WO2015062045A1 - 一种控制通道的建立方法、装置及系统 - Google Patents

一种控制通道的建立方法、装置及系统 Download PDF

Info

Publication number
WO2015062045A1
WO2015062045A1 PCT/CN2013/086356 CN2013086356W WO2015062045A1 WO 2015062045 A1 WO2015062045 A1 WO 2015062045A1 CN 2013086356 W CN2013086356 W CN 2013086356W WO 2015062045 A1 WO2015062045 A1 WO 2015062045A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
control
control channel
channel
sub
Prior art date
Application number
PCT/CN2013/086356
Other languages
English (en)
French (fr)
Inventor
林毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003411.XA priority Critical patent/CN103891219B/zh
Priority to PCT/CN2013/086356 priority patent/WO2015062045A1/zh
Priority to ES13896475.4T priority patent/ES2661521T3/es
Priority to EP13896475.4A priority patent/EP3057269B1/en
Publication of WO2015062045A1 publication Critical patent/WO2015062045A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a system for establishing a control channel.
  • each node in the network maintains a DCN (Data Communication Network) network and transmits control messages through the DCN.
  • DCN Data Communication Network
  • the industry proposes a centralized control architecture, through which all nodes in the system are controlled by the controller, so the controller needs to be able to communicate with each node, usually in the controller and system.
  • the node directly refers to the DCN technology in the AS0N.
  • the controller is connected to only one or a limited number of nodes, and then indirectly connected to other nodes through these nodes, thereby realizing communication between the transport network controller and each node.
  • each node in the controller and the network maintains a routing table of the DCN network.
  • the controller When the controller needs to send a control message to a node, the controller encapsulates the control message into an IP packet, and finds its routing table to determine The one-hop node forwards the IP packet to the next hop node; after receiving the IP packet, the next hop node also searches the routing table according to the IP header and forwards it until the IP packet reaches the destination node.
  • the intelligent optical network system uses a hop-by-hop IP forwarding mechanism to transmit control messages. Due to factors such as DCC route convergence speed, routing table search speed, and forwarding speed, the message transmission speed is slower.
  • the controller needs to send messages to multiple nodes at the same time, or multiple nodes send messages to the controller at the same time, multiple IP packets participating in the information transmission and reception will cause IP packet congestion, which further affects the message sending speed and affects network performance.
  • the embodiment of the invention provides a method, a device and a system for establishing a control channel, which can improve the message sending speed, thereby improving network performance.
  • a method for establishing a control channel including:
  • the controller obtains a control link advertisement message sent by the node in the network, where the control link advertisement message includes: node address information at both ends of the control link, port identifiers at both ends of the control link, and second subchannel resource information of the control link. ;
  • the controller obtains bandwidth information of a control channel from the controller to the destination node, and the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second subchannel;
  • the controller calculates, according to the control link advertisement message and the bandwidth information of the control channel, routing information of obtaining a control channel from the controller to the destination node;
  • the controller selects a first control link in a control link between the controller and an adjacent downstream node on the control channel; the idle second subchannel resource of the first control link is greater than or Equal to the resource that the control channel needs to occupy the second subchannel;
  • the controller sends a control channel establishment message to the adjacent downstream node by using a first sub-channel between the controller and the adjacent downstream node, so that the adjacent downstream node is in the first control Establishing the control channel on the second sub-channel of the link;
  • the control channel setup message includes: routing information of the control channel, information of the first control link selected by the controller, and the control channel Bandwidth information.
  • the that the control channel needs to occupy the resources of the second sub-channel includes: the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to be Occupies the total bandwidth of the second subchannel.
  • the controller is between the controller and an adjacent downstream node on the control channel After the first control link is selected in the control link, the method further includes:
  • the controller selects idle N second subchannels in the first control link according to bandwidth information of the control channel, where N is a positive integer;
  • the control channel establishment message further includes: information of the N second subchannels selected by the controller.
  • the method further includes:
  • the controller receives a control channel establishment success message sent by an adjacent downstream node on the control channel, where the establishment success message includes the neighboring downstream node according to the bandwidth information of the control channel in the first control chain.
  • the information of the idle N second subchannels selected in the path, N is a positive integer.
  • the controller obtains a control link advertisement message sent by a node in the network, and specifically includes:
  • the controller receives a control link advertisement message flooded by each node in the network through the first subchannel, and obtains a control link advertisement message of the entire network.
  • a method for establishing a control channel including:
  • the transmitting node receives the control channel setup message sent by the adjacent upstream node on the control channel by using the first sub-channel, and the control channel setup message sent by the adjacent upstream node includes: routing information of the control channel, and selection by the adjacent upstream node Information of the first control link and bandwidth information of the control channel;
  • the transmitting node selects a second control link in a control link between the transmitting node and an adjacent downstream node on the control channel according to bandwidth information of the control channel, where the second control link is The idle second subchannel resource is greater than or equal to the resource of the second subchannel of the control channel;
  • the control channel setup message sent by the transmitting node includes: routing information of the control channel, information of the second control link, and bandwidth information of the control channel, where The bandwidth information of the control channel includes: the control channel needs to occupy resources of the second subchannel.
  • the that the control channel needs to occupy the resources of the second sub-channel includes: the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to be Occupies the total bandwidth of the second subchannel.
  • the control channel setup message sent by the neighboring upstream node that is received by the transmitting node further includes: The information of the idle N second subchannels selected by the neighboring upstream node according to the bandwidth information of the control channel in the first control link, where N is a positive integer;
  • the method further includes:
  • the transmitting node selects idle N second subchannels in the second control link according to bandwidth information of the control channel
  • the transmitting node establishes N second subchannels selected by the adjacent upstream node and the a cross connection between the N second subchannels selected by the transmitting node;
  • the control channel setup message sent by the transmitting node to the adjacent downstream node on the control channel further includes: N second subchannels selected by the transmitting node in the second control link Information.
  • the method further includes:
  • the transmitting node receives the control channel establishment success message sent by the neighboring downstream node, and the control channel establishment success message sent by the adjacent downstream node includes: the neighboring downstream node according to the bandwidth information of the control channel Determining the idle N second subchannels in the second control link;
  • the transmitting node selects idle N second subchannels in the first control link according to bandwidth information of the control channel
  • the transmitting node establishes a cross connection between the N second subchannels selected by the adjacent downstream node and the N second subchannels selected by the transmitting node;
  • the transmitting node sends a control channel establishment success message to the neighboring upstream node, and the control channel establishment success message sent by the transmitting node includes N second children selected by the transmitting node in the first control link. aisle.
  • the method further includes:
  • the transmitting node floods the control link advertisement message to the entire network, where the control link advertisement message includes: node address information at both ends of the control link, port identifiers at both ends of the control link, and resources of the second subchannel of the control link.
  • the resource information of the second subchannel includes the number of second subchannels and the type of each second subchannel.
  • the method before the transmitting node floods the control link advertisement message to the entire network, the method further includes:
  • the transmitting node sends a control link discovery message to the opposite end node of the control link by using the first subchannel on the control link, and receives a control link discovery message sent by the opposite node; the control chain
  • the path discovery message includes a port identifier of the control link at the transmitting end and Node address information of the sender.
  • a method for establishing a control channel including:
  • the destination node receives, by using the first sub-channel, a control channel setup message sent by the adjacent upstream node on the control channel, where the control channel setup message includes: routing information of the control channel, and first control selected by the adjacent upstream node.
  • the destination node establishes a cross connection between the main control unit of the destination node and the N second subchannels.
  • the that the control channel needs to occupy the resources of the second sub-channel includes: the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to be Occupies the total bandwidth of the second subchannel.
  • control channel setup message further includes: the adjacent upstream node according to the bandwidth information of the control channel Information of the idle N second subchannels selected in the first control link.
  • the destination node obtains N second subchannels that are idle in the first control link, specifically Includes:
  • the destination node selects idle N second subchannels in the first control link according to bandwidth information of the control channel
  • the method further includes: the destination node sending a control channel setup success message to the neighboring upstream node, where the control channel setup success message includes: the destination node selects idle in the first control link Information of N second subchannels.
  • the method further includes:
  • the destination node floods the control link advertisement message to the entire network, and the control link advertisement message
  • the information includes: node address information at both ends of the control link, a port identifier at both ends of the control link, and resource information of the second subchannel of the control link, where the resource information of the second subchannel includes the number of the second subchannel and each of the The type of the two subchannels is such that the controller obtains a control link advertisement message obtained by the destination node.
  • the method further includes: the destination node passes Transmitting, by the first sub-channel on the control link, a control link discovery message to the opposite end node of the control link, and receiving a control link discovery message sent by the opposite end node; The port identifier of the control link at the transmitting end and the node address information of the transmitting end.
  • a controller including:
  • a first obtaining unit configured to obtain a control link advertisement message sent by a node in the network, where the control link advertisement message includes: a node address information at both ends of the control link, a port identifier at both ends of the control link, and a control link Two subchannel resource information;
  • a second obtaining unit configured to obtain bandwidth information of a control channel from the controller to the destination node, where the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second subchannel;
  • a calculating unit configured to calculate, according to the control link advertisement message obtained by the first obtaining unit and the bandwidth information of the control channel obtained by the second obtaining unit, obtaining control from the controller to the destination node Routing information of the channel;
  • a selecting unit configured to select a first control link in a control link between the controller and an adjacent downstream node on the control channel, where the idle second subchannel resource of the first control link is greater than Or equal to the resource of the second subchannel occupied by the control channel;
  • a sending unit configured to send, by using a first sub-channel between the controller and the adjacent downstream node, a control channel setup message to the adjacent downstream node, so that the neighboring downstream node is in the first
  • the control channel is established on the second sub-channel of the control link, where the control channel setup message includes: routing information of the control channel, information of the first control link selected by the controller, and the control channel Bandwidth information.
  • the that the control channel needs to occupy the resources of the second sub-channel includes: the control channel needs to occupy the type and quantity of the second sub-channel, or The control channel needs to occupy the total bandwidth of the second subchannel.
  • the selecting unit is further configured to: after selecting the first control link in a control link between the controller and an adjacent downstream node on the control channel, according to bandwidth information of the control channel, Selecting N idle second sub-channels in a control link, where N is a positive integer; the control channel setup message sent by the sending unit to the adjacent downstream node further includes: the N selected by the controller Information about the second subchannel.
  • the second obtaining unit is further configured to receive, sent by an adjacent downstream node on the control channel Controlling a channel establishment success message; the establishing success message includes information of the idle N second subchannels selected by the neighboring downstream node in the first control link according to bandwidth information of the control channel, where N is A positive integer.
  • the first obtaining unit is specifically configured to: receive a control link advertisement message flooded by each node in the network through the first sub-channel, and obtain a control link advertisement message of the entire network.
  • a node including:
  • a receiving unit configured to receive, by using the first sub-channel, a control channel setup message sent by an adjacent upstream node on the control channel, where the control channel setup message sent by the adjacent upstream node includes: routing information of the control channel, the phase Information of the first control link selected by the neighboring upstream node and bandwidth information of the control channel;
  • a selecting unit configured to select a second control link in a control link between the local node and an adjacent downstream node on the control channel according to the control channel setup message received by the receiving unit, where the second control The idle second subchannel resource of the link is greater than or equal to the resource of the second subchannel occupied by the control channel;
  • a sending unit configured to send a control channel setup message to an adjacent downstream node on the control channel, so that the neighboring downstream node of the node is in the second of the second control link selected by the selecting unit Establishing the control channel on the sub-channel;
  • the control channel setup message sent by the sending unit includes: routing information of the control channel, information of a second control link selected by the selecting unit, and bandwidth information of the control channel , wherein the control pass
  • the bandwidth information of the channel includes: the control channel needs to occupy resources of the second subchannel.
  • the method further includes: a cross unit, where the control channel setup message further includes: the adjacent upstream node is configured according to The information of the bandwidth of the control channel is the information of the idle N second subchannels selected in the first control link, where N is a positive integer;
  • the selecting unit is further configured to: after selecting the second control link in the control link between the sending node and the adjacent downstream node on the control channel, according to the bandwidth information of the control channel, Selecting N idle second subchannels in the second control link;
  • the cross unit is further configured to establish a cross connection between the N second subchannels selected by the adjacent upstream node and the N second subchannels selected by the selection unit;
  • the control channel setup message that is sent by the sending unit further includes: information about the N second subchannels selected by the selecting unit.
  • the selecting unit is configured to select, after the receiving unit receives the control channel setup message, the idle N second subchannels in the first control link according to the bandwidth information of the control channel;
  • the node further includes a cross unit, configured to establish a cross connection between the N second subchannels selected by the adjacent downstream node and the N second subchannels selected by the selecting unit; And a method for sending a control channel establishment success message to the neighboring upstream node, where the control channel establishment success message sent by the sending unit includes N second subchannels selected by the selecting unit in the first control link. .
  • the sending unit is further configured to: before the receiving unit receives the control channel establishment message sent by the adjacent upstream node on the control channel by using the first subchannel, to the entire network
  • the flood control link advertisement message where the control link advertisement message includes: node address information at both ends of the control link, port identifiers at both ends of the control link, and resource information of the second subchannel of the control link, the second sub
  • the resource information of the channel includes the number of second subchannels and the type of each second subchannel.
  • the sending unit is further configured to: before the sending unit floods the control link notification message to the entire network, by using the control The first sub-channel on the link sends a control link discovery message to the opposite end node of the control link; the control link discovery message includes a port identifier of the control link at the transmitting end and node address information of the transmitting end;
  • the receiving unit is further configured to receive a control link discovery message sent by the correspondent node.
  • a transmitting node including:
  • a receiving unit configured to receive, by using the first sub-channel, a control channel setup message sent by an adjacent upstream node on the control channel, where the control channel setup message sent by the adjacent upstream node includes: routing information of the control channel, The information of the first control link selected by the adjacent upstream node and the bandwidth information of the control channel, where the bandwidth information of the control channel includes: the control channel needs to occupy the resources of the second sub-channel;
  • An obtaining unit configured to obtain N second sub-channels that are idle in the first control link, where N is a positive integer
  • a cross unit configured to establish a cross connection between the main control unit of the local node and the N second sub-channels obtained by the obtaining unit.
  • the that the control channel needs to occupy the resources of the second sub-channel includes: the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to be Occupies the total bandwidth of the second subchannel.
  • control channel setup message further includes: the adjacent upstream node according to the bandwidth information of the control channel Information of the idle N second subchannels selected in the first control link.
  • the sending unit is further included
  • the obtaining unit is specifically configured to: select, according to the bandwidth information of the control channel, idle N second subchannels in the first control link;
  • the sending unit is configured to: send a control channel to the neighboring upstream node to establish a successful cancellation
  • the control channel setup success message includes: information about the idle N second subchannels selected by the obtaining unit in the first control link.
  • the sending unit is further configured to: before the receiving unit receives the control channel setup message sent by the neighboring upstream node on the control channel by using the first subchannel, send a message to the entire network flood control link, where
  • the control link advertisement message includes: a node address information of the two ends of the control link, a port identifier of the two ends of the control link, and resource information of the second sub-channel of the control link, where the resource information of the second sub-channel includes the second sub-channel
  • the number and the type of each second subchannel are such that the controller obtains a control link announcement message obtained by the node.
  • the sending unit is further configured to send a control link discovery message to the opposite node of the control link by using the first subchannel on the control link before flooding the control link advertisement message to the entire network.
  • the control link discovery message includes a port identifier of the control link at the transmitting end and node address information of the transmitting end;
  • the receiving unit is further configured to receive a control link discovery message sent by the correspondent node.
  • a system for establishing a control channel including: the controller according to any one of the second aspect, the second aspect, the fifth aspect, the fifth aspect A node according to any one of the two possible implementations, and a node according to any one of the sixth aspect, the second possible implementation of the sixth aspect.
  • a system for establishing a control channel including: the controller described in the third possible implementation manner of the fourth aspect, and the node in the third possible implementation manner of the fifth aspect And the node described in the third possible implementation of the sixth aspect.
  • the method, device and system for establishing a control channel provided by the embodiment of the invention, in the centralized control mode, the controller calculates routing information of the controller and the destination node and establishes a cross-connection of the second sub-channel, the only control channel
  • the direct control channel is established in advance between the controller and the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed. , thereby improving network performance.
  • DRAWINGS 1 is a schematic structural diagram of a network under a centralized control architecture according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a node according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for establishing a control channel according to Embodiment 1 of the present invention
  • FIG. 4 is another control provided by Embodiment 1 of the present invention
  • Schematic diagram of the process of establishing a channel
  • FIG. 5 is a schematic flow chart of another method for establishing a control channel according to Embodiment 1 of the present invention.
  • FIG. 6 is a structural block diagram of a controller according to Embodiment 4 of the present invention
  • FIG. 7 is a structural block diagram of a transmitting node according to Embodiment 4 of the present invention
  • FIG. 8 is a schematic diagram of a node according to Embodiment 4 of the present invention
  • FIG. 9 is a structural block diagram of another controller according to Embodiment 5 of the present invention
  • FIG. 10 is a structural block diagram of another transmitting node according to Embodiment 5 of the present invention
  • FIG. 11 is provided according to Embodiment 5 of the present invention
  • a block diagram of another node A block diagram of another node.
  • the network in the embodiment of the present invention is an intelligent optical network using a centralized control architecture, and the controller 11 in the network performs a centralized controller on the entire network, and the controller 11 passes the TDM-based Multiple control links (Time Division Multiplexing) are connected to Node A (or Node D), and each node in the network is also connected to the correspondent node through multiple control links based on TDM.
  • TDM-based Multiple control links Time Division Multiplexing
  • the control link can be divided into multiple subchannels, and multiplexing and demultiplexing between the control link and the subchannel can be performed.
  • OTN Optical Transport Network
  • ODU Optical Channel Data Uni t
  • SDH/SONET Synchronous Digital Hierarchy/Synchronous Optical Network
  • VC4 is demultiplexed into multiple VC12s, and VC12 is used as a subchannel
  • four low-order 0DU1s are demultiplexed from the high-order 0DU2, 16 VC4s are extracted from the payload of each 0DU1, 63 VC12s are demultiplexed from each VC4, and VC12 is used as a sub-channel.
  • each control tributary board in each node can divide the sub-channel, divide the designated one or more sub-channels into the first sub-channel, and divide the other sub-channels into the second sub-channel. That is, each control link can include one or more first sub-channels and one or more second sub-channels.
  • the first sub-channel is directly connected to the main control unit, so the control information transmitted in the first sub-channel is received and processed by the main control unit of the node;
  • the second sub-channel is connected to the cross-unit, and can be cross-connected as needed a second sub-channel to the other control link of the node, or a main control unit cross-connected to the node; when the second sub-channel is cross-connected to the second sub-channel of the other control link of the node, the second sub-channel
  • the control information is sent directly to the second sub-channel in the next segment of the control link, ie the master unit of the node does not perceive or process the control information.
  • Embodiment 1 The embodiment of the present invention provides a method for establishing a control channel, where an execution body is a controller. As shown in FIG. 3, the method includes the following steps:
  • the controller obtains a control link advertisement message sent by a node in the network. Since the first sub-channel of the control link is connected to the main control unit on the node, the controller and each node in the network can go to the opposite end of the control link through the first sub-channel on the control link.
  • the node sends a control link discovery message and receives a control link discovery message sent by the opposite node; thus completing automatic discovery of the control link.
  • the control link discovery message includes a port identifier (ID) of the control link at the transmitting end and node address information of the transmitting end, where the port ID of the control link is unique to the entire network, that is, each control link The port IDs at both ends uniquely identify a control link.
  • ID port identifier
  • control link discovery message may also include the port ID of the control link at the transmitting end and the node address information of the transmitting end, where the port ID of the control link is unique only in the node of the sending end, that is, Each control The port ID at both ends of the link and the node address information at both ends uniquely identify a control link.
  • the control link advertisement message includes: node address information at both ends of the control link, a port ID at both ends of the control link, and second subchannel resource information of the control link, and a second subchannel resource of the control link
  • the information includes the number of second subchannels on the control link and the type of each second subchannel.
  • the controller receives the control link advertisement message of each control link flooded by each node of the entire network, and saves the control link advertisement message of each control link of the entire network.
  • the controller obtains bandwidth information of a control channel from the controller to a destination node.
  • the bandwidth information of the control channel includes: the control channel needs to occupy the resource size of the second subchannel.
  • the control channel needs to occupy the resource size of the second subchannel, and the control channel needs to occupy the type and quantity of the second subchannel, or the control channel needs to occupy the total bandwidth of the second subchannel.
  • the controller calculates, according to the control link advertisement message of each control link and the bandwidth information of the control channel, routing information obtained from a control channel between the controller and the destination node.
  • the routing information of the control channel includes a transit node through which the control channel passes between the controller and the destination node.
  • the bandwidth information of the control channel includes: the type and number of the second subchannel occupied by the control channel, or the control channel needs to occupy the total bandwidth of the second subchannel.
  • the type of the second subchannel includes ODUj or VCxx.
  • the controller may determine routing information of the control channel from the controller to the destination node according to node address information, second subchannel resource information, and bandwidth information of the control channel at both ends of each control link.
  • the controller selects a first control link in a control link between the controller and an adjacent downstream node on the control channel.
  • the idle resource of the first control link is greater than or equal to the resource of the second subchannel that is required by the control channel.
  • the idle resource here refers to the total bandwidth of the second subchannel that is not occupied in the control link, that is, the total resource of the second subchannel that is idle.
  • the controller has a plurality of control links between the controller and adjacent downstream nodes on the control channel on the control channel, and selects one idle total resource from which is greater than or equal to The first control link of the resource of the second sub-channel is occupied by the control channel.
  • the controller sends a control channel setup message to the neighboring downstream node by using a first sub-channel between the controller and the adjacent downstream node.
  • the controller may select idle N second subchannels in the first control link selected by the controller according to the bandwidth information of the control channel, so that the N second subchannels satisfy the control channel
  • the resource requirements of the two subchannels where N is a positive integer.
  • the transmitting node may receive N second sub-channel information that is idle between the transmitting node and the controller selected by the controller, and then select the Establishing N second sub-channel information between the transmitting node and the adjacent downstream node of the transmitting node, establishing a cross-connection between N second sub-channels on both sides of the transmitting node, and simultaneously transmitting
  • the node sends a control channel setup message to the neighboring downstream node of the transmitting node, and carries the idle N second subchannel information selected by the transmitting node in the sent control channel setup message until the adjacent downstream
  • the node is the destination node, and the unique control channel established between the controller and the destination node and connected by the second sub-channel in the control link is established.
