WO2015059884A1 - Centrifugal air blower and air-conditioning device - Google Patents

Centrifugal air blower and air-conditioning device Download PDF

Info

Publication number
WO2015059884A1
WO2015059884A1 PCT/JP2014/005138 JP2014005138W WO2015059884A1 WO 2015059884 A1 WO2015059884 A1 WO 2015059884A1 JP 2014005138 W JP2014005138 W JP 2014005138W WO 2015059884 A1 WO2015059884 A1 WO 2015059884A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
turbofan
casing
blower
Prior art date
Application number
PCT/JP2014/005138
Other languages
French (fr)
Japanese (ja)
Inventor
生田 晴樹
伊藤 公一
伊藤 功治
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015059884A1 publication Critical patent/WO2015059884A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present disclosure relates to a centrifugal blower that blows air by rotation of a turbo fan, and an air conditioner including the centrifugal blower.
  • Patent Document 1 describes a so-called plug fan.
  • the plug fan is a type of centrifugal blower, and is a blower in which a turbo fan is arranged in a casing and blows air in one direction.
  • the plug fan is a scrollless blower that does not have a spiral (logarithmic spiral) casing (scroll casing), and the casing has a substantially rectangular shape.
  • the turbo fan is a fan having blades (blades) opposite to the rotation direction.
  • a turbofan is characterized by higher fan efficiency but less airflow than a sirocco fan whose blades are directed in the direction of rotation.
  • Scroll fans with scroll casings are difficult to design and manufacture because it is necessary to design and manufacture scroll casings with complex shapes.
  • the plug fan does not have a scroll casing having a complicated shape, it is easier to design and manufacture than a scroll fan.
  • a scroll blower provided with a scroll casing is widely applied to a blower of an air conditioner.
  • air blown from a scroll blower is heat-exchanged by a heat exchanger.
  • This indication aims at providing the centrifugal air blower which can improve the fan efficiency of the centrifugal air blower which does not have a scroll casing in view of the above-mentioned point.
  • an object of the present disclosure to provide an air conditioner that can be downsized and can suppress the wind speed distribution in the heat exchanger.
  • the centrifugal blower of the present disclosure includes a turbo fan having a plurality of blades and a casing that houses the turbo fan.
  • the outer portion of the casing in the radial direction of the turbofan forms a fluid passage through which the fluid blown out from the turbofan flows.
  • a blower outlet that blows out the fluid that has flowed through the fluid passage is formed at the end of the casing in the radial direction of the turbofan.
  • a dimension of a portion of the fluid passage between the turbo fan and the outlet is larger than the diameter of the turbo fan.
  • the fluid passage has an enlarged portion that extends in the axial direction on at least one side of the axial direction of the turbofan. The enlarged portion is a space in which the fluid blown out from the turbofan swirls.
  • the air conditioner of the present disclosure includes a blower that blows air and a heat exchanger that exchanges heat between the air blown by the blower.
  • the blower is a centrifugal blower having a turbo fan including a plurality of blades and a casing for storing the turbo fan.
  • a radially outer portion of the turbofan in the casing forms a fluid passage through which the fluid blown out from the turbofan flows.
  • a blower outlet that blows out the fluid that has flowed through the fluid passage is formed at the end of the casing in the radial direction of the turbofan.
  • the size of the portion of the fluid passage between the turbofan and the outlet is larger than the diameter of the turbofan.
  • a heat exchanger is arranged at the outlet.
  • the air blower of the air conditioner is composed of a centrifugal blower that does not have a scroll casing, the size of the air conditioner can be reduced, and the wind speed distribution in the heat exchanger can be suppressed. Moreover, since there is no scroll casing, design and manufacture can be facilitated.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is sectional drawing which shows the air blower in 1st Embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a VV cross-sectional view of FIG. 3.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 3.
  • FIG. 4 is a sectional view taken along line VII-VII in FIG. It is sectional drawing which shows the air blower in 2nd Embodiment. It is sectional drawing which shows the air blower in 3rd Embodiment.
  • the indoor air conditioning unit 10 of the vehicle air conditioner shown in FIGS. 1 and 2 includes a blower 11.
  • the indoor air-conditioning unit 10 is disposed inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and constitutes a front-seat air-conditioning unit that mainly blows air-conditioned air toward passengers seated in the front seat of the vehicle is doing.
  • the blower 11 is a centrifugal blower having a fan 12 (impeller), a motor 13 and a blower casing 14 (casing).
  • the blower 11 is a scrollless blower that does not have a spiral (logarithmic spiral) scroll casing.
  • the fan 12 is a turbo fan having blades 121 (blades) opposite to the rotation direction.
  • a turbofan has higher fan efficiency but less airflow than a sirocco fan whose blades are oriented in the direction of rotation.
  • the axial direction of the fan 12 is directed in the vertical direction. As shown in parentheses in FIG. 2, the axial direction may face the horizontal direction (in the example of FIG. 12, the front-rear direction of the vehicle).
  • the fan 12 is a blower having a plurality of blades 121 around the boss portion 122, sucking air from the radially inner side, and blowing the sucked air to the radially outer side.
  • the boss portion 122 is connected to the output shaft 131 of the motor 13.
  • the fan 12 is integrally formed of resin (for example, polypropylene).
  • the motor 13 is a drive unit that rotationally drives the fan 12 in the direction of the arrow R1 in FIG. 1, and is configured by an electric motor in this embodiment.
  • the motor 13 is fixed to a blower casing 14 that houses the fan 12.
  • the motor 13 is disposed on one end side in the axial direction of the fan 12 (lower end side in FIG. 2).
  • the blower casing 14 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • the blower casing 14 has a semi-oval shape in a planar shape (planar shape shown in FIG. 1) viewed from the axial direction. Specifically, one end side portion (the left end side portion in FIG. 1) in the full length direction of the blower casing 14 has a semicircular shape. The other end side part (the right end side part in FIG. 1) of the full length direction among the blower casings 14 is rectangular.
  • a suction port 16 for introducing air is formed in one end side of the fan casing 14 in the axial direction of the fan 12 (on the side opposite to the motor 13).
  • a bell mouth is provided at the outer edge of the suction port 16 to smoothly guide the intake air to the fan 12.
  • the inside / outside air switching box 20 is connected to the suction port 16.
  • the inside / outside air switching box 20 switches and introduces inside air and outside air into the suction port 16.
  • an inside air introduction port 201 and an outside air introduction port 202 are formed in the inside / outside air switching box 20, an inside air introduction port 201 and an outside air introduction port 202 are formed in the inside / outside air switching box 20, an inside air introduction port 201 and an outside air introduction port 202 are formed.
  • the inside / outside air switching box 20 is provided with an inside / outside air switching door 21 that opens and closes the inside air introduction port 201 and the outside air introduction port 202.
  • An air passage 22 (fluid passage) through which air (fluid) blown out from the fan 12 flows is formed inside the blower casing 14 and outside the fan 12 in the radial direction.
  • An air outlet 23 is formed on the air flow downstream side of the air passage 22. The air outlet 23 blows out the air flowing through the air passage 22 to the outside of the blower 11.
  • the blower outlet 23 is formed at the end of the blower casing 14 in the radial direction of the fan 12. Specifically, the blower outlet 23 is formed in the end part (right end part in FIG. 1) of the blower casing 14 on the rectangular part side. Therefore, the opening direction (right side in FIG. 1) of the blower outlet 23 is parallel to the full length direction of the blower casing 14.
  • the air outlet casing 25 is connected to the air outlet 23.
  • the air conditioning casing 25 forms an air passage through which air blown from the blower 11 flows.
  • the air conditioning casing 25 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • An evaporator 26 is disposed at the most upstream part of the air flow of the air conditioning casing 25.
  • the evaporator 26 is arranged at the outlet 23 of the blower casing 14.
  • the evaporator 26 is a cooling heat exchanger that cools the air by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the air flowing in the air conditioning casing 25.
  • An air outlet (not shown) that blows air toward the passenger compartment is formed in the most downstream portion of the air flow of the air conditioning casing 25.
  • the blower 11 constitutes a scrollless blower that does not have a spiral (logarithmic spiral) scroll casing. Therefore, as shown in FIG. 3, the dimension W1 (the vertical dimension in FIG. 1) of the portion of the air passage 22 between the fan 12 and the outlet 23 is larger than the diameter d1 of the fan 12. .
  • the dimension W1 is a dimension when a portion of the air passage 22 between the fan 12 and the outlet 23 is viewed from the axial direction.
  • the dimension W ⁇ b> 1 is a dimension in the radial direction of a portion of the air passage 22 between the fan 12 and the outlet 23.
  • the rotation axis A1 of the fan 12 is one side in the direction perpendicular to the axial direction of the blower casing 14 (the lower side in FIG. 3) with respect to the center line CL (virtual line) of the blower casing 14 in the direction perpendicular to the axial direction. Is offset. More specifically, the offset direction of the fan 12 is a direction (downward in FIG. 3) that is shifted from the opening direction of the air outlet 23 by 90 ° in the fan rotation direction R1.
  • the radial dimension of the air passage 22 increases in the direction of the fan rotation direction R ⁇ b> 1. ing.
  • the air passage 22 has an enlarged portion 28 that gradually expands in the axial direction from the starting portion 27 toward the fan rotation direction R ⁇ b> 1. . More specifically, the expansion portion 28 expands in the direction opposite to the suction port 16 in the axial direction (the lower side in FIGS. 4 to 7).
  • the starting point portion 27 is located in a range B1 between the first virtual line L1 and the second virtual line L2.
  • the first imaginary line L1 is an imaginary line extending from the rotation axis A1 of the fan 12 toward the opening direction of the air outlet 23 (right direction in FIG. 3).
