WO2015061963A1 - 无线全双工系统的数字干扰抵消装置和方法及收发信机 - Google Patents

无线全双工系统的数字干扰抵消装置和方法及收发信机 Download PDF

Info

Publication number
WO2015061963A1
WO2015061963A1 PCT/CN2013/086137 CN2013086137W WO2015061963A1 WO 2015061963 A1 WO2015061963 A1 WO 2015061963A1 CN 2013086137 W CN2013086137 W CN 2013086137W WO 2015061963 A1 WO2015061963 A1 WO 2015061963A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
interference
self
unit
Prior art date
Application number
PCT/CN2013/086137
Other languages
English (en)
French (fr)
Other versions
WO2015061963A8 (zh
Inventor
陈特彦
刘晟
程宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380075975.4A priority Critical patent/CN105229981B/zh
Priority to EP13896680.9A priority patent/EP3065361B1/en
Priority to PCT/CN2013/086137 priority patent/WO2015061963A1/zh
Publication of WO2015061963A1 publication Critical patent/WO2015061963A1/zh
Publication of WO2015061963A8 publication Critical patent/WO2015061963A8/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • Digital interference cancellation device and method for wireless full duplex system and transceiver Digital interference cancellation device and method for wireless full duplex system and transceiver
  • the present invention relates to the field of communications technologies, and in particular, to a digital interference cancellation apparatus and method and a transceiver for a wireless full duplex system. Background technique
  • a wireless communication system such as a mobile cellular communication system, a WLAN (Wireless Local Area Network), an FWA (Fixed Wireless Access), a BS (Base Station), an AP (Access Point, Access point), RS (Relay Station), and UE (User
  • Equipment, user equipment, etc. usually have the ability to transmit their own signals and receive signals from other communication nodes.
  • the signal from the opposite end of the communication arrives at the receiving end is very weak compared to its own transmitted signal.
  • a communication node in a mobile cellular communication system has a transmit and receive signal power difference of 80 dB to 140 dB, or even larger. Therefore, in order to avoid self-interference of the transmitted signal of the same transceiver to the received signal, the transmission and reception of the wireless signal are usually distinguished by different frequency bands or time periods.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the protection band in the FDD system and the protection time in the TDD system are to ensure sufficient isolation between reception and transmission, and to avoid the interference of the transmitted signal on the received signal.
  • Wireless full-duplex technology can use the same transceiver to simultaneously receive and transmit signals on the same wireless channel.
  • the spectrum effect of wireless full-duplex technology is twice that of FDD or TDD technology.
  • Embodiments of the present invention provide a digital interference cancellation apparatus and method and a transceiver for a wireless full duplex system, which can effectively eliminate self-interference signals in a digital received signal in a complex communication environment.
  • a digital interference cancellation device is provided, the device being used in a transceiver of a wireless full duplex system
  • the digital interference cancellation device includes: a first interference cancellation module and a second interference cancellation module;
  • the first interference cancellation module is configured to receive a digital transmission signal output by the transceiver as a digital baseband reference signal, and reconstruct the first self-interference signal by using the digital baseband reference signal, The digital self-interference signal of the transceiver is subtracted from the first self-interference signal, and the digital reception signal after the first-stage interference cancellation is obtained, and sent to the second interference cancellation module;
  • the second interference cancellation module is configured to receive a digital transmission signal output by the transceiver as a digital baseband reference signal, and reconstruct a second self-interference signal by using the digital baseband reference signal, The digital self-interference signal is subtracted from the digital received signal after the interference cancellation, and the digital received signal after the second-stage interference cancellation is obtained and transmitted to the transceiver.
  • a digital interference cancellation method for a transceiver of a wireless full duplex system comprising:
  • a transceiver for a wireless full duplex system comprising: the digital interference cancellation device of any one of claims 1 to 10.
  • a wireless full duplex system comprising: the transceiver of claim 18.
  • the digital interference cancellation device adopts a two-stage self-interference signal reconstruction scheme, and firstly reconstructs a near-region self-interference signal by using a digital baseband reference signal, The self-interference signal is subtracted from the digital received signal to achieve first-level self-interference cancellation of the digital received signal, eliminating near-field self-interference in the digital received signal; and then reconstructing the far region by using the digital baseband reference signal Self-interference signal, and subtracting the remote self-interference signal by the digital received signal after the first-stage interference cancellation, realizing the second-level self-interference cancellation of the digital received signal, and eliminating the remote self-interference in the digital received signal .
  • the digital interference cancellation device reconstructs the near-field self-interference signal and the far-field self-interference signal by the two-stage interference cancellation module, which can effectively eliminate the near-field self-interference in the digital received signal.
  • the self-interference in the far area the good self-interference cancellation effect is obtained, the correct reception of the useful signal is improved, and the performance of the transceiver of the wireless full-duplex system is improved.
  • FIG. 1 is a structural diagram of a transceiver of a wireless full duplex system according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a digital interference cancellation device according to Embodiment 1 of the present invention.
  • FIG. 3 is a structural diagram of a digital interference cancellation apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a structural diagram of a digital interference cancellation apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a flow chart of a digital interference cancellation method for a transceiver of a wireless full duplex system according to an embodiment of the present invention.
  • the embodiments of the present invention provide a digital interference cancellation apparatus and method and a transceiver for a wireless full-duplex system, which can effectively eliminate self-interference signals in a digital received signal in a complex communication environment.
  • FIG. 1 is a structural diagram of a transceiver of a wireless full duplex system according to an embodiment of the present invention.
  • the application scenario of the digital interference cancellation apparatus and method according to the embodiment of the present invention is described below with reference to FIG.
  • the wireless full duplex system uses the same transceiver to perform operations of receiving signals and transmitting signals.
  • the transceiver includes: a transmitting channel and a receiving channel.
  • the transmitting channel includes: a serially connected transmitting digital signal processor la, a DAC (Digital to Analog Converter) 2a, an upconverter 3a, a power amplifier 4a, and a transmitting antenna 5a.
  • DAC Digital to Analog Converter
  • the transmitting digital signal processor la generates a digital transmitting signal; the digital transmitting signal is converted into an analog transmitting signal by the DAC 2a; the analog transmitting signal is successively processed by the up-converter 3a and the power amplifier 4a, and then sent to the transmitting The antenna 5a is emitted.
  • the receiving channel includes: a receiving antenna 6a, a LNA (Low Noise Amplifier) 7a, a down converter 8a, an ADC (Analog to Digital Converter) 9a, and a receiving digital signal.
  • a LNA Low Noise Amplifier
  • ADC Analog to Digital Converter
  • the receiving antenna 6a receives an external analog receiving signal; the analog receiving signal is successively processed by the LNA and the down converter 8a, and then sent to the ADC 9a for conversion to a digital receiving signal; the ADC 9a outputs the digital receiving The signal is received to the digital signal processor 10a.
  • the self-interference signals existing in the wireless full-duplex system mainly include: a main path self-interference signal, a self-interference signal that is reflected by the near-field, and a self-interference signal that is reflected by the far-field.
  • the main path self-interference signal is the main interference source of the wireless full-duplex system.
  • the main path self-interference signal can be eliminated by providing a radio frequency interference canceling device 11a between the receiving antenna 6a and the LNA 7a of the receiving channel, as shown in FIG.
  • the residual self-interference signal after being cancelled by the radio frequency interference cancellation device 11a is mainly a self-interference signal that is reflected (including near-field reflection and far-field reflection).
  • the digital interference cancellation device 12a is further configured to further cancel the residual self-interference signal.
  • the digital interference canceling means 12a is provided between the receiving digital signal processor 10a and the ADC 9a.
  • the first input terminal of the digital interference cancellation device 12a is connected to the output end of the ADC 9a, the second input terminal is connected to the output end of the transmitting digital signal processor la, and the output terminal is connected to the receiving number.
  • the input of signal processor 10a is connected to the input terminal of the digital interference cancellation device 12a.
  • the digital interference cancellation device 12a includes: a first interference cancellation module and a second interference cancellation module.
  • the first interference cancellation module is configured to receive a digital transmit signal output by the transmit digital signal processor 1a as a digital baseband reference signal, and reconstruct the first self-interference signal by using the digital baseband reference signal.
  • the first self-interference signal obtained by the reconstruction is subtracted from the digital received signal received from the ADC 9a, and the digital received signal after the first-stage interference cancellation is obtained, and sent to the second interference cancellation module.
  • the second interference cancellation module is configured to receive the number output by the transmitting digital signal processor 1a Transmitting a signal as a digital baseband reference signal, reconstructing a second self-interference signal by using the digital baseband reference signal, and subtracting the reconstructed second self-interference signal by using the first-stage interference canceled digital received signal The second stage interference canceled digital received signal is obtained and sent to the received digital signal processor 10a.
  • the first self-interference signal is generally a near-region self-interference signal
  • the first interference cancellation module may be used to implement a near-region self-interference signal. Eliminate the effect.
  • the second self-interference signal is generally a remote self-interference signal, and the second interference cancellation module can be used to implement a cancellation function of the remote self-interference signal.
  • the digital interference cancellation device 12a adopts a two-stage self-interference signal reconstruction scheme, and firstly reconstructs a first self-interference signal by using a digital baseband reference signal, and reconstructs the first self-reconstructed signal.
  • the interference signal is subtracted from the digital received signal to achieve first-level self-interference cancellation of the digital received signal, eliminating near-field self-interference in the digital received signal; and then reconstructing the second self-interference using the digital baseband reference signal Signaling, and subtracting the reconstructed second self-interference signal by using the first-stage interference-compensated digital received signal to achieve second-level self-interference cancellation of the digital received signal, eliminating the far-field in the digital received signal Self-interference.
  • the digital interference cancellation device 12a reconstructs the near-field self-interference signal and the far-field self-interference signal through the two-stage interference cancellation module, which can effectively eliminate the near-region self-interference in the digital received signal. Interference and remote self-interference, good self-interference cancellation effect is obtained, ensuring the correct reception of useful signals, and improving the performance of the transceiver of the wireless full-duplex system.
  • FIG. 2 is a structural diagram of a digital interference cancellation apparatus according to Embodiment 1 of the present invention. as shown in picture 2,
  • the first interference cancellation module 10 may include a first upsampling unit 101, a first filter 102, a downsampling unit 103, and a first subtractor 104.
  • the input end of the first upsampling unit 101 is connected to the second input end of the digital interference cancellation device 12a, and the output end of the first upsampling unit 101 is connected to the input end of the first filter 102. .
  • the output end of the first filter 102 is connected to the input end of the downsampling unit 103, and the output end of the downsampling unit 103 is connected to the negative input end of the first subtractor 104, the first The output of the subtractor 104 serves as the output of the first interference cancellation module.
  • the first upsampling unit 101 is configured to receive the number of the output of the digital signal processor la
  • the word transmit signal is used as a digital baseband reference signal, and the digital baseband reference signal is upsampled to output a first reference signal to the first filter 102.
  • the sampling rate of the first upsampling unit 101 is greater than the The original sampling rate of the digital transmitted signal is the sampling rate of the ADC 9a.
  • the first filter 102 is configured to receive the first reference signal, reconstruct a third self-interference signal, and send the signal to the downsampling unit 103.
