX parameter and the measurement configuration parameter may be further used to indicate that the UE adopts a GAP mode to the 2G or 3G network during an activation period of the first C-DRX cycle. Signal quality is measured.
  • the first C-DRX cycle may be determined by the first C-DRX parameter, and a duration of a sleep period of the first C-DRX cycle is not less than 51 ms; or, the first C-DRX The period is determined by the first C-DRX parameter, and a ratio of a duration of a sleep period of the first C-DRX cycle to a duration of the first C-DRX cycle is greater than 0.6.
  • the interaction unit 402 may send a second C-DRX parameter to the UE before sending the measurement control message to the UE, where the The second C-DRX parameter is configured to configure a second C-DRX cycle for the UE, so that the UE monitors and receives data of the PDCCH during the activation period of the second C-DRX cycle, where the second C-DRX The data of the PDCCH is not received during the dormant period of the cycle, thereby saving power consumption of the UE.
  • the second C-DRX period may be determined by the second C-DRX parameter, and the first C-DRX parameter may be set such that a duration of a sleep period of the first C-DRX cycle is greater than The duration of the sleep period of the second C-DRX cycle; or the ratio of the duration of the sleep period of the first C-DRX cycle to the duration of the first C-DRX cycle is greater than the sleep of the second C-DRX cycle The ratio of the duration of the period to the duration of the second C-DRX cycle, thereby increasing the time that the UE can continue to perform the measurement of the different system, reducing the time taken for the measurement of the different system, and accelerating the measurement of the different system.
  • the interaction unit 402 may further receive a measurement report returned by the UE, determine, according to the measurement report, not performing a CS domain handover of the LTE network to the 2G or 3G network, and send the second C -DRX parameters are given to the UE; or,
  • the interaction unit 402 may further receive the measurement report returned by the UE, and send a handover request message to the mobility management entity MME to trigger a CS domain handover process of the LTE network to the 2G or 3G network, and determine the handover process. Failing to send the second C-DRX parameter to the UE; or
  • the interaction unit 402 may further receive a measurement report returned by the UE, according to the measurement report. Determining not to perform the CS domain handover of the LTE network to the 2G or 3G network, and sending a request message to the UE, where the request message is used to instruct the UE to disable the C-DRX function of the UE; or
  • the interaction unit 402 may further receive the measurement report returned by the UE, and send a handover request message to the mobility management entity MME to trigger a CS domain handover process of the LTE network to the 2G or 3G network, and determine the handover process. If it fails, the request message is sent to the UE.
  • the UE may be forced to exit the sleep period of the first CDRX cycle, which affects the measurement of the different system. Therefore, the measurement control message may be carried to indicate that the UE stops or suspends the sending. Indication of the uplink data.
  • An embodiment of the present invention provides an evolved base station, where the determining unit 401 of the evolved base station may determine, when the determining unit 401 of the evolved base station supports the handover of the CS domain from the LTE network to the 2G or 3G network, Sending, by the UE, a measurement control message, where the measurement control message includes a first C-DRX parameter and a measurement configuration parameter, so that the UE may be in accordance with the indication of the first C-DRX parameter and the measured configuration parameter
  • the signal quality of the 2G or 3G network is continuously measured, so that only 6 ms measurement can be performed in a period of 40 ms/80 ms, which effectively accelerates the UE pair located in the LTE network.
  • the measurement of the signal quality of the 2G/3G network shortens the measurement time and solves the problem that the call switching preparation time is too long or the voice session is interrupted due to the different system measurement using the GAP mode in the prior art.
  • the first C-DRX parameter may be configured as follows: during the entire first C-DRX cycle, The duration of the activation period (ie, the duration of the activation period) is as short as possible with greater than zero, while the duration of the dormant period (ie, the duration of the dormant period) is as long as possible for less than the duration of the first C-DRX cycle. Therefore, the UE can stay in the sleep period of the first C-DRX cycle for a long time, and continuously measure the signal quality of the 2G/3G network during the sleep period of the first C-DRX cycle, which greatly accelerates the measurement of the different system.
  • the embodiment of the present invention provides a user equipment, as shown in FIG. 5, the user equipment 50 includes: an interaction unit 501 and a processing unit 502;
  • the interaction unit 501 is configured to receive a measurement control message sent by an eNodeB, where the measurement control The message includes a first C-DRX parameter and a measurement configuration parameter, where the first C-DRX parameter and the measurement configuration parameter are used to indicate that the UE is in a dormant period of the first C-DRX cycle to the 2G or 3G network.
  • the signal quality is measured.
  • the interaction unit 501 may receive the measurement control message sent by the eNodeB in the process that the eNodeB performs CSFB on the user equipment UE, or in the process that the eNodeB provides the UE based on the VoLTE service. .
  • the processing unit 502 is configured to measure a signal quality of the 2G or 3G network during a sleep period of the first C-DRX cycle.
  • the first C-DRX cycle may be determined by the first C-DRX parameter, and a duration of a sleep period of the first C-DRX cycle is not less than 51 ms; or, the first C-DRX The period may be determined by the first C-DRX parameter, and a ratio of a duration of a sleep period of the first C-DRX cycle to a duration of the first C-DRX cycle is greater than 0.6.
  • the interaction unit 501 is further configured to: before receiving the measurement control message sent by the eNodeB, receive a second C-DRX parameter sent by the eNodeB, where the second C-DRX parameter is used to The user equipment configures a second C-DRX cycle.
  • the interaction unit 501 may listen to and receive data of the PDCCH during the activation period of the second C-DRX cycle according to the second C-DRX parameter, and do not receive the PDCCH during the dormant period of the second C-DRX cycle. Data, thereby saving power consumption of the UE.
  • the second C-DRX cycle is determined by the second C-DRX parameter.
  • the first C-DRX parameter may be set such that a duration of a sleep period of the first C-DRX cycle is greater than a duration of a sleep period of the second C-DRX cycle; or, the first C- The ratio of the duration of the sleep period of the DRX cycle to the duration of the first C-DRX cycle is greater than the ratio of the duration of the sleep period of the second C-DRX cycle to the duration of the second C-DRX cycle;
  • the processing unit 502 is further configured to generate a measurement report according to the measurement result obtained by measuring the signal quality of the 2G or 3G network; the interaction unit 501 may be further configured to send the information to the eNodeB.
  • the measurement report is further configured to generate a measurement report according to the measurement result obtained by measuring the signal quality of the 2G or 3G network; the interaction unit 501 may be further configured to send the information to the eNodeB. The measurement report.
  • the interaction unit 501 may further receive the second C-DRX parameter sent by the eNodeB after sending the measurement report, where the second C-DRX parameter is configured to be configured for the user equipment.
  • the second C-DRX cycle so that the user equipment is restored to before performing the system measurement
  • the C-DRX state is received; or, after the measurement report is sent, the request message sent by the eNodeB is received, where the request message is used to indicate that the UE turns off the C-DRX function of the UE; then the processing unit 502 It is also used to disable the C-DRX function of the UE.
  • the UE may be forced to leave the sleep period of the CDRX cycle when the UE sends the uplink data. Therefore, the interaction unit 501 may stop sending the uplink data after receiving the measurement control message sent by the eNodeB. The interaction unit 501 may also resume transmitting uplink data after sending the measurement report to the eNodeB.
  • An embodiment of the present invention provides a user equipment, where the interaction unit 501 of the user equipment may receive a measurement control message sent by an evolved base station, where the measurement control message includes a first C-DRX parameter and a measurement configuration parameter, where the user equipment
  • the processing unit 502 may continuously measure the signal quality of the 2G or 3G network during the dormant period of the first C-DRX cycle according to the first C-DRX parameter and the indication of the measured configuration parameter. It can avoid measuring only 6ms in the 40ms/80ms period, which effectively accelerates the measurement of the signal quality of the 2G/3G network of the UE located in the LTE network, shortens the measurement time, and solves the problem of using the GAP mode in the prior art. The problem that the call switching preparation time caused by the system measurement is too long or the voice session is interrupted.
  • the first C-DRX parameter may be configured as follows: during the entire first C-DRX cycle, The duration of the activation period (ie, the duration of the activation period) is as short as possible with greater than zero, while the duration of the dormant period (ie, the duration of the dormant period) is as long as possible for less than the duration of the first C-DRX cycle. Therefore, the UE can stay in the sleep period of the first C-DRX cycle for a long time, and continuously measure the signal quality of the 2G/3G network during the sleep period of the first C-DRX cycle, which greatly accelerates the measurement of the different system.
