WO2015060450A1 - Illuminating instrument - Google Patents
Illuminating instrument Download PDFInfo
- Publication number
- WO2015060450A1 WO2015060450A1 PCT/JP2014/078419 JP2014078419W WO2015060450A1 WO 2015060450 A1 WO2015060450 A1 WO 2015060450A1 JP 2014078419 W JP2014078419 W JP 2014078419W WO 2015060450 A1 WO2015060450 A1 WO 2015060450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflecting surface
- light emitting
- reflector
- light source
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0019—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
- G02B19/0023—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/06—Optical design with parabolic curvature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0061—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to a lighting device having a planar light source and a reflector, such as a downlight, a spotlight, and the like.
- the light generated from the light source is controlled by reflecting it with a reflector.
- the lighting fixture disclosed in Patent Document 1 includes an LED element, a reflector, and a housing. And the several level
- the reflection surface with a step can provide an appropriate spread in the reflection angle distribution of the reflected light and improve the illuminance uniformity on the irradiated surface. Furthermore, it is said that it is possible to irradiate a target object several hundred meters ahead with a uniform amount of light.
- the step of the reflecting surface is configured so that the reflection angle distribution of the reflected light has an appropriate spread, so that the amount of parallel light that is highly directional and parallel to the optical axis is high. Not suitable for increasing. Further, a light source having a planar light emitting surface is used as the light source, and the light emitting surface size is not increased so as to increase the light emission amount.
- the present invention has been made in view of the above-described circumstances, and a planar light source having a large light emitting surface can be used. Even in this case, light from the light emitting surface can be effectively reflected as parallel light. It aims at providing a lighting fixture.
- the invention according to claim 1 is a lighting apparatus, wherein a light source having a planar light emitting surface orthogonal to a central axis, a reflector that reflects light from the light emitting surface with a reflective surface based on the central axis,
- the reflecting surface includes a parabolic first reflecting surface formed by rotating a part of a first parabola about the central axis about the central axis, and the center.
- a parabolic second reflecting surface formed by rotating a part of a second parabola with an axis parallel to the axis as an axis of symmetry about the central axis.
- the first reflective surface and the second reflective surface are disposed on the side where the second reflective surface is close to the light source,
- the first reflecting surfaces are arranged on the side far from the light source and are continuous with each other.
- the invention according to claim 3 is the luminaire according to claim 1 or 2, characterized in that a focal length of the second parabola is shorter than a focal length of the first parabola.
- the focal point of the first parabola and the focal point of the second parabola are set on the light emitting surface. It is characterized by that.
- the second reflecting surface has an opening surface facing the light emitting surface, and the opening surface is It is characterized by being larger than a virtual opening surface formed by intersecting a virtual extension portion obtained by extending the first reflecting surface to the light emitting surface side and the opening surface.
- the reflector has the first reflecting surface and the second reflecting surface whose reflecting surfaces are parabolic, and, for example, one reflecting surface whose reflecting surface is parabolic. It is possible to use a planar light source having a larger light emitting surface as compared with the case where it is configured by. Even in this case, the light from the light emitting surface can be effectively reflected by the first reflecting surface and the second reflecting surface to be parallel light.
- FIG. 4 is a view taken along the arrow line III-III in FIG. 3A for explaining thermal radiation of the luminaire 1.
- FIG. 4 is a view taken along the arrow line III-III in FIG. 3A for explaining convective heat transfer of the lighting fixture 1. It is a figure explaining the planar light source 20 and the connector 21.
- FIG. 4 is a view corresponding to a view taken along the line III-III-III in FIG. 3A, illustrating a state in which the planar light source 20 is replaced with a lamp 62 as a light source. It is a figure explaining the synthesis
- FIG. 1 is an exploded perspective view of the lighting fixture 1 as seen from the upper end Ca side of the central axis C1.
- FIG. 2 is an exploded perspective view of the lighting fixture 1 as seen from the lower end Cb side of the central axis C1.
- 3A is a plan view (top view) illustrating the heat conduction of the luminaire 1
- FIG. 3B is a view taken along the line III-III in FIG.
- the upper and lower sides in FIGS. 1 to 3 correspond to the upper and lower sides of the lighting fixture 1, respectively.
- the luminaire 1 includes a socket holder 10, a planar light source (LED module) 20, a body, and a body disposed substantially in order from the upper end Ca side to the lower end Cb side along the central axis C1. 30, a reflector 40, and a hood 50.
- LED module planar light source
- the luminaire 1 includes a socket holder 10, a planar light source (LED module) 20, a body, and a body disposed substantially in order from the upper end Ca side to the lower end Cb side along the central axis C1. 30, a reflector 40, and a hood 50.
- LED module planar light source
- the socket holder 10 connects a heat sink 11 disposed on the central axis C1, a plurality (a large number) of radiation fins 12, 12,... Extending radially from the outer circumferential surface of the heat sink 11, and the outer circumferential ends of the radiation fins 12, 12,. And an outer peripheral wall 13 having a substantially cylindrical shape.
- the heat sink 11, the radiation fins 12, 12,... And the outer peripheral wall 13 are integrally formed by, for example, aluminum die casting.
- the heat sink 11 has a disc portion 11a, a conical portion 11b, and a leg portion 11c, which are integrally formed.
- the disc part 11a has a mounting surface 11d of the planar light source 20 which is flat on the lower surface.
- the outer diameter of the outer peripheral surface 11e becomes small, so that it approaches the upper end side from a lower end side.
- the conical part 11b has an inclined surface 11g that gently descends from the top part 11f toward the outer periphery.
- the leg part 11c is formed in a substantially cylindrical shape, the upper end is continuous with the peripheral part of the mounting surface 111d, and the diameter of the outer peripheral surface 11h is increased toward the lower end part.
- the outer peripheral surface 11h of the leg portion 11c and the outer peripheral surface 11e of the disk portion 11a described above are linearly continuous.
- a flange portion 11i protrudes outward along the entire circumference.
- the heat radiating fins 12, 12,... are formed so as to extend radially outward from the outer peripheral surface 11e of the disk portion 11a of the heat sink 11, the outer peripheral surface 11h of the leg portion 11c, and the inclined surface 11g of the conical portion 11b. Yes. Further, as shown in FIG. 3A, the radiation fins 12, 12,... Are gently curved as viewed from above. Thereby, since a surface area can be enlarged and the flow of air can be made smooth, heat dissipation efficiency improves.
- Each radiating fin 12 is formed such that the upper end 12b side is thin and the lower end 12a side is thick.
- the outer peripheral wall 13 is formed in a substantially cylindrical shape so as to connect the outer peripheral ends of the radiation fins 12, 12.
- the diameter (inner diameter) of the inner peripheral surface 13c increases as it approaches the upper end 13b side from the lower end 13a side, and the diameter (outer diameter) of the outer peripheral surface 13d is substantially constant from the lower end 13a side to the upper end 13b side. It has become. For this reason, the outer peripheral wall 13 is thicker toward the lower end 13a and thinner toward the upper end 13b.
- an annular air inlet A ⁇ b> 1 is formed between the flange portion 11 i and the lower end 13 a of the outer peripheral wall 13.
- the air inlet A1 is formed between an inclined surface 13e inside the lower end 13a of the outer peripheral wall 13 and an inclined surface 30b of an upper end 30a of the body 30 described later.
- the inclined surfaces 13e and 30b are inclined in the same direction, and the air flowing from the outside to the inside between them is at the lower end of the outer peripheral surface 11h of the leg portion 11c of the heat sink 11 along the inclined surfaces 13e and 30b. It is designed to flow toward you.
- an area (space) surrounded by two adjacent radiation fins 12 and 12, outer peripheral surfaces 11 e and 11 h and inclined surfaces 11 g of the heat sink 11, and an inner peripheral surface 13 c of the outer peripheral wall 13 is vertically
- These flow paths A2, A2,... Increase in the cross-sectional area in the horizontal direction as they go from the lower side to the upper side. That is, it gradually becomes wider as it goes upward.
- Each of the flow paths A2, A2,... Communicates with the above-described annular air intake A1.
- FIG. 6 is a view of the planar light source 20 and the connector 21 as viewed from below.
- planar light source 20 for example, a so-called (chip on board) type LED module in which a large number of small LED elements are arranged in a planar shape can be used.
- this has an anode (positive electrode) 20b and a cathode (negative electrode) 20c at two corners on a square aluminum substrate 20a, respectively.
- a light emitting surface (light emitting area) 20d in which a large number (for example, 100 to 200) of LED elements are mounted in a circle is formed in the center, and the surface of the light emitting surface 20d is sealed with a silicone resin containing a phosphor. Configured. For example, light is emitted from each LED element with an irradiation angle of 120 °.
- the planar light source 20 is fixed from below to the mounting surface 11d of the disk portion 11a of the heat sink 11 by, for example, a rectangular plate-shaped connector 21.
- the connector 21 is formed with a through hole 21 a corresponding to the light emitting surface 20 d of the planar light source 20 and a recess 21 b with which the planar light source 20 is engaged.
- the planar light source 20 is engaged with the recess 21b with the light emitting surface 20d facing downward.
- the planar light source 20 is fixed in a state where the aluminum substrate 20a is in close contact with the mounting surface 11d of the disk portion 11a of the heat sink 11 by screwing two corners of the four locations of the connector 21. ing.
- the mounting surface 11d of the heat sink 11 is formed in a substantially planar shape, it can be relatively easily accommodated with the planar light sources 20 having different sizes.
- the light emitting surface 20d is orthogonal to the central axis C1.
- planar light source 20 in addition to the above-described LED module, for example, an EL (electroluminescence), a plurality of (for example, ten or more) LED lamps arranged in a planar shape, and the like are also included.
- EL electroluminescence
- a plurality of (for example, ten or more) LED lamps arranged in a planar shape, and the like are also included.
- the body 30 is formed in a substantially cylindrical shape by, for example, aluminum die casting.
- the upper end 30a of the body 30 has an inclined surface 30b whose outer peripheral side is inclined lower than the inner peripheral side.
- the inclined surface 30b faces the inclined surface 13e of the lower end 13a of the outer peripheral wall 13 of the socket holder 10 described above, and the annular air inlet A1 described above is formed between the inclined surfaces 13e and 30b.
- a flange portion 30c is formed at the upper end of the inclined surface 30b inward.
- the flange portion 30c corresponds to the flange portion 11i at the lower end of the leg portion 11c of the heat sink 11 described above.
- the body 30 is screwed in a state where the flange portion 30c is in close contact with the flange portion 11i on the heat sink 11 side from below.
- the heat sink 11 and the body 30 are connected to each other through the flange portions 11i and 30c, that is, in a state in which a large contact area is secured between the heat sink 11 and the body 30, as described later. Heat can be effectively transmitted to the body 30 side.
- the reflector 40 will be described.
- the reflector 40 is formed of, for example, aluminum in a gently curved shape based on a parabola.
- FIG. 7 is a diagram for explaining the focal point f and the focal length y of the parabola.
- FIG. 8 is a diagram for explaining the degree of opening (curve size) of the parabolas Pr5, Pr10, Pr15, and Pr20 when the focal length y is 5, 10, 15, and 20 mm. However, the parabolas Pr5, Pr10, Pr15, and Pr20 are illustrated with their respective focal points f matched.
- FIG. 9 is a diagram for explaining how the opening (light entrance) K in the reflector Ra formed by a parabola matched to the outer shape of the body 30 is reduced.
- FIG. 10 is a diagram for explaining a state in which the height H of the reflector Rb formed by a parabola having a large focal length y is lowered (length is shortened).
- FIG. 11 is a figure explaining reflection of light in case the reflector Rc is an ellipse other than a parabola with respect to the reflector R of a parabola.
- FIG. 12 illustrates a state in which the reflecting surface of the reflector 40 is formed by combining the first reflecting surface 41 and the second reflecting surface 42, which are composed of two parabolas Pr1 and Pr2 having different focal lengths y.
- FIG. The reflector 40 particularly its shape, will be described in detail with reference to FIGS.
- the origin of the parabola is O
- the focus is f
- the distance between the origin O and the focus f is the focal length y.