  • the downsampling unit 103 is configured to downsample the third self-interference signal to obtain a first self-interference signal, and send the signal to the first subtractor 104.
  • the downsampling unit 103 The sampling rate is reciprocal from the sampling rate of the first upsampling unit 101.
  • the first subtractor 104 is configured to receive a digital received signal output by the ADC 9a, and subtract the first self-interference signal from the digital received signal to obtain a digital received signal after the first-stage interference cancellation. And sent to the second interference cancellation module 20.
  • the first interference cancellation module may be used to implement the cancellation of the near-field self-interference signal.
  • the first filter 102 is generally a high-speed filter, and the uplink sampling is implemented.
  • the subsequent digital baseband reference signal ie, the first reference signal
  • the third self-interference signal is downsampled to obtain a first self-interference signal (ie, near-field self-interference) signal).
  • the second interference cancellation module 20 may include: a second filter 201 and a second subtractor 202.
  • the input end of the second filter 201 is connected to the second input end of the digital interference canceling device 12a, and the output end of the second filter 201 is connected to the negative input end of the second subtractor 202.
  • the positive input terminal of the second subtractor 202 is connected to the output end of the first interference cancellation module 10 (ie, the output end of the first subtractor 104), and the output of the second subtractor 202 The output of the digital interference cancellation device 12a is terminated.
  • the second filter 201 is configured to reconstruct the second self-interference signal by using the digital baseband reference signal, and send the second self-interference signal to the second subtractor 202.
  • the second subtracter 202 is configured to subtract the second self-interference signal from the digital received signal after the first-stage interference cancellation, and obtain a digital received signal after the second-stage interference cancellation, and send To the receiving digital signal processor 10a.
  • the second interference cancellation module can be used to implement the cancellation of the remote self-interference signal.
  • the second filter 201 is generally a low-speed filter, directly facing the digital baseband.
  • the reference signal is filtered to reconstruct the second self-interference signal (ie, the far-field self-interference signal).
  • the digital interference cancellation device 12a after upsampling the digital baseband reference signal, reconstructing the near-field self-interference signal through the first filter 102, and reconstructing the near-region self-interference signal Interference After downsampling the signal, subtracting from the digital received signal, achieving first-stage self-interference cancellation of the digital received signal, eliminating near-field self-interference in the digital received signal; and then passing the digital baseband reference signal through the second
  • the filter 201 reconstructs the far-field self-interference signal, and subtracts the reconstructed far-field self-interference signal by using the first-stage interference-compensated digital received signal, thereby realizing the second-level self-interference cancellation of the digital received signal, eliminating The far-field self-interference in the digital received signal.
  • the digital interference cancellation device 12a reconstructs the near-field self-interference signal and the far-field self-interference signal through the two-stage filter, which can effectively eliminate the near-field self-interference in the digital received signal.
  • Self-interference with the remote area good self-interference cancellation effect, ensuring the correct reception of useful signals, and improving the performance of the transceiver of the wireless full-duplex system.
  • upsampling and downsampling are well-known techniques in the art, and both digital signals are re-used.
  • the upsampling means that the sampling rate of the upsampling unit is greater than the original sampling rate of the digital signal received by the upsampling unit; and the downsampling means that the sampling rate of the downsampling unit is less than the downsampling unit The raw sample rate of the received digital signal.
  • the digital baseband reference signal and the digital received signal have the same original sampling rate.
  • the digital received signal is obtained by sampling and converting the digital analog signal by the ADC 9a. Therefore, the sampling rate of the ADC 9a is the original sampling rate of the digital received signal and the digital baseband reference signal.
  • the digital baseband reference signal is upsampled, the sampling rate of the first upsampling unit 10 is greater than the original sampling rate of the received digital baseband reference signal, that is, greater than the ADC 9a. Sampling Rate.
  • the signal received by the downsampling unit 30 is a digital baseband reference signal (referred to as a first digital baseband reference signal) after being sampled by the first upsampling unit 10, and therefore, the lower The sampling rate of the sampling unit 30 is less than the original sampling rate of the received first digital baseband reference signal.
  • the sampling rate of the downsampling unit 30 may be equal to the sampling rate of the ADC 9a.
  • the sampling rate of the first upsampling unit 10 and the sampling rate of the downsampling unit 30 are reciprocal of each other.
  • the first filter 102 is used to reconstruct a self-interference signal that passes through multipath propagation in the near region. This is because the return distances of different reflection paths in the near region are relatively small (generally within lm), that is, the delay between digital signals transmitted by different paths is less than 3 ns. In order to distinguish the self-interference signals passing through these paths, it is necessary to use a sampling period as short as possible (for example, the sampling period is less than 3 ns), so the digital baseband reference signal needs to be up-sampled to improve the sampling rate of the digital baseband reference signal (for example, The sampling rate is greater than 300Msps).
  • the original sampling rate of the digital received signal is the sampling rate of the ADC 9a.
  • the sampling rate of the existing ADC 9a is generally 100 ⁇ 250Msps.
  • the digital baseband reference signal can be upsampled to 400Msps, so that the sampling period of the upsampled digital baseband reference signal is 2.5ns, which satisfies the high-speed filter 20 The requirements for self-interference signals in the near-field.
  • the reconstructing the first self-interference signal by the first filter 102 may include: the first filter 102 uses a sampling period of the first reference signal as a delay unit of the tap, and generates the first An impulse response of the self-interference channel, and filtering the first reference signal by using the impulse response to reconstruct the first self-interference signal.
  • the first filter 102 may include: a first receiving unit, a first coefficient acquiring unit, a first filtering unit, and a first sending unit.
  • the first receiving unit is configured to receive the first reference signal and send the signal to the first filtering unit.
  • the first coefficient acquiring unit is configured to acquire a first filter coefficient and send the signal to the first filtering unit.
  • the first filtering unit is configured to filter the first reference signal by using a sampling period of the first reference signal as a delay step of the tap delay line, and combining the first filter coefficient, And reconstructing a third self-interference signal; wherein, a sampling period of the first reference signal is equal to a reciprocal of a sampling rate of the first up sampling unit.
  • the first sending unit is configured to send the third self-interference signal to the downsampling unit.
  • the first filter 102 may take 2.5 ns as a delay step of the tap delay line, combined with the corresponding filter coefficient, A reference signal is filtered to reconstruct the third self-interference signal.
  • the reflection path in the near region is generally within 10 m, that is, the delay of multipath propagation is generally within 30 ns.
  • the first filter is needed.
  • 10 to 20 which can be obtained by dividing the delay by the sampling period, such as 30n S / 2.5n S ) to reconstruct the self-interference signal in the near region.
  • the filter coefficients of the first filter 102 may be preset according to actual needs, or may be estimated by using a certain algorithm.
  • the first interference cancellation mode Block 10 also includes a second upsampling unit 105 and a first algorithm unit 106.
  • the input end of the second upsampling unit 105 is connected to the first input end of the digital interference cancellation device 12a, and the output end of the second upsampling unit 105 is connected to the first algorithm unit 106.
  • the first input is connected to the first input end of the digital interference cancellation device 12a.
  • the second input end of the first algorithm unit 106 is connected to the output end of the first upsampling unit 105, and the output end of the first algorithm unit 106 is connected to the coefficient input end of the first filter 102. .
  • the second upsampling unit 105 is configured to receive the digital received signal, upsample the digital received signal, and output a first received signal to the first algorithm unit 106.
  • the sampling rate of the two upsampling units 105 is equal to the sampling rate of the first upsampling unit 101.
  • the first algorithm unit 106 is configured to: according to the first reference signal and the first received signal, use an adaptive filtering algorithm to estimate a first filter coefficient, and send the first filter coefficient to the first filter 102.
  • the first coefficient acquisition unit is configured to: according to the first reference signal and the first received signal, use an adaptive filtering algorithm to estimate a first filter coefficient, and send the first filter coefficient to the first filter 102.
  • the first coefficient acquisition unit is configured to: according to the first reference signal and the first received signal, use an adaptive filtering algorithm to estimate a first filter coefficient, and send the first filter coefficient to the first filter 102.
  • the adaptive filtering algorithm may be specifically RLS (Recursive Least Squares).
  • the first algorithm unit 106 adopts an adaptive filtering algorithm, and estimating the first filter coefficient may include: using the first received signal as a desired value, the first received signal and the first reference signal The difference is squared and the resulting squared value is minimized to obtain the first filter coefficient.
  • the sampling rate of the first received signal is required to be equal to the sampling rate of the first reference signal, and therefore, needs to be utilized.
  • the second upsampling unit 70 upsamples the digital received signal, and the sampling rate of the second upsampling unit 70 is equal to the sampling rate of the first upsampling unit 10.
  • the apparatus in the embodiment of the present invention further includes a second filter 201, and the remote signal self-interference signal is reconstructed by the second filter 201. A cancellation of the residual self-interference signal is achieved.
  • the self-interference signal reflected by the far-field has a propagation path generally ranging from several tens of meters to several hundred meters (the delay is generally 30 ns to lus). Since the propagation path experienced is large and may require multiple reflections through the scatterer, the power of the far-field self-interference signal will be much lower than the power of the near-field self-interference signal when arriving at the transceiver (eg, power difference) Generally greater than 30dB). Therefore, based on the first filter 102 implementing the first-stage interference cancellation (effectively eliminating the near-field self-interference signal), the relatively low-rate filter can be used to reconstruct the residual self-interference including the far-field reflection. signal.
  • the sampling rate of the second filter 201 can be set to 100 Msps, and the corresponding sampling period is 10 ns, and 80 100 (800 ns/10 ns ⁇ lus/10 ns) taps are set to correspond to the propagation time of 800 ns to lus. Delay.
  • the second filter 201 reconstructing the far-area self-interference signal by using the digital baseband reference signal may include: the second filter 201 uses a sampling period of the digital baseband reference signal as a tap
  • the delay unit generates an impulse response of the remote self-interference channel, and filters the digital baseband reference signal by using the impulse response to reconstruct the remote self-interference signal.
  • the second filter 201 may include: a second receiving unit, a second coefficient acquiring unit, a second filtering unit, and a second transmitting unit.
  • the second receiving unit is configured to receive the digital baseband reference signal and send the signal to the second filtering unit.
  • the second coefficient acquiring unit is configured to acquire a second filter coefficient and send the signal to the second filtering unit.
  • the second filtering unit is configured to filter the digital baseband reference signal by using a sampling period of the digital baseband reference signal as a delay step of the tapped delay line, and combining the second filter coefficient, Reconstructing the second self-interference signal.
  • the second sending unit is configured to send the second self-interference signal to the second subtractor.
  • the filter coefficient of the second filter 201 may be preset according to actual needs, or may be estimated by using a certain algorithm.
  • the second interference cancellation module 20 may further include: a second algorithm unit 203.
  • the first input end of the second algorithm unit 203 is connected to the first input end of the digital interference cancellation device 12a, and the second input end is connected to the output end of the second subtractor 202, and the output terminal is connected The coefficient input terminal of the second filter 201.
  • the second algorithm unit 203 is configured to estimate, according to the second-stage interference canceled digital received signal and the digital baseband reference signal output by the second subtractor 202, by channel estimation, to obtain a second filter.