  • the interaction unit for sending a message or receiving a message may be implemented by using a transmitter, or by using a receiver, or by using a transceiver.
  • the transmitter or the transceiver may be implemented by one physical entity, or may be implemented by multiple physical entities.
  • the transmitter and the transceiver may be implemented by one physical entity or multiple physical entities. This is not a limitation.
  • Other units, such as the determining unit or the processing unit, may be implemented by one or more processors, which are not limited in the present invention.
  • FIG. 6 is a device for measuring different systems according to an embodiment of the present invention.
  • the device may include:
  • the processor 601, the memory 602, and the communication interface 605 are connected by a bus 604 and complete communication with each other.
  • Processor 601 may be a single core or multi-core central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 602 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • Memory 602 is used by computer to execute instructions 603.
  • the computer execution instructions 603 may include program code.
  • the processor 601 runs the computer execution instruction 603, and may execute the method flow of the different system measurement described in the method embodiment corresponding to any one of FIG. 1 to FIG.
  • the device may be an evolved base station.
  • the device may be a user equipment.
  • the embodiment of the present invention provides a computer readable medium, including a computer executing instruction, when the processor of the computer executes the computer execution instruction, the computer performs the different manners described in the method embodiment corresponding to FIG. 1 or FIG. System measurement method.
  • the embodiment of the present invention provides a computer readable medium, including a computer executing instruction, when the processor of the computer executes the computer execution instruction, the computer performs the different manners described in the method embodiment corresponding to FIG. 2 or FIG. System measurement method.
  • a measurement system includes: an evolved base station 40 and a user equipment 50; and an action performed by each of the evolved base station 40 and the user equipment 50 and interaction between them, which can be referred to FIG. 1 to FIG.
  • an action performed by each of the evolved base station 40 and the user equipment 50 and interaction between them which can be referred to FIG. 1 to FIG.
  • FIG. 1 For a description of the method embodiment, reference may also be made to the description of the device embodiment corresponding to FIG. 4 and FIG. 5, and details are not described herein again.
  • the LTE network mentioned in the present invention includes an LTE A network, and may subsequently have an LTE version.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or Some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种异系统测量的方法、相关装置及系统,演进基站eNodeB能够在确定UE支持从LTE网络到2G或3G网络的CS域的切换时,发送测量控制消息给所述UE,所述测量控制消息中携带了第一C-DRX参数和测量控制参数,所述第一C-DRX参数和所述测量控制参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量,从而所述UE可以在第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量,避免采用GAP模式进行测量,加速了测量过程,缩短了测量时间,从而有效减少了呼叫切换准备时间,避免语音会话中断。

Description

一种异系统测量的方法、相关装置及系统 技术领域
本发明涉及通信技术领域,具体涉及一种异系统测量的方法、相关装置及系统。
背景技术
全球移动通讯系统(Global System of Mobile Communication,GSM)或者宽带码分多址(Wideband Code Division Multiple Access,WCDMA)等第二代(Second Generation,2G)或者第三代网络(Third Generation,3G)网络已经基本实现了全面覆盖。
随着长期演进(Long Term Evolution,LTE)网络技术的发展,这些LTE网络已覆盖到一些城区和话务热点地区,这样在目前的通信网络中,LTE网络与2G/3G网络并存。由于LTE网络正在建设阶段,有的LTE网络可能只支持数据业务,不支持语音业务,当处于LTE网络中的用户设备(User Equipment,UE)发起语音业务时,UE需要先回退到具有电路交换(Circuit Switched,CS)域的2G/3G网络,在具有CS域的2G/3G网络进行语音业务,上述从LTE网络的CS域切换至2G/3G网络的CS域的技术,称为电路域回落(Circuit Switched Fallback,CSFB)技术;而有的LTE网络可能支持语音业务,则UE可以使用基于LTE的语音(Voice over LTE,VoLTE)业务,然而,由于LTE网络并没有实现全面覆盖,正在使用VoLTE的UE如果处于LTE网络和2G/3G网络的边界区域或即将进入只覆盖了2G/3G网络的区域,通常需要将VoLTE切换到2G/3G网络的CS域,来避免语音中断。
在上述执行LTE网络到2G/3G网络的CS域切换之前,通常需要在LTE网络对2G/3G网络的信号质量进行测量,即执行异系统测量,以便LTE网络选取信号质量符合要求的2G/3G小区。目前,进行异系统测量通常是通过间隙(gap,GAP)模式来进行的。采用GAP模式进行异系统测量时,通常是在 40ms/80ms的周期内进行6ms的测量,虽然这种测量方式可以避免对业务产生影响,但是对于存在多个2G/3G邻区尤其是多个2G邻区时将会耗费较长的时间才能完成异系统测量,使得呼叫切换准备时间过长,导致在CSFB呼叫时间过程中发生语音会话中断或者进行VoLTE业务时发生语音会话中断。
发明内容
针对现有技术的上述问题,本发明实施例提供一种异系统测量的方法、相关装置及系统,能够减少测量时间,加速异系统测量,从而减少呼叫切换准备时间,避免语音会话中断。
第一方面,本发明实施例提出了一种异系统测量的方法,该方法包括:
演进基站eNodeB在对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者为所述UE提供基于LTE网络的语音VoLTE业务过程中,确定所述UE支持从所述LTE网络到2G或3G网络的电路交换CS域的切换;
所述eNodeB发送测量控制消息给所述UE,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms;或者所述第一C-DRX周期的休眠期的时长不小于100ms;或者所述第一C-DRX周期的休眠期的时长不小于80ms;或者所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.6;或者所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.8;或者所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.9。
结合第一方面,或者第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述eNodeB发送测量控制消息给所述UE之前,所述方法还包括:所述eNodeB将第二C-DRX参数发送给所述UE。