  • the destination node may receive N second subchannel information that is idle between the transmitting node and the controller selected by the controller, and then establish the a cross connection between the N second subchannels and the main control unit of the destination node, thus establishing a connection between the controller and the destination node, connected by the second subchannel in the control link, and unique Control channel.
  • the controller does not select the N second sub-channels that are idle in the first control link, and the control channel setup message does not carry the N second sub-channels selected by the controller. information.
  • the transmitting node starts to select only the second control link with the adjacent downstream node, and does not select the idle N second sub-channels
  • the transmitting node sends a control channel setup message to the neighboring downstream node of the transmitting node on the control channel, where the control channel is established, and only the second control link information selected by the transmitting node is carried in, until The adjacent downstream node is a destination node.
  • the destination node selects the idle N second sub-channels from the second control link that is connected to itself, and sends a control channel establishment success message to the adjacent upstream node of the destination node, where the control channel setup success message is carried. Select the idle N second subchannels.
  • the adjacent upstream node can receive the idle N second subchannel information selected by the destination node, and then select the N second subchannel information that is idle between the adjacent upstream node and establish the phase of the destination node.
  • a cross-connection between the N second sub-channels on the two sides of the adjacent upstream node, and sending a control channel establishment success message to the adjacent upstream node, where the control channel establishment success message carries the selected idle N second sub-child The channel, until the adjacent upstream node is a controller, establishes a unique control channel established between the controller and the destination node and connected by the second sub-channel in the control link.
  • An embodiment of the present invention provides a method for establishing a control channel, where an execution body is a transmitting node. As shown in FIG. 4, the method includes the following steps:
  • the transmitting node receives, by using the first subchannel, a control channel setup message sent by an adjacent upstream node on the control channel.
  • the adjacent upstream node may be a controller, or may be a transmitting node adjacent to the transmitting node, and the control channel establishment message sent by the adjacent upstream node includes: routing information of the control channel, phase The information of the first control link selected by the neighboring upstream node and the bandwidth information of the control channel.
  • the transmitting node Before the transmitting node receives the control channel setup message sent by the neighboring upstream node by using the first subchannel, the transmitting node sends a control chain to the opposite node of the control link by using the first subchannel on the control link And discovering a control link discovery message sent by the peer node; the control link discovery message includes a port ID of the control link at the sending end and node address information of the sending end.
  • the transmitting node After the transmitting node receives the control link discovery message sent by the opposite node, the transmitting node floods the entire network with a control link advertisement message of the control link on the transmitting node, and the control link advertisement message
  • the method includes: controlling node address information at both ends of the link, a port ID at both ends of the control link, and resource information of the second subchannel of the control link, where the resource information of the second subchannel includes the number of the second subchannel and each of the The type of the two subchannels, such that the controller obtains a control link advertisement message for each control link on the transmitting node.
  • the controller After obtaining the control link advertisement message of each control link of the entire network, the controller calculates and obtains the control link notification message of the control link and the bandwidth information of the control channel, and obtains from the controller to Routing information of the control channel between the destination nodes, and in a control link between the controller and an adjacent upstream node on the control channel on the control channel Selecting a first control link that meets a preset condition, and then sending a control channel setup message to an adjacent upstream node on the control channel on the control channel by using the first subchannel on the first control link .
  • the transmitting node selects a second control link in a control link between the transmitting node and an adjacent downstream node on the control channel according to bandwidth information of the control channel.
  • the idle resource of the second control link is greater than or equal to the resource of the second sub-channel, and the adjacent downstream node includes a destination node or a transit node that is adjacent to the downstream of the transit node.
  • the transmitting node sends a control channel setup message to the adjacent downstream node on the control channel through the first subchannel.
  • the adjacent upstream node may select the idle N second children from the first control link selected by the neighboring upstream node. a channel, and carrying information of the N second subchannels selected by the controller in the control channel setup message.
  • the transmitting node may receive N second sub-channel information that is idle between the selected transmitting node and the adjacent upstream node, which is selected by the adjacent upstream node (which may be a controller), and then select the transmitting node and Establishing a second cross-connection between the N second sub-channels on both sides of the transmitting node, and establishing the cross-connection between the N second sub-channels on the two sides of the transmitting node until the adjacent downstream node is the destination node, The only control channel established between the controller and the destination node, connected by the second subchannel in the control link.
  • the adjacent upstream node does not select the idle N second subchannels in the first control link
  • the control channel setup message carries only the information of the first control link selected by the adjacent upstream node.
  • the transmitting node starts to select only the first control link, and does not select the idle N second subchannels until the destination node selects the idle N second subchannels from the first control link connected to itself.
  • the transmitting node may receive N second sub-channel information that is idle between the selected transmitting node and the adjacent downstream node of the adjacent downstream node (which may be the destination node), and then select the transmitting node and the adjacent upstream N Nth sub-channel information that is idle between nodes, establishing a cross-connection between N second sub-channels on both sides of the transmitting node, until the adjacent upstream node is a controller, establishing a controller and The only control channel established between the destination nodes and connected by the second subchannels in the control link.
  • An embodiment of the present invention provides a method for establishing a control channel, where an execution entity is a destination node. As shown in FIG. 5, the method includes the following steps:
  • the destination node receives the control channel establishment message sent by the adjacent upstream node on the control channel through the first subchannel.
  • the adjacent upstream node may be a controller, or may be a transit node adjacent to the destination node, corresponding to the two cases of the foregoing 305 or 403, and the control channel establishment message received by the destination node also includes two Situation:
  • the neighboring upstream node selects the idle N second subchannels in the selected first control link
  • the control channel setup message received by the destination node includes: the route of the control channel Information, information of the first control link selected by the adjacent upstream node, information of the N second subchannels selected by the adjacent upstream node, and bandwidth information of the control channel.
  • the neighboring upstream node does not select the idle N second subchannels in the first control link that is selected by the neighboring upstream node
  • the control channel setup message received by the destination node includes: Routing information, information of the first control link selected by the adjacent upstream node, and bandwidth information of the control channel.
  • the bandwidth information of the control channel includes the resource size of the second sub-channel, and the resource size of the control channel needs to occupy the second sub-channel. And the number, or the control channel needs to occupy the total bandwidth of the second subchannel.
  • the destination node obtains N second sub-channels that are idle in the first control link.
  • the neighboring upstream node selects a first control link in a control link between the node and the destination node
  • the control channel setup message received by the destination node includes: routing information of the control channel, the phase The information of the first control link selected by the neighboring upstream node and the bandwidth information of the control channel.
  • the destination node obtains N second sub-channels that are idle in the first control link.
  • the control channel setup message sent by the neighboring upstream node that is received by the destination node includes the first control link between the destination node and the adjacent upstream node that is selected by the neighboring upstream node. N of the second sub-channels.
  • the destination node selects, in the first control link selected by the adjacent upstream node, N second sub-channels between the destination node and the adjacent upstream node. 503.
  • the destination node establishes a cross connection between the main control unit of the destination node and the N second subchannels.
  • the destination node also sends a control channel establishment success message to the transmitting node.
  • the destination node After the destination node establishes that the N second sub-channels between the destination node and the adjacent upstream node are connected to the main control unit, the destination node sends a control channel establishment success message to the adjacent upstream node.
  • the control channel establishment success message sent by the destination node also has two cases:
  • the neighboring nodes on the control channel forward control to the controller.
  • the channel establishes a success message.
  • control node After the destination node establishes that the N second subchannels selected by the destination node are connected to the main control unit, the control node sends a control channel establishment success message to the transmitting node.
  • the control channel establishment success message further includes: information of the idle N second subchannels selected by the destination node in the first control link selected by the adjacent upstream node.
  • the method for establishing a control channel provided by the embodiment of the present invention, in the centralized control mode, the controller calculates routing information of the controller and the destination node, and establishes a unique control channel formed by the cross connection of the second subchannel, in the controller
  • the direct control channel is established in advance with the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed and thereby improve the network. performance.
  • Embodiment 2 An embodiment of the present invention provides a method for establishing a control channel, where the method includes the following steps:
  • the controller and each node send a control link discovery message to the opposite end node of the control link by using the first subchannel on the control link.
  • the control link discovery message sent by the controller and each node includes a port ID of the control link at the transmitting end and node address information of the transmitting end.
  • the controller or each node in the network
  • the controller needs to send M control links to the opposite node.
  • Discovering messages, and each control link discovery message includes the control link The port ID of the sender and the node address of the sender, where the port ID of the control link is unique to the entire network, that is, the port ID at each end of each control link uniquely identifies a control link.
  • control link discovery message may also include the port ID of the control link at the transmitting end and the node address information of the transmitting end, where the port ID of the control link is unique only in the node of the sending end, that is, The port ID at both ends of each control link and the node address information at both ends uniquely determine a control link.
  • the controller and each node receive a control link discovery message sent by the opposite node, and then flood the control link advertisement message to the entire network.
  • the controller and each node After receiving the control link discovery message sent by the peer node, the controller and each node can obtain the node address information of both ends of the control link corresponding to the node and the port ID of both ends of the control link, because each node itself
  • the time division multiplexing technology is used to divide the control link corresponding to the node into multiple sub-channels, and the second sub-channel is divided. Therefore, the second sub-channel resource information of the control link corresponding to the node is stored in each node. Therefore, the controller and each node receive the control link discovery message and then send the flooding control link advertisement message to the entire network, which may include: controlling the node address information at both ends of the link, the port ID at both ends of the control link, and the control link.
  • the second sub-channel resource information, where the second sub-channel resource information of the control link includes the number of second sub-channels on the control link and the type of each second sub-channel.
  • the controller obtains a control link advertisement message sent by a node in the network.
  • the controller After receiving the control link advertisement message of each control link flooded by each node of the entire network, the controller obtains a control link advertisement message of each control link of the entire network.
  • the controller obtains bandwidth information of a control channel from the controller to a destination node.
  • the bandwidth information of the control channel includes resources that the control channel needs to occupy the second sub-channel.
  • the control channel needs to occupy the resources of the second sub-channel, and the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the controller calculates, according to the control link advertisement message of each control link and the bandwidth information of the control channel, routing information obtained from a control channel between the controller and the destination node.
  • the controller can obtain the type (ie, bandwidth) of the second subchannel of each control link according to the second subchannel resource information of the control link in the control link advertisement message of each control link.
  • Quantity Combining the type and quantity of the second subchannel occupied by the bandwidth information of the control channel or the total bandwidth of the second subchannel to be occupied, and the node address information at both ends of the control link, the control can be calculated from the control. Routing information from the control channel to the destination node.
  • the controller selects a first control link in a control link between the controller and an adjacent downstream node on the control channel, and according to the bandwidth information of the control channel, the first N idle second subchannels are selected in the control link.
  • the idle resource of the first control link is greater than or equal to the resource of the second sub-channel, and the idle N second sub-channels are N that have not been cross-connected by the cross-unit. Second sub-channel.
  • the controller selects a type of the second subchannel used to establish the control channel according to the control channel bandwidth information.
  • the number as an example, the bandwidth information of the control channel is that the control channel needs to occupy the second subchannel type of ODU0 and the number is two, and the controller selects two ODU0s as control channels.
  • the controller first divides the total bandwidth by the bandwidth of the second subchannel (the second subtype of each type)
  • the channels all have corresponding bandwidths, and the number of second subchannels is required to be occupied.
  • the type of the second subchannel is mainly ODUj or VCxx, and the bandwidth of the ODUj is known to be 1.25G.
  • the second subchannel in the first control link is obtained as the ODUj according to the second subchannel resource information of the control link in the control link advertisement message, and the control channel is obtained.
  • the controller sends a control channel establishment message to an adjacent downstream node on the control channel.
  • the control channel establishment message sent by the controller to the adjacent downstream node on the control channel by using the first sub-channel includes: routing information of the control channel, information of the first control link selected by the controller, Information of the N second subchannels selected by the controller And bandwidth information of the control channel.
  • step 608-61 1 is performed, and when the adjacent downstream node is the destination node, step 6 1 2 is performed.
  • the transmitting node receives, by using the first subchannel, a control channel establishment message sent by an adjacent upstream node.
  • the control channel setup message sent by the controller including: routing information of the control channel, bandwidth information of the control channel, information of the first control link selected by the controller, and N selected by the controller Information about the second subchannel.
  • the transmitting node selects a second control link in a control link between the transmitting node and an adjacent downstream node on the control channel according to bandwidth information of the control channel, and according to the control channel.
  • the bandwidth information selects the idle N second subchannels in the second control link.
  • the idle resource of the second control link is greater than or equal to the resource of the second sub-channel, and the idle N second sub-channels are N that have not been cross-connected by the cross-unit.
  • the second subchannel is the idle resource of the second control link.
  • the transmitting node establishes a cross connection between the N second subchannels selected by the adjacent upstream node and the N second subchannels selected by the transmitting node.
  • the N second sub-channels on both sides of the transmitting node will be correspondingly connected to form a single channel.
  • the transmitting node sends a control channel establishment message to an adjacent downstream node on the control channel by using the first subchannel.
  • control channel setup message sent by the transmitting node includes: routing information of the control channel, bandwidth information of the control channel, information of the first control link selected by the adjacent upstream node, and selected by the adjacent upstream node.
  • Information of N second subchannels includes: routing information of the control channel, bandwidth information of the control channel, information of the first control link selected by the adjacent upstream node, and selected by the adjacent upstream node.
  • the adjacent downstream node When the adjacent downstream node is not the destination node, the adjacent downstream node (ie, the adjacent downstream transit node) performs steps 608-61 1 until the adjacent downstream node in step 6 1 1 is the destination node. Then proceed to step 61 1.
  • the destination node receives the control channel establishment message sent by the adjacent upstream node through the first subchannel.
  • the adjacent upstream node may be a controller or a transmitting node.
  • the control channel setup message sent by the neighboring upstream node received by the destination node includes: routing information of the control channel, bandwidth information of the control channel, and selection of the adjacent upstream node.
  • routing information of the control channel includes: routing information of the control channel, bandwidth information of the control channel, and selection of the adjacent upstream node.
  • the destination node establishes a cross connection between the main control unit of the destination node and the N second subchannels.
  • a direct control channel is established between the controller and the destination node by using the cross connection of the second subchannel.
  • the controller can only send a message to the destination node by using the control channel, and the message transmission between the controller and the destination node does not need to be searched and forwarded through routing tables of other nodes, and can be directly transmitted. .
  • the destination node sends a control channel establishment success message to the controller.
  • the destination node may send a control channel setup success message to the controller through an adjacent upstream node on the control channel.
  • the controller sends a control message to the destination node by using the control channel. After the direct control channel between the controller and the destination node is established, it can be used to transmit control messages between the controller and the destination node.
  • the direct control channel between the controller and the destination node After the direct control channel between the controller and the destination node is established, it can be used to transmit control messages between the controller and the destination node.
  • the destination node can directly report the identification information, resource information, link fault information and other information of the data link to the controller through the control channel.
  • the controller can calculate the service path by using the resource information of the data link, and then directly send a cross-establishment command message to each of the transit nodes on the service path through the control channel.
  • nodes at both ends of the link can send fault information to the controller through the control channel; the controller decides to reroute the service path or switch to the protection path, and After the decision is made to preempt the resources occupied by the other services, the cross-establishment command message or the resource preemption command message is sent to the node on the rerouting path or the protection path through the control channel.
  • a direct control channel may be established between the controller and the destination node, in order to protect the secure transmission between the controller and the destination node, the controller and the A direct control channel is established between the destination nodes as an alternate control channel, so that when one control channel fails, another control channel can be used for transmission.
  • the method used can be in accordance with step 6 04-6 1 4 , and will not be repeated here.
  • the controller and the five nodes A, B, C, D, and E pass the control link A sub-channel sends a control link discovery message to the opposite end node of the control link, and the controller and each node receive the control link discovery message sent by the opposite end node, and then notify the entire network flood control link
  • the message controller obtains a control link advertisement message for each control link of the entire network.
  • the controller After obtaining the control link advertisement message of each control link of the entire network, the controller obtains the topology of the entire network (including the information of each node and the port information of each control link) as shown in FIG. 1 and Controlling the second sub-channel resource information of the link, so that the bandwidth information between the controller and the destination node E (assumed to be the controller-ABE) and the control channel, that is, the The control channel occupies the number N of the second subchannels.
  • the controller first selects a first control link in a control link between the controller and the node A, and then selects idle N second subchannels in the first control link selected by the controller, and then goes to the node A sends a control channel setup message.
  • the control channel establishment message includes: routing information of the control channel (controller A--B-E), information of the N second sub-channels selected by the controller between the controller and the node A, and controller selection The information of the first control link and the bandwidth information of the control channel.
  • the node A After receiving the control channel setup message, the node A first selects a second control link in the control link between the node A and the node B, and then selects the idle N second in the second control link selected by the node A. Subchannel. Node A then establishes a cross-connection between the N second sub-channels selected by the controller and the N second sub-channels selected by node A. Node A then sends a Control Channel Setup message to the neighboring downstream Node B on the control channel.
  • the control channel setup message sent by node A includes: routing information of the control channel, bandwidth information of the control channel, and information of the N second subchannels selected by node A.
  • the node B After receiving the control channel establishment message sent by the first sub-channel receiving controller, the node B is the same as the node A, and first selects the third control in the control link between the node B and the adjacent downstream node (destination node) E. The link then selects the idle N second subchannels in the third control link selected by the Node B. Node B establishes a cross-connection between the N second sub-channels selected by node A and the N second sub-channels selected by node B. A control channel setup message is sent to the adjacent downstream node (destination node) E on the control channel.
  • the control channel setup message sent by the node B includes: routing information of the control channel, bandwidth information of the control channel, and information of the N second subchannels selected by the node B.
  • the node E After receiving the control channel setup message sent by the Node B through the first subchannel, the node E establishes a cross connection between the main control unit of the node E and the N second subchannels between the node B and the node E. Node E then sends a control channel to the controller through Node B and Node A. Successful news.
  • a direct control channel is established between the controller and the destination node using the second subchannel.
  • the controller can only send a message to the destination node by using the control channel, and the message transmission between the controller and the destination node does not need to be searched and forwarded through routing tables of other nodes, and can be directly transmitted. .
  • the method for establishing a control channel provided by the embodiment of the present invention, in the centralized control mode, the controller calculates routing information of the controller and the destination node, and establishes a unique control channel formed by the cross connection of the second subchannel, in the controller
  • the direct control channel is established in advance with the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed and thereby improve the network. performance.
  • Embodiment 3 An embodiment of the present invention provides a method for establishing a control channel, where the method includes the following steps:
  • the controller and each node send a control link discovery message to a peer node of the control link by using a first subchannel on the control link.
  • the control link discovery message sent by the controller and each node includes a port ID of the control link at the transmitting end and node address information of the transmitting end.
  • the controller or each node in the network
  • the discovery message, and each control link discovery message includes a port ID of the control link at the transmitting end and node address information of the transmitting end, where the port ID of the control link is unique to the entire network, that is, each control link
  • the port IDs at both ends uniquely identify a control link.
  • control link discovery message may also include the port ID of the control link at the transmitting end and the node address information of the transmitting end, where the port ID of the control link is only unique within the node of the sending end, that is, Port ID at both ends of each control link and the nodes at both ends
  • the address information uniquely identifies a control link.
  • the controller and each node receive a control link discovery message sent by the peer node, and then flood the control link advertisement message to the entire network. After receiving the control link discovery message sent by the peer node, the controller and each node can obtain the node address information of both ends of the control link corresponding to the node and the port ID of both ends of the control link, because each node itself
  • the time division multiplexing technology is used to divide the control link corresponding to the node into multiple sub-channels, and the second sub-channel is divided. Therefore, the second sub-channel resource information of the control link corresponding to the node is stored in each node.
  • the controller and each node receive the control link discovery message and then send the flooding control link advertisement message to the entire network, which may include: controlling the node address information at both ends of the link, the port ID at both ends of the control link, and the control link.
  • the second sub-channel resource information, where the second sub-channel resource information of the control link includes the number of second sub-channels on the control link and the type of each second sub-channel.
  • the controller obtains a control link advertisement message sent by a node in the network.
  • the controller After receiving the control link advertisement message of each control link flooded by each node of the entire network, the controller obtains a control link advertisement message of each control link of the entire network.
  • the controller obtains bandwidth information of a control channel from the controller to a destination node.
  • the bandwidth information of the control channel includes resources that the control channel needs to occupy the second sub-channel.
  • the control channel needs to occupy the resources of the second sub-channel, and the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the controller calculates, according to the control link advertisement message and the bandwidth information of the control channel, routing information obtained by using a control channel between the controller and the destination node.
  • the controller learns the topology of the entire network, so that the controller according to the second sub-channel resource of the control link in each control link advertisement message Information, the type (ie bandwidth) and number of the second subchannels of each control link can be obtained. Combining the type and quantity of the second subchannel occupied by the bandwidth information of the control channel or the total bandwidth of the second subchannel to be occupied, and the node address information at both ends of the control link, the control can be calculated from the control. Routing information from the control channel to the destination node.
  • the controller selects a first control link in a control link between the controller and an adjacent downstream node on the control channel.
  • the idle resource of the first control link is greater than or equal to the resource of the second sub-channel that the control channel needs to occupy.
  • the controller sends a control channel to an adjacent downstream node on the control channel. Standing news.
  • control channel establishment message sent by the controller to the adjacent downstream node on the control channel by using the first sub-channel includes: routing information of the control channel, and the first control chain selected by the controller Information of the road, bandwidth information of the control channel.
  • the transmitting node receives, by using the first subchannel, a control channel establishment message sent by an adjacent upstream node.
  • the control channel setup message received by the transmitting node includes: routing information of the control channel, bandwidth information of the control channel, and information of the first control link selected by the controller.
  • the transmitting node selects a second control link in a control link between the transmitting node and an adjacent downstream node on the control channel according to bandwidth information of the control channel.
  • the idle second subchannel resource of the second control link is greater than or equal to the resource of the second subchannel.
  • the idle N second subchannels refer to N second subchannels that have not been cross connected by the cross unit.
  • the transmitting node establishes a message by using a first subchannel to a control channel sent by an adjacent downstream node on the control channel.
  • control channel setup message sent by the transmitting node to the adjacent downstream node includes: routing information of the control channel, bandwidth information of the control channel, and a second control link selected by the transmitting node.
  • the adjacent downstream node is the adjacent downstream transit node in 71 0, repeat 7 08-71 0; if the adjacent downstream node in 71 0 is the destination node, proceed to 71 1 .
