WO2015058687A1 - 高压开关柜热故障检测装置及检测方法 - Google Patents

高压开关柜热故障检测装置及检测方法 Download PDF

Info

Publication number
WO2015058687A1
WO2015058687A1 PCT/CN2014/089120 CN2014089120W WO2015058687A1 WO 2015058687 A1 WO2015058687 A1 WO 2015058687A1 CN 2014089120 W CN2014089120 W CN 2014089120W WO 2015058687 A1 WO2015058687 A1 WO 2015058687A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
analog
voltage switchgear
signal
thermal fault
Prior art date
Application number
PCT/CN2014/089120
Other languages
English (en)
French (fr)
Inventor
董建达
应笑冬
张仕勇
李永腾
阮浩洁
段晓雷
Original Assignee
国家电网公司
国网浙江省电力公司宁波供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网浙江省电力公司宁波供电公司 filed Critical 国家电网公司
Publication of WO2015058687A1 publication Critical patent/WO2015058687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects
    • H02B13/0655Means for detecting or reacting to mechanical or electrical defects through monitoring changes of gas properties
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor
    • H02B1/30Cabinet-type casings; Parts thereof or accessories therefor

Definitions

  • the invention relates to the technical field of detecting high-temperature switch cabinet heat state, in particular to a high-voltage switch cabinet thermal fault detecting device and a detecting method.
  • the high-voltage switchgear is responsible for the dual functions of closing and disconnecting the power line and protecting the system in the power system.
  • the safe operation of high voltage switchgear is becoming more and more important.
  • the contact between the blade contact and the power cable in and out of the high-voltage switchgear is poor, the contact resistance of the high-voltage switchgear will increase, which will cause heat generation when the load current flows, which will cause the mechanical strength of the metal material to drop.
  • the insulation material ages and may cause breakdown and form an accident. Therefore, measuring and monitoring the heat state in the high voltage switchgear is a powerful means to avoid the occurrence of major accidents and control faults. It is very important to ensure the normal operation of the high voltage switchgear and improve the operational reliability and automation of the power system. .
  • an embodiment of the present invention provides a high-voltage switchgear thermal fault detecting device and a detecting method for measuring and monitoring a heat state in a high-voltage switch cabinet to avoid a major accident. Control the deterioration of faults, ensure the normal operation of high-voltage switchgear, and improve the operational reliability and automation of the power system.
  • the embodiment of the present invention provides the following technical solutions:
  • a high-voltage switchgear thermal fault detecting device includes:
  • a power source for supplying voltage to the high voltage switchgear thermal fault detecting device
  • a vacuum pump motor connected to the power source to sample the gas in the high voltage switch cabinet
  • the gas sensor circuit connected to the vacuum pump motor, the gas sensor circuit comprising a paraffin sensor branch, a hydrogen sulfide sensor branch and a smoke sensor branch connected in parallel, detecting the sample gas obtained by the vacuum pump motor, and sampling the gas The change in concentration of each gas component is converted into a change in the analog signal and output;
  • an analog-to-digital converter connected to the multi-channel analog switch, converting an analog signal output by the multi-channel analog switch into a digital signal;
  • a microprocessor connected to the analog-to-digital converter, according to the digital signal output by the analog-to-digital converter, obtaining a change of each gas component in the sample gas;
  • a display connected to the microprocessor for selectively displaying changes in gas components in the high voltage switchgear
  • a selection button connected to the microprocessor controls the display to selectively display changes in gas components in the high voltage switchgear.
  • the vacuum pump motor is provided with a gas take-up button.
  • a capacitor unit connected in parallel with the power source is further included.
  • a low frequency filter is also provided between the multi-channel analog switch and the analog-to-digital converter, and the multi-channel analog switch and the analog-to-digital converter are connected.
  • the method further includes connecting to the microprocessor to transmit the output signal of the microprocessor to a communication bus of the monitoring center.
  • a high-voltage switchgear thermal fault detecting method which is applied to the high-voltage switchgear thermal fault detecting device according to any one of the above, comprising:
  • the gas sensor circuit Using the gas sensor circuit, detecting the sample gas obtained by the vacuum pump motor, converting the concentration change of each gas component in the sample gas into a change of the analog signal, and outputting;
  • the analog signal corresponding to the change in the concentration of each gas component in the output signal of the sensor circuit is time-divisionally output;
  • the display is controlled to selectively display changes in the components of the gas in the high voltage switchgear using a selection button.
  • the method further includes: determining a heat state of the high voltage switch cabinet according to the display content on the display.
  • the method further comprises stabilizing an output voltage of the power source by using a capacitor unit connected in parallel with the power source.