结合第一方面,或者第一方面的第一种可能的实现方式或第二种可能的实 现方式,在第三种可能的实现方式中,所述第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;其中,所述第一C-DRX周期由所述第一C-DRX确定,所述第二C-DRX周期由所述第二C-DRX参数确定。
第二方面,本发明实施例提供了一种异系统测量的方法,该方法包括:在演进基站eNodeB对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者在所述eNodeB为所述UE提供基于LTE网络的语音VoLTE业务过程中,所述UE接收所述eNodeB发送的测量控制消息,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数;所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量;
所述UE在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms;或者所述第一C-DRX周期的休眠期的时长不小于100ms;或者所述第一C-DRX周期的休眠期的时长不小于80ms;或者所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.6;或者所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.8;或者所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.9。
结合第二方面,或者第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述UE接收所述eNodeB发送的测量控制消息之前,所述方法还包括所述UE接收所述eNodeB发送的第二C-DRX参数。
结合第二方面,或者第二方面的第一种可能的实现方式或第二种可能的实现方式,在第三种可能的实现方式中,所述第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,所述第一C-DRX周期的休眠期 的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;其中,所述第一C-DRX周期由所述第一C-DRX确定,所述第二C-DRX周期由所述第二C-DRX参数确定。
第三方面,本发明实施例提出了一种演进基站,包括:
确定单元,用于所述演进基站在对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者为所述UE提供基于LTE网络的语音VoLTE业务过程中,确定所述UE支持从所述LTE网络到2G或3G网络的电路交换CS域的切换;
交互单元,用于发送测量控制消息给所述UE,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
第四方面,本发明实施例提出了一种用户设备,包括交互单元,用于在演进基站eNodeB对所述用户设备进行电路域回落CSFB的过程中,或者在所述eNodeB为所述用户设备提供基于LTE网络的语音VoLTE业务过程中,接收所述eNodeB发送的测量控制消息,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数;所述第一C-DRX参数和所述测量配置参数用于指示所述用户设备在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量;
处理单元,用于在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
第五方面,本发明实施例提出了一种测量系统,包括第三方面所述的演进基站和第四方面所述的用户设备。
本发明实施例提供了一种异系统测量的方法、相关装置及系统,演进基站eNodeB能够在确定UE支持从LTE网络到2G或3G网络的CS域的切换时,发送测量控制消息给所述UE,所述测量控制消息中携带了第一连续态下的不连续接收(Connected-Discontinuous Reception,C-DRX)参数和测量控制参数,所述第一C-DRX参数和所述测量控制参数用于指示所述UE在第一C-DRX周期 的休眠期内对所述2G或3G网络的信号质量进行测量,从而所述UE可以在第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量,避免在40ms/80ms的周期内只能进行6ms的测量,即避免采用GAP模式进行测量,加速了测量过程,缩短了测量时间,从而有效减少了呼叫切换准备时间,避免在CSFB呼叫时间过程中发生语音会话中断或者进行VoLTE时语音会话中断。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种异系统测量的方法流程图;
图2是本发明实施例提供的又一种异系统测量的方法流程图;
图3是本发明实施例提供的又一种异系统测量的方法流程图;
图4是本发明实施例提供的一种演进基站的示意图;
图5是本发明实施例提供的一种用户设备的示意图;
图6是本发明实施例提供的一种用于异系统测量的装置的结构组成示意图;
图7是本发明实施例提供的一种测量系统的示意图。
具体实施方式
本发明实施例提供一种异系统测量的方法、相关装置及系统,能够加速异系统测量,减少测量时间,从而减少呼叫切换准备时间,避免语音会话中断。本发明实施例还提供了相应的设备及系统。
本发明实施例中的第一、第二、第三、第四、第五等仅用于区分不同的指示信息、消息或其他对象,不代表顺序关系。
为更清楚地描述本发明的实施例,首先对本发明实施例相关的知识做一些介绍。
关于C-DRX:在通信网络中,基于包的数据流通常是突发性的,在没有数据传输的时候,可以通过关闭UE的接收电路来降低功耗,从而提升电池使 用时间。这就是连续态下的不连续接收(Connected-Discontinuous Reception,C-DRX)的由来。C-DRX的基本机制是为处于RRC_CONNECTED态的UE配置C-DRX周期(Connected-Discontinuous Reception Cycle)。C-DRX cycle由“On Duration”和“Opportunity for DRX”组成:在“On Duration”的时间内(即在激活期内),UE被允许监听并接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)的数据;在“Opportunity for DRX”时间内(即在休眠期内),UE不接收物理下行控制信道的数据以节省功耗。
关于VoLTE:现有的2G/3G的核心网由PS域和CS域组成,其中,语音和其它CS补充业务由CS域支撑;LTE核心网不包括CS域,只有PS域,因此,被称为演进分组系统(Evolved Packet System,EPS)。LTE网络为了提供语音业务必须包括IP多媒体子系统(IP Multimedia Subsystem,IMS),IMS为会话控制层,因此,LTE/EPS系统中语音业务称为VoLTE业务或IMS基于IP的语音(voice over IP,VoIP)业务。
异系统测量是指位于某个网络制式的UE对其它网络制式的信号质量进行测量,例如位于LTE网络的UE对2G/3G网络的信号质量进行测量,异系统测量通常发生在网络切换之前。在现有技术中,UE进行异系统测量时,通常采用GAP模式,即在每个40ms/80ms的周期内采用6ms进行测量,可以避免对业务产生影响。然而,对于多个2G/3G邻区尤其是多个2G邻区,需要较长的测量时间,采用现有技术的测量方式,可能会耗费多个40ms/80ms的周期才能完成异系统测量,使得呼叫切换准备时间过长,导致在CSFB呼叫时间过程中发生语音会话中断或者UE进行VoLTE业务时发生语音会话中断。
本发明实施例提出了一种异系统测量的方法、相关装置及系统,能够在演进基站(evolved NodeB,eNodeB)发送给位于LTE网络的UE的测量控制消息中包含C-DRX参数和测量控制参数,所述C-DRX参数和所述测量控制参数可以指示UE在C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量,例如,C-DRX周期可以由所述C-DRX参数确定,所述C-DRX参数可以按照如下方式配置:在整个C-DRX周期内,激活期的持续时间在大于零的情况下尽可能短,而休眠期的持续时间在小于C-DRX周期的时长的情况下尽可能长, 使得UE可以较长时间停留在C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量。采用上述方式,有效加速了位于LTE网络的UE对2G/3G网络的信号质量的测量,缩短了测量时间,解决了现有技术中采用GAP模式进行异系统测量时导致的呼叫切换准备时间过长或语音会话中断的问题。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
参阅图1,图1为本发明实施例提供的异系统测量的方法,所述方法包括:
S101:eNodeB确定所述UE支持从所述LTE网络到所述2G或3G网络的CS域的切换。
所述eNodeB可以首先判断所述UE是否支持从所述LTE网络到所述2G或3G网络的CS域的切换,如果所述UE支持从所述LTE网络到所述2G或3G网络的CS域的切换,则需要在切换之前对2G或3G网络的信号质量进行测量。
例如,所述eNodeB在对位于LTE网络的UE进行电路域回落CSFB的过程中,在将所述UE从所述LTE网络移动到2G或3G网络的CS域之前,可以判断所述UE是否支持从所述LTE网络到所述2G或3G网络的CS域的切换;或者,eNodeB为所述UE提供VoLTE业务过程中,在将所述UE从所述LTE网络移动到2G或3G网络的CS域之前,可以判断所述UE是否支持从所述LTE网络到所述2G或3G网络的CS域的切换。
S102:所述eNodeB发送测量控制消息给所述UE,所述测量控制消息包含第一C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
所述测量控制消息可以是无线资源控制协议连接重配置(RRC Connection Reconfiguration)消息。由于所述测量控制消息包含的第一C-DRX参数和测量配置参数,所述UE可以根据所述第一C-DRX参数和所示测量配置参数的指示,在所述第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量。
具体地,所述测量配置参数可以包含对所述2G或3G网络的信号质量进行 测量所需的相关信息,例如所述测量配置参数可以包含所述UE需要测量的对象、小区列表、报告方式、测量标识或事件参数等;所述第一C-DRX周期可以由所述第一C-DRX参数确定,所述第一C-DRX周期可以包括休眠期和激活期,在第一C-DRX周期的休眠期内,所述UE不接收物理下行控制信道的数据,在第一C-DRX周期的激活期内,所述UE监听并接收物理下行控制信道的数据。当所述测量控制消息包含了所述测量配置参数和所述第一C-DRX参数时,所述测量控制消息可以用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量,即所述测量配置参数和所述第一C-DRX参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。通过上述方式,所述UE可以在整个所述第一C-DRX周期的休眠期内,都可以持续对所述2G或3G网络的信号质量进行测量,避免在40ms/80ms的周期内只能进行6ms的测量,即避免采用GAP模式进行测量,加速了测量过程,缩短了测量时间,从而有效减少了呼叫切换准备时间,避免在CSFB呼叫时间过程中发生语音会话中断或者进行VoLTE时语音会话中断。