  • the coefficient is sent to the second filter 201.
  • the digital interference cancellation device 12a estimates the first filter by using an adaptive filtering algorithm according to the characteristics that the amplitude and delay of the near-field self-interference signal change little and slowly with time.
  • the wave coefficient realizes the reconstruction of the near-field self-interference, and eliminates the near-field self-interference in the digital received signal; meanwhile, according to the characteristics that the amplitude and delay of the self-interference signal reflected by the far-field are changed rapidly with time,
  • the channel estimation obtains the second filter coefficient, realizing the reconstruction of the remote self-interference, and eliminating the remote self-interference in the digital received signal.
  • the subtractor is used to cancel the interference signal.
  • the adder structure can also be used. In this case, only the filter coefficient of the filter needs to be performed. Corresponding settings can be reconstructed to obtain a negative near-field or far-field interference signal. Specifically, the digital interference cancellation device described in Embodiment 2 shown in FIG. 3 is used.
  • FIG. 4 is a structural diagram of a digital interference cancellation device according to Embodiment 3 of the present invention. As shown in Figure 4,
  • the first interference cancellation module 10 may further include: a first upsampling unit 101, a third filter 105, a downsampling unit 103, and a first adder 106.
  • the input end of the first upsampling unit 101 is connected to the second input end of the digital interference canceling device 12a, and the output end of the first upsampling unit 101 is connected to the input end of the third filter 105. .
  • the output end of the third filter 105 is connected to the input end of the downsampling unit 103, and the output end of the downsampling unit 103 is connected to the second input end of the first adder 106, An output of an adder 106 serves as an output of the first interference cancellation module.
  • the first upsampling unit 101 is configured to receive a digital transmit signal output by the transmit digital signal processor 1a as a digital baseband reference signal, upsample the digital baseband reference signal, and output a first reference signal. To the third filter 105; wherein, the sampling rate of the first upsampling unit 101 is greater than the original sampling rate of the digital transmitting signal, that is, the sampling rate of the ADC 9a.
  • the third filter 105 is configured to receive the first reference signal, reconstruct a fourth self-interference signal, and send the signal to the downsampling unit 103.
  • the downsampling unit 103 is configured to downsample the fourth self-interference signal to obtain a negative first self-interference signal, and send the signal to the first adder 106.
  • the sampling rate of the unit 103 and the sampling rate of the first upsampling unit 101 are reciprocal to each other.
  • the first adder 106 is configured to receive a digital received signal output by the ADC 9a, and use the digital received signal to add the negative first self-interference signal to obtain digital reception after first-stage interference cancellation. The signal is sent to the second interference cancellation module 20.
  • the first interference cancellation module can be used to implement the cancellation of the near-field self-interference signal.
  • the third filter 105 is generally a high-speed filter, and performs up-sampling.
  • the subsequent digital baseband reference signal ie, the first reference signal
  • the fourth self-interference signal is downsampled to obtain a negative first self-interference signal (ie, negative) Near-area self-interference signal).
  • a negative first self-interference signal can be reconstructed, and then the negative received signal is added by the digital received signal.
  • a self-interference signal obtains a digital received signal after the first-stage interference cancellation, thereby achieving cancellation of the near-field self-interference signal.
  • the second interference cancellation module 20 may include: a fourth filter 203 and a second adder 204.
  • the input end of the fourth filter 203 is connected to the second input end of the digital interference cancellation device 12a, and the output end of the fourth filter 203 is connected to the first input end of the second adder 204. .
  • the second input terminal of the second adder 204 is connected to the output end of the first interference cancellation module 10 (that is, the output end of the first adder 106), and the second adder 204 is The output is terminated to the output of the digital interference cancellation device 12a.
  • the fourth filter 203 is configured to reconstruct a negative second self-interference signal by using the digital baseband reference signal, and send the signal to the second adder 204.
  • the second adder 204 is configured to add the digital receive signal after the first-stage interference cancellation to the negative second self-interference signal to obtain a digital receive signal after the second-stage interference cancellation. And sent to the receiving digital signal processor 10a.
  • the second interference cancellation module can be used to implement the cancellation of the remote self-interference signal.
  • the fourth filter 203 is generally a low-speed filter, directly to the digital baseband.
  • the reference signal is filtered and reconstructed to obtain a negative second self-interference signal (ie, a negative far-field self-interference signal).
  • a negative second self-interference signal can be reconstructed, and then the negative received signal is added by the digital received signal.
  • the second self-interference signal obtains the digital received signal after the second-stage interference cancellation, and realizes the cancellation of the self-interference signal in the far area.
  • the digital interference cancellation device 12a after up-sampling the digital baseband reference signal, reconstructs a negative near-field self-interference signal through the third filter 105, and reconstructs the reconstructed
  • the negative near-field self-interference signal is sampled and subtracted from the digital received signal to achieve the first stage of the digital received signal.
  • Self-interference cancellation eliminating near-field self-interference in the digital received signal; then, reconstructing the digital baseband reference signal through the fourth filter 203 to reconstruct the far-field self-interference signal, and using the first-stage interference to cancel the digital reception
  • the signal is subtracted from the reconstructed far-field self-interference signal to achieve second-level self-interference cancellation of the digital received signal, and the remote self-interference in the digital received signal is eliminated.
  • the digital interference cancellation device 12a reconstructs the near-field self-interference signal and the far-field self-interference signal through two-stage filters, which can effectively eliminate the near-region self-interference in the digital received signal. Interference and remote self-interference, good self-interference cancellation effect is obtained, ensuring the correct reception of useful signals, and improving the performance of the transceiver of the wireless full-duplex system.
  • the working principle of the third filter 105 may be the same as that of the first filter 102 described in the first embodiment of the specific domain, and the difference is only in the filter coefficient.
  • the third filter 105 reconstructs a negative first self-interference signal by setting the filter coefficient.
  • the working principle of the fourth filter 203 can be the same as the second filter 201 described in the first embodiment of the specific domain, and the difference lies only in the setting of the filter coefficient.
  • the fourth filter 203 reconstructs a negative second self-interference signal by specific setting of the filter coefficients.
  • the embodiment of the present invention further provides a transceiver for a wireless full duplex system.
  • the transceiver can include: a transmit channel and a receive channel.
  • the transmission channel includes: a serially connected transmit digital signal processor, a digital to analog converter DAC, an upconverter, a power amplifier, and a transmit antenna.
  • the receive channel includes: a serially connected receive antenna, a low noise amplifier LNA, a downconverter, an analog to digital converter ADC, and a receive digital signal processor.
  • the transceiver further includes the digital interference cancellation device of any of the preceding embodiments.
  • an embodiment of the present invention provides a wireless full duplex system, where the system includes the transceiver described in the foregoing embodiment.
  • the embodiment of the present invention further provides a digital interference cancellation method for a transceiver of a wireless full duplex system.
  • the method is applicable to a transceiver of a wireless full-duplex system for effectively eliminating self-interference signals in a digital received signal of a wireless full-duplex system in a complex communication environment.
  • the transceiver includes a transmit channel and a receive channel.
  • the transmitting channel includes: a serially connected transmitting digital signal processor, a digital-to-analog converter DAC, an up-converter, a power amplifier, and a transmitting antenna;
  • the receiving channel includes: a sequentially connected receiving antenna, a low-noise amplifier LNA, and a downlink frequency conversion , analog to digital converter ADC and receiver digital signal processor.
  • FIG. 5 it is a flowchart of a digital interference cancellation method for a transceiver of a wireless full duplex system according to an embodiment of the present invention. As shown in FIG. 5, the method may include the following steps:
  • S134 Receive a digital transmit signal output by the transmit digital signal processor as a digital baseband reference signal.
  • [135J S200 Reconstructing the first self-interference signal using the digital baseband reference signal.
  • S500 subtracting the reconstructed second self-interference signal by using the first-stage interference canceled digital received signal to obtain a second-stage interference canceled digital received signal, and transmitting the received digital signal to the received digital signal processor.
  • the method according to the embodiment of the present invention adopts a two-stage self-interference signal reconstruction scheme, firstly reconstructing a near-field self-interference signal by using a digital baseband reference signal, and reconstructing the reconstructed near-field self-interference signal and the digital received signal. Subtracting, achieving first-stage self-interference cancellation of the digital received signal, eliminating near-field self-interference in the digital received signal; and then reconstructing the far-field self-interference signal by using the digital baseband reference signal, and using the first-stage interference The cancelled digital received signal is subtracted from the reconstructed far-field self-interference signal to achieve second-level self-interference cancellation of the digital received signal, and the remote self-interference in the digital received signal is eliminated.
  • the two-stage interference cancellation module respectively reconstructs the near-field self-interference signal and the far-field self-interference signal, which can effectively eliminate the near-field self-interference and the far-field self-interference in the digital received signal, and obtains a good self.
  • Interference cancellation effects ensure proper reception of useful signals and improve the performance of transceivers in wireless full-duplex systems.
  • reconstructing the near-region self-interference signal by using the digital baseband reference signal in S200 may include:
  • [144J S203 Downsampling the third self-interference signal to obtain a first self-interference signal; wherein, the sampling rate of the down sampling and the sampling rate of the up sampling of the digital baseband reference signal are reciprocal.
  • the reconstructing the third self-interference signal by using the first reference signal in S202 may include:
  • the acquiring the first filter coefficient includes: performing upsampling on the digital received signal to obtain a first received signal; wherein, a sampling rate for upsampling the digital received signal is equal to the number The sampling rate of the baseband reference signal is upsampled; and the first filter coefficient is estimated by using an adaptive filtering algorithm according to the first reference signal and the first received signal.
  • using the adaptive filtering algorithm to estimate the first filter coefficient may include: using the first received signal as a desired value, and comparing the difference between the first received signal and the first reference signal The squared value is obtained, and the obtained square value is minimized to obtain the first filter coefficient.
  • the reconstructing the second self-interference signal by using the digital baseband reference signal in S400 may include:
  • [153J S402 Taking the sampling period of the digital baseband reference signal as a delay step of the tapped delay line, combining the second filter coefficient, filtering the digital baseband reference signal to reconstruct the second self-interference signal.
  • the second filter coefficient can be obtained using channel estimation.
  • the acquiring the second filter coefficient may include: estimating, according to the second stage interference canceled digital received signal and the digital baseband reference signal, a second filter coefficient by using channel estimation.
  • the first filter coefficient is estimated by using an adaptive filtering algorithm, and the near-region is implemented. Reconstruction of self-interference, eliminating near-field self-interference in the digital received signal; meanwhile, according to the characteristics of the amplitude and delay of the self-interference signal reflected by the far-field, the channel filter is used to obtain the second filter coefficient. Realizing the reconstruction of the self-interference in the far-field, and eliminating the self-interference of the far-field in the digital received signal.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple networks. On the unit. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions described may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a disk or an optical disk, and the like, which can store a program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Transceivers (AREA)