- FIG. 8 shows four parabolas Pr5, Pr10, Pr15, and Pr20.
- the position of the focal point f is the same, and the focal length y is 5, 10, 15, 20 mm in this order.
- the parabola becomes a larger curve (a curve having a larger opening on the lower end side) as the focal length y is larger.
- a deep cut-off angle for example, 30 ° or more
- the height H of the reflector R long, the amount of light hitting the reflector R out of the amount of light emitted from the planar light source 20 can be increased. That is, light controllability can be improved.
- the light source when the light source is a point light source, the above-described conditions can be easily satisfied.
- the light source has a light emitting surface 20d spread in a planar shape (circular in the present embodiment). In this case, it is difficult to satisfy the above conditions. That is, if the condition is satisfied, the opening K of the reflector R becomes small, and the light emitted from the outer part of the light emitting surface 20d cannot be taken into the reflector R, and these lights are effectively used. It cannot be used.
- the opening (light entrance) R2 can be increased.
- the diameter D of the opening R1 is restricted based on the outer diameter of the body 30, the height H of the parabola of the reflector R becomes low (short), and the lower side is not a parabola. For example, it must be cylindrical. For this reason, the light which can be utilized effectively decreases.
- the reflecting surface of the reflector 40 is not formed by a single paraboloid, but a plurality of (2 in the present embodiment) each having a different curve shape (focal length y).
- the first reflecting surface 41 and the second reflecting surface 42 are combined.
- the inner reflection surface is formed with a circular horizontal boundary line S1 as a boundary, the lower side (the side far from the planar light source 20) is formed by the first reflection surface 41, and the upper side (planar shape).
- the second reflecting surface 42 was formed on the side close to the light source 20.
- the upper end of the first reflecting surface 41 and the lower end of the second reflecting surface 42 are continuous at the boundary line S1.
- the first reflecting surface 41 is formed in a parabolic shape obtained by rotating a part of the first parabola Pr1 having the central axis C1 as a symmetry axis (reference) around the central axis C1.
- the second reflecting surface 42 is formed in a parabolic shape obtained by rotating a part of the second parabola Pr2 having an axis C2 parallel to the central axis C1 as a symmetry axis around the central axis C1. ing.
- FIG. 14 is a diagram illustrating the synthesis of the first reflecting surface 41 and the second reflecting surface 42.
- the second reflecting surface 42 has an opening surface K ⁇ b> 2 that faces the light emitting surface 20 d of the planar light source 20 through the gap G.
- a virtual opening surface K1 is a surface formed by intersecting a virtual extension portion M1 obtained by extending the first reflecting surface 42 toward the light emitting surface 20d and the opening surface K2
- the above-described opening surface K2 is a virtual surface. It is configured to be larger than the opening surface K1. Accordingly, the planar light source 20 having a larger light emitting surface 20d can be attached in order to increase the light emission amount. In this case, light emitted from the vicinity of the outer peripheral edge of the light emitting surface 20d is effectively used as the second reflecting surface 42. It becomes possible to reflect with.
- the point can be a radius r / 2 that is half of the radius.
- the second reflecting surface 42 converts the reflected light of the light emitted from the LED element located on the circumference having the radius r / 2 around the intersection T1 in the light emitting surface 20d into parallel light. be able to.
- the magnitude relationship between the opening surface K2 and the light emitting surface 20d will be described.
- a gap G is provided between the light emitting surface 20d of the planar light source 20 and the opening surface K2 of the reflector 40. This is provided for wiring a lead wire for supplying electric power to the planar light source 20 or based on a law or the like.
- three large, medium, and small light emitting surfaces 20d having different diameters are illustrated.
- these three planar light sources 20 have a light emitting surface 20d having a circular shape, and the center thereof coincides with the intersection T1 between the light emitting surface 20d and the central axis C1.
- the irradiation angle of the LED elements constituting the light emitting surface 20d is assumed to be ⁇ (for example, 120 degrees).
- the diameters of the large, medium, and small light emitting surfaces 20d are 2r3, 2r2, and 2r1 in this order, and 2r3> 2r2> 2r1.
- the light L2 emitted from the outer peripheral edge 20e of the light emitting surface 20d having a diameter 2r2 hits the upper end 42a of the second reflecting surface 42.
- the light L3 traveling outward at the irradiation angle ⁇ from the outer peripheral edge 20e of the light emitting surface 20d having the diameter 2r3 does not strike the second reflecting surface 42 but passes outside the reflecting surface 42.
- the light L1 traveling outward at the irradiation angle ⁇ from the outer peripheral edge 20e of the light emitting surface 20d having the diameter 2r1 hits the lower side of the upper end 42a of the second reflecting surface 42.
- the part 42b where the light from the light emitting surface 20d does not hit is formed on the upper end 42a side of the second reflecting surface 42.
- this diameter 2r2 can be obtained.
- the light emitted from the vicinity of the outer peripheral edge 20e of the light emitting surface 20d having the diameter 2r2 thus obtained does not come off the second reflecting surface 42 and is not wasted, as is apparent from FIG. A portion 42b where no light hits the surface 42 is not formed. That is, it is preferable to dispose the planar light source 20 having the light emitting surface 20d having the diameter 2r2 that satisfies the above-described formula 1 for the opening surface K2 having the diameter 2rk.
- the diameter of the light emitting surface 20d is preferably set to 2r2 that satisfies the above-described formula (1).
- the diameter of the light emitting surface 20d can be selected only in a stepwise manner, so that it can be satisfied. There are cases where it is not possible. In such a case, if it is desired to increase the control light by the second reflecting surface 42, it is larger than 2r2, and if it is desired to suppress the waste of light from the light emitting surface 20d, it should be smaller than 2r2. That's fine.
- intersection point T2 may be outside or inside the above example.
- the reflection surface of the reflector 40 is configured by combining the first reflection surface 41 and the second reflection surface 42 has been described.
- an intersection point T3 is set between the intersection point T1 and the intersection point T2, and a third reflection surface formed in the same manner as the second reflection surface 42 is provided with the intersection point T3 as a focal point f3.
- the focal length of the third reflecting surface is smaller than the focal length y of the first reflecting surface 41 and larger than the focal length y of the second reflecting surface 42.
- the reflector becomes the second reflecting surface 42, the third reflecting surface, and the first reflecting surface 41 in order from the top. That is, the newly provided third reflection surface is located between the second reflection surface 42 and the first reflection surface 41.
- the reflector 40 shown in FIG. 12 may be subjected to facet processing, for example, on the inner surface side of the portion located above the boundary line S2 (see the two-dot chain line) in the second reflecting surface. Further, the inner surface side of the portion located below the boundary line S2 may be mirror-finished including the inner surface side of the first reflecting surface 41. In this way, the edge can be corrected by performing facet processing on the portion where the edge is easily attached to the reflected light.
- facet processing is similarly effective not only for the reflector 40 having the first reflection surface 41 and the second reflection surface 42 described above but also for a reflector formed based on one parabola.
- the light emitting surface 20d has a planar shape, and the light control by the reflector is more difficult than the case of the point light source, and fine control is required. It can be an effective means for fine control.
- the reflector 40 has the second reflecting surface 42 inserted inside the leg portion 11c of the heat sink 11 so that the opening R2 is close to the light emitting surface 20d of the planar light source 20. Further, the reflector 40 is positioned by engaging the ring-shaped reflector fixing bracket 51 with the inner side of the lower end portion 30 e of the body 30 in a state where the first reflecting surface 41 is housed inside the body 30. . For this reason, replacement of the reflector 40 is easy. When the above-described planar light source 20 is replaced with one having a different calorific value, the reflector 40 is also replaced accordingly, but the replacement is easy.
- the hood 50 is formed in a cylindrical shape, and is fixed by being screwed to the outer peripheral surface of the lower end portion 30e of the body 30. At this time, one or more filters (not shown) having various functions can be attached between the opening R1 of the reflector 40 and the upper end of the hood 50. These filters can be easily replaced by attaching / detaching the hood to / from the body 30.
- the luminaire 1 described above can use a lamp 62 instead of the planar light source 20.
- the reflector 40, the planar light source 20, and the connector 21 are removed, the base 60 is fixed to the attachment surface 11 d of the heat sink 11, the connector 61 is attached, and the lamp 62 is attached to the connector 61. Further, a reflector 63 is attached so as to cover the lamp 62. In addition, a shield 64 is attached to prevent direct light from the lamp 62.
- the socket holder 10 including the heat sink 11, the body 30, and the hood 50 can be used as they are, and can be easily replaced with the lamp 62.
- FIG. 3 to FIG. 5 the transfer of heat generated with the light emission of the planar light source 20 will be described.
- FIG. 3A is a plan view (top view) for explaining the heat conduction of the luminaire 1 as described above
- FIG. 3B is a view taken along the line III-III in FIG. is there.
- FIG. 4 is a view taken along the line III-III in FIG. 3 (A) for explaining the thermal radiation (radiation) of the luminaire 1.
- FIG. 5 is a view taken along the line III-III in FIG. 3A for explaining the convective heat transfer of the lighting fixture 1.
- the heat generated by the planar light source 20 is transmitted from the aluminum substrate 20a to the heat sink 11, and is further conducted from the heat sink 11 as indicated by arrows in FIG. That is, the heat generated by the planar light source 20 is sucked up by the heat sink 11 having a large heat capacity via the aluminum substrate 20a, and is mainly conducted to the outer peripheral wall 13 through the radiation fins 12, 12,. On the other hand, a part is conducted to the body 30 and the hood 50 through the leg portions 11 c and the flange portions 11 i and 30 c. Thus, the heat generated by the planar light source 20 is quickly sucked up by the heat sink 11 having a large heat capacity, and then diffused over substantially the entire portion of the lighting fixture 1 except for the reflector 40 through each member.
- the heat transmitted to the heat sink 11, the outer peripheral wall 13, the body 30, the hood 50, and the like is efficiently radiated substantially outwardly based on the smooth outer peripheral surfaces of these members.
- the heat radiated from the inclined surface 11g at a right angle is radiated so as to spread from the center.
- the heat transferred to each member by heat conduction is moved by the air flow indicated by the arrows directed upward from substantially lower in FIG.
- the outer peripheral surface of the body 30 and the outer peripheral surface 13d of the outer peripheral wall 13 are formed to have substantially the same diameter, air smoothly flows from the lower side to the upper side along these outer peripheral surfaces.
- the gap (space) between the heat sink 11 and the outer peripheral wall 13 is surrounded by two radiating fins 12 and 12 adjacent to each other, and is surrounded by the four sides of the front, rear, left and right, and penetrated vertically.
- a path A2 is formed. For this reason, the air smoothly flows from the lower side to the upper side in the flow path A2, and quickly moves the heat from the radiation fins 12, 12,.
- the luminaire 1 uses the planar light source 20 having the planar light emitting surface 20d as the light source, the heat generated with the light emission of the planar light source 20 is efficiently dissipated, and the surface The temperature rise of the light source 20 can be suppressed. That is, for example, the COB type planar light source 20 has the LED element mounted on the aluminum substrate 20a and can be attached in a state where the aluminum substrate 20a is in direct contact with the attachment surface 11d of the heat sink 11. . For this reason, the heat of the planar light source 20 can be absorbed by the heat sink 11 quickly and efficiently.
- An air intake A1 that guides air to the flow path A2 between the radiating fins 12 is formed in a gap between the socket holder 10 and the body 30 when the body 30 is attached. For this reason, in particular, it is not necessary to form a through hole in the outer peripheral wall 13, and the air intake A1 can be configured easily.
- the flow velocity of the air in the vicinity including the air intake A1 can be increased, so that the flow of cooling air can be made smooth. it can.
- the reflector 40 is formed by the first reflecting surface 41 and the second reflecting surface 42. For this reason, not only the light emitted at the intersection T1 (center) of the light emitting surface 20d of the planar light source 20, but also the light emitted at the intersection T2 far from the intersection T1, the reflected light is centered on the central axis C1.
- the light can be parallel light.
- the edge can be reduced and the light can be made gentle.