可选地,所述第一C-DRX参数和所述测量配置参数还可以用于指示所述UE在所述第一C-DRX周期的激活期内采用GAP模式对所述2G或3G网络的信号质量进行测量。
进一步,所述第一C-DRX周期可以由第一C-DRX参数确定。因此通过调整第一C-DRX参数,可以调整UE持续进行异系统测量的时间。具体说来,所述第一C-DRX参数可以按照如下方式配置:在整个第一C-DRX周期内,使得激活期的时长(即激活期的持续时间)在大于零的情况下尽可能短,而休眠期的时长(即休眠期的持续时间)在小于第一C-DRX周期的时长情况下尽可能长,从而UE可以较长时间停留在第一C-DRX周期的休眠期,在第一C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量,大大加速了异系统测量。
例如,所述第一C-DRX周期的休眠期的时长T1s可以不小于51ms;可选地,T1s可以大于等于80ms或者大于等于100ms,从而所述UE可以在一个休眠期内就完成异系统测量;又例如,所述第一C-DRX周期的休眠期的时长T1s与所述 第一C-DRX周期的时长T1d的比值大于0.6(即T1s/T1d>60%);可选地,T1s/T1d大于0.8或者大于0.9,从而保证休眠期的时长在小于周期的时长的情况下尽可能的长,使得UE可以有效利用C-DRX周期进行测量,加速异系统测量。
可选地,在步骤S102之前,所述方法还可以包括步骤S100:
S100:所述eNodeB向所述UE发送第二C-DRX参数。
所述eNodeB可能为了降低功耗等目的,向所述UE发送第二C-DRX参数,所述C-DRX参数用于为所述UE配置第二C-DRX周期,所述第二C-DRX周期可以包括休眠期和激活器,在所述第二C-DRX周期的休眠期内所述UE不接收物理下行控制信道的数据以节省功耗。所述第二C-DRX周期可以由所述第二C-DRX参数确定。
可选地,由于为了不影响UE进行正常业务,发送的第二C-DRX参数可能会被配置为:使得第二C-DRX周期的休眠期的时长比较短,或者使得第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值比较小,例如,可能将第二C-DRX周期的时长设置为160ms,休眠期的时长设置为50ms。因此,所述第一C-DRX参数可以这样设置:使得在相同时间内,UE停留在第一C-DRX周期的休眠期的时间比停留在第二C-DRX周期的休眠期的时间更长,从而增加UE能够持续进行异系统测量的时间,减少异系统测量耗费的时间,加快异系统测量。例如,可以使得第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,使得所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值。
进一步,所述方法还可以包括:
S103:所述eNodeB接收所述UE返回的测量报告。
所述测量报告可以包括UE对所述2G或3G网络的信号质量进行测量所得的测量结果。
可选地,所述eNodeB可以根据所述测量报告,确定执行所述LTE网络到所述2G或3G网络的CS域切换,执行步骤S104。
S104:所述eNodeB在接收到所述测量报告之后,向移动管理实体(Mobile  Managenment Entity,MME)发送切换要求(Handover Required)消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程。
然而,如果上述切换过程失败,所述UE仍然处于C-DXR状态,可能较长时间停留在第一C-DRX周期的休眠期,影响正常业务的进行,为了解决这个问题,所述方法还可以包括:
S105:所述eNodeB确定所述切换过程失败。
S106:所述eNodeB发送所述第二C-DRX参数给所述UE,或者发送请求消息给所述UE,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能。
在所述确定所述切换过程失败时,所述eNodeB可以通过向所述UE发送所述第二C-DRX参数,使得UE恢复到进行异系统测量之前的C-DRX状态,以降低功耗的同时兼顾所述UE进行正常业务;或者,所述eNodeB可以通过向所述UE发送指示所述UE关闭所述UE的C-DRX功能的请求消息,关闭所述UE的C-DRX功能,避免对业务的影响。
此外,若S103中所述eNodeB接收所述UE返回的测量报告,根据所述测量报告确定不执行所述LTE网络到所述2G或3G网络的CS域切换,则所述eNodeB可以发送所述第二C-DRX参数给所述UE,或者发送请求消息给所述UE,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能。
本实施例中eNodeB与UE的交互,以及eNodeB的上述处理步骤的详细描述,可以参考以下其它方法实施例。
本发明实施例提供了一种异系统测量的方法,所述方法包括:
S201:位于LTE网络的UE接收eNodeB发送的测量控制消息,所述测量控制消息携带第一C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量。
例如,在演进基站eNodeB对位于LTE网络的UE进行CSFB的过程中,或者在所述eNodeB为所述UE提供VoLTE业务过程中,所述UE接收eNodeB发送的测量控制消息。所述测量控制消息可以是无线资源控制协议连接重配置(RRC  Connection Reconfiguration)消息。
可选地,步骤S201之前,所述UE可以接收所述eNodeB发送的第二C-DRX参数,所述第二C-DRX参数用于所述UE确定第二C-DRX周期,即所述UE可以被配置第二C-DRX周期,所述UE可以在所述第二C-DRX周期的休眠期内不接收物理下行控制信道的数据,以降低功耗,提升UE的电池使用时间。
所述第一C-DRX参数的具体信息和所述测量配置参数的具体信息,可以参考其它方法实施例,本发明实施例不再赘述。
S202:所述UE在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
对2G或3G网络的信号质量进行测量可以是对2G或3G网络的参考信号接收功率(Reference Singnal Received Power,RSRP)或者参考信号接收质量(Reference Singnal Received Quanity,RSRQ)进行测量。
由于所述测量控制消息中包含了所述第一C-DRX参数和所述测量控制参数,因此所述UE可以根据所述第一C-DRX参数和所述测量配置参数的指示,或者根据所述测量控制消息的指示,在所述第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量,避免采用GAP模式进行测量,加速了测量过程,缩短了测量时间。进一步,所述第一C-DRX周期可以由所述第一C-DRX参数确定,所述第一C-DRX参数可以按照如下方式配置:在整个第一C-DRX周期内,使得激活期的时长(即激活期的持续时间)在大于零的情况下尽可能短,而休眠期的时长(即休眠期的持续时间)在小于第一C-DRX周期的时长的情况下尽可能长,从而使得UE较长时间停留在第一C-DRX周期的休眠期,在整个第一C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量,大大加速了异系统测量。
可选地,因为UE发送上行数据时,可能会迫使所述UE退出CDRX周期的休眠期,因此,所述UE在接收到所述测量控制消息之后,可以停止或暂停发送上行数据。例如,所述测量控制消息中可以携带用于指示所述UE停止或暂停发送上行数据的指示信息,所述UE可以在接收到所述测量控制消息之后,根据所述指示信息停止或暂停发送上行数据;又例如,所述UE可以在接收到 所述测量控制消息之后,自动停止或暂停发送上行数据。
S203:所述UE根据对所述2G或3G网络的信号质量进行测量所得的测量结果,生成测量报告,所述UE向所述eNodeB发送所述测量报告。
可选地,所述UE在向所述eNodeB发送所述测量报告之后,或者完成对2G或3G网络的信号质量的测量之后,可以恢复发送上行数据。
通常在完成异系统测量之后,可以进入切换流程,所述方法还可以包括:
S204:所述UE接收所述eNodeB发送的切换命令,所述切换命令用于指示所述UE从所述LTE网络切换到2G或3G网络的CS域,所述切换命令中包含所述2G或3G网络为所述UE从所述LTE网络切换到所述2G或3G网络的CS域分配的CS域无线资源的信息;所述UE根据所述切换命令,从所述LTE网络切换到所述2G或3G网络的CS域。
然而,如果从所述LTE网络切换到所述2G或3G网络的CS域失败,或者所述eNodeB确定不执行所述LTE网络到所述2G或3G网络的CS域切换,则所述eNodeB可能不会发送的切换命令,所述方法还可以包括:
S204a’:所述UE接收所述eNodeB发送的所述第二C-DRX参数,所述UE根据所述第二C-DRX参数恢复到进行异系统测量之前的C-DRX状态。
可选地,所述方法还可以是:
S204b’:所述UE接收所述eNodeB发送的请求消息,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能。
通过步骤S204a’或步骤S204b’,可以减少不需要进行异系统测量时(例如切换失败后),对业务的影响,提高用户体验。
本实施例中eNodeB与UE的交互,以及UE的上述处理步骤的详细描述,可以参考其它方法实施例。
本发明实施例提供了一种异系统测量的方法,可以应用于eNodeB在对位于LTE网络的UE进行电路域回落CSFB的过程中,所述UE需要进行异系统测量的场景。所述方法可以包括:
S300:eNodeB向位于LTE网络的UE的发送第二C-DRX参数。
当UE附着到LTE网络之后,所述eNodeB可以向所述UE发送第二C-DRX参数,以使所述UE节省功耗。所述第二C-DRX参数用于为所述UE配置第二C-DRX周期。
S301:所述UE根据所述第二C-DRX参数,在第二C-DRX周期的激活期内监听并接收PDCCH的数据,在所述第二C-DRX周期的休眠期内不接收PDCCH的数据,所述第二C-DRX周期由所述第二C-DRX参数确定。
所述UE在接收到所述第二C-DRX参数时,可以停留在所述第二C-DRX周期的休眠期或者激活期。
S302:所述UE向MME发送请求消息,所述请求消息用于请求CSFB。
S303:所述MME向所述eNodeB发送通知消息,所述通知消息用于指示所述eNodeB为CSFB将所述UE从所述LTE网络移动到2G或3G网络的电路交换CS域。
S304:所述eNodeB确定所述UE支持从所述LTE网络到所述2G或3G网络的CS域的切换。
具体说来,所述eNodeB可以根据UE上报的特性组指示(Feature Group Indicator,FGI)能力,判断所述UE是否支持从所述LTE网络到所述2G或3G网络的CS域的切换。如果确定所述UE支持从所述LTE网络到所述2G或3G网络的CS域的切换,则指示所述UE进行异系统测量,以便进行切换。
关于如何判断所述UE是否支持从所述LTE网络到所述2G或3G网络的CS域的切换可以有多种实现方方式,本发明实施例在此不作限定。
S305:所述eNodeB发送无线资源控制协议连接重配置消息给所述UE,所述无线资源控制协议连接重配置消息携带第一C-DRX参数和测量参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量。