Abstract

公开一种数字干扰抵消装置,包括:第一干扰抵消模块接收收发信机输出的数字发射信号作为数字基带参考信号,利用所述数字基带参考信号重构第一自干扰信号,用接收自收发信机的数字接收信号减去第一自干扰信号,得到第一级干扰抵消后的数字接收信号;第二干扰抵消模块接收收发信机输出的数字发射信号作为数字基带参考信号,利用所述数字基带参考信号重构第二自干扰信号,用第一级干扰抵消后的数字接收信号减去第二自干扰信号,得到第二级干扰抵消后的数字接收信号。本发明实施例还公开了一种数字干扰抵消方法、无线全双工系统及收发信机。采用本发明实施例,能够在复杂的通信环境中,有效的消除数字接收信号中的自干扰信号。

Description

无线全双工系统的数字干扰抵消装置和方法及收发信机
技术领域
[01] 本发明涉及通信技术领域, 特别是涉及一种无线全双工系统的数字干扰抵消装 置和方法及收发信机。 背景技术
[02] 在移动蜂窝通信系统、 WLAN ( Wireless Local Area Network, 无线局域网)、 FWA( Fixed Wireless Access,固定无线接入)等无线通信系统中, BS (Base Station, 基站)、 AP ( Access Point, 接入点)、 RS (Relay Station, 中继站) 以及 UE ( User
Equipment, 用户设备) 等通信节点通常具有发射自身信号和接收其他通信节点 信号的能力。
[03] 由于无线信号在无线信道中的衰减非常大, 与自身的发射信号相比, 来自通 信对端的信号到达接收端时信号已非常微弱。 例如, 移动蜂窝通信系统中一个通 信节点的收发信号功率差达到 80dB至 140dB, 甚至更大。 因此, 为了避免同一 收发信机的发射信号对接收信号的自干扰, 无线信号的发送和接收通常采用不同 的频段或时间段加以区分。 例如, 在 FDD ( Frequency Division Duplex, 频分双 工) 中, 发送和接收使用相隔一定保护频带的不同频段分别进行通信; 在 TDD ( Time Division Duplex, 时分双工) 中, 发送和接收则使用相隔一定保护时间的 不同时间段分别进行通信。 其中, FDD系统中的保护频带和 TDD系统中的保护 时间都是为了保证接收和发送之间充分的隔离, 避免发送信号对接收信号造成干 扰。
[04] 而无线全双工技术可以使用同一收发信机,在相同的无线信道上同时进行接 收信号和发送信号的操作。 这样, 理论上无线全双工技术的频谱效果是 FDD 或 TDD技术的两倍。
[05] 但是, 由于使用相同的无线信道接收信号和发送信号, 则无线全双工的收发 信机中发射信号对接收信号的干扰 (称为自干扰, Self-interference) 比较强, 对 有用信号的正确接收造成一定的影响。 发明内容
[06] 本发明实施例提供了一种无线全双工系统的数字干扰抵消装置和方法及收 发信机, 能够在复杂的通信环境中, 有效的消除数字接收信号中的自干扰信号。
[07] 一方面, 提供一种数字干扰抵消装置, 所述装置用于无线全双工系统的收发 信机;
[08] 所述数字干扰抵消装置包括: 第一干扰抵消模块和第二干扰抵消模块;
[09] 所述第一干扰抵消模块,用于接收所述收发信机输出的数字发射信号作为数 字基带参考信号, 利用所述数字基带参考信号重构第一自干扰信号, 用接收自所 述收发信机的数字接收信号减去所述第一自干扰信号, 得到第一级干扰抵消后的 数字接收信号, 发送至所述第二干扰抵消模块;
[10] 所述第二干扰抵消模块,用于接收所述收发信机输出的数字发射信号作为数 字基带参考信号, 利用所述数字基带参考信号重构第二自干扰信号, 用所述第一 级干扰抵消后的数字接收信号减去所述第二自干扰信号, 得到第二级干扰抵消后 的数字接收信号, 并发送至所述收发信机。
[11] 第二方面, 提供一种无线全双工系统的收发信机的数字干扰抵消方法, 所述 方法包括:
[12] 接收所述收发信机输出的数字发射信号作为数字基带参考信号;
[13] 利用所述数字基带参考信号重构第一自干扰信号;
[14] 用接收自所述收发信机的数字接收信号减去所述第一自干扰信号,得到第一 级干扰抵消后的数字接收信号;
[15] 利用所述数字基带参考信号重构第二自干扰信号;
[16] 用所述第一级干扰抵消后的数字接收信号减去所述第二自干扰信号,得到第 二级干扰抵消后的数字接收信号, 并发送至所述收发信机。
[17] 第三方面, 提供一种无线全双工系统的收发信机, 所述收发信机包括: 如权 利要求 1至 10任一项所述的数字干扰抵消装置。
[18] 第四方面, 提供一种无线全双工系统, 所述系统包括: 如权利要求 18所述 的收发信机。
[19] 与现有技术相比, 本发明实施例中, 所述数字干扰抵消装置采用两级自干扰 信号重构方案, 首先利用数字基带参考信号重构近区自干扰信号, 将所述近区自 干扰信号与数字接收信号相减, 实现对数字接收信号的第一级自干扰抵消, 消除 所述数字接收信号中的近区自干扰; 然后, 利用所述数字基带参考信号重构远区 自干扰信号, 并用第一级干扰抵消后的数字接收信号减去所述远区自干扰信号, 实现对数字接收信号的第二级自干扰抵消, 消除所述数字接收信号中的远区自干 扰。
[20] 由此, 本发明实施例所述数字干扰抵消装置, 通过两级干扰抵消模块分别重 构近区自干扰信号和远区自干扰信号, 能够有效消除数字接收信号中的近区自干 扰和远区自干扰, 获得了良好的自干扰抵消效果, 提高有用信号的正确接收, 提 高了无线全双工系统的收发信机的工作性能。 附图说明
[21] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例 或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动性的前提下, 还可以根据这些附图获得其他的附图。
[22] 图 1为本发明实施例的无线全双工系统的收发信机的结构图;
[23] 图 2为本发明实施例一的数字干扰抵消装置的结构图;
[24] 图 3为本发明实施例二的数字干扰抵消装置的结构图;
[25] 图 4为本发明实施例三的数字干扰抵消装置的结构图;
[26] 图 5 为本发明实施例的无线全双工系统的收发信机的数字干扰抵消方法流 程图。 具体实施方式 [27] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整的描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全 部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[28] 本发明实施例提供了一种无线全双工系统的数字干扰抵消装置和方法及收 发信机, 能够在复杂的通信环境中, 有效的消除数字接收信号中的自干扰信号。
[29] 参照图 1, 为本发明实施例的无线全双工系统的收发信机的结构图。 下面结 合图 1, 对本发明实施例所述的数字干扰抵消装置和方法的应用场景进行介绍。
[30] 所述无线全双工系统采用同一收发信机实现接收信号和发送信号的操作。如 图 1所示, 所述收发信机包括: 发射通道和接收通道。 [31] 所述发射通道包括: 顺序连接的发射数字信号处理器 la、 DAC (Digital to Analog Converter, 数字模拟转换器) 2a、 上行变频器 3a、 功率放大器 4a及发射 天线 5a。
[32] 其中, 发射数字信号处理器 la产生数字发射信号; 该数字发射信号经 DAC 2a转换为模拟发射信号; 所述模拟发射信号经过上行变频器 3a和功率放大器 4a 相继处理后, 送至发射天线 5a发射出去。
[33] 所述接收通道包括: 顺序连接的接收天线 6a、 LNA ( Low Noise Amplifier, 低噪声放大器) 7a、 下行变频器 8a、 ADC ( Analog to Digital Converter, 模拟数 字转换器) 9a及接收数字信号处理器 10a。
[34] 其中, 接收天线 6a收到外界的模拟接收信号; 所述模拟接收信号经 LNA和 下行变频器 8a相继处理后, 送至 ADC9a转换为数字接收信号; 所述 ADC 9a输 出所述数字接收信号至接收数字信号处理器 10a。
[35] 由图 1可知, 所述无线全双工系统中存在的自干扰信号主要包括: 主径自干 扰信号、 经过近区反射的自干扰信号、 以及经过远区反射的自干扰信号。
[36] 其中, 主径自干扰信号是无线全双工系统的主要干扰源。一般可以通过在接 收通道的接收天线 6a和 LNA 7a之间设置射频干扰抵消装置 11a来消除主径自干 扰信号, 如图 1所示。 经过射频干扰抵消装置 11a抵消后的残余自干扰信号主要 是经过反射 (包括近区反射和远区反射) 的自干扰信号。
[37] 而本发明实施例所述的数字干扰抵消装置 12a 则是用于对上述残余自干扰 信号进行进一步的抵消。
[38] 如图 1 所示, 所述数字干扰抵消装置 12a设在接收数字信号处理器 10a和 ADC 9a之间。
[39] 所述数字干扰抵消装置 12a的第一输入端接所述 ADC 9a的输出端, 其第二 输入端接所述发射数字信号处理器 la 的输出端, 其输出端接所述接收数字信号 处理器 10a的输入端。
[40] 所述数字干扰抵消装置 12a包括: 第一干扰抵消模块和第二干扰抵消模块。
[41] 其中, 所述第一干扰抵消模块, 用于接收所述发射数字信号处理器 la输出 的数字发射信号作为数字基带参考信号, 利用所述数字基带参考信号重构得到第 一自干扰信号, 用接收自 ADC 9a的数字接收信号减去所述重构得到的第一自干 扰信号, 得到第一级干扰抵消后的数字接收信号, 发送至第二干扰抵消模块。
[42] 所述第二干扰抵消模块, 用于接收所述发射数字信号处理器 la输出的数字 发射信号作为数字基带参考信号, 利用所述数字基带参考信号重构得到第二自干 扰信号, 用所述第一级干扰抵消后的数字接收信号减去所述重构得到的第二自干 扰信号, 得到第二级干扰抵消后的数字接收信号, 并发送至所述接收数字信号处 理器 10a。
[43] 需要说明的是, 本发明实施例所述方法中, 所述第一自干扰信号一般为近区 自干扰信号, 所述第一干扰抵消模块可以用于实现对近区自干扰信号的消除作 用。 所述第二自干扰信号一般为远区自干扰信号, 所述第二干扰抵消模块可以用 于实现对远区自干扰信号的消除作用。
[44] 本发明实施例中, 所述数字干扰抵消装置 12a 采用两级自干扰信号重构方 案, 首先利用数字基带参考信号重构第一自干扰信号, 将所述重构得到的第一自 干扰信号与数字接收信号相减, 实现对数字接收信号的第一级自干扰抵消, 消除 所述数字接收信号中的近区自干扰; 然后, 利用所述数字基带参考信号重构第二 自干扰信号, 并用第一级干扰抵消后的数字接收信号减去所述重构得到的第二自 干扰信号, 实现对数字接收信号的第二级自干扰抵消, 消除所述数字接收信号中 的远区自干扰。
[45] 由此, 本发明实施例所述数字干扰抵消装置 12a, 通过两级干扰抵消模块分 别重构近区自干扰信号和远区自干扰信号, 能够有效消除数字接收信号中的近区 自干扰和远区自干扰,获得了良好的自干扰抵消效果,确保有用信号的正确接收, 提高了无线全双工系统的收发信机的工作性能。
[46] 参照图 2, 为本发明实施例一所述的数字干扰抵消装置的结构图。 如图 2所 示,
[47] 所述第一干扰抵消模块 10可以包括:第一上采样单元 101、第一滤波器 102、 下采样单元 103、 第一减法器 104。
[48] 其中,所述第一减法器 104的正输入端接所述数字干扰抵消装置 12a的第一 输入端。
[49] 所述第一上采样单元 101的输入端接所述数字干扰抵消装置 12a的第二输入 端, 所述第一上采样单元 101的输出端接所述第一滤波器 102的输入端。
[50] 所述第一滤波器 102的输出端接所述下采样单元 103的输入端,所述下采样 单元 103的输出端接所述第一减法器 104的负输入端, 所述第一减法器 104的输 出端作为所述第一干扰抵消模块的输出端。
[51] 所述第一上采样单元 101, 用于接收所述发射数字信号处理器 la输出的数 字发射信号作为数字基带参考信号, 对所述数字基带参考信号进行上采样, 输出 第一参考信号至所述第一滤波器 102; 其中, 所述第一上采样单元 101 的采样率 大于所述数字发射信号的原始采样率, 即为 ADC 9a的采样率。
[52] 所述第一滤波器 102, 用于接收所述第一参考信号, 重构第三自干扰信号, 并发送至所述下采样单元 103。
[53] 所述下采样单元 103, 用于对所述第三自干扰信号进行下采样, 得到第一自 干扰信号, 并发送至所述第一减法器 104; 其中, 所述下采样单元 103的采样率 与所述第一上采样单元 101的采样率互为倒数。
[54] 所述第一减法器 104, 用于接收 ADC 9a输出的数字接收信号, 用所述数字 接收信号减去所述第一自干扰信号, 得到第一级干扰抵消后的数字接收信号, 并 发送至所述第二干扰抵消模块 20。
[55] 需要说明得是,所述第一干扰抵消模块可以用于实现对近区自干扰信号的消 除作用, 此时, 所述第一滤波器 102—般为高速滤波器, 实现对上采样后的数字 基带参考信号 (即为第一参考信号) 进行滤波, 重构第三自干扰信号; 然后对该 第三自干扰信号进行下采样, 得到第一自干扰信号 (即为近区自干扰信号)。