  • the destination node receives, by using the first subchannel, a control channel setup message sent by an adjacent upstream node on the control channel, and selects the second control chain at the adjacent upstream node according to bandwidth information of the control channel. Selecting the idle N second subchannels in the path, where the destination node selects the idle N second subchannels in the second control link selected by the adjacent upstream node according to the bandwidth information of the control channel. . If the bandwidth information of the control channel is that the control channel needs to occupy the type and quantity of the second subchannel, the destination node selects a type of the second subchannel used to establish the control channel according to the bandwidth information of the control channel. Quantity, for example, the bandwidth information of the control channel is the control channel If the type of the second subchannel needs to be ODU0 and the number is two, the controller selects two ODU0s as control channels.
  • the destination node If the bandwidth information of the control channel is that the control channel needs to occupy the total bandwidth of the second subchannel, the destination node first divides the total bandwidth by the bandwidth of the second subchannel (the second subtype of each type)
  • the channels all have corresponding bandwidths, and the number of second subchannels is required to be occupied.
  • the type of the second subchannel is mainly ODUj or VCxx, and the bandwidth of the ODUj is known to be 1.25G.
  • the second subchannel in the control link is obtained according to the second subchannel resource information of the control link in the control link advertisement message, the type of the second subchannel is ODUj, and the control channel needs to be occupied.
  • the destination node establishes a cross connection between the main control unit of the destination node and the N second subchannels.
  • the destination node establishes a cross-connection between the main control unit of the destination node, and the N second sub-channels between the intermediate node selected by the destination node and the destination node.
  • the destination node sends a control channel establishment success message to the neighboring upstream node.
  • control channel establishment success message sent by the destination node to the adjacent upstream node includes: the idle N second subchannels selected by the destination node in the first control link selected by the adjacent upstream node information.
  • the adjacent upstream node may be a controller or a transmitting node. If the adjacent upstream node is a transmitting node, perform steps 714-716, and if the adjacent upstream node is a controller, perform Step 717.
  • the transmitting node After receiving the control channel setup success message sent by the neighboring downstream node, the transmitting node selects the idle N second subchannels in the first control link selected by the neighboring upstream node.
  • the transmitting node establishes a cross connection between the N second subchannels selected by the adjacent downstream node and the N second subchannels selected by the transmitting node.
  • the transmitting node sends a control channel setup success message to the neighboring upstream node.
  • the control channel setup success message sent by the transmitting node includes: the idle N second subchannels selected by the transmitting node in the second control link selected by the neighboring upstream node.
  • steps 714-71 6 are performed, and when the adjacent upstream node is the controller in step 716, step 71 7 is performed.
  • the controller receives a control channel establishment success message sent by an adjacent downstream node on the control channel.
  • the controller sends a control message to the destination node by using the control channel. After the direct control channel between the controller and the destination node is established, it can be used to transmit control messages between the controller and the destination node.
  • the direct control channel between the controller and the destination node After the direct control channel between the controller and the destination node is established, it can be used to transmit control messages between the controller and the destination node.
  • the destination node can directly report the identification information, resource information, link fault information and other information of the data link to the controller through the control channel.
  • the controller can calculate the service path by using the resource information of the data link, and then directly send a cross-establishment command message to each of the transit nodes on the service path through the control channel.
  • nodes at both ends of the link can send fault information to the controller through the control channel; the controller decides to reroute the service path or switch to the protection path, and After the decision is made to preempt the resources occupied by the other services, the cross-establishment command message or the resource preemption command message is sent to the node on the rerouting path or the protection path through the control channel.
  • a direct control channel may be established between the controller and the destination node, in order to protect the secure transmission between the controller and the destination node, the controller and the A direct control channel is established between the destination nodes as an alternate control channel, so that when one control channel fails, another control channel can be used for transmission.
  • the method used can be in accordance with step 7 04-71 7 and will not be repeated here.
  • the controller and the five nodes A, B, C, D, and E send a control link discovery message to the opposite node of the control link by using the first subchannel on the control link, where the controller After receiving the control link discovery message sent by the peer node, each node obtains a control link advertisement message of the control link of the entire network to the network flood control link advertisement message controller. After obtaining the control link advertisement message of each control link of the entire network, the controller obtains the topology of the entire network (including the information of each node and the port information of each control link) as shown in FIG.
  • the controller first selects a first control link in the control link between the controller and node A, and then sends a control channel setup message to node A.
  • the control channel setup message includes: routing information of the control channel (controller A--B-E), information of the first control link selected by the controller between the controller and the node A, and bandwidth of the control channel information.
  • node A After receiving the control channel setup message, node A first selects a second control link in the control link between node A and node B, and then node A sends a control channel setup message to the adjacent downstream node B on the control channel.
  • the control channel setup message sent by node A includes: routing information of the control channel, bandwidth information of the control channel, and information of the second control link selected by node A.
  • the node B After receiving the control channel establishment message sent by the first sub-channel receiving controller, the node B is the same as the node A, and first selects the third control in the control link between the node B and the adjacent downstream node (destination node) E. The link then sends a Control Channel Setup message to the adjacent downstream node (destination node) E on the control channel.
  • the control channel setup message sent by the node B includes: routing information of the control channel, bandwidth information of the control channel, and information of the third control link selected by the node B.
  • the node E After receiving the control channel setup message sent by the Node B through the first subchannel, the node E selects the N second subchannels and establishes the main control unit of the node E, and the node B and the node in the first control link selected by the node B. A cross-connection between the N second sub-channels between E.
  • the node E sends a control channel establishment success message to the node B, and the control channel establishment success message includes: information of the idle N second sub-channels selected by the node E in the third control link selected by the node B.
  • the node B After receiving the control channel establishment success message sent by the node E, the node B selects the N second sub-channels in the second control link selected by the node A and establishes the second sub-channel and the node between the node A and the node B. Cross-connection of the second sub-channel between B-nodes E.
  • the Node B sends a control channel setup success message to the node A.
  • the control channel setup success message includes: information of the idle N second subchannels selected by the Node B in the second control link selected by the node A.
  • the node A After receiving the control channel establishment success message sent by the node B, the node A selects the N second subchannels in the first control link selected by the controller and establishes the second subchannel between the controller and the node A and the node A.
  • the node A sends a control channel setup success message to the controller, where the control channel setup success message includes: information of the idle N second subchannels selected by the node A in the first control link selected by the controller.
  • a direct control channel is established between the controller and the destination node using the second subchannel.
  • the controller can only send a message to the destination node by using the control channel, and the message transmission between the controller and the destination node does not need to be searched and forwarded through routing tables of other nodes, and can be directly transmitted. .
  • the method for establishing a control channel provided by the embodiment of the present invention, in the centralized control mode, the controller calculates routing information of the controller and the destination node and establishes a direct control channel formed by the cross connection of the second subchannel, in the controller
  • the direct control channel is established in advance with the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed and thereby improve the network. performance.
  • Embodiment 4 The embodiment of the present invention further provides a controller. As shown in FIG. 6, the controller includes: a first obtaining unit 6001, a second obtaining unit 6002, a calculating unit 6003, a selecting unit 6004, and a sending unit. 6005.
  • the controller includes: a first obtaining unit 6001, a second obtaining unit 6002, a calculating unit 6003, a selecting unit 6004, and a sending unit. 6005.
  • the first obtaining unit 6001 is configured to obtain a control link advertisement message sent by a node in the network, where the control link advertisement message includes: node address information at both ends of the control link, a port identifier at both ends of the control link, and a control link. Second subchannel resource information.
  • the second obtaining unit 6002 is configured to obtain bandwidth information of a control channel from the controller to the destination node, where the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second subchannel.
  • the calculating unit 6003 is configured to calculate, according to the control link advertisement message of each control link obtained by the first obtaining unit 6001 and the bandwidth information of the control channel obtained by the second obtaining unit 6002, obtain the control from the control Routing information from the control channel to the destination node.
  • a selection unit 6004 for controlling channels on the controller and the control channel The first control link is selected in the control link between the adjacent downstream nodes, and the idle second subchannel resource of the first control link is greater than or equal to the resource of the second subchannel.
  • a sending unit 6005 configured to send, by using a first sub-channel between the controller and an adjacent downstream node on the control channel, a control channel setup message to an adjacent downstream node on the control channel, so that the An adjacent downstream node establishes the control channel on a second subchannel of the first control link.
  • the control channel setup message includes: routing information of the control channel, information of a first control link selected by the controller, and bandwidth information of the control channel.
  • the resource that the control channel needs to occupy the second sub-channel includes: the type and number of the second sub-channel that the control channel needs to occupy, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the selecting unit 6004 is further configured to: after selecting a first control link in a control link between the controller and an adjacent downstream node on the control channel, according to bandwidth information of the control channel, N idle second subchannels are selected in the first control link, and N is a positive integer.
  • the control channel setup message sent by the sending unit 6005 to the neighboring downstream node further includes: information about the N second subchannels selected by the controller.
  • the second obtaining unit 6002 is further configured to receive a control channel establishment success message sent by an adjacent downstream node on the control channel, where the establishing success message includes the bandwidth information of the adjacent downstream node according to the control channel.
  • Information of the idle N second subchannels selected in the first control link, N being a positive integer.
  • the first obtaining unit 6001 is specifically configured to: receive a control link advertisement message flooded by each node in the network through the first sub-channel, and obtain a control link advertisement message of the entire network.
  • the embodiment of the present invention further provides a node. As shown in FIG. 7, the node includes: a receiving unit 7001, a selecting unit 7002, and a sending unit 7003.
  • the receiving unit 7001 is configured to receive, by using the first sub-channel, a control channel setup message sent by an adjacent upstream node on the control channel, where the control channel setup message sent by the adjacent upstream node includes: routing information of the control channel, adjacent The information of the first control link selected by the upstream node and the bandwidth information of the control channel.
  • a selecting unit 7002 configured to select a second control link in a control link between the local node and an adjacent downstream node on the control channel according to the control channel setup message received by the receiving unit 7001;
  • the idle second subchannel resource of the second control link is greater than or equal to The control channel needs to occupy resources of the second subchannel.
  • the sending unit 7003 is configured to send, by using the first subchannel, a control channel setup message to an adjacent downstream node on the control channel, so that the neighboring downstream node of the node selects the first selected node in the selecting unit 7002
  • the control channel is established on the second sub-channel of the second control link, and the control channel setup message sent by the sending unit 7003 includes: routing information of the control channel, and the first control link selected by the selecting unit 7002. Information and bandwidth information of the control channel.
  • the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second sub-channel.
  • the control channel needs to occupy the resources of the second sub-channel, and the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the node further includes a cross unit, where the control channel setup message further includes: an idle N selected by the neighboring upstream node in the first control link according to bandwidth information of the control channel.
  • the information of the second subchannel, N is a positive integer.
  • the selecting unit 7002 is further configured to: after selecting the second control link in the control link between the local node and the adjacent downstream node on the control channel, according to the bandwidth information of the control channel, N idle second subchannels are selected in the second control link.
  • the cross unit 7004 is configured to establish a cross connection between the N second subchannels selected by the adjacent upstream node and the N second subchannels selected by the selection unit 7002.
  • the control channel setup message sent by the sending unit 7003 further includes: information of the N second subchannels selected by the selecting unit.
  • the receiving unit 7001 is further configured to receive a control channel setup success message sent by the neighboring downstream node, where the control channel setup success message sent by the neighboring downstream node includes the neighboring downstream node according to the control
  • the bandwidth information of the channel is the idle N second subchannels selected in the second control link selected by the local node.
  • the selecting unit 7002 is configured to select, after the receiving unit 7001 the control channel establishment success message, the idle N second children in the first control link according to the bandwidth information of the control channel. aisle.
  • the cross unit 7004 is further configured to establish a cross connection between the N second subchannels selected by the adjacent downstream node and the N second subchannels selected by the selection unit 7002.
  • the sending unit 7003 is further configured to send a control channel setup success message to the neighboring upstream node, where the control channel setup success message sent by the sending unit includes the selecting unit 7002 selecting the first control link. N second subchannels.
  • the sending unit 7003 is further configured to pass the first subchannel at the receiving unit 7001.
  • the network Before receiving the control channel establishment message sent by the adjacent upstream node on the control channel, the network broadcasts a control link advertisement message to the network, where the control link advertisement message includes:
  • the address information, the port identifier at the two ends of the control link, and the resource information of the second subchannel of the control link, and the resource information of the second subchannel includes the number of the second subchannel and the type of each second subchannel.
  • the sending unit 7003 is further configured to send a control link discovery message to the opposite node of the control link by using a first subchannel on the control link before flooding the control link advertisement message to the entire network;
  • the control link discovery message includes a port identifier of the control link at the transmitting end and node address information of the transmitting end.
  • the receiving unit 7001 is further configured to receive a control link discovery message sent by the peer node.
  • the embodiment of the present invention further provides a node. As shown in FIG. 8, the node includes: a receiving unit 801, an obtaining unit 802, and a cross unit 803.
  • the receiving unit 801 is configured to receive, by using the first sub-channel, a control channel setup message sent by an adjacent upstream node on the control channel, where the control channel setup message sent by the adjacent upstream node includes: routing information of the control channel, The information about the first control link selected by the adjacent upstream node and the bandwidth information of the control channel, where the bandwidth information of the control channel includes: the control channel needs to occupy the resources of the second sub-channel.
  • the obtaining unit 802 is configured to obtain N second sub-channels that are idle in the first control link, where N is a positive integer.
  • the cross unit 803 is configured to establish a cross connection between the main control unit of the local node and the N second sub-channels obtained by the obtaining unit 802.
  • the resource that the control channel needs to occupy the second sub-channel includes: the type and number of the second sub-channel that the control channel needs to occupy, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the control channel setup message further includes: information about the idle N second subchannels selected by the neighboring upstream node in the first control link according to the bandwidth information of the control channel.
  • the obtaining unit 802 is specifically configured to select idle N second subchannels in the first control link according to bandwidth information of the control channel.
  • the node further includes a sending unit, where the sending unit is configured to send a control channel establishment success message to the neighboring upstream node, where the control channel establishment success message includes: the obtaining unit 802 is in the first control chain Information of the idle N second subchannels selected in the path.
  • the sending unit is further configured to receive, by the receiving unit 801, the first subchannel Before the control channel establishment message sent by the adjacent upstream node on the control channel, the message is broadcasted to the entire network flood control link, and the control link advertisement message includes: node address information at both ends of the control link, and two ends of the control link
  • the port identifier and the resource information of the second sub-channel of the control link, the resource information of the second sub-channel includes the number of the second sub-channel and the type of each second sub-channel, so that the controller obtains the The control link advertisement message obtained by the node.
  • the sending unit is further configured to send a control link to the opposite node of the control link by using the first subchannel on the control link before flooding the control link advertisement message obtained by the node to the entire network.
  • the discovery message, the control link discovery message includes a port identifier of the control link at the transmitting end and node address information of the transmitting end.
  • the receiving unit 801 is further configured to: receive a control link discovery message sent by the opposite node.
  • the device for establishing a control channel in the centralized control mode, the controller calculates routing information of the controller and the destination node, and establishes a unique control channel formed by the cross connection of the second subchannel, in the controller
  • the direct control channel is established in advance with the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed and thereby improve the network. performance.
  • the embodiment of the present invention provides a controller.
  • the controller includes: a transmitting interface 901, a receiving interface 902, a memory 903, and a processor connected to the transmitting interface 901, the receiving interface 902, and the memory 903, respectively. 904.
  • the transmitting interface 901 and the receiving interface 902 may be the same interface in a specific implementation.
  • the memory 903 stores a set of program codes, and the processor 904 is configured to call the program code stored in the memory 903 for performing the following operations:
  • the processor 904 is configured to obtain, by using the receiving interface 902, a control chain sent by the node in the network.
  • control link advertisement message includes: node address information at both ends of the control link, a port identifier at both ends of the control link, and second subchannel resource information of the control link.
  • the processor 904 is configured to obtain bandwidth information of a control channel from the controller to the destination node, where the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second subchannel.
  • a processor 904, configured to, according to the obtained control link advertisement message of each control link And calculating bandwidth information of the control channel from the controller to the destination node.
  • the processor 904 is further configured to: select, according to the obtained control channel routing information and bandwidth information of the control channel, a control link between the controller and an adjacent downstream node on the control channel on the control channel.
  • a control link, the idle resource of the first control link is greater than or equal to the resource of the second sub-channel occupied by the control channel.
  • the processor 904 is configured to send, by using a transmitting interface 901, a control channel setup message to an adjacent downstream node on the control channel, so that the neighboring downstream node is in a second subchannel of the first control link.
  • the control channel is established on.
  • the control channel setup message includes: routing information of the control channel, information of a first control link selected by the controller, and bandwidth information of the control channel.
  • the resource that the control channel needs to occupy the second sub-channel includes: the type and number of the second sub-channel that the control channel needs to occupy, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the processor 904 is specifically configured to select idle in the first control link after selecting a first control link in a control link between the controller and an adjacent downstream node on the control channel.
  • N second subchannels, N is a positive integer.
  • the control channel setup message sent by the transmitting interface 901 to the neighboring downstream node further includes: information about the N second subchannels selected by the controller.
  • the processor 904 is configured to receive, by using the receiving interface 902, a control channel setup success message sent by an adjacent downstream node on the control channel, where the establishing success message includes the neighboring downstream node according to bandwidth information of the control channel.
  • the processor 904 is further configured to receive, by using the receiving interface 902, a control link advertisement message flooded by each node in the network, to obtain a control link advertisement message of the entire network.
  • the controller includes: a transmitting interface 1001, a receiving interface 1002, a memory 1003, and a processor 1004 connected to the transmitting interface 1001, the receiving interface 1002, and the memory 1003, respectively.
  • the transmitting interface 1001 and the receiving interface 1002 may be the same interface in a specific implementation.
  • the memory 1103 stores a set of program codes, and the processor 1004 is configured to call the program code stored in the memory 1003 to perform the following operations:
  • the processor 1004 is configured to receive, by the receiving interface 1002, an adjacent upstream section on the control channel.
  • a control channel setup message sent by the point, the control channel setup message sent by the adjacent upstream node includes: routing information of the control channel, information of a first control link selected by an adjacent upstream node, and bandwidth of the control channel information.
  • the processor 1 004 is configured to select a second control link in a control link between the local node and an adjacent downstream node on the control channel according to the control channel setup message received by the receiving interface 002;
  • the idle resource of the second control link is greater than or equal to the resource that the control channel needs to occupy the second sub-channel.
  • the processor 1 004 is further configured to send, by using the transmitting interface 1 001, a control channel setup message to an adjacent downstream node on the control channel, so that the neighboring downstream node of the node is in the processor 1 004
  • the control channel is established on the second sub-channel of the selected second control link, and the control channel setup message sent by the local node includes: routing information of the control channel, and first control selected by the processor 1 004 Information of the link and bandwidth information of the control channel.
  • the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second sub-channel.
  • the control channel needs to occupy the resources of the second sub-channel, and the control channel needs to occupy the type and quantity of the second sub-channel, or the control channel needs to occupy the total bandwidth of the second sub-channel.
  • the control channel setup message further includes: information about the idle N second subchannels selected by the neighboring upstream node according to the bandwidth information of the control channel in the first control link, where N is a positive integer .
  • the processor 1 004 is further configured to: after selecting a second control link in a control link between the local node and an adjacent downstream node on the control channel, according to bandwidth information of the control channel, The idle N second subchannels are selected in the second control link.
  • the processor 1 004 is further configured to establish a cross connection between the N second subchannels selected by the adjacent upstream node and the N second subchannels.
  • the processor 1 004 is configured to: establish, by the sending interface, a 001, a control channel, and a control channel, where the control channel is configured to: Information for N second subchannels.
  • the processor 1 004 is configured to receive, by using the receiving interface 002, a control channel setup success message sent by the neighboring downstream node, where the control channel setup success message sent by the neighboring downstream node includes the neighboring downstream node according to the The bandwidth information of the control channel is the idle N second subchannels selected in the second control link selected by the node.
  • the processor 1 004 is configured to: after receiving the control channel establishment success message through the receiving interface 1 002, the root And selecting N idle second subchannels in the first control link according to the bandwidth information of the control channel.
  • the processor 1004 is further configured to establish a cross connection between the N second subchannels selected by the adjacent downstream node and the N second subchannels.
  • the processor 1004 is configured to send, by using the sending interface 1001, a control channel setup success message to the neighboring upstream node, where the control channel setup success message sent by the sending unit includes the processor 1004 at the first Control the N second subchannels selected in the link.
  • the processor 1004 is further configured to: before the receiving interface 1002 receives the control channel setup message sent by the adjacent upstream node on the control channel, by using the transmitting interface 1001 to flood the control link advertisement message to the entire network, where
  • the control link advertisement message includes: a node address information of the two ends of the control link, a port identifier of the two ends of the control link, and resource information of the second sub-channel of the control link, where the resource information of the second sub-channel includes the second sub-channel The number and type of each second subchannel.
  • the processor 1004 is configured to send, by using the transmitting interface 1001, a control link discovery message to a peer node of the control link before flooding the control link advertisement message to the entire network; the control link
  • the discovery message includes a port identifier of the control link at the transmitting end and node address information of the transmitting end.
  • the control link discovery message sent by the correspondent node is received by the receiving interface 1002.
  • the controller includes: a transmitting interface 1101, a receiving interface 1102, a memory 1103, and a processor 1104 connected to the transmitting interface 1101, the receiving interface 1102, and the memory 1103, respectively.
  • the transmitting interface 1101 and the receiving interface 1102 may be the same interface in a specific implementation.
  • the memory 1103 stores a set of program codes, and the processor 1104 is configured to call the program code stored in the memory 1103 to perform the following operations:
  • the processor 1104 is configured to receive, by using the receiving interface 1102, a control channel setup message sent by a neighboring upstream node on the control channel, where the control channel setup message sent by the neighboring upstream node includes: routing information of the control channel, The information of the first control link selected by the adjacent upstream node and the bandwidth information of the control channel, where the bandwidth information of the control channel includes: the control channel needs to occupy resources of the second sub-channel.
  • the processor 1104 is configured to obtain N second subchannels that are idle in the first control link.
  • the processor 1104 is further configured to establish a cross connection between the main control unit of the node and the N second subchannels.
  • the resource that the control channel needs to occupy the second subchannel includes: the control channel The type and number of the second subchannel need to be occupied, or the control channel needs to occupy the total bandwidth of the second subchannel.
  • the control channel setup message further includes: information about the idle N second subchannels selected by the neighboring upstream node in the first control link according to the bandwidth information of the control channel.
  • the processor 1104 is specifically configured to select idle N second subchannels in the first control link according to bandwidth information of the control channel.
  • the processor 1104 is further configured to notify the entire network flood control link through the transmitting interface 1101 before receiving the control channel setup message sent by the neighboring upstream node on the control channel by using the receiving interface 1102.