  • the method further comprises filtering the power frequency signal and the ambient high frequency signal in the output signal of the multiple analog switches by using a low frequency filter between the multiple analog switches and the analog to digital converter.
  • the method further includes: using the communication bus connected to the microprocessor, the microprocessor The output signal is transmitted to the monitoring center.
  • the sample gas is taken from the high-voltage switchgear by using a vacuum pump motor, and transmitted to the sensor circuit, and then the sample gas is detected by the sensor circuit, and the gas components in the sample gas are sampled.
  • the change of concentration is converted into the change of the corresponding analog signal, and the time-sharing transmission is converted to a digital signal by the analog-to-digital converter, and finally transmitted to the microprocessor for analysis to obtain the change of each gas component in the sample gas, thereby obtaining a high-voltage switchgear.
  • the heating state realizes the measurement and monitoring of the heating state of the high-voltage switchgear, avoids the occurrence of major accidents, controls the deterioration of the fault, ensures the normal operation of the high-voltage switchgear, and improves the reliability and automation of the power system.
  • FIG. 1 is a schematic structural diagram of a thermal fault detecting device for a high voltage switchgear according to an embodiment of the present invention
  • FIG. 2 is a schematic circuit diagram of a high-voltage switchgear thermal fault detecting device according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for detecting a thermal fault of a high voltage switchgear according to an embodiment of the present invention.
  • measuring and monitoring the heat generation state in the high voltage switchgear is a powerful means to avoid major accidents and control fault deterioration. To ensure the normal operation of the high voltage switchgear and improve the operational reliability and automation of the power system. Very important.
  • an embodiment of the present invention provides a device for detecting a thermal fault of a high voltage switchgear, including:
  • a power source for supplying voltage to the high voltage switchgear thermal fault detecting device
  • a vacuum pump motor connected to the power source to sample the gas in the high voltage switch cabinet
  • the gas sensor circuit connected to the vacuum pump motor, the gas sensor circuit comprising a paraffin sensor branch, a hydrogen sulfide sensor branch and a smoke sensor branch connected in parallel, detecting the sample gas obtained by the vacuum pump motor, and sampling the gas The change in concentration of each gas component is converted into a change in the analog signal and output;
  • an analog-to-digital converter connected to the multi-channel analog switch, converting an analog signal output by the multi-channel analog switch into a digital signal;
  • a microprocessor connected to the analog-to-digital converter, according to the digital signal output by the analog-to-digital converter, obtaining a change of each gas component in the sample gas;
  • a display connected to the microprocessor for selectively displaying changes in gas components in the high voltage switchgear
  • a selection button connected to the microprocessor controls the display to selectively display changes in gas components in the high voltage switchgear.
  • the embodiment of the invention further provides a method for detecting a thermal fault of a high voltage switch cabinet by using the above detecting device, comprising:
  • the gas sensor circuit Using the gas sensor circuit, detecting the sample gas obtained by the vacuum pump motor, converting the concentration change of each gas component in the sample gas into a change of the analog signal, and outputting;
  • the concentration of each gas component in the output signal of the sensor circuit is time-divisionally output;
  • the display is controlled to selectively display changes in the components of the gas in the high voltage switchgear using a selection button.
  • the device for detecting and detecting the thermal fault of the high-voltage switchgear uses a vacuum pump motor to obtain a sample gas from the high-voltage switchgear and transmits it to the gas sensor circuit, and then uses the sensor circuit to perform the sample gas Detecting, and converting the concentration change of each gas component in the sample gas into a change of the analog signal, transmitting the time-sharing to the analog-to-digital converter to convert into a digital signal, and finally transmitting it to the microprocessor for analysis to obtain the gas components in the sample gas.
  • a high-voltage switchgear thermal fault detecting device provided by an embodiment of the present invention includes:
  • the power source 1 supplies voltage to the high voltage switchgear thermal fault detecting device.
  • the power source 1 AC-DC module is used.
  • the high voltage switchgear thermal fault detecting device further includes a capacitor unit connected in parallel with the power source 1 for stabilizing the output voltage of the DC power source 1.
  • a vacuum pump motor 2 connected to the power source 1 samples the gas in the high voltage switch cabinet.
  • the vacuum pump motor 2 is provided with an air intake button, and when the air intake button is pressed, the vacuum pump motor 2 starts to take air from the high-open switch cabinet. When the return air button is pressed, the vacuum pump motor 2 stops taking air from the high voltage switch cabinet.