[56] 所述第二干扰抵消模块 20可以包括: 第二滤波器 201和第二减法器 202。
[57] 所述第二滤波器 201的输入端接所述数字干扰抵消装置 12a的第二输入端, 所述第二滤波器 201的输出端接所述第二减法器 202的负输入端。
[58] 所述第二减法器 202的正输入端接所述第一干扰抵消模块 10的输出端 (即 为所述第一减法器 104的输出端), 所述第二减法器 202的输出端接所述数字干 扰抵消装置 12a的输出端。
[59] 所述第二滤波器 201, 用于采用所述数字基带参考信号重构第二自干扰信 号, 并发送至所述第二减法器 202。
[60] 所述第二减法器 202, 用于将所述第一级干扰抵消后的数字接收信号减去所 述第二自干扰信号, 得到第二级干扰抵消后的数字接收信号, 并发送至所述接收 数字信号处理器 10a。
[61] 需要说明得是,所述第二干扰抵消模块可以用于实现对远区自干扰信号的消 除作用, 此时, 所述第二滤波器 201—般为低速滤波器, 直接对数字基带参考信 号进行滤波, 重构第二自干扰信号 (即为远区自干扰信号)。
[62] 本发明实施例所述数字干扰抵消装置 12a, 对数字基带参考信号进行上采样 后, 通过第一滤波器 102重构近区自干扰信号, 并将所述重构得到的近区自干扰 信号下采样后,与数字接收信号相减,实现对数字接收信号的第一级自干扰抵消, 消除所述数字接收信号中的近区自干扰; 然后, 将所述数字基带参考信号通过第 二滤波器 201重构远区自干扰信号, 并用第一级干扰抵消后的数字接收信号减去 所述重构得到的远区自干扰信号, 实现对数字接收信号的第二级自干扰抵消, 消 除所述数字接收信号中的远区自干扰。
[63] 由此, 本发明实施例所述数字干扰抵消装置 12a, 通过两级滤波器分别重构 近区自干扰信号和远区自干扰信号, 能够有效消除数字接收信号中的近区自干扰 和远区自干扰, 获得了良好的自干扰抵消效果, 确保有用信号的正确接收, 提高 了无线全双工系统的收发信机的工作性能。
[64] 首先需要说明的是, 上采样和下采样都是本领域的公知技术手段, 都是对数 字信号进行重采。 具体的, 上采样是指, 上采样单元重采的采样率大于该上采样 单元接收到的数字信号的原始采样率; 而下采样是指, 下采样单元重采的采样率 小于该下采样单元接收到的数字信号的原始采样率。
[65] 结合本发明实施例而言,所述数字基带参考信号和数字接收信号的原始采样 率相同。 如图 1所示, 数字接收信号是由 ADC 9a对数字模拟信号进行采样转换 得到的, 因此, ADC 9a的采样率即为所述数字接收信号和数字基带参考信号的 原始采样率。 本发明实施例中, 对数字基带参考信号进行上采样是, 所述第一上 采样单元 10 的采样率大于接收到的所述数字基带参考信号的原始采样率, 即为 大于所述 ADC 9a的采样率。
[66] 对应的, 所述下采样单元 30 接收到的信号是经过所述第一上采样单元 10 上采样后的数字基带参考信号 (简称为第一数字基带参考信号), 因此, 所述下 采样单元 30 的采样率小于接收到的第一数字基带参考信号的原始采样率。 具体 的, 所述下采样单元 30的采样率可以等于所述 ADC 9a的采样率。 且, 所述第一 上采样单元 10的采样率与所述下采样单元 30的采样率互为倒数。
[67] 下面对本发明实施例所述装置的工作原理进行详细介绍。
[68] 本发明实施例中,采用第一滤波器 102重构近区内经过多径传播的自干扰信 号。 这是因为, 近区内不同反射路径的折返距离相差较小 (一般情况下在 lm以 内), 即不同路径传输的数字信号之间的时延小于 3ns。 为了区分通过这些路径的 自干扰信号, 需要采用尽量短的采样周期 (例如, 采样周期小于 3ns), 因此需要 对数字基带参考信号进行上采样操作, 以提高数字基带参考信号的采样率(例如, 采样率大于 300Msps)。 [69] 本发明实施例中, 所述数字接收信号的原始采样率就是 ADC 9a的采样率。 例如, 现有 ADC 9a的采样率一般为 100~250Msps, 此时可以对数字基带参考信 号上采样到 400Msps, 使得上采样后的数字基带参考信号的采样周期为 2.5ns,满 足高速滤波器 20重构近区自干扰信号的要求。
[70] 需要说明的是, 所述第一滤波器 102重构第一自干扰信号可以包括: 所述第 一滤波器 102利用以第一参考信号的采样周期作为抽头的时延单元, 生成第一自 干扰信道的脉冲响应, 并利用所述脉冲响应对第一参考信号进行滤波, 重构第一 自干扰信号。
[71] 具体的,所述第一滤波器 102可以包括:第一接收单元、第一系数获取单元、 第一滤波单元和第一发送单元。
[72] 所述第一接收单元,用于接收所述第一参考信号,发送至所述第一滤波单元。
[73] 所述第一系数获取单元,用于获取第一滤波系数,发送至所述第一滤波单元。
[74] 所述第一滤波单元,用于以所述第一参考信号的采样周期作为抽头延迟线的 时延步进, 结合所述第一滤波系数, 对所述第一参考信号进行滤波, 重构第三自 干扰信号; 其中, 所述第一参考信号的采样周期等于所述第一上采样单元的采样 率的倒数。
[75] 所述第一发送单元, 用于将所述第三自干扰信号发送至所述下采样单元。
[76] 例如, 当所述第一参考信号的采样周期为 2.5ns时, 所述第一滤波器 102可 以以 2.5ns作为抽头延迟线的时延步进, 结合对应的滤波器系数, 对第一参考信 号进行滤波, 重构第三自干扰信号。
[77] 进一步的, 考虑到近区内的反射路径一般都在 10m 以内, 即多径传播的时 延一般在 30ns 以内, 为了尽量覆盖经过多径传播的自干扰信号, 需要在第一滤 波器 102中设置 10至 20 (可以通过时延除以采样周期得到, 如 30nS/2.5nS)个抽 头来重构近区内的自干扰信号。
[78] 需要说明的是, 所述第一滤波器 102 的滤波系数可以根据实际需要预先设 定, 也可以采用一定的算法估算得到。
[79] 具体的, 由于近区收发天线传播环境的变化较小, 因此近区自干扰信号的幅 度和延迟随时间的变化较小且较为缓慢, 因此可以采用自适应滤波算法, 估算得 到第一滤波系数, 实现对近区自干扰的重构。
[80] 参照图 3, 为本发明实施例二所述的数字干扰抵消装置的结构图。 图 3所示 实施例二的数字干扰抵消装置与图 2所示实施例一的区别在于: 第一干扰抵消模 块 10还包括第二上采样单元 105和第一算法单元 106。
[81] 具体的,所述第二上采样单元 105的输入端接所述数字干扰抵消装置 12a的 第一输入端, 所述第二上采样单元 105的输出端接所述第一算法单元 106的第一 输入端。
[82] 所述第一算法单元 106的第二输入端接所述第一上采样单元 105的输出端, 所述第一算法单元 106的输出端接所述第一滤波器 102的系数输入端。
[83] 所述第二上采样单元 105, 用于接收所述数字接收信号, 对所述数字接收信 号进行上采样, 输出第一接收信号至所述第一算法单元 106; 其中, 所述第二上 采样单元 105的采样率等于所述第一上采样单元 101的采样率。
[84] 所述第一算法单元 106, 用于根据所述第一参考信号和所述第一接收信号, 采用自适应滤波算法, 估算得到第一滤波系数, 发送至所述第一滤波器 102的第 一系数获取单元。
[85] 其中, 所述自适应滤波算法可以具体为 RLS ( Recursive Least Squares, 递推 最小二乘法)。 贝 1」, 所述第一算法单元 106 采用自适应滤波算法, 估算得到第一 滤波系数可以包括: 以所述第一接收信号作为期望值, 对所述第一接收信号和所 述第一参考信号的差值求平方,并最小化得到的平方值,得到所述第一滤波系数。
[86] 需要说明得是, 在利用自适应滤波算法估算所述第一滤波系数的过程中, 要 求所述第一接收信号的采样率等于所述第一参考信号的采样率, 因此, 需要利用 第二上采样单元 70对所述数字接收信号进行上采样, 且所述第二上采样单元 70 的采样率等于所述第一上采样单元 10的采样率。
[87] 上述详细阐述了本发明实施例所述的数字干扰抵消装置,通过采用第一滤波 器 102重构近区内经过多径传播的自干扰信号, 可以抵消大部分的自干扰信号。 但是系统中仍残余有经过远区反射的自干扰信号, 因此本发明实施例所述装置 中, 还包括第二滤波器 201, 通过所述第二滤波器 201重构远区自干扰信号, 可 以实现对残余自干扰信号的抵消。
[88] 具体的, 经过远区反射的自干扰信号, 其传播路径一般在几十米至数百米的 范围内 (时延一般为 30ns至 lus)。 由于经历的传播路径较大且可能需要经过散 射体的多次反射, 在到达所述收发信机时, 远区自干扰信号的功率会比近区自干 扰信号的功率低很多 (例如, 功率差一般大于 30dB )。 因此, 在采用第一滤波器 102实现第一级干扰抵消 (有效消除了近区自干扰信号) 的基础上, 采用相对低 速率的滤波器, 便可以重构包括经过远区反射的残余自干扰信号。 [89] 例如, 可以设定第二滤波器 201的采样率为 100Msps, 其对应的采样周期为 10ns , 并设置 80 100 ( 800ns/10ns~lus/10ns ) 个抽头以对应 800ns~ lus的传播时 延。
[90] 具体的,所述第二滤波器 201采用所述数字基带参考信号重构远区自干扰信 号可以包括: 所述第二滤波器 201利用所述数字基带参考信号的采样周期作为抽 头的时延单元, 生成远区自干扰信道的脉冲响应, 并利用所述脉冲响应对所述数 字基带参考信号进行滤波, 重构远区自干扰信号。
[91] 所述第二滤波器 201可以包括: 第二接收单元、 第二系数获取单元、 第二滤 波单元以及第二发送单元。
[92] 所述第二接收单元, 用于接收所述数字基带参考信号, 发送至所述第二滤波 单元。
[93] 所述第二系数获取单元,用于获取第二滤波系数,发送至所述第二滤波单元。
[94] 所述第二滤波单元,用于以所述数字基带参考信号的采样周期作为抽头延迟 线的时延步进, 结合所述第二滤波系数, 对所述数字基带参考信号进行滤波, 重 构第二自干扰信号。
[95] 所述第二发送单元, 用于将所述第二自干扰信号发送至所述第二减法器。
[96] 同样的, 所述第二滤波器 201的滤波系数可以根据实际需要预先设定, 也可 以采用一定的算法估算得到。
[97] 此时, 考虑到收发天线远区的传播环境变化较大(例如受移动物体的影像较 大), 经过远区反射的自干扰信号的幅度和延迟随时间的变化较快, 利用自适应 滤波算法可能无法迅速跟踪滤波器系数的变化, 因此, 对于第二滤波器 201, 可 以采用信道估计获得第二滤波系数。
[98] 仍结合图 3所示,所述第二干扰抵消模块 20还可以包括:第二算法单元 203。
[99] 所述第二算法单元 203的第一输入端接所述数字干扰抵消装置 12a的第一输 入端, 其第二输入端接所述第二减法器 202 的输出端, 其输出端接所述第二滤波 器 201的系数输入端。
[100]所述第二算法单元 203, 用于根据所述第二减法器 202输出的第二级干扰抵 消后的数字接收信号和所述数字基带参考信号, 通过信道估计, 估算得到第二滤 波系数, 发送至所述第二滤波器 201。
[101]本发明实施例二所述数字干扰抵消装置 12a, 根据近区自干扰信号的幅度和 延迟随时间的变化较小且较为缓慢的特点, 采用自适应滤波算法估算得到第一滤 波系数, 实现对近区自干扰的重构, 消除所述数字接收信号中的近区自干扰; 同 时, 根据远区反射的自干扰信号的幅度和延迟随时间的变化较快的特点, 采用信 道估计获得第二滤波系数, 实现对远区自干扰的重构, 消除所述数字接收信号中 的远区自干扰。
[102]由此, 能够有效消除数字接收信号中的近区自干扰和远区自干扰, 获得了良 好的自干扰抵消效果, 确保有用信号的正确接收, 提高了无线全双工系统的收发 信机的工作性能。
[103]本发明实施例一所述的数字干扰抵消装置中,采用减法器实现对干扰信号的 抵消, 在实际应用中, 还可以采用加法器结构, 此时只需要对滤波器的滤波系数 进行相应的设定, 重构得到负的近区或远区干扰信号即可。 具体的, 参见图 3所 示的实施例二所述的数字干扰抵消装置。
[104]参照图 4, 为本发明实施例三所述的数字干扰抵消装置的结构图。 如图 4所 示,
[105]所述第一干扰抵消模块 10还可以包括: 第一上采样单元 101、 第三滤波器 105、 下采样单元 103、 第一加法器 106。
[106]其中,所述第一加法器 106的第一输入端接所述数字干扰抵消装置 12a的第 一输入端。
[107]所述第一上采样单元 101的输入端接所述数字干扰抵消装置 12a的第二输入 端, 所述第一上采样单元 101的输出端接所述第三滤波器 105的输入端。
[108]所述第三滤波器 105的输出端接所述下采样单元 103的输入端,所述下采样 单元 103的输出端接所述第一加法器 106的第二输入端, 所述第一加法器 106的 输出端作为所述第一干扰抵消模块的输出端。
[109]所述第一上采样单元 101, 用于接收所述发射数字信号处理器 la输出的数 字发射信号作为数字基带参考信号, 对所述数字基带参考信号进行上采样, 输出 第一参考信号至所述第三滤波器 105 ; 其中, 所述第一上采样单元 101 的采样率 大于所述数字发射信号的原始采样率, 即为 ADC 9a的采样率。