  • the control link advertisement message includes: a node address information of the two ends of the control link, a port identifier of the two ends of the control link, and resource information of the second sub-channel of the control link, where the resource information of the second sub-channel includes The number of two sub-channels and the type of each second sub-channel are such that the controller obtains a control link announcement message obtained by the destination node.
  • the processor 1104 is configured to receive, by using the receiving interface 1102, a control link discovery message sent by the peer node, where the control link discovery message includes a port identifier of the control link at a sending end, and a node at a sending end. Address information. And transmitting, by the transmitting interface 1101, a control link discovery message to the opposite node of the control link, where the control link discovery message is included, before the control link advertisement message obtained by the node is flooded to the entire network. The port identifier of the control link at the transmitting end and the node address information of the transmitting end. Receiving, by the receiving interface 1102, a control link discovery message sent by the opposite node.
  • the device for establishing a control channel in the centralized control mode, the controller calculates routing information of the controller and the destination node, and establishes a unique control channel formed by the cross connection of the second subchannel, in the controller
  • the direct control channel is established in advance with the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed and thereby improve the network. performance.
  • An embodiment of the present invention provides a control channel establishing system, as shown in FIG. 1 , including: Controller 1 1.
  • Controller 1 Nodes A, B, E.
  • the controller 11 is a controller shown in FIG. 6, the nodes A and B are nodes shown in FIG. 7, the node E is a node shown in FIG. 8, and the node E is a destination node. .
  • the controller 1 1 calculates and obtains routing information of the control channel according to the control link notification message sent by each node of the network and the bandwidth information of the control channel.
  • the controller first selects a first control link between it and node A, and sends a control channel setup message to node A.
  • node A After receiving the control channel setup message, node A also selects a second control link between it and node B, and sends a control channel setup message to node B.
  • the node B After receiving the control channel setup message, the node B also selects a third control link between it and the node E, and sends a control channel setup message to the node E.
  • the node E After receiving the control channel setup message sent by the node B, the node E selects a second subchannel for establishing a control channel in the third control link selected by the node B, and establishes a cross connection between the second subchannel and its main control unit. Then, the control channel establishment success message is sent to the node B. After receiving the control channel establishment success message, the node B selects a second subchannel for establishing a control channel in the second control link selected by the node A, and establishes a cross connection of the second subchannels on both sides of the node B, and then sends a control. The channel establishment success message is sent to node A.
  • the node A After receiving the control channel establishment success message, the node A selects a second subchannel for establishing a control channel in the first control link selected by the controller, and establishes a cross connection between the second subchannels on both sides of the node A, such that A direct, unique control channel established between the controller 11 and the node E is established.
  • the node A may also be a destination node.
  • the controller 11 selects a first control link between it and the node A and sends a control channel setup message to the node A.
  • the node A selects the second subchannel for establishing the control channel and establishes the main control unit of the node A in the first control link selected by the controller 11.
  • a cross-connection with the second sub-channel establishes a control channel from the controller 11 to the destination node.
  • the embodiment of the present invention further provides a control channel establishing system, as shown in FIG. 1, comprising: a controller 1 1 , nodes A, B, and E.
  • the controller 11 is a controller shown in FIG. 6, the nodes A and B are nodes shown in FIG. 7, the node E is a node shown in FIG. 8, and the node E is a destination node. .
  • the controller 11 calculates and obtains routing information of the control channel according to the control link advertisement message sent by each node of the network and the bandwidth information of the control channel.
  • the controller first selects a first control link between it and node A, and then selects in the first control chain Used to establish a second subchannel of the control channel, and send a control channel setup message to node A.
  • the node A After receiving the control channel setup message, the node A also selects a second control link between it and the node B, and then selects a second subchannel for establishing a control channel in the second control chain to establish a node A.
  • the node B After receiving the control channel setup message, the node B also selects a third control link between it and the node E, and then selects a second subchannel for establishing a control channel in the third control chain to establish a node B. Cross-connection between the second sub-channels on both sides, and sending a control channel setup message to node E.
  • the node E After receiving the control channel setup message sent by the Node B, the node E establishes a cross connection between the second subchannel selected by the Node B in the third control link and its main control unit. This establishes a direct, unique control channel from the controller 11 to the node E.
  • the node A may also be a destination node.
  • the controller 11 selects a first control link between it and the node A, and selects a second for establishing a control channel in the first control link.
  • the subchannel sends a control channel setup message to node A.
  • the node A receives the control channel setup message sent by the controller 11, the cross connection between the master unit of the node A and the second subchannel is established, and the control from the controller 11 to the destination node is established. aisle.
  • the control channel establishing system provided by the embodiment of the present invention, in the centralized control mode, the controller calculates the routing information of the controller and the destination node and establishes a cross-connection by the second sub-channel, the only control channel, in the controller
  • the direct control channel is established in advance with the node, which solves the problem that the message sending speed is slow due to DCN route convergence, route hop-by-hop forwarding, and routing table searching process, which can improve the message sending speed and thereby improve the network. performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种控制通道的建立方法、装置及系统,涉及通信领域,可以在集中控制模式下,在控制器与目的节点之间建立控制通道。所述方法包括:控制器获得全网络各控制链路的控制链路通告消息和控制通道的带宽信息,并根据各控制链路的控制链路通告消息和控制通道的带宽信息,计算获得从所述控制器到目的节点之间的控制通道的路由信息,并将这些信息发送给中间节点,以使得所述控制通道的路由信息中的中间节点建立所述控制器与所述目的节点之间的控制通道。

Description

一种控制通道的建立方法、 装置及系统 技术领域
本发明涉及通信领域, 尤其涉及一种控制通道的建立方法、 装置及 系统。
背景技术
在釆用 ASON ( Automatically Switched Optical Network, 自动交 换光网络) 分布式架构的智能光网络系统中, 网络中各节点均维护 DCN ( Data Communication Network, 数据通信网) 网络, 通过 DCN 来传送 控制消息。 为解决分布式架构容易出现资源冲突的问题, 业界提出集中 式的控制架构, 通过控制器控制系统中的所有节点, 因此控制器需要能 够与各节点通信, 通常是在控制器和系统中的所有节点直接引用 AS0N中 的 DCN技术, 控制器只连到一个或有限几个节点, 再通过这些节点与其 他节点间接相连, 从而实现传送网控制器与各节点之间的通信。
现有技术中, 控制器及网络中各节点均维护 DCN 网络的路由表, 当 控制器需要向某个节点发送控制消息时, 控制器会将控制消息封装为 IP 包, 查找其路由表确定下一跳的节点并把 IP包转发给下一跳节点; 下一 跳节点收到 IP包后同样根据 IP包头查找路由表并转发, 直到该 IP包到 达目的节点。
上述过程中,智能光网络系统釆用逐跳的 IP转发机制来传递控制消 息, 由于受 DCN路由收敛速度、 路由表查找速度、 转发速度等因素影响, 导致消息发送的速度较慢; 而且, 当控制器需要同时向多个节点发送消 息, 或多个节点同时向控制器发送消息的时候, 多个 IP包参与信息收发 会造成 IP包拥塞, 进一步影响消息发送速度, 对网络性能造成影响。 发明内容
本发明实施例提供了一种控制通道的建立方法、 装置及系统, 可以提 高消息发送速度, 从而提升网络性能。
第一方面, 公开了一种控制通道的建立方法, 包括:
控制器获得网络中节点发送的控制链路通告消息, 所述控制链路通 告消息包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识 和控制链路的第二子通道资源信息; 所述控制器获得从所述控制器到目的节点之间的控制通道的带宽信 息, 所述控制通道的带宽信息包括: 所述控制通道需占用第二子通道的 资源;
所述控制器根据所述控制链路通告消息和所述控制通道的带宽信 息, 计算获得从所述控制器到目的节点之间的控制通道的路由信息;
所述控制器在所述控制器和所述控制通道上的相邻下游节点之间的 控制链路中选择第一控制链路; 所述第一控制链路的空闲第二子通道资 源大于或等于所述控制通道需占用第二子通道的资源;
所述控制器通过所述控制器与所述相邻下游节点间的第一子通道, 向 所述相邻下游节点发送控制通道建立消息, 以使得所述相邻下游节点在所 述第一控制链路的第二子通道上建立所述控制通道; 所述控制通道建立消 息包括: 所述控制通道的路由信息、 所述控制器选择的所述第一控制链路 的信息和所述控制通道的带宽信息。
结合第一方面, 在第一种可能的实现方式中, 所述控制通道需占用第 二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或 所述控制通道需占用第二子通道的总带宽。
结合第一方面或第一方面的第二种可能的实现方式, 在第二种可能 的实现方式中, 所述控制器在所述控制器和所述控制通道上的相邻下游 节点之间的控制链路中选择第一控制链路之后, 所述方法还包括:
所述控制器根据所述控制通道的带宽信息在所述第一控制链路中选 择空闲的 N个第二子通道, N为正整数;
贝' J , 所述控制通道建立消息还包括: 所述控制器选择的所述 N个第 二子通道的信息。
结合第一方面或第一方面的第二种可能的实现方式, 在第三种可能 的实现方式中, 所述方法还包括:
所述控制器接收所述控制通道上的相邻下游节点发送的控制通道建 立成功消息, 所述建立成功消息包括所述相邻下游节点根据所述控制通道 的带宽信息在所述第一控制链路中选择的空闲的 N个第二子通道的信息, N 为正整数。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第 二种可能的实现方式或第一方面的第三种可能的实现方式, 在第四种可 能的实现方式中, 所述控制器获得网络中节点发送的控制链路通告消息, 具体包括:
所述控制器接收网络中各节点通过第一子通道洪泛的控制链路通告 消息, 获得全网络的控制链路通告消息。
第二方面, 公开了一种控制通道的建立方法, 包括:
传送节点通过第一子通道接收控制通道上相邻上游节点发送的控制 通道建立消息, 所述相邻上游节点发送的控制通道建立消息包括: 所述 控制通道的路由信息、 相邻上游节点选择的第一控制链路的信息和所述 控制通道的带宽信息;
所述传送节点根据所述控制通道的带宽信息在所述传送节点和所述 控制通道上的相邻下游节点之间的控制链路中选择第二控制链路, 所述 第二控制链路的空闲第二子通道资源大于等于所述控制通道需占用第二 子通道的资源;
所述传送节点通过第一子通道向所述控制通道上的相邻下游节点发 送控制通道建立消息, 以使得所述传送节点的所述相邻下游节点在所述第 二控制链路的第二子通道上建立所述控制通道; 所述传送节点发送的控制 通道建立消息包括: 所述控制通道的路由信息、 所述第二控制链路的信息 和所述控制通道的带宽信息, 其中, 所述控制通道的带宽信息包括: 所述 控制通道需占用第二子通道的资源。
结合第二方面, 在第一种可能的实现方式中, 所述控制通道需占用第 二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或 所述控制通道需占用第二子通道的总带宽。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 所述传送节点接收的相邻上游节点发送的控制通道建立 消息中还包括: 所述相邻上游节点根据所述控制通道的带宽信息在所述 第一控制链路中选择的空闲的 N个第二子通道的信息, N为正整数;
所述传送节点在所述传送节点和所述控制通道上的相邻下游节点之 间的控制链路中选择第二控制链路之后, 所述方法还包括:
所述传送节点根据所述控制通道的带宽信息在所述第二控制链路中 选择空闲的 N个第二子通道;
所述传送节点建立所述相邻上游节点选择的 N个第二子通道与所述 传送节点选择的 N个第二子通道之间的交叉连接;
贝' J , 所述传送节点向所述控制通道上的相邻下游节点发送的控制通道 建立消息中还包括: 所述传送节点在所述第二控制链路中选择的 N个第二 子通道的信息。
结合第二方面或第二方面的第一种可能的实现方式, 在第三种可能 的实现方式中, 所述方法还包括:
所述传送节点接收所述相邻下游节点发送的控制通道建立成功消 息, 所述相邻下游节点发送的控制通道建立成功消息包括: 所述相邻下 游节点根据所述控制通道的带宽信息在所述第二控制链路中选择的空闲 的 N个第二子通道;
所述传送节点根据所述控制通道的带宽信息在所述第一控制链路中 选择空闲的 N个第二子通道;
所述传送节点建立所述相邻下游节点选择的 N个第二子通道与所述 传送节点选择的 N个第二子通道之间的交叉连接;
所述传送节点向所述相邻上游节点发送控制通道建立成功消息, 所述 传送节点发送的控制通道建立成功消息包括所述传送节点在所述第一控制 链路中选择的 N个第二子通道。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第 二种可能的实现方式或第二方面的第三种可能的实现方式, 在第四种可 能的实现方式中, 在所述传送节点通过第一子通道接收控制通道上相邻 上游节点发送的控制通道建立消息之前, 所述方法还包括:
所述传送节点向全网洪泛控制链路通告消息, 所述控制链路通告消 息包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识和控 制链路第二子通道的资源信息, 所述第二子通道的资源信息包括第二子 通道的数量及每个第二子通道的类型。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式 中, 在所述传送节点向全网洪泛控制链路通告消息之前, 所述方法还包 括:
所述传送节点通过控制链路上的第一子通道向所述控制链路的对端 节点发送控制链路发现消息, 并接收所述对端节点发送的控制链路发现 消息; 所述控制链路发现消息包括所述控制链路在发送端的端口标识和 发送端的节点地址信息。
第三方面, 公开了一种控制通道的建立方法, 包括:
目的节点通过第一子通道接收控制通道上相邻上游节点发送的控制 通道建立消息, 所述控制通道建立消息中包括: 所述控制通道的路由信 息、 所述相邻上游节点选择的第一控制链路的信息和所述控制通道的带 宽信息, 其中, 所述控制通道的带宽信息包括: 所述控制通道需占用第 二子通道的资源;
所述目的节点获得所述第一控制链路中空闲的 N 个第二子通道, N 为正整数;
所述目的节点建立所述目的节点的主控单元与所述 N个第二子通道之 间的交叉连接。