- this is not limited to the reflector 40 having the first reflecting surface 41 and the second reflecting surface 42.
- a general reflector formed based on the planar light source 20 and one parabola may be used. It is the same.
- the planar light source 20 having a large light emitting surface 20d can be used. Even in this case, the light from the light emitting surface 20d can be effectively reflected as parallel light.
- a dedicated (special) structure for attaching the planar light source 20 and the reflector 40 to the space inside the leg portion 11c of the heat sink 11 and the space inside the body 30 is provided. Not provided. For this reason, it can replace
- Lighting fixture Planar light source (light source) 20d Light emitting surface 40 Reflector 41 First reflecting surface 42 Second reflecting surface C1 Central axis C2 Axis center f1 Focus of first parabola f2 Focus of second parabola K1 Aperture surface K2 Virtual aperture surface Pr1 First parabola Pr2 Second parabola M1 Virtual extension y Focal length
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
[Problem] To provide an illuminating instrument that can use a planar light source with a large light-emitting surface and can reflect the light from the light emitting surface as directional light even in such a case.
[Solution] An illuminating instrument is provided with a planar light source (20) having a planar light emitting surface (20d) orthogonal to a center axis (C1) and a reflector (40) that reflects light from the light emitting surface (20d) at a reflecting surface with the center axis (C1) as a reference. The reflecting surface has a first reflecting surface (41) that has a parabolic surface shape formed by rotation centered on the center axis (C1) of one part of a first parabolic line (Pr1), which has the center axis (C1) as an axis of symmetry, and a second reflecting surface (42) that has a parabolic surface shape formed by rotation centered on the center axis (C1) of one part of a second parabolic line (Pr2), which has a center axis (C2) parallel to the center axis (C1) as an axis of symmetry.
Description
本発明は、面状光源及びリフレクターを有する照明器具、例えばダウンライト、スポットライト等に関する。
The present invention relates to a lighting device having a planar light source and a reflector, such as a downlight, a spotlight, and the like.
ダウンライト、スポットライト等の照明器具においては、光源から発生した光をリフレクターで反射させることで制御している。
¡In lighting fixtures such as downlights and spotlights, the light generated from the light source is controlled by reflecting it with a reflector.
特許文献1に開示された照明器具は、LED素子とリフレクターとハウジングとを有している。そして、リフレクターの反射面には、放物面等の曲面の凹部を有する複数の段差が配置されている。
The lighting fixture disclosed in Patent Document 1 includes an LED element, a reflector, and a housing. And the several level | step difference which has curved-surface recessed parts, such as a paraboloid, is arrange | positioned at the reflective surface of a reflector.
この照明器具によると、段差のある反射面により、反射光の反射角分布に適度な広がりを持たせて、照射面における照度均一性を向上させることができる、とされている。さらに、数百メートル先の目標物に対して、均一な光量を照射することが可能である、とされている。
According to this luminaire, it is said that the reflection surface with a step can provide an appropriate spread in the reflection angle distribution of the reflected light and improve the illuminance uniformity on the irradiated surface. Furthermore, it is said that it is possible to irradiate a target object several hundred meters ahead with a uniform amount of light.
しかしながら、特許文献1の発明によると、反射面の段差は、反射光の反射角分布が適度な広がりを持つように構成されているため、指向性の強い、光軸に平行な平行光の光量を増加させるには適していない。また、光源として面状の発光面を有する光源を使用し、さらに、その発光量を増加させるべく発光面の大きさが大きくなった場合に対応できるような構成にはなっていない。
However, according to the invention of Patent Document 1, the step of the reflecting surface is configured so that the reflection angle distribution of the reflected light has an appropriate spread, so that the amount of parallel light that is highly directional and parallel to the optical axis is high. Not suitable for increasing. Further, a light source having a planar light emitting surface is used as the light source, and the light emitting surface size is not increased so as to increase the light emission amount.
本発明は、上述した事情に鑑みてなされたものであり、発光面の大きい面状光源を使用することが可能で、この場合でも発光面からの光を有効に平行光として反射させることができる照明器具を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and a planar light source having a large light emitting surface can be used. Even in this case, light from the light emitting surface can be effectively reflected as parallel light. It aims at providing a lighting fixture.
請求項1に係る発明は、照明器具において、中心軸に直交する面状の発光面を有する光源と、前記発光面からの光を、前記中心軸を基準とした反射面で反射するリフレクターと、を備え、前記反射面は、前記中心軸を対称軸とする第1の放物線の一部を、前記中心軸を中心に回転させて形成した放物面状の第1の反射面と、前記中心軸と平行な軸心を対称軸とする第2の放物線の一部を、前記中心軸を中心に回転させて形成した放物面状の第2の反射面と、を有する、ことを特徴とする。
The invention according to claim 1 is a lighting apparatus, wherein a light source having a planar light emitting surface orthogonal to a central axis, a reflector that reflects light from the light emitting surface with a reflective surface based on the central axis, The reflecting surface includes a parabolic first reflecting surface formed by rotating a part of a first parabola about the central axis about the central axis, and the center. A parabolic second reflecting surface formed by rotating a part of a second parabola with an axis parallel to the axis as an axis of symmetry about the central axis. To do.
請求項2に係る発明は、請求項1に係る照明器具において、前記第1の反射面と第2の反射面とは、前記第2の反射面が前記光源に近い側に配設され、前記第1の反射面が前記光源から遠い側に配設されて、相互に連続している、ことを特徴とする。
According to a second aspect of the present invention, in the lighting apparatus according to the first aspect, the first reflective surface and the second reflective surface are disposed on the side where the second reflective surface is close to the light source, The first reflecting surfaces are arranged on the side far from the light source and are continuous with each other.
請求項3に係る発明は、請求項1又は2に係る照明器具において、前記第2の放物線の焦点距離は、前記第1の放物線の焦点距離よりも短い、ことを特徴とする。
The invention according to claim 3 is the luminaire according to claim 1 or 2, characterized in that a focal length of the second parabola is shorter than a focal length of the first parabola.
請求項4に係る発明は、請求項1ないし3のいずれか1項に係る照明器具において、前記第1の放物線の焦点及び前記第2の放物線の焦点が、前記発光面上に設定されている、ことを特徴とする。
According to a fourth aspect of the present invention, in the luminaire according to any one of the first to third aspects, the focal point of the first parabola and the focal point of the second parabola are set on the light emitting surface. It is characterized by that.
請求項5に係る発明は、請求項1ないし4のいずれか1項に係る照明器具において、前記第2の反射面は、前記発光面に対向する開口面を有し、前記開口面は、前記第1の反射面を前記発光面側へ延長した仮想延長部分と前記開口面とが交差して形成される仮想開口面よりも大きい、ことを特徴とする。
According to a fifth aspect of the present invention, in the lighting apparatus according to any one of the first to fourth aspects, the second reflecting surface has an opening surface facing the light emitting surface, and the opening surface is It is characterized by being larger than a virtual opening surface formed by intersecting a virtual extension portion obtained by extending the first reflecting surface to the light emitting surface side and the opening surface.
本発明によれば、リフレクターは、反射面が放物面状の第1の反射面と第2の反射面とを有しているので、例えば、反射面が放物面状の1つの反射面で構成されている場合と比較して、より大きい発光面を有する面状光源を使用することが可能である。この場合でも発光面からの光を有効に第1の反射面及び第2反射面で反射させて平行光とすることができる。
According to the present invention, the reflector has the first reflecting surface and the second reflecting surface whose reflecting surfaces are parabolic, and, for example, one reflecting surface whose reflecting surface is parabolic. It is possible to use a planar light source having a larger light emitting surface as compared with the case where it is configured by. Even in this case, the light from the light emitting surface can be effectively reflected by the first reflecting surface and the second reflecting surface to be parallel light.
以下、本発明を適用した実施形態を、図面に基づいて詳述する。なお、各図面において、同じ符号を付した部材等は、同一又は類似の構成のものであり、これらについての重複説明は適宜省略するものとする。また、各図面においては、説明に不要な部材等は適宜、図示を省略している。
<実施形態1>
図1~図15を参照して本発明を適用した実施形態1に係る照明器具1について説明する。 Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to the drawings. In addition, in each drawing, the member etc. which attached | subjected the same code | symbol are the things of the same or similar structure, The duplicate description about these shall be abbreviate | omitted suitably. Moreover, in each drawing, members and the like that are not necessary for the description are omitted as appropriate.
<Embodiment 1>
Alighting apparatus 1 according to Embodiment 1 to which the present invention is applied will be described with reference to FIGS.
<実施形態1>
図1~図15を参照して本発明を適用した実施形態1に係る照明器具1について説明する。 Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to the drawings. In addition, in each drawing, the member etc. which attached | subjected the same code | symbol are the things of the same or similar structure, The duplicate description about these shall be abbreviate | omitted suitably. Moreover, in each drawing, members and the like that are not necessary for the description are omitted as appropriate.
<
A
ここで、図1は、中心軸C1の上端Ca側から見た、照明器具1の分解斜視図である。また、図2は、中心軸C1の下端Cb側から見た、照明器具1の分解斜視図である。さらに、図3(A)は照明器具1の熱伝導を説明する平面図(上面図)であり、(B)は同じく(A)中のIII -III 線矢視図である。
なお、以下では説明の便宜上、図1~図3中における上側,下側が、それぞれ照明器具1の上側,下側に対応するものとして説明する。 Here, FIG. 1 is an exploded perspective view of thelighting fixture 1 as seen from the upper end Ca side of the central axis C1. FIG. 2 is an exploded perspective view of the lighting fixture 1 as seen from the lower end Cb side of the central axis C1. 3A is a plan view (top view) illustrating the heat conduction of the luminaire 1, and FIG. 3B is a view taken along the line III-III in FIG.
In the following description, for convenience of explanation, it is assumed that the upper and lower sides in FIGS. 1 to 3 correspond to the upper and lower sides of thelighting fixture 1, respectively.
なお、以下では説明の便宜上、図1~図3中における上側,下側が、それぞれ照明器具1の上側,下側に対応するものとして説明する。 Here, FIG. 1 is an exploded perspective view of the
In the following description, for convenience of explanation, it is assumed that the upper and lower sides in FIGS. 1 to 3 correspond to the upper and lower sides of the
照明器具1は、図1~図3に示すように、中心軸C1に沿っての上端Ca側から下端Cb側にかけて略順に配設されたソケットホルダー10、面状光源(LEDモジュール)20、ボディ30、リフレクター40、及びフード50を備えている。以下、この順に説明する。
As shown in FIGS. 1 to 3, the luminaire 1 includes a socket holder 10, a planar light source (LED module) 20, a body, and a body disposed substantially in order from the upper end Ca side to the lower end Cb side along the central axis C1. 30, a reflector 40, and a hood 50. Hereinafter, it demonstrates in this order.
ソケットホルダー10は、中心軸C1に配設されたヒートシンク11と、ヒートシンク11の外周面から放射状に延びる複数(多数)の放熱フィン12,12…と、放熱フィン12,12…の外周端を連結するように配設された略筒状の外周壁13とを有している。これらヒートシンク11、放熱フィン12,12…、及び外周壁13は、例えば、アルミダイカストにより、一体形成されている。
The socket holder 10 connects a heat sink 11 disposed on the central axis C1, a plurality (a large number) of radiation fins 12, 12,... Extending radially from the outer circumferential surface of the heat sink 11, and the outer circumferential ends of the radiation fins 12, 12,. And an outer peripheral wall 13 having a substantially cylindrical shape. The heat sink 11, the radiation fins 12, 12,... And the outer peripheral wall 13 are integrally formed by, for example, aluminum die casting.