  • gas sensor circuit 3 connected to the vacuum pump motor 2, the gas sensor circuit 3 comprising an alkane sensor branch 31, a hydrogen sulfide sensor branch 32 and a smoke sensor branch 33 connected in parallel to each other for the vacuum pump motor 2
  • the sample gas is detected, and the concentration change of each gas component in the sample gas is converted into a change of the corresponding analog signal, and is output.
  • the alkane sensor branch 31 includes: an alkane sensor including a heating wire and an alkane resistance connected in parallel with each other; and a series in series with the alkane resistance A resistor R1, wherein the common end of the heating wire and the alkane resistor is connected to the negative pole of the power source 1, and the common end of the heating wire and the first resistor R1 is connected to the positive pole of the power source 1.
  • the hydrogen sulfide sensor branch 32 includes: a hydrogen sulfide sensor including a first heating resistor and a hydrogen sulfide resistor connected in parallel with each other; a third resistor R3 connected in series with the first heating resistor; The hydrogen sulfide resistor is connected in series with the constant current diode D1, wherein the common end of the first heating resistor and the hydrogen sulfide resistor is connected to the cathode of the power source 1, and the third resistor R3 is connected to the common terminal of the constant current diode D1 and the power source 1 The positive poles are connected.
  • the smoke sensor branch 33 includes: a smoke sensor including a second heating resistor and a smoke resistor connected in parallel with each other; a fourth resistor R4 connected in series with the second heating resistor; and a series connection with the smoke resistor a second resistor R2, wherein the second heating resistor and the common end of the smoke resistor are connected to the negative pole of the power source 1, the common end of the second resistor R2 and the fourth resistor R4 and the anode of the power source 1 Connected.
  • the first resistor R1 is a limit of the alkane sensor. a flow resistance to prevent the current flowing through the alkane sensor from being excessive when the output resistance of the alkane sensor is small, burning the alkane sensor;
  • the second resistor R2 is a current limiting resistor of the smoke sensor, When the output resistance of the smoke sensor is small, the current flowing through the smoke sensor is too large to burn the smoke sensor;
  • the constant current diode D1 is a constant current diode of the hydrogen sulfide sensor to ensure flow through The current of the hydrogen sulfide is a constant value.
  • the third resistor R3 is an auxiliary power source resistance of the hydrogen sulfide sensor for providing a stable direct current to the electrolyte or the auxiliary power source inside the hydrogen sulfide sensor;
  • the fourth resistor R4 is an auxiliary power source resistor of the smoke sensor, and is used for The electrolyte or auxiliary power source inside the smoke sensor provides a stable DC current.
  • a plurality of analog switches 4 connected to the alkane sensor branch 31, the hydrogen sulfide sensor branch 32, and the smoke sensor branch 33 correspond to changes in the concentration of each gas component in the output signal of the gas sensor circuit 3.
  • the analog signal is time-divisionally output.
  • the multi-channel analog switch 4 has three input terminals, wherein the first input end and the alkane sensor in the alkane sensor branch 31 are connected to the common end of the first resistor R1, and the second input end In the hydrogen sulfide sensor branch 32, the hydrogen sulfide sensor is connected to the common end of the constant current diode D1, and the third input end and the smoke sensor branch 33, the common end of the smoke sensor and the second resistor R2 Connected.
  • An analog-to-digital converter 5 connected to the multiplexed analog switch 4 converts an analog signal output from the multiplexed analog switch 4 into a digital signal. Since the signal received in the analog-to-digital converter 5 is a slowly varying signal, in one embodiment of the present invention, the AD7894 in the serial port mode is preferably used for analog-to-digital conversion, and then the converted signal is sent to the micro. Processor 6.
  • the high voltage switchgear thermal fault detecting device further includes a plurality of analog switches 4 and an analog to digital converter 5 connected between the plurality of analog switches 4 and analog to digital conversion
  • the low frequency filter 9 of the device 5 prevents the measurement signal output by the multi-channel analog switch 4 from being interfered by the power frequency signal and the ambient high frequency signal.
  • the low frequency filter 9 is low pass filtered by the MAX7410. In order to filter out the AC signal above 10Hz, the purpose of anti-interference is achieved.
  • the microprocessor 6 connected to the analog-to-digital converter 5 obtains a change in each gas component in the sample gas based on the digital signal output from the analog-to-digital converter 5.
  • the microprocessor 6 classifies, counts, and analyzes the digital signals output by the analog-to-digital converter 5, and obtains each of the sample gases according to the digital signals output by the analog-to-digital converter 5. The change of the gas composition, and thereby determining the heat state of the high voltage switchgear.
  • a display 7 connected to the microprocessor 6 selectively displays changes in gas components in the high-voltage switchgear, that is, time-divisionally displaying changes in different gas contents in the high-voltage switchgear according to specific actual needs .