  • the second virtual line L2 is a virtual line extending from the rotation axis A1 of the fan 12 toward the offset direction of the fan 12 (downward in FIG. 3).
  • the second virtual line L2 is a virtual line extending from the rotation axis A1 of the fan 12 toward the minimum width portion 22a of the air passage 22.
  • the minimum width portion 22a is a portion of the air passage 22 where the dimension (width) of the air passage 22 is minimized when viewed from the fan axial direction.
  • the air passage 22 has a minimum width portion 22a that minimizes the dimension of the air passage 22 in the radial direction.
  • the angle formed by the first virtual line L1 and the second virtual line L2 is 90 °.
  • the starting point portion 27 is located on an imaginary line that connects the rotation axis A ⁇ b> 1 of the fan 12 and the end portion (lower end portion in FIG. 3) on the fan rotation direction R ⁇ b> 1 side of the outlet 23.
  • the expansion of the expansion unit 28 ends at the start point 27. Therefore, the enlarged portion 28 has a step between the starting point portion 27 and the enlarged portion 28.
  • the air blown out from the air outlet 23 to the air conditioning casing 25 is cooled by the evaporator 26 and then blown out from the air outlet (not shown) of the air conditioning casing 25 toward the vehicle interior.
  • the air passage 22 has an enlarged portion 28 that expands outward in the axial direction in at least one of the axial directions. Specifically, in the present embodiment, the air passage 22 has an enlarged portion 28 that gradually expands downward from the starting point portion 27 toward the fan rotation direction R1. As shown by the arrow in FIG. 2, the air blown from the fan 12 swirls in the enlargement unit 28.
  • the air blown out from the fan 12 collides with the side wall (wall extending in the axial direction) of the blower casing 14, and then both ends in the axial direction (upper side and lower side in FIG. 2). ) And blown out.
  • the air passage 22 through which the air blown out from the fan 12 flows has an enlarged portion 28 that extends from the fan 12 toward one side in the axial direction.
  • the enlarged portion 28 is a space in which the air blown from the fan 12 turns.
  • fan efficiency can be improved without expanding the physique of the blower casing 14 in the radial direction of the fan 12, it is possible to suppress deterioration in mountability on the vehicle.
  • the enlarged portion 28 has a first imaginary line L1 extending from the rotation axis A1 toward the opening direction of the outlet 23, and the first imaginary line L1 is 90 ° in the fan rotation direction R1 with the rotation axis A1 as the center. Starting from a portion 27 (starting portion) located between the rotated second imaginary line L2, it gradually expands toward the rotation axis A1 in the fan rotation direction R1. In other words, the dimension of the enlarged portion 28 in the radial direction is gradually increased toward the fan rotation direction R1.
  • the air passage 22 has a minimum width portion 22a at a position shifted from the starting point portion 27 by 90 ° in the rotation direction R1.
  • the dimension of the air passage 22 in the radial direction is minimum at the minimum width portion 22a.
  • the enlarged portion 28 rotates at the fan starting from a portion 27 (starting portion) located between the minimum width portion 22a of the air passage 22 and a position shifted by 90 ° from the minimum width portion 22a on the opposite side to the rotation direction R1. As it goes in the direction R1, it gradually expands toward the rotation axis A1. In other words, the dimension of the enlarged portion 28 in the radial direction is gradually increased toward the fan rotation direction R1.
  • the evaporator 26 is arrange
  • the expansion dimension toward the front may be constant over the entire circumference of the air passage 22.
  • the dimension of the enlarged portion 28 in the radial direction may be constant over the entire circumference of the air passage 22.
  • the enlarged portion 28 is formed so as to be located radially outside of the fan 12 when viewed from the fan axial direction. However, as shown in FIG. You may form so that it may overlap with the fan 12 when it sees from an axial direction.
  • the enlarged portion 28 is expanded downward on the lower side of the fan 12 (opposite the suction port 16).
  • the enlarged portion 28 of the present embodiment is enlarged in the axial direction on both sides of the fan 12 in the axial direction.
  • the air passage 22 has an enlarged portion 28 (enlarged portion 28 a) that expands downward on the lower side of the fan 12, and an upper side (on the inlet 16 side) of the fan 12. It has the expansion part 28 (expansion part 28b) expanded toward upper direction.
  • the enlarged portion 28 b overlaps the fan 12 when viewed from the axial direction of the fan 12.
  • the enlarged portion 28 b is formed so as to overlap the fan 12 when viewed from the axial direction of the fan 12. In the present embodiment, as shown in FIG. 11, the enlarged portion 28 b does not overlap the fan 12 when viewed from the axial direction of the fan 12, and is formed on the outer side in the radial direction than the fan 12.
  • a portion of the blower casing 14 between the suction port 16 and the enlarged portion 28 b has a shape along the upper edge portion of the blade 121 of the fan 12. According to this, since the gap between the fan 12 and the blower casing 14 can be narrowed, the air blown out from the fan 12 to the air passage 22 can flow back to the suction port 16 side through the gap between the blade 121 and the blower casing 14. Can be prevented.
  • one fan 12 is provided, but in this embodiment, two fans 12 are provided as shown in FIG.
  • the two fans 12 are arranged on opposite sides of the motor 13.
  • the suction port 16 is formed on both ends of the blower casing 14 in the axial direction (the upper side and the lower side in FIG. 12).
  • the inside / outside air switching box (not shown) is connected to one suction port 16.
  • the other suction port 16 is connected to a duct (not shown) extending from the inside / outside air switching box.
  • the duct forms an air passage from the inside / outside air switching box to the other inlet 16. Thereby, the inside air and the outside air introduced from the inside / outside air switching box 20 are blown by the two fans 12.
  • the enlarged portion 28a is enlarged downward on one side of the fan 12 (downward in FIG. 12).
  • the enlarged portion 28b is enlarged upward on the other side of the fan 12 (upper side in FIG. 12). According to this, interference with the other blown air can be reduced for both the air blown from one fan 12 and the air blown from the other fan 12. Therefore, fan efficiency can be improved.
  • the inside air and the outside air introduced from the inside / outside air switching box 20 are blown by the two fans 12.
  • outside air is blown by one fan 12 (fan 12b)
  • inside air is blown by the other fan 12 (fan 12a).
  • a partition wall 30 is formed inside the blower casing 14.
  • the partition wall 30 partitions the air passage 22 into an outside air passage 31 and an inside air passage 32.
  • the outside air passage 31 is a passage through which outside air blown by the fan 12b flows.
  • the inside air passage 32 is a passage through which the inside air blown by the fan 12a flows.
  • the outside air passage 31 has an enlarged portion 28 b and the inside air passage 32 has an enlarged portion 28.
  • interference with other blowing air can be reduced for both the outside air flowing through the outside air passage 31 and the inside air flowing through the inside air passage 32. Therefore, fan efficiency can be improved in the inside / outside air two-layer blower that blows the inside air and the outside air separately.
  • (Eighth embodiment) 14 to 17 are diagrams for explaining the relationship between the distance X1 between the fan 12 and the evaporator 26 and the air flow state in the eighth embodiment.
  • the enlarged portion 28 is not formed in the air passage 22.
  • the two-dot chain line arrow indicates the air flow toward the evaporator 26.
  • the distance X ⁇ b> 1 between the fan 12 and the evaporator 26 is large, a vortex is easily generated in the air flow between the fan 12 and the evaporator 26.
  • a two-dot chain line indicates a comparative example.
  • the fan is a sirocco fan having the same diameter as that of the present embodiment, and the blower casing is a scroll casing having a nose.
  • the fan efficiency improves as the distance between the fan and the evaporator increases. Therefore, when the distance X1 between the fan and the evaporator is small, the fan efficiency of the present embodiment is higher than the fan efficiency of the comparative example.
  • FIG. 17 is a graph showing the relationship between the distance between the fan 12 and the evaporator 26 and the wind speed distribution in the evaporator 26.
  • the vertical axis in FIG. 17 represents the standard deviation of the average wind speed measured for each of the divided parts by dividing the air inflow surface of the evaporator 26 into a large number (for example, 16 parts).
  • the two-dot chain line indicates the comparative example.
  • the enlarged portion 28 is not formed in the air passage 22, but even if the enlarged portion 28 is formed in the air passage 22, the above-described operational effects of the present embodiment can be achieved.
  • a guide member 40 that guides the flow of air toward the evaporator 26 is disposed in a portion of the air passage 22 between the fan 12 and the outlet 23.
  • the guide member 40 may be integrally formed with the blower casing 14 or may be formed separately from the blower casing 14 and fixed to the blower casing 14 by screwing or the like.
  • the guide member 40 is formed in a plate shape that follows the flow of air toward the evaporator 26. Thereby, since the flow of the air which goes to the evaporator 26 is rectified by the guide member 40 and generation
  • the above embodiments can be combined as appropriate.
  • the above embodiment can be variously modified as follows, for example.
  • the rotation axis A1 of the fan 12 is offset with respect to the center line CL of the blower casing 14 in the radial direction.
  • the rotation axis A1 of the fan 12 may be disposed on the center line CL.
  • the blower 11 blows out air in one direction from the outlet 23.
  • the blower 11 may blow out air in a plurality of directions.
  • the blower 11 may blow out air radially from a large number of outlets.
  • the air passage 22 is not provided with a nose.
  • the air passage 22 may be provided with a protrusion (projection) that forms a nose.
  • the indoor air-conditioning unit 10 constitutes a front-seat air-conditioning unit that blows conditioned air toward the passengers who are mainly seated in the front seat of the vehicle.
  • the indoor air-conditioning unit 10 may constitute a rear-seat air-conditioning unit that blows conditioned air toward the passengers who are mainly seated in the rear seats of the vehicle.
  • the indoor air conditioning unit 10 may constitute a seat air conditioner that blows conditioned air toward the passenger from the inside of the seat.