ヒートシンク11は、円板部11aと円錐部11bと脚部11cとを有していて、これらが一体に形成されている。円板部11aは、下面に平坦な、面状光源20の取付面11dを有している。また、円板部11aは、その外周面11eの外径が、下端側から上端側に近づくほど小さくなっている。円錐部11bは、頂部11fから外周に向かってなだらかに下降する傾斜面11gを有している。脚部11cは、略筒状に形成されていて、上端が取付面111dの周縁部に連続しており、下端部ほど外周面11hの直径が大きくなっている。脚部11cの外周面11hと上述の円板部11aの外周面11eとは直線状に連続している。脚部11cの外周面11hにおける下端には、全周にわたり、外側に向かってフランジ部11iが突設されている。
The heat sink 11 has a disc portion 11a, a conical portion 11b, and a leg portion 11c, which are integrally formed. The disc part 11a has a mounting surface 11d of the planar light source 20 which is flat on the lower surface. Moreover, as for the disc part 11a, the outer diameter of the outer peripheral surface 11e becomes small, so that it approaches the upper end side from a lower end side. The conical part 11b has an inclined surface 11g that gently descends from the top part 11f toward the outer periphery. The leg part 11c is formed in a substantially cylindrical shape, the upper end is continuous with the peripheral part of the mounting surface 111d, and the diameter of the outer peripheral surface 11h is increased toward the lower end part. The outer peripheral surface 11h of the leg portion 11c and the outer peripheral surface 11e of the disk portion 11a described above are linearly continuous. At the lower end of the outer peripheral surface 11h of the leg portion 11c, a flange portion 11i protrudes outward along the entire circumference.
放熱フィン12,12…は、ヒートシンク11の円板部11aの外周面11e、脚部11cの外周面11h、及び円錐部11bの傾斜面11gから外側に向かって略放射状に延びるように形成されている。また、放熱フィン12,12…は、図3(A)に示すように、上面視において、緩やかに湾曲している。これにより、表面積を大きくし、また、空気の流れを円滑にすることができるので、放熱効率が向上する。放熱フィン12,12…は、その下端12aがフランジ部11i近傍まで延び、上端12bは、外側が外周壁13の上端13bまで延びるとともに内側が下方に傾斜して円錐部11bの傾斜面11gに交差している。各放熱フィン12の厚さは、上端12b側が薄く、下端12a側が厚く形成されている。
The heat radiating fins 12, 12,... Are formed so as to extend radially outward from the outer peripheral surface 11e of the disk portion 11a of the heat sink 11, the outer peripheral surface 11h of the leg portion 11c, and the inclined surface 11g of the conical portion 11b. Yes. Further, as shown in FIG. 3A, the radiation fins 12, 12,... Are gently curved as viewed from above. Thereby, since a surface area can be enlarged and the flow of air can be made smooth, heat dissipation efficiency improves. The radiating fins 12, 12... Have a lower end 12a extending to the vicinity of the flange portion 11i, and an upper end 12b extending outward to the upper end 13b of the outer peripheral wall 13 and inwardly inclined downward to intersect the inclined surface 11g of the conical portion 11b. is doing. Each radiating fin 12 is formed such that the upper end 12b side is thin and the lower end 12a side is thick.
外周壁13は、放熱フィン12,12…の外周端を連結するように、略円筒状に形成されている。外周壁13は、内周面13cの直径(内径)は下端13a側から上端13b側に近づくほど大きくなり、外周面13dの直径(外径)は、下端13a側から上端13b側まで略一定となっている。このため、外周壁13は、下端13a側ほど肉厚が厚く、上端13b側ほど肉厚が薄くなっている。
The outer peripheral wall 13 is formed in a substantially cylindrical shape so as to connect the outer peripheral ends of the radiation fins 12, 12. In the outer peripheral wall 13, the diameter (inner diameter) of the inner peripheral surface 13c increases as it approaches the upper end 13b side from the lower end 13a side, and the diameter (outer diameter) of the outer peripheral surface 13d is substantially constant from the lower end 13a side to the upper end 13b side. It has become. For this reason, the outer peripheral wall 13 is thicker toward the lower end 13a and thinner toward the upper end 13b.
上述のヒートシンク11と放熱フィン12,12…と外周壁13とを有するソケットホルダー10において、フランジ部11iと外周壁13の下端13aとの間には、環状の空気取入口A1が形成されている。この空気取入口A1は、外周壁13の下端13aの内側の傾斜面13eと、後述するボディ30の上端30aの傾斜面30bとの間に形成されている。また、傾斜面13e,30bは同じ向きに傾斜していて、これらの間を外側から内側に流れる空気は、これら傾斜面13e,30bに沿ってヒートシンク11の脚部11cの外周面11hの下端に向かって流れるようになっている。また、隣接する2枚の放熱フィン12,12と、ヒートシンク11の外周面11e,11h及び傾斜面11gと、外周壁13の内周面13cとによって囲まれた領域(空間)には、上下方向に長い、放熱フィン12,12…と同数の空気の流路A2,A2…が形成されている。これら流路A2,A2…は、下側から上側に向かうほど、水平方向の断面の面積が増加する。つまり、上側に向かうに連れて、徐々に広くなっている。これら流路A2,A2…は、それぞれの下端が、上述の環状の空気取入口A1に連通している。
なお、次に説明する面状光源20の発光によって発生された熱の移動、すなわち、熱伝導、対流熱伝達、熱放射については、後にまとめて詳述する。
図6は、面状光源20及びコネクタ21を下方から見た図である。 In thesocket holder 10 having the heat sink 11, the radiation fins 12, 12... And the outer peripheral wall 13, an annular air inlet A <b> 1 is formed between the flange portion 11 i and the lower end 13 a of the outer peripheral wall 13. . The air inlet A1 is formed between an inclined surface 13e inside the lower end 13a of the outer peripheral wall 13 and an inclined surface 30b of an upper end 30a of the body 30 described later. In addition, the inclined surfaces 13e and 30b are inclined in the same direction, and the air flowing from the outside to the inside between them is at the lower end of the outer peripheral surface 11h of the leg portion 11c of the heat sink 11 along the inclined surfaces 13e and 30b. It is designed to flow toward you. In addition, an area (space) surrounded by two adjacent radiation fins 12 and 12, outer peripheral surfaces 11 e and 11 h and inclined surfaces 11 g of the heat sink 11, and an inner peripheral surface 13 c of the outer peripheral wall 13 is vertically Are the same number of air flow paths A2, A2,... As the heat dissipating fins 12, 12,. These flow paths A2, A2,... Increase in the cross-sectional area in the horizontal direction as they go from the lower side to the upper side. That is, it gradually becomes wider as it goes upward. Each of the flow paths A2, A2,... Communicates with the above-described annular air intake A1.
The movement of heat generated by light emission of the planarlight source 20, which will be described next, that is, heat conduction, convection heat transfer, and heat radiation will be described later in detail.
FIG. 6 is a view of the planarlight source 20 and the connector 21 as viewed from below.
なお、次に説明する面状光源20の発光によって発生された熱の移動、すなわち、熱伝導、対流熱伝達、熱放射については、後にまとめて詳述する。
図6は、面状光源20及びコネクタ21を下方から見た図である。 In the
The movement of heat generated by light emission of the planar
FIG. 6 is a view of the planar
面状光源20としては、例えば、小さな多数のLED素子が面状に整列されて構成された、いわゆる(chip on board:チップ・オン・ボード)タイプのLEDモジュールを使用することができる。このものは、例えば、図1,図2,図6に示すように、正方形のアルミニウム基板20a上の2つの角部にそれぞれアノード(正電極)20bとカソード(負電極)20cを有している。そして、中央には多数(例えば、100~200個)のLED素子を円形に実装した発光面(発光エリア)20dが形成され、さらに発光面20dの表面を蛍光体を含むシリコーン樹脂で封止して構成されている。各LED素子からは、例えば、120°の照射角度を持って光が発光される。
As the planar light source 20, for example, a so-called (chip on board) type LED module in which a large number of small LED elements are arranged in a planar shape can be used. For example, as shown in FIG. 1, FIG. 2, and FIG. 6, this has an anode (positive electrode) 20b and a cathode (negative electrode) 20c at two corners on a square aluminum substrate 20a, respectively. . A light emitting surface (light emitting area) 20d in which a large number (for example, 100 to 200) of LED elements are mounted in a circle is formed in the center, and the surface of the light emitting surface 20d is sealed with a silicone resin containing a phosphor. Configured. For example, light is emitted from each LED element with an irradiation angle of 120 °.
面状光源20は、例えば、長方形の板状のコネクタ21によって、上述のヒートシンク11の円板部11aの取付面11dに下方から固定される。コネクタ21は、図1に示すように、中央に、面状光源20の発光面20dに対応する透孔21a、及び面状光源20が係合される凹部21bが形成されている。面状光源20は、発光面20dを下方に向けた姿勢で、凹部21bに係合されている。面状光源20は、さらに、コネクタ21の4箇所のうち2箇所の角部をねじ止めすることにより、アルミニウム基板20aをヒートシンク11の円板部11aの取付面11dに密着された状態で固定されている。ここで、ヒートシンク11の取付面11dは略平面状に形成されているため、大きさの異なる面状光源20に対しても比較的容易に対応することができる。また、面状光源20は、取付面11dに取り付けられた状態において、発光面20dが中心軸C1に対して直交している。
The planar light source 20 is fixed from below to the mounting surface 11d of the disk portion 11a of the heat sink 11 by, for example, a rectangular plate-shaped connector 21. As shown in FIG. 1, the connector 21 is formed with a through hole 21 a corresponding to the light emitting surface 20 d of the planar light source 20 and a recess 21 b with which the planar light source 20 is engaged. The planar light source 20 is engaged with the recess 21b with the light emitting surface 20d facing downward. Furthermore, the planar light source 20 is fixed in a state where the aluminum substrate 20a is in close contact with the mounting surface 11d of the disk portion 11a of the heat sink 11 by screwing two corners of the four locations of the connector 21. ing. Here, since the mounting surface 11d of the heat sink 11 is formed in a substantially planar shape, it can be relatively easily accommodated with the planar light sources 20 having different sizes. In the state where the planar light source 20 is attached to the attachment surface 11d, the light emitting surface 20d is orthogonal to the central axis C1.
なお、面状光源20としては、上述のLEDモジュールの外、例えば、EL(エレクトロルミネッセンス)や、複数(例えば、十数個)のLEDランプを面状に配列したもの等も含むものとする。
In addition, as the planar light source 20, in addition to the above-described LED module, for example, an EL (electroluminescence), a plurality of (for example, ten or more) LED lamps arranged in a planar shape, and the like are also included.
ボディ30は、例えば、アルミダイカストにより、略円筒状に形成されている。ボディ30の上端30aには、内周側に対して外周側が低く傾斜した傾斜面30bを有している。この傾斜面30bは、上述のソケットホルダー10の外周壁13の下端13aの傾斜面13eに対面していて、これら傾斜面13e,30b間に、上述の環状の空気取入口A1が形成されている。傾斜面30bの上端には、内側に向かってフランジ部30cが形成されている。このフランジ部30cは、上述のヒートシンク11の脚部11cの下端のフランジ部11iに対応している。
The body 30 is formed in a substantially cylindrical shape by, for example, aluminum die casting. The upper end 30a of the body 30 has an inclined surface 30b whose outer peripheral side is inclined lower than the inner peripheral side. The inclined surface 30b faces the inclined surface 13e of the lower end 13a of the outer peripheral wall 13 of the socket holder 10 described above, and the annular air inlet A1 described above is formed between the inclined surfaces 13e and 30b. . A flange portion 30c is formed at the upper end of the inclined surface 30b inward. The flange portion 30c corresponds to the flange portion 11i at the lower end of the leg portion 11c of the heat sink 11 described above.
ボディ30は、フランジ部30cをヒートシンク11側のフランジ部11iに下方から密着させた状態で、ねじ止めされている。このように、ヒートシンク11とボディ30とは、それぞれのフランジ部11i,30cを介して、つまり、相互に接触面積を広く確保した状態で連結されているため、後述するように、ヒートシンク11側の熱を、ボディ30側に有効に伝達させることができる。
次に、リフレクター40について説明する。リフレクター40は、例えば、アルミニウムを、放物線を基本とするなだらかな湾曲形状に形成している。 Thebody 30 is screwed in a state where the flange portion 30c is in close contact with the flange portion 11i on the heat sink 11 side from below. As described above, the heat sink 11 and the body 30 are connected to each other through the flange portions 11i and 30c, that is, in a state in which a large contact area is secured between the heat sink 11 and the body 30, as described later. Heat can be effectively transmitted to the body 30 side.