  • a selection button 8 connected to the microprocessor 6 controls the display 7 to selectively display changes in the components of the gas in the high voltage switchgear.
  • the high-voltage switchgear thermal fault detecting device includes an alkane sensor, a hydrogen sulfide sensor, and a smoke sensor
  • the display 7 can be selectively controlled by the selection button 8 to selectively display the high-voltage switchgear.
  • the variation of different gases such as alkanes, hydrogen sulfide or smoke in the sample gas.
  • the high-voltage switchgear thermal fault detection device provided by the embodiment of the present invention can realize simultaneous monitoring of multiple high-voltage switchgears, and select the high-voltage switchgear corresponding to each high-voltage switchgear by selecting the button 8, and display corresponding Monitoring data for high voltage switchgear. It should be noted that the high-voltage switchgear thermal fault detecting device provided by the embodiment of the present invention can also realize the storage of the monitoring data of the high-voltage switchgear to be monitored for one year, and one month as a data file, thereby implementing the selection button 8. Display of saved data files.
  • the high voltage switchgear thermal fault detecting apparatus further includes a communication bus 10 connected to the microprocessor 6 and transmitting the output signal of the microprocessor 6 to the monitoring center for analysis. .
  • the analog switch 4 uses a method of time-division sampling measurement to transmit a change of a voltage signal caused by a change in three gas concentrations to an analog-to-digital converter 5 to be converted into a digital signal, and is supplied to the microprocessor 6, thereby passing through the microprocessor.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment of the invention provides a method for detecting a thermal fault of a high-voltage switchgear, which is applied to the thermal fault detection device of the high-voltage switchgear according to the first embodiment, as shown in FIG. 3, comprising:
  • Step S1 Turn on the power supply to supply voltage to the high voltage switchgear thermal fault detecting device.
  • the high voltage switchgear thermal fault detecting method further comprises stabilizing an output voltage of the power source by using a capacitor unit connected in parallel with the power source.
  • Step S2 obtaining a sample gas from the high voltage switch cabinet by using a vacuum pump motor.
  • the vacuum pump motor is provided with an air intake button, and the air pump button is pressed, the vacuum pump motor starts to take air from the high-open switch cabinet, and presses the air intake button. The vacuum pump motor stops taking air from the high voltage switchgear.
  • Step S3 detecting the sample gas obtained by the vacuum pump motor by using the gas sensor circuit, converting the concentration change of each gas component in the sample gas into a change of the analog signal, and outputting.
  • the gas sensor circuit includes an alkane sensor branch, a hydrogen sulfide sensor branch, and a smoke sensor branch that are connected in parallel with each other.
  • the alkane sensor branch includes: an alkane sensor,
  • the alkane sensor includes a heating wire and an alkane resistance connected in parallel with each other; a first resistor R1 connected in series with the alkane resistance, wherein the common end of the heating wire and the alkane resistor is connected to a negative pole of the power source, the heating wire and the first a common end of the resistor R1 is connected to the positive pole of the power source, so that the sample gas obtained by the vacuum pump motor can be transmitted to the alkane sensor, and the alkane resistance in the alkane sensor changes according to the concentration of the alkane in the sample gas, and further A change in the concentration of the alkane in the sample gas is converted to a voltage change across the alkane resistance.
  • the hydrogen sulfide sensor branch includes: a hydrogen sulfide sensor including a first heating resistor and a hydrogen sulfide resistor connected in parallel with each other; a third resistor R3 connected in series with the first heating resistor; and the curing a constant current diode D1 connected in series with a hydrogen resistance, wherein a common end of the first heating resistor and the hydrogen sulfide resistor is connected to a negative pole of the power source, and the third resistor R3 and the common end of the constant current diode D1 are connected to the anode of the power source Therefore, the sample gas obtained by the vacuum pump motor can be transmitted to the hydrogen sulfide sensor, and the hydrogen sulfide resistance in the hydrogen sulfide sensor changes according to the change of the concentration of hydrogen sulfide in the sample gas, and then the sample gas is The change in hydrogen sulfide concentration is converted to a voltage change across the hydrogen sulfide resistor.
  • the smoke sensor branch includes: a smoke sensor including a second heating resistor and a smoke resistor connected in parallel with each other; a fourth resistor R4 connected in series with the second heating resistor; and the smoke resistor in series a second resistor R2, wherein the second heating resistor and the common end of the smoke resistor are connected to the negative pole of the power source, and the common end of the second resistor R2 and the fourth resistor R4 are connected to the anode of the power source, thereby
  • the sample gas obtained by the vacuum pump motor can be transmitted to the smoke sensor, and the smoke resistance in the smoke sensor changes with the concentration of the smoke in the sample gas, thereby converting the concentration change of the smoke in the sample gas into The voltage across the smoke resistor changes.