Abstract

The disclosed centrifugal air blower is equipped with: a turbo fan (12) having multiple blades (121); and a casing (14) for housing the turbo fan (12). An outer section of the casing (14) in the radial direction of the turbo fan (12) forms a fluid path (22) for a fluid blown out from the turbo fan (12) to flow therein. A blowout port (23) for blowing out the fluid flowing in the fluid path (22) is formed at an end of the casing (14) in the radial direction of the turbo fan (12). The size (W1) of the section of the fluid path (22) between the turbo fan (12) and the blowout port (23) is greater than the diameter (d1) of the turbo fan (12). The fluid path (22) has an expanded section (28) that is expanded beyond the turbo fan (12) in the axial direction thereof at least on one side in the axial direction. The expanded section (28) is a space where the air blown out from the turbo fan (12) swirls.

Description

遠心送風機および空調装置Centrifugal blower and air conditioner 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年10月25日に出願された日本特許出願2013-221712号を基にしている。 This application is based on Japanese Patent Application No. 2013-221712 filed on Oct. 25, 2013, the disclosure of which was incorporated into this application by reference.
 本開示は、ターボファンの回転によって送風する遠心送風機、および遠心送風機を備える空調装置に関する。 The present disclosure relates to a centrifugal blower that blows air by rotation of a turbo fan, and an air conditioner including the centrifugal blower.
 従来、特許文献1には、いわゆるプラグファンが記載されている。プラグファンは、遠心送風機の一種で、ターボファンがケーシング内に配置されて空気を一方向に吹出す送風機である。プラグファンは、渦巻き状(対数螺旋状)のケーシング(スクロールケーシング)を持たないスクロールレス送風機であり、ケーシングが略矩形状になっている。 Conventionally, Patent Document 1 describes a so-called plug fan. The plug fan is a type of centrifugal blower, and is a blower in which a turbo fan is arranged in a casing and blows air in one direction. The plug fan is a scrollless blower that does not have a spiral (logarithmic spiral) casing (scroll casing), and the casing has a substantially rectangular shape.
 ターボファンは、回転方向と逆向きのブレード(羽根)を有するファンである。一般的に、ターボファンは、ブレードが回転方向を向いているシロッコファンに比べて、ファン効率が高いが風量は少ないという特徴がある。 The turbo fan is a fan having blades (blades) opposite to the rotation direction. In general, a turbofan is characterized by higher fan efficiency but less airflow than a sirocco fan whose blades are directed in the direction of rotation.
 スクロールケーシングを備えるスクロール送風機では、複雑な形状のスクロールケーシングを設計したり製造したりする必要があるので設計や製造の難易度が高い。それに対し、プラグファンでは、複雑な形状のスクロールケーシングを持たないので、スクロール送風機と比較して設計や製造が容易である。 Scroll fans with scroll casings are difficult to design and manufacture because it is necessary to design and manufacture scroll casings with complex shapes. On the other hand, since the plug fan does not have a scroll casing having a complicated shape, it is easier to design and manufacture than a scroll fan.
 一方、スクロールケーシングを備えるスクロール送風機は、空調装置の送風機に広く適用されている。この種の空調装置では、例えば、スクロール送風機から吹き出された空気が熱交換器で熱交換されるようになっている。 On the other hand, a scroll blower provided with a scroll casing is widely applied to a blower of an air conditioner. In this type of air conditioner, for example, air blown from a scroll blower is heat-exchanged by a heat exchanger.
特開2012-177363号公報JP 2012-177363 A
 しかしながら、上記従来技術(プラグファン)では、ターボファンから径方向外側に吹き出された空気がケーシングの側壁に衝突後、行き場をなくして逆流し、他の吹出風と干渉してしまうので、ファン効率が低くなってしまうおそれがある。 However, in the above prior art (plug fan), since the air blown radially outward from the turbo fan collides with the side wall of the casing and then flows backward without interfering with the other blown air, the fan efficiency May be lowered.
 一方、スクロール送風機を空調装置の送風機に適用した場合、スクロールケーシングにノーズが形成されているので、シロッコファンと熱交換器との間の距離を短縮して空調装置の体格を小型化することが困難になるおそれがある。 On the other hand, when the scroll blower is applied to a blower of an air conditioner, since the nose is formed in the scroll casing, the distance between the sirocco fan and the heat exchanger can be shortened to reduce the size of the air conditioner. May be difficult.
 また、スクロール送風機を空調装置の送風機に適用した場合、シロッコファンからスクロールケーシング内の空気通路に吹き出された空気の流れが、スクロールケーシングのノーズと吹出口との間で大きく乱れる(渦が発生する)。したがって、熱交換器で風速分布が発生してしまう。その結果、熱交換器で熱交換された空気に温度分布が発生して空調感が損なわれてしまうおそれがある。 Further, when the scroll blower is applied to a blower of an air conditioner, the flow of air blown from the sirocco fan into the air passage in the scroll casing is greatly disturbed between the nose of the scroll casing and the outlet (vortex is generated). ). Therefore, a wind speed distribution is generated in the heat exchanger. As a result, a temperature distribution may occur in the air heat-exchanged by the heat exchanger, and the air conditioning feeling may be impaired.
 本開示は上記点に鑑みて、スクロールケーシングを持たない遠心送風機のファン効率を向上することができる遠心送風機を提供することを目的とする。 This indication aims at providing the centrifugal air blower which can improve the fan efficiency of the centrifugal air blower which does not have a scroll casing in view of the above-mentioned point.
 さらに、本開示は上記点に鑑みて、小型化され、かつ熱交換器での風速分布を抑制することができる空調装置を提供することを目的とする。 Furthermore, in view of the above points, it is an object of the present disclosure to provide an air conditioner that can be downsized and can suppress the wind speed distribution in the heat exchanger.
 本開示の遠心送風機は、複数枚のブレードを有するターボファンと、ターボファンを収納するケーシングとを備える。 The centrifugal blower of the present disclosure includes a turbo fan having a plurality of blades and a casing that houses the turbo fan.
 ケーシングのうちターボファンの径方向外側部位は、ターボファンから吹き出された流体が流れる流体通路を形成している。ケーシングのうちターボファンの径方向における端部には、流体通路を流れた流体を吹き出す吹出口が形成されている。流体通路のうちターボファンと吹出口との間の部位の寸法は、ターボファンの直径よりも大きくなっている。流体通路は、ターボファンよりも軸方向の少なくとも一方側において軸方向に拡がった拡大部を有している。拡大部は、ターボファンから吹き出された流体が旋回する空間である。 The outer portion of the casing in the radial direction of the turbofan forms a fluid passage through which the fluid blown out from the turbofan flows. A blower outlet that blows out the fluid that has flowed through the fluid passage is formed at the end of the casing in the radial direction of the turbofan. A dimension of a portion of the fluid passage between the turbo fan and the outlet is larger than the diameter of the turbo fan. The fluid passage has an enlarged portion that extends in the axial direction on at least one side of the axial direction of the turbofan. The enlarged portion is a space in which the fluid blown out from the turbofan swirls.
 これによると、ターボファンから吹き出された流体が拡大部で旋回するので、ターボファンから吹き出された流体の逆流が抑制されて、他の吹出風との干渉を抑制できる。したがって、ファン効率を向上できる。 According to this, since the fluid blown out from the turbo fan swirls in the enlarged portion, the back flow of the fluid blown out from the turbo fan is suppressed, and interference with other blown winds can be suppressed. Therefore, fan efficiency can be improved.
 本開示の空調装置は、空気を送風する送風機と、送風機によって送風された空気を熱交換させる熱交換器とを備える。 The air conditioner of the present disclosure includes a blower that blows air and a heat exchanger that exchanges heat between the air blown by the blower.
 送風機は、複数枚のブレードを含むターボファンと、ターボファンを収納するケーシングとを有する遠心送風機である。ケーシングのうちターボファンの径方向外側部位は、ターボファンから吹き出された流体が流れる流体通路を形成している。ケーシングのうちターボファンの径方向における端部には、流体通路を流れた流体を吹き出す吹出口が形成されている。流体通路のうちターボファンと吹出口との間の部位の寸法は、ターボファンの直径よりも大きい。吹出口には熱交換器が配置されている。 The blower is a centrifugal blower having a turbo fan including a plurality of blades and a casing for storing the turbo fan. A radially outer portion of the turbofan in the casing forms a fluid passage through which the fluid blown out from the turbofan flows. A blower outlet that blows out the fluid that has flowed through the fluid passage is formed at the end of the casing in the radial direction of the turbofan. The size of the portion of the fluid passage between the turbofan and the outlet is larger than the diameter of the turbofan. A heat exchanger is arranged at the outlet.
 これによると、空調装置の送風機が、スクロールケーシングを持たない遠心送風機で構成されているので、空調装置の体格を小型化し、かつ熱交換器での風速分布を抑制できる。また、スクロールケーシングを持たないので、設計や製造を容易化できる。 According to this, since the air blower of the air conditioner is composed of a centrifugal blower that does not have a scroll casing, the size of the air conditioner can be reduced, and the wind speed distribution in the heat exchanger can be suppressed. Moreover, since there is no scroll casing, design and manufacture can be facilitated.
第1実施形態における室内空調ユニットを示す平面図である。It is a top view which shows the indoor air conditioning unit in 1st Embodiment. 図1のII-II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 第1実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 1st Embodiment. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3のV-V断面図である。FIG. 5 is a VV cross-sectional view of FIG. 3. 図3のVI-VI断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 3. 図3のVII-VII断面図である。FIG. 4 is a sectional view taken along line VII-VII in FIG. 第2実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 2nd Embodiment. 第3実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 3rd Embodiment. 第4実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 4th Embodiment. 第5実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 5th Embodiment. 第6実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 6th Embodiment. 第7実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 7th Embodiment. 第8実施形態の送風機においてファンと蒸発器との間の距離が大きい場合の空気流れを示す断面図である。It is sectional drawing which shows an air flow in case the distance between a fan and an evaporator is large in the air blower of 8th Embodiment. 第8実施形態の送風機においてファンと蒸発器との間の距離が小さい場合の空気流れを示す断面図である。It is sectional drawing which shows an air flow in case the distance between a fan and an evaporator is small in the air blower of 8th Embodiment. 第8実施形態の送風機においてファンと蒸発器との間の距離とファン効率との関係を示すグラフである。It is a graph which shows the relationship between the distance between a fan and an evaporator, and fan efficiency in the air blower of 8th Embodiment. 第8実施形態の送風機においてファンと蒸発器との間の距離と蒸発器における風速分布との関係を示すグラフである。It is a graph which shows the relationship between the distance between a fan and an evaporator, and the wind speed distribution in an evaporator in the air blower of 8th Embodiment. 第9実施形態における送風機を示す断面図である。It is sectional drawing which shows the air blower in 9th Embodiment.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。なお、図中における上下(前後)の矢印は、車両搭載状態における上下方向(前後方向)を示している。
(第1実施形態)
 図1、図2に示す車両用空調装置の室内空調ユニット10は、送風機11を備えている。
Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings. In addition, the up-down (front-back) arrow in a figure has shown the up-down direction (front-back direction) in the vehicle mounting state.
(First embodiment)
The indoor air conditioning unit 10 of the vehicle air conditioner shown in FIGS. 1 and 2 includes a blower 11.