[110]所述第三滤波器 105, 用于接收所述第一参考信号, 重构第四自干扰信号, 并发送至所述下采样单元 103。
[111]所述下采样单元 103, 用于对所述第四自干扰信号进行下采样, 得到负的第 一自干扰信号, 并发送至所述第一加法器 106; 其中, 所述下采样单元 103的采 样率与所述第一上采样单元 101的采样率互为倒数。 [112]所述第一加法器 106, 用于接收 ADC 9a输出的数字接收信号, 用所述数字 接收信号加上所述负的第一自干扰信号, 得到第一级干扰抵消后的数字接收信 号, 并发送至所述第二干扰抵消模块 20。
[113]需要说明得是,所述第一干扰抵消模块可以用于实现对近区自干扰信号的消 除作用, 此时, 所述第三滤波器 105—般为高速滤波器, 实现对上采样后的数字 基带参考信号 (即为第一参考信号) 进行滤波, 重构第四自干扰信号; 然后对该 第四自干扰信号进行下采样, 得到负的第一自干扰信号 (即为负的近区自干扰信 号)。
[114]本发明实施例三中, 通过对第三滤波器 105的滤波系数的设定, 可以重构得 到负的第一自干扰信号, 然后用所述数字接收信号加上所述负的第一自干扰信 号, 得到第一级干扰抵消后的数字接收信号, 实现对近区自干扰信号的抵消。
[115]所述第二干扰抵消模块 20可以包括: 第四滤波器 203和第二加法器 204。
[116]所述第四滤波器 203的输入端接所述数字干扰抵消装置 12a的第二输入端, 所述第四滤波器 203的输出端接所述第二加法器 204的第一输入端。
[117]所述第二加法器 204的第二输入端接所述第一干扰抵消模块 10的输出端(即 为所述第一加法器 106的输出端), 所述第二加法器 204的输出端接所述数字干 扰抵消装置 12a的输出端。
[118]所述第四滤波器 203, 用于采用所述数字基带参考信号重构负的第二自干扰 信号, 并发送至所述第二加法器 204。
[119]所述第二加法器 204, 用于将所述第一级干扰抵消后的数字接收信号加上所 述负的第二自干扰信号, 得到第二级干扰抵消后的数字接收信号, 并发送至所述 接收数字信号处理器 10a。
[120]需要说明得是,所述第二干扰抵消模块可以用于实现对远区自干扰信号的消 除作用, 此时, 所述第四滤波器 203—般为低速滤波器, 直接对数字基带参考信 号进行滤波, 重构得到负的第二自干扰信号 (即为负的远区自干扰信号)。
[121]本发明实施例三中, 通过对第四滤波器 203的滤波系数的设定, 可以重构得 到负的第二自干扰信号, 然后用所述数字接收信号加上所述负的第二自干扰信 号, 得到第二级干扰抵消后的数字接收信号, 实现对远区自干扰信号的抵消。
[122]本发明实施例三所述数字干扰抵消装置 12a, 对数字基带参考信号进行上采 样后, 通过第三滤波器 105重构负的近区自干扰信号, 并将所述重构得到的负的 近区自干扰信号下采样后, 与数字接收信号相减, 实现对数字接收信号的第一级 自干扰抵消, 消除所述数字接收信号中的近区自干扰; 然后, 将所述数字基带参 考信号通过第四滤波器 203重构远区自干扰信号, 并用第一级干扰抵消后的数字 接收信号减去所述重构得到的远区自干扰信号, 实现对数字接收信号的第二级自 干扰抵消, 消除所述数字接收信号中的远区自干扰。
[123]由此, 本发明实施例三所述数字干扰抵消装置 12a, 通过两级滤波器分别重 构近区自干扰信号和远区自干扰信号, 能够有效消除数字接收信号中的近区自干 扰和远区自干扰, 获得了良好的自干扰抵消效果, 确保有用信号的正确接收, 提 高了无线全双工系统的收发信机的工作性能。
[124]需要强调的是, 本发明实施例三中, 所述第三滤波器 105的工作原理与具体 结构域实施例一中所述的第一滤波器 102可以相同, 其区别仅在于滤波系数的设 定, 通过对滤波系数的具体设定, 所述第三滤波器 105重构得到负的第一自干扰 信号。
[125]同样, 本发明实施例三中, 所述第四滤波器 203的工作原理与具体结构域实 施例一中所述的第二滤波器 201可以相同, 其区别仅在于滤波系数的设定, 通过 对滤波系数的具体设定, 所述第四滤波器 203重构得到负的第二自干扰信号。
[126]对应于本发明实施例提供的数字干扰抵消装置,本发明实施例还提供一种无 线全双工系统的收发信机。 所述收发信机可以包括: 发射通道和接收通道。
[127]所述发射通道包括: 顺序连接的发射数字信号处理器、 数字模拟转换器 DAC、 上行变频器、 功率放大器及发射天线。
[128]所述接收通道包括: 顺序连接的接收天线、 低噪声放大器 LNA、 下行变频 器、 模拟数字转换器 ADC及接收数字信号处理器。
[129]所述收发信机还包括前述任一实施例所述的数字干扰抵消装置。
[130]另外, 本发明实施例提供一种无线全双工系统, 所述系统包括前述实施例所 述的收发信机。
[131]本发明实施例还提供一种无线全双工系统的收发信机的数字干扰抵消方法。 所述方法适用于无线全双工系统的收发信机, 用于在复杂的通信环境中, 有效的 消除无线全双工系统的数字接收信号中的自干扰信号。
[132]所述收发信机包括发射通道和接收通道。所述发射通道包括: 顺序连接的发 射数字信号处理器、数字模拟转换器 DAC、上行变频器、功率放大器及发射天线; 所述接收通道包括: 顺序连接的接收天线、 低噪声放大器 LNA、 下行变频器、 模 拟数字转换器 ADC及接收数字信号处理器。 [133]参照图 5, 为本发明实施例所述的无线全双工系统的收发信机的数字干扰抵 消方法流程图。 如图 5所示, 所述方法可以包括以下步骤:
[134] S 100:接收所述发射数字信号处理器输出的数字发射信号作为数字基带参考 信号。
[135J S200: 利用所述数字基带参考信号重构第一自干扰信号。
[136J S300: 用接收自所述 ADC的数字接收信号减去所述重构第一自干扰信号, 得到第一级干扰抵消后的数字接收信号。
[137J S400: 利用所述数字基带参考信号重构第二自干扰信号。
[138] S500:用所述第一级干扰抵消后的数字接收信号减去所述重构第二自干扰信 号,得到第二级干扰抵消后的数字接收信号,并发送至所述接收数字信号处理器。
[139]本发明实施例所述方法, 采用两级自干扰信号重构方案, 首先利用数字基带 参考信号重构近区自干扰信号, 将所述重构近区自干扰信号与数字接收信号相 减, 实现对数字接收信号的第一级自干扰抵消, 消除所述数字接收信号中的近区 自干扰; 然后, 利用所述数字基带参考信号重构远区自干扰信号, 并用第一级干 扰抵消后的数字接收信号减去所述重构远区自干扰信号, 实现对数字接收信号的 第二级自干扰抵消, 消除所述数字接收信号中的远区自干扰。
[140]由此, 通过两级干扰抵消模块分别重构近区自干扰信号和远区自干扰信号, 能够有效消除数字接收信号中的近区自干扰和远区自干扰, 获得了良好的自干扰 抵消效果, 确保有用信号的正确接收, 提高了无线全双工系统的收发信机的工作 性能。
[141]优选的, S200 中所述利用所述数字基带参考信号重构近区自干扰信号可以 包括:
[142J S201 : 对所述数字基带参考信号进行上采样, 得到第一参考信号; 其中, 所 述上采样的采样率大于所述 ADC的采样率。
[143J S202: 利用所述第一参考信号, 重构得到第三自干扰信号。
[144J S203 : 对所述第三自干扰信号进行下采样, 得到第一自干扰信号; 其中, 所 述下采样的采样率与所述对数字基带参考信号上采样的采样率互为倒数。
[145]其中, S202 中所述利用所述第一参考信号, 重构得到第三自干扰信号可以 包括:
[146J S2021 : 获取第一滤波系数。
[147J S2022 : 以所述高速参考信号的采样周期作为抽头延迟线的时延步进, 结合 所述第一滤波系数, 对所述第一参考信号进行滤波, 重构第三自干扰信号; 其中, 所述第一参考信号的采样周期等于对所述数字基带参考信号进行上采样的采样 率的倒数。
[148]由于近区收发天线传播环境的变化较小,因此近区自干扰信号的幅度和延迟 随时间的变化较小且较为缓慢, 因此可以采用自适应滤波算法, 估算得到第一滤 波系数, 实现对近区自干扰的重构。
[149]具体的, 所述获取第一滤波系数包括: 对所述数字接收信号进行上采样, 得 到第一接收信号; 其中, 对所述数字接收信号进行上采样的采样率等于对所述数 字基带参考信号进行上采样的采样率; 根据所述第一参考信号和所述第一接收信 号, 采用自适应滤波算法, 估算得到第一滤波系数。
[150]而, 所述采用自适应滤波算法, 估算得到第一滤波系数, 可以包括: 以所述 第一接收信号作为期望值, 对所述第一接收信号和所述第一参考信号的差值求平 方, 并最小化得到的平方值, 得到所述第一滤波系数。
[151]优选的, S400 中所述利用所述数字基带参考信号重构第二自干扰信号可以 包括:
[152J S401 : 获取第二滤波系数。
[153J S402: 以所述数字基带参考信号的采样周期作为抽头延迟线的时延步进, 结 合所述第二滤波系数,对所述数字基带参考信号进行滤波,重构第二自干扰信号。
[154]考虑到收发天线远区的传播环境变化较大,经过远区反射的自干扰信号的幅 度和延迟随时间的变化较快, 利用自适应滤波算法可能无法迅速跟踪滤波器系数 的变化, 因此, 可以采用信道估计获得第二滤波系数。
[155]具体的, 所述获取第二滤波系数可以包括: 根据所述第二级干扰抵消后的数 字接收信号和所述数字基带参考信号, 通过信道估计, 估算得到第二滤波系数。
[156]本发明实施例所述方法中,根据近区自干扰信号的幅度和延迟随时间的变化 较小且较为缓慢的特点, 采用自适应滤波算法估算得到第一滤波系数, 实现对近 区自干扰的重构, 消除所述数字接收信号中的近区自干扰; 同时, 根据远区反射 的自干扰信号的幅度和延迟随时间的变化较快的特点, 采用信道估计获得第二滤 波系数, 实现对远区自干扰的重构, 消除所述数字接收信号中的远区自干扰。
[157]由此, 能够有效消除数字接收信号中的近区自干扰和远区自干扰, 获得了良 好的自干扰抵消效果, 确保有用信号的正确接收, 提高了无线全双工系统的收发 信机的工作性能。 [158]本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例 的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约 束条件。 专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功 能, 但是这种实现不应认为超出本发明的范围。
[159]所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的 系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过程, 在 此不再赘述。
[160]在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分 方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可 以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通信 连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机 械或其它的形式。
[161]所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单 元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元来 实现本实施例方案的目的。
[162]另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也 可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
[163]所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案 本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产 品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理 器 (processor) 执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存 储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory ) 随机 存取存储器 (RAM, Random Access Memory ) 磁碟或者光盘等各种可以存储程 序代码的介质。
[164]以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或 替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应所述以权 利要求的保护范围为准。

