WO2015060601A1 - Hybrid water treatment system and method - Google Patents

Hybrid water treatment system and method Download PDF

Info

Publication number
WO2015060601A1
WO2015060601A1 PCT/KR2014/009850 KR2014009850W WO2015060601A1 WO 2015060601 A1 WO2015060601 A1 WO 2015060601A1 KR 2014009850 W KR2014009850 W KR 2014009850W WO 2015060601 A1 WO2015060601 A1 WO 2015060601A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
generating
discharge
power
plasma
Prior art date
Application number
PCT/KR2014/009850
Other languages
French (fr)
Korean (ko)
Inventor
이봉주
이상주
구민
옥창우
Original Assignee
(주)그린사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린사이언스 filed Critical (주)그린사이언스
Publication of WO2015060601A1 publication Critical patent/WO2015060601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5254Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using magnesium compounds and phosphoric acid for removing ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof

Definitions

  • the present invention relates to a hybrid water treatment system and method for efficiently flocculating contaminants in a fluid.
  • Embodiments of the present invention are to purify the fluid efficiently by maximizing the aggregation effect of the contaminants in the fluid by using the underwater plasma discharge device and the flocculant.
  • the plasma processing unit for generating a radical (radical) by generating a plasma discharge inside the fluid to promote the aggregation of contaminants in the fluid;
  • a coagulant supply unit for supplying a coagulant inside the fluid to agglomerate contaminants in the fluid.
  • the plasma processing unit may generate a plasma discharge for a time sufficient to charge negatively charged oxidants inside the fluid to a positive charge.
  • the flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant.
  • the hybrid water treatment system may further include an agitator configured to agitate the fluid supplied with the flocculant to generate agglomerated aggregates of the pollutants.
  • the hybrid water treatment system may further include a precipitation unit for inducing the precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring speed of the stirring portion.
  • the hybrid water treatment system may further include a separation unit for separating the precipitated aggregates.
  • the plasma processing unit a power supply for supplying power; A voltage converter which receives the power supplied from the power supply and converts the power into an AC power, DC power or pulse power having a voltage of a predetermined magnitude; And a voltage amplifier configured to amplify the voltage of the power supplied from the voltage converter.
  • the plasma processing unit may further include a discharge unit generating pulse discharge or capillary discharge in the fluid from the power amplified by the voltage amplifier.
  • the plasma processing unit may further include a gas supply unit supplying an auxiliary gas including at least one of ozone, oxygen, nitrogen, argon, helium, and air into the fluid.
  • generating a radical (radical) by generating a plasma discharge inside the fluid to facilitate the aggregation of contaminants in the fluid; And supplying a flocculant into the fluid to agglomerate contaminants within the fluid.
  • Generating radicals by generating a plasma discharge inside the fluid may cause the plasma discharge for a time sufficient to charge the negatively charged oxidants inside the fluid with a positive charge.
  • the flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant.
  • the hybrid water treatment method may further include agitating the fluid supplied with the flocculant to generate agglomerated aggregates of the pollutants.
  • the hybrid water treatment method may further include the step of inducing the precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring rate for producing the aggregate.
  • the hybrid water treatment method may further include separating the precipitated aggregates.
  • Generating radicals by generating a plasma discharge inside the fluid may include supplying power; Receiving the supplied power and converting the power into an AC power supply, a DC power supply, or a pulse power supply having a voltage having a predetermined magnitude; And amplifying the voltage of the converted power source.
  • Generating radicals by generating plasma discharge in the fluid may further include generating pulse discharge or capillary discharge in the fluid from the amplified power source.
  • Generating radicals by generating a plasma discharge inside the fluid may further include supplying an auxiliary gas including one or more of ozone, oxygen, nitrogen, argon, helium, and air into the fluid.
  • the aggregation rate of the contaminants in the fluid is greatly increased as compared with the case of generating only an underwater plasma discharge or supplying only the flocculant inside the fluid. Can be improved.
  • the water treatment time and cost can be minimized, thereby miniaturizing the water treatment system.
  • the ionic components inside the flocculant simultaneously perform charge neutralization and pH neutralization, and sulfides, salts, organic fine particles, etc., as well as heavy metals such as cadmium, copper, zinc, lead, arsenic, and nickel.
  • Non-metallic mine emissions can be aggregated and reduced.
  • dissolved oxygen amount (DO) in the fluid it is possible to increase the dissolved oxygen amount (DO) in the fluid, to reduce the chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS) and odor, It can promote and stabilize the activity of aerobic microorganisms.
  • COD chemical oxygen demand
  • BOD biological oxygen demand
  • SS suspended solids
  • FIG. 1 is a view for explaining a hybrid water treatment system according to an embodiment of the present invention
  • FIG. 2 is a block diagram illustrating a plasma processing unit according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the precipitation effect and sterilization effect inside the fluid according to the plasma discharge in the plasma processing unit according to an embodiment of the present invention
  • FIG. 4 is a view for explaining the cohesion efficiency of the inside of the fluid in the flocculant supply unit according to the plasma treatment time of the plasma processing unit according to an embodiment of the present invention
  • FIG. 5 is a view for explaining the treatment efficiency of heavy metal inside the fluid according to the supply of flocculant in the flocculant supply unit according to an embodiment of the present invention
  • FIG. 6 is a flowchart illustrating a hybrid water treatment method according to an embodiment of the present invention.
  • the hybrid water treatment system 100 includes a plasma treatment unit 102, a flocculant supply unit 104, a stirring unit 106, a precipitation unit 108, and a separation unit ( 110).
  • the plasma processor 102 generates a plasma discharge in the fluid to generate radicals.
  • the fluid may be, for example, sewage, wastewater, and sewage discharged from various industrial facilities or agricultural facilities such as homes, factories, concentrated industries, etc., and stored or flowed into the water tank 112 as shown in FIG. 1.
  • the plasma processing unit 102 generates a plasma discharge for a time sufficient to charge the negatively charged oxidants in the fluid to the positive charge.
  • a flocculant is supplied into the fluid, and the plasma processing unit 102 generates plasma by generating plasma within the fluid to promote aggregation of contaminants in the fluid.
  • the plasma processing unit 102 may cause a plasma discharge in the fluid before supplying the coagulant to the fluid in the coagulant supply unit 104, which will be described later.
  • the coagulant supply unit 104 supplies the coagulant to the fluid and then, It may also cause plasma discharge.
  • the plasma processing unit 102 may generate a plasma discharge in the fluid at the same time as the coagulant supply unit 104 supplies the coagulant into the fluid. That is, the process of causing the plasma processing unit 102 to generate a plasma discharge in the fluid and the process of supplying the coagulant into the fluid in the coagulant supply unit 104 are not particularly limited in the order, and may be performed simultaneously or sequentially.
  • the plasma processor 102 includes a power supply unit 202, a voltage converter 204, a voltage amplifier 206, a discharge unit 208, and a gas supply unit. And 210.
  • the power supply unit 202 supplies power (eg, commercial AC power) to the voltage converter 204.
  • power eg, commercial AC power
  • the voltage converter 204 receives the power supplied from the power supply unit 202 and converts the power into an AC power supply, a DC power supply, or a pulse power supply having a voltage having a predetermined size.
  • the voltage converter 204 may be configured to include a circuit such as a voltage regulator as necessary.
  • the voltage amplifier 206 amplifies the voltage of the power supplied from the voltage converter 204.
  • the magnitude of the voltage amplified by the voltage amplifier 206 may be appropriately set according to the nature of the fluid to be purified.
  • the discharge unit 208 generates pulse discharge or capillary discharge in the fluid from the power amplified by the voltage amplifier 208.
  • the discharge unit 208 may include at least one of a pulse discharge electrode (not shown) for generating a pulse discharge and a capillary discharge electrode (not shown) for generating a capillary discharge.
  • the discharge unit 208 may generate a high voltage pulse signal from the power amplified by the voltage amplifier 206 to cause pulse discharge in the fluid.
  • the discharge unit 208 may rectify the power amplified by the voltage amplifier 206 to generate a half-wave rectified signal, and may cause capillary discharge in the fluid.
  • the discharge unit 208 may be provided with a pulse discharge electrode and a capillary discharge electrode at the same time, in this case it can maximize the fluid purification effect by causing the pulse discharge and capillary discharge to occur simultaneously or sequentially.
  • the gas supply unit 210 supplies an auxiliary gas including one or more of ozone, oxygen, nitrogen, argon, helium, and air into the fluid.
  • the gas supply part 210 may penetrate the inside of the pulse discharge electrode or the capillary discharge electrode in the longitudinal direction to supply the auxiliary gas into the fluid.
  • the concentration of the active species in the fluid and the residence time in the fluid may be increased as compared with the case where the auxiliary gas is not supplied, thereby maximizing the fluid purification effect by the plasma.
  • Plasma processing unit 102 may generate a plasma discharge by using any one of the capillary discharge, pulse discharge and gas channel discharge method or a combination of these methods, and is not limited to a specific discharge method. .
  • radicals of reactive species such as OH, O, H, H 2 O 2 , HO 2 , Cl, and HCl are generated in the fluid by the plasma discharged by the discharge unit 208.
  • the discharge increases the residence time of these radicals in the fluid and increases the internal activation energy by the active species, thereby improving the reaction rate of the flocculant as will be described later. Therefore, the aggregation rate and removal rate of the contaminants in the fluid can be improved by 30% or more as compared with the case of using only the flocculant as in the prior art.
  • heavy metals, iron (Fe), manganese (Mn), zinc (Zn), aluminum (Al), calcium (Ca), potassium (K), copper (Cu), etc. in the fluid are hydroxide bases of water.
  • oxidant FeO 4, Zn (OH) exists in the form of 2, Al 2 O 3, CaO, KMnO 4, CuO do. These oxidants are negatively charged and are dispersed and suspended by mutual repulsive force.
  • These coagulants may aggregate contaminants in the fluid, and after a certain time, the contaminants in the fluid grow into aggregates and become precipitates.
  • the above-described underwater plasma discharge may perform a water purification function by sterilizing harmful bacteria in the fluid.
  • FIG 3 is a view for explaining the precipitation effect and the sterilization effect in the fluid according to the plasma discharge in the plasma processing unit 102 according to an embodiment of the present invention.
  • the coagulant supply unit 104 supplies a coagulant inside the fluid to agglomerate contaminants in the fluid.
  • contaminants in the fluid may be precipitated or purified even through underwater plasma discharge.
  • underwater plasma discharge takes a relatively long time to form agglomerates, and there is a problem in that the operation cost is high because the power consumption is high.
  • contaminants in the fluid may be aggregated. However, in this case, it takes a long time for the flocculant to flocculate the contaminants.
  • embodiments of the present invention maximize the agglomeration effect of contaminants in the fluid by supplying a coagulant to the fluid and simultaneously performing the plasma discharge treatment.
  • the plasma processing unit 102 may charge the negatively charged oxidants inside the fluid to the positively charged oxidants. Configured to generate a plasma discharge for as long as possible (eg, about 30 seconds), whereby the coagulant supplied from the coagulant supply 104 reacts with the positively charged oxidant and OH ⁇ in the fluid.
  • the time taken to aggregate the pollutants can be greatly shortened.
  • the flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant.
  • the inorganic flocculant may be, for example, aluminum sulfate (Al 2 (SO 4 ) 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), ferric chloride (FeCl 3 ), polyaluminum chloride (PAC), or the like. have.
  • Aluminum sulfate has the disadvantages of being corrosive, non-irritating, easy to handle and without coloring phenomenon, while having a cohesive pH range of only 5.5 to 8.5 and a light floc.
  • Ferric sulfate has a disadvantage in that the aggregates are heavy, have good sedimentation properties, are relatively inexpensive, and have a wide pH range, and are highly corrosive and iron ions remain.
  • Iron chloride has a disadvantage in that aggregates are heavy and have good settling properties, but coloration occurs in facilities and wastewater and requires careful handling.
  • Polyaluminum chloride has a tendency to form agglomerates and has good efficiency while having an expensive disadvantage.
  • the polymer flocculant has a disadvantage of being expensive while increasing the formation of aggregates.
  • Natural coagulant feldspar NaAlSiO, CaAlSiO
  • zeolite Mn / 2O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O
  • silicon dioxide SiO 2
  • calcium carbonate CaCO 3
  • calcium hydroxide Ca (OH) 2
  • Aluminum oxide Al 2 O 3
  • magnesium oxide MgO
  • iron oxide Fe 2 O 3
  • titanium dioxide TiO 2
  • potassium tetrafluorophosphate K 2 SiF 6
  • calcium chloride CaCl 2
  • It may include one or more of barium chloride (BaCl 2 ), it may be prepared through the following process.
  • 0.1 ⁇ 5wt% K 2 SiF 6 and 10 ⁇ 15wt% CaCl 2 and BaCl 2 of the total powder to the powder Are sequentially added and calcined at 600 ° C. for 5 hours in a heating furnace.
  • the calcined powder is acid treated with citric acid at 60 ° C. for 2 hours to be milled into fine powder.
  • the milled powder is selected using only a powder of 10 ⁇ m or less using a cyclone, and the selected powder is put into pure water and stirred by rotating at high speed.
  • the contaminant aggregation rate and removal rate of the flocculant supplied inside the fluid may be improved by 30% or more.
  • Formula 2 below is a chemical formula showing a process of depositing aluminum ions, calcium ions, sulfate ions, carbonate ions, magnesium ions, lead ions, phosphate ions and the like dissolved in the fluid when the above-mentioned flocculant is supplied into the fluid.
  • FIG. 4 is a view for explaining the cohesive efficiency of the inside of the fluid in the coagulant supply unit 104 according to the plasma processing time of the plasma processing unit 102 according to an embodiment of the present invention.
  • the time taken for the contaminants in the fluid to agglomerate was 7 minutes and 3 seconds.
  • the time taken for the contaminants in the fluid to aggregate is drastically reduced to 3 minutes 30 seconds.
  • the flocculant when the flocculant is supplied into the fluid in which the radicals are generated by generating the plasma discharge underwater, the aggregation rate of the contaminants in the fluid is greatly improved as compared with the case of generating only the plasma discharge inside the fluid or only supplying the flocculant. I could confirm that.
  • FIG. 5 is a view for explaining the treatment efficiency of heavy metal in the fluid according to the coagulant supply in the coagulant supply unit 104 according to an embodiment of the present invention.
  • heavy metals such as cadmium, copper, zinc, lead, arsenic, and nickel may be rapidly aggregated and reduced. That is, according to embodiments of the present invention, it is possible to maximize the efficiency of heavy metal adsorption capacity in the fluid.
  • the ionic components inside the flocculant simultaneously perform charge neutralization and pH neutralization, and can aggregate and reduce not only heavy metals but also nonmetallic mine emissions such as sulfides, salts and organic fine particles.
  • the hybrid water treatment system 100 may increase the amount of dissolved oxygen (DO) in the fluid, and may reduce chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS), and odor, and may also reduce aerobic microorganisms. Can promote and stabilize their activity.
  • DO dissolved oxygen
  • the stirring unit 106 agitates the fluid supplied with the flocculant to produce agglomerated aggregates of contaminants.
  • the stirring unit 106 may generate agglomerates by, for example, driving the fluid supplied with the coagulant at high speed by driving the first agitator 116-1 installed in the water tank 112. Since the first stirrer 116-1 stirs the fluid at high speed, aggregates inside the fluid may flow forward through the upper side of the water tank 112.
  • the front means a direction that the first stirrer 116-1 faces.
  • the precipitation unit 108 may induce the precipitation of the aggregate by stirring the fluid containing the aggregate at a lower speed than the stirring speed of the stirring unit 106.
  • the precipitation unit 108 for example, through the second stirrer 116-2 can induce the precipitation of the aggregates to the lower side of the inclined plate 118 installed inclined inside the water tank 112 containing the fluid.
  • the second stirrer 116-2 may be installed to face the inclined plate 118 installed to be inclined in the water tank 112. Agglomerates are prevented from rising above the inclined plate 118 due to its weight and may not be further moved forward by the inclined plate 118 and may be settled below the water tank 112. On the other hand, the fluid flows forward through the inclined plate 118.
  • Separation unit 110 separates the aggregates precipitated below the water tank (112).
  • the separation unit 110 may separate the aggregates precipitated below the inclined plate 118 by driving a suction device (not shown) installed below the water tank 112.
  • FIG. 6 is a flowchart illustrating a hybrid water treatment method according to an embodiment of the present invention.
  • the plasma processing unit 102 generates plasma by generating a plasma discharge in the fluid (S602). As described above, the plasma processing unit 102 generates a plasma discharge for a time sufficient to charge the negatively charged oxidants in the fluid to the positive charge.
  • the plasma processing unit 102 may generate a plasma discharge by using any one of capillary discharge, pulse discharge, and gas channel discharge schemes or by combining these schemes, and is not limited to a specific discharge scheme.
  • the coagulant supply unit 104 aggregates the contaminants in the fluid by supplying a coagulant in the fluid (S604).
  • contaminants in the fluid may be precipitated or purified through the underwater plasma discharge in the plasma processing unit 102.
  • an underwater plasma discharge takes a relatively long time to form agglomerates, and there is a problem in that the operation cost is high because the power consumption is high. Accordingly, embodiments of the present invention maximize the agglomeration effect of contaminants in the fluid by supplying a coagulant to the fluid and simultaneously performing the plasma discharge treatment.
  • the plasma processing unit 102 is configured to generate a plasma discharge for a time (eg, 30 seconds) long enough to charge the negatively charged oxidants into the positively charged oxidizers in the fluid, thereby forming a flocculant.
  • the reaction time of the flocculant supplied from the supply part 104 reacts with the positively charged oxidant and OH ⁇ to greatly shorten the time taken for the contaminant to aggregate.
  • the flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant.
  • the natural coagulant is feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH ) 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) And barium chloride (BaCl 2 ).
  • step S602 and step S604 may be performed simultaneously or sequentially, without being particularly limited in order.
  • the stirring unit 106 agitates the fluid supplied with the flocculant to generate agglomerated aggregates of the contaminants (S606).
  • the stirring unit 106 may drive the first stirrer 116-2 installed inside the water tank 112 to stir the fluid supplied with the coagulant at high speed to generate the aggregate.
  • the precipitation unit 108 induces precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring speed for generating the aggregate (S608).
  • the precipitation unit 108 may induce precipitation of the aggregates, for example, to the lower side of the inclined plate 118 installed inclined inside the water tank 112 including the fluid.
  • Separation unit 110 separates the aggregates precipitated below the inclined plate 118 by the precipitation unit 108 (S610).
  • the separation unit 110 may separate the aggregates precipitated below the inclined plate 118 by driving a suction device (not shown) installed below the water tank 112.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Disclosed are a hybrid water treatment system and a hybrid water treatment method. The hybrid water treatment system according to one embodiment of the present invention comprises: a plasma processing unit for causing a plasma discharge in the interior of a fluid and generating a radical so as to be capable of facilitating coagulation of pollutants in the interior of the fluid; and a coagulant supply unit for supplying a coagulant to the interior of the fluid and coagulating the pollutants in the interior of the fluid.