  • the first resistor R1 is a current limiting resistor of the alkane sensor to avoid excessive current flowing through the alkane sensor when the output resistance of the alkane sensor is small. Burning the alkane sensor; the second resistor R2 is a current limiting of the smoke sensor a resistor to prevent the current resistance of the smoke sensor from being too small, the current flowing through the smoke sensor is excessively large, and the smoke sensor is burned; the constant current diode D1 is a constant current diode of the hydrogen sulfide sensor to ensure The current flowing through the hydrogen sulfide is a constant value, and when the output resistance of the hydrogen sulfide is small, the current flowing through the hydrogen sulfide sensor is excessively large, and the hydrogen sulfide sensor is burned.
  • the third resistor R3 is an auxiliary power source resistance of the hydrogen sulfide sensor for providing a stable direct current to the electrolyte or the auxiliary power source inside the hydrogen sulfide sensor;
  • the fourth resistor R4 is an auxiliary power source resistor of the smoke sensor, and is used for The electrolyte or auxiliary power source inside the smoke sensor provides a stable DC current.
  • Step S4 Using the multi-channel analog switch, the analog signal corresponding to the change in the concentration of each gas component in the output signal of the sensor circuit is time-divisionally output.
  • the multi-channel analog switch has three inputs, wherein the first input end and the alkane sensor in the alkane sensor branch are connected to the common end of the first resistor R1, and the second input end is In the hydrogen sulfide sensor branch, the hydrogen sulfide sensor is connected to the common end of the constant current diode D1, and the third input end and the smoke sensor branch are connected to the common end of the second resistor R2, so that The voltage change across the alkane resistor, the voltage change across the hydrogen sulfide resistor, and the voltage change across the smoke resistor are time-divided by the multi-channel analog switch.
  • Step S5 converting an analog signal output by the multi-channel analog switch into a digital signal by using an analog-to-digital converter.
  • the signal received in the analog-to-digital converter is a slowly varying signal
  • the AD7894 in the serial port mode is preferably used for analog-to-digital conversion, and then the converted The signal is output.
  • the high voltage switchgear thermal fault detecting apparatus further includes a low frequency connecting the multi-channel analog switch and the analog-to-digital converter between the multi-channel analog switch and the analog-to-digital converter. a filter to prevent the measurement signal output by the multi-channel analog switch from being interfered by the power frequency signal and the ambient high-frequency signal.
  • the low-frequency filter is a MAX7410 low-pass filter to filter an AC signal above 10 Hz. To achieve the purpose of anti-interference.
  • Step S6 using a microprocessor to obtain a pump according to the digital signal output by the analog-to-digital converter The change of each gas component in the sample gas.
  • the microprocessor classifies, counts, and analyzes the digital signals output by the analog-to-digital converter, and obtains the gas components in the sample gas according to the digital signals output by the analog-to-digital converter. The situation is changed, and the heat state of the high voltage switchgear is judged by this.
  • Step S7 Selectively display the change of each gas component in the high-voltage switch cabinet by using a display, that is, display the change of different gas contents in the high-voltage switch cabinet according to specific actual requirements.
  • Step S8 Using the selection button, the display is controlled to selectively display changes in the components of the gas in the high voltage switchgear.
  • the high-voltage switchgear thermal fault detecting device includes an alkane sensor, a hydrogen sulfide sensor, and a smoke sensor
  • the display can selectively control the display to display the sample gas of the high-voltage switchgear by selecting a button. In the case of changes in different gases such as alkanes, hydrogen sulfide or smoke.
  • the method for detecting a thermal fault of the high voltage switchgear further comprises:
  • Step S9 determining a heat state of the high voltage switch cabinet according to the display content on the display.
  • the detection method includes comparing the collected data with the previous data. If there is a big change, the data is stored in the abnormal data area, and then the data is collected. If the subsequent data returns to the original state, the abnormal data is the interference data, and the data is filtered out. If the subsequent data still shows a large change, it indicates that the high-voltage switchgear is in a fault state and enters the fault analysis, thereby avoiding the misjudgment of the operating state of the high-voltage switchgear due to abnormal data.
  • the concentrations of the gases in the sample gas it is also possible to pass equal intervals of the concentrations of the gases in the sample gas. Measure and combine the volume of the high-voltage switchgear, that is, multiply the concentration of the sampled gas with the volume of the high-voltage switchgear to obtain the content of the corresponding gas, and then divide the content of the corresponding gas and the sampling time to obtain the fault gas.