 室内空調ユニット10は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されており、主に車両の前席に着座した乗員に向けて空調風を吹き出す前席用空調ユニットを構成している。 The indoor air-conditioning unit 10 is disposed inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and constitutes a front-seat air-conditioning unit that mainly blows air-conditioned air toward passengers seated in the front seat of the vehicle is doing.
 送風機11は、ファン12(羽根車)、モータ13および送風機ケーシング14(ケーシング)を有する遠心送風機である。送風機11は、渦巻状(対数螺旋状)のスクロールケーシングを持たないスクロールレス送風機である。 The blower 11 is a centrifugal blower having a fan 12 (impeller), a motor 13 and a blower casing 14 (casing). The blower 11 is a scrollless blower that does not have a spiral (logarithmic spiral) scroll casing.
 ファン12は、回転方向と逆向きのブレード121(羽根)を有するターボファンである。一般的に、ターボファンは、ブレードが回転方向を向いているシロッコファンに比べてファン効率が高いが風量は少ない。 The fan 12 is a turbo fan having blades 121 (blades) opposite to the rotation direction. In general, a turbofan has higher fan efficiency but less airflow than a sirocco fan whose blades are oriented in the direction of rotation.
 図2の例では、ファン12の軸方向は上下方向を向いている。図2中の括弧内に示すように、軸方向は水平方向(図12の例では車両の前後方向)を向いていてもよい。 In the example of FIG. 2, the axial direction of the fan 12 is directed in the vertical direction. As shown in parentheses in FIG. 2, the axial direction may face the horizontal direction (in the example of FIG. 12, the front-rear direction of the vehicle).
 ファン12は、ボス部122の周りに複数枚のブレード121を有し、径方向内側から空気を吸入して、その吸入した空気を径方向外側に吹き出す送風機である。ボス部122は、モータ13の出力軸131に連結されている。例えば、ファン12は、樹脂(例えばポリプロピレン)にて一体成形されている。 The fan 12 is a blower having a plurality of blades 121 around the boss portion 122, sucking air from the radially inner side, and blowing the sucked air to the radially outer side. The boss portion 122 is connected to the output shaft 131 of the motor 13. For example, the fan 12 is integrally formed of resin (for example, polypropylene).
 モータ13は、ファン12を図1の矢印R1方向に回転駆動する駆動部であり、本実施形態では電動モータで構成されている。モータ13は、ファン12を収納する送風機ケーシング14に固定されている。モータ13は、ファン12の軸方向の一端側(図2では下端側)に配置されている。 The motor 13 is a drive unit that rotationally drives the fan 12 in the direction of the arrow R1 in FIG. 1, and is configured by an electric motor in this embodiment. The motor 13 is fixed to a blower casing 14 that houses the fan 12. The motor 13 is disposed on one end side in the axial direction of the fan 12 (lower end side in FIG. 2).
 送風機ケーシング14は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 The blower casing 14 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 送風機ケーシング14は、軸方向から見た平面形状(図1に示す平面形状)が半長円形状になっている。具体的には、送風機ケーシング14のうち全長方向の一端側部位(図1では左端側部位)が半円形状になっている。送風機ケーシング14のうち全長方向の他端側部位(図1では右端側部位)が矩形状になっている。 The blower casing 14 has a semi-oval shape in a planar shape (planar shape shown in FIG. 1) viewed from the axial direction. Specifically, one end side portion (the left end side portion in FIG. 1) in the full length direction of the blower casing 14 has a semicircular shape. The other end side part (the right end side part in FIG. 1) of the full length direction among the blower casings 14 is rectangular.
 送風機ケーシング14のうちファン12の軸方向一端側(モータ13と反対側)には、空気を導入するための吸入口16が形成されている。吸入口16の外形縁部には、吸入空気を滑らかにファン12に導くベルマウスが設けられている。 A suction port 16 for introducing air is formed in one end side of the fan casing 14 in the axial direction of the fan 12 (on the side opposite to the motor 13). A bell mouth is provided at the outer edge of the suction port 16 to smoothly guide the intake air to the fan 12.
 吸入口16には、内外気切替箱20が接続されている。内外気切替箱20は、吸入口16に内気と外気とを切り替え導入する。内外気切替箱20には、内気導入口201と外気導入口202とが形成されている。内外気切替箱20には、内気導入口201と外気導入口202とを開閉する内外気切替ドア21が配置されている。 The inside / outside air switching box 20 is connected to the suction port 16. The inside / outside air switching box 20 switches and introduces inside air and outside air into the suction port 16. In the inside / outside air switching box 20, an inside air introduction port 201 and an outside air introduction port 202 are formed. The inside / outside air switching box 20 is provided with an inside / outside air switching door 21 that opens and closes the inside air introduction port 201 and the outside air introduction port 202.
 送風機ケーシング14の内部であってファン12の径方向外側部位には、ファン12から吹き出された空気(流体)が流れる空気通路22(流体通路)が形成されている。空気通路22の空気流れ下流側には吹出口23が形成されている。吹出口23は、空気通路22を流れた空気を送風機11の外部へ吹き出す。 An air passage 22 (fluid passage) through which air (fluid) blown out from the fan 12 flows is formed inside the blower casing 14 and outside the fan 12 in the radial direction. An air outlet 23 is formed on the air flow downstream side of the air passage 22. The air outlet 23 blows out the air flowing through the air passage 22 to the outside of the blower 11.
 吹出口23は、送風機ケーシング14のうちファン12の径方向における端部に形成されている。具体的には、吹出口23は、送風機ケーシング14のうち矩形状部位側の端部(図1では右端部)に形成されている。したがって、吹出口23の開口方向(図1では右方側)は、送風機ケーシング14の全長方向と平行になっている。 The blower outlet 23 is formed at the end of the blower casing 14 in the radial direction of the fan 12. Specifically, the blower outlet 23 is formed in the end part (right end part in FIG. 1) of the blower casing 14 on the rectangular part side. Therefore, the opening direction (right side in FIG. 1) of the blower outlet 23 is parallel to the full length direction of the blower casing 14.
 吹出口23には、空調ケーシング25が接続されている。空調ケーシング25は、送風機11から送風された空気が流れる空気通路を形成している。空調ケーシング25は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 The air outlet casing 25 is connected to the air outlet 23. The air conditioning casing 25 forms an air passage through which air blown from the blower 11 flows. The air conditioning casing 25 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
 空調ケーシング25の空気流れ最上流部には蒸発器26が配置されている。換言すれば、蒸発器26は、送風機ケーシング14の吹出口23に配置されている。蒸発器26は、冷凍サイクルの低圧側冷媒と空調ケーシング25内を流れる空気とを熱交換して空気を冷却する冷却用熱交換器である。 An evaporator 26 is disposed at the most upstream part of the air flow of the air conditioning casing 25. In other words, the evaporator 26 is arranged at the outlet 23 of the blower casing 14. The evaporator 26 is a cooling heat exchanger that cools the air by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the air flowing in the air conditioning casing 25.
 空調ケーシング25の空気流れ最下流部には、空気を車室内へ向けて吹き出す吹出口(図示せず)が形成されている。 An air outlet (not shown) that blows air toward the passenger compartment is formed in the most downstream portion of the air flow of the air conditioning casing 25.
 上述のように、送風機11は、渦巻状(対数螺旋状)のスクロールケーシングを持たないスクロールレス送風機を構成している。したがって、図3に示すように、空気通路22のうちファン12と吹出口23との間の部位の寸法W1(図1では上下方向の寸法)は、ファン12の直径d1よりも大きくなっている。本実施形態において、寸法W1は、空気通路22のうちファン12と吹き出し口23との間の部位を、軸方向から見た時の寸法である。換言すれば、寸法W1は、空気通路22のうちファン12と吹き出し口23との間の部位の、径方向における寸法である。 As described above, the blower 11 constitutes a scrollless blower that does not have a spiral (logarithmic spiral) scroll casing. Therefore, as shown in FIG. 3, the dimension W1 (the vertical dimension in FIG. 1) of the portion of the air passage 22 between the fan 12 and the outlet 23 is larger than the diameter d1 of the fan 12. . In the present embodiment, the dimension W1 is a dimension when a portion of the air passage 22 between the fan 12 and the outlet 23 is viewed from the axial direction. In other words, the dimension W <b> 1 is a dimension in the radial direction of a portion of the air passage 22 between the fan 12 and the outlet 23.
 ファン12の回転軸A1は、軸方向と垂直な方向における送風機ケーシング14の中心線CL(仮想線)に対して送風機ケーシング14の、軸方向と垂直な方向における一方側(図3では下方側)にオフセットされている。より具体的には、ファン12のオフセット方向は、吹出口23の開口方向からファン回転方向R1に90°ずれた方向(図3では下方向)になっている。 The rotation axis A1 of the fan 12 is one side in the direction perpendicular to the axial direction of the blower casing 14 (the lower side in FIG. 3) with respect to the center line CL (virtual line) of the blower casing 14 in the direction perpendicular to the axial direction. Is offset. More specifically, the offset direction of the fan 12 is a direction (downward in FIG. 3) that is shifted from the opening direction of the air outlet 23 by 90 ° in the fan rotation direction R1.
 これにより、送風機ケーシング14のうち半円形状の部位とファン12との間では、空気通路22の径方向の寸法(ファン12の径方向に測った寸法)がファン回転方向R1に向かうにつれて大きくなっている。 As a result, between the fan 12 and the semicircular portion of the blower casing 14, the radial dimension of the air passage 22 (the dimension measured in the radial direction of the fan 12) increases in the direction of the fan rotation direction R <b> 1. ing.
 図3、図4、図5、図6、図7に示すように、空気通路22は、起点部27からファン回転方向R1に向かうにつれて徐々に軸方向に拡大する拡大部28を有している。より具体的には、拡大部28は、軸方向のうち吸入口16と反対の方向(図4~図7では下方側)に拡大している。 As shown in FIGS. 3, 4, 5, 6, and 7, the air passage 22 has an enlarged portion 28 that gradually expands in the axial direction from the starting portion 27 toward the fan rotation direction R <b> 1. . More specifically, the expansion portion 28 expands in the direction opposite to the suction port 16 in the axial direction (the lower side in FIGS. 4 to 7).
 図3に示すように、起点部27は、第1仮想線L1と第2仮想線L2との間の範囲B1内に位置している。第1仮想線L1は、ファン12の回転軸A1から吹出口23の開口方向(図3では右方向)に向かって延びる仮想線である。 As shown in FIG. 3, the starting point portion 27 is located in a range B1 between the first virtual line L1 and the second virtual line L2. The first imaginary line L1 is an imaginary line extending from the rotation axis A1 of the fan 12 toward the opening direction of the air outlet 23 (right direction in FIG. 3).
 第2仮想線L2は、ファン12の回転軸A1からファン12のオフセット方向(図3では下方向)に向かって延びる仮想線である。換言すれば、第2仮想線L2は、ファン12の回転軸A1から空気通路22の最小幅部22aに向かって延びる仮想線である。最小幅部22aは、空気通路22のうち、ファン軸方向から見たときの空気通路22の寸法(幅)が最小になっている部位である。換言すれば、空気通路22は、径方向における空気通路22の寸法が最小となる最小幅部22aを有している。 The second virtual line L2 is a virtual line extending from the rotation axis A1 of the fan 12 toward the offset direction of the fan 12 (downward in FIG. 3). In other words, the second virtual line L2 is a virtual line extending from the rotation axis A1 of the fan 12 toward the minimum width portion 22a of the air passage 22. The minimum width portion 22a is a portion of the air passage 22 where the dimension (width) of the air passage 22 is minimized when viewed from the fan axial direction. In other words, the air passage 22 has a minimum width portion 22a that minimizes the dimension of the air passage 22 in the radial direction.
 図3の例では、第1仮想線L1と第2仮想線L2とがなす角度は90°になっている。図3の例では、起点部27は、ファン12の回転軸A1と、吹出口23のうちファン回転方向R1側の端部(図3では下端部)とを結ぶ仮想線上に位置している。 In the example of FIG. 3, the angle formed by the first virtual line L1 and the second virtual line L2 is 90 °. In the example of FIG. 3, the starting point portion 27 is located on an imaginary line that connects the rotation axis A <b> 1 of the fan 12 and the end portion (lower end portion in FIG. 3) on the fan rotation direction R <b> 1 side of the outlet 23.