Description

하이브리드 수처리 시스템 및 방법Hybrid water treatment system and method
본 발명은 유체 내부의 오염 물질을 효율적으로 응집시키기 위한 하이브리드 수처리 시스템 및 방법에 관한 것이다.The present invention relates to a hybrid water treatment system and method for efficiently flocculating contaminants in a fluid.
산업 발달 및 인구의 증가로 축산단지, 음식물 처리장, 하수 처리장, 폐수 처리장, 분뇨 처리장, 산업단지 등에서 발생하는 각종 폐수의 발생량이 급증하고 있다. 특히, 최근 들어 탐사 리스크가 적고, 매장량이 막대한 셰일 가스 및 석탄층 메탄가스, 치밀 가스 등의 비재래 유전, 가스전 사업이 부각됨에 따라 비재래 유전, 가스전 개발시 발생하는 폐수 처리에 대한 관심이 높아지고 있다. 셰일 가스의 회수 특성 상 방대한 시추 및 수압 파쇄가 동반되며, 회수 유체(Flow Back Water)에는 다양한 환경 오염원, TDS(Total Dissolved Solids), 중금속, 염분, 유기물, 천연 방사성 물질, 석유 화합물, 박테리아 등이 존재하므로 수처리 공정은 필수적이다. 수처리 공정에 대한 관리 소홀시에는 다양한 오염원들에 의해 지충수, 지하수, 함수층 등의 오염으로 환경뿐 아니라 인간에게 막대한 영향을 미칠 수 있다. Due to the industrial development and the increase of the population, the amount of various wastewaters generated in livestock complexes, food treatment plants, sewage treatment plants, wastewater treatment plants, manure treatment plants, and industrial complexes is increasing rapidly. In particular, as non-traditional oil fields and gas field projects, such as shale gas, coal seam methane gas and dense gas, which have low exploration risks and huge reserves, are emerging, interest in the treatment of wastewater generated during the development of non-conventional oil fields and gas fields is increasing. . The recovery of shale gas is accompanied by extensive drilling and hydraulic fracturing. The flow back water contains various environmental pollutants, TDS (Total Dissolved Solids), heavy metals, salts, organics, natural radioactive materials, petroleum compounds, bacteria, etc. Water treatment process is essential as it exists. In the case of neglected management of the water treatment process, pollution of the groundwater, groundwater, water-containing layer, etc., caused by various pollutants can have a huge impact on humans as well as the environment.
일반적으로, 폐수에 포함된 고형물, 유기물, 질소 및 인 등을 처리함에 있어서 물리적, 화학적 및 생물학적 방법이 병행되고 있다. 종래의 폐수 처리 장치는 여과나 침강방식으로 부유물, 모래, 협잡물 등의 고형물을 제거하기 위한 스크린이나 침사지 등이 설치된 물리적 처리시설과, 반응, 응집 등을 이용하여 무기물 등의 고형물을 응집, 침전시켜 제거하는 화학적 처리시설과, 질산화반응과 탈질반응 등을 이용하여 유기물, 질소 및 인을 처리하기 위한 생물학적 처리시설을 갖는다. 그러나, 종래의 폐수 처리 장치는 폐수를 처리함에 있어서, 폐수가 수조에 오랫동안 체류된 상태로 처리하기 때문에 총 소요 시간이 약 7~10시간 정도 걸리게 되며, 그 소요 시간만큼 수조는 폐수를 계속해서 담아야 하기 때문에 수조가 대형화되는 문제점이 있었다. 또한, 이로 인해 폐수 처리 장치의 설치에 있어서 많은 시간과 비용이 소요되는 문제점이 있었다. In general, physical, chemical, and biological methods are used in the treatment of solids, organics, nitrogen, phosphorus, and the like contained in wastewater. Conventional wastewater treatment equipment aggregates and precipitates solids such as inorganic matter by using a physical treatment facility equipped with a screen or a settler for removing solids such as suspended solids, sand, and contaminants by filtration or sedimentation. It has a chemical treatment facility for removal and a biological treatment facility for treating organic matter, nitrogen and phosphorus using nitrification and denitrification. However, in the conventional wastewater treatment apparatus, since the wastewater is treated in a state in which the wastewater stays in the tank for a long time, the total time taken is about 7 to 10 hours, and the tank continues to contain the wastewater. Because there was a problem that the tank is large. In addition, this has caused a problem that takes a lot of time and money in the installation of the wastewater treatment apparatus.
본 발명의 실시예들은 수중 플라즈마 방전 장치와 응집제를 이용하여 유체 내부의 오염 물질의 응집 효과를 극대화시킴으로써 유체를 효율적으로 정화시키기 위한 것이다.Embodiments of the present invention are to purify the fluid efficiently by maximizing the aggregation effect of the contaminants in the fluid by using the underwater plasma discharge device and the flocculant.
본 발명의 일 측면에 따르면, 유체 내부의 오염 물질의 응집을 촉진할 수 있도록 상기 유체 내부에 플라즈마 방전을 일으켜 라디칼(radical)을 생성하는 플라즈마 처리부; 및 상기 유체 내부에 응집제를 공급하여 상기 유체 내부의 오염 물질을 응집시키는 응집제 공급부를 포함하는, 하이브리드 수처리 시스템이 제공된다.According to an aspect of the present invention, the plasma processing unit for generating a radical (radical) by generating a plasma discharge inside the fluid to promote the aggregation of contaminants in the fluid; And a coagulant supply unit for supplying a coagulant inside the fluid to agglomerate contaminants in the fluid.
상기 플라즈마 처리부는, 상기 유체 내부에서 음전하로 대전(electrification)된 산화체들을 양전하로 대전시킬 수 있을 만큼의 시간 동안 플라즈마 방전을 일으킬 수 있다.The plasma processing unit may generate a plasma discharge for a time sufficient to charge negatively charged oxidants inside the fluid to a positive charge.
상기 응집제는, 무기 응집제, 고분자 응집제 및 천연 응집제 중 하나 이상을 포함할 수 있다.The flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant.
상기 천연 응집제는, 장석(NaAlSiO, CaAlSiO), 제올라이트(Mn/2O·Al2O3·xSiO2·yH2O), 이산화규소(SiO2), 탄산칼슘(CaCO3), 수산화칼슘(Ca(OH)2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화철(Fe2O3), 이산화타이타늄(TiO2), 핵사플루오르화규소포타슘(K2SiF6), 염화칼슘(CaCl2) 및 염화바륨(BaCl2) 중 하나 이상을 포함할 수 있다.The natural coagulant, feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O · Al 2 O 3 · xSiO 2 · yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH ) 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) And barium chloride (BaCl 2 ).
상기 하이브리드 수처리 시스템은, 상기 응집제가 공급된 유체를 교반하여 상기 오염 물질이 응집된 응집물을 생성하는 교반부를 더 포함할 수 있다.The hybrid water treatment system may further include an agitator configured to agitate the fluid supplied with the flocculant to generate agglomerated aggregates of the pollutants.
상기 하이브리드 수처리 시스템은, 상기 응집물이 포함된 유체를 상기 교반부의 교반 속도보다 낮은 속도로 교반하여 상기 응집물의 침전을 유도하는 침전부를 더 포함할 수 있다.The hybrid water treatment system may further include a precipitation unit for inducing the precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring speed of the stirring portion.
상기 하이브리드 수처리 시스템은, 침전된 상기 응집물을 분리하는 분리부를 더 포함할 수 있다.The hybrid water treatment system may further include a separation unit for separating the precipitated aggregates.
상기 플라즈마 처리부는, 전원을 공급하는 전원 공급부; 상기 전원 공급부에서 공급된 전원을 인가받아 소정 크기의 전압을 가지는 교류 전원, 직류 전원 또는 펄스 전원으로 변환하는 전압 변환부; 및 상기 전압 변환부로부터 공급된 전원의 전압을 증폭하는 전압 증폭부를 포함할 수 있다.The plasma processing unit, a power supply for supplying power; A voltage converter which receives the power supplied from the power supply and converts the power into an AC power, DC power or pulse power having a voltage of a predetermined magnitude; And a voltage amplifier configured to amplify the voltage of the power supplied from the voltage converter.
상기 플라즈마 처리부는, 상기 전압 증폭부에서 증폭된 전원으로부터 상기 유체 내부에 펄스 방전 또는 모세관 방전을 일으키는 방전부를 더 포함할 수 있다.The plasma processing unit may further include a discharge unit generating pulse discharge or capillary discharge in the fluid from the power amplified by the voltage amplifier.
상기 플라즈마 처리부는, 오존, 산소, 질소, 아르곤, 헬륨 및 공기 중 하나 이상을 포함하는 보조 가스를 상기 유체 내부로 공급하는 가스 공급부를 더 포함할 수 있다.The plasma processing unit may further include a gas supply unit supplying an auxiliary gas including at least one of ozone, oxygen, nitrogen, argon, helium, and air into the fluid.
또한, 본 발명의 다른 측면에 따르면, 유체 내부의 오염 물질의 응집을 촉진할 수 있도록 상기 유체 내부에 플라즈마 방전을 일으켜 라디칼(radical)을 생성하는 단계; 및 상기 유체 내부에 응집제를 공급하여 상기 유체 내부의 오염 물질을 응집시키는 단계를 포함하는, 하이브리드 수처리 방법이 제공된다.In addition, according to another aspect of the invention, generating a radical (radical) by generating a plasma discharge inside the fluid to facilitate the aggregation of contaminants in the fluid; And supplying a flocculant into the fluid to agglomerate contaminants within the fluid.
상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는, 상기 유체 내부에서 음전하로 대전(electrification)된 산화체들을 양전하로 대전시킬 수 있을 만큼의 시간 동안 플라즈마 방전을 일으킬 수 있다.Generating radicals by generating a plasma discharge inside the fluid may cause the plasma discharge for a time sufficient to charge the negatively charged oxidants inside the fluid with a positive charge.
상기 응집제는, 무기 응집제, 고분자 응집제 및 천연 응집제 중 하나 이상을 포함할 수 있다. The flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant.
상기 천연 응집제는, 장석(NaAlSiO, CaAlSiO), 제올라이트(Mn/2O·Al2O3·xSiO2·yH2O), 이산화규소(SiO2), 탄산칼슘(CaCO3), 수산화칼슘(Ca(OH)2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화철(Fe2O3), 이산화타이타늄(TiO2), 핵사플루오르화규소포타슘(K2SiF6), 염화칼슘(CaCl2) 및 염화바륨(BaCl2) 중 하나 이상을 포함할 수 있다.The natural coagulant, feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O · Al 2 O 3 · xSiO 2 · yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH ) 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) And barium chloride (BaCl 2 ).
상기 하이브리드 수처리 방법은, 상기 응집제가 공급된 유체를 교반하여 상기 오염 물질이 응집된 응집물을 생성하는 단계를 더 포함할 수 있다.The hybrid water treatment method may further include agitating the fluid supplied with the flocculant to generate agglomerated aggregates of the pollutants.
상기 하이브리드 수처리 방법은, 상기 응집물이 포함된 유체를 상기 응집물을 생성하기 위한 교반 속도보다 낮은 속도로 교반하여 상기 응집물의 침전을 유도하는 단계를 더 포함할 수 있다.The hybrid water treatment method may further include the step of inducing the precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring rate for producing the aggregate.
상기 하이브리드 수처리 방법은, 침전된 상기 응집물을 분리하는 단계를 더 포함할 수 있다.The hybrid water treatment method may further include separating the precipitated aggregates.