结合第三方面, 在第一种可能的实现方式中, 所述控制通道需占用第 二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或 所述控制通道需占用第二子通道的总带宽。
结合第三方面或第三方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述控制通道建立消息还包括: 所述相邻上游节点根据所述 控制通道的带宽信息在所述第一控制链路中选择的空闲的 N个第二子通道 的信息。
结合第三方面或第三方面的第一种可能的实现方式, 在第三种可能 的实现方式中, 所述目的节点获得所述第一控制链路中空闲的 N 个第二 子通道, 具体包括:
所述目的节点根据所述控制通道的带宽信息在所述第一控制链路中 选择空闲的 N个第二子通道;
所述方法还包括: 所述目的节点向所述相邻上游节点发送控制通道建 立成功消息, 所述控制通道建立成功消息包括: 所述目的节点在所述第一 控制链路中选择的空闲的 N个第二子通道的信息。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第 二种可能的实现方式或第三方面的第三种可能的实现方式, 在第四种可 能的实现方式中, 所述目的节点通过第一子通道接收所述控制通道上相 邻上游节点发送的控制通道建立消息之前, 所述方法还包括:
所述目的节点向全网洪泛控制链路通告消息, 所述控制链路通告消息 包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识和控制链 路第二子通道的资源信息, 所述第二子通道的资源信息包括第二子通道的 数量及每个第二子通道的类型, 以使得所述控制器获得所述目的节点获得 的控制链路通告消息。
结合第三方面的第一种可能的实现方式, 在第五种可能的实现方式 中, 所述目的节点向全网洪泛控制链路通告消息之前, 所述方法还包括: 所述目的节点通过控制链路上的第一子通道向所述控制链路的对端 节点发送控制链路发现消息, 并接收所述对端节点发送的控制链路发现消 息; 所述控制链路发现消息包括所述控制链路在发送端的端口标识和发送 端的节点地址信息。
第四方面, 公开了一种控制器, 包括:
第一获得单元, 用于获得网络中节点发送的控制链路通告消息, 所 述控制链路通告消息包括: 控制链路两端的节点地址信息、 控制链路两 端的端口标识和控制链路的第二子通道资源信息;
第二获得单元, 用于获得从所述控制器到目的节点之间的控制通道 的带宽信息, 所述控制通道的带宽信息包括: 所述控制通道需占用第二 子通道的资源;
计算单元, 用于根据所述第一获得单元获得的控制链路通告消息和 所述第二获得单元获得的所述控制通道的带宽信息, 计算获得从所述控 制器到目的节点之间的控制通道的路由信息;
选择单元, 用于在所述控制器和所述控制通道上的相邻下游节点之 间的控制链路中选择第一控制链路, 所述第一控制链路的空闲第二子通 道资源大于或等于所述控制通道需占用第二子通道的资源;
发送单元, 用于通过所述控制器与所述相邻下游节点间的第一子通 道, 向所述相邻下游节点发送控制通道建立消息, 以使得所述相邻下游节 点在所述第一控制链路的第二子通道上建立所述控制通道, 所述控制通道 建立消息包括: 所述控制通道的路由信息、 所述控制器选择的第一控制链 路的信息和所述控制通道的带宽信息。
结合第四方面, 在第一种可能的实现方式中, 所述控制通道需占用第 二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或 所述控制通道需占用第二子通道的总带宽。
结合第四方面或第四方面的第一种可能的实现方式, 在第二种可能的 实现方式中,
所述选择单元还用于在所述控制器和所述控制通道上的相邻下游节 点之间的控制链路中选择第一控制链路之后, 根据所述控制通道的带宽 信息在所述第一控制链路中选择空闲的 N个第二子通道, N为正整数; 所述发送单元向所述相邻下游节点发送的控制通道建立消息中还包 括: 所述控制器选择的所述 N个第二子通道的信息。
结合第四方面或第四方面的第一种可能的实现方式, 在第三种可能的 实现方式中, 所述第二获得单元, 还用于接收所述控制通道上的相邻下游 节点发送的控制通道建立成功消息; 所述建立成功消息包括所述相邻下游 节点根据所述控制通道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道的信息, N为正整数。
结合第四方面、 第四方面的第一种可能的实现方式、 第四方面的第二 种可能的实现方式或第四方面的第三种可能的实现方式, 在第四种可能的 实现方式中, 所述第一获得单元具体用于: 接收网络中各节点通过第一子 通道洪泛的控制链路通告消息, 获得全网络的控制链路通告消息。
第五方面, 公开了一种节点, 包括:
接收单元, 用于通过第一子通道接收控制通道上相邻上游节点发送 的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消息包括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制链路的信 息和所述控制通道的带宽信息;
选择单元, 用于根据所述接收单元接收到的控制通道建立消息在本 节点和所述控制通道上的相邻下游节点之间的控制链路中选择第二控制 链路, 所述第二控制链路的空闲第二子通道资源大于或等于所述控制通 道需占用第二子通道的资源;
发送单元, 用于向所述控制通道上的相邻下游节点发送控制通道建 立消息, 以使得本节点的所述相邻下游节点在所述选择单元选择的所述 第二控制链路的第二子通道上建立所述控制通道; 所述发送单元发送的 控制通道建立消息包括: 所述控制通道的路由信息、 所述选择单元选择 的第二控制链路的信息和所述控制通道的带宽信息, 其中, 所述控制通 道的带宽信息包括: 所述控制通道需占用第二子通道的资源。 结合第五方面, 在第一种可能的实现方式中, 所述控制通道需占用 第二子通道的资源大小包括: 所述控制通道需占用第二子通道的类型和 数量, 或所述控制通道需占用第二子通道的总带宽。
结合第五方面或第五方面的第一种可能的实现方式中, 在第二种可 能的实现方式中, 还包括交叉单元, 所述控制通道建立消息中还包括: 所述相邻上游节点根据所述控制通道的带宽信息在所述第一控制链路中 选择的空闲的 N个第二子通道的信息, N为正整数;
所述选择单元, 还用于在本送节点和所述控制通道上的相邻下游节 点之间的控制链路中选择第二控制链路之后, 根据所述控制通道的带宽 信息在所述第二控制链路中选择空闲的 N个第二子通道;
所述交叉单元还用于, 建立所述相邻上游节点选择的 N个第二子通 道与所述选择单元选择的 N个第二子通道之间的交叉连接;
所述发送单元用于发送的所述控制通道建立消息中还包括: 所述选 择单元选择的 N个第二子通道的信息。
结合第五方面或第五方面的第一种可能的实现方式中, 在第三种可 能的实现方式中, 所述接收单元, 还用于接收所述相邻下游节点发送的 控制通道建立成功消息, 所述相邻下游节点发送的控制通道建立成功消 息包括所述相邻下游节点根据所述控制通道的带宽信息在所述第二控制 链路中选择的空闲的 N个第二子通道;
所述选择单元, 用于在所述接收单元接收到所述控制通道建立消息 后, 根据所述控制通道的带宽信息在所述第一控制链路中选择空闲的 N 个第二子通道;
所述节点还包括交叉单元, 用于建立所述相邻下游节点选择的 N个 第二子通道, 与所述选择单元选择的 N个第二子通道之间的交叉连接; 所述发送单元, 还用于向所述相邻上游节点发送控制通道建立成功 消息, 所述发送单元发送的控制通道建立成功消息包括所述选择单元在 所述第一控制链路中选择的 N个第二子通道。
结合第五方面、 第五方面的第一种可能的实现方式、 第五方面的第 二种可能的实现方式或第五方面的第三种可能的实现方式, 在第四种可 能的实现方式中, 所述发送单元, 还用于在所述接收单元通过第一子通 道接收控制通道上相邻上游节点发送的控制通道建立消息之前, 向全网 洪泛控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端的 节点地址信息、 控制链路两端的端口标识和控制链路第二子通道的资源 信息, 所述第二子通道的资源信息包括第二子通道的数量及每个第二子 通道的类型。
结合第五方面的第四种可能的实现方式, 在第五种可能的实现方式 中, 所述发送单元, 还用于在所述发送单元向全网洪泛控制链路通告消 息之前, 通过控制链路上的第一子通道向所述控制链路的对端节点发送 控制链路发现消息; 所述控制链路发现消息包括所述控制链路在发送端 的端口标识和发送端的节点地址信息;
所述接收单元还用于,接收所述对端节点发送的控制链路发现消息。 第六方面, 公开了一种传送节点, 包括:
接收单元, 用于通过第一子通道接收控制通道上相邻上游节点发送 的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消息中包 括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制链路 的信息和所述控制通道的带宽信息, 其中, 所述控制通道的带宽信息包 括: 所述控制通道需占用第二子通道的资源;
获得单元, 用于获得所述第一控制链路中空闲的 N个第二子通道, N 为正整数;
交叉单元, 用于建立本节点的主控单元与所述获得单元获得的所述 N个第二子通道之间的交叉连接。
结合第六方面, 在第一种可能的实现方式中, 所述控制通道需占用 第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的总带宽。
结合第六方面、 第六方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 所述控制通道建立消息还包括: 所述相邻上游节点根据 所述控制通道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二 子通道的信息。
结合第六方面、 第六方面的第一种可能的实现方式, 在第三种可能 的实现方式中, 还包括发送单元,
所述获得单元具体用于, 根据所述控制通道的带宽信息在所述第一 控制链路中选择空闲的 N个第二子通道;
所述发送单元用于, 向所述相邻上游节点发送控制通道建立成功消 息, 所述控制通道建立成功消息包括: 所述获得单元在所述第一控制链 路中选择的空闲的 N个第二子通道的信息。
结合第六方面、 第六方面的第一种可能的实现方式、 第六方面的第 二种可能的实现方式或第六方面的第三种可能的实现方式, 在第四种可 能的实现方式中, 所述发送单元,还用于在所述接收单元通过第一子通道 接收所述控制通道上相邻上游节点发送的控制通道建立消息之前, 向全 网洪泛控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端 的节点地址信息、 控制链路两端的端口标识和控制链路第二子通道的资 源信息, 所述第二子通道的资源信息包括第二子通道的数量及每个第二 子通道的类型, 以使得所述控制器获得本节点获得的控制链路通告消息。
结合第六方面的第四种可能的实现方式, 在第五种可能的实现方式 中,
所述发送单元, 还用于在向全网洪泛所述控制链路通告消息之前, 通过控制链路上的第一子通道向所述控制链路的对端节点发送控制链路 发现消息, 所述控制链路发现消息包括所述控制链路在发送端的端口标 识和发送端的节点地址信息;
所述接收单元还用于,接收所述对端节点发送的控制链路发现消息。 第七方面, 公开了一种控制通道的建立系统, 包括: 第四方面 -第四 方面的第二种可能的实现方式中任意一项所述的控制器、 第五方面 -第五 方面的第二种可能的实现方式中任意一项所述的节点和第六方面 -第六 方面的第二种可能的实现方式中任意一项所述的节点。
第八方面, 公开了一种控制通道的建立系统, 包括: 第四方面的第 三种可能的实现方式中所述的控制器、 第五方面的第三种可能的实现方 式中所述的节点和第六方面的第三种可能的实现方式中所述的节点。 本发明实施例提供的控制通道的建立方法、 装置及系统, 在集中控 制模式下, 控制器计算控制器与目的节点的路由信息并建立由第二子通 道交叉连接而成的, 唯一的控制通道, 在控制器与节点之间提前建立好 了直达的控制通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表 查找过程而导致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络性能。
附图说明 图 1 为本发明实施例提供的一种集中式控制架构下网络结构示意 图;
图 2为本发明实施例提供的一种节点的结构图; 图 3为本发明实施例 1提供的一种控制通道的建立方法流程示意图; 图 4为本发明实施例 1提供的另一种控制通道的建立方法流程示意 图;
图 5为本发明实施例 1提供的另一种控制通道的建立方法流程示意 图;
图 6为本发明实施例 4提供的一种控制器的结构框图; 图 7为本发明实施例 4提供的一种传送节点的结构框图; 图 8为本发明实施例 4提供的一种节点的结构框图; 图 9为本发明实施例 5提供的另一种控制器的结构框图; 图 10为本发明实施例 5提供的另一种传送节点的结构框图; 图 11为本发明实施例 5提供的另一种节点的结构框图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。 如图 1 所示, 本发明实施例中的网络是釆用了集中式控制架构的智 能光网络, 所述网络中的控制器 11对全网进行集中控制器, 所述控制器 11通过基于 TDM ( Time Division Multiplexing,时分复用 ) 的多个控制 链路与节点 A (或节点 D ) 连接, 网络中的各个节点也通过基于 TDM的多 个控制链路与对端节点连接。 如图 2所示, 利用时分复用技术, 可以将所述控制链路划分为多个 子通道, 并进行控制链路与子通道之间的复用和解复用。 例如, 可以釆 用 OTN ( Optical Transport Network,光传送网 ) 电层复用技术, 将控制 通道中的高阶 ODU ( Optical channel Data Uni t,光通道数据单元) 解复 用为多个低阶 ODUj ( j = 0, l, 2, 3) , 将低阶 ODUj作为子通道; 也可以釆用 SDH/ SONET ( Synchronous Digital Hierarchy/ Synchronous Optical Network, 同步数字体系 /同步光纤网络)的复用技术, 将 VC4解复用为多 个 VC12, 将 VC12作为子通道; 还可以把两者配合起来, 例如从高阶 0DU2 解复用出 4个低阶 0DU1, 从每个 0DU1的净荷中提取出 16个 VC4, 从每个 VC4解复用出 63个 VC12, 将 VC12作为子通道。 各节点中的控制支路板可以把子通道进行划分, 将指定的一个或多 个子通道划分为第一子通道, 其他子通道划分为第二子通道。 也就是说, 每个控制链路可以包括一个或多个第一子通道和一个或多个第二子通 道。 其中, 第一子通道与主控单元直接相连, 因此第一子通道中所传送 的控制信息均会被节点的主控单元接收并处理; 第二子通道与交叉单元 相连, 可根据需要交叉连接到节点其他控制链路中的第二子通道, 或交 叉连接到节点的主控单元; 当第二子通道交叉连接到节点其他控制链路 中的第二子通道时, 第二子通道中的控制信息被直接发送到下一段控制 链路中的第二子通道, 即节点的主控单元不感知也不处理控制信息。 实施例 1: 本发明实施例提供了一种控制通道建立的方法, 其执行主体为控制 器, 如图 3所示, 所述方法包括以下步骤:
301、 控制器获得网络中节点发送的控制链路通告消息。 由于控制链路的第一子通道与节点上的主控单元相连接, 故所述控 制器和网络中的各节点可以通过控制链路上的第一子通道向所述控制链 路的对端节点发送控制链路发现消息, 并接收所述对端节点发送的控制 链路发现消息; 这样就完成了控制链路的自动发现。 所述控制链路发现 消息包括所述控制链路在发送端的端口标识 ( ID) 和发送端的节点地址 信息, 其中, 所述控制链路的端口 ID是全网唯一的, 即每条控制链路两 端的端口 ID唯一确定一条控制链路。 或者, 所述控制链路发现消息也可 以同时包括所述控制链路在发送端的端口 ID和发送端的节点地址信息, 其中, 所述控制链路的端口 ID仅在发送端的节点内唯一的, 即每条控制 链路两端的端口 ID和两端的节点地址信息唯一确定一条控制链路。 控制器和各节点完成了控制链路的自动发现后, 各节点会通过第一 子通道, 向全网 (包括传送网控制器) 洪泛与本节点相连的控制链路对 应的控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端的 节点地址信息、 控制链路两端的端口 I D和控制链路的第二子通道资源信 息, 所述控制链路的第二子通道资源信息包括所述控制链路上的第二子 通道的数量及每个第二子通道的类型。
所述控制器接收全网络各节点洪泛的各控制链路的控制链路通告消 息后进行保存, 获得全网络各控制链路的控制链路通告消息。
302、所述控制器获得从所述控制器到目的节点之间的控制通道的带 宽信息。
其中所述控制通道的带宽信息包括: 所述控制通道需占用第二子通 道的资源大小。 所述控制通道需占用第二子通道的资源大小包括: 所述 控制通道需占用第二子通道的类型和数量, 或所述控制通道需占用第二 子通道的总带宽。
303、所述控制器根据所述各控制链路的控制链路通告消息和所述控 制通道的带宽信息, 计算获得从所述控制器到目的节点之间的控制通道 的路由信息。
其中, 所述控制通道的路由信息包括, 所述控制器到目的节点之间 控制通道所经过的传送节点。 所述控制通道的带宽信息包括: 所述控制 通道需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通 道的总带宽。 这里, 所述第二子通道的类型包括 ODUj或 VCxx。
所述控制器根据各控制链路的两端的节点地址信息、 第二子通道资 源信息及控制通道的带宽信息就可以确定从所述控制器到目的节点之间 的控制通道的路由信息。
304、所述控制器在所述控制器和所述控制通道上的相邻下游节点之 间的控制链路中选择第一控制链路。
其中, 所述第一控制链路的空闲资源大于等于所述控制通道需占用 第二子通道的资源。 这里的空闲资源指的是, 该控制链路中没有被占用 的第二子通道的总带宽, 即空闲的第二子通道的总资源。
所述控制器在所述控制器和所述控制通道上的控制通道上的相邻下 游节点之间的控制链路有很多条, 从其中选择一条空闲总资源大于或等 于所述控制通道需占用第二子通道的资源的第一控制链路。
305、所述控制器通过所述控制器与所述相邻下游节点间的第一子通 道, 向所述相邻下游节点发送控制通道建立消息。
所述控制器可以根据所述控制通道的带宽信息在所述控制器选择的 第一控制链路中选择出空闲的 N个第二子通道, 使得 N个第二子通道满 足控制通道需占用第二子通道的资源的需求, 其中, N为正整数。 并在所 述控制通道建立消息中携带所述控制器选择的 N个第二子通道的信息。
若所述控制器的相邻下游节点为传送节点, 则所述传送节点就可以 接收控制器选定的所述传送节点与控制器之间空闲的 N 个第二子通道信 息,然后选定所述传送节点与所述传送节点的相邻下游节点之间空闲的 N 个第二子通道信息, 建立所述传送节点两侧的 N 个第二子通道之间的交 叉连接, 同时, 所述传送节点会向所述传送节点的相邻下游节点发送控 制通道建立消息, 并在发送的控制通道建立消息中携带所述传送节点选 择的空闲的 N 个第二子通道信息, 直至所述相邻下游节点为目的节点, 就建立了控制器与目的节点之间的, 由控制链路中的第二子通道连接而 建立的, 唯一的控制通道。
若所述控制器的相邻下游节点为目的节点, 则所述目的节点就可以 接收控制器选定的所述传送节点与控制器之间空闲的 N 个第二子通道信 息, 然后建立所述 N 个第二子通道与所述目的节点的主控单元之间的交 叉连接, 这样就建立了控制器与目的节点之间的, 由控制链路中的第二 子通道连接而建立的, 唯一的控制通道。
或者, 所述控制器不在所述第一控制链路中选择出空闲的 N个第二 子通道, 此时所述控制通道建立消息中没有携带所述控制器选择的 N 个 第二子通道的信息。
若所述控制器的相邻下游节点为传送节点, 则所述传送节点开始只 选择与相邻下游节点间的第二控制链路, 而不选择出空闲的 N 个第二子 通道, 所述传送节点向所述控制通道上的传送节点的相邻下游节点发送 控制通道建立消息, 此时所述控制通道建立消 , I.中只携带所述传送节点 选择的第二控制链路信息, 直至所述相邻下游节点为目的节点。 目的节 点从与自己连接的第二控制链路中选择出空闲的 N 个第二子通道, 并向 所述目的节点的相邻上游节点发送控制通道建立成功消息, 该控制通道 建立成功消息中携带选择出的空闲的 N 个第二子通道。 所述目的节点的 相邻上游节点就可以接收目的节点选定的空闲的 N 个第二子通道信息, 然后选定其与其相邻上游节点之间空闲的 N 个第二子通道信息, 建立所 述目的节点的相邻上游节点两侧的 N 个第二子通道之间的交叉连接, 并 且并向相邻上游节点发送控制通道建立成功消息, 该控制通道建立成功 消息中携带选择出的空闲的 N 个第二子通道, 直至所述相邻上游节点为 控制器, 就建立了控制器与目的节点之间的, 由控制链路中的第二子通 道连接而建立的, 唯一的控制通道。
在控制通道建立成功后, 所述控制器就可以通过所述控制器与所述 目的节点之间的唯一的控制通道, 直接向所述目的节点发送控制消息。 本发明实施例提供了一种控制通道建立的方法, 其执行主体为传送 节点, 如图 4所示, 所述方法包括以下步骤:
401、传送节点通过第一子通道接收控制通道上相邻上游节点发送的 控制通道建立消息。
其中, 所述相邻上游节点可以是控制器, 也可以是所述传送节点相 邻上游的传送节点, 所述相邻上游节点发送的控制通道建立消息包括: 所述控制通道的路由信息、 相邻上游节点选择的第一控制链路的信息和 所述控制通道的带宽信息。
在所述传送节点通过第一子通道接收相邻上游节点发送的控制通道 建立消息之前, 所述传送节点通过控制链路上的第一子通道向所述控制 链路的对端节点发送控制链路发现消息, 并接收所述对端节点发送的控 制链路发现消息; 所述控制链路发现消息包括所述控制链路在发送端的 端口 ID和发送端的节点地址信息。 所述传送节点收到对端节点发送的控 制链路发现消息后, 所述传送节点向全网洪泛所述传送节点上的控制链 路的控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端的 节点地址信息、 控制链路两端的端口 I D和控制链路第二子通道的资源信 息, 所述第二子通道的资源信息包括第二子通道的数量及每个第二子通 道的类型, 以使得所述控制器获得所述传送节点上各控制链路的控制链 路通告消息。
所述控制器获得全网络各控制链路的控制链路通告消息后, 会根据 所述各控制链路的控制链路通告消息和所述控制通道的带宽信息, 计算 获得从所述控制器到目的节点之间的控制通道的路由信息, 并在所述控 制器和所述控制通道上的控制通道上的相邻上游节点之间的控制链路中 选择一条满足预设条件的第一控制链路, 然后, 通过所述第一控制链路 上的第一子通道, 向所述控制通道上的控制通道上的相邻上游节点发送 控制通道建立消息。
4 02、所述传送节点根据所述控制通道的带宽信息在所述传送节点和 所述控制通道上的相邻下游节点之间的控制链路中选择第二控制链路。
其中, 所述第二控制链路的空闲资源大于等于所述控制通道需占用 第二子通道的资源, 所述相邻下游节点包括目的节点或所述传送节点相 邻下游的传送节点。
4 03、所述传送节点通过第一子通道向所述控制通道上的相邻下游节 点发送控制通道建立消息。
可选的, 第一种情况下, 所述相邻上游节点 (控制器或上一传送节 点) 可以从所述相邻上游节点选择的第一控制链路中选择出空闲的 N 个 第二子通道, 并在所述控制通道建立消息中携带所述控制器选择的 N 个 第二子通道的信息。
此时, 传送节点就可以接收相邻上游节点 (可以是控制器) 选定的 所述传送节点与相邻上游节点之间空闲的 N 个第二子通道信息, 然后选 定所述传送节点与相邻下游节点之间空闲的 N 个第二子通道信息, 建立 所述传送节点两侧的 N 个第二子通道之间的交叉连接, 直至所述相邻下 游节点为目的节点, 就建立了控制器与目的节点之间的, 由控制链路中 的第二子通道连接而建立的, 唯一的控制通道。
或者, 可选的, 第二种情况下, 所述相邻上游节点 (控制器或上一 传送节点) 不在所述第一控制链路中选择出空闲的 N 个第二子通道, 此 时所述控制通道建立消息中仅携带所述相邻上游节点选择的第一控制链 路的信息。
传送节点开始只选择第一控制链路, 而不选择出空闲的 N个第二子 通道, 直至目的节点从与自己连接的第一控制链路中选择出空闲的 N 个 第二子通道。 所述传送节点就可以接收相邻下游节点 (可以是目的节点) 选定的传送节点与相邻下游节点之间空闲的 N 个第二子通道信息, 然后 选定所述传送节点与相邻上游节点之间空闲的 N 个第二子通道信息, 建 立所述传送节点两侧的 N 个第二子通道之间的交叉连接, 直至所述相邻 上游节点为控制器, 就建立了控制器与目的节点之间的, 由控制链路中 的第二子通道连接而建立的, 唯一的控制通道。 本发明实施例提供了一种控制通道建立的方法, 其执行主体为目的 节点, 如图 5所示, 所述方法包括以下步骤:
5 01、 目的节点通过第一子通道接收控制通道上相邻上游节点发送的 控制通道建立消息。
这里, 所述相邻上游节点可以是控制器, 也可以是所述目的节点相 邻上游的传送节点, 对应上述 305或 4 03 的两种情况, 目的节点接收到 的控制通道建立消息也包括两种情况:
第一种情况, 相邻上游节点在其选择的第一控制链路中, 选择空闲 的 N 个第二子通道, 则所述目的节点接收到的控制通道建立消息包括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制链路的信 息、 所述相邻上游节点选择的所述 N 个第二子通道的信息、 所述控制通 道的带宽信息。
第二种情况, 相邻上游节点在其选择的第一控制链路中, 未选择空 闲的 N个第二子通道, 则所述目的节点接收到的控制通道建立消息包括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制链路的信 息、 所述控制通道的带宽信息。 所述控制通道的带宽信息包括所述控制 通道需占用第二子通道的资源大小, 其中所述控制通道需占用第二子通 道的资源大小包括: 所述控制通道需占用第二子通道的类型和数量, 或 所述控制通道需占用第二子通道的总带宽。