Next, thereflector 40 will be described. The reflector 40 is formed of, for example, aluminum in a gently curved shape based on a parabola.
次に、リフレクター40について説明する。リフレクター40は、例えば、アルミニウムを、放物線を基本とするなだらかな湾曲形状に形成している。 The
Next, the
ここで、図7は、放物線の焦点f及び焦点距離yを説明する図である。また、図8は、焦点距離yが、5,10,15,20mmのときの放物線Pr5,Pr10,Pr15,Pr20の開き具合(カーブの大きさ)を説明する図である。ただし、それぞれの放物線Pr5,Pr10,Pr15,Pr20は、それぞれの焦点fを一致させて図示している。また、図9は、ボディ30の外形に合わせた放物線で形成したリフレクターRaにおける開口部(光の入口)Kが小さくなる様子を説明する図である。また、図10は、焦点距離yの大きな放物線で形成したリフレクターRbの高さHが低くなる(長さが短くなる)様子を説明する図である。また、図11は、放物線のリフレクターRに対し、リフレクターRcが、放物線以外の楕円である場合の光の反射を説明する図である。そして、図12は、リフレクター40の反射面を、焦点距離yが異なる2つの放物線Pr1,Pr2からなる第1の反射面41と第2の反射面42とを合成して形成した様子を説明する図である。
以上の図7~図12を参照して、リフレクター40、特にその形状について詳述する。 Here, FIG. 7 is a diagram for explaining the focal point f and the focal length y of the parabola. FIG. 8 is a diagram for explaining the degree of opening (curve size) of the parabolas Pr5, Pr10, Pr15, and Pr20 when the focal length y is 5, 10, 15, and 20 mm. However, the parabolas Pr5, Pr10, Pr15, and Pr20 are illustrated with their respective focal points f matched. FIG. 9 is a diagram for explaining how the opening (light entrance) K in the reflector Ra formed by a parabola matched to the outer shape of thebody 30 is reduced. FIG. 10 is a diagram for explaining a state in which the height H of the reflector Rb formed by a parabola having a large focal length y is lowered (length is shortened). Moreover, FIG. 11 is a figure explaining reflection of light in case the reflector Rc is an ellipse other than a parabola with respect to the reflector R of a parabola. FIG. 12 illustrates a state in which the reflecting surface of the reflector 40 is formed by combining the first reflecting surface 41 and the second reflecting surface 42, which are composed of two parabolas Pr1 and Pr2 having different focal lengths y. FIG.
Thereflector 40, particularly its shape, will be described in detail with reference to FIGS.
以上の図7~図12を参照して、リフレクター40、特にその形状について詳述する。 Here, FIG. 7 is a diagram for explaining the focal point f and the focal length y of the parabola. FIG. 8 is a diagram for explaining the degree of opening (curve size) of the parabolas Pr5, Pr10, Pr15, and Pr20 when the focal length y is 5, 10, 15, and 20 mm. However, the parabolas Pr5, Pr10, Pr15, and Pr20 are illustrated with their respective focal points f matched. FIG. 9 is a diagram for explaining how the opening (light entrance) K in the reflector Ra formed by a parabola matched to the outer shape of the
The
図7に示すように、放物線の原点をO、焦点をf、原点Oと焦点fとの距離を焦点距離yとする。リフレクターRを放物線で形成した場合、焦点fに点光源を置くと、焦点fから発光された光は、放物線で反射されて、すべて、中心軸C1と平行な平行光となる。放物線の形状は、原点O、焦点f、焦点距離yによって決まる。
As shown in FIG. 7, the origin of the parabola is O, the focus is f, and the distance between the origin O and the focus f is the focal length y. When the reflector R is formed by a parabola, if a point light source is placed at the focal point f, the light emitted from the focal point f is reflected by the parabola and all becomes parallel light parallel to the central axis C1. The shape of the parabola is determined by the origin O, the focal point f, and the focal length y.
図8に、4本の放物線Pr5,Pr10,Pr15,Pr20を示す。焦点fの位置が同じで、焦点距離yが、この順に、5,10,15,20mmとなっている。同図から分かるように、放物線は、焦点距離yが大きいほど、大きなカーブ(下端側の開きが大きいカーブ)となる。
FIG. 8 shows four parabolas Pr5, Pr10, Pr15, and Pr20. The position of the focal point f is the same, and the focal length y is 5, 10, 15, 20 mm in this order. As can be seen from the figure, the parabola becomes a larger curve (a curve having a larger opening on the lower end side) as the focal length y is larger.
一般に、ダウンライト、スポットライト等の照明器具においては、グレアを低減するためには、カットオフアングルを深く(例えば、30°以上)取ることが好ましいとされている。このためには、図9に示すように、リフレクターRの開口部(光の出口)R1の直径Dを小さくし、かつ、リフレクターRの高さ(長さ)Hを長くとることが望ましい。さらに、リフレクターRの高さHを長くとることにより、面状光源20から出た光の光量のうち、リフレクターRに当たる光量を増加させることができる。つまり、光の制御性を高めることができる。
Generally, in a lighting device such as a downlight or a spotlight, it is preferable to take a deep cut-off angle (for example, 30 ° or more) in order to reduce glare. For this purpose, as shown in FIG. 9, it is desirable to reduce the diameter D of the opening (light exit) R1 of the reflector R and increase the height (length) H of the reflector R. Furthermore, by making the height H of the reflector R long, the amount of light hitting the reflector R out of the amount of light emitted from the planar light source 20 can be increased. That is, light controllability can be improved.
ここで、光源が点光源の場合には、上述の条件を容易に満たすことができるが、本実施形態のように、光源が平面状(本実施形態では円形)に広がった発光面20dを有する場合、上述の条件を満たすことが難しい。すなわち、条件を満たそうとすると、リフレクターRの開口部Kが小さくなり、発光面20dのうちの外側の部分から発光される光をリフレクターR内に取り込むことができず、これらの光を有効に利用することができない。
Here, when the light source is a point light source, the above-described conditions can be easily satisfied. However, as in the present embodiment, the light source has a light emitting surface 20d spread in a planar shape (circular in the present embodiment). In this case, it is difficult to satisfy the above conditions. That is, if the condition is satisfied, the opening K of the reflector R becomes small, and the light emitted from the outer part of the light emitting surface 20d cannot be taken into the reflector R, and these lights are effectively used. It cannot be used.
一方、図10に示すように、リフレクターRとして、焦点距離yが大きな放物線を採用すると、開口部(光の入口)R2は大きくすることができる。しかし、この場合、ボディ30の外径に基づいて、開口部R1の直径Dが制約を受けるため、リフレクターRの放物線の高さHが低く(短く)なってしまい、下側は、放物線ではなく、例えば、円筒状にせざるを得ない。このため、有効利用できる光が少なくなる。
On the other hand, as shown in FIG. 10, when a parabola having a large focal length y is adopted as the reflector R, the opening (light entrance) R2 can be increased. However, in this case, since the diameter D of the opening R1 is restricted based on the outer diameter of the body 30, the height H of the parabola of the reflector R becomes low (short), and the lower side is not a parabola. For example, it must be cylindrical. For this reason, the light which can be utilized effectively decreases.
この対処策として、例えば、放物線のリフレクターRに代えて、楕円曲線のリフレクターRcとした場合を図11に示す。この場合、リフレクターRcの開口部R1の直径D、開口部R2の大きさ、リフレクターRの高さHについては、条件をクリアできるものの、発光面20dから発光された光を平行光とすることができない。
As this countermeasure, for example, a case where an elliptic curve reflector Rc is used instead of the parabolic reflector R is shown in FIG. In this case, although the conditions can be satisfied with respect to the diameter D of the opening R1 of the reflector Rc, the size of the opening R2, and the height H of the reflector R, the light emitted from the light emitting surface 20d can be made parallel light. Can not.
そこで、本実施形態では、図12に示すように、リフレクター40の反射面を1つの放物面で形成するのではなく、それぞれカーブの形状(焦点距離y)の異なる複数(本実施形態では2つ)の第1の反射面41と第2の反射面42とを組み合わせて構成した。
Therefore, in this embodiment, as shown in FIG. 12, the reflecting surface of the reflector 40 is not formed by a single paraboloid, but a plurality of (2 in the present embodiment) each having a different curve shape (focal length y). The first reflecting surface 41 and the second reflecting surface 42 are combined.
リフレクター40は、内側の反射面を、円形の水平な境界線S1を境として、これよりも下側(面状光源20から遠い側)を第1の反射面41で形成し、上側(面状光源20に近い側)を第2の反射面42で形成した。第1の反射面41の上端と第2の反射面42の下端とは境界線S1で連続している。
In the reflector 40, the inner reflection surface is formed with a circular horizontal boundary line S1 as a boundary, the lower side (the side far from the planar light source 20) is formed by the first reflection surface 41, and the upper side (planar shape). The second reflecting surface 42 was formed on the side close to the light source 20. The upper end of the first reflecting surface 41 and the lower end of the second reflecting surface 42 are continuous at the boundary line S1.
第1の反射面41は、中心軸C1を対称軸(基準)とする第1の放物線Pr1の一部を、中心軸C1を中心に回転させた放物面状に形成されている。一方、第2の反射面42は、中心軸C1と平行な軸心C2を対称軸とする第2の放物線Pr2の一部を、中心軸C1を中心に回転させた放物面状に形成されている。
The first reflecting surface 41 is formed in a parabolic shape obtained by rotating a part of the first parabola Pr1 having the central axis C1 as a symmetry axis (reference) around the central axis C1. On the other hand, the second reflecting surface 42 is formed in a parabolic shape obtained by rotating a part of the second parabola Pr2 having an axis C2 parallel to the central axis C1 as a symmetry axis around the central axis C1. ing.
ここで、中心軸C1と発光面20dとの交点をT1とし、また、軸心C2と発光面20dとの交点をT2とする。上述の第1の反射面41の基となる第1の放物線Pr1の焦点f1は、交点T1に設定され、また、第2の反射面42の基となる第2の放物線Pr2の焦点f2は、交点T2に設定されている。つまり、焦点f1,f2は、発光面20d上に設定されている。さらに、第2の放物線Pr2の焦点距離yは、第1の放物線Pr1の焦点距離yよりも、短く設定されている。
図14を参照して、さらに詳述する。ここで、図14は、第1の反射面41と第2の反射面42との合成を説明する図である。 Here, the intersection of the central axis C1 and thelight emitting surface 20d is T1, and the intersection of the axis C2 and the light emitting surface 20d is T2. The focal point f1 of the first parabola Pr1 that is the basis of the first reflecting surface 41 is set at the intersection T1, and the focal point f2 of the second parabola Pr2 that is the basis of the second reflecting surface 42 is It is set at the intersection T2. That is, the focal points f1 and f2 are set on the light emitting surface 20d. Furthermore, the focal length y of the second parabola Pr2 is set shorter than the focal length y of the first parabola Pr1.
Further details will be described with reference to FIG. Here, FIG. 14 is a diagram illustrating the synthesis of the first reflectingsurface 41 and the second reflecting surface 42.
図14を参照して、さらに詳述する。ここで、図14は、第1の反射面41と第2の反射面42との合成を説明する図である。 Here, the intersection of the central axis C1 and the
Further details will be described with reference to FIG. Here, FIG. 14 is a diagram illustrating the synthesis of the first reflecting
本実施形態においては、図14に示すように、第2の反射面42は、間隙Gを介して、面状光源20の発光面20dに対向する開口面K2を有している。ここで、第1の反射面42を発光面20d側へ延長した仮想延長部分M1と開口面K2とが交差して形成される面を仮想開口面K1とすると、上述の開口面K2は、仮想開口面K1よりも大きくなるように構成されている。これにより、発光量を増加させるべく、発光面20dがより大きい面状光源20を取り付けることができ、この場合、発光面20dの外周縁近傍から発光された光を有効に第2の反射面42で反射させることが可能となる。
In the present embodiment, as shown in FIG. 14, the second reflecting surface 42 has an opening surface K <b> 2 that faces the light emitting surface 20 d of the planar light source 20 through the gap G. Here, assuming that a virtual opening surface K1 is a surface formed by intersecting a virtual extension portion M1 obtained by extending the first reflecting surface 42 toward the light emitting surface 20d and the opening surface K2, the above-described opening surface K2 is a virtual surface. It is configured to be larger than the opening surface K1. Accordingly, the planar light source 20 having a larger light emitting surface 20d can be attached in order to increase the light emission amount. In this case, light emitted from the vicinity of the outer peripheral edge of the light emitting surface 20d is effectively used as the second reflecting surface 42. It becomes possible to reflect with.