상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는, 전원을 공급하는 단계; 상기 공급된 전원을 인가받아 소정 크기의 전압을 가지는 교류 전원, 직류 전원 또는 펄스 전원으로 변환하는 단계; 및 상기 변환된 전원의 전압을 증폭하는 단계를 포함할 수 있다.Generating radicals by generating a plasma discharge inside the fluid may include supplying power; Receiving the supplied power and converting the power into an AC power supply, a DC power supply, or a pulse power supply having a voltage having a predetermined magnitude; And amplifying the voltage of the converted power source.
상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는, 상기 증폭된 전원으로부터 상기 유체 내부에 펄스 방전 또는 모세관 방전을 일으키는 단계를 더 포함할 수 있다.Generating radicals by generating plasma discharge in the fluid may further include generating pulse discharge or capillary discharge in the fluid from the amplified power source.
상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는, 오존, 산소, 질소, 아르곤, 헬륨 및 공기 중 하나 이상을 포함하는 보조 가스를 상기 유체 내부로 공급하는 단계를 더 포함할 수 있다.Generating radicals by generating a plasma discharge inside the fluid may further include supplying an auxiliary gas including one or more of ozone, oxygen, nitrogen, argon, helium, and air into the fluid.
본 발명의 실시예들에 따르면, 유체 내부에 수중 플라즈마 방전을 일으키고 응집제를 공급함으로써, 유체 내부에 수중 플라즈마 방전만을 일으키거나 응집제만을 공급하는 경우와 각각 비교하여 유체 내부의 오염 물질의 응집 속도를 크게 향상시킬 수 있다. 또한, 오염 물질의 응집 속도가 향상됨에 따라 수처리 시간 및 비용을 최소화시킬 수 있으며, 이에 따라 수처리 시스템을 소형화시킬 수 있다. According to embodiments of the present invention, by generating an underwater plasma discharge inside the fluid and supplying a flocculant, the aggregation rate of the contaminants in the fluid is greatly increased as compared with the case of generating only an underwater plasma discharge or supplying only the flocculant inside the fluid. Can be improved. In addition, as the aggregation rate of the contaminants is improved, the water treatment time and cost can be minimized, thereby miniaturizing the water treatment system.
또한, 본 발명의 실시예들에 따르면, 응집제 내부의 이온 성분들이 하전 중화와 pH 중화를 동시에 수행하며, 카드뮴, 구리, 아연, 납, 비소, 니켈 등의 중금속뿐만 아니라 황화물, 염류, 유기 미립자 등 비금속 광산 배출물질을 응집 및 저감시킬 수 있다. In addition, according to the embodiments of the present invention, the ionic components inside the flocculant simultaneously perform charge neutralization and pH neutralization, and sulfides, salts, organic fine particles, etc., as well as heavy metals such as cadmium, copper, zinc, lead, arsenic, and nickel. Non-metallic mine emissions can be aggregated and reduced.
또한, 본 발명의 실시예들에 따르면, 유체 내부의 용존 산소량(DO)을 증가시키고, 화학적 산소요구량(COD), 생물학적 산소요구량(BOD), 부유물질(SS) 및 악취를 격감시킬 수 있으며, 호기성 미생물들의 활성을 도모하고 안정화시킬 수 있다. In addition, according to embodiments of the present invention, it is possible to increase the dissolved oxygen amount (DO) in the fluid, to reduce the chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS) and odor, It can promote and stabilize the activity of aerobic microorganisms.
도 1은 본 발명의 일 실시예에 따른 하이브리드 수처리 시스템을 설명하기 위한 도면1 is a view for explaining a hybrid water treatment system according to an embodiment of the present invention
도 2는 본 발명의 일 실시예에 따른 플라즈마 처리부를 설명하기 위한 블록도2 is a block diagram illustrating a plasma processing unit according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 플라즈마 처리부에서의 플라즈마 방전에 따른 유체 내부의 침전 효과 및 멸균 효과를 설명하기 위한 도면3 is a view for explaining the precipitation effect and sterilization effect inside the fluid according to the plasma discharge in the plasma processing unit according to an embodiment of the present invention
도 4는 본 발명의 일 실시예에 따른 플라즈마 처리부의 플라즈마 처리 시간에 따른 응집제 공급부에서의 유체 내부의 응집 효율을 설명하기 위한 도면4 is a view for explaining the cohesion efficiency of the inside of the fluid in the flocculant supply unit according to the plasma treatment time of the plasma processing unit according to an embodiment of the present invention
도 5는 본 발명의 일 실시예에 따른 응집제 공급부에서의 응집제 공급에 따른 유체 내부의 중금속 처리 효율을 설명하기 위한 도면5 is a view for explaining the treatment efficiency of heavy metal inside the fluid according to the supply of flocculant in the flocculant supply unit according to an embodiment of the present invention
도 6은 본 발명의 일 실시예에 따른 하이브리드 수처리 방법을 설명하기 위한 흐름도6 is a flowchart illustrating a hybrid water treatment method according to an embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 구체적인 실시예를 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 한정되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, this is only an exemplary embodiment and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for effectively explaining the technical spirit of the present invention to those skilled in the art to which the present invention pertains.
도 1은 본 발명의 일 실시예에 따른 하이브리드 수처리 시스템(100)을 설명하기 위한 도면이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 하이브리드 수처리 시스템(100)은 플라즈마 처리부(102), 응집제 공급부(104), 교반부(106), 침전부(108) 및 분리부(110)를 포함한다.1 is a view for explaining a hybrid water treatment system 100 according to an embodiment of the present invention. As shown in FIG. 1, the hybrid water treatment system 100 according to an exemplary embodiment of the present invention includes a plasma treatment unit 102, a flocculant supply unit 104, a stirring unit 106, a precipitation unit 108, and a separation unit ( 110).
플라즈마 처리부(102)는 유체 내부에 플라즈마 방전을 일으켜 라디칼(radical)을 생성한다. 여기서, 유체는 예를 들어, 가정이나 공장, 농축산업 등 각종 산업시설 또는 농업시설 등에서 배출되는 오수, 폐수, 하수 등이 될 수 있으며, 도 1에 도시된 바와 같이 수조(112)에 저장되거나 유입될 수 있다. 플라즈마 처리부(102)는 유체 내부에서 음전하로 대전(electrification)된 산화체들을 양전하로 대전시킬 수 있을 만큼의 시간 동안 플라즈마 방전을 일으킨다. 후술할 바와 같이, 유체 내부에는 응집제가 공급되며, 플라즈마 처리부(102)는 상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성함으로써 유체 내부의 오염 물질의 응집을 촉진시킨다. 플라즈마 처리부(102)는 후술할 응집제 공급부(104)에서 유체 내부에 응집제를 공급하기 전 유체 내부에 플라즈마 방전을 일으킬 수 있으며, 반대로 응집제 공급부(104)에서 유체 내부에 응집제를 공급한 후 유체 내부에 플라즈마 방전을 일으킬 수도 있다. 또한, 플라즈마 처리부(102)는 응집제 공급부(104)에서 유체 내부에 응집제를 공급하는 것과 동시에 유체 내부에 플라즈마 방전을 일으킬 수도 있다. 즉, 플라즈마 처리부(102)가 유체 내부에 플라즈마 방전을 일으키는 과정과 응집제 공급부(104)에서 유체 내부에 응집제를 공급하는 과정은 그 순서에 특별히 제한되지 않으며 동시 또는 순차적으로 수행될 수 있다.The plasma processor 102 generates a plasma discharge in the fluid to generate radicals. Here, the fluid may be, for example, sewage, wastewater, and sewage discharged from various industrial facilities or agricultural facilities such as homes, factories, concentrated industries, etc., and stored or flowed into the water tank 112 as shown in FIG. 1. Can be. The plasma processing unit 102 generates a plasma discharge for a time sufficient to charge the negatively charged oxidants in the fluid to the positive charge. As will be described later, a flocculant is supplied into the fluid, and the plasma processing unit 102 generates plasma by generating plasma within the fluid to promote aggregation of contaminants in the fluid. The plasma processing unit 102 may cause a plasma discharge in the fluid before supplying the coagulant to the fluid in the coagulant supply unit 104, which will be described later. In contrast, the coagulant supply unit 104 supplies the coagulant to the fluid and then, It may also cause plasma discharge. In addition, the plasma processing unit 102 may generate a plasma discharge in the fluid at the same time as the coagulant supply unit 104 supplies the coagulant into the fluid. That is, the process of causing the plasma processing unit 102 to generate a plasma discharge in the fluid and the process of supplying the coagulant into the fluid in the coagulant supply unit 104 are not particularly limited in the order, and may be performed simultaneously or sequentially.
도 2는 본 발명의 일 실시예에 따른 플라즈마 처리부(102)를 설명하기 위한 블록도이다. 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 플라즈마 처리부(102)는 전원 공급부(202), 전압 변환부(204), 전압 증폭부(206), 방전부(208) 및 가스 공급부(210)를 포함한다.2 is a block diagram illustrating a plasma processing unit 102 according to an embodiment of the present invention. As shown in FIG. 2, the plasma processor 102 according to an embodiment of the present invention includes a power supply unit 202, a voltage converter 204, a voltage amplifier 206, a discharge unit 208, and a gas supply unit. And 210.
전원 공급부(202)는 전압 변환부(204)로 전원(예를 들어, 상용 AC 전원)을 공급한다.The power supply unit 202 supplies power (eg, commercial AC power) to the voltage converter 204.
전압 변환부(204)는 전원 공급부(202)에서 공급된 전원을 인가받아 소정 크기의 전압을 가지는 교류 전원, 직류 전원 또는 펄스 전원으로 변환한다. 전압 변환부(204)는 필요에 따라 전압 레귤레이터 등의 회로를 포함하여 구성될 수 있다.The voltage converter 204 receives the power supplied from the power supply unit 202 and converts the power into an AC power supply, a DC power supply, or a pulse power supply having a voltage having a predetermined size. The voltage converter 204 may be configured to include a circuit such as a voltage regulator as necessary.
전압 증폭부(206)는 전압 변환부(204)로부터 공급된 전원의 전압을 증폭한다. 전압 증폭부(206)에서 증폭되는 전압의 크기는 정화하려는 유체의 성질 등에 따라 적절하게 설정될 수 있다.The voltage amplifier 206 amplifies the voltage of the power supplied from the voltage converter 204. The magnitude of the voltage amplified by the voltage amplifier 206 may be appropriately set according to the nature of the fluid to be purified.