  • the rate provides another valid data for making reliable judgments about the operating state of the high voltage switchgear.
  • determining the operating state of the high voltage switchgear includes: comparing a sample value of each gas concentration in the sample gas with a preset alarm value, if the sampled value is greater than an alarm The value indicates that the fault gas content in the high voltage switchgear is already high, there may be a heating fault, and an alarm message is generated. Otherwise, the high voltage switchgear is in normal operation. It should be noted that, in this embodiment, the judgment of the sampling value can only be realized under the condition that the fault gas content is high, but the measured value of the gas concentration in the high-voltage opening cabinet is accompanied by the fault gas. In the initial stage of failure, the concentration of fault gas in the high-voltage switchgear is very low.
  • the gas production rate judging method is adopted, that is, by comparing the alarm values of the gas production rate and the preset gas production rate. If the alarm value is greater than the preset gas production rate, it indicates that the high voltage switchgear is in a fever state and sends out an alarm message to avoid the occurrence of a power accident caused by a heating fault of the high voltage switchgear. Otherwise, the high voltage switchgear is in normal operation. status.
  • three different gases correspond to different fault causes, such as when the gas production rate of the alkane and hydrogen sulfide is greater than the preset gas production rate.
  • the alarm value indicates that the heating fault of the high voltage switch cabinet is caused by the heat of the contact
  • the gas production rate of the smoke is greater than the alarm value of the preset gas production rate
  • the heat fault of the high voltage switch cabinet is indicated by Caused by heat at the metal joint.
  • the high-voltage switchgear thermal fault detection method provided by the embodiment of the present invention can also change the sampling period by changing the sampling speed setting in the microprocessor, thereby conveniently detecting the reliability of the required interval, such as finding a fault.
  • the sampling period is shortened, which facilitates the timely detection of faults.
  • the method for detecting a thermal fault of a high voltage switchgear further includes: transmitting, by using a communication bus connected to the microprocessor, an output signal of the microprocessor to a monitoring center for analysis.
  • the method for detecting a thermal fault of a high voltage switchgear uses a vacuum pump motor to obtain a sample gas from the high voltage switchgear and transmits it to a gas sensor circuit, and then uses the gas sensor circuit to sample the sample.
  • the gas is detected, and the change of the concentration of each gas component in the sample gas is converted into a change of the analog signal, and the time-sharing is transmitted to the analog-to-digital converter to be converted into a digital signal, and finally transmitted to the microprocessor for analysis to obtain each gas in the sample gas.