Claims

权 利 要 求
1、 一种数字干扰抵消装置, 其特征在于, 所述装置用于无线全双工系统的 收发信机;
所述数字干扰抵消装置包括: 第一干扰抵消模块和第二干扰抵消模块; 所述第一干扰抵消模块,用于接收所述收发信机输出的数字发射信号作为数 字基带参考信号, 利用所述数字基带参考信号重构第一自干扰信号, 用接收自所 述收发信机的数字接收信号减去所述第一自干扰信号,得到第一级干扰抵消后的 数字接收信号, 发送至所述第二干扰抵消模块;
所述第二干扰抵消模块,用于接收所述收发信机输出的数字发射信号作为数 字基带参考信号, 利用所述数字基带参考信号重构第二自干扰信号, 用所述第一 级干扰抵消后的数字接收信号减去所述第二自干扰信号,得到第二级干扰抵消后 的数字接收信号, 并发送至所述收发信机。
2、 根据权利要求 1所述的数字干扰抵消装置, 其特征在于, 所述第一干扰 抵消模块包括: 第一上采样单元、 第一滤波器、 下采样单元、 第一减法器; 所述第一减法器的正输入端接所述数字干扰抵消装置的第一输入端; 所述第一上采样单元的输入端接所述数字干扰抵消装置的第二输入端,所述 第一上采样单元的输出端接所述第一滤波器的输入端;
所述第一滤波器的输出端接所述下采样单元的输入端,所述下采样单元的输 出端接所述第一减法器的负输入端,所述第一减法器的输出端作为所述第一干扰 抵消模块的输出端;
所述第一上采样单元, 用于接收所述数字发射信号作为数字基带参考信号, 对所述数字基带参考信号进行上采样, 输出第一参考信号至所述第一滤波器; 其 中, 所述第一上采样单元的采样率大于所述数字发射信号的采样率;
所述第一滤波器, 用于接收所述第一参考信号, 重构第三自干扰信号, 并发 送至所述下采样单元;
所述下采样单元, 用于对所述第三自干扰信号进行下采样, 得到第一自干扰 信号并发送至所述第一减法器; 其中, 所述下采样单元的采样率与所述第一上采 样单元的采样率互为倒数;
所述第一减法器, 用于接收所述数字接收信号, 用所述数字接收信号减去所 述第一自干扰信号, 得到第一级干扰抵消后的数字接收信号, 并发送至所述第二 干扰抵消模块。
3、 根据权利要求 2所述的数字干扰抵消装置, 其特征在于, 所述第一滤波 器包括:
第一接收单元, 用于接收所述第一参考信号, 发送至第一滤波单元; 第一系数获取单元, 用于获取第一滤波系数, 发送至所述第一滤波单元; 所述第一滤波单元,用于以所述第一参考信号的采样周期作为抽头延迟线的 时延步进, 结合所述第一滤波系数, 对所述第一参考信号进行滤波, 重构第三自 干扰信号; 其中, 所述第一参考信号的采样周期等于所述第一上采样单元的采样 率的倒数;
第一发送单元, 用于将所述第三自干扰信号发送至所述下采样单元。
4、 根据权利要求 3所述的数字干扰抵消装置, 其特征在于, 所述第一干扰 抵消模块还包括: 第二上采样单元和第一算法单元;
所述第二上采样单元的输入端接所述数字干扰抵消装置的第一输入端,所述 第二上采样单元的输出端接所述第一算法单元的第一输入端;
所述第一算法单元的第二输入端接所述第一上采样单元的输出端,所述第一 算法单元的输出端接所述第一滤波器的系数输入端;
所述第二上采样单元, 用于接收所述数字接收信号, 对所述数字接收信号进 行上采样, 输出第一接收信号至所述第一算法单元; 其中, 所述第二上采样单元 的采样率等于所述第一上采样单元的采样率;
所述第一算法单元, 用于根据所述第一参考信号和所述第一接收信号, 采用 自适应滤波算法, 估算得到第一滤波系数, 发送至所述第一滤波器的第一系数获 取单元。
5、 根据权利要求 4所述的数字干扰抵消装置, 其特征在于, 所述第一算法 单元采用自适应滤波算法, 估算得到第一滤波系数, 包括:
以所述第一接收信号作为期望值,对所述第一接收信号和所述第一参考信号 的差值求平方, 并最小化得到的平方值, 得到所述第一滤波系数。
6、 根据权利要求 1所述的数字干扰抵消装置, 其特征在于, 所述第一干扰 抵消模块包括: 第一上采样单元、 第三滤波器、 下采样单元、 第一加法器; 所述第一加法器的第一输入端接所述数字干扰抵消装置的第一输入端; 所述第一上采样单元的输入端接所述数字干扰抵消装置的第二输入端,所述 第一上采样单元的输出端接所述第三滤波器的输入端;
所述第三滤波器的输出端接所述下采样单元的输入端,所述下采样单元的输 出端接所述第一加法器的第二输入端,所述第一加法器的输出端作为所述第一干 扰抵消模块的输出端;
所述第一上采样单元, 用于接收所述数字发射信号作为数字基带参考信号, 对所述数字基带参考信号进行上采样, 输出第一参考信号至所述第三滤波器; 其 中, 所述第一上采样单元的采样率大于所述数字发射信号的采样率;
所述第三滤波器, 用于接收所述第一参考信号, 重构第四自干扰信号, 并发 送至所述下采样单元;
所述下采样单元, 用于对所述第四自干扰信号进行下采样, 得到负的第一自 干扰信号并发送至所述第一加法器; 其中, 所述下采样单元的采样率与所述第一 上采样单元的采样率互为倒数;
所述第一加法器, 用于接收所述数字接收信号, 用所述数字接收信号加上所 述负的第一自干扰信号, 得到第一级干扰抵消后的数字接收信号, 并发送至所述 第二干扰抵消模块。
7、 根据权利要求 1至 6任一项所述的数字干扰抵消装置, 其特征在于, 所 述第二干扰抵消模块包括: 第二滤波器和第二减法器;
所述第二滤波器的输入端接所述数字干扰抵消装置的第二输入端,所述第二 滤波器的输出端接所述第二减法器的负输入端;
所述第二减法器的正输入端接所述第一干扰抵消模块的输出端,所述第二减 法器的输出端接所述数字干扰抵消装置的输出端;
所述第二滤波器, 用于采用所述数字基带参考信号重构第二自干扰信号, 并 发送至所述第二减法器;
所述第二减法器,用于将所述第一级干扰抵消后的数字接收信号减去所述第 二自干扰信号, 得到第二级干扰抵消后的数字接收信号, 并发送至所述接收数字 信号处理器。
8、 根据权利要求 7所述的数字干扰抵消装置, 其特征在于, 所述第二滤波 器包括: 第二接收单元, 用于接收所述数字基带参考信号, 发送至第二滤波单元; 第二系数获取单元, 用于获取第二滤波系数, 发送至所述第二滤波单元; 所述第二滤波单元,用于以所述数字基带参考信号的采样周期作为抽头延迟 线的时延步进, 结合所述第二滤波系数, 对所述数字基带参考信号进行滤波, 重 构第二自干扰信号;
第二发送单元, 用于将所述第二自干扰信号发送至所述第二减法器。
9、 根据权利要求 8所述的数字干扰抵消装置, 其特征在于, 所述第二干扰 抵消模块还包括: 第二算法单元;
所述第二算法单元的第一输入端接所述数字干扰抵消装置的第一输入端,所 述第二算法单元的第二输入端接所述第二减法器的输出端,所述第二算法单元的 输出端接所述第二滤波器的系数输入端;
所述第二算法单元,用于根据所述第二减法器输出的第二级干扰抵消后的数 字接收信号和所述数字基带参考信号, 通过信道估计, 估算得到第二滤波系数, 发送至所述第二滤波器的第二系数获取单元。
10、根据权利要求 1至 6任一项所述的数字干扰抵消装置, 其特征在于, 所 述第二干扰抵消模块包括: 第四滤波器和第二加法器;
所述第四滤波器的输入端接所述数字干扰抵消装置的第二输入端,所述第四 滤波器的输出端接所述第二加法器的第一输入端;
所述第二加法器的第二输入端接所述第一干扰抵消模块的输出端,所述第二 加法器的输出端接所述数字干扰抵消装置的输出端;
所述第四滤波器, 用于采用所述数字基带参考信号重构负的第二自干扰信 号, 并发送至所述第二加法器;
所述第二加法器,用于将所述第一级干扰抵消后的数字接收信号加上所述负 的第二自干扰信号, 得到第二级干扰抵消后的数字接收信号, 并发送至所述接收 数字信号处理器。
11、 一种无线全双工系统的收发信机的数字干扰抵消方法, 其特征在于, 所 述方法包括:
接收所述收发信机输出的数字发射信号作为数字基带参考信号;
利用所述数字基带参考信号重构第一自干扰信号; 用接收自所述收发信机的数字接收信号减去所述第一自干扰信号,得到第一 级干扰抵消后的数字接收信号;
利用所述数字基带参考信号重构第二自干扰信号;
用所述第一级干扰抵消后的数字接收信号减去所述第二自干扰信号,得到第 二级干扰抵消后的数字接收信号, 并发送至所述收发信机。
12、 根据权利要求 11所述的方法, 其特征在于, 所述利用所述数字基带参 考信号重构第一自干扰信号包括:
对所述数字基带参考信号进行上采样, 得到第一参考信号; 其中, 所述上采 样的采样率大于所述数字发射信号的采样率;
利用所述第一参考信号, 重构得到第三自干扰信号;
对所述第三自干扰信号进行下采样, 得到第一自干扰信号; 其中, 所述下采 样的采样率与所述对数字基带参考信号上采样的采样率互为倒数。
13、 根据权利要求 12所述的方法, 其特征在于, 所述利用所述第一参考信 号, 重构得到第三自干扰信号包括:
获取第一滤波系数;
以所述第一参考信号的采样周期作为抽头延迟线的时延步进,结合所述第一 滤波系数, 对所述第一参考信号进行滤波, 重构所述第三自干扰信号;
其中,所述第一参考信号的采样周期等于对所述数字基带参考信号进行上采 样的采样率的倒数。
14、 根据权利要求 12所述的方法, 其特征在于, 所述获取第一滤波系数包 括:
对所述数字接收信号进行上采样, 得到第一接收信号; 其中, 对所述数字接 收信号进行上采样的采样率等于对所述数字基带参考信号进行上采样的采样率; 根据所述第一参考信号和所述第一接收信号, 采用自适应滤波算法, 估算得 到第一滤波系数。
15、根据权利要求 14所述的方法, 其特征在于, 所述采用自适应滤波算法, 估算得到第一滤波系数, 包括:
以所述第一接收信号作为期望值,对所述第一接收信号和所述第一参考信号 的差值求平方, 并最小化得到的平方值, 得到所述第一滤波系数。
16、 根据权利要求 11至 15任一项所述的方法, 其特征在于, 所述利用所述 数字基带参考信号重构第二自干扰信号包括:
获取第二滤波系数;
以所述数字基带参考信号的采样周期作为抽头延迟线的时延步进,结合所述 第二滤波系数, 对所述数字基带参考信号进行滤波, 重构第二自干扰信号。
17、 根据权利要求 16所述的方法, 其特征在于, 所述获取第二滤波系数包 括:
根据所述第二级干扰抵消后的数字接收信号和所述数字基带参考信号,通过 信道估计, 估算得到第二滤波系数。
18、 一种无线全双工系统的收发信机, 其特征在于, 所述收发信机包括: 如 权利要求 1至 10任一项所述的数字干扰抵消装置。
19、 一种无线全双工系统, 其特征在于, 所述系统包括: 如权利要求 18所 述的收发信机。
PCT/CN2013/086137 2013-10-29 2013-10-29 无线全双工系统的数字干扰抵消装置和方法及收发信机 WO2015061963A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380075975.4A CN105229981B (zh) 2013-10-29 2013-10-29 无线全双工系统的数字干扰抵消装置和方法及收发信机
EP13896680.9A EP3065361B1 (en) 2013-10-29 2013-10-29 Digital interference cancellation apparatus and method for wireless full duplex system and transceiver
PCT/CN2013/086137 WO2015061963A1 (zh) 2013-10-29 2013-10-29 无线全双工系统的数字干扰抵消装置和方法及收发信机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086137 WO2015061963A1 (zh) 2013-10-29 2013-10-29 无线全双工系统的数字干扰抵消装置和方法及收发信机