방전부(208)는 전압 증폭부(208)에서 증폭된 전원으로부터 유체 내부에 펄스 방전 또는 모세관 방전을 일으킨다. 방전부(208)는 펄스 방전을 일으키는 펄스 방전 전극(미도시) 및 모세관 방전을 일으키는 모세관 방전 전극(미도시) 중 적어도 하나를 구비할 수 있다. 방전부(208)는 전압 증폭부(206)에서 증폭된 전원으로부터 고전압 펄스 신호를 생성하여 유체 내부에 펄스 방전을 일으킬 수 있다. 또한, 방전부(208)는 전압 증폭부(206)에서 증폭된 전원을 정류하여 반파 정류 신호를 생성하고, 유체 내부에 모세관 방전을 일으킬 수도 있다. 아울러, 방전부(208)는 펄스 방전 전극 및 모세관 방전 전극을 동시에 구비할 수 있으며, 이 경우 펄스 방전 및 모세관 방전이 동시 또는 순차적으로 일어나도록 함으로써 유체 정화 효과를 극대화시킬 수 있다. The discharge unit 208 generates pulse discharge or capillary discharge in the fluid from the power amplified by the voltage amplifier 208. The discharge unit 208 may include at least one of a pulse discharge electrode (not shown) for generating a pulse discharge and a capillary discharge electrode (not shown) for generating a capillary discharge. The discharge unit 208 may generate a high voltage pulse signal from the power amplified by the voltage amplifier 206 to cause pulse discharge in the fluid. In addition, the discharge unit 208 may rectify the power amplified by the voltage amplifier 206 to generate a half-wave rectified signal, and may cause capillary discharge in the fluid. In addition, the discharge unit 208 may be provided with a pulse discharge electrode and a capillary discharge electrode at the same time, in this case it can maximize the fluid purification effect by causing the pulse discharge and capillary discharge to occur simultaneously or sequentially.
가스 공급부(210)는 오존, 산소, 질소, 아르곤, 헬륨 및 공기 중 하나 이상을 포함하는 보조 가스를 상기 유체 내부로 공급한다. 가스 공급부(210)는 예를 들어, 펄스 방전 전극 또는 모세관 방전 전극의 내부를 길이 방향으로 관통하여 유체 내부로 보조 가스를 공급할 수 있다. 이와 같이 보조 가스를 유체 내부로 공급하는 경우, 보조 가스를 공급하지 않을 경우와 비교하여 유체 내 활성종들의 농도 및 유체 내 체류 시간을 증가시키게 되므로, 플라즈마에 의한 유체 정화 효과가 극대화될 수 있다. 본 발명의 실시예에 따른 플라즈마 처리부(102)는 모세관 방전, 펄스 방전 및 가스 채널 방전 방식 중 어느 하나의 방식을 활용하거나 이들 방식을 조합하여 플라즈마 방전을 일으킬 수 있으며, 특정 방전 방식에 국한되지 않는다. The gas supply unit 210 supplies an auxiliary gas including one or more of ozone, oxygen, nitrogen, argon, helium, and air into the fluid. For example, the gas supply part 210 may penetrate the inside of the pulse discharge electrode or the capillary discharge electrode in the longitudinal direction to supply the auxiliary gas into the fluid. As such, when the auxiliary gas is supplied into the fluid, the concentration of the active species in the fluid and the residence time in the fluid may be increased as compared with the case where the auxiliary gas is not supplied, thereby maximizing the fluid purification effect by the plasma. Plasma processing unit 102 according to an embodiment of the present invention may generate a plasma discharge by using any one of the capillary discharge, pulse discharge and gas channel discharge method or a combination of these methods, and is not limited to a specific discharge method. .
한편, 방전부(208)에 의해 방전된 플라즈마에 의하여 유체 내에는 OH, O, H, H2O2, HO2, Cl, HCl 등의 활성종(reactive species)들의 라디칼이 생성되는데, 상기 플라즈마 방전은 이러한 라디칼들의 유체 내부에서의 체류 시간을 증대시키고, 활성종에 의한 내부 활성 에너지를 높여 후술할 바와 같이 응집제의 반응 속도를 향상시킨다. 따라서, 종래 기술과 같이 응집제만 사용하는 경우보다 유체 내부의 오염 물질의 응집 속도 및 제거율을 30% 이상 향상시킬 수 있다. Meanwhile, radicals of reactive species such as OH, O, H, H 2 O 2 , HO 2 , Cl, and HCl are generated in the fluid by the plasma discharged by the discharge unit 208. The discharge increases the residence time of these radicals in the fluid and increases the internal activation energy by the active species, thereby improving the reaction rate of the flocculant as will be described later. Therefore, the aggregation rate and removal rate of the contaminants in the fluid can be improved by 30% or more as compared with the case of using only the flocculant as in the prior art.
이를 구체적으로 설명하면, 유체 내부의 중금속, 철(Fe), 망간(Mn), 아연(Zn), 알루미늄(Al), 칼슘(Ca), 칼륨(K), 구리(Cu) 등은 물의 수산화염기(OH-)와 반응하여 물에 녹으면서 전자를 방출함과 동시에 물을 산성화시키고, 산화체 FeO4, Zn(OH)2, Al2O3, CaO, KMnO4, CuO 등의 형태로 존재하게 된다. 이러한 산화체들은 음전하로 대전되어 있어 상호 반발력에 의해 분산 현탁화되어 있다. 이때, 유체 내부에 플라즈마 방전을 일으키게 되면, 아래의 화학식 1과 같이 음전하로 대전된 산화체들이 양전하를 갖는 산화체로 바뀌게 되며, 양전하로 대전된 산화체들이 서로 응결(coagulation)될 수 있도록 물을 분해하여 많은 양의 OH-를 만들게 된다. Specifically, heavy metals, iron (Fe), manganese (Mn), zinc (Zn), aluminum (Al), calcium (Ca), potassium (K), copper (Cu), etc. in the fluid are hydroxide bases of water. (OH -) melting the water reacts with and at the same time emits electrons acidified water, oxidant FeO 4, Zn (OH) exists in the form of 2, Al 2 O 3, CaO, KMnO 4, CuO do. These oxidants are negatively charged and are dispersed and suspended by mutual repulsive force. At this time, when a plasma discharge is generated in the fluid, the negatively charged oxidants are converted into positively charged oxidants as shown in Formula 1 below, and the water is decomposed so that the positively charged oxidizers coagulate with each other. the amount of OH - and create it.
[화학식 1][Formula 1]
H2O →  H+ + OH* + e- H 2 O → H + + OH * + e -
2OH* → H2O2 2OH * → H 2 O 2
Mn, Ca, Fe, Zn, Cu, K → Mn+, Ca+, Fe+, Zn+, Cu+, K+ Mn, Ca, Fe, Zn, Cu, K → Mn + , Ca + , Fe + , Zn + , Cu + , K +
이러한 응결제들은 유체 내부의 오염 물질을 응집시킬 수 있으며, 일정 시간 경과 후 유체 내부의 오염 물질이 응집체로 성장하여 침전물이 된다. 또한, 상술한 수중 플라즈마 방전은 유체 내부의 유해균들을 멸균시킴으로써 정수 기능을 수행할 수 있다. These coagulants may aggregate contaminants in the fluid, and after a certain time, the contaminants in the fluid grow into aggregates and become precipitates. In addition, the above-described underwater plasma discharge may perform a water purification function by sterilizing harmful bacteria in the fluid.
도 3은 본 발명의 일 실시예에 따른 플라즈마 처리부(102)에서의 플라즈마 방전에 따른 유체 내부의 침전 효과 및 멸균 효과를 설명하기 위한 도면이다.3 is a view for explaining the precipitation effect and the sterilization effect in the fluid according to the plasma discharge in the plasma processing unit 102 according to an embodiment of the present invention.
도 3a에 도시된 바와 같이, 유체 내부에 플라즈마 방전을 일으키는 경우, 약 20분 경과 후 갈색의 MnO2가 침전되는 것을 확인할 수 있다. 즉, 수중 플라즈마 방전은 유체 내부의 무기물을 침전시키는데 탁월한 효과가 있다. 또한, 도 3b에 도시된 바와 같이, 침전된 MnO2를 제거한 후 잔류 망간을 발색한 상태에서 유체 내부에 플라즈마 방전을 일으키는 경우, 약 10분 경과 후 잔류 망간의 95% 이상이 제거되는 것을 확인할 수 있었다. 즉, 수중 플라즈마 방전은 유체 내부의 무기물을 침전시키는 것뿐만 아니라 이를 정수하는 효과도 있다. As shown in FIG. 3A, when plasma discharge is generated inside the fluid, brown MnO 2 precipitates after about 20 minutes. That is, the underwater plasma discharge has an excellent effect on the precipitation of inorganic matter inside the fluid. In addition, as shown in Figure 3b, after removing the precipitated MnO 2 and the plasma discharge in the fluid in the state of developing the residual manganese, it can be confirmed that more than 95% of the residual manganese is removed after about 10 minutes. there was. That is, the underwater plasma discharge not only precipitates the inorganic material inside the fluid, but also has the effect of purifying it.
다시 도 1로 돌아오면, 응집제 공급부(104)는 유체 내부에 응집제를 공급하여 유체 내부의 오염 물질을 응집시킨다. 상술한 바와 같이, 수중 플라즈마 방전을 통해서도 유체 내부의 오염 물질을 침전시키거나 정수할 수 있다. 다만, 이와 같은 수중 플라즈마 방전은 응집체를 형성시키는데 비교적 오랜 시간이 걸리고, 전력 소비도 많아 운영비가 비싼 문제점이 있다. 또한, 유체 내부에 별도의 수중 플라즈마 방전 처리 없이 응집제만을 공급한 경우에도 유체 내부의 오염 물질을 응집시킬 수 있다. 그러나, 이 경우 응집제가 오염 물질을 응집시키는데 많은 시간이 소요된다. 이에 따라, 본 발명의 실시예들은, 유체 내부에 응집제를 공급함과 동시에 수중 플라즈마 방전 처리를 수행하도록 구성함으로써 유체 내부의 오염 물질의 응집 효과를 극대화시켰다. 또한, 상술한 바와 같이, 수중 플라즈마 방전은 응집체를 형성하는데 오랜 시간이 걸리고 전력 소비도 많기 때문에, 플라즈마 처리부(102)는 유체 내부에서 음전하로 대전된 산화체들을 양전하를 갖는 산화체들로 대전시킬 수 있을 만큼의 시간 동안(예를 들어, 약 30초) 플라즈마 방전을 일으키도록 구성되며, 이에 따라 응집제 공급부(104)에서 공급된 응집제가 유체 내부의 상기 양전하로 대전된 산화체와 OH-와 반응함으로써 오염 물질의 응집되는데 걸리는 시간을 크게 단축시킬 수 있다. 1, the coagulant supply unit 104 supplies a coagulant inside the fluid to agglomerate contaminants in the fluid. As described above, contaminants in the fluid may be precipitated or purified even through underwater plasma discharge. However, such an underwater plasma discharge takes a relatively long time to form agglomerates, and there is a problem in that the operation cost is high because the power consumption is high. In addition, even when only a flocculant is supplied into the fluid without a separate underwater plasma discharge treatment, contaminants in the fluid may be aggregated. However, in this case, it takes a long time for the flocculant to flocculate the contaminants. Accordingly, embodiments of the present invention maximize the agglomeration effect of contaminants in the fluid by supplying a coagulant to the fluid and simultaneously performing the plasma discharge treatment. In addition, as described above, since the underwater plasma discharge takes a long time to form an aggregate and consumes a lot of power, the plasma processing unit 102 may charge the negatively charged oxidants inside the fluid to the positively charged oxidants. Configured to generate a plasma discharge for as long as possible (eg, about 30 seconds), whereby the coagulant supplied from the coagulant supply 104 reacts with the positively charged oxidant and OH in the fluid. As a result, the time taken to aggregate the pollutants can be greatly shortened.