ここで、交点T2の位置としては、例えば、中心の交点T1から発光面20dの外周縁20eまでの半径をrとしたときに、その半分の半径r/2となる点とすることができる。この場合、第2の反射面42は、発光面20dのうちの交点T1を中心とした半径r/2となる円周上に位置するLED素子から発光された光の反射光を平行光とすることができる。
ここで、図15を参照して、開口面K2と発光面20dの大小関係について説明する。 Here, as the position of the intersection point T2, for example, when the radius from the center intersection point T1 to the outerperipheral edge 20e of the light emitting surface 20d is r, the point can be a radius r / 2 that is half of the radius. In this case, the second reflecting surface 42 converts the reflected light of the light emitted from the LED element located on the circumference having the radius r / 2 around the intersection T1 in the light emitting surface 20d into parallel light. be able to.
Here, with reference to FIG. 15, the magnitude relationship between the opening surface K2 and thelight emitting surface 20d will be described.
ここで、図15を参照して、開口面K2と発光面20dの大小関係について説明する。 Here, as the position of the intersection point T2, for example, when the radius from the center intersection point T1 to the outer
Here, with reference to FIG. 15, the magnitude relationship between the opening surface K2 and the
同図に示すように、面状光源20の発光面20dと、リフレクター40の開口面K2との間には、間隙Gが設けてある。これは、面状光源20に電力を供給するためのリード線を配線するために、あるいは法令等の要求に基づいて設けたりするものである。
As shown in the figure, a gap G is provided between the light emitting surface 20d of the planar light source 20 and the opening surface K2 of the reflector 40. This is provided for wiring a lead wire for supplying electric power to the planar light source 20 or based on a law or the like.
同図では、直径(外周縁20eの直径)が異なる大中小の3つの発光面20dを図示している。なお、以下の説明では、これら3つの面状光源20は、発光面20dが円形で、その中心が発光面20dと中心軸C1との交点T1と一致するものとする。また、発光面20dを構成するLED素子の照射角度をθ(例えば、120度)とする。大中小の発光面20dは、その直径がこの順に、2r3,2r2,2r1となっていいて、2r3>2r2>2r1である。
In the figure, three large, medium, and small light emitting surfaces 20d having different diameters (the diameter of the outer peripheral edge 20e) are illustrated. In the following description, these three planar light sources 20 have a light emitting surface 20d having a circular shape, and the center thereof coincides with the intersection T1 between the light emitting surface 20d and the central axis C1. In addition, the irradiation angle of the LED elements constituting the light emitting surface 20d is assumed to be θ (for example, 120 degrees). The diameters of the large, medium, and small light emitting surfaces 20d are 2r3, 2r2, and 2r1 in this order, and 2r3> 2r2> 2r1.
さらに、直径2r2の発光面20dの外周縁20eから照射角度θで出た光L2は、第2の反射面42の上端42aに当たるものとする。これに従うと、直径2r3の発光面20dの外周縁20eから照射角度θで外側に向かう光L3は、第2の反射面42には当たらずに、反射面42の外側を通過する。一方、直径2r1の発光面20dの外周縁20eから照射角度θで外側に向かう光L1は、第2の反射面42のうちの上端42aよりも下側に当たる。このため、第2の反射面42のうちの、上端42a側には、発光面20dからの光が当たらない部分42bが形成されてしまう。
ここで、開口面K2の直径を2rkとすると、直径2r2は、以下の式で求められる。
2r2=2rk-2{Gtan(θ/2)}…(1) Furthermore, it is assumed that the light L2 emitted from the outerperipheral edge 20e of the light emitting surface 20d having a diameter 2r2 hits the upper end 42a of the second reflecting surface 42. According to this, the light L3 traveling outward at the irradiation angle θ from the outer peripheral edge 20e of the light emitting surface 20d having the diameter 2r3 does not strike the second reflecting surface 42 but passes outside the reflecting surface 42. On the other hand, the light L1 traveling outward at the irradiation angle θ from the outer peripheral edge 20e of the light emitting surface 20d having the diameter 2r1 hits the lower side of the upper end 42a of the second reflecting surface 42. For this reason, the part 42b where the light from the light emitting surface 20d does not hit is formed on the upper end 42a side of the second reflecting surface 42.
Here, if the diameter of the opening surface K2 is 2rk, the diameter 2r2 can be obtained by the following equation.
2r2 = 2rk−2 {Gtan (θ / 2)} (1)
ここで、開口面K2の直径を2rkとすると、直径2r2は、以下の式で求められる。
2r2=2rk-2{Gtan(θ/2)}…(1) Furthermore, it is assumed that the light L2 emitted from the outer
Here, if the diameter of the opening surface K2 is 2rk, the diameter 2r2 can be obtained by the following equation.
2r2 = 2rk−2 {Gtan (θ / 2)} (1)
すなわち、開口面K2の直径2rk、間隙G、及び照射角度θが決まれば、この直径2r2を求めることができる。こうして求められた直径2r2の発光面20dの外周縁20e近傍から出た光は、図15から明らかなように、第2の反射面42から外れて無駄になることがなく、かつ第2の反射面42に光が当たらない部分42bを形成することがない。つまり、直径が2rkの開口面K2に対しては、上述の式1を満たす直径2r2の発光面20dを有する面状光源20を配設することが好ましい。
That is, if the diameter 2rk of the opening surface K2, the gap G, and the irradiation angle θ are determined, this diameter 2r2 can be obtained. The light emitted from the vicinity of the outer peripheral edge 20e of the light emitting surface 20d having the diameter 2r2 thus obtained does not come off the second reflecting surface 42 and is not wasted, as is apparent from FIG. A portion 42b where no light hits the surface 42 is not formed. That is, it is preferable to dispose the planar light source 20 having the light emitting surface 20d having the diameter 2r2 that satisfies the above-described formula 1 for the opening surface K2 having the diameter 2rk.
これに対し、直径がこれよりも大きい、直径2r3の発光面20dの外周縁20e近傍から出た光は、一部、第2の反射面42に当たらないで無駄になるが、第2の反射面42に光が当たらない部分42bは形成されない。つまり、発光面20dからの光は一部無駄にはなるが、第2の反射面42の略全体が有効利用されることになる。
On the other hand, a part of the light having a larger diameter than the outer peripheral edge 20e of the light emitting surface 20d having a diameter of 2r3 does not hit the second reflecting surface 42 and is wasted, but the second reflecting A portion 42b where the light does not strike the surface 42 is not formed. That is, a part of the light from the light emitting surface 20d is wasted, but substantially the entire second reflecting surface 42 is effectively used.
一方、直径がそれよりも小さい、直径2r1の発光面20dの外周縁20e近傍から出た光は、第2の反射面42に当たらないで無駄になるものは内が、第2の反射面42の一部に光が当たらない部分42bが形成されてしまう。つまり、発光面20dからの光は無駄にはならないが、第2の反射面42の一部が利用されないことになる。
On the other hand, light emitted from the vicinity of the outer peripheral edge 20e of the light emitting surface 20d having a diameter of 2r1 having a smaller diameter does not hit the second reflecting surface 42 but is wasted, but the second reflecting surface 42 is inside. As a result, a portion 42b where no light is irradiated is formed. That is, the light from the light emitting surface 20d is not wasted, but a part of the second reflecting surface 42 is not used.
以上説明したように、発光面20dの直径は、上述の式(1)を満たす2r2に設定することが好ましいが、例えば、発光面20dの直径を段階的にしか選択できないために、満たすことができない場合がある。このような場合には、第2の反射面42による制御光を多くしたい場合には、2r2よりも大きく、また、発光面20dからの光の無駄を抑制したい場合には、2r2よりも小さくすればよい。
As described above, the diameter of the light emitting surface 20d is preferably set to 2r2 that satisfies the above-described formula (1). For example, the diameter of the light emitting surface 20d can be selected only in a stepwise manner, so that it can be satisfied. There are cases where it is not possible. In such a case, if it is desired to increase the control light by the second reflecting surface 42, it is larger than 2r2, and if it is desired to suppress the waste of light from the light emitting surface 20d, it should be smaller than 2r2. That's fine.
上述の境界線S1の位置については、交点T1から照射角度120°を持って照射された光が、リフレクター40と交差する高さよりも低い位置に設定するとよい。
About the position of the above-mentioned boundary line S1, it is good to set to the position where the light irradiated with the irradiation angle of 120 degrees from the intersection T1 is lower than the height which crosses the reflector 40.
なお、交点T2の位置は、上述の例よりも外側でもあるいは内側であってもよい。また、上述では、リフレクター40の反射面を、第1の反射面41と第2の反射面42とを組み合わせて構成する例を説明した。これに代えて、例えば、交点T1と交点T2との間に交点T3を設定し、この交点T3を焦点f3として、第2の反射面42と同様にして形成した第3の反射面を設け、これら第1の反射面41、第2の反射面42、第3の反射面を組み合わせて構成するようにしてもよい。この場合には、発光面20dから発光される光の反射光をさらに細かく制御することが可能となる。なお、この場合、第3の反射面の焦点距離は、第1の反射面41の焦点距離yよりも小さく、第2の反射面42の焦点距離yよりも大きいものとする。この場合、リフレクターは、上から順に、第2の反射面42、第3の反射面、第1の反射面41となる。つまり、新たに設けた第3の反射面は、第2の反射面42と第1の反射面41との間に位置することになる。
Note that the position of the intersection point T2 may be outside or inside the above example. In the above description, the example in which the reflection surface of the reflector 40 is configured by combining the first reflection surface 41 and the second reflection surface 42 has been described. Instead, for example, an intersection point T3 is set between the intersection point T1 and the intersection point T2, and a third reflection surface formed in the same manner as the second reflection surface 42 is provided with the intersection point T3 as a focal point f3. You may make it comprise combining these 1st reflective surfaces 41, the 2nd reflective surfaces 42, and a 3rd reflective surface. In this case, the reflected light of the light emitted from the light emitting surface 20d can be controlled more finely. In this case, it is assumed that the focal length of the third reflecting surface is smaller than the focal length y of the first reflecting surface 41 and larger than the focal length y of the second reflecting surface 42. In this case, the reflector becomes the second reflecting surface 42, the third reflecting surface, and the first reflecting surface 41 in order from the top. That is, the newly provided third reflection surface is located between the second reflection surface 42 and the first reflection surface 41.
図12に示すリフレクター40は、例えば、第2の反射面42における境界線S2(二点鎖線参照)よりも上側に位置する部分の内面側に、例えば、ファセット加工を施してもよい。また、境界線S2よりも、下側に位置する部分の内面側には、第1の反射面41の内面側も含めて鏡面加工するようにしてもよい。このように、反射光にエッジが付きやすい部分にファセット加工を施すことにより、エッジを補正ことができる。
For example, the reflector 40 shown in FIG. 12 may be subjected to facet processing, for example, on the inner surface side of the portion located above the boundary line S2 (see the two-dot chain line) in the second reflecting surface. Further, the inner surface side of the portion located below the boundary line S2 may be mirror-finished including the inner surface side of the first reflecting surface 41. In this way, the edge can be corrected by performing facet processing on the portion where the edge is easily attached to the reflected light.