 拡大部28の拡大は、起点部27において終了する。したがって、拡大部28は、起点部27との間に段差を有する。 The expansion of the expansion unit 28 ends at the start point 27. Therefore, the enlarged portion 28 has a step between the starting point portion 27 and the enlarged portion 28.
 次に、上記構成における本実施形態の作動を説明する。モータ13に通電してファン12を回転駆動すると、ファン12は、吸入口16を通じて空気を吸入してファン12の径方向外側に吹き出す。ファン12から吹き出された空気は空気通路22を吹出口23へ向かって流れて、吹出口23から空調ケーシング25へ吹き出される。 Next, the operation of this embodiment in the above configuration will be described. When the motor 13 is energized and the fan 12 is rotationally driven, the fan 12 sucks air through the suction port 16 and blows it outward in the radial direction of the fan 12. The air blown out from the fan 12 flows through the air passage 22 toward the air outlet 23 and is blown out from the air outlet 23 to the air conditioning casing 25.
 吹出口23から空調ケーシング25へ吹き出された空気は、蒸発器26で冷却された後、空調ケーシング25の吹出口(図示せず)から車室内へ向けて吹き出される。 The air blown out from the air outlet 23 to the air conditioning casing 25 is cooled by the evaporator 26 and then blown out from the air outlet (not shown) of the air conditioning casing 25 toward the vehicle interior.
 空気通路22は、軸方向における少なくとも一方において、軸方向外側に向けて拡大した拡大部28を有している。具体的に、本実施形態では、空気通路22は、起点部27からファン回転方向R1に向かうにつれて徐々に下方に向けて拡大する拡大部28を有している。図2の矢印に示すように、拡大部28では、ファン12から吹き出された空気が旋回する。 The air passage 22 has an enlarged portion 28 that expands outward in the axial direction in at least one of the axial directions. Specifically, in the present embodiment, the air passage 22 has an enlarged portion 28 that gradually expands downward from the starting point portion 27 toward the fan rotation direction R1. As shown by the arrow in FIG. 2, the air blown from the fan 12 swirls in the enlargement unit 28.
 そのため、図2の矢印に示すように、ファン12から吹き出された空気は、送風機ケーシング14の側壁(軸方向に延びる壁)に衝突後、軸方向の両端側(図2では上方側と下方側)に分かれて吹き出される。 Therefore, as shown by the arrows in FIG. 2, the air blown out from the fan 12 collides with the side wall (wall extending in the axial direction) of the blower casing 14, and then both ends in the axial direction (upper side and lower side in FIG. 2). ) And blown out.
 その結果、ファン12から吹き出された空気同士の干渉を減らすことができるので、ファン効率を向上できる。さらに、拡大部28が形成されている分、空気通路22の面積が増大するので、圧力損失が低減され、ひいてはファン効率を向上できる。 As a result, interference between the air blown from the fan 12 can be reduced, so that fan efficiency can be improved. Furthermore, since the area of the air passage 22 is increased by the amount of the enlarged portion 28 formed, the pressure loss is reduced, and consequently the fan efficiency can be improved.
 特に、送風機ケーシング14の軸方向における寸法W2(図3を参照)に対するファン12の直径d1の比率が大きい場合(例えば、W2<1.3×d1の場合)、拡大部28によるファン効率向上効果が顕著に得られる。 In particular, when the ratio of the diameter d1 of the fan 12 to the dimension W2 in the axial direction of the blower casing 14 (see FIG. 3) is large (for example, when W2 <1.3 × d1), the fan efficiency improvement effect by the expansion unit 28 Is remarkably obtained.
 本実施形態では、ファン12から吹き出された空気が流れる空気通路22は、ファン12から軸方向の一方側に向けて拡がった拡大部28を有している。拡大部28は、ファン12から吹き出された空気が旋回する空間である。 In the present embodiment, the air passage 22 through which the air blown out from the fan 12 flows has an enlarged portion 28 that extends from the fan 12 toward one side in the axial direction. The enlarged portion 28 is a space in which the air blown from the fan 12 turns.
 これによると、ファン12から吹き出された空気が拡大部28で旋回するので、ファン12から吹き出された空気の逆流が抑制されて、他の吹出風との干渉を抑制できる。したがって、ファン効率を向上できる。 According to this, since the air blown out from the fan 12 swirls at the enlarged portion 28, the backflow of the air blown out from the fan 12 is suppressed, and interference with other blown winds can be suppressed. Therefore, fan efficiency can be improved.
 また、送風機ケーシング14の体格をファン12の径方向に拡大させることなくファン効率を向上できるので、車両への搭載性が悪化することを抑制できる。 Moreover, since fan efficiency can be improved without expanding the physique of the blower casing 14 in the radial direction of the fan 12, it is possible to suppress deterioration in mountability on the vehicle.
 本実施形態では、拡大部28は、回転軸A1から吹出口23の開口方向に向かって延びる第1仮想線L1と、第1仮想線L1を回転軸A1を中心としてファン回転方向R1に90°回転させた第2仮想線L2との間に位置する部位27(起点部)を起点として、ファン回転方向R1に向かうにつれて徐々に回転軸A1に向けて拡がっている。換言すれば、径方向における拡大部28の寸法は、ファン回転方向R1に向かうにつれて徐々に大きくなる。 In the present embodiment, the enlarged portion 28 has a first imaginary line L1 extending from the rotation axis A1 toward the opening direction of the outlet 23, and the first imaginary line L1 is 90 ° in the fan rotation direction R1 with the rotation axis A1 as the center. Starting from a portion 27 (starting portion) located between the rotated second imaginary line L2, it gradually expands toward the rotation axis A1 in the fan rotation direction R1. In other words, the dimension of the enlarged portion 28 in the radial direction is gradually increased toward the fan rotation direction R1.
 さらに、本実施形態では、空気通路22は、起点部27から回転方向R1に90°ずれた位置に最小幅部22aを有する。径方向における空気通路22の寸法は、最小幅部22aにおいて最小となる。拡大部28は、空気通路22の最小幅部22aと、最小幅部22aから回転方向R1と反対側に90°ずれた位置との間に位置する部位27(起点部)を起点として、ファン回転方向R1に向かうにつれて徐々に回転軸A1に向けて拡がっている。換言すれば、径方向における拡大部28の寸法は、ファン回転方向R1に向かうにつれて徐々に大きくなる。 Furthermore, in the present embodiment, the air passage 22 has a minimum width portion 22a at a position shifted from the starting point portion 27 by 90 ° in the rotation direction R1. The dimension of the air passage 22 in the radial direction is minimum at the minimum width portion 22a. The enlarged portion 28 rotates at the fan starting from a portion 27 (starting portion) located between the minimum width portion 22a of the air passage 22 and a position shifted by 90 ° from the minimum width portion 22a on the opposite side to the rotation direction R1. As it goes in the direction R1, it gradually expands toward the rotation axis A1. In other words, the dimension of the enlarged portion 28 in the radial direction is gradually increased toward the fan rotation direction R1.
 これにより、空気通路22を流れる風量が増加するにつれて拡大部28の面積も増加するので、ファン12から吹き出された空気の逆流が効果的に抑制されて、他の吹出風との干渉を効果的に抑制できる。そのため、ファン効率を効果的に向上できる。 Thereby, since the area of the enlarged portion 28 increases as the amount of air flowing through the air passage 22 increases, the backflow of the air blown out from the fan 12 is effectively suppressed, and interference with other blown winds is effectively prevented. Can be suppressed. Therefore, fan efficiency can be improved effectively.
 本実施形態では、吹出口23に蒸発器26が配置されている。すなわち、空調装置の送風機11が、スクロールケーシングを持たない遠心送風機で構成されているので、スクロールケーシングを備えるスクロール送風機で構成されている場合と比較して空調装置の体格を小型化し、かつ熱交換器での風速分布を抑制できる。また、スクロールケーシングを持たないので、設計や製造を容易化できる。
(第2実施形態)
 上記第1実施形態では、拡大部28が起点部27からファン回転方向R1に向かうにつれて徐々に回転軸A1に向かって拡がっているが、図8に示すように、拡大部28は、回転軸A1へ向けての拡がり寸法が、空気通路22の全周にわたって一定になっていてもよい。換言すれば、径方向における拡大部28の寸法が、空気通路22の全周にわたって一定になっていてもよい。
(第3実施形態)
 上記第2実施形態では、拡大部28は、ファン軸方向から見たときにファン12よりも径方向外側に位置するように形成されているが、図9に示すように、拡大部28は、軸方向から見たときにファン12と重なり合うように形成されていてもよい。
(第4実施形態)
 上記実施形態では、拡大部28がファン12の下側(吸入口16の反対側)において、下方に向けて拡大している。本実施形態の拡大部28は、ファン12の軸方向における両側において軸方向に拡大している。具体的には、図10に示すように、空気通路22は、ファン12の下側において下方に向けて拡大する拡大部28(拡大部28a)と、ファン12の上側(吸入口16側)において上方に向けて拡大する拡大部28(拡大部28b)とを有する。図10の例では、拡大部28bは、ファン12の軸方向から見たときにファン12と重なり合っている。
In this embodiment, the evaporator 26 is arrange | positioned at the blower outlet 23. FIG. That is, since the blower 11 of the air conditioner is constituted by a centrifugal blower that does not have a scroll casing, the size of the air conditioner is reduced compared to the case where the blower 11 is provided with a scroll casing, and heat exchange is performed. The wind speed distribution in the vessel can be suppressed. Moreover, since there is no scroll casing, design and manufacture can be facilitated.
(Second Embodiment)
In the first embodiment, the enlargement portion 28 gradually expands toward the rotation axis A1 as it goes from the starting point portion 27 toward the fan rotation direction R1, but as shown in FIG. 8, the enlargement portion 28 has the rotation axis A1. The expansion dimension toward the front may be constant over the entire circumference of the air passage 22. In other words, the dimension of the enlarged portion 28 in the radial direction may be constant over the entire circumference of the air passage 22.
(Third embodiment)
In the second embodiment, the enlarged portion 28 is formed so as to be located radially outside of the fan 12 when viewed from the fan axial direction. However, as shown in FIG. You may form so that it may overlap with the fan 12 when it sees from an axial direction.
(Fourth embodiment)
In the above-described embodiment, the enlarged portion 28 is expanded downward on the lower side of the fan 12 (opposite the suction port 16). The enlarged portion 28 of the present embodiment is enlarged in the axial direction on both sides of the fan 12 in the axial direction. Specifically, as shown in FIG. 10, the air passage 22 has an enlarged portion 28 (enlarged portion 28 a) that expands downward on the lower side of the fan 12, and an upper side (on the inlet 16 side) of the fan 12. It has the expansion part 28 (expansion part 28b) expanded toward upper direction. In the example of FIG. 10, the enlarged portion 28 b overlaps the fan 12 when viewed from the axial direction of the fan 12.
 本実施形態では、ファン12の軸方向における一方(下側)および他方(上側)において拡大する拡大部28a、28bを有する。これにより、ファン12から吹き出された空気が両拡大部28a、28bで旋回する。そのため、ファン12から吹き出された空気の逆流が一層抑制されて、他の吹出風との干渉を一層抑制できる。したがって、ファン効率を一層向上できる。
(第5実施形態)
 上記第4実施形態では、拡大部28bは、ファン12の軸方向から見たときにファン12と重なり合うように形成されている。本実施形態では、図11に示すように、拡大部28bは、ファン12の軸方向から見たときにファン12と重なり合っておらず、ファン12よりも径方向外側に形成されている。
In this embodiment, it has the expansion parts 28a and 28b which expand in one (lower side) and the other (upper side) in the axial direction of the fan 12. Thereby, the air blown out from the fan 12 swirls at both the enlarged portions 28a and 28b. Therefore, the backflow of the air blown out from the fan 12 is further suppressed, and interference with other blown winds can be further suppressed. Therefore, fan efficiency can be further improved.
(Fifth embodiment)
In the fourth embodiment, the enlarged portion 28 b is formed so as to overlap the fan 12 when viewed from the axial direction of the fan 12. In the present embodiment, as shown in FIG. 11, the enlarged portion 28 b does not overlap the fan 12 when viewed from the axial direction of the fan 12, and is formed on the outer side in the radial direction than the fan 12.