상기 응집제는 무기 응집제, 고분자 응집제 및 천연 응집제 중 하나 이상을 포함할 수 있다. 무기 응집제는 예를 들어, 황산알루미늄(Al2(SO4)3), 황산제2철(Fe2(SO4)3), 염화제철(FeCl3), 폴리염화알루미늄(PAC) 등이 될 수 있다. 황산알루미늄은 부식성, 자극성이 없으며 취급이 용이하고 착색 현상이 없는 반면, 응집 pH 범위가 5.5~8.5에 불과하고 응집물(Floc)이 가벼운 단점이 있다. 황산제2철은 응집물이 무겁고 침강성이 양호하며 비교적 저가이고 pH 범위가 넓은 반면, 부식성이 강하고 철이온이 잔류하게 되는 단점이 있다. 염화제철은 응집물이 무겁고 침강성이 양호한 반면, 시설물 및 폐수에 착색 현상이 나타나며 취급시 주의가 필요한 단점이 있다. 폴리염화알루미늄은 응집물 형성이 빠른 편이며 효율이 좋은 반면, 고가인 단점이 있다. 또한, 고분자 응집제는 응집물 형성을 크게 하는 반면, 고가인 단점이 있다. The flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant. The inorganic flocculant may be, for example, aluminum sulfate (Al 2 (SO 4 ) 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), ferric chloride (FeCl 3 ), polyaluminum chloride (PAC), or the like. have. Aluminum sulfate has the disadvantages of being corrosive, non-irritating, easy to handle and without coloring phenomenon, while having a cohesive pH range of only 5.5 to 8.5 and a light floc. Ferric sulfate has a disadvantage in that the aggregates are heavy, have good sedimentation properties, are relatively inexpensive, and have a wide pH range, and are highly corrosive and iron ions remain. Iron chloride has a disadvantage in that aggregates are heavy and have good settling properties, but coloration occurs in facilities and wastewater and requires careful handling. Polyaluminum chloride has a tendency to form agglomerates and has good efficiency while having an expensive disadvantage. In addition, the polymer flocculant has a disadvantage of being expensive while increasing the formation of aggregates.
천연 응집제는 장석(NaAlSiO, CaAlSiO), 제올라이트(Mn/2O·Al2O3·xSiO2·yH2O), 이산화규소(SiO2), 탄산칼슘(CaCO3), 수산화칼슘(Ca(OH)2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화철(Fe2O3), 이산화타이타늄(TiO2), 핵사플루오르화규소포타슘(K2SiF6), 염화칼슘(CaCl2) 및 염화바륨(BaCl2) 중 하나 이상을 포함할 수 있으며, 다음과 같은 과정을 통해 제조될 수 있다. 먼저, 맥황토 17-23wt%, 방해석 9-11wt%, 폐각 9-11wt%, 석회석 9-11wt%, 장석질여과사 17-23wt%, 제올라이트 9-11wt%, 게르마늄 6-8wt%, 갈염석 6-8wt%, 화운석5-7wt%를 파쇄 및 밀링하여 미세한 분말을 얻고, 상기 분말에 전체 분말대비 0.1~5wt%의 K2SiF6와 전체 분말대비 10~15wt%의 CaCl2와 BaCl2를 순차적으로 투입하여 가열로에서 600℃에서 5시간 소성한다. 다음으로, 소성된 분말을 구연산으로 60℃에서 2시간 산처리하여 미세한 분말로 밀링한다. 이후, 밀링된 분말을 사이클론을 이용하여 10㎛이하의 분말만 선별하고, 선별된 분말을 순수에 넣어 고속 회전시켜서 교반한다. 상술한 바와 같이, 수중 플라즈마 방전을 통해 유체 내부에서 음전하로 대전된 산화체들이 양전하로 대전된 경우, 유체 내부에 공급된 응집제의 오염 물질 응집 속도 및 제거율이 30% 이상 향상될 수 있다. 아래 화학식 2는 유체 내부에 상술한 응집제 공급시, 유체 내부에 용해된 알루미늄 이온, 칼슘 이온, 황산 이온, 탄산 이온, 마그네슘 이온, 납 이온, 인산 이온 등이 석출되는 과정을 나타내는 화학식이다. Natural coagulant feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O · Al 2 O 3 · xSiO 2 · yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH) 2 ), Aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) and It may include one or more of barium chloride (BaCl 2 ), it may be prepared through the following process. First, wort ocher 17-23wt%, calcite 9-11wt%, waste shell 9-11wt%, limestone 9-11wt%, feldspar filter 17-23wt%, zeolite 9-11wt%, germanium 6-8wt%, brown salt stone 6-8wt%, calcite 5-7wt% crushed and milled to obtain a fine powder, 0.1 ~ 5wt% K 2 SiF 6 and 10 ~ 15wt% CaCl 2 and BaCl 2 of the total powder to the powder Are sequentially added and calcined at 600 ° C. for 5 hours in a heating furnace. Next, the calcined powder is acid treated with citric acid at 60 ° C. for 2 hours to be milled into fine powder. Subsequently, the milled powder is selected using only a powder of 10 μm or less using a cyclone, and the selected powder is put into pure water and stirred by rotating at high speed. As described above, when the negatively charged oxidants inside the fluid are positively charged through the underwater plasma discharge, the contaminant aggregation rate and removal rate of the flocculant supplied inside the fluid may be improved by 30% or more. Formula 2 below is a chemical formula showing a process of depositing aluminum ions, calcium ions, sulfate ions, carbonate ions, magnesium ions, lead ions, phosphate ions and the like dissolved in the fluid when the above-mentioned flocculant is supplied into the fluid.
[화학식 2][Formula 2]
(1) 알루미늄(Al3+) 이온 석출(1) Precipitation of aluminum (Al 3+ ) ions
Al2 (SO4)3 + 3Ca(HCO3)2 → 2Al(OH)3↓ + CaSO4 + 6CO2 Al 2 (SO 4 ) 3 + 3Ca (HCO 3 ) 2 → 2Al (OH) 3 ↓ + CaSO 4 + 6CO 2
(2) 칼슘 이온(Ca2+) 석출(2) Calcium ion (Ca 2+ ) precipitation
2FeCl3 + 3Ca(HCO3)2 → 2Fe(OH)3↓ + 3CaCl2 + 6CO22FeCl 3 + 3Ca (HCO 3 ) 2 → 2Fe (OH) 3 ↓ + 3CaCl 2 + 6CO 2
Fe(HCO3)2 + 2Ca(OH)2 → Fe(OH)2↓ + 2CaCO3 ↓ + 2H2OFe (HCO 3 ) 2 + 2Ca (OH) 2 → Fe (OH) 2 ↓ + 2CaCO 3 ↓ + 2H 2 O
H2CO3 + Ca(OH)2 → CaCO3↓ + 2H2O H 2 CO 3 + Ca (OH) 2 → CaCO 3 ↓ + 2H 2 O
(3) 황산 이온(SO4 2-) 석출 (3) Precipitation of Sulfate Ion (SO 4 2- )
Na2SO4 + BaCl2 → 2NaCl + BaSO4Na 2 SO 4 + BaCl 2 → 2NaCl + BaSO 4
Na2SO4 + CaCl2 → 2NaCl + CaSO4Na2SO4 + CaCl2 → 2NaCl + CaSO 4
(4) 탄산이온(CO3 2-) 석출(4) Precipitation of Carbonate Ion (CO 3 2- )
Na2CO3 + BaCl2 → 2NaCl + BaCO3Na 2 CO 3 + BaCl 2 → 2NaCl + BaCO 3
Na2CO3 + CaCl2 → 2NaCl + CaCO3Na 2 CO 3 + CaCl 2 → 2NaCl + CaCO 3
(5) 마그네슘 이온(Mg2+) 석출(5) Precipitation of Magnesium Ion (Mg 2+ )
2Ca(OH)2 + Mg(HCO3)2 → 2CaCO3↓ + Mg(OH)2↓ + 2H2O2Ca (OH) 2 + Mg (HCO 3 ) 2 → 2CaCO 3 ↓ + Mg (OH) 2 ↓ + 2H 2 O
(6) 납 이온(Pb2+) 석출(6) precipitation of lead ions (Pb 2+ )
KI + Pb(NO3)2 → KNO3 + PbI2↓(노란색앙금)KI + Pb (NO 3 ) 2 → KNO 3 + PbI 2 ↓ (yellow pigment)
Na2S + Pb(NO3)2 → 2NaNO3 + PbS↓(검은색앙금)Na 2 S + Pb (NO 3 ) 22 NaNO 3 + PbS ↓ (Black pigment)
(7) 인산이온(PO4 3-) 석출(7) Precipitation of Phosphate Ion (PO 4 3- )
10Ca2++ 6PO4 3- +2OH- → Ca10(PO4)6(OH)210Ca 2+ + 6PO 4 3- + 2OH- → Ca 10 (PO 4 ) 6 (OH) 2
Al3+ + HnPO4 3-n → AlPO4↓ + nH+ Al 3+ + HnPO 4 3-n → AlPO 4 ↓ + nH +
Fe3++ HnPO4 3-n → FePO4 ↓ + nH+ Fe 3+ + HnPO 4 3-n → FePO 4 ↓ + nH +
한편, 도 1에 도시된 바와 같이, 본 발명의 실시예들에 의하면 응집제 공급부(104)에서의 응집제 공급 전에 폭기가 충분히 이루어지도록 별도의 산기 장치(114)를 구동시켜 유체 내 미세 입자를 응집 조대화시킬 수 있다. 이를 통해 호기성 미생물에 의한 소화 작용을 촉진시키고 탄산가스, 황화수소, 메탄가스 등을 제거하여 유체를 정화할 수 있다.On the other hand, as shown in Figure 1, according to the embodiments of the present invention by driving a separate diffuser device 114 so that the aeration is sufficient before the flocculant supply unit 104 in the flocculant supply unit 104 to coagulate the fine particles in the fluid You can talk. This facilitates the digestive action by aerobic microorganisms and can purify the fluid by removing carbon dioxide, hydrogen sulfide, and methane gas.
도 4는 본 발명의 일 실시예에 따른 플라즈마 처리부(102)의 플라즈마 처리 시간에 따른 응집제 공급부(104)에서의 유체 내부의 응집 효율을 설명하기 위한 도면이다. 도 4에 도시된 바와 같이, 유체 내부에 플라즈마 방전 처리를 하지 않고 응집제만을 공급한 경우, 유체 내부의 오염 물질이 응집되는데 걸리는 시간은 7분 3초가 소요되었다. 그러나, 상술한 플라즈마 처리부(102)를 통해 유체 내부에 30초 또는 60초 동안 플라즈마 방전을 일으킨 후 응집제를 투여한 경우에는 유체 내부의 오염 물질이 응집되는데 걸리는 시간이 3분 30초로 급격히 감소하였다. 즉, 수중 플라즈마 방전을 일으켜 라디칼이 생성된 유체 내부에 응집제를 공급하는 경우, 유체 내부에 수중 플라즈마 방전만을 일으키거나 응집제만을 공급하는 경우와 각각 비교하여 유체 내부의 오염 물질의 응집 속도가 크게 향상되는 것을 확인할 수 있었다. 4 is a view for explaining the cohesive efficiency of the inside of the fluid in the coagulant supply unit 104 according to the plasma processing time of the plasma processing unit 102 according to an embodiment of the present invention. As shown in FIG. 4, when only the flocculant was supplied to the fluid without plasma discharge treatment, the time taken for the contaminants in the fluid to agglomerate was 7 minutes and 3 seconds. However, in the case where a coagulant is administered after generating a plasma discharge for 30 seconds or 60 seconds through the plasma processing unit 102 described above, the time taken for the contaminants in the fluid to aggregate is drastically reduced to 3 minutes 30 seconds. That is, when the flocculant is supplied into the fluid in which the radicals are generated by generating the plasma discharge underwater, the aggregation rate of the contaminants in the fluid is greatly improved as compared with the case of generating only the plasma discharge inside the fluid or only supplying the flocculant. I could confirm that.
도 5는 본 발명의 일 실시예에 따른 응집제 공급부(104)에서의 응집제 공급에 따른 유체 내부의 중금속 처리 효율을 설명하기 위한 도면이다. 도 5에 도시된 바와 같이, 수중 플라즈마 방전을 일으켜 라디칼이 생성된 유체 내부에 응집제를 공급하는 경우, 카드뮴, 구리, 아연, 납, 비소, 니켈 등과 같은 중금속들을 빠르게 응집 및 저감시킬 수 있다. 즉, 본 발명의 실시예들에 의하면, 유체 내부의 중금속 흡착능 효율을 극대화시킬 수 있다. 또한, 응집제 내부의 이온 성분들은 하전 중화와 pH 중화를 동시에 수행하며, 중금속뿐만 아니라 황화물, 염류, 유기 미립자 등 비금속 광산 배출물질을 응집 및 저감시킬 수 있다. 또한, 하이브리드 수처리 시스템(100)은 유체 내부의 용존 산소량(DO)을 증가시키고, 화학적 산소요구량(COD), 생물학적 산소요구량(BOD), 부유물질(SS) 및 악취를 격감시킬 수 있으며, 호기성 미생물들의 활성을 도모하고 안정화시킬 수 있다. 5 is a view for explaining the treatment efficiency of heavy metal in the fluid according to the coagulant supply in the coagulant supply unit 104 according to an embodiment of the present invention. As shown in FIG. 5, when a flocculant is supplied into a fluid in which radicals are generated by generating an underwater plasma discharge, heavy metals such as cadmium, copper, zinc, lead, arsenic, and nickel may be rapidly aggregated and reduced. That is, according to embodiments of the present invention, it is possible to maximize the efficiency of heavy metal adsorption capacity in the fluid. In addition, the ionic components inside the flocculant simultaneously perform charge neutralization and pH neutralization, and can aggregate and reduce not only heavy metals but also nonmetallic mine emissions such as sulfides, salts and organic fine particles. In addition, the hybrid water treatment system 100 may increase the amount of dissolved oxygen (DO) in the fluid, and may reduce chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solids (SS), and odor, and may also reduce aerobic microorganisms. Can promote and stabilize their activity.