5 02、 所述目的节点获得所述第一控制链路中空闲的 N 个第二子通 道。
所述相邻上游节点在其与目的节点之间的控制链路中选择第一控制 链路, 则所述目的节点接收到的控制通道建立消息包括: 所述控制通道 的路由信息、 所述相邻上游节点选择的第一控制链路的信息和所述控制 通道的带宽信息。
对应 5 01 的两种情况, 所述目的节点获得所述第一控制链路中空闲 的 N个第二子通道也有两种情况。
第一种情况, 所述目的节点接收的相邻上游节点发送的控制通道建 立消息中包括有所述相邻上游节点选择的, 所述目的节点与所述相邻上 游节点间第一控制链路中的的 N个第二子通道。
第二种情况, 所述目的节点在所述相邻上游节点选择的第一控制链 路中选择出, 所述目的节点与所述相邻上游节点间的 N个第二子通道。 503、所述目的节点建立所述目的节点的主控单元与所述 N个第二子 通道之间的交叉连接。
当然, 所述目的节点还会向所述传送节点发送控制通道建立成功消 息。
所述目的节点建立所述目的节点与所述相邻上游节点间的 N个第二 子通道与主控单元连接后, 向相邻上游节点发送控制通道建立成功消息。 对应 502 的两种情况, 所述目的节点发送的控制通道建立成功消息也有 两种情况:
第一种情况, 所述目的节点建立所述相邻上游节点间选择的 N个第 二子通道与主控单元连接后, 通过所述控制通道上的相邻上游节点向所 述控制器转发控制通道建立成功消息。
第二种情况, 所述目的节点建立所述目的节点间选择的 N个第二子 通道与主控单元连接后, 向传送节点发送控制通道建立成功消息。 这时 所述控制通道建立成功消息中还包括: 所述目的节点在所述相邻上游节 点选择的第一控制链路中选择的空闲的 N个第二子通道的信息。 本发明实施例提供的控制通道的建立方法, 在集中控制模式下, 控 制器计算控制器与目的节点的路由信息并建立由第二子通道交叉连接而 成的, 唯一的控制通道, 在控制器与节点之间提前建立好了直达的控制 通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表查找过程而导 致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络 性能。
实施例 2 : 本发明实施例提供了一种控制通道建立的方法, 所述方法包括以下 步骤:
601、控制器和各节点通过控制链路上的第一子通道向控制链路的对 端节点发送控制链路发现消息。
这里, 控制器和各节点发送的所述控制链路发现消息包括所述控制 链路在发送端的端口 I D和发送端的节点地址信息。 在控制器 (或者网络中的各节点) 与其对端节点之间, 可以存在 M 条控制链路, 这时, 控制器 (或者网络中的各节点) 需要向对端节点发 送 M个控制链路发现消息, 且每个控制链路发现消息包括该控制链路在 发送端的端口 ID和发送端的节点地址信息, 其中, 所述控制链路的端口 I D是全网唯一的,即每条控制链路两端的端口 ID唯一确定一条控制链路。 或者, 所述控制链路发现消息也可以同时包括所述控制链路在发送端的 端口 ID和发送端的节点地址信息, 其中, 所述控制链路的端口 ID仅在 发送端的节点内唯一的, 即每条控制链路两端的端口 ID和两端的节点地 址信息唯一确定一条控制链路。
控制器和全网各节点通过控制链路互发控制链路发现消息后, 就完 成了控制链路的自动发现。
602、控制器和各节点接收所述对端节点发送的控制链路发现消息后 向全网洪泛控制链路通告消息。
控制器和各节点接收所述对端节点发送的控制链路发现消息后, 就 可以获得本节点所对应的所有控制链路两端的节点地址信息和控制链路 两端的端口 ID , 由于各节点自身利用时分复用技术, 将本节点所对应控 制链路划分为多个子通道, 并划分出第二子通道, 故各节点中都存储有 本节点对应的控制链路的第二子通道资源信息。 故控制器和各节点接收 到控制链路发现消息后向全网洪泛控制链路通告消息中就可以包括: 控 制链路两端的节点地址信息、 控制链路两端的端口 ID和控制链路的第二 子通道资源信息, 其中, 所述控制链路的第二子通道资源信息包括所述 控制链路上的第二子通道的数量及每个第二子通道的类型。
603、 所述控制器获得网络中节点发送的控制链路通告消息。
所述控制器接收全网络各节点洪泛的各控制链路的控制链路通告消 息后, 就会获得全网络各控制链路的控制链路通告消息。
604、所述控制器获得从所述控制器到目的节点之间的控制通道的带 宽信息。
其中, 所述控制通道的带宽信息包括所述控制通道需占用第二子通 道的资源。 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
605、所述控制器根据所述各控制链路的控制链路通告消息和所述控 制通道的带宽信息, 计算获得从所述控制器到目的节点之间的控制通道 的路由信息。
所述控制器获得全网络各控制链路的控制链路通告消息后, 就获知 了全网络的拓朴结构。
这样所述控制器根据各控制链路的控制链路通告消息中的所述控制 链路的第二子通道资源信息, 就可以获得各控制链路的第二子通道的类 型 (即带宽) 和数量。 结合所述控制通道的带宽信息中需占用的第二子 通道的类型和数量或需占用的第二子通道的总带宽, 以及控制链路两端 的节点地址信息, 就可以计算出从所述控制器到目的节点之间的控制通 道的路由信息。
606、所述控制器在所述控制器和所述控制通道上的相邻下游节点之 间的控制链路中选择第一控制链路, 并根据所述控制通道的带宽信息在 所述第一控制链路中选择空闲的 N个第二子通道。
在这里, 所述第一控制链路的空闲资源大于等于所述控制通道需占 用第二子通道的资源, 所述的空闲的 N 个第二子通道是指还没有通过交 叉单元交叉连接的 N个第二子通道。
如果所述控制通道的带宽信息为所述控制通道需占用第二子通道的 类型和数量, 则所述控制器根据所述控制通道带宽信息选择建立控制通 道的所用的第二子通道的类型和数量, 示例的, 控制通道的带宽信息为 所述控制通道需占用第二子通道的类型为 ODU0、 数量为 2个, 则所述控 制器选择 2个 ODU0作为控制通道。
如果所述控制通道的带宽信息为所述控制通道需占用第二子通道的 总带宽, 则所述控制器首先用所述总带宽除以第二子通道的带宽 (每种 类型的第二子通道都对应有相应的带宽) , 得到需占用第二子通道的数 量。 所述第二子通道的类型主要有 ODUj或 VCxx , 已知其中 ODUj的带宽 为 1. 25G。 示例的, 若根据控制链路通告消息中的所述控制链路的第二子 通道资源信息获得所述第一控制链路中的第二子通道的类型为 ODUj , 且 获得所述控制通道需占用第二子通道的总带宽为 5G , 则, 5除以 1. 25等 于 4 , 因此获得 N=4 , 即所述控制器在选择的第一控制链路中选择空闲的 4个第二子通道。
607、所述控制器向所述控制通道上的相邻下游节点发送控制通道建 立消息。
所述控制器通过第一子通道向控制通道上的相邻下游节点发送的所 述控制通道建立消息包括: 所述控制通道的路由信息、 所述控制器选择 的第一控制链路的信息、 所述控制器选择的所述 N 个第二子通道的信息 和所述控制通道的带宽信息。
所述相邻下游节点为传送节点时, 进行步骤 608-61 1 , 所述相邻下 游节点为目的节点时, 进行步骤 6 1 2。
608、传送节点通过第一子通道接收相邻上游节点发送的控制通道建 立消息。
所述传送节点接收到控制器发送的控制通道建立消息包括: 控制通 道的路由信息、 控制通道的带宽信息、 所述控制器选择的第一控制链路 的信息和所述控制器选择的 N个第二子通道的信息。
609、所述传送节点根据所述控制通道的带宽信息在所述传送节点和 所述控制通道上的相邻下游节点之间的控制链路中选择第二控制链路, 并根据所述控制通道的带宽信息在所述第二控制链路中选择空闲的 N 个 第二子通道。
这里, 所述第二控制链路的空闲资源大于等于所述控制通道需占用 第二子通道的资源, 所述的空闲的 N 个第二子通道是指还没有通过交叉 单元交叉连接的 N个第二子通道。
61 0、 所述传送节点建立所述相邻上游节点选择的 N个第二子通道, 与所述传送节点选择的 N个第二子通道之间的交叉连接。
这样,所述传送节点两侧的所述 N个第二子通道就会——对应连接, 形成唯一的一个通道。
61 1、所述传送节点通过第一子通道向所述控制通道上的相邻下游节 点发送控制通道建立消息。
这里, 所述传送节点发送的控制通道建立消息包括: 控制通道的路 由信息、 控制通道的带宽信息、 所述相邻上游节点选择的第一控制链路 的信息和所述相邻上游节点选择的 N个第二子通道的信息。
当所述相邻下游节点不是目的节点时, 所述相邻下游节点 (即相邻 下游的传送节点 )就进行步骤 608-61 1 , 直至步骤 6 1 1 中所述相邻下游节 点为目的节点, 则进行步骤 61 1。
61 2、 目的节点通过第一子通道接收相邻上游节点发送的控制通道建 立消息。
在这里所述相邻上游节点可以是控制器, 也可以是传送节点。
所述目的节点接收到的相邻上游节点发送的控制通道建立消息包 括: 控制通道的路由信息、 控制通道的带宽信息、 所述相邻上游节点选 择的第一控制链路的信息和所述相邻上游节点选择的 N个第二子通道。
6 1 3、所述目的节点建立所述目的节点的主控单元与所述 N个第二子 通道之间的交叉连接。
这样, 所述控制器和所述目的节点之间就利用所述第二子通道的交 叉连接, 建立起了一条直达的控制通道。 利用该控制通道, 所述控制器 只能将消息发送给所述目的节点, 所述控制器和所述目的节点之间的消 息传输不需要经过其他节点的路由表查找和转发, 可以直接进行传输。
6 1 4、 所述目的节点向所述控制器发送控制通道建立成功消息。
所述目的节点可以通过所述控制通道上的相邻上游节点向所述控制 器发送控制通道建立成功消息。
6 1 5、 所述控制器通过所述控制通道向所述目的节点发送控制消息。 所述控制器与所述目的节点之间的, 直达的, 控制通道建立后, 就 可以用来传输控制器与目的节点之间的控制消息。 例如:
1 ) 目的节点可以通过控制通道, 直接向所述控制器上报其数据链路 的标识信息、 资源信息、 链路故障信息等消息。
2 )控制器在需要建立新的路径来承载业务时, 可以利用数据链路的 资源信息计算出业务路径, 然后通过所述控制通道直接向业务路径上的 各传送节点下发交叉建立命令消息。
3 ) 当业务路径在某条链路上发生故障时, 链路两端节点可以通过所 述控制通道向控制器发送故障信息; 控制器决策对业务路径进行重路由 或切换到保护路径上, 并决策是否需要抢占其他业务所占用的资源后, 再通过所述控制通道向重路由路径或保护路径上的节点下发交叉建立命 令消息, 或资源抢占命令消息。
依照上述步骤, 可以在所述控制器和所述目的节点之间建立一条直 达的控制通道, 为了保护所述控制器和所述目的节点之间的安全传输, 可以在所述控制器和所述目的节点之间再建立一条直达的控制通道作为 备用的控制通道, 这样在一条控制通道出现故障时, 就可以用另一条控 制通道来进行传输。 所用方法可以依照步骤 6 04-6 1 4 , 在此不再赘述。
以下在具体的应用场景中描述本发明实施例提供的方法。 如图 1 所 示, 假设网络中有控制器和 A、 B、 C、 D、 E 五个节点。 以建立由控制器 到 E点之间的控制通道为例。
首先, 所述控制器和 A、 B、 C、 D、 E五个节点通过控制链路上的第 一子通道向所述控制链路的对端节点发送控制链路发现消息, 所述控制 器和各节点接收所述对端节点发送的控制链路发现消息后向全网洪泛控 制链路通告消息控制器获得全网络各控制链路的控制链路通告消息。
所述控制器获得全网络各控制链路的控制链路通告消息后, 就获知 了如图 1 所示的全网络的拓朴结构 (包括各节点的信息及各控制链路的 端口信息) 以及所述控制链路的第二子通道资源信息, 这样就可以计算 出从所述控制器到目的节点 E 之间路由 (假设为路由为控制器 -A-B-E ) 及控制通道的带宽信息, 即所述控制通道占用第二子通道的数量 N。
所述控制器首先在控制器和节点 A之间的控制链路中选择第一控制 链路, 然后在控制器选择的第一控制链路中选择空闲的 N个第二子通道, 然后向节点 A发送控制通道建立消息。 该控制通道建立消息包括: 控制 通道的路由信息 (控制器一A--B— E ) 、 控制器在控制器和节点 A之间选 择的所述 N 个第二子通道的信息、 控制器选择的第一控制链路的信息和 控制通道的带宽信息。
节点 A接收到该控制通道建立消息后首先在节点 A与节点 B之间的 控制链路中选择第二控制链路, 然后在节点 A选择的第二控制链路中选 择空闲的 N个第二子通道。 然后节点 A建立控制器选择的 N个第二子通 道, 与节点 A选择的 N个第二子通道之间的交叉连接。 接着节点 A向控 制通道上的相邻下游节点 B发送控制通道建立消息。 节点 A发送的控制 通道建立消息包括: 控制通道的路由信息、 控制通道的带宽信息和节点 A 选择的 N个第二子通道的信息。
节点 B 接收通过第一子通道接收控制器发送的控制通道建立消息 后, 与节点 A相同的, 先在节点 B与相邻下游节点( 目的节点) E之间的 控制链路中选择第三控制链路, 然后在节点 B选择的第三控制链路中选 择空闲的 N个第二子通道。 节点 B建立节点 A选择的 N个第二子通道, 与节点 B选择的 N个第二子通道之间的交叉连接。 向控制通道上的相邻 下游节点( 目的节点) E发送控制通道建立消息。 节点 B发送的控制通道 建立消息包括: 控制通道的路由信息、 控制通道的带宽信息和节点 B 选 择的 N个第二子通道的信息。
节点 E通过第一子通道接收节点 B发送的控制通道建立消息后, 建 立节点 E的主控单元, 与节点 B和节点 E间的 N个第二子通道之间的交 叉连接。 然后节点 E 通过节点 B和节点 A向所述控制器发送控制通道建 立成功消息。
这样在所述控制器和所述目的节点之间就利用第二子通道建立了一 条直达的控制通道。 利用该控制通道, 所述控制器只能将消息发送给所 述目的节点, 所述控制器和所述目的节点之间的消息传输不需要经过其 他节点的路由表查找和转发, 可以直接进行传输。 本发明实施例提供的控制通道的建立方法, 在集中控制模式下, 控 制器计算控制器与目的节点的路由信息并建立由第二子通道交叉连接而 成的, 唯一的控制通道, 在控制器与节点之间提前建立好了直达的控制 通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表查找过程而导 致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络 性能。 实施例 3 : 本发明实施例提供了一种控制通道建立的方法, 所述方法包括以下 步骤:
701、控制器和各节点通过控制链路上的第一子通道向所述控制链路 的对端节点发送控制链路发现消息。
这里, 控制器和各节点发送的所述控制链路发现消息包括所述控制 链路在发送端的端口 ID和发送端的节点地址信息。 在控制器 (或者网络中的各个节点) 与其对端节点之间, 可以存在 M条控制链路, 这时, 控制器(或者网络中的各个节点)需要向对端节点 发送 M 个控制链路发现消息, 且每个控制链路发现消息包括该控制链路 在发送端的端口 ID和发送端的节点地址信息, 其中, 所述控制链路的端 口 ID是全网唯一的, 即每条控制链路两端的端口 ID唯一确定一条控制 链路。 或者, 所述控制链路发现消息也可以同时包括所述控制链路在发 送端的端口 ID和发送端的节点地址信息, 其中, 所述控制链路的端口 I D 仅在发送端的节点内唯一的, 即每条控制链路两端的端口 ID和两端的节
, 地址信息唯一确定一条控制链路。
控制器和全网各节点通过控制链路互发控制链路发现消息后, 就完 成了控制链路的自动发现。
702、控制器和各节点接收所述对端节点发送的控制链路发现消息后 向全网洪泛控制链路通告消息。 控制器和各节点接收所述对端节点发送的控制链路发现消息后, 就 可以获得本节点所对应的所有控制链路两端的节点地址信息和控制链路 两端的端口 ID , 由于各节点自身利用时分复用技术, 将本节点所对应控 制链路划分为多个子通道, 并划分出第二子通道, 故各节点中都存储有 本节点对应的控制链路的第二子通道资源信息。 故控制器和各节点接收 到控制链路发现消息后向全网洪泛控制链路通告消息中就可以包括: 控 制链路两端的节点地址信息、 控制链路两端的端口 ID和控制链路的第二 子通道资源信息, 其中, 所述控制链路的第二子通道资源信息包括所述 控制链路上的第二子通道的数量及每个第二子通道的类型。
703、 所述控制器获得网络中节点发送的控制链路通告消息。
所述控制器接收全网络各节点洪泛的各控制链路的控制链路通告消 息后, 就会获得全网络各控制链路的控制链路通告消息。
704、所述控制器获得从所述控制器到目的节点之间的控制通道的带 宽信息。
其中, 所述控制通道的带宽信息包括所述控制通道需占用第二子通 道的资源。 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
705、所述控制器根据所述控制链路通告消息和所述控制通道的带宽 信息, 计算获得从所述控制器到目的节点之间的控制通道的路由信息。
所述控制器获得全网络的控制链路通告消息后, 就获知了全网络的 拓朴结构, 这样所述控制器根据各控制链路通告消息中的所述控制链路 的第二子通道资源信息,就可以获得各控制链路的第二子通道的类型(即 带宽) 和数量。 结合所述控制通道的带宽信息中需占用的第二子通道的 类型和数量或需占用的第二子通道的总带宽, 以及控制链路两端的节点 地址信息, 就可以计算出从所述控制器到目的节点之间的控制通道的路 由信息。
706、所述控制器在所述控制器和所述控制通道上的相邻下游节点之 间的控制链路中选择第一控制链路。
在这里, 所述第一控制链路的空闲资源大于等于所述控制通道需占 用第二子通道的资源。
707、所述控制器向所述控制通道上的相邻下游节点发送控制通道建 立消息。
这里, 所述控制器通过第一子通道向控制通道上的相邻下游节点发 送的所述控制通道建立消息包括: 所述控制通道的路由信息、 所述控制 器选择的所述第一控制链路的信息、 所述控制通道的带宽信息。 所述相邻下游节点为传送节点时, 进行步骤 708-71 0 , 所述相邻下 游节点为目的节点时, 进行步骤 7 1 1。
708、传送节点通过第一子通道接收相邻上游节点发送的控制通道建 立消息。
所述传送节点接收到的控制通道建立消息包括: 控制通道的路由信 息、 控制通道的带宽信息和所述控制器选择的第一控制链路的信息。
7 09、所述传送节点根据所述控制通道的带宽信息在所述传送节点和 所述控制通道上的相邻下游节点之间的控制链路中选择第二控制链路。
这里, 所述第二控制链路的空闲第二子通道资源大于等于所述控制 通道需占用第二子通道的资源。 所述的空闲的 N 个第二子通道是指还没 有通过交叉单元交叉连接的 N个第二子通道。
71 0、所述传送节点通过第一子通道向所述控制通道上的相邻下游节 点发送的控制通道建立消息。
这里,所述传送节点向相邻下游节点发送的控制通道建立消息包括: 控制通道的路由信息、 控制通道的带宽信息和所述传送节点选择的第二 控制链路。
若 71 0 中所述相邻下游节点为相邻下游的传送节点, 则重复 7 08—71 0 ; 若 71 0中所述相邻下游节点为目的节点, 则进行 71 1。
71 1、所述目的节点通过第一子通道接收控制通道上相邻上游节点发 送的控制通道建立消息并根据所述控制通道的带宽信息在所述相邻上游 节点选择的所述第二控制链路中选择空闲的 N个第二子通道 这里, 所述目的节点会根据所述控制通道的带宽信息在所述相邻上 游节点选择的第二控制链路中选择空闲的 N 个第二子通道。 如果所述控 制通道的带宽信息为所述控制通道需占用第二子通道的类型和数量, 则 所述目的节点根据所述控制通道带宽信息选择建立控制通道的所用的第 二子通道的类型和数量, 示例的, 控制通道的带宽信息为所述控制通道 需占用第二子通道的类型为 ODU0、 数量为 2个, 则所述控制器选择 2个 ODU0作为控制通道。
如果所述控制通道的带宽信息为所述控制通道需占用第二子通道的 总带宽, 则所述目的节点首先用所述总带宽除以第二子通道的带宽 (每 种类型的第二子通道都对应有相应的带宽) , 得到需占用第二子通道的 数量。 所述第二子通道的类型主要有 ODUj或 VCxx, 已知其中 ODUj的带 宽为 1.25G。 示例的, 若根据控制链路通告消息中的所述控制链路的第二 子通道资源信息获得所述控制链路中的第二子通道的类型为 ODUj, 且获 得所述控制通道需占用第二子通道的总带宽为 5G, 则, 5除以 1.25等于 4, 因此获得 N=4, 即所述目的节点在选择的控制链路中选择空闲的 4个 第二子通道。
712、所述目的节点建立所述目的节点的主控单元与所述 N个第二子 通道之间的交叉连接。 这里, 所述目的节点建立所述目的节点的主控单元, 与所述目的节 点选定的所述中间节点和所述目的节点间的 N 个第二子通道之间的交叉 连接。
713、 所述目的节点向所述相邻上游节点发送控制通道建立成功消 息。
这里, 所述目的节点向相邻上游节点发送的控制通道建立成功消息 包括: 所述目的节点在所述相邻上游节点选择的第一控制链路中选择的 空闲的 N个第二子通道的信息。
在这里所述相邻上游节点可以是控制器, 也可以是传送节点, 若所 述相邻上游节点是传送节点, 则进行步骤 714-716, 若所述相邻上游节点 是控制器, 则进行步骤 717。
714、所述传送节点接收到所述相邻下游节点发送的控制通道建立成 功消息后, 在所述相邻上游节点选择的第一控制链路中选择空闲的 N 个 第二子通道。
715、 所述传送节点建立所述相邻下游节点选择的 N个第二子通道, 与所述传送节点选择的 N个第二子通道之间的交叉连接。
716、 所述传送节点向所述相邻上游节点发送控制通道建立成功消 息。 这里, 所述传送节点发送的控制通道建立成功消息包括: 所述传送 节点在所述相邻上游节点选择的第二控制链路中选择的空闲的 N 个第二 子通道。
当所述相邻上游节点不是控制器时, 就进行步骤 714-71 6 , 直至步 骤 7 1 6中所述相邻上游节点为控制器时, 进行步骤 71 7。
71 7、所述控制器接收所述控制通道上的相邻下游节点发送的控制通 道建立成功消息。
71 8、 所述控制器通过所述控制通道向所述目的节点发送控制消息。 所述控制器与所述目的节点之间的, 直达的, 控制通道建立后, 就 可以用来传输控制器与目的节点之间的控制消息。 例如:
1 ) 目的节点可以通过控制通道, 直接向所述控制器上报其数据链路 的标识信息、 资源信息、 链路故障信息等消息。
2 )控制器在需要建立新的路径来承载业务时, 可以利用数据链路的 资源信息计算出业务路径, 然后通过所述控制通道直接向业务路径上的 各传送节点下发交叉建立命令消息。
3 ) 当业务路径在某条链路上发生故障时, 链路两端节点可以通过所 述控制通道向控制器发送故障信息; 控制器决策对业务路径进行重路由 或切换到保护路径上, 并决策是否需要抢占其他业务所占用的资源后, 再通过所述控制通道向重路由路径或保护路径上的节点下发交叉建立命 令消息, 或资源抢占命令消息。
依照上述步骤, 可以在所述控制器和所述目的节点之间建立一条直 达的控制通道, 为了保护所述控制器和所述目的节点之间的安全传输, 可以在所述控制器和所述目的节点之间再建立一条直达的控制通道作为 备用的控制通道, 这样在一条控制通道出现故障时, 就可以用另一条控 制通道来进行传输。 所用方法可以依照步骤 7 04-71 7 , 在此不再赘述。
以下在具体的应用场景中描述本发明实施例提供的方法。 如图 1 所 示, 假设网络中有控制器和 A、 B、 C、 D、 E 五个节点。 以建立由控制器 到 E点之间的控制通道为例。
首先, 所述控制器和 A、 B、 C、 D、 E五个节点通过控制链路上的第 一子通道向所述控制链路的对端节点发送控制链路发现消息, 所述控制 器和各节点接收所述对端节点发送的控制链路发现消息后向全网洪泛控 制链路通告消息控制器获得全网络各控制链路的控制链路通告消息。 所述控制器获得全网络各控制链路的控制链路通告消息后, 就获知 了如图 1 所示的全网络的拓朴结构 (包括各节点的信息及各控制链路的 端口信息) 以及所述控制链路的第二子通道资源信息, 这样就可以计算 出从所述控制器到目的节点 E 之间路由 (假设为路由为控制器 -A-B-E ) 及控制通道的带宽信息, 即所述控制通道占用第二子通道的数量 N。
所述控制器首先在控制器和节点 A之间的控制链路中选择第一控制 链路, 然后向节点 A发送控制通道建立消息。 该控制通道建立消息包括: 控制通道的路由信息 (控制器一A--B— E ) 、 控制器在控制器和节点 A之 间选择的所述第一控制链路的信息和控制通道的带宽信息。
节点 A接收到该控制通道建立消息后首先在节点 A与节点 B之间的 控制链路中选择第二控制链路, 接着节点 A 向控制通道上的相邻下游节 点 B发送控制通道建立消息。 节点 A发送的控制通道建立消息包括: 控 制通道的路由信息、 控制通道的带宽信息和节点 A 选择的第二控制链路 的信息。
节点 B 接收通过第一子通道接收控制器发送的控制通道建立消息 后, 与节点 A相同的, 先在节点 B与相邻下游节点( 目的节点) E之间的 控制链路中选择第三控制链路, 然后向控制通道上的相邻下游节点 ( 目 的节点)E发送控制通道建立消息。节点 B发送的控制通道建立消息包括: 控制通道的路由信息、 控制通道的带宽信息和节点 B 选择的第三控制链 路的信息。
节点 E通过第一子通道接收节点 B发送的控制通道建立消息后, 在 节点 B选择的第一控制链路中选择 N个第二子通道并建立节点 E的主控 单元, 与节点 B和节点 E间的 N个第二子通道之间的交叉连接。
节点 E向节点 B发送控制通道建立成功消息,所述控制通道建立成功 消息包括: 节点 E在节点 B选择的第三控制链路中选择的空闲的 N个第 二子通道的信息。
节点 B接收到节点 E发送的控制通道建立成功消息后,在节点 A选择的 第二控制链路中选择 N个第二子通道并建立节点 A -节点 B之间的的第二子 通道与节点 B-节点 E之间的第二子通道的交叉连接。 节点 B向节点 A发送 控制通道建立成功消息,所述控制通道建立成功消息包括: 节点 B在节点 A 选择的第二控制链路中选择的空闲的 N个第二子通道的信息。 节点 A接收到节点 B发送的控制通道建立成功消息后, 在控制器选 择的第一控制链路中选择 N个第二子通道并建立控制器 -节点 A之间的第 二子通道与节点 A-节点 B之间的第二子通道之间的交叉连接。 节点 A向 控制器发送控制通道建立成功消息,所述控制通道建立成功消息包括: 节 点 A在控制器选择的第一控制链路中选择的空闲的 N个第二子通道的信 息。