  • the change of composition so as to obtain the heat state of the high-voltage switchgear, realize the measurement and monitoring of the heat state of the high-voltage switchgear, avoid the occurrence of major accidents, control the deterioration of the fault, ensure the normal operation of the high-voltage switchgear, and improve the reliable operation of the power system. Sex and automation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种高压开关柜热故障检测装置及检测方法,所述检测装置包括:电源(1)、真空泵电机(2)、气体传感器电路(3)、多路模拟开关(4)、模数转换器(5)、微处理器(6)、显示器(7)和选择按键(8),从而利用真空泵电机(2)从高压开关柜中获取抽样气体,并传输给传感器电路(3),然后利用传感器电路(3)对所述抽样气体进行检测,并将抽样气体中各气体成分的浓度变化转换为相应的模拟信号的变化,分时传输给模数转换器(5)转换为数字信号,最后传输给微处理器(6)进行分析,获得抽样气体中各气体成分的变化情况,进而获得高压开关柜的发热状态,实现对高压开关柜发热状态的测量和监视,避免重大事故的发生,控制故障的恶化,保证高压开关柜的正常运行,提高电力系统运行可靠性和自动化程度。

Description

高压开关柜热故障检测装置及检测方法
本申请要求于2013年10月25日提交中国专利局、申请号为201310513984.9、发明名称为“高压开关柜热故障检测装置及检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高压开关柜发热状态检测技术领域,尤其涉及一种高压开关柜热故障检测装置及检测方法。
背景技术
高压开关柜在电力系统中担负着关合和断开电力线路、保护系统安全的双重功能。随着电力系统向着高电压、大机组、大容量的迅速发展,电网的日益扩大以及变电站无人值班管理模式和综合自动化的普及推广,高压开关柜的安全运行越来越重要。当高压开关柜内闸刀触头、电力电缆进出线的接头接触不良时,高压开关柜的接触电阻就会增大,从而在负载电流流过时会产生发热现象,进而引起金属材料的机械强度下降,绝缘材料老化并可能导致击穿,形成事故。因此,测量和监视高压开关柜内的发热状态,是避免重大事故发生及控制故障恶化的有力手段,对于保证高压开关柜的正常运行,提高电力系统的运行可靠性和自动化程度具有非常重要的意义。
发明内容
为解决上述技术问题,本发明实施例提供了一种高压开关柜热故障检测装置及检测方法,以测量和监视高压开关柜内的发热状态,避免重大事故发生, 控制故障的恶化,保证高压开关柜的正常运行,提高电力系统的运行可靠性和自动化程度。
为解决上述问题,本发明实施例提供了如下技术方案:
一种高压开关柜热故障检测装置,包括:
电源,为所述高压开关柜热故障检测装置提供电压;
与电源相连的真空泵电机,对所述高压开关柜中的气体进行抽样;
与真空泵电机相连的气体传感器电路,所述气体传感器电路包括相互并联的烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出;
与所述烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路均相连的多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出;
与所述多路模拟开关相连的模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号;
与所述模数转换器相连的微处理器,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况;
与所述微处理器相连的显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示;
与所述微处理器相连的选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。
优选的,所述真空泵电机上设置有取气按钮。
优选的,还包括与所述电源并联的电容单元。
优选的,还包括位于所述多路模拟开关和模数转换器之间,连接所述多路模拟开关和模数转换器的低频滤波器。
优选的,还包括与所述微处理器相连,将所述微处理器的输出信号传输至监控中心的通讯总线。
一种高压开关柜热故障检测方法,应用于上述任一项所述的高压开关柜热故障检测装置,包括:
打开电源,为所述高压开关柜热故障检测装置提供电压;
利用真空泵电机,从所述高压开关柜中获取抽样气体;
利用气体传感器电路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出;
利用多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出;
利用模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号;
利用微处理器,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况;
利用显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示;
利用选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。
优选的,还包括:根据所述显示器上的显示内容,判断所述高压开关柜的发热状态。
优选的,还包括利用与所述电源并联的电容单元稳定所述电源的输出电压。
优选的,还包括利用位于所述多路模拟开关与模数转换器之间的低频滤波器,滤除所述多路模拟开关输出信号中的工频信号和环境高频信号。
优选的,还包括:利用与所述微处理器相连的通信总线,将所述微处理器 的输出信号传输至监控中心。
与现有技术相比,上述技术方案具有以下优点:
本发明实施例所提供的技术方案,利用真空泵电机从所述高压开关柜中获取抽样气体,并传输给传感器电路,然后利用传感器电路对所述抽样气体进行检测,并将抽样气体中各气体成分的浓度变化转换为相应的模拟信号的变化,分时传输给模数转换器转换为数字信号,最后传输给微处理器进行分析,获得抽样气体中各气体成分的变化情况,从而获得高压开关柜的发热状态,实现对高压开关柜发热状态的测量和监视,避免重大事故的发生,控制故障的恶化,保证高压开关柜的正常运行,提高电力系统运行可靠性和自动化程度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的高压开关柜热故障检测装置的结构示意图;