다시 도 1로 돌아오면, 교반부(106)는 응집제가 공급된 유체를 교반하여 오염 물질이 응집된 응집물을 생성한다. 교반부(106)는 예를 들어, 수조(112) 내부에 설치된 제 1 교반기(116-1)를 구동시킴으로써 응집제가 공급된 유체를 고속으로 교반하여 응집물을 생성할 수 있다. 제 1 교반기(116-1)는 유체를 고속으로 교반하기 때문에, 유체 내부의 응집물은 수조(112) 상측을 통해 전방으로 흐를 수 있다. 여기서, 전방이란 제 1 교반기(116-1)가 향하는 방향을 의미한다.1 again, the stirring unit 106 agitates the fluid supplied with the flocculant to produce agglomerated aggregates of contaminants. The stirring unit 106 may generate agglomerates by, for example, driving the fluid supplied with the coagulant at high speed by driving the first agitator 116-1 installed in the water tank 112. Since the first stirrer 116-1 stirs the fluid at high speed, aggregates inside the fluid may flow forward through the upper side of the water tank 112. Here, the front means a direction that the first stirrer 116-1 faces.
침전부(108)는 상기 응집물이 포함된 유체를 상기 교반부(106)의 교반 속도보다 낮은 속도로 교반하여 상기 응집물의 침전을 유도할 수 있다. 이때, 침전부(108)는 예를 들어, 제 2 교반기(116-2)를 통해 상기 유체가 포함된 수조(112) 내부에 경사지게 설치된 경사판(118)의 하측으로 상기 응집물의 침전을 유도할 수 있다. 제 2 교반기(116-2)는 수조(112) 내부에 경사지게 설치된 경사판(118)을 향하도록 설치될 수 있다. 응집물은 그 무게 때문에 경사판(118) 상측으로 상승하지 못하게 되며 경사판(118)에 의해 전방으로 더 이상 나아가지 못하게 되어 수조(112) 하측에 침전될 수 있다. 반면, 유체는 경사판(118) 상측을 통해 전방으로 흐르게 된다. The precipitation unit 108 may induce the precipitation of the aggregate by stirring the fluid containing the aggregate at a lower speed than the stirring speed of the stirring unit 106. At this time, the precipitation unit 108, for example, through the second stirrer 116-2 can induce the precipitation of the aggregates to the lower side of the inclined plate 118 installed inclined inside the water tank 112 containing the fluid. have. The second stirrer 116-2 may be installed to face the inclined plate 118 installed to be inclined in the water tank 112. Agglomerates are prevented from rising above the inclined plate 118 due to its weight and may not be further moved forward by the inclined plate 118 and may be settled below the water tank 112. On the other hand, the fluid flows forward through the inclined plate 118.
분리부(110)는 수조(112) 하측에 침전된 응집물을 분리한다. 분리부(110)는 예를 들어, 수조(112) 하측에 설치된 흡입 장치(미도시)를 구동시킴으로써 경사판(118) 하측에 침전된 응집물을 분리할 수 있다. Separation unit 110 separates the aggregates precipitated below the water tank (112). The separation unit 110 may separate the aggregates precipitated below the inclined plate 118 by driving a suction device (not shown) installed below the water tank 112.
도 6은 본 발명의 일 실시예에 따른 하이브리드 수처리 방법을 설명하기 위한 흐름도이다.6 is a flowchart illustrating a hybrid water treatment method according to an embodiment of the present invention.
플라즈마 처리부(102)는 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성한다(S602). 상술한 바와 같이, 플라즈마 처리부(102)는 유체 내부에서 음전하로 대전(electrification)된 산화체들을 양전하로 대전시킬 수 있을 만큼의 시간 동안 플라즈마 방전을 일으킨다. 여기서, 플라즈마 처리부(102)는 모세관 방전, 펄스 방전 및 가스 채널 방전 방식 중 어느 하나의 방식을 활용하거나 이들 방식을 조합하여 플라즈마 방전을 일으킬 수 있으며, 특정 방전 방식에 국한되지 않는다.The plasma processing unit 102 generates plasma by generating a plasma discharge in the fluid (S602). As described above, the plasma processing unit 102 generates a plasma discharge for a time sufficient to charge the negatively charged oxidants in the fluid to the positive charge. Here, the plasma processing unit 102 may generate a plasma discharge by using any one of capillary discharge, pulse discharge, and gas channel discharge schemes or by combining these schemes, and is not limited to a specific discharge scheme.
응집제 공급부(104)는 유체 내부에 응집제를 공급함으로써 상기 유체 내부의 오염 물질을 응집시킨다(S604). 상술한 바와 같이, 플라즈마 처리부(102)에서의 수중 플라즈마 방전을 통해서 유체 내부의 오염 물질을 침전시키거나 정수할 수 있다. 다만, 이와 같은 수중 플라즈마 방전은 응집체를 형성시키는데 비교적 오랜 시간이 걸리고, 전력 소비도 많아 운영비가 비싼 문제점이 있다. 이에 따라, 본 발명의 실시예들은, 유체 내부에 응집제를 공급함과 동시에 수중 플라즈마 방전 처리를 수행하도록 구성함으로써 유체 내부의 오염 물질의 응집 효과를 극대화시켰다. 플라즈마 처리부(102)는 유체 내부에서 음전하로 대전된 산화체들을 양전하를 갖는 산화체들로 대전시킬 수 있을 만큼의 시간 동안(예를 들어, 30초) 플라즈마 방전을 일으키도록 구성되며, 이에 따라 응집제 공급부(104)에서 공급된 응집제가 상기 양전하로 대전된 산화체와 OH-와 반응함으로써 오염 물질의 응집되는데 걸리는 시간을 크게 단축시킬 수 있다. 상기 응집제는 무기 응집제, 고분자 응집제 및 천연 응집제 중 하나 이상을 포함할 수 있다. 여기서, 천연 응집제는 장석(NaAlSiO, CaAlSiO), 제올라이트(Mn/2O·Al2O3·xSiO2·yH2O), 이산화규소(SiO2), 탄산칼슘(CaCO3), 수산화칼슘(Ca(OH)2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화철(Fe2O3), 이산화타이타늄(TiO2), 핵사플루오르화규소포타슘(K2SiF6), 염화칼슘(CaCl2) 및 염화바륨(BaCl2) 중 하나 이상을 포함할 수 있다. 상술한 바와 같이, 수중 플라즈마 방전을 일으켜 라디칼이 생성된 유체 내부에 응집제를 공급하는 경우, 유체 내부에 수중 플라즈마 방전만을 일으키거나 응집제만을 공급하는 경우와 각각 비교하여 유체 내부의 오염 물질의 응집 속도가 크게 향상될 수 있다. 한편, 단계 S602 및 단계 S604는 동시 또는 순차적으로 수행될 수 있으며, 그 순서에 특별히 제한되지 않는다.The coagulant supply unit 104 aggregates the contaminants in the fluid by supplying a coagulant in the fluid (S604). As described above, contaminants in the fluid may be precipitated or purified through the underwater plasma discharge in the plasma processing unit 102. However, such an underwater plasma discharge takes a relatively long time to form agglomerates, and there is a problem in that the operation cost is high because the power consumption is high. Accordingly, embodiments of the present invention maximize the agglomeration effect of contaminants in the fluid by supplying a coagulant to the fluid and simultaneously performing the plasma discharge treatment. The plasma processing unit 102 is configured to generate a plasma discharge for a time (eg, 30 seconds) long enough to charge the negatively charged oxidants into the positively charged oxidizers in the fluid, thereby forming a flocculant. The reaction time of the flocculant supplied from the supply part 104 reacts with the positively charged oxidant and OH to greatly shorten the time taken for the contaminant to aggregate. The flocculant may include one or more of an inorganic flocculant, a polymer flocculant and a natural flocculant. Here, the natural coagulant is feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O · Al 2 O 3 · xSiO 2 · yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH ) 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) And barium chloride (BaCl 2 ). As described above, in case of supplying a flocculant into a fluid generating radical plasma by generating an underwater plasma discharge, the aggregation rate of the contaminants in the fluid is increased as compared with the case of generating only an underwater plasma discharge or supplying only a flocculant into the fluid. Can be greatly improved. On the other hand, step S602 and step S604 may be performed simultaneously or sequentially, without being particularly limited in order.
교반부(106)는 상기 응집제가 공급된 유체를 교반하여 상기 오염 물질이 응집된 응집물을 생성한다(S606). 교반부(106)는 예를 들어, 수조(112) 내부에 설치된 제 1 교반기(116-2)를 구동시킴으로써 응집제가 공급된 유체를 고속으로 교반하여 응집물을 생성할 수 있다. The stirring unit 106 agitates the fluid supplied with the flocculant to generate agglomerated aggregates of the contaminants (S606). For example, the stirring unit 106 may drive the first stirrer 116-2 installed inside the water tank 112 to stir the fluid supplied with the coagulant at high speed to generate the aggregate.
침전부(108)는 응집물이 포함된 유체를 상기 응집물을 생성하기 위한 교반 속도보다 낮은 속도로 교반하여 상기 응집물의 침전을 유도한다(S608). 침전부(108)는 예를 들어, 상기 유체가 포함된 수조(112) 내부에 경사지게 설치된 경사판(118)의 하측으로 상기 응집물의 침전을 유도할 수 있다. The precipitation unit 108 induces precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring speed for generating the aggregate (S608). The precipitation unit 108 may induce precipitation of the aggregates, for example, to the lower side of the inclined plate 118 installed inclined inside the water tank 112 including the fluid.
분리부(110)는 침전부(108)에 의해 경사판(118) 하측에 침전된 응집물을 분리한다(S610). 분리부(110)는 예를 들어, 수조(112) 하측에 설치된 흡입 장치(미도시)를 구동시킴으로써 경사판(118) 하측에 침전된 응집물을 분리할 수 있다. 상술한 바와 같은 방법을 통해 유체 내부의 오염 물질을 빠르게 응집시킬 수 있으며, 유체를 효율적으로 정화시켜 외부로 방류할 수 있다. Separation unit 110 separates the aggregates precipitated below the inclined plate 118 by the precipitation unit 108 (S610). The separation unit 110 may separate the aggregates precipitated below the inclined plate 118 by driving a suction device (not shown) installed below the water tank 112. Through the method as described above, it is possible to quickly aggregate contaminants in the fluid, and to efficiently purify the fluid and discharge it to the outside.
이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 전술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다. Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications without departing from the scope of the present invention with respect to the above-described embodiments. Will understand. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
<부호의 설명><Description of the code>
100 : 하이브리드 수처리 시스템100: hybrid water treatment system
102 : 플라즈마 처리부102: plasma processing unit
104 : 응집제 공급부104: flocculant supply unit
106 : 교반부106: stirring section
108 : 침전부108: settling section
110 : 분리부110: separator
112 : 수조112: tank
114 : 산기 장치114: diffuser device
116-1 : 제 1 교반기116-1: First Agitator
116-2 : 제 2 교반기116-2: second stirrer
118 : 경사판118: inclined plate
202 : 전원 공급부202: power supply
204 : 전압 변환부204: voltage conversion unit
206 : 전압 증폭부206: voltage amplifier
208 : 방전부208: discharge part
210 : 가스 공급부210: gas supply unit