Publications (2)

Publication Number Publication Date
WO2015061963A1 true WO2015061963A1 (zh) 2015-05-07
WO2015061963A8 WO2015061963A8 (zh) 2015-07-16

Family

ID=53003096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086137 WO2015061963A1 (zh) 2013-10-29 2013-10-29 无线全双工系统的数字干扰抵消装置和方法及收发信机

Country Status (3)

Country Link
EP (1) EP3065361B1 (zh)
CN (1) CN105229981B (zh)
WO (1) WO2015061963A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108965175A (zh) * 2018-07-18 2018-12-07 电子科技大学 一种频域数字自干扰信号抵消中保护有用信号的方法
CN114280966A (zh) * 2020-09-28 2022-04-05 深圳市德安通科技有限公司 基于高性能dtu模块的设备运行状态采集仪及其采集方法
US20230184882A1 (en) * 2021-11-18 2023-06-15 Richwave Technology Corp. Doppler radar apparatus and narrowband interference suppression method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964811A (zh) * 2018-06-07 2018-12-07 珠海格力电器股份有限公司 一种应变测试系统及方法
CN111865361B (zh) 2019-04-25 2023-03-24 华为技术有限公司 一种全双工自干扰消除方法和装置
CN112543037B (zh) * 2019-09-20 2022-05-24 华为技术有限公司 一种通信设备、射频干扰消除方法及装置
CN111490954B (zh) * 2020-04-03 2021-08-10 武汉大学 信道脉冲响应的重要时延抽头选择方法及系统
CN114499736B (zh) * 2020-11-12 2024-03-08 晶晨半导体(上海)股份有限公司 去除WIFI系统spur干扰的方法、计算机存储介质和宽带系统
CN113315531B (zh) * 2021-05-25 2022-04-08 之江实验室 一种同时同频全双工信号接收方法
CN116346151A (zh) * 2021-12-15 2023-06-27 中兴通讯股份有限公司 通信收发器、信号收发方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058059A2 (en) * 2006-11-06 2008-05-15 Qualcomm Incorporated Narrow-band interference canceller
CN101420246A (zh) * 2008-11-21 2009-04-29 华为技术有限公司 一种收发信机抵消发射干扰的方法、设备及收发信机
CN103338172A (zh) * 2013-07-24 2013-10-02 电子科技大学 一种多径环境下同时同频全双工自干扰抵消方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2267714A1 (en) * 1998-05-13 1999-11-13 Lucent Technologies Inc. Method and apparatus to reduce transmitter overload of a transmit scanning receiver
CN1855906A (zh) * 2005-04-25 2006-11-01 瑞昱半导体股份有限公司 多载波通讯系统及其通讯方法
JP4208088B2 (ja) * 2006-03-31 2009-01-14 国立大学法人東京工業大学 無線通信装置及び無線通信方法
US8290100B2 (en) * 2006-08-08 2012-10-16 Qualcomm Incorporated Interference detection and mitigation
US10230419B2 (en) * 2011-02-03 2019-03-12 The Board Of Trustees Of The Leland Stanford Junior University Adaptive techniques for full duplex communications
US8422540B1 (en) * 2012-06-21 2013-04-16 CBF Networks, Inc. Intelligent backhaul radio with zero division duplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008058059A2 (en) * 2006-11-06 2008-05-15 Qualcomm Incorporated Narrow-band interference canceller
CN101420246A (zh) * 2008-11-21 2009-04-29 华为技术有限公司 一种收发信机抵消发射干扰的方法、设备及收发信机
CN103338172A (zh) * 2013-07-24 2013-10-02 电子科技大学 一种多径环境下同时同频全双工自干扰抵消方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108965175A (zh) * 2018-07-18 2018-12-07 电子科技大学 一种频域数字自干扰信号抵消中保护有用信号的方法
CN114280966A (zh) * 2020-09-28 2022-04-05 深圳市德安通科技有限公司 基于高性能dtu模块的设备运行状态采集仪及其采集方法
US20230184882A1 (en) * 2021-11-18 2023-06-15 Richwave Technology Corp. Doppler radar apparatus and narrowband interference suppression method thereof

Also Published As

Publication number Publication date
EP3065361A4 (en) 2016-11-02
WO2015061963A8 (zh) 2015-07-16
EP3065361B1 (en) 2019-05-29
CN105229981B (zh) 2018-12-14
CN105229981A (zh) 2016-01-06
EP3065361A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2015061963A1 (zh) 无线全双工系统的数字干扰抵消装置和方法及收发信机
KR101792626B1 (ko) 통신 시스템의 자기 간섭 신호를 감소시키기 위한 방법 및 장치
US10284356B2 (en) Self-interference cancellation
CN107026673B (zh) 一种数字辅助的模拟域干扰抵消方法与装置
RU2664392C2 (ru) Способ и устройство подавления помех
CN106664273B (zh) Mimo同信道全双工收发器中的干扰抵消
CN111865361B (zh) 一种全双工自干扰消除方法和装置
US20160294532A1 (en) Joint Radio-Frequency/Baseband Self-Interference Cancellation Methods
US10135518B2 (en) Echo cancellation in communication transceivers
US8792598B1 (en) Coexistence of multiple communication technologies on a single device
JP2017520192A5 (zh)
WO2014114269A1 (zh) 近区反射自干扰信号抵消方法及装置
WO2013185481A1 (zh) 基于多天线的信号接收抗干扰处理方法和装置
Collins et al. Practical insights on full-duplex personal wireless communications gained from operational experience in the satellite environment
TWI577141B (zh) 接收機之準確減敏估計
EP3048739B1 (en) Interference cancellation method and apparatus
WO2006066618A1 (en) Local area network, communication unit and method for cancelling noise therein
Naman et al. Self-Interference Cancellation Techniques for In-Band Full-Duplex Wireless Communication Systems: A Review
KR102417563B1 (ko) 무선 중계 장치 및 방법
KR102563334B1 (ko) 무선 중계 장치 및 방법
KR102417564B1 (ko) 무선 중계 장치 및 방법
Ling Achievable performance and limiting factors of echo cancellation in wireless communications
JP5354541B2 (ja) 回り込みキャンセラ及び回り込みキャンセル方法
KR20160150592A (ko) 동일대역 전이중 송수신기
Le-Ngoc et al. Self-interference-cancellation in full-duplex systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075975.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013896680

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896680

Country of ref document: EP