这样在所述控制器和所述目的节点之间就利用第二子通道建立了一 条直达的控制通道。 利用该控制通道, 所述控制器只能将消息发送给所 述目的节点, 所述控制器和所述目的节点之间的消息传输不需要经过其 他节点的路由表查找和转发, 可以直接进行传输。 本发明实施例提供的控制通道的建立方法, 在集中控制模式下, 控 制器计算控制器与目的节点的路由信息并建立由第二子通道交叉连接而 成的, 直达的控制通道, 在控制器与节点之间提前建立好了直达的控制 通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表查找过程而导 致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络 性能。
实施例 4 : 本发明实施例还提供了一种控制器, 如图 6所示, 所述控制器包括: 第一获得单元 6001、 第二获得单元 6002、 计算单元 6003、 选择单元 6004 和发送单元 6005。
第一获得单元 6001 ,用于获得网络中节点发送的控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端的节点地址信息、 控制链路 两端的端口标识和控制链路的第二子通道资源信息。
第二获得单元 6002 , 用于获得从所述控制器到目的节点之间的控制 通道的带宽信息, 所述控制通道的带宽信息包括: 所述控制通道需占用 第二子通道的资源。
计算单元 6003 , 用于根据所述第一获得单元 6001 获得的各控制链 路的控制链路通告消息和所述第二获得单元 6002获得的所述控制通道的 带宽信息, 计算获得从所述控制器到目的节点之间的控制通道的路由信 息。
选择单元 6004 , 用于在所述控制器和所述控制通道上的控制通道上 的相邻下游节点之间的控制链路中选择第一控制链路, 所述第一控制链 路的空闲第二子通道资源大于或等于所述控制通道需占用第二子通道的 资源。
发送单元 6005 , 用于通过所述控制器与所述控制通道上的相邻下游 节点间的第一子通道, 向所述控制通道上的相邻下游节点发送控制通道 建立消息, 以使得所述相邻下游节点在所述第一控制链路的第二子通道 上建立所述控制通道。 所述控制通道建立消息包括: 所述控制通道的路 由信息、 所述控制器选择的第一控制链路的信息和所述控制通道的带宽 信息。
其中, 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
所述选择单元 6004 还用于在所述控制器和所述控制通道上的相邻 下游节点之间的控制链路中选择第一控制链路之后, 根据所述控制通道 的带宽信息在所述第一控制链路中选择空闲的 N个第二子通道, N为正整 数。 所述发送单元 6005向所述相邻下游节点发送的控制通道建立消息中 还包括: 所述控制器选择的所述 N个第二子通道的信息。
所述第二获得单元 6002 , 还用于接收所述控制通道上的相邻下游节 点发送的控制通道建立成功消息; 所述建立成功消息包括所述相邻下游 节点根据所述控制通道的带宽信息在所述第一控制链路中选择的空闲的 N个第二子通道的信息, N为正整数。
所述第一获得单元 6001具体用于:接收网络中各节点通过第一子通 道洪泛的控制链路通告消息, 获得全网络的控制链路通告消息。 本发明实施例还提供了一种节点, 如图 7所示, 所述节点包括: 接 收单元 7001、 选择单元 7002和发送单元 7003。
接收单元 7001 , 用于通过第一子通道接收控制通道上相邻上游节点 发送的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消息 包括: 所述控制通道的路由信息、 相邻上游节点选择的第一控制链路的 信息和所述控制通道的带宽信息。
选择单元 7002 , 用于根据所述接收单元 7001 接收到的控制通道建 立消息在本节点和所述控制通道上的相邻下游节点之间的控制链路中选 择第二控制链路; 所述第二控制链路的空闲第二子通道资源大于或等于 所述控制通道需占用第二子通道的资源。
发送单元 7003 , 用于通过第一子通道向所述控制通道上的相邻下游 节点发送控制通道建立消息, 以使得本节点的所述相邻下游节点在所述 选择单元 7002选择的所述第二控制链路的第二子通道上建立所述控制通 道, 所述发送单元 7003发送的控制通道建立消息包括: 所述控制通道的 路由信息、 所述选择单元 7002选择的第一控制链路的信息和所述控制通 道的带宽信息。
其中所述控制通道的带宽信息包括: 所述控制通道需占用第二子通 道的资源。 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
可选的, 所述节点还包括交叉单元, 所述控制通道建立消息中还包 括: 所述相邻上游节点根据所述控制通道的带宽信息在所述第一控制链 路中选择的空闲的 N 个第二子通道的信息, N 为正整数。 所述选择单元 7002 , 还用于在本节点和所述控制通道上的相邻下游节点之间的控制链 路中选择第二控制链路之后, 根据所述控制通道的带宽信息在所述第二 控制链路中选择空闲的 N个第二子通道。 所述交叉单元 7004用于, 建立 所述相邻上游节点选择的 N个第二子通道与所述选择单元 7002选择的 N 个第二子通道之间的交叉连接。 所述发送单元 7003发送的控制通道建立 消息中还包括: 所述选择单元选择的 N个第二子通道的信息。
或者, 所述接收单元 7001 , 还用于接收所述相邻下游节点发送的控 制通道建立成功消息, 所述相邻下游节点发送的控制通道建立成功消息 包括所述相邻下游节点根据所述控制通道的带宽信息在所述本节点选择 的第二控制链路中选择的空闲的 N个第二子通道。 所述选择单元 7002 , 用于在所述接收单元 7001接收到所述控制通道建立成功消息后, 根据所 述控制通道的带宽信息在所述第一控制链路中选择空闲的 N 个第二子通 道。 所述交叉单元 7004还用于, 建立所述相邻下游节点选择的 N个第二 子通道, 与所述选择单元 7002选择的 N个第二子通道之间的交叉连接。 所述发送单元 7003 , 还用于向所述相邻上游节点发送控制通道建立成功 消息, 所述发送单元发送的控制通道建立成功消息包括所述选择单元 7002在所述第一控制链路中选择的 N个第二子通道。
所述发送单元 7003 , 还用于在所述接收单元 7001 通过第一子通道 接收控制通道上相邻上游节点发送的控制通道建立消息之前, 向全网洪 泛控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端的节
, 地址信息、 控制链路两端的端口标识和控制链路第二子通道的资源信 息, 所述第二子通道的资源信息包括第二子通道的数量及每个第二子通 道的类型。
所述发送单元 7003 , 还用于在向全网洪泛控制链路通告消息之前, 通过控制链路上的第一子通道向所述控制链路的对端节点发送控制链路 发现消息; 所述控制链路发现消息包括所述控制链路在发送端的端口标 识和发送端的节点地址信息。 所述接收单元 7001还用于, 接收所述对端 节点发送的控制链路发现消息。 本发明实施例还提供了一种节点, 如图 8所示, 所述节点包括: 接 收单元 801、 获得单元 802和交叉单元 803。
接收单元 801 , 用于通过第一子通道接收控制通道上相邻上游节点 发送的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消息 中包括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制 链路的信息和所述控制通道的带宽信息, 其中, 所述控制通道的带宽信 息包括: 所述控制通道需占用第二子通道的资源。
获得单元 802 , 用于获得所述第一控制链路中空闲的 N个第二子通 道, N为正整数。
交叉单元 803 , 用于建立本节点的主控单元与所述获得单元 802 获 得的所述 N个第二子通道之间的交叉连接。
其中, 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
所述控制通道建立消息还包括: 所述相邻上游节点根据所述控制通 道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道的信 息。 所述获得单元 802 具体用于, 根据所述控制通道的带宽信息在所述 第一控制链路中选择空闲的 N个第二子通道。 所述节点还包括发送单元, 所述发送单元用于, 向所述相邻上游节点发送控制通道建立成功消息, 所述控制通道建立成功消息包括: 所述获得单元 802 在所述第一控制链 路中选择的空闲的 N个第二子通道的信息。
所述发送单元,还用于在所述接收单元 801 通过第一子通道接收所 述控制通道上相邻上游节点发送的控制通道建立消息之前, 向全网洪泛 控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端的节点 地址信息、 控制链路两端的端口标识和控制链路第二子通道的资源信息, 所述第二子通道的资源信息包括第二子通道的数量及每个第二子通道的 类型, 以使得所述控制器获得所述本节点获得的控制链路通告消息。
所述发送单元, 还用于在向全网洪泛所述节点获得的控制链路通告 消息之前, 通过控制链路上的第一子通道向所述控制链路的对端节点发 送控制链路发现消息, 所述控制链路发现消息包括所述控制链路在发送 端的端口标识和发送端的节点地址信息。 所述接收单元 801 还用于, 接 收所述对端节点发送的控制链路发现消息。 本发明实施例提供的控制通道的建立装置, 在集中控制模式下, 控 制器计算控制器与目的节点的路由信息并建立由第二子通道交叉连接而 成的, 唯一的控制通道, 在控制器与节点之间提前建立好了直达的控制 通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表查找过程而导 致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络 性能。
实施例 5 :
本发明实施例提供了一种控制器, 如图 9所示, 所述控制器包括: 发射接口 901、 接收接口 902、 存储器 903以及分别与发射接口 901、 接 收接口 902和存储器 903连接的处理器 904。所述发射接口 901和接收接 口 902 , 在具体实现中可以是同一个接口。 其中, 存储器 903中存储一组 程序代码, 且处理器 904用于调用存储器 903 中存储的程序代码, 用于 执行以下操作: 处理器 904 , 用于通过接收接口 902获得网络中节点发送的控制链 路通告消息, 所述控制链路通告消息包括: 控制链路两端的节点地址信 息、 控制链路两端的端口标识和控制链路的第二子通道资源信息。 处理器 904 , 用于获得从所述控制器到目的节点之间的控制通道的 带宽信息, 所述控制通道的带宽信息包括: 所述控制通道需占用第二子 通道的资源。 处理器 904 , 用于根据所述获得的各控制链路的控制链路通告消息 和所述控制通道的带宽信息, 计算获得从所述控制器到目的节点之间的 控制通道的路由信息。
处理器 904还用于, 根据得到的控制通道路由信息及控制通道的带 宽信息, 在所述控制器和所述控制通道上的控制通道上的相邻下游节点 之间的控制链路中选择第一控制链路, 所述第一控制链路的空闲资源大 于或等于所述控制通道需占用第二子通道的资源。
所述处理器 904, 用于通过发射接口 901 向所述控制通道上的相邻 下游节点发送控制通道建立消息, 以使得所述相邻下游节点在所述第 ― 控制链路的第二子通道上建立所述控制通道。 所述控制通道建立消息包 括: 所述控制通道的路由信息、 所述控制器选择的第一控制链路的信息 和所述控制通道的带宽信息。
其中, 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
处理器 904, 具体用于在所述控制器和所述控制通道上的相邻下游 节点之间的控制链路中选择第一控制链路之后, 在所述第一控制链路中 选择空闲的 N个第二子通道, N为正整数。 通过所述发射接口 901向所述 相邻下游节点发送的控制通道建立消息中还包括: 所述控制器选择的所 述 N个第二子通道的信息。
处理器 904, 用于通过接收接口 902接收所述控制通道上的相邻下 游节点发送的控制通道建立成功消息; 所述建立成功消息包括所述相邻 下游节点根据所述控制通道的带宽信息在所述第一控制链路中选择的空 闲的 N个第二子通道的信息, N为正整数。
处理器 904还用于, 通过所述接收接口 902接收网络中各节点洪泛 的控制链路通告消息, 获得全网络的控制链路通告消息。
本发明实施例提供了一种节点, 如图 10所示, 所述控制器包括: 发 射接口 1001、 接收接口 1002、 存储器 1003以及分别与发射接口 1001、 接收接口 1002和存储器 1003连接的处理器 1004。所述发射接口 1001和 所述接收接口 1002 在具体实现中可以是同一接口。 其中, 存储器 1103 中存储一组程序代码, 且处理器 1004用于调用存储器 1003 中存储的程 序代码, 用于执行以下操作:
处理器 1004, 用于通过接收接口 1002接收控制通道上相邻上游节 点发送的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消 息包括: 所述控制通道的路由信息、 相邻上游节点选择的第一控制链路 的信息和所述控制通道的带宽信息。
处理器 1 004 , 用于根据通过所述接收接口 1 002接收到的控制通道 建立消息在本节点和所述控制通道上的相邻下游节点之间的控制链路中 选择第二控制链路; 所述第二控制链路的空闲资源大于或等于所述控制 通道需占用第二子通道的资源。
所述处理器 1 004还用于, 通过发射接口 1 001向所述控制通道上的 相邻下游节点发送控制通道建立消息, 以使得本节点的所述相邻下游节 点在所述处理器 1 004选择的所述第二控制链路的第二子通道上建立所述 控制通道, 本节点发送的控制通道建立消息包括: 所述控制通道的路由 信息、 所述处理器 1 004选择的第一控制链路的信息和所述控制通道的带 宽信息。
其中所述控制通道的带宽信息包括: 所述控制通道需占用第二子通 道的资源。 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
所述控制通道建立消息中还包括: 所述相邻上游节点根据所述控制 通道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道的 信息, N 为正整数。 所述处理器 1 004 , 还用于在本节点和所述控制通道 上的相邻下游节点之间的控制链路中选择第二控制链路之后, 根据所述 控制通道的带宽信息在所述第二控制链路中选择空闲的 N个第二子通道。 处理器 1 004还用于, 建立所述相邻上游节点选择的 N个第二子通道与所 述 N个第二子通道之间的交叉连接。 所述处理器 1 004用于, 通过所述发 射接口 1 001 向所述控制通道上的相邻下游节点发送的控制通道建立消 息, 所述控制通道建立消息中还包括: 所述选择单元选择的 N 个第二子 通道的信息。
所述处理器 1 004 , 用于通过接收接口 1 002接收所述相邻下游节点 发送的控制通道建立成功消息, 所述相邻下游节点发送的控制通道建立 成功消息包括所述相邻下游节点根据所述控制通道的带宽信息在本节点 选择的第二控制链路中选择的空闲的 N个第二子通道。所述处理器 1 004 , 用于在通过所述接收接口 1 002接收到所述控制通道建立成功消息后, 根 据所述控制通道的带宽信息在所述第一控制链路中选择空闲的 N 个第二 子通道。 所述处理器 1004还用于, 建立所述相邻下游节点选择的 N个第 二子通道, 与所述 N个第二子通道之间的交叉连接。 所述处理器 1004用 于, 通过所述发射接口 1001向所述相邻上游节点发送控制通道建立成功 消息, 所述发送单元发送的控制通道建立成功消息包括所述处理器 1004 在所述第一控制链路中选择的 N个第二子通道。
所述处理器 1004还用于, 在所述接收接口 1002接收控制通道上相 邻上游节点发送的控制通道建立消息之前, 通过所述发射接口 1001向全 网洪泛控制链路通告消息, 所述控制链路通告消息包括: 控制链路两端 的节点地址信息、 控制链路两端的端口标识和控制链路第二子通道的资 源信息, 所述第二子通道的资源信息包括第二子通道的数量及每个第二 子通道的类型。 所述处理器 1004用于, 在向全网洪泛控制链路通告消息之前, 通过 所述发射接口 1001,向所述控制链路的对端节点发送控制链路发现消息; 所述控制链路发现消息包括所述控制链路在发送端的端口标识和发送端 的节点地址信息。 通过所述接收接口 1002接收所述对端节点发送的控制 链路发现消息。
本发明实施例提供了一种节点, 如图 11所示, 所述控制器包括: 发 射接口 1101、 接收接口 1102、 存储器 1103以及分别与发射接口 1101、 接收接口 1102和存储器 1103连接的处理器 1104。发射接口 1101和接收 接口 1102在具体实现中可以是同一个接口。 其中, 存储器 1103 中存储 一组程序代码, 且处理器 1104用于调用存储器 1103中存储的程序代码, 用于执行以下操作:
处理器 1104, 用于通过接收接口 1102接收控制通道上相邻上游节 点发送的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消 息中包括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控 制链路的信息和所述控制通道的带宽信息, 其中, 所述控制通道的带宽 信息包括: 所述控制通道需占用第二子通道的资源。
处理器 1104,用于获得所述第一控制链路中空闲的 N个第二子通道。 所述处理器 1104还用于, 建立所述节点的主控单元, 与所述 N个第 二子通道之间的交叉连接。
其中, 所述控制通道需占用第二子通道的资源包括: 所述控制通道 需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的 总带宽。
所述控制通道建立消息还包括: 所述相邻上游节点根据所述控制通 道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道的信 息。 所述处理器 1104具体用于, 根据所述控制通道的带宽信息在所述第 一控制链路中选择空闲的 N个第二子通道。 通过所述发射接口 1101向所 述相邻上游节点发送控制通道建立成功消息, 所述控制通道建立成功消 息包括: 所述处理器 1104在所述第一控制链路中选择的空闲的 N个第二 子通道的信息。
所述处理器 1104还用于, 在通过所述接收接口 1102接收所述控制 通道上相邻上游节点发送的控制通道建立消息之前, 通过所述发射接口 1101,向全网洪泛控制链路通告消息, 所述控制链路通告消息包括: 控制 链路两端的节点地址信息、 控制链路两端的端口标识和控制链路第二子 通道的资源信息, 所述第二子通道的资源信息包括第二子通道的数量及 每个第二子通道的类型, 以使得所述控制器获得所述目的节点获得的控 制链路通告消息。
所述处理器 1104, 用于通过所述接收接口 1102接收所述对端节点 发送的控制链路发现消息; 所述控制链路发现消息包括所述控制链路在 发送端的端口标识和发送端的节点地址信息。 在向全网洪泛所述节点获 得的的控制链路通告消息之前, 通过所述发射接口 1101向所述控制链路 的对端节点发送控制链路发现消息, 所述控制链路发现消息包括所述控 制链路在发送端的端口标识和发送端的节点地址信息。 通过所述接收接 口 1102接收所述对端节点发送的控制链路发现消息。 本发明实施例提供的控制通道的建立装置, 在集中控制模式下, 控 制器计算控制器与目的节点的路由信息并建立由第二子通道交叉连接而 成的, 唯一的控制通道, 在控制器与节点之间提前建立好了直达的控制 通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表查找过程而导 致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络 性能。
实施例 6:
本发明实施例提供了一种控制通道建立系统, 如图 1 所示, 包括: 控制器 1 1、 节点 A、 B、 E。 其中, 所述控制器 1 1为图 6所示的控制器, 所述节点 A、 B为图 7所示的节点, 所述节点 E为图 8所示的节点, 所述 节点 E为目的节点。
其中,所述控制器 1 1根据获得的网络各节点发送的控制链路通告消 息和控制通道的带宽信息, 计算获得控制通道的路由信息。 所述控制器 首先在其与节点 A 间选择第一控制链路, 并发送控制通道建立消息给节 点 A。节点 A接收到所述控制通道建立消息后也会在其与节点 B间选择第 二控制链路, 并发送控制通道建立消息给节点 B。 节点 B接收到所述控制 通道建立消息后也会在其与节点 E 间选择第三控制链路, 并发送控制通 道建立消息给节点 E。节点 E接收节点 B发送的控制通道建立消息后在节 点 B选择的第三控制链路中选择用于建立控制通道的第二子通道, 并建 立所述第二子通道与其主控单元的交叉连接, 随后发送控制通道建立成 功消息给节点 B。节点 B接收控制通道建立成功消息后在节点 A选择的第 二控制链路中选择用于建立控制通道的第二子通道, 并建立节点 B 两侧 的第二子通道的交叉连接, 随后发送控制通道建立成功消息给节点 A。 节 点 A接收控制通道建立成功消息后在控制器选择的第一控制链路中选择 用于建立控制通道的第二子通道, 并建立节点 A 两侧的第二子通道之间 的交叉连接,这样就建立了从所述控制器 1 1建立到节点 E之间的直达的、 唯一的控制通道。
当然, 所述节点 A也可以是目的节点, 此时, 控制器 1 1在其与节点 A间选择第一控制链路并发送控制通道建立消息给节点 A。 节点 A接收控 制器 1 1发送的控制通道建立消息后在所述控制器 1 1 选择的第一控制链 路中, 选择用于建立控制通道的第二子通道, 并建立节点 A 的主控单元 与所述第二子通道之间的交叉连接, 就建立了从所述控制器 1 1到目的节 点间的控制通道。
本发明实施例还提供了一种控制通道建立系统, 如图 1所示, 包括: 控制器 1 1、 节点 A、 B、 E。 其中, 所述控制器 1 1为图 6所示的控制器, 所述节点 A、 B为图 7所示的节点, 所述节点 E为图 8所示的节点, 所述 节点 E为目的节点。
其中,所述控制器 1 1根据获得的网络各节点发送的控制链路通告消 息和控制通道的带宽信息, 计算获得控制通道的路由信息。 所述控制器 首先在其与节点 A 间选择第一控制链路, 然后在所述第一控制链中选择 用于建立控制通道的第二子通道, 并发送控制通道建立消息给节点 A。 节 点 A接收到所述控制通道建立消息后也会在其与节点 B 间选择第二控制 链路, 然后在所述第二控制链中选择用于建立控制通道的第二子通道, 建立节点 A 两侧的所述第二子通道间的交叉连接, 并发送控制通道建立 消息给节点 B。 节点 B接收到所述控制通道建立消息后也会在其与节点 E 间选择第三控制链路, 然后在所述第三控制链中选择用于建立控制通道 的第二子通道, 建立节点 B 两侧的所述第二子通道间的交叉连接, 并发 送控制通道建立消息给节点 E。节点 E接收节点 B发送的控制通道建立消 息后建立所述节点 B 在所述第三控制链路中选择的所述第二子通道与其 主控单元的交叉连接。 这样就建立了从所述控制器 1 1建立到节点 E之间 的直达的、 唯一的控制通道。
当然, 所述节点 A也可以是目的节点, 此时, 控制器 1 1在其与节点 A 间选择第一控制链路并在所述第一控制链路中选择用于建立控制通道 的第二子通道, 发送控制通道建立消息给节点 A。 节点 A接收控制器 1 1 发送的控制通道建立消息后建立节点 A 的主控单元与所述第二子通道之 间的交叉连接, 就建立了从所述控制器 1 1到目的节点间的控制通道。 本发明实施例提供的控制通道的建立系统, 在集中控制模式下, 控 制器计算控制器与目的节点的路由信息并建立由第二子通道交叉连接而 成的, 唯一的控制通道, 在控制器与节点之间提前建立好了直达的控制 通道, 解决了由于 DCN路由收敛、 路由逐跳转发及路由表查找过程而导 致的消息发送速度较慢的问题, 可以提高消息发送速度, 从而提升网络 性能。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的 步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可 以存储程序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种控制通道的建立方法, 其特征在于, 包括:
控制器获得网络中节点发送的控制链路通告消息, 所述控制链路通 告消息包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识 和控制链路的第二子通道资源信息;
所述控制器获得从所述控制器到目的节点之间的控制通道的带宽信 息, 所述控制通道的带宽信息包括: 所述控制通道需占用第二子通道的 资源;
所述控制器根据所述控制链路通告消息和所述控制通道的带宽信 息, 计算获得从所述控制器到目的节点之间的控制通道的路由信息;
所述控制器在所述控制器和所述控制通道上的相邻下游节点之间的 控制链路中选择第一控制链路; 所述第一控制链路的空闲第二子通道资 源大于或等于所述控制通道需占用第二子通道的资源;
所述控制器通过所述控制器与所述相邻下游节点间的第一子通道, 向所述相邻下游节点发送控制通道建立消息, 以使得所述相邻下游节点 在所述第一控制链路的第二子通道上建立所述控制通道; 所述控制通道 建立消息包括: 所述控制通道的路由信息、 所述控制器选择的所述第一 控制链路的信息和所述控制通道的带宽信息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述控制通道需占用 第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的总带宽。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述控制器在所 述控制器和所述控制通道上的相邻下游节点之间的控制链路中选择第一 控制链路之后, 所述方法还包括:
所述控制器根据所述控制通道的带宽信息在所述第一控制链路中选 择空闲的 N个第二子通道, N为正整数;
贝' J , 所述控制通道建立消息还包括: 所述控制器选择的所述 N个第 二子通道的信息。