所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量;即所述无线资源控制协议连接重配置消息用于指示所述UE在第一C-DRX周期内对2G或3G网络的信号质量进行测量。
所述测量参数可以包含对所述2G或3G网络的信号质量进行测量所需的相关信息,所述UE可以根据所述测量配置参数对自身进行测量配置。例如所述测量配置参数可以包含所述UE需要测量的对象、小区列表、报告方式、测量标识或事件参数等信息,进一步,可以参考3GPP标准。
所述第一C-DRX参数可以按照如下方式配置:使得在相同时间内,UE停留在第一C-DRX周期的休眠期的时间比停留在第二C-DRX周期的休眠期的时间更长,从而增加UE能够持续进行异系统测量的时间,减少异系统测量耗费的时间,加快异系统测量。例如,可以使所述第一C-DRX周期的休眠期的时长T1s大于第二C-DRX周期的休眠期的时长T2s,或者使得所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值。可选地,由于所述第二C-DRX周期的休眠期通常设置的比较小,因此,所述第一C-DRX周期的休眠期的时长T1s可以不小于100ms,或者所述第一C-DRX周期的休眠期的时长T1s与所述第一C-DRX周期的激活期的时长T1d的比值可以大于80%(即T1s/T1d>80%)。
例如,C-DRX参数可以包括:长周期的长度(long drx cycle)、DRX持续时间定时器(on duration timer)和DRX非激活定时器(drx inactivity timer);如果所述第二C-DRX参数设置为LONGDRXCYCLE=PSF160,ONDURATIONTIMER=PSF8,DRXINACTIVITYTIMER=PSF80,表示第二C-DRX周期的时长为160ms,所述UE如果在8ms+80ms内没有接收到PDCCH的数据,才可能进入第二C-DRX周期的休眠期,休眠期的时长为160ms-8ms-80ms,即72ms。则所述第一C-DRX参数可以设置为:long drx cycle=PSF160,on duration timer=PSF2,drx inactivity timer=PSF2;表示第二C-DRX周期的时长为160ms,所述UE如果在2ms+2ms内没有接收到PDCCH的数据,则可能进入第一C-DRX周期的休眠期,休眠期的时长为160ms-2ms-2ms,即156ms,从而所述UE可以在156ms内持续进行异系统测量,可能在一个休眠期内就完成异系统测量。
S306:所述UE根据所述测量配置参数进行配置,并在所述配置完成之后, 向所述eNodeB发送测量控制确认消息。
所述测量控制确认消息可以为无线资源控制协议连接重配置完成(RRC Connection Reconfiguration Complete)消息。
S307:所述UE在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
在第一C-DRX周期的休眠期内,所述UE不接收物理下行控制信道的数据,可以直接持续地对2G或3G网络的信号质量进行测量,例如对2G或3G网络的RSRP或RSRQ进行测量。
可选地,所述UE还可以在所述第一C-DRX周期的激活期内采用GAP模式进行异系统测量。
S308:所述UE根据测量结果,生成测量报告,并发送给所述eNodeB。
当UE完成测量后,所述UE会依照所述测量配置参数进行判断,当设定条件满足时,UE将测量结果填入测量报告,发送给所述eNodeB。所述测量报告中可以包括:测量标识(ID)和测量结果(例如RSRP和RSRQ的测量值)。
S309:所述eNodeB根据所述测量报告,判断所述UE是否需要进行切换,当所述eNodeB确定有必要切换时,确定一个目标小区,执行S310。
S310:所述eNodeB向移动管理实体MME发送切换要求消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程。
所述切换要求消息可以用于请求所述MME为了CSFB将所述UE从所述LTE网络切换到所述2G或3G网络的CS域。所述切换要求消息可以为从所述LTE网络到所述2G或3G网络的所述CS域切换要求消息,例如:SRVCC HO Required(Single Radio Voice Call Continuity Handover Required)消息。
S311:执行所述LTE网络到所述2G或3G网络的CS域切换过程。
所述MME在接收到所述切换要求消息之后,可以通过所述2G或3G网络的移动交换中心(Mobile Services Switching Centre,MSC)向所述2G或3G网络的基站(Base Station,BS)请求为所述UE切换到所述2G或3G网络的CS域分配CS域资源,所述MME在获取到所述基站分配的CS域无线资源的信息之后,可以向eNodeB发送切换要求响应消息,所述切换要求响应消息包含CS域无线 资源的信息,所述CS域无线资源的信息用于所述UE从所述LTE网络切换到所述2G或3G网络的CS域。从而所述eNodeB可以接收所述切换要求响应消息,向所述UE发送切换命令,所述切换命令用于指示所述UE从所述LTE网络切换到所述2G或3G网络的CS域,所述切换命令包含所述CS域无线资源的信息。所述UE可以根据所述切换命令,从所述LTE网络切换到所述2G或3G网络的CS域。
进一步,如果上述切换过程失败,则所述UE仍然处于第一C-DXR周期的休眠期或第一C-DXR周期的激活期。然而,通常为了加速异系统测量,所述第一C-DXR周期的休眠期的时长将设置得比较长。在切换失败之后如果UE仍然停留在较长的休眠期将影响正常业务。因此,为了解决这个问题,所述方法还可以包括:
S312:所述eNodeB确定所述切换过程失败。
如果所述eNodeB接收所述MME发送的切换要求响应消息,所述切换要求响应消息携带切换失败指示,所述切换失败指示用于指示所述切换过程失败,则确定所述切换过程失败;或者,所述eNodeB在预设时间内未接收到所述MME发送的切换要求响应消息,则所述eNodeB确定所述切换过程失败。
S313:所述eNodeB发送所述第二C-DRX参数给所述UE,以使所述UE恢复到进行异系统测量之前的C-DRX状态。
所述UE可以根据所述第二C-DRX参数,在第二C-DRX周期的激活期内监听并接收PDCCH的数据,在所述第二C-DRX周期的休眠期内不接收PDCCH的数据。
本发明实施例提供了一种异系统测量的方法,eNodeB在对位于LTE网络的UE进行电路域回落CSFB的过程中,在将所述UE从所述LTE网络移动到2G或3G网络的CS域之前,向所述UE发送测量控制消息,所述测量控制消息包含第一C-DRX参数和测量配置参数,所述UE可以根据所述第一C-DRX参数和所示测量配置参数的指示,在所述第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量,避免在40ms/80ms的周期内只能进行6ms的测量,有效加速了位于LTE网络的UE对2G/3G网络的信号质量的测量,缩短了测量时间,解决了现有技术中采用GAP模式进行异系统测量时导致的呼叫切换准备时 间过长或语音会话中断的问题。
进一步,由于所述第一C-DRX周期的休眠期的时长由第一C-DRX参数决定,所述第一C-DRX参数可以按照如下方式配置:在整个第一C-DRX周期内,使得激活期的时长(即激活期的持续时间)在大于零的情况下尽可能短,而休眠期的时长(即休眠期的持续时间)在小于第一C-DRX周期的时长情况下尽可能长,从而UE可以较长时间停留在第一C-DRX周期的休眠期,在第一C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量,大大加速了异系统测量。
本发明实施例提供的异系统测量的方法也可以应用于eNodeB为位于LTE网络的UE提供VoLTE业务过程中,需要将VoLTE切换到2G/3G网络的CS域,在该切换之前进行异系统测量的场景。此时,将步骤S302和S303替换为S302’-S303’即可。
S302’:附着于LTE网络的UE正在进行VoLTE业务。
S303’:eNodeB确定需要对所述UE执行从所述LTE网络到所述2G或3G网络的CS域切换。
例如,所述eNodeB可以根据所述UE发送的LTE网络质量的测量报告,确定所述LTE网络无法继续为UE提供服务,即确定需要对所述UE执行从所述LTE网络到所述2G或3G网络的CS域切换。
与上述方法实施例对应,本发明实施例提出了一种演进基站eNodeB,如图4所示,所述演进基站40包括确定单元401和交互单元402;
所述确定单元401,用于确定所述UE支持从所述LTE网络到2G或3G网络的CS域的切换;例如,在所述eNodeB对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者为所述UE提供基于LTE网络的语音VoLTE业务过程中,确定所述UE支持从所述LTE网络到2G或3G网络的电路交换CS域的切换。
所述交互单元402,用于发送测量控制消息给所述UE,所述测量控制消息包含第一C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置 参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。所述测量控制消息可以是无线资源控制协议连接重配置(RRC Connection Reconfiguration)消息。
可选地,所述第一C-DRX参数和所述测量配置参数还可以用于指示所述UE在所述第一C-DRX周期的激活期内采用GAP模式对所述2G或3G网络的信号质量进行测量。
可选地,所述第一C-DRX周期可以由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms;或者,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.6。
可选地,为了降低所示UE的功耗等目的,所述交互单元402在发送所述测量控制消息给所述UE之前,可以发送第二C-DRX参数发送给所述UE,所述第二C-DRX参数用于为所述UE配置第二C-DRX周期,以使所述UE在第二C-DRX周期的激活期内监听并接收PDCCH的数据,在所述第二C-DRX周期的休眠期内不接收PDCCH的数据,从而节约所述UE的功耗。
可选地,所述第二C-DRX周期可以由所述第二C-DRX参数确定,则所述第一C-DRX参数可以这样设置:使得第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,使得所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值,从而增加UE能够持续进行异系统测量的时间,减少异系统测量耗费的时间,加快异系统测量。
可选地,所述交互单元402还可以接收所述UE返回的测量报告,根据所述测量报告确定不执行所述LTE网络到所述2G或3G网络的CS域切换,发送所述第二C-DRX参数给所述UE;或者,
所述交互单元402还可以接收所述UE返回的测量报告,向移动管理实体MME发送切换要求消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程,确定所述切换过程失败,发送所述第二C-DRX参数给所述UE;或者,
所述交互单元402还可以接收所述UE返回的测量报告,根据所述测量报告 确定不执行所述LTE网络到所述2G或3G网络的CS域切换,发送请求消息给所述UE,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能;或者,