Claims (20)

  1. 유체 내부의 오염 물질의 응집을 촉진할 수 있도록 상기 유체 내부에 플라즈마 방전을 일으켜 라디칼(radical)을 생성하는 플라즈마 처리부; 및A plasma processing unit generating a radical by generating a plasma discharge in the fluid to promote aggregation of contaminants in the fluid; And
    상기 유체 내부에 응집제를 공급하여 상기 유체 내부의 오염 물질을 응집시키는 응집제 공급부를 포함하는, 하이브리드 수처리 시스템.And a coagulant supply unit for supplying a coagulant inside the fluid to agglomerate contaminants in the fluid.
  2. 제1항에 있어서,The method of claim 1,
    상기 플라즈마 처리부는, 상기 유체 내부에서 음전하로 대전(electrification)된 산화체들을 양전하로 대전시킬 수 있을 만큼의 시간 동안 플라즈마 방전을 일으키는, 하이브리드 수처리 시스템.And the plasma processing unit generates a plasma discharge for a time sufficient to charge negatively charged oxidants inside the fluid to a positive charge.
  3. 제1항에 있어서,The method of claim 1,
    상기 응집제는, 무기 응집제, 고분자 응집제 및 천연 응집제 중 하나 이상을 포함하는, 하이브리드 수처리 시스템.Wherein said flocculant comprises at least one of an inorganic flocculant, a polymeric flocculant and a natural flocculant.
  4. 제3항에 있어서,The method of claim 3,
    상기 천연 응집제는, 장석(NaAlSiO, CaAlSiO), 제올라이트(Mn/2O·Al2O3·xSiO2·yH2O), 이산화규소(SiO2), 탄산칼슘(CaCO3), 수산화칼슘(Ca(OH)2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화철(Fe2O3), 이산화타이타늄(TiO2), 핵사플루오르화규소포타슘(K2SiF6), 염화칼슘(CaCl2) 및 염화바륨(BaCl2) 중 하나 이상을 포함하는, 하이브리드 수처리 시스템.The natural coagulant, feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O · Al 2 O 3 · xSiO 2 · yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH ) 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) And barium chloride (BaCl 2 ).
  5. 제1항에 있어서,The method of claim 1,
    상기 응집제가 공급된 유체를 교반하여 상기 오염 물질이 응집된 응집물을 생성하는 교반부를 더 포함하는, 하이브리드 수처리 시스템.And a stirrer for agitating the fluid supplied with the flocculant to produce agglomerated aggregates of the contaminants.
  6. 제5항에 있어서,The method of claim 5,
    상기 응집물이 포함된 유체를 상기 교반부의 교반 속도보다 낮은 속도로 교반하여 상기 응집물의 침전을 유도하는 침전부를 더 포함하는, 하이브리드 수처리 시스템.The hybrid water treatment system further comprises a precipitation unit for inducing the precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring speed of the stirring portion.
  7. 제6항에 있어서,The method of claim 6,
    침전된 상기 응집물을 분리하는 분리부를 더 포함하는, 하이브리드 수처리 시스템.The hybrid water treatment system further comprises a separator for separating the precipitated precipitate.
  8. 제1항에 있어서,The method of claim 1,
    상기 플라즈마 처리부는,The plasma processing unit,
    전원을 공급하는 전원 공급부;A power supply unit supplying power;
    상기 전원 공급부에서 공급된 전원을 인가받아 소정 크기의 전압을 가지는 교류 전원, 직류 전원 또는 펄스 전원으로 변환하는 전압 변환부; 및A voltage converter which receives the power supplied from the power supply and converts the power into an AC power, DC power or pulse power having a voltage of a predetermined magnitude; And
    상기 전압 변환부로부터 공급된 전원의 전압을 증폭하는 전압 증폭부를 포함하는, 하이브리드 수처리 시스템.And a voltage amplifier configured to amplify the voltage of the power supplied from the voltage converter.
  9. 제8항에 있어서,The method of claim 8,
    상기 플라즈마 처리부는, The plasma processing unit,
    상기 전압 증폭부에서 증폭된 전원으로부터 상기 유체 내부에 펄스 방전 또는 모세관 방전을 일으키는 방전부를 더 포함하는, 하이브리드 수처리 시스템.And a discharge unit for generating pulse discharge or capillary discharge inside the fluid from the power amplified by the voltage amplifier.
  10. 제9항에 있어서,The method of claim 9,
    상기 플라즈마 처리부는, The plasma processing unit,
    오존, 산소, 질소, 아르곤, 헬륨 및 공기 중 하나 이상을 포함하는 보조 가스를 상기 유체 내부로 공급하는 가스 공급부를 더 포함하는, 하이브리드 수처리 시스템.And a gas supply for supplying an auxiliary gas comprising at least one of ozone, oxygen, nitrogen, argon, helium and air into the fluid.
  11. 유체 내부의 오염 물질의 응집을 촉진할 수 있도록 상기 유체 내부에 플라즈마 방전을 일으켜 라디칼(radical)을 생성하는 단계; 및Generating a radical by generating a plasma discharge within the fluid to facilitate aggregation of contaminants within the fluid; And
    상기 유체 내부에 응집제를 공급하여 상기 유체 내부의 오염 물질을 응집시키는 단계를 포함하는, 하이브리드 수처리 방법.Supplying a flocculant into the fluid to agglomerate contaminants within the fluid.
  12. 제11항에 있어서,The method of claim 11,
    상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는,Generating plasma by generating a plasma discharge in the fluid,
    상기 유체 내부에서 음전하로 대전(electrification)된 산화체들을 양전하로 대전시킬 수 있을 만큼의 시간 동안 플라즈마 방전을 일으키는, 하이브리드 수처리 방법.And generating a plasma discharge for a time sufficient to charge negatively charged oxidants inside the fluid to a positive charge.
  13. 제11항에 있어서,The method of claim 11,
    상기 응집제는, 무기 응집제, 고분자 응집제 및 천연 응집제 중 하나 이상을 포함하는, 하이브리드 수처리 방법.And the coagulant comprises at least one of an inorganic coagulant, a polymer coagulant, and a natural coagulant.
  14. 제13항에 있어서,The method of claim 13,
    상기 천연 응집제는, 장석(NaAlSiO, CaAlSiO), 제올라이트(Mn/2O·Al2O3·xSiO2·yH2O), 이산화규소(SiO2), 탄산칼슘(CaCO3), 수산화칼슘(Ca(OH)2), 산화알루미늄(Al2O3), 산화마그네슘(MgO), 산화철(Fe2O3), 이산화타이타늄(TiO2), 핵사플루오르화규소포타슘(K2SiF6), 염화칼슘(CaCl2) 및 염화바륨(BaCl2) 중 하나 이상를 포함하는, 하이브리드 수처리 방법.The natural coagulant, feldspar (NaAlSiO, CaAlSiO), zeolite (Mn / 2O · Al 2 O 3 · xSiO 2 · yH 2 O), silicon dioxide (SiO 2), calcium carbonate (CaCO 3), calcium hydroxide (Ca (OH ) 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), potassium tetrafluorophosphate (K 2 SiF 6 ), calcium chloride (CaCl 2 ) And barium chloride (BaCl 2 ).
  15. 제11항에 있어서,The method of claim 11,
    상기 응집제가 공급된 유체를 교반하여 상기 오염 물질이 응집된 응집물을 생성하는 단계를 더 포함하는, 하이브리드 수처리 방법.Stirring the fluid supplied with the flocculant to produce agglomerated aggregates of the contaminants.
  16. 제15항에 있어서,The method of claim 15,
    상기 응집물이 포함된 유체를 상기 응집물을 생성하기 위한 교반 속도보다 낮은 속도로 교반하여 상기 응집물의 침전을 유도하는 단계를 더 포함하는, 하이브리드 수처리 방법.And inducing the precipitation of the aggregate by stirring the fluid containing the aggregate at a rate lower than the stirring rate for producing the aggregate.
  17. 제16항에 있어서,The method of claim 16,
    침전된 상기 응집물을 분리하는 단계를 더 포함하는, 하이브리드 수처리 방법.Separating the precipitate aggregated further, hybrid water treatment method.
  18. 제11항에 있어서,The method of claim 11,
    상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는,Generating plasma by generating a plasma discharge in the fluid,
    전원을 공급하는 단계;Supplying power;
    상기 공급된 전원을 인가받아 소정 크기의 전압을 가지는 교류 전원, 직류 전원 또는 펄스 전원으로 변환하는 단계; 및Receiving the supplied power and converting the power into an AC power supply, a DC power supply, or a pulse power supply having a voltage having a predetermined magnitude; And
    상기 변환된 전원의 전압을 증폭하는 단계를 포함하는, 하이브리드 수처리 방법.Amplifying the voltage of the converted power source.
  19. 제18항에 있어서,The method of claim 18,
    상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는,Generating plasma by generating a plasma discharge in the fluid,
    상기 증폭된 전원으로부터 상기 유체 내부에 펄스 방전 또는 모세관 방전을 일으키는 단계를 더 포함하는, 하이브리드 수처리 방법.Generating a pulse discharge or a capillary discharge in the fluid from the amplified power source.
  20. 제19항에 있어서,The method of claim 19,
    상기 유체 내부에 플라즈마 방전을 일으켜 라디칼을 생성하는 단계는,Generating plasma by generating a plasma discharge in the fluid,
    오존, 산소, 질소, 아르곤, 헬륨 및 공기 중 하나 이상을 포함하는 보조 가스를 상기 유체 내부로 공급하는 단계를 더 포함하는, 하이브리드 수처리 방법.Supplying an auxiliary gas comprising at least one of ozone, oxygen, nitrogen, argon, helium and air into the fluid.
PCT/KR2014/009850 2013-10-23 2014-10-20 Hybrid water treatment system and method WO2015060601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130126770A KR101567006B1 (en) 2013-10-23 2013-10-23 System and method of hybrid water treatment
KR10-2013-0126770 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015060601A1 true WO2015060601A1 (en) 2015-04-30