なお、ファセット加工は、上述の第1の反射面41と第2の反射面42とを有するリフレクター40に限らず、1つの放物線に基づいて形成されたリフレクターに対して、同様に有効である。COBタイプの面状光源20は、発光面20dが面状に広がりを有していて、リフレクターによる光の制御は、点光源の場合よりも困難で、きめ細かい制御が必要となるが、ファセット加工は、きめ細かい制御のための有効な手段となり得る。
In addition, facet processing is similarly effective not only for the reflector 40 having the first reflection surface 41 and the second reflection surface 42 described above but also for a reflector formed based on one parabola. In the COB type planar light source 20, the light emitting surface 20d has a planar shape, and the light control by the reflector is more difficult than the case of the point light source, and fine control is required. It can be an effective means for fine control.
図12に示すように、リフレクター40は、第2の反射面42をヒートシンク11の脚部11cの内側に挿入して、開口部R2を面状光源20の発光面20dに近接させている。さらに、リフレクター40は、第1の反射面41をボディ30の内側に収納した状態で、リング状のリフレクター固定金具51をボディ30の下端部30eの内側に係合させることで、位置決めされている。このため、リフレクター40の交換が容易である。上述の面状光源20を、発熱量の異なるものに交換する際には、それに伴って、リフレクター40も交換することになるが、その交換が容易である。
As shown in FIG. 12, the reflector 40 has the second reflecting surface 42 inserted inside the leg portion 11c of the heat sink 11 so that the opening R2 is close to the light emitting surface 20d of the planar light source 20. Further, the reflector 40 is positioned by engaging the ring-shaped reflector fixing bracket 51 with the inner side of the lower end portion 30 e of the body 30 in a state where the first reflecting surface 41 is housed inside the body 30. . For this reason, replacement of the reflector 40 is easy. When the above-described planar light source 20 is replaced with one having a different calorific value, the reflector 40 is also replaced accordingly, but the replacement is easy.
フード50は、円筒状に形成されていて、ボディ30の下端部30eの外周面に螺合されることで固定されている。この際、リフレクター40の開口部R1と、フード50の上端との間には、種々の機能を有する1枚又は2枚以上のフィルタ(不図示)を取り付けることができる。これらフィルタは、ボディ30に対するフードの着脱によって簡単に交換することができる。
The hood 50 is formed in a cylindrical shape, and is fixed by being screwed to the outer peripheral surface of the lower end portion 30e of the body 30. At this time, one or more filters (not shown) having various functions can be attached between the opening R1 of the reflector 40 and the upper end of the hood 50. These filters can be easily replaced by attaching / detaching the hood to / from the body 30.
図13に示すように、上述の照明器具1は、面状光源20に代えて、ランプ62を使用することも可能である。リフレクター40、面状光源20、及びコネクタ21を取り外し、ヒートシンク11の取付面11dに台座60を固定して、コネクタ61を取り付け、このコネクタ61にランプ62を装着する。さらに、ランプ62を覆うように、リフレクター63を取り付ける。さらに、ランプ62からの直接光を防止するために、シールド64を取り付ける。以上のように、ヒートシンク11を含むソケットホルダー10、ボディ30、及びフード50は、略そのまま流用することができ、また、ランプ62への交換も容易である。
つづいて、図3~図5を参照して、面状光源20の発光に伴って発生された熱の伝達について説明する。 As shown in FIG. 13, theluminaire 1 described above can use a lamp 62 instead of the planar light source 20. The reflector 40, the planar light source 20, and the connector 21 are removed, the base 60 is fixed to the attachment surface 11 d of the heat sink 11, the connector 61 is attached, and the lamp 62 is attached to the connector 61. Further, a reflector 63 is attached so as to cover the lamp 62. In addition, a shield 64 is attached to prevent direct light from the lamp 62. As described above, the socket holder 10 including the heat sink 11, the body 30, and the hood 50 can be used as they are, and can be easily replaced with the lamp 62.
Next, with reference to FIG. 3 to FIG. 5, the transfer of heat generated with the light emission of the planarlight source 20 will be described.
つづいて、図3~図5を参照して、面状光源20の発光に伴って発生された熱の伝達について説明する。 As shown in FIG. 13, the
Next, with reference to FIG. 3 to FIG. 5, the transfer of heat generated with the light emission of the planar
ここで、図3(A)は、上述のように照明器具1の熱伝導を説明する平面図(上面図)であり、(B)は同じく(A)中のIII -III 線矢視図である。また、図4は、照明器具1の熱放射(輻射)を説明する、図3(A)中のIII -III 線矢視図である。また、図5は、照明器具1の対流熱伝達を説明する、図3(A)中のIII -III 線矢視図である。
まず、図3を参照して、各部材中を熱が移動する熱伝導について説明する。 Here, FIG. 3A is a plan view (top view) for explaining the heat conduction of theluminaire 1 as described above, and FIG. 3B is a view taken along the line III-III in FIG. is there. FIG. 4 is a view taken along the line III-III in FIG. 3 (A) for explaining the thermal radiation (radiation) of the luminaire 1. FIG. 5 is a view taken along the line III-III in FIG. 3A for explaining the convective heat transfer of the lighting fixture 1.
First, with reference to FIG. 3, the heat conduction in which heat moves in each member will be described.
まず、図3を参照して、各部材中を熱が移動する熱伝導について説明する。 Here, FIG. 3A is a plan view (top view) for explaining the heat conduction of the
First, with reference to FIG. 3, the heat conduction in which heat moves in each member will be described.
面状光源20で発生した熱は、アルミニウム基板20aからヒートシンク11に伝達され、さらに、ヒートシンク11から図3に矢印で示すように、熱伝導される。すなわち、面状光源20で発生した熱は、アルミニウム基板20aを介して、熱容量の大きなヒートシンク11に吸い上げられ、主に、放熱フィン12,12…中を通って外周壁13に伝導する。一方、一部は、脚部11cを通って、フランジ部11i,30cを通って、ボディ30、フード50に伝導する。このように、面状光源20で発生した熱は、熱容量の大きいヒートシンク11によって速やかに吸い上げられ、その後、各部材を介して、照明器具1の、リフレクター40を除く、略全体にわたって拡散される。
The heat generated by the planar light source 20 is transmitted from the aluminum substrate 20a to the heat sink 11, and is further conducted from the heat sink 11 as indicated by arrows in FIG. That is, the heat generated by the planar light source 20 is sucked up by the heat sink 11 having a large heat capacity via the aluminum substrate 20a, and is mainly conducted to the outer peripheral wall 13 through the radiation fins 12, 12,. On the other hand, a part is conducted to the body 30 and the hood 50 through the leg portions 11 c and the flange portions 11 i and 30 c. Thus, the heat generated by the planar light source 20 is quickly sucked up by the heat sink 11 having a large heat capacity, and then diffused over substantially the entire portion of the lighting fixture 1 except for the reflector 40 through each member.
次に、図4を参照して、各部材からの熱の放射について説明する。ヒートシンク11、外周壁13、ボディ30、フード50等に伝達された熱は、これらの部材の外周面が滑らかに形成されていること等に基づき、略外側に向かって、効率よく放射される。例えば、ヒートシンク11の円錐部11bの傾斜面11gが外側に向かって下方に傾斜しているため、傾斜面11gから直角に放射される熱は、中心から広がるように放射される。
次に、図5を参照して、対流による熱の移動について説明する。 Next, the radiation of heat from each member will be described with reference to FIG. The heat transmitted to theheat sink 11, the outer peripheral wall 13, the body 30, the hood 50, and the like is efficiently radiated substantially outwardly based on the smooth outer peripheral surfaces of these members. For example, since the inclined surface 11g of the conical portion 11b of the heat sink 11 is inclined downward toward the outside, the heat radiated from the inclined surface 11g at a right angle is radiated so as to spread from the center.
Next, heat transfer by convection will be described with reference to FIG.
次に、図5を参照して、対流による熱の移動について説明する。 Next, the radiation of heat from each member will be described with reference to FIG. The heat transmitted to the
Next, heat transfer by convection will be described with reference to FIG.
熱伝導によって各部材に伝わった熱は、図5中の略下方から上方に向かう矢印で示す空気の流れによって移動される。この際、ボディ30の外周面及び外周壁13の外周面13dが略同じ直径に形成されているため、空気は、これら外周面に沿って下方から上方に向かって円滑に流れる。また、ヒートシンク11と外周壁13との間の間隙(空間)には、相互に隣接する2つの放熱フィン12,12の間に、前後左右の四方を囲まれて、上下方向に貫通された流路A2が形成される。このため、空気はこの流路A2を下方から上方に向かって円滑に流れ、放熱フィン12,12…等から外部に熱を速やかに移動する。さらに、空気取入口A1,A1…が流路A2,A2…よりも狭く形成されているため、空気取入口A1,A1…における流速が増加し、外部への熱移動を促すとともに、これにより、流路A2,A2での空気の流れが円滑なものとなる。
ここで、上述の照明器具1の作用・効果を整理する。 The heat transferred to each member by heat conduction is moved by the air flow indicated by the arrows directed upward from substantially lower in FIG. At this time, since the outer peripheral surface of thebody 30 and the outer peripheral surface 13d of the outer peripheral wall 13 are formed to have substantially the same diameter, air smoothly flows from the lower side to the upper side along these outer peripheral surfaces. In addition, the gap (space) between the heat sink 11 and the outer peripheral wall 13 is surrounded by two radiating fins 12 and 12 adjacent to each other, and is surrounded by the four sides of the front, rear, left and right, and penetrated vertically. A path A2 is formed. For this reason, the air smoothly flows from the lower side to the upper side in the flow path A2, and quickly moves the heat from the radiation fins 12, 12,. Furthermore, since the air intakes A1, A1... Are formed narrower than the flow paths A2, A2..., The flow velocity at the air intakes A1, A1. The air flow in the flow paths A2 and A2 becomes smooth.
Here, the operation and effect of the above-describedlighting fixture 1 will be organized.
ここで、上述の照明器具1の作用・効果を整理する。 The heat transferred to each member by heat conduction is moved by the air flow indicated by the arrows directed upward from substantially lower in FIG. At this time, since the outer peripheral surface of the
Here, the operation and effect of the above-described
(1)照明器具1は、光源として平面状の発光面20dを有する面状光源20を使用しているため、面状光源20の発光に伴って発生した熱を、効率よく放熱して、面状光源20の昇温を抑制することができる。すなわち、例えば、COBタイプの面状光源20は、LED素子をアルミニウム基板20a上に実装していて、このアルミニウム基板20aを、直接、ヒートシンク11の取付面11dに密着させた状態で取り付けることができる。このため、面状光源20の熱を、効率よく、速やかにヒートシンク11に吸い取らせることができる。
(1) Since the luminaire 1 uses the planar light source 20 having the planar light emitting surface 20d as the light source, the heat generated with the light emission of the planar light source 20 is efficiently dissipated, and the surface The temperature rise of the light source 20 can be suppressed. That is, for example, the COB type planar light source 20 has the LED element mounted on the aluminum substrate 20a and can be attached in a state where the aluminum substrate 20a is in direct contact with the attachment surface 11d of the heat sink 11. . For this reason, the heat of the planar light source 20 can be absorbed by the heat sink 11 quickly and efficiently.
(2)ヒートシンク11の外周面11e,11h及び傾斜面11gに、放射方向に向かう放熱フィン12,12…を多数設け、さらに、放熱フィン12,12…の外周端を連続するように円筒状の外周壁13を設けることにより、これらの間に上下方向の空気の流路A2,A2…が形成されるので、空気の流れを円滑にして冷却効率を高めることができる。
(2) On the outer peripheral surfaces 11e, 11h and the inclined surface 11g of the heat sink 11, a large number of radiating fins 12, 12,... Extending in the radial direction are provided, and the outer peripheral ends of the radiating fins 12, 12,. By providing the outer peripheral wall 13, air flow paths A2, A2,... In the vertical direction are formed between them, so that the air flow can be made smooth and the cooling efficiency can be improved.