 送風機ケーシング14のうち吸入口16と拡大部28bとの間の部位は、ファン12のブレード121の上縁部に沿った形状になっている。これによると、ファン12と送風機ケーシング14との隙間を狭くできるので、ファン12から空気通路22に吹き出された空気が、ブレード121と送風機ケーシング14との隙間を通じて吸入口16側へ逆流することを防止できる。
(第6実施形態)
 上記実施形態では、ファン12が1つ設けられているが、本実施形態では、図12に示すように、ファン12が2つ設けられている。
A portion of the blower casing 14 between the suction port 16 and the enlarged portion 28 b has a shape along the upper edge portion of the blade 121 of the fan 12. According to this, since the gap between the fan 12 and the blower casing 14 can be narrowed, the air blown out from the fan 12 to the air passage 22 can flow back to the suction port 16 side through the gap between the blade 121 and the blower casing 14. Can be prevented.
(Sixth embodiment)
In the above embodiment, one fan 12 is provided, but in this embodiment, two fans 12 are provided as shown in FIG.
 2つのファン12は、モータ13を挟んで互いに反対側に配置されている。吸入口16は、送風機ケーシング14のうち軸方向両端側(図12の上方側および下方側)に形成されている。 The two fans 12 are arranged on opposite sides of the motor 13. The suction port 16 is formed on both ends of the blower casing 14 in the axial direction (the upper side and the lower side in FIG. 12).
 一方の吸入口16には、内外気切替箱(図示せず)が接続されている。他方の吸入口16には、内外気切替箱から延びるダクト(図示せず)が接続されている。ダクトは、内外気切替箱から他方の吸入口16へ至る空気通路を形成している。これにより、内外気切替箱20から導入された内気および外気が2つのファン12で送風される。 The inside / outside air switching box (not shown) is connected to one suction port 16. The other suction port 16 is connected to a duct (not shown) extending from the inside / outside air switching box. The duct forms an air passage from the inside / outside air switching box to the other inlet 16. Thereby, the inside air and the outside air introduced from the inside / outside air switching box 20 are blown by the two fans 12.
 拡大部28aは、ファン12の一方(図12の下方)において下方に向けて拡大している。拡大部28bは、ファン12の他方(図12の上方)において上方に向けて拡大している。これによると、一方のファン12から吹き出された空気、および他方のファン12から吹き出された空気の両方について、他の吹き出し空気との干渉を減らすことができる。したがって、ファン効率を向上できる。
(第7実施形態)
 上記実施形態では、内外気切替箱20から導入された内気および外気が2つのファン12で送風される。これに対し、本実施形態では、図13に示すように、外気が一方のファン12(ファン12b)で送風され、内気が他方のファン12(ファン12a)で送風される。
The enlarged portion 28a is enlarged downward on one side of the fan 12 (downward in FIG. 12). The enlarged portion 28b is enlarged upward on the other side of the fan 12 (upper side in FIG. 12). According to this, interference with the other blown air can be reduced for both the air blown from one fan 12 and the air blown from the other fan 12. Therefore, fan efficiency can be improved.
(Seventh embodiment)
In the above embodiment, the inside air and the outside air introduced from the inside / outside air switching box 20 are blown by the two fans 12. On the other hand, in this embodiment, as shown in FIG. 13, outside air is blown by one fan 12 (fan 12b), and inside air is blown by the other fan 12 (fan 12a).
 一方の吸入口(吸入口16b)には外気が導入され、他方の吸入口(吸入口16a)には内気が導入される。送風機ケーシング14の内部には、仕切壁30が形成されている。仕切壁30は、空気通路22を外気通路31と内気通路32とに仕切っている。外気通路31は、ファン12bで送風された外気が流れる通路である。内気通路32は、ファン12aで送風された内気が流れる通路である。 Outside air is introduced into one suction port (suction port 16b), and inside air is introduced into the other suction port (suction port 16a). A partition wall 30 is formed inside the blower casing 14. The partition wall 30 partitions the air passage 22 into an outside air passage 31 and an inside air passage 32. The outside air passage 31 is a passage through which outside air blown by the fan 12b flows. The inside air passage 32 is a passage through which the inside air blown by the fan 12a flows.
 外気通路31は拡大部28bを有し、内気通路32は拡大部28を有している。これにより、外気通路31を流れる外気、および内気通路32を流れる内気の両方について、他の吹き出し空気との干渉を減らすことができる。したがって、内気と外気とを別々に送風する内外気二層式送風機においてファン効率を向上できる。
(第8実施形態)
 図14~図17は、第8実施形態において、ファン12と蒸発器26との間の距離X1と、空気流れ状態との関係を説明する図である。なお、本実施形態では、空気通路22に拡大部28が形成されていない。
The outside air passage 31 has an enlarged portion 28 b and the inside air passage 32 has an enlarged portion 28. Thereby, interference with other blowing air can be reduced for both the outside air flowing through the outside air passage 31 and the inside air flowing through the inside air passage 32. Therefore, fan efficiency can be improved in the inside / outside air two-layer blower that blows the inside air and the outside air separately.
(Eighth embodiment)
14 to 17 are diagrams for explaining the relationship between the distance X1 between the fan 12 and the evaporator 26 and the air flow state in the eighth embodiment. In the present embodiment, the enlarged portion 28 is not formed in the air passage 22.
 図14、図15中、二点鎖線矢印は、蒸発器26に向かう空気流れを示している。図15に示すように、ファン12と蒸発器26との間の距離X1が大きい場合、ファン12と蒸発器26との間で空気流れに渦が発生しやすくなる。 14 and 15, the two-dot chain line arrow indicates the air flow toward the evaporator 26. As shown in FIG. 15, when the distance X <b> 1 between the fan 12 and the evaporator 26 is large, a vortex is easily generated in the air flow between the fan 12 and the evaporator 26.
 一方、図15に示すように、ファン12と蒸発器26との間の距離X1が小さい場合、ファン12と蒸発器26との間で空気流れに渦が発生しにくくなる。換言すれば、渦が発生する前に蒸発器26に流入する。 On the other hand, as shown in FIG. 15, when the distance X1 between the fan 12 and the evaporator 26 is small, vortices are less likely to be generated in the air flow between the fan 12 and the evaporator 26. In other words, it flows into the evaporator 26 before the vortex is generated.
 そのため、図16に示すように、ファン12と蒸発器26との間の距離X1が小さいほどファン効率が向上する。図16中、二点鎖線は比較例を示している。比較例では、ファンは、本実施形態と同径のシロッコファンであり、送風機ケーシングは、ノーズを有するスクロールケーシングである。 Therefore, as shown in FIG. 16, the smaller the distance X1 between the fan 12 and the evaporator 26, the higher the fan efficiency. In FIG. 16, a two-dot chain line indicates a comparative example. In the comparative example, the fan is a sirocco fan having the same diameter as that of the present embodiment, and the blower casing is a scroll casing having a nose.
 比較例では、本実施形態とは逆に、ファンと蒸発器との間の距離が大きいほどファン効率が向上する。したがって、ファンと蒸発器との間の距離X1が小さい場合、本実施形態のファン効率が比較例のファン効率よりも高くなる。 In the comparative example, contrary to the present embodiment, the fan efficiency improves as the distance between the fan and the evaporator increases. Therefore, when the distance X1 between the fan and the evaporator is small, the fan efficiency of the present embodiment is higher than the fan efficiency of the comparative example.
 図17は、ファン12と蒸発器26との間の距離と、蒸発器26における風速分布との関係を示すグラフである。図17の縦軸は、蒸発器26の空気流入面を多数個(例えば16個)の部分に分割し、分割された各部分毎に測定した平均風速の標準偏差を表している。図16中、二点鎖線は上記比較例を示している。 FIG. 17 is a graph showing the relationship between the distance between the fan 12 and the evaporator 26 and the wind speed distribution in the evaporator 26. The vertical axis in FIG. 17 represents the standard deviation of the average wind speed measured for each of the divided parts by dividing the air inflow surface of the evaporator 26 into a large number (for example, 16 parts). In FIG. 16, the two-dot chain line indicates the comparative example.
 図17に示すように、本実施形態では、比較例と比較して、ファン12と蒸発器26との間の距離が小さい場合であっても、蒸発器26における風速分布の悪化を抑制できる。 As shown in FIG. 17, in this embodiment, even if the distance between the fan 12 and the evaporator 26 is small as compared with the comparative example, the deterioration of the wind speed distribution in the evaporator 26 can be suppressed.
 本実施形態では、空気通路22に拡大部28が形成されていないが、空気通路22に拡大部28が形成されていても、上述した本実施形態の作用効果を奏することができる。
(第9実施形態)
 本実施形態では、図18に示すように、空気通路22のうちファン12と吹出口23との間の部位に、蒸発器26に向かう空気の流れをガイドするガイド部材40が配置されている。
In the present embodiment, the enlarged portion 28 is not formed in the air passage 22, but even if the enlarged portion 28 is formed in the air passage 22, the above-described operational effects of the present embodiment can be achieved.
(Ninth embodiment)
In the present embodiment, as shown in FIG. 18, a guide member 40 that guides the flow of air toward the evaporator 26 is disposed in a portion of the air passage 22 between the fan 12 and the outlet 23.
 ガイド部材40は、送風機ケーシング14と一体成形されていてもよいし、送風機ケーシング14と別体で成形されてネジ止め等によって送風機ケーシング14に固定されていてもよい。 The guide member 40 may be integrally formed with the blower casing 14 or may be formed separately from the blower casing 14 and fixed to the blower casing 14 by screwing or the like.
 ガイド部材40は、蒸発器26に向かう空気の流れに沿う板状に形成されている。これにより、蒸発器26に向かう空気の流れがガイド部材40によって整流されて渦の発生が抑制されるので、蒸発器26における風速分布を抑制できる。
(他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
The guide member 40 is formed in a plate shape that follows the flow of air toward the evaporator 26. Thereby, since the flow of the air which goes to the evaporator 26 is rectified by the guide member 40 and generation | occurrence | production of a vortex is suppressed, the wind speed distribution in the evaporator 26 can be suppressed.
(Other embodiments)
The above embodiments can be combined as appropriate. The above embodiment can be variously modified as follows, for example.
 (1)上記実施形態では、ファン12の回転軸A1は、径方向における送風機ケーシング14の中心線CLに対してオフセットされている。しかしながら、ファン12の回転軸A1は、中心線CL上に配置されていてもよい。 (1) In the above embodiment, the rotation axis A1 of the fan 12 is offset with respect to the center line CL of the blower casing 14 in the radial direction. However, the rotation axis A1 of the fan 12 may be disposed on the center line CL.
 (2)上記実施形態では、送風機11は、空気を吹出口23から一方向に吹き出す。しかしながら、送風機11が空気を複数方向に吹き出してもよい。例えば、送風機11は、空気を多数個の吹出口から放射状に吹き出してもよい。 (2) In the above embodiment, the blower 11 blows out air in one direction from the outlet 23. However, the blower 11 may blow out air in a plurality of directions. For example, the blower 11 may blow out air radially from a large number of outlets.
 (3)上記実施形態では、空気通路22にノーズが設けられていない。しかしながら、上記特許文献1の従来技術と同様に、空気通路22に、ノーズを形成する突起部(凸部)が設けられていてもよい。 (3) In the above embodiment, the air passage 22 is not provided with a nose. However, similar to the prior art of Patent Document 1, the air passage 22 may be provided with a protrusion (projection) that forms a nose.
 (4)上記実施形態では、室内空調ユニット10は、主に車両の前席に着座した乗員に向けて空調風を吹き出す前席用空調ユニットを構成している。しかしながら、室内空調ユニット10は、主に車両の後席に着座した乗員に向けて空調風を吹き出す後席用空調ユニットを構成してもよい。室内空調ユニット10は、座席の内部から乗員に向けて空調風を吹き出すシート空調装置を構成してもよい。 (4) In the above embodiment, the indoor air-conditioning unit 10 constitutes a front-seat air-conditioning unit that blows conditioned air toward the passengers who are mainly seated in the front seat of the vehicle. However, the indoor air-conditioning unit 10 may constitute a rear-seat air-conditioning unit that blows conditioned air toward the passengers who are mainly seated in the rear seats of the vehicle. The indoor air conditioning unit 10 may constitute a seat air conditioner that blows conditioned air toward the passenger from the inside of the seat.