所述交互单元402还可以接收所述UE返回的测量报告,向移动管理实体MME发送切换要求消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程,确定所述切换过程失败,则发送所述请求消息给所述UE。
可选地,因为UE发送上行数据时,可能会迫使所述UE退出第一CDRX周期的休眠期,影响异系统测量,因此所述测量控制消息中可以携带用于指示所述UE停止或暂停发送上行数据的指示信息。
本发明实施例提供了一种演进基站,所述演进基站的交互单元402可以在所述演进基站的确定单元401确定UE支持从所述LTE网络到2G或3G网络的CS域的切换时,向所述UE发送测量控制消息,所述测量控制消息包含第一C-DRX参数和测量配置参数,以使所述UE可以根据所述第一C-DRX参数和所示测量配置参数的指示,在所述第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量,避免在40ms/80ms的周期内只能进行6ms的测量,有效加速了位于LTE网络的UE对2G/3G网络的信号质量的测量,缩短了测量时间,解决了现有技术中采用GAP模式进行异系统测量时导致的呼叫切换准备时间过长或语音会话中断的问题。
进一步,由于所述第一C-DRX周期的休眠期的时长由第一C-DRX参数决定,所述第一C-DRX参数可以按照如下方式配置:在整个第一C-DRX周期内,使得激活期的时长(即激活期的持续时间)在大于零的情况下尽可能短,而休眠期的时长(即休眠期的持续时间)在小于第一C-DRX周期的时长情况下尽可能长,从而UE可以较长时间停留在第一C-DRX周期的休眠期,在第一C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量,大大加速了异系统测量。
与上述方法实施例对应,本发明实施例提出了一种用户设备,如图5所示,所述用户设备50包括:交互单元501和处理单元502;
所述交互单元501,用于接收eNodeB发送的测量控制消息,所述测量控制 消息包含第一C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量;例如,所述交互单元501可以在eNodeB对所述用户设备UE进行CSFB的过程中,或者在所述eNodeB为所述UE提供基于VoLTE业务过程中,接收eNodeB发送的测量控制消息。
所述处理单元502,用于在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
可选地,所述第一C-DRX周期可以由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms;或者,所述第一C-DRX周期可以由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.6。
可选地,所述交互单元501还用于在接收所述eNodeB发送的测量控制消息之前,接收所述eNodeB发送的第二C-DRX参数,所述第二C-DRX参数用于为所述用户设备配置第二C-DRX周期。所述交互单元501可以根据所述第二C-DRX参数,在第二C-DRX周期的激活期内监听并接收PDCCH的数据,在所述第二C-DRX周期的休眠期内不接收PDCCH的数据,从而节约所述UE的功耗。
可选地,所述第二C-DRX周期由所述第二C-DRX参数确定。则,所述第一C-DRX参数可以这样设置:使得所述第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,使得所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;
可选地,所述处理单元502还可以用于根据对所述2G或3G网络的信号质量进行测量所得的测量结果,生成测量报告;所述交互单元501还可以用于向所述eNodeB发送所述测量报告。
可选地,所述交互单元501还可以在发送所述测量报告之后,接收所述eNodeB发送的所述第二C-DRX参数,所述第二C-DRX参数用于为所述用户设备配置所述第二C-DRX周期,使得用户设备恢复到进行异系统测量之前的 C-DRX状态;或者,在发送所述测量报告之后,接收所述eNodeB发送的请求消息,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能;则所述处理单元502还用于关闭所述UE的C-DRX功能。
可选地,因为UE发送上行数据时,可能会迫使所述UE退出CDRX周期的休眠期,因此,所述交互单元501可以在接收所述eNodeB发送的测量控制消息之后,停止发送上行数据;进一步,所述交互单元501还可以在向所述eNodeB发送所述测量报告之后,恢复发送上行数据。
本发明实施例提供了一种用户设备,所述用户设备的交互单元501可以接收演进基站发送的测量控制消息,所述测量控制消息包含第一C-DRX参数和测量配置参数,所述用户设备的处理单元502可以根据所述第一C-DRX参数和所示测量配置参数的指示,在所述第一C-DRX周期的休眠期内持续对所述2G或3G网络的信号质量进行测量,避免在40ms/80ms的周期内只能进行6ms的测量,有效加速了位于LTE网络的UE对2G/3G网络的信号质量的测量,缩短了测量时间,解决了现有技术中采用GAP模式进行异系统测量时导致的呼叫切换准备时间过长或语音会话中断的问题。
进一步,由于所述第一C-DRX周期的休眠期的时长由第一C-DRX参数决定,所述第一C-DRX参数可以按照如下方式配置:在整个第一C-DRX周期内,使得激活期的时长(即激活期的持续时间)在大于零的情况下尽可能短,而休眠期的时长(即休眠期的持续时间)在小于第一C-DRX周期的时长情况下尽可能长,从而UE可以较长时间停留在第一C-DRX周期的休眠期,在第一C-DRX周期的休眠期内持续对2G/3G网络的信号质量进行测量,大大加速了异系统测量。
本领域技术人员能够理解,上述图4和图5的实施例中,用于发送消息或者接收消息的交互单元可以采用发送器实现,或者采用接收器实现,或者,采用收发器实现。在物理实现上,发送器或者收发器可以用一个物理实体实现,也可采用多个物理实体实现,发送器和收发器可以采用一个物理实体实现,也可以采用多个物理实体实现,本发明对此不做限制。其他单元,如确定单元或处理单元可以采用一个或多个处理器实现,本发明对此不做限制。
如图6,为本发明实施例提供的一种用于异系统测量的装置,所述装置可以包括:
处理器601、存储器602、总线604和通信接口605。处理器601、存储器602和通信接口605之间通过总线604连接并完成相互间的通信。
处理器601可能为单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。
存储器602可以为高速RAM存储器,也可以为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
存储器602用于计算机执行指令603。具体的,计算机执行指令603中可以包括程序代码。
当所述装置运行时,处理器601运行计算机执行指令603,可以执行图1至图3任意之一对应的方法实施例所述的异系统测量的方法流程。当执行图1或图3对应的方法实施例所述的异系统测量的方法流程时,所述装置可以为演进基站。当执行图2或图3对应的方法实施例所述的异系统测量的方法流程时,所述装置可以为用户设备。
本发明实施例提供了一种计算机可读介质,包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行图1或图3对应的方法实施例所述的异系统测量的方法。
本发明实施例提供了一种计算机可读介质,包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行图2或图3对应的方法实施例所述的异系统测量的方法。
参阅图7,本发明实施例提供的一种测量系统包括:演进基站40和用户设备50;演进基站40和用户设备50各自执行的动作以及它们之间的交互,可以参见图1至图3对应的方法实施例的描述,也可以参考图4和图5对应的装置实施例的描述,此处不再赘述。
本发明中所提到的LTE网络,包括LTE A网络、以及后续可能出现LTE版本。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或 一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种异系统测量的方法,其特征在于,所述方法包括:
    演进基站eNodeB在对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者为所述UE提供基于LTE网络的语音VoLTE业务过程中,确定所述UE支持从所述LTE网络到2G或3G网络的电路交换CS域的切换;
    所述eNodeB发送测量控制消息给所述UE,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于0.6。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述eNodeB发送测量控制消息给所述UE之前,所述方法还包括:
    所述eNodeB将第二C-DRX参数发送给所述UE,所述第二C-DRX参数用于为所述UE配置第二C-DRX周期。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一C-DRX周期的休眠期的时长大于所述第二C-DRX周期的休眠期的时长;或者,
    所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;
    其中,所述第一C-DRX周期由所述第一C-DRX确定,所述第二C-DRX周期由所述第二C-DRX参数确定。
  6. 根据权利要求4或5所述的方法,其特征在于,
    若所述eNodeB接收所述UE返回的测量报告,根据所述测量报告确定不执 行所述LTE网络到所述2G或3G网络的CS域切换,则发送所述第二C-DRX参数给所述UE;或者,
    若所述eNodeB接收所述UE返回的测量报告,向移动管理实体MME发送切换要求消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程,确定所述切换过程失败,则发送所述第二C-DRX参数给所述UE。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,
    若所述eNodeB接收所述UE返回的测量报告,根据所述测量报告确定不执行所述LTE网络到所述2G或3G网络的CS域切换,则发送请求消息给所述UE,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能;或者,
    若所述eNodeB接收所述UE返回的测量报告,向移动管理实体MME发送切换要求消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程,确定所述切换过程失败,则发送所述请求消息给所述UE。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述测量控制参数还包括用于指示所述UE停止发送上行数据的指示信息。
  9. 一种异系统测量的方法,其特征在于,所述方法包括:
    在演进基站eNodeB对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者在所述eNodeB为所述UE提供基于LTE网络的语音VoLTE业务过程中,所述UE接收所述eNodeB发送的测量控制消息,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数;所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量;