(3)ヒートシンク11の上端に円錐状の傾斜面11gを設けることにより、ヒートシンク11内における熱の移動距離のばらつきを少なくして、ヒートシンク11内での、不要な方向への熱の移動を低減できるため、効率のよい熱伝導を実現することができる。
(3) By providing the conical inclined surface 11g at the upper end of the heat sink 11, variation in the heat transfer distance in the heat sink 11 is reduced, and heat transfer in the unnecessary direction in the heat sink 11 is reduced. Therefore, efficient heat conduction can be realized.
(4)各放熱フィン12間の流路A2に空気を導く空気取入口A1を、ソケットホルダー10に、ボディ30を取り付けた際の両者の間隙に形成している。このため、特に、外周壁13に透孔を開ける等して形成する必要がなく、簡単に空気取入口A1を構成することができる。
(4) An air intake A1 that guides air to the flow path A2 between the radiating fins 12 is formed in a gap between the socket holder 10 and the body 30 when the body 30 is attached. For this reason, in particular, it is not necessary to form a through hole in the outer peripheral wall 13, and the air intake A1 can be configured easily.
(5)空気取入口A1を流路A2よりも狭く形成することで、空気取入口A1を含むその近傍の空気の流速を速めることができるため、冷却用の空気の流れを円滑にすることができる。
(5) By forming the air intake A1 narrower than the flow path A2, the flow velocity of the air in the vicinity including the air intake A1 can be increased, so that the flow of cooling air can be made smooth. it can.
(6)ヒートシンク11とボディ30との接続を、それぞれに形成したフランジ部11i,30cで行っているため、両者の接触面積を増加させて、熱の移動を円滑にすることができる。
(6) Since the heat sink 11 and the body 30 are connected to each other by the flange portions 11i and 30c formed respectively, the contact area between the two can be increased, and the heat can be moved smoothly.
(7)リフレクター40を第1の反射面41と第2の反射面42とによって形成している。このため、面状光源20の発光面20dの交点T1(中心)で発光される光はもちろん、交点T1から離れた交点T2で発光される光に対しても、反射後の光を中心軸C1に平行な、平行光とすることができる。このように、リフレクター40によって、反射光の制御を細かく行うことにより、開口部R1の直径Dを小さくし、かつリフレクター40の高さHを高くして、グレアカットアングルを大きく確保することが可能となる。
(7) The reflector 40 is formed by the first reflecting surface 41 and the second reflecting surface 42. For this reason, not only the light emitted at the intersection T1 (center) of the light emitting surface 20d of the planar light source 20, but also the light emitted at the intersection T2 far from the intersection T1, the reflected light is centered on the central axis C1. The light can be parallel light. Thus, by finely controlling the reflected light by the reflector 40, it is possible to reduce the diameter D of the opening R1 and increase the height H of the reflector 40, thereby ensuring a large glare cut angle. It becomes.
(8)リフレクター40の上端側(例えば、図12における境界線S2の上側)の内面に、例えば、ファセット加工を施すことにより、エッジを低減して優しい光とすることができる。なお、これは第1の反射面41,第2の反射面42を有するリフレクター40に限らず、例えば、面状光源20と、1つ放物線に基づいて形成した一般的なリフレクターを用いた場合も同様である。
(8) For example, by applying facet processing to the inner surface of the upper end side of the reflector 40 (for example, the upper side of the boundary line S2 in FIG. 12), the edge can be reduced and the light can be made gentle. Note that this is not limited to the reflector 40 having the first reflecting surface 41 and the second reflecting surface 42. For example, a general reflector formed based on the planar light source 20 and one parabola may be used. It is the same.
(9)リフレクター40の反射面を、上述のような第1の反射面41、第2の反射面42で構成することにより、発光面20dの大きい面状光源20を使用することができ、この場合でも発光面20dからの光を有効に平行光として反射させることができる
(9) By configuring the reflecting surface of the reflector 40 with the first reflecting surface 41 and the second reflecting surface 42 as described above, the planar light source 20 having a large light emitting surface 20d can be used. Even in this case, the light from the light emitting surface 20d can be effectively reflected as parallel light.
(10)図13に示すように、ヒートシンク11の脚部11cの内側の空間、及びボディ30の内側の空間には、面状光源20及びリフレクター40を取り付けるための専用の(特別な)構造は、設けていない。このため、大きさの異なる面状光源20や形状の異なるリフレクターと容易に交換することができる。さらには、図13を参照して説明したように、光源としてのランプ62や高さの低いリフレクター63への交換も容易である。
(10) As shown in FIG. 13, a dedicated (special) structure for attaching the planar light source 20 and the reflector 40 to the space inside the leg portion 11c of the heat sink 11 and the space inside the body 30 is provided. Not provided. For this reason, it can replace | exchange easily for the planar light source 20 from which a magnitude | size differs, and the reflector from which a shape differs. Furthermore, as described with reference to FIG. 13, it is easy to replace the lamp 62 as a light source and the reflector 63 having a low height.
1 照明器具
20 面状光源(光源)
20d 発光面
40 リフレクター
41 第1の反射面
42 第2の反射面
C1 中心軸
C2 軸心
f1 第1の放物線の焦点
f2 第2の放物線の焦点
K1 開口面
K2 仮想開口面
Pr1 第1の放物線
Pr2 第2の放物線
M1 仮想延長部分
y 焦点距離
1Lighting fixture 20 Planar light source (light source)
20dLight emitting surface 40 Reflector 41 First reflecting surface 42 Second reflecting surface C1 Central axis C2 Axis center f1 Focus of first parabola f2 Focus of second parabola K1 Aperture surface K2 Virtual aperture surface Pr1 First parabola Pr2 Second parabola M1 Virtual extension y Focal length
20 面状光源(光源)
20d 発光面
40 リフレクター
41 第1の反射面
42 第2の反射面
C1 中心軸
C2 軸心
f1 第1の放物線の焦点
f2 第2の放物線の焦点
K1 開口面
K2 仮想開口面
Pr1 第1の放物線
Pr2 第2の放物線
M1 仮想延長部分
y 焦点距離
1
20d
Claims (5)
- 中心軸に直交する面状の発光面を有する光源と、
前記発光面からの光を、前記中心軸を基準とした反射面で反射するリフレクターと、を備え、
前記反射面は、
前記中心軸を対称軸とする第1の放物線の一部を、前記中心軸を中心に回転させて形成した放物面状の第1の反射面と、
前記中心軸と平行な軸心を対称軸とする第2の放物線の一部を、前記中心軸を中心に回転させて形成した放物面状の第2の反射面と、を有する、
ことを特徴とする照明器具。 A light source having a planar light emitting surface orthogonal to the central axis;
A reflector that reflects light from the light emitting surface with a reflecting surface with respect to the central axis;
The reflective surface is
A parabolic first reflecting surface formed by rotating a part of a first parabola with the central axis as a symmetric axis about the central axis;
A second parabolic reflecting surface formed by rotating a part of a second parabola with an axis parallel to the central axis as an axis of symmetry about the central axis;
A lighting apparatus characterized by that. - 前記第1の反射面と第2の反射面とは、前記第2の反射面が前記光源に近い側に配設され、前記第1の反射面が前記光源から遠い側に配設されて、相互に連続している、
ことを特徴とする請求項1に記載の照明器具。 The first reflecting surface and the second reflecting surface are arranged such that the second reflecting surface is disposed on the side close to the light source, and the first reflecting surface is disposed on the side far from the light source, Mutually continuous,
The lighting fixture according to claim 1. - 前記第2の放物線の焦点距離は、前記第1の放物線の焦点距離よりも短い、
ことを特徴とする請求項1又は2に記載の照明器具。 The focal length of the second parabola is shorter than the focal length of the first parabola,
The lighting fixture according to claim 1 or 2, characterized by the above-mentioned. - 前記第1の放物線の焦点及び前記第2の放物線の焦点が、前記発光面上に設定されている、
ことを特徴とする請求項1ないし3のいずれか1項に記載の照明器具。 The focal point of the first parabola and the focal point of the second parabola are set on the light emitting surface;
The lighting fixture according to any one of claims 1 to 3, wherein - 前記第2の反射面は、前記発光面に対向する開口面を有し、
前記開口面は、前記第1の反射面を前記発光面側へ延長した仮想延長部分と前記開口面とが交差して形成される仮想開口面よりも大きい、
ことを特徴とする請求項1ないし4のいずれか1項に記載の照明器具。
The second reflecting surface has an opening surface facing the light emitting surface,
The opening surface is larger than a virtual opening surface formed by intersecting a virtual extension portion obtained by extending the first reflecting surface to the light emitting surface side and the opening surface.
The lighting fixture of any one of Claims 1 thru | or 4 characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015543938A JP5946972B2 (en) | 2013-10-27 | 2014-10-26 | lighting equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-222844 | 2013-10-27 | ||
JP2013222844 | 2013-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015060450A1 true WO2015060450A1 (en) | 2015-04-30 |
Family
ID=52993035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078419 WO2015060450A1 (en) | 2013-10-27 | 2014-10-26 | Illuminating instrument |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5946972B2 (en) |
WO (1) | WO2015060450A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018147722A (en) * | 2017-03-06 | 2018-09-20 | 株式会社アイ・ライティング・システム | Light source unit and projector |
EP4123353A1 (en) * | 2021-07-21 | 2023-01-25 | Nidec Copal Corporation | Reflector, imaging device, and vehicle |
WO2023066441A1 (en) | 2021-10-18 | 2023-04-27 | Merit Automotive Electronics Systems S.L.U. | Reflector lamp |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001201623A (en) * | 2000-01-20 | 2001-07-27 | Fujitsu General Ltd | Illumination light source device |
JP2011129425A (en) * | 2009-12-18 | 2011-06-30 | Panasonic Electric Works Co Ltd | Lighting fixture |
-
2014
- 2014-10-26 JP JP2015543938A patent/JP5946972B2/en not_active Expired - Fee Related
- 2014-10-26 WO PCT/JP2014/078419 patent/WO2015060450A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001201623A (en) * | 2000-01-20 | 2001-07-27 | Fujitsu General Ltd | Illumination light source device |
JP2011129425A (en) * | 2009-12-18 | 2011-06-30 | Panasonic Electric Works Co Ltd | Lighting fixture |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018147722A (en) * | 2017-03-06 | 2018-09-20 | 株式会社アイ・ライティング・システム | Light source unit and projector |
EP4123353A1 (en) * | 2021-07-21 | 2023-01-25 | Nidec Copal Corporation | Reflector, imaging device, and vehicle |
WO2023066441A1 (en) | 2021-10-18 | 2023-04-27 | Merit Automotive Electronics Systems S.L.U. | Reflector lamp |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015060450A1 (en) | 2017-03-09 |
JP5946972B2 (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9482395B2 (en) | LED luminaire | |
JP5331571B2 (en) | LED reflection lamp | |
JP6199970B2 (en) | Heat dissipation structure with segmented chimney structure | |
US9062864B2 (en) | Light fixture with selectable emitter and reflector configuration | |
JP2011062517A (en) | Operating light | |
JP6539665B2 (en) | Sports lighting equipment | |
JP2014086159A (en) | Lighting device | |
JP6135561B2 (en) | Light emitting device | |
US10006590B2 (en) | LED device and lighting fixture | |
JP2016526753A (en) | Lighting device and lighting fixture | |
JP5946972B2 (en) | lighting equipment | |
JP6179760B2 (en) | lighting equipment | |
US20120134153A1 (en) | Light source unit, light source device, and illumination device | |
JP6102864B2 (en) | lamp | |
KR101451397B1 (en) | Led lamp with ultralight radiating structure | |
KR200456082Y1 (en) | LED lamp apparatus | |
JP6241599B2 (en) | Lighting device | |
JP2014170672A (en) | Illumination device | |
JP2011159549A (en) | Light source unit and lighting system | |
US9279576B2 (en) | Light fixture with interchangeable heatsink trays and reflectors | |
TW200907233A (en) | LED lamp with a heat sink | |
JP2004182071A (en) | Lighting equipment for illumination | |
JP6421328B2 (en) | Lighting device | |
JP2016004602A (en) | Lighting device | |
JP2016115430A (en) | Led lighting fixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14855811 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015543938 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14855811 Country of ref document: EP Kind code of ref document: A1 |