Claims (8)

  1.  複数枚のブレード(121)を有するターボファン(12)と、
     前記ターボファン(12)を収納するケーシング(14)とを備え、
     前記ケーシング(14)のうちターボファン(12)の径方向外側部位は、前記ターボファン(12)から吹き出された流体が流れる流体通路(22)を形成しており、
     前記ケーシング(14)のうち前記ターボファン(12)の径方向における端部には、前記流体通路(22)を流れた流体を吹き出す吹出口(23)が形成されており、
     前記流体通路(22)のうち前記ターボファン(12)と前記吹出口(23)との間の部位の寸法(W1)は、前記ターボファン(12)の直径(d1)よりも大きくなっており、
     前記流体通路(22)は、前記ターボファン(12)よりも前記軸方向の少なくとも一方側において前記軸方向に拡がった拡大部(28)を有しており、
     前記拡大部(28)は、前記ターボファン(12)から吹き出された空気が旋回する空間である遠心送風機。
    A turbofan (12) having a plurality of blades (121);
    A casing (14) for accommodating the turbofan (12),
    A radially outer portion of the turbofan (12) in the casing (14) forms a fluid passage (22) through which the fluid blown out from the turbofan (12) flows.
    An outlet (23) for blowing out the fluid that has flowed through the fluid passage (22) is formed at an end of the casing (14) in the radial direction of the turbofan (12),
    The dimension (W1) of the portion between the turbo fan (12) and the outlet (23) in the fluid passage (22) is larger than the diameter (d1) of the turbo fan (12). ,
    The fluid passage (22) has an enlarged portion (28) that extends in the axial direction on at least one side of the axial direction from the turbo fan (12),
    The expansion section (28) is a centrifugal blower that is a space in which air blown from the turbo fan (12) is swirled.
  2.  前記拡大部(28)は、前記ターボファン(12)の回転軸(A1)から前記吹出口(23)の開口方向に向かって延びる第1仮想線(L1)と、前記第1仮想線(L1)を前記回転軸(A1)を中心として前記ターボファン(12)の回転方向(R1)に90°回転させた第2仮想線(L2)との間に位置する部位(27)を起点として、前記回転方向(R1)に向かうにつれて、前記回転軸(A1)に向かって徐々に拡がっている請求項1に記載の遠心送風機。 The enlarged portion (28) includes a first imaginary line (L1) extending from a rotation axis (A1) of the turbofan (12) toward the opening direction of the outlet (23), and the first imaginary line (L1). ) With the second imaginary line (L2) rotated 90 degrees in the rotation direction (R1) of the turbofan (12) around the rotation axis (A1) as a starting point, The centrifugal blower according to claim 1, wherein the centrifugal blower gradually expands toward the rotation axis (A1) as it goes toward the rotation direction (R1).
  3.  前記流体通路(22)は、前記径方向における前記流体通路(22)の寸法が最小となる最小幅部(22a)を有しており、
     前記拡大部(28)は、前記最小幅部(22a)と、前記最小幅部(22a)から前記回転方向(R1)と反対側に90°ずれた位置との間に位置する部位(27)を起点として、前記ターボファン(12)の回転方向(R1)に向かうにつれて徐々に前記回転軸(A1)に向かって拡がっている請求項1に記載の遠心送風機。
    The fluid passage (22) has a minimum width portion (22a) in which the dimension of the fluid passage (22) in the radial direction is minimized,
    The enlarged portion (28) is located between the minimum width portion (22a) and a position shifted from the minimum width portion (22a) by 90 ° on the opposite side to the rotation direction (R1) (27). The centrifugal blower according to claim 1, wherein the centrifugal fan gradually expands toward the rotation axis (A1) as it goes toward the rotation direction (R1) of the turbofan (12).
  4.  前記径方向における前記拡大部(28)の寸法は、前記流体通路(22)の全周にわたって一定になっている請求項1に記載の遠心送風機。 The centrifugal blower according to claim 1, wherein the dimension of the enlarged portion (28) in the radial direction is constant over the entire circumference of the fluid passage (22).
  5.  前記拡大部(28)は、前記軸方向から見たときに、前記ターボファン(12)と重なり合っている請求項1ないし4のいずれか1つに記載の遠心送風機。 The centrifugal blower according to any one of claims 1 to 4, wherein the enlarged portion (28) overlaps with the turbo fan (12) when viewed from the axial direction.
  6.  前記拡大部(28)は、前記ターボファン(12)の軸方向における両側において前記軸方向に拡がっている請求項1ないし5のいずれか1つに記載の遠心送風機。 The centrifugal blower according to any one of claims 1 to 5, wherein the expansion portion (28) extends in the axial direction on both sides in the axial direction of the turbofan (12).
  7.  空気を送風する送風機(11)と、
     前記送風機(11)によって送風された空気を熱交換させる熱交換器(26)とを備え、
     前記送風機(11)は、複数枚のブレード(121)を含むターボファン(12)と、前記ターボファン(12)を収納するケーシング(14)とを有する遠心送風機であり、
     前記ケーシング(14)のうちターボファン(12)の径方向外側部位は、前記ターボファン(12)から吹き出された流体が流れる流体通路(22)を形成しており、
     前記ケーシング(14)のうち前記ターボファン(12)の径方向における端部には、前記流体通路(22)を流れた流体を吹き出す吹出口(23)が形成されており、
     前記流体通路(22)のうち前記ターボファン(12)と前記吹出口(23)との間の部位の寸法(W1)は、前記ターボファン(12)の直径(d1)よりも大きくなっており、
     前記吹出口(23)には前記熱交換器(26)が配置されている空調装置。
    A blower (11) for blowing air;
    A heat exchanger (26) for exchanging heat of the air blown by the blower (11),
    The blower (11) is a centrifugal blower having a turbo fan (12) including a plurality of blades (121) and a casing (14) for housing the turbo fan (12),
    A radially outer portion of the turbofan (12) in the casing (14) forms a fluid passage (22) through which the fluid blown out from the turbofan (12) flows.
    An outlet (23) for blowing out the fluid that has flowed through the fluid passage (22) is formed at an end of the casing (14) in the radial direction of the turbofan (12),
    The dimension (W1) of the portion between the turbo fan (12) and the outlet (23) in the fluid passage (22) is larger than the diameter (d1) of the turbo fan (12). ,
    An air conditioner in which the heat exchanger (26) is disposed at the air outlet (23).
  8.  前記流体通路(22)のうち前記ターボファン(12)と前記吹出口(23)との間の部位には、前記熱交換器(26)に向かう前記流体の流れをガイドするガイド部材(40)が配置されている請求項7に記載の空調装置。 A guide member (40) for guiding the flow of the fluid toward the heat exchanger (26) is provided in a portion of the fluid passage (22) between the turbofan (12) and the outlet (23). The air conditioner according to claim 7 in which is arranged.
PCT/JP2014/005138 2013-10-25 2014-10-09 Centrifugal air blower and air-conditioning device WO2015059884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013221712A JP2015083777A (en) 2013-10-25 2013-10-25 Centrifugal blower and air conditioner
JP2013-221712 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015059884A1 true WO2015059884A1 (en) 2015-04-30