    所述UE在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
  10. 根据权利要求9所述的方法,其特征在于,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长与所述第 一C-DRX周期的时长的比值大于0.6。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述UE接收所述eNodeB发送的测量控制消息之前,所述方法还包括:
    所述UE接收所述eNodeB发送的第二C-DRX参数,所述第二C-DRX参数用于为所述UE配置第二C-DRX周期;
    所述UE在所述第二C-DRX周期的休眠期内不接收物理下行控制信道的数据。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,
    所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;
    其中,所述第一C-DRX周期由所述第一C-DRX确定,所述第二C-DRX周期由所述第二C-DRX参数确定。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    所述UE根据对所述2G或3G网络的信号质量进行测量所得的测量结果,生成测量报告;
    所述UE向所述eNodeB发送所述测量报告。
  15. 根据权利要求14所述的方法,其特征在于,所述UE向所述eNodeB发送所述测量报告之后,所述方法还包括:
    所述UE接收所述eNodeB发送的第二C-DRX参数;或者,
    所述UE接收所述eNodeB发送的请求消息,所述请求消息用于指示所述UE关闭所述UE的C-DRX功能,所述UE关闭所述UE的C-DRX功能。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述UE接收所述eNodeB发送的测量控制消息之后,所述方法还包括:
    所述UE停止发送上行数据。
  17. 一种演进基站,其特征在于,包括:
    确定单元,用于所述演进基站在对位于长期演进LTE网络的用户设备UE进行电路域回落CSFB的过程中,或者为所述UE提供基于LTE网络的语音VoLTE业务过程中,确定所述UE支持从所述LTE网络到2G或3G网络的电路交换CS域的切换;
    交互单元,用于发送测量控制消息给所述UE,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数,所述第一C-DRX参数和所述测量配置参数用于指示所述UE在第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
  18. 根据权利要求17所述的演进基站,其特征在于,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms。
  19. 根据权利要求17或18所述的演进基站,其特征在于,所述交互单元还用于在发送所述测量控制消息给所述UE之前,将第二C-DRX参数发送给所述UE,所述第二C-DRX参数用于为所述UE配置第二C-DRX周期。
  20. 根据权利要求19所述的演进基站,其特征在于,
    所述第一C-DRX周期的休眠期的时长大于所述第二C-DRX周期的休眠期的时长;或者,
    所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;
    其中,所述第一C-DRX周期由所述第一C-DRX确定,所述第二C-DRX周期由所述第二C-DRX参数确定。
  21. 根据权利要求19或20所述的演进基站,其特征在于,所述交互单元还用于接收所述UE返回的测量报告,根据所述测量报告确定不执行所述LTE网络到所述2G或3G网络的CS域切换,发送所述第二C-DRX参数给所述UE;或者,
    所述交互单元还用于接收所述UE返回的测量报告,向移动管理实体MME 发送切换要求消息,以触发所述LTE网络到所述2G或3G网络的CS域切换过程,确定所述切换过程失败,发送所述第二C-DRX参数给所述UE。
  22. 根据权利要求17-21任一项所述的演进基站,其特征在于,所述测量控制参数还包括用于指示所述UE停止发送上行数据的指示信息。
  23. 一种用户设备,其特征在于,包括:
    交互单元,用于在演进基站eNodeB对所述用户设备进行电路域回落CSFB的过程中,或者在所述eNodeB为所述用户设备提供基于LTE网络的语音VoLTE业务过程中,接收所述eNodeB发送的测量控制消息,所述测量控制消息包含第一连续态下的不连续接收C-DRX参数和测量配置参数;所述第一C-DRX参数和所述测量配置参数用于指示所述用户设备在第一C-DRX周期的休眠期内对2G或3G网络的信号质量进行测量;
    处理单元,用于在所述第一C-DRX周期的休眠期内对所述2G或3G网络的信号质量进行测量。
  24. 根据权利要求23所述的用户设备,其特征在于,所述第一C-DRX周期由所述第一C-DRX参数确定,所述第一C-DRX周期的休眠期的时长不小于51ms。
  25. 根据权利要求23或24所述的用户设备,其特征在于,
    所述交互单元还用于在接收所述eNodeB发送的测量控制消息之前,接收所述eNodeB发送的第二C-DRX参数,所述第二C-DRX参数用于为所述用户设备配置第二C-DRX周期,在所述第二C-DRX周期的休眠期内不接收物理下行控制信道的数据。
  26. 根据权利要求25所述的用户设备,其特征在于,
    所述第一C-DRX周期的休眠期的时长大于第二C-DRX周期的休眠期的时长;或者,所述第一C-DRX周期的休眠期的时长与所述第一C-DRX周期的时长的比值大于第二C-DRX周期的休眠期的时长与所述第二C-DRX周期的时长的比值;
    其中,所述第一C-DRX周期由所述第一C-DRX确定,所述第二C-DRX周期由所述第二C-DRX参数确定。
  27. 根据权利要求23-26任一项所述的用户设备,其特征在于,所述处理单元还用于根据对所述2G或3G网络的信号质量进行测量所得的测量结果,生成测量报告;
    所述交互单元还用于向所述eNodeB发送所述测量报告。
  28. 根据权利要求27所述的用户设备,其特征在于,所述交互单元还用于在向所述eNodeB发送所述测量报告之后,接收所述eNodeB发送的第二C-DRX参数,所述第二C-DRX参数用于为所述UE配置第二C-DRX周期,在所述第二C-DRX周期的休眠期内不接收物理下行控制信道的数据;或者,
    所述交互单元还用于在向所述eNodeB发送所述测量报告之后,接收所述eNodeB发送的请求消息,所述请求消息用于指示所述用户设备关闭所述用户设备的C-DRX功能;则所述处理单元还用于关闭所述用户设备的C-DRX功能。
  29. 根据权利要求27或28所述的用户设备,其特征在于,所述交互单元还用于在接收所述eNodeB发送的测量控制消息之后,停止发送上行数据。
  30. 一种测量系统,包括:
    如权利要求17-22任一项所述的演讲基站eNodeb;和
    如权利要求23-29任一项所述的用户设备UE。
  31. 一种演进基站,其特征在于,所述演进基站包括处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述演进基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述演进基站执行如权利要求1-8中任一项所述的异系统测量的方法。
  32. 一种用户设备,其特征在于,所述用户设备包括处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述用户设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述用户设备执行如权利要求9-16中任一项所述的异系统测量的方法。
  33. 一种计算机可读介质,其特征在于,包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行如权利要求1-8中任一项所述的异系统测量的方法。
  34. 一种计算机可读介质,其特征在于,包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行如权利要求9-16中任一项所述的异系统测量的方法。
PCT/CN2014/087977 2014-09-30 2014-09-30 一种异系统测量的方法、相关装置及系统 WO2016049868A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14903406.8A EP3193532B1 (en) 2014-09-30 2014-09-30 Heterogeneous system measurement method, and related apparatus and system
PCT/CN2014/087977 WO2016049868A1 (zh) 2014-09-30 2014-09-30 一种异系统测量的方法、相关装置及系统
CN201480038244.7A CN105659664B (zh) 2014-09-30 2014-09-30 一种异系统测量的方法、相关装置及系统
JP2017517084A JP6378430B2 (ja) 2014-09-30 2014-09-30 Rat間測定方法ならびに関連する装置およびシステム
US15/473,414 US20170208521A1 (en) 2014-09-30 2017-03-29 Inter-rat measurement method, and related apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087977 WO2016049868A1 (zh) 2014-09-30 2014-09-30 一种异系统测量的方法、相关装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/473,414 Continuation US20170208521A1 (en) 2014-09-30 2017-03-29 Inter-rat measurement method, and related apparatus and system

Publications (1)

Publication Number Publication Date
WO2016049868A1 true WO2016049868A1 (zh) 2016-04-07

Family

ID=55629295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087977 WO2016049868A1 (zh) 2014-09-30 2014-09-30 一种异系统测量的方法、相关装置及系统

Country Status (5)

Country Link
US (1) US20170208521A1 (zh)
EP (1) EP3193532B1 (zh)
JP (1) JP6378430B2 (zh)
CN (1) CN105659664B (zh)