4、 根据权利要求 1或 2所述方法, 其特征在于, 所述方法还包括: 所述控制器接收所述控制通道上的相邻下游节点发送的控制通道建 立成功消息, 所述建立成功消息包括所述相邻下游节点根据所述控制通 道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道的信 息, N为正整数。
5、 根据权利要求 1 -4任意一项所述的方法, 其特征在于, 所述控制 器获得网络中节点发送的控制链路通告消息, 具体包括:
所述控制器接收网络中各节点通过第一子通道洪泛的控制链路通告 消息, 获得全网络的控制链路通告消息。
6、 一种控制通道的建立方法, 其特征在于, 包括:
传送节点通过第一子通道接收控制通道上相邻上游节点发送的控制 通道建立消息, 所述相邻上游节点发送的控制通道建立消息包括: 所述 控制通道的路由信息、 相邻上游节点选择的第一控制链路的信息和所述 控制通道的带宽信息;
所述传送节点根据所述控制通道的带宽信息在所述传送节点和所述 控制通道上的相邻下游节点之间的控制链路中选择第二控制链路, 所述 第二控制链路的空闲第二子通道资源大于等于所述控制通道需占用第二 子通道的资源;
所述传送节点通过第一子通道向所述控制通道上的相邻下游节点发 送控制通道建立消息, 以使得所述传送节点的所述相邻下游节点在所述 第二控制链路的第二子通道上建立所述控制通道; 所述传送节点发送的 控制通道建立消息包括: 所述控制通道的路由信息、 所述第二控制链路 的信息和所述控制通道的带宽信息, 其中, 所述控制通道的带宽信息包 括: 所述控制通道需占用第二子通道的资源。
7、 根据权利要求 6所述的方法, 其特征在于, 所述控制通道需占用 第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数量, 或所述控制通道需占用第二子通道的总带宽。
8、 根据权利要求 6或 7所述的方法, 其特征在于,所述传送节点接 收的相邻上游节点发送的控制通道建立消息中还包括: 所述相邻上游节 点根据所述控制通道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道的信息, N为正整数;
所述传送节点在所述传送节点和所述控制通道上的相邻下游节点之 间的控制链路中选择第二控制链路之后, 所述方法还包括:
所述传送节点根据所述控制通道的带宽信息在所述第二控制链路中 选择空闲的 N个第二子通道;
所述传送节点建立所述相邻上游节点选择的 N个第二子通道与所述 传送节点选择的 N个第二子通道之间的交叉连接;
则, 所述传送节点向所述控制通道上的相邻下游节点发送的控制通 道建立消息中还包括: 所述传送节点在所述第二控制链路中选择的 N 个 第二子通道的信息。
9、 根据权利要求 6或 7所述的方法, 其特征在于,所述方法还包括: 所述传送节点接收所述相邻下游节点发送的控制通道建立成功消 息, 所述相邻下游节点发送的控制通道建立成功消息包括: 所述相邻下 游节点根据所述控制通道的带宽信息在所述第二控制链路中选择的空闲 的 N个第二子通道;
所述传送节点根据所述控制通道的带宽信息在所述第一控制链路中 选择空闲的 N个第二子通道;
所述传送节点建立所述相邻下游节点选择的 N个第二子通道与所述 传送节点选择的 N个第二子通道之间的交叉连接;
所述传送节点向所述相邻上游节点发送控制通道建立成功消息, 所 述传送节点发送的控制通道建立成功消息包括所述传送节点在所述第一 控制链路中选择的 N个第二子通道。
1 0、 根据权利要求 6-9任一项所述的方法, 其特征在于, 在所述传 送节点通过第一子通道接收控制通道上相邻上游节点发送的控制通道建 立消息之前, 所述方法还包括:
所述传送节点向全网洪泛控制链路通告消息, 所述控制链路通告消 息包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识和控 制链路第二子通道的资源信息, 所述第二子通道的资源信息包括第二子 通道的数量及每个第二子通道的类型。
1 1、 根据权利要求 1 0所述的方法, 其特征在于, 在所述传送节点向 全网洪泛控制链路通告消息之前, 所述方法还包括:
所述传送节点通过控制链路上的第一子通道向所述控制链路的对端 节点发送控制链路发现消息, 并接收所述对端节点发送的控制链路发现 消息; 所述控制链路发现消息包括所述控制链路在发送端的端口标识和 发送端的节点地址信息。
1 2、 一种控制通道的建立方法, 其特征在于, 包括:
目的节点通过第一子通道接收控制通道上相邻上游节点发送的控制 通道建立消息, 所述控制通道建立消息中包括: 所述控制通道的路由信 息、 所述相邻上游节点选择的第一控制链路的信息和所述控制通道的带 宽信息, 其中, 所述控制通道的带宽信息包括: 所述控制通道需占用第 二子通道的资源;
所述目的节点获得所述第一控制链路中空闲的 N 个第二子通道, N 为正整数;
所述目的节点建立所述目的节点的主控单元与所述 N个第二子通道 之间的交叉连接。
1 3、 根据权利要求 1 2所述的方法, 其特征在于, 所述控制通道需占 用第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数 量, 或所述控制通道需占用第二子通道的总带宽。
14、 根据权利要求 1 2或 1 3所述的方法, 其特征在于, 所述控制通 道建立消息还包括: 所述相邻上游节点根据所述控制通道的带宽信息在 所述第一控制链路中选择的空闲的 N个第二子通道的信息。
1 5、 根据权利要求 1 2或 1 3所述的方法, 其特征在于, 所述目的节 点获得所述第一控制链路中空闲的 N个第二子通道, 具体包括:
所述目的节点根据所述控制通道的带宽信息在所述第一控制链路中 选择空闲的 N个第二子通道;
所述方法还包括: 所述目的节点向所述相邻上游节点发送控制通道 建立成功消息, 所述控制通道建立成功消息包括: 所述目的节点在所述 第一控制链路中选择的空闲的 N个第二子通道的信息。
1 6、 根据权利要求 1 2-1 5任意一项所述的方法, 其特征在于, 包括: 所述目的节点通过第一子通道接收所述控制通道上相邻上游节点发送的 控制通道建立消息之前, 所述方法还包括:
所述目的节点向全网洪泛控制链路通告消息, 所述控制链路通告消 息包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识和控 制链路第二子通道的资源信息, 所述第二子通道的资源信息包括第二子 通道的数量及每个第二子通道的类型, 以使得所述控制器获得所述目的 节点获得的控制链路通告消息。
1 7、 根据权利要求 1 6所述的方法, 其特征在于, 所述目的节点向全 网洪泛控制链路通告消息之前, 所述方法还包括:
所述目的节点通过控制链路上的第一子通道向所述控制链路的对端 节点发送控制链路发现消息, 并接收所述对端节点发送的控制链路发现 消息; 所述控制链路发现消息包括所述控制链路在发送端的端口标识和 发送端的节点地址信息。
1 8、 一种控制器, 其特征在于, 包括:
第一获得单元, 用于获得网络中节点发送的控制链路通告消息, 所 述控制链路通告消息包括: 控制链路两端的节点地址信息、 控制链路两 端的端口标识和控制链路的第二子通道资源信息;
第二获得单元, 用于获得从所述控制器到目的节点之间的控制通道 的带宽信息, 所述控制通道的带宽信息包括: 所述控制通道需占用第二 子通道的资源;
计算单元, 用于根据所述第一获得单元获得的控制链路通告消息和 所述第二获得单元获得的所述控制通道的带宽信息, 计算获得从所述控 制器到目的节点之间的控制通道的路由信息;
选择单元, 用于在所述控制器和所述控制通道上的相邻下游节点之 间的控制链路中选择第一控制链路, 所述第一控制链路的空闲第二子通 道资源大于或等于所述控制通道需占用第二子通道的资源;
发送单元, 用于通过所述控制器与所述相邻下游节点间的第一子通 道, 向所述相邻下游节点发送控制通道建立消息, 以使得所述相邻下游 节点在所述第一控制链路的第二子通道上建立所述控制通道, 所述控制 通道建立消息包括: 所述控制通道的路由信息、 所述控制器选择的第一 控制链路的信息和所述控制通道的带宽信息。
1 9、 根据权利要求 1 8所述的控制器, 其特征在于, 所述控制通道需 占用第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和 数量, 或所述控制通道需占用第二子通道的总带宽。
20、 根据权利要求 1 8或 1 9所述的控制器, 其特征在于,
所述选择单元还用于在所述控制器和所述控制通道上的相邻下游节 点之间的控制链路中选择第一控制链路之后, 根据所述控制通道的带宽 信息在所述第一控制链路中选择空闲的 N个第二子通道, N为正整数; 所述发送单元向所述相邻下游节点发送的控制通道建立消息中还包 括: 所述控制器选择的所述 N个第二子通道的信息。
21、 根据权利要求 1 8或 1 9所述的控制器, 其特征在于,
所述第二获得单元, 还用于接收所述控制通道上的相邻下游节点发 送的控制通道建立成功消息; 所述建立成功消息包括所述相邻下游节点 根据所述控制通道的带宽信息在所述第一控制链路中选择的空闲的 N 个 第二子通道的信息, N为正整数。
22、 根据权利要求 18-21 任意一项所述的控制器, 其特征在于, 所 述第一获得单元具体用于:
接收网络中各节点通过第一子通道洪泛的控制链路通告消息, 获得 全网络的控制链路通告消息。
23、 一种节点, 其特征在于,包括:
接收单元, 用于通过第一子通道接收控制通道上相邻上游节点发送 的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消息包括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制链路的信 息和所述控制通道的带宽信息;
选择单元, 用于根据所述接收单元接收到的控制通道建立消息在本 节点和所述控制通道上的相邻下游节点之间的控制链路中选择第二控制 链路, 所述第二控制链路的空闲第二子通道资源大于或等于所述控制通 道需占用第二子通道的资源;
发送单元, 用于通过第一子通道向所述控制通道上的相邻下游节点 发送控制通道建立消息, 以使得本节点的所述相邻下游节点在所述选择 单元选择的所述第二控制链路的第二子通道上建立所述控制通道; 所述 发送单元发送的控制通道建立消息包括: 所述控制通道的路由信息、 所 述选择单元选择的第二控制链路的信息和所述控制通道的带宽信息, 其 中, 所述控制通道的带宽信息包括: 所述控制通道需占用第二子通道的 资源。
24、 根据权利要求 23所述的节点, 其特征在于, 所述控制通道需占 用第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数 量, 或所述控制通道需占用第二子通道的总带宽。
25、 根据权利要求 23或 24所述的节点, 其特征在于, 还包括交叉 单元, 所述控制通道建立消息中还包括: 所述相邻上游节点根据所述控 制通道的带宽信息在所述第一控制链路中选择的空闲的 N 个第二子通道 的信息, N为正整数;
所述选择单元, 还用于在本节点和所述控制通道上的相邻下游节点 之间的控制链路中选择第二控制链路之后, 根据所述控制通道的带宽信 息在所述第二控制链路中选择空闲的 N个第二子通道; 所述交叉单元, 用于建立所述相邻上游节点选择的 N个第二子通道 与所述选择单元选择的 N个第二子通道之间的交叉连接;
所述发送单元发送的控制通道建立消息中还包括: 所述选择单元选 择的 N个第二子通道的信息。
26、 根据权利要求 23或 24所述的节点, 其特征在于,
所述接收单元, 还用于接收所述相邻下游节点发送的控制通道建立 成功消息, 所述相邻下游节点发送的控制通道建立成功消息包括所述相 邻下游节点根据所述控制通道的带宽信息在所述第二控制链路中选择的 空闲的 N个第二子通道;
所述选择单元, 用于在所述接收单元接收到所述控制通道建立成功 消息后, 根据所述控制通道的带宽信息在所述第一控制链路中选择空闲 的 N个第二子通道;
所述节点还包括交叉单元, 用于建立所述相邻下游节点选择的 N个 第二子通道与所述选择单元选择的 N个第二子通道之间的交叉连接;
所述发送单元, 还用于向所述相邻上游节点发送控制通道建立成功 消息, 所述发送单元发送的控制通道建立成功消息包括所述选择单元在 所述第一控制链路中选择的 N个第二子通道。
27、 根据权利要求 23-26任意一项所述的节点, 其特征在于, 所述发送单元, 还用于在所述接收单元通过第一子通道接收控制通 道上相邻上游节点发送的控制通道建立消息之前, 向全网洪泛控制链路 通告消息, 所述控制链路通告消息包括: 控制链路两端的节点地址信息、 控制链路两端的端口标识和控制链路第二子通道的资源信息, 所述第二 子通道的资源信息包括第二子通道的数量及每个第二子通道的类型。
28、 根据权利要求 27所述的节点, 其特征在于,
所述发送单元, 还用于在向全网洪泛控制链路通告消息之前, 通过 控制链路上的第一子通道向所述控制链路的对端节点发送控制链路发现 消息; 所述控制链路发现消息包括所述控制链路在发送端的端口标识和 发送端的节点地址信息;
所述接收单元还用于,接收所述对端节点发送的控制链路发现消息。
29、 一种节点, 其特征在于, 包括:
接收单元, 用于通过第一子通道接收控制通道上相邻上游节点发送 的控制通道建立消息, 所述相邻上游节点发送的控制通道建立消息中包 括: 所述控制通道的路由信息、 所述相邻上游节点选择的第一控制链路 的信息和所述控制通道的带宽信息, 其中, 所述控制通道的带宽信息包 括: 所述控制通道需占用第二子通道的资源;
获得单元, 用于获得所述第一控制链路中空闲的 N个第二子通道, N 为正整数;
交叉单元,用于建立本节点的主控单元与所述获得单元获得的所述 N 个第二子通道之间的交叉连接。
30、 根据权利要求 29所述的节点, 其特征在于, 所述控制通道需占 用第二子通道的资源包括: 所述控制通道需占用第二子通道的类型和数 量, 或所述控制通道需占用第二子通道的总带宽。
31、 根据权利要求 29或 30所述的节点, 其特征在于, 所述控制通 道建立消息还包括: 所述相邻上游节点根据所述控制通道的带宽信息在 所述第一控制链路中选择的空闲的 N个第二子通道的信息。
32、 根据权利要求 29或 30所述的节点, 其特征在于, 还包括发送 单元,
所述获得单元具体用于, 根据所述控制通道的带宽信息在所述第一 控制链路中选择空闲的 N个第二子通道;
所述发送单元用于, 向所述相邻上游节点发送控制通道建立成功消 息, 所述控制通道建立成功消息包括: 所述获得单元在所述第一控制链 路中选择的空闲的 N个第二子通道的信息。
33、 根据权利要求 29- 32任意一项所述的节点, 其特征在于, 所述发送单元,还用于在所述接收单元通过第一子通道接收所述控 制通道上相邻上游节点发送的控制通道建立消息之前, 向全网洪泛控制 链路通告消息, 所述控制链路通告消息包括: 控制链路两端的节点地址 信息、 控制链路两端的端口标识和控制链路第二子通道的资源信息, 所 述第二子通道的资源信息包括第二子通道的数量及每个第二子通道的类 型, 以使得所述控制器获得本节点获得的控制链路通告消息。
34、 根据权利要求 3 3所述的节点, 其特征在于,
所述发送单元, 还用于在向全网洪泛所述控制链路通告消息之前, 通过控制链路上的第一子通道向所述控制链路的对端节点发送控制链路 发现消息, 所述控制链路发现消息包括所述控制链路在发送端的端口标 识和发送端的节点地址信息;
所述接收单元还用于,接收所述对端节点发送的控制链路发现消息。
35、 一种控制通道的建立系统, 其特征在于, 包括: 权利要求 18-20 的任意一项所述的控制器、 权利要求 23-25 任意一项所述的节点和权利 要求 29-31任意一项所述的节点。
36、 一种控制通道的建立系统, 其特征在于, 包括: 权利要求 21所 述的控制器、 权利要求 26所述的节点和权利要求 32所述的节点。
PCT/CN2013/086356 2013-10-31 2013-10-31 一种控制通道的建立方法、装置及系统 WO2015062045A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380003411.XA CN103891219B (zh) 2013-10-31 2013-10-31 一种控制通道的建立方法、装置及系统
PCT/CN2013/086356 WO2015062045A1 (zh) 2013-10-31 2013-10-31 一种控制通道的建立方法、装置及系统
ES13896475.4T ES2661521T3 (es) 2013-10-31 2013-10-31 Procedimiento, aparato y sistema de establecimiento de canal de control
EP13896475.4A EP3057269B1 (en) 2013-10-31 2013-10-31 Control channel establishment method, apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086356 WO2015062045A1 (zh) 2013-10-31 2013-10-31 一种控制通道的建立方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015062045A1 true WO2015062045A1 (zh) 2015-05-07

Family

ID=50957876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086356 WO2015062045A1 (zh) 2013-10-31 2013-10-31 一种控制通道的建立方法、装置及系统

Country Status (4)

Country Link
EP (1) EP3057269B1 (zh)
CN (1) CN103891219B (zh)
ES (1) ES2661521T3 (zh)
WO (1) WO2015062045A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105791168A (zh) * 2016-02-24 2016-07-20 中国联合网络通信集团有限公司 网络资源获取方法及装置
EP3935788A4 (en) * 2019-03-22 2022-03-16 Huawei Technologies Co., Ltd. NETWORK NODE AND DEVICE FOR DATA COMMUNICATION NETWORKS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282331A1 (en) * 2001-07-31 2003-02-05 Lucent Technologies Inc. Connection setup strategies in optical transport networks
CN1728605A (zh) * 2004-07-28 2006-02-01 中兴通讯股份有限公司 一种智能光网络中光通道建立方法
CN102026046A (zh) * 2009-09-10 2011-04-20 华为技术有限公司 光网络中的路径处理方法、光通信装置及光通信系统
CN103067277A (zh) * 2013-01-06 2013-04-24 华为技术有限公司 建立控制通道的方法、转发设备和控制设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293710C (zh) * 2003-02-21 2007-01-03 华为技术有限公司 智能光网络中的链路绑定方法
CN101360348B (zh) * 2008-08-25 2012-02-22 中兴通讯股份有限公司 一种业务首尾节点之间的虚拟控制通道建立方法
CN101997764B (zh) * 2009-08-21 2012-10-03 华为技术有限公司 信息传输方法、通信装置及通信系统
WO2012110108A1 (en) * 2011-02-16 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) Resizing a path in a connection-oriented network
EP2772024A4 (en) * 2011-10-28 2015-06-24 Ericsson Telefon Ab L M PROTECTION IN A RING NETWORK OF LABEL-SWITCHING ROUTERS
CN103220588B (zh) * 2012-01-18 2016-04-13 中兴通讯股份有限公司 一种光网络单元的注册方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282331A1 (en) * 2001-07-31 2003-02-05 Lucent Technologies Inc. Connection setup strategies in optical transport networks
CN1728605A (zh) * 2004-07-28 2006-02-01 中兴通讯股份有限公司 一种智能光网络中光通道建立方法
CN102026046A (zh) * 2009-09-10 2011-04-20 华为技术有限公司 光网络中的路径处理方法、光通信装置及光通信系统
CN103067277A (zh) * 2013-01-06 2013-04-24 华为技术有限公司 建立控制通道的方法、转发设备和控制设备

Also Published As

Publication number Publication date
EP3057269A1 (en) 2016-08-17
EP3057269A4 (en) 2016-11-02
CN103891219B (zh) 2016-09-28
CN103891219A (zh) 2014-06-25
EP3057269B1 (en) 2018-01-17
ES2661521T3 (es) 2018-04-02

Similar Documents

Publication Publication Date Title
US10554542B2 (en) Label distribution method and device
EP3249865B1 (en) Method and devices for constructing label and forwarding label packet
US7583661B2 (en) Method and apparatus for improved IP networks and high-quality services
US7274869B1 (en) System and method for providing destination-to-source protection switch setup in optical network topologies
EP1983712B1 (en) An automatic discovering method and device for client layer link
WO2011072581A1 (zh) 共享mesh保护的实现方法和设备及光网络系统
WO2022063010A1 (zh) 一种业务保护方法和网络节点
CN102281533B (zh) 基于rt建立lsp的方法、系统和路由器
WO2019006704A1 (zh) 一种路径计算的方法、装置和系统
EP2302836B1 (en) Method, system and device for recovering service
CN101321115B (zh) 一种业务路径建立的方法和系统以及节点设备
WO2012071909A1 (zh) 业务恢复方法及装置
US8542687B2 (en) Node apparatus and route calculation method
EP2328307B1 (en) Barrier boundary node and method for establishing connection between barrier bound ary nodes
WO2021238195A1 (zh) 业务资源预配置方法、设备和系统
WO2015062045A1 (zh) 一种控制通道的建立方法、装置及系统
EP3220581B1 (en) Method and system for restoring optical layer service
ES2844098T3 (es) Método de establecimiento de trayectos de servicio, dispositivo de nodo y sistema
WO2007059652A1 (fr) Procede de selection d'acheminements de services multidiffusion dans un reseau optique a commutation automatique
WO2007071114A1 (fr) Procede pour le reacheminement sans interruption en reseau optique
CN102687473B (zh) 端到端标签交换路径的建立方法和系统
US20220224640A1 (en) Apparatuses and methods for restoration of a label-switched path in a network
WO2007115435A1 (fr) Procédé de détection automatique de topologie d'entité de contrôle dans le réseau optique commuté automatique
CN108886490B (zh) 建立路径的方法和节点
Choi et al. Priority-based optical network protection and restoration with application to DOD networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013896475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896475

Country of ref document: EP