Family

ID=52992505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005138 WO2015059884A1 (en) 2013-10-25 2014-10-09 Centrifugal air blower and air-conditioning device

Country Status (2)

Country Link
JP (1) JP2015083777A (en)
WO (1) WO2015059884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087919A (en) * 2016-12-14 2019-08-02 株式会社电装 Air-conditioning device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149892B2 (en) 2015-04-15 2017-06-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2020104593A (en) * 2018-12-26 2020-07-09 株式会社デンソー Vehicular air conditioning unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182213U (en) * 1984-05-15 1985-12-03 カルソニックカンセイ株式会社 Motor cooling structure for automotive air conditioners
US20050207886A1 (en) * 2004-03-18 2005-09-22 Te-Fu Chen Centrifugal fan and fan frame thereof
JP2006144678A (en) * 2004-11-19 2006-06-08 Nippon Densan Corp Centrifugal blower
JP2007127089A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Centrifugal air blower and air-conditioning equipment including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182213U (en) * 1984-05-15 1985-12-03 カルソニックカンセイ株式会社 Motor cooling structure for automotive air conditioners
US20050207886A1 (en) * 2004-03-18 2005-09-22 Te-Fu Chen Centrifugal fan and fan frame thereof
JP2006144678A (en) * 2004-11-19 2006-06-08 Nippon Densan Corp Centrifugal blower
JP2007127089A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Centrifugal air blower and air-conditioning equipment including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087919A (en) * 2016-12-14 2019-08-02 株式会社电装 Air-conditioning device
CN110087919B (en) * 2016-12-14 2022-06-03 株式会社电装 Air conditioner

Also Published As

Publication number Publication date
JP2015083777A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6213275B2 (en) Blower
JP4596046B2 (en) Air passage opening and closing device
WO2016175009A1 (en) Blower
JP5987725B2 (en) Air passage opening and closing device
JP5982967B2 (en) Air passage opening and closing device
JP2010100108A (en) Blower and vehicular air-conditioner having the same
JP5297128B2 (en) Blower, air conditioner for vehicle
WO2017221460A1 (en) Air conditioning apparatus
WO2014103233A1 (en) Centrifugal fan, and fan equipped with sound-muffling box and using centrifugal fan
WO2016071948A1 (en) Propeller fan, propeller fan device, and outdoor equipment for air-conditioning device
JP6011348B2 (en) Air conditioner blower
WO2015059884A1 (en) Centrifugal air blower and air-conditioning device
CN110506164B (en) Propeller fan and outdoor unit for air conditioner
JP2010071170A (en) Centrifugal blower
JP2016196208A (en) Indoor air conditioning unit and air blower
JP4715857B2 (en) Air conditioner for vehicles
EP2090839B1 (en) Air conditioner
JP6098504B2 (en) Air conditioner for vehicles
WO2018025532A1 (en) Vehicle air-conditioning device
JP5131075B2 (en) Air conditioner
JP2002356109A (en) Cooling unit for vehicular air-conditioner
WO2016158251A1 (en) Air blowing device
JP2006151316A (en) Air-conditioner for vehicle
EP2695755A2 (en) Air conditioning device for vehicle
JP6134944B2 (en) Centrifugal blower and vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855006

Country of ref document: EP

Kind code of ref document: A1