Family

ID=52993137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009850 WO2015060601A1 (en) 2013-10-23 2014-10-20 Hybrid water treatment system and method

Country Status (2)

Country Link
KR (1) KR101567006B1 (en)
WO (1) WO2015060601A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105948346A (en) * 2016-06-17 2016-09-21 南京大学 Sloping plate sedimentation basin and needle cylinder type plasma combined treatment device for toxic organic wastewater
CN108911318A (en) * 2018-09-03 2018-11-30 大渊环境技术(厦门)有限公司 A kind of purification device and purification method of black and odorous water
CN109896706A (en) * 2019-01-17 2019-06-18 大渊环境技术(厦门)有限公司 A kind of sewage water advanced treatment apparatus
US20210323853A1 (en) * 2018-09-03 2021-10-21 Dayuan Environmental Technology (xiamen) Co., Ltd. Plasma denitrification device and operating method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800340A (en) * 2015-11-25 2017-06-06 衡阳屹顺化工有限公司 A kind of copper sulphate produces the processing method of waste water
KR102340068B1 (en) 2020-02-04 2021-12-15 경북대학교 산학협력단 Magnetic bead composite for metalloid and heavy metal adsorption and its preparing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051604A (en) * 2005-12-02 2007-05-18 김호영 The method of the multiple plasma treatment of waste water and air pollution
KR20120136884A (en) * 2011-06-10 2012-12-20 한국기초과학지원연구원 Underwater discharge apparatus for purifying water
KR20130028422A (en) * 2011-09-09 2013-03-19 한국기초과학지원연구원 Water purify system using plasma underwater discharge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051604A (en) * 2005-12-02 2007-05-18 김호영 The method of the multiple plasma treatment of waste water and air pollution
KR20120136884A (en) * 2011-06-10 2012-12-20 한국기초과학지원연구원 Underwater discharge apparatus for purifying water
KR20130028422A (en) * 2011-09-09 2013-03-19 한국기초과학지원연구원 Water purify system using plasma underwater discharge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105948346A (en) * 2016-06-17 2016-09-21 南京大学 Sloping plate sedimentation basin and needle cylinder type plasma combined treatment device for toxic organic wastewater
CN105948346B (en) * 2016-06-17 2018-12-07 南京大学 A kind of toxic organic sewage treatment device of inclined-plate clarifying basin compound needle barrel plasma
CN108911318A (en) * 2018-09-03 2018-11-30 大渊环境技术(厦门)有限公司 A kind of purification device and purification method of black and odorous water
US20210323853A1 (en) * 2018-09-03 2021-10-21 Dayuan Environmental Technology (xiamen) Co., Ltd. Plasma denitrification device and operating method thereof
CN109896706A (en) * 2019-01-17 2019-06-18 大渊环境技术(厦门)有限公司 A kind of sewage water advanced treatment apparatus

Also Published As

Publication number Publication date
KR20150047037A (en) 2015-05-04
KR101567006B1 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
WO2015060601A1 (en) Hybrid water treatment system and method
WO2015194739A1 (en) Waste water treatment method using micro-electrolysis reaction, and micro-electrolysis material thereof
Huang et al. Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation
JP5170461B2 (en) Treatment of selenium-containing wastewater
CA2119193A1 (en) Solution decontamination method using precipitation and flocculation techniques
KR101245787B1 (en) Mine Drainage treatment System by Ozone oxidation with Return Sludge
WO2012165695A1 (en) Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
JP2009136812A (en) Recovering clarification method of incineration ash, soil or the like containing harmful substance
US6207059B1 (en) Process for treating wastewater
CN110550722A (en) method for treating organic wastewater by preparing hydrolysis type ferromanganese reagent from ferromanganese-containing sludge and efficiently catalyzing persulfate
KR101370246B1 (en) Purifing apparatus of acid mine drainage
JP2017001921A (en) Sewage treatment equipment and sewage treatment method, method for producing phosphorus resource
WO2001085618A1 (en) Method for treating wastewater with powders of slag generated from steel making process
KR102361906B1 (en) Reuse System of Wastewater
Mohammad et al. Enhanced sulfate recovery from high salinity reject brine through simultaneous chemical precipitation and electrocoagulation
KR100479646B1 (en) Apparatus and Method for Environment-friendly Treatment of Industrial Wastewater Using the Combined Electrocoagulation and Magnetic Fluid Separation
CN105668746A (en) Method for removing organophosphorus amino trimethylene phosphonic acid in wastewater with chemical precipitation method
JP2002205077A (en) Method and apparatus for treating organic sewage
CN106630312B (en) Treatment system, treatment method and application of coking phenol-cyanogen wastewater
CN105668749B (en) Minimizing technology containing 2- phosphonobutane -1,2,4- tricarboxylic acids in organism P wastewater
CN109626623A (en) A kind for the treatment of process of cupric and ammonia nitrogen waste water
KR102336536B1 (en) Reuse System of Wastewater
CN110655290B (en) Coal mine wastewater treatment method
CN209872601U (en) Coking desulfurization waste liquid treatment system
JP2007130545A (en) Method and apparatus for treating drainage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855511

Country of ref document: EP

Kind code of ref document: A1