WO (1) WO2016049868A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864482A (zh) * 2016-09-22 2018-03-30 北京信威通信技术股份有限公司 一种窄带物联网的测量配置方法及装置
CN109756995A (zh) * 2017-11-01 2019-05-14 北京展讯高科通信技术有限公司 网络侧设备、终端及其邻区测量方法
CN110876152A (zh) * 2018-09-03 2020-03-10 中国移动通信有限公司研究院 一种连续测量实现方法、装置和计算机可读存储介质
CN111278066A (zh) * 2020-01-16 2020-06-12 展讯通信(上海)有限公司 邻区测量方法、用户设备及计算机可读存储介质
WO2020119790A1 (zh) * 2018-12-14 2020-06-18 华为技术有限公司 波束管理的方法和装置
EP3641380B1 (en) * 2017-06-16 2022-11-09 Vivo Mobile Communication Co., Ltd. Channel measurement processing method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568028B2 (en) * 2015-08-07 2020-02-18 Samsung Electronics Co., Ltd Method and apparatus for applying discontinuous reception mode in wireless communication system
WO2020197460A1 (en) * 2019-03-28 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Handling of inactive/idle measurement configurations and inactive/idle measurements upon inter-rat cell reselection
CN113038635B (zh) * 2019-12-24 2023-04-25 维沃移动通信有限公司 Scell休眠指示处理方法、终端及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308629A (zh) * 2011-07-18 2012-01-04 华为技术有限公司 一种语音回落的方法及设备
CN103634830A (zh) * 2013-12-23 2014-03-12 展讯通信(上海)有限公司 多模无线终端及其发起电路域语音业务的方法
CN103702378A (zh) * 2013-12-23 2014-04-02 北京北方烽火科技有限公司 一种lte小区的语音业务处理方法和装置
US20140179318A1 (en) * 2012-12-20 2014-06-26 Jin Wang Call setup latency optimization for lte to 1xrtt circuit switched fall back

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445779B (en) * 2007-01-11 2009-07-08 Samsung Electronics Co Ltd Wireless communication system
WO2010122771A1 (ja) * 2009-04-20 2010-10-28 パナソニック株式会社 無線通信端末装置、無線通信基地局装置及び無線通信方法
WO2010146464A1 (en) * 2009-06-16 2010-12-23 Research In Motion Limited Method for accessing a service unavailable through a network cell
US8837427B2 (en) * 2009-08-14 2014-09-16 Qualcomm Incorporated Resource selection for dual radio terminals
US20140146691A1 (en) * 2012-11-27 2014-05-29 Qualcomm Incorporated Cooperative measurments in wireless networks
WO2014101139A1 (zh) * 2012-12-28 2014-07-03 华为技术有限公司 电路域回落切换方法、装置和基站
US9445365B2 (en) * 2013-01-14 2016-09-13 Apple Inc. Reducing power consumption in voice over LTE terminals using semi persistent scheduling in connected discontinuous reception mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308629A (zh) * 2011-07-18 2012-01-04 华为技术有限公司 一种语音回落的方法及设备
US20140179318A1 (en) * 2012-12-20 2014-06-26 Jin Wang Call setup latency optimization for lte to 1xrtt circuit switched fall back
CN103634830A (zh) * 2013-12-23 2014-03-12 展讯通信(上海)有限公司 多模无线终端及其发起电路域语音业务的方法
CN103702378A (zh) * 2013-12-23 2014-04-02 北京北方烽火科技有限公司 一种lte小区的语音业务处理方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864482A (zh) * 2016-09-22 2018-03-30 北京信威通信技术股份有限公司 一种窄带物联网的测量配置方法及装置
EP3641380B1 (en) * 2017-06-16 2022-11-09 Vivo Mobile Communication Co., Ltd. Channel measurement processing method and device
CN109756995A (zh) * 2017-11-01 2019-05-14 北京展讯高科通信技术有限公司 网络侧设备、终端及其邻区测量方法
CN109756995B (zh) * 2017-11-01 2020-09-25 北京紫光展锐通信技术有限公司 网络侧设备、终端及其邻区测量方法
CN110876152A (zh) * 2018-09-03 2020-03-10 中国移动通信有限公司研究院 一种连续测量实现方法、装置和计算机可读存储介质
WO2020119790A1 (zh) * 2018-12-14 2020-06-18 华为技术有限公司 波束管理的方法和装置
CN111278066A (zh) * 2020-01-16 2020-06-12 展讯通信(上海)有限公司 邻区测量方法、用户设备及计算机可读存储介质
CN111278066B (zh) * 2020-01-16 2022-01-28 展讯通信(上海)有限公司 邻区测量方法、用户设备及计算机可读存储介质

Also Published As

Publication number Publication date
JP6378430B2 (ja) 2018-08-22
US20170208521A1 (en) 2017-07-20
CN105659664B (zh) 2019-08-27
JP2017535151A (ja) 2017-11-24
EP3193532A4 (en) 2017-08-30
EP3193532A1 (en) 2017-07-19
CN105659664A (zh) 2016-06-08
EP3193532B1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
WO2016049868A1 (zh) 一种异系统测量的方法、相关装置及系统
CN113228736B (zh) 条件切换中的暂停-恢复
US20220030490A1 (en) Machine-to-machine (m2m) terminal, base station, method, and computer readable medium
US10477611B2 (en) Wireless communications method, apparatus, and system
US20180027439A1 (en) Inter-rat measurement method, related apparatus, and measurement system
JP6045666B2 (ja) 信号トラフィックの低減
US9854496B2 (en) Method of high-efficiency connected mode cell re-selection
US9380496B2 (en) Method of handover of circuit-switched voice call to packet-switched voice call
US20190150014A1 (en) Early measurement reporting for cell access
JP2015188247A (ja) セルラネットワークエネルギーセービング
WO2017152757A1 (zh) 一种小区切换方法、系统及相关设备
WO2018040103A1 (zh) 一种语音切换的方法、终端以及存储介质
CN105027605B (zh) 异系统测量方法、终端及网络设备
KR20230122682A (ko) Ue 능력 정보 처리 방법, 장치, 기기 및 저장 매체
CN108419230B (zh) 一种通信方法、基站及存储介质
WO2020132905A1 (zh) 小区信号质量的测量方法、装置、设备及系统
KR102138061B1 (ko) 네트워크 지시 처리 디바이스, 방법 및 통신 시스템
WO2014176780A1 (zh) 测量方法、测量控制方法及设备
CN113316105A (zh) 语音业务的退回方法、终端设备及存储介质
EP2701434B1 (en) Inter-system cell power-saving control method and equipment
WO2015096720A1 (zh) 一种进行切换判决的方法、系统和设备
KR20120055561A (ko) 인접 셀을 식별하는 메시지의 수신
EP4210425B1 (en) Network access when associated relay user equipment is unavailable
JP2020127212A (ja) ネットワーク指示の処理装置、方法及び通信システム
Yuan et al. Performance Evaluation and Optimization of SRVCC Handover Scheme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903406

Country of ref document: EP