图2为本发明实施例所提供的高压开关柜热故障检测装置的电路结构示意图;
图3为本发明实施例所提供的高压开关柜热故障检测方法的流程示意图。
具体实施方式
正如背景技术部分所述,测量和监视高压开关柜内的发热状态,是避免重大事故发生,控制故障恶化的有力手段,对于保证高压开关柜的正常运行,提高电力系统的运行可靠性和自动化程度具有非常重要的意义。
有鉴于此,本发明实施例提供了一种高压开关柜热故障的检测装置,包括:
电源,为所述高压开关柜热故障检测装置提供电压;
与电源相连的真空泵电机,对所述高压开关柜中的气体进行抽样;
与真空泵电机相连的气体传感器电路,所述气体传感器电路包括相互并联的烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出;
与所述烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路均相连的多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出;
与所述多路模拟开关相连的模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号;
与所述模数转换器相连的微处理器,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况;
与所述微处理器相连的显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示;
与所述微处理器相连的选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。
相应的,本发明实施例还提供了一种利用上述检测装置对高压开关柜热故障进行检测的方法,包括:
打开电源,为所述高压开关柜热故障检测装置提供电压;
利用真空泵电机,从所述高压开关柜中获取抽样气体;
利用气体传感器电路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出;
利用多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度 变化相对应的模拟信号进行分时输出;
利用模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号;
利用微处理器,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况;
利用显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示;
利用选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。
本发明实施例所提供的高压开关柜热故障的检测装置及检测方法,利用真空泵电机从所述高压开关柜中获取抽样气体,并传输给气体传感器电路,然后利用传感器电路对所述抽样气体进行检测,并将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,分时传输给模数转换器转换为数字信号,最后传输给微处理器进行分析,获得抽样气体中各气体成分的变化情况,从而获得高压开关柜的发热状态,实现对高压开关柜发热状态的测量和监视,避免重大事故的发生及控制故障的恶化,保证高压开关柜的正常运行,提高电力系统运行可靠性和自动化程度。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施的限制。
如图1所示,本发明实施例所提供的高压开关柜热故障检测装置,包括:
电源1,为所述高压开关柜热故障检测装置提供电压。优选的,所述电源 1采用AC-DC模块。在本发明的一个实施例中,所述高压开关柜热故障检测装置还包括与所述电源1并联的电容单元,用于稳定直流电源1的输出电压。
与电源1相连的真空泵电机2,对所述高压开关柜中的气体进行抽样。在本发明的一个实施例中,所述真空泵电机2上设置有取气按钮,当按下所述取气按钮时,所述真空泵电机2开始从所述高开开关柜中进行取气,当按回取气按钮时,所述真空泵电机2停止从所述高压开关柜中取气。
与真空泵电机2相连的气体传感器电路3,所述气体传感器电路3包括相互并联的烷烃传感器支路31、硫化氢传感器支路32和烟雾传感器支路33,用于对所述真空泵电机2获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为相应的模拟信号的变化,并进行输出。
如图2所示,在本发明的一个实施例中,所述烷烃传感器支路31包括:烷烃传感器,所述烷烃传感器包括相互并联的加热丝和烷烃电阻;与所述烷烃电阻相串联的第一电阻R1,其中,所述加热丝与烷烃电阻的公共端与电源1负极相连,所述加热丝与所述第一电阻R1的公共端与电源1正极相连。
所述硫化氢传感器支路32包括:硫化氢传感器,所述硫化氢传感器包括相互并联的第一加热电阻和硫化氢电阻;与所述第一加热电阻相串联的第三电阻R3;与所述硫化氢电阻相串联的恒流二极管D1,其中,所述第一加热电阻与硫化氢电阻的公共端与电源1的负极相连,所述第三电阻R3与恒流二极管D1的公共端与电源1的正极相连。
所述烟雾传感器支路33包括:烟雾传感器,所述烟雾传感器包括相互并联的第二加热电阻与烟雾电阻;与所述第二加热电阻相串联的第四电阻R4;与所述烟雾电阻相串联的第二电阻R2,其中,所述第二加热电阻与所述烟雾电阻的公共端与电源1的负极相连,所述第二电阻R2与所述第四电阻R4的公共端与电源1的正极相连。
需要说明的是,在本实施例中,所述第一电阻R1为所述烷烃传感器的限 流电阻,以避免当所述烷烃传感器的输出电阻较小时,流过所述烷烃传感器的电流过大,烧毁所述烷烃传感器;所述第二电阻R2为所述烟雾传感器的限流电阻,以避免所述烟雾传感器的输出电阻较小时,流过所述烟雾传感器的电流过大,烧毁所述烟雾传感器;所述恒流二极管D1为所述硫化氢传感器的恒流二极管,以保证流过所述硫化氢的电流为恒定值,避免所述硫化氢的输出电阻较小时,流过所述硫化氢传感器的电流过大,烧毁所述硫化氢传感器。所述第三电阻R3为硫化氢传感器的辅助电源电阻,用于为硫化氢传感器内部的电解质或辅助电源提供稳定的直流电流;所述第四电阻R4为烟雾传感器的辅助电源电阻,用于为烟雾传感器内部的电解质或辅助电源提供稳定的直流电流。
与所述烷烃传感器支路31、硫化氢传感器支路32和烟雾传感器支路33均相连的多路模拟开关4,对所述气体传感器电路3的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出。在本实施例中,所述多路模拟开关4具有三个输入端,其中,第一输入端与所述烷烃传感器支路31中烷烃传感器与第一电阻R1的公共端相连,第二输入端与所述硫化氢传感器支路32中,硫化氢传感器与恒流二极管D1的公共端相连,第三输入端与所述烟雾传感器支路33中,所述烟雾传感器与第二电阻R2的公共端相连。
与所述多路模拟开关4相连的模数转换器5,将所述多路模拟开关4输出的模拟信号转换为数字信号。由于所述模数转换器5中接收到的信号是一种缓变信号,故在本发明的一个实施例中,优选采用串口模式的AD7894进行模数转换,然后将转换后的信号输送给微处理器6。
在本发明的另一个实施例中,所述高压开关柜热故障检测装置还包括位于所述多路模拟开关4和模数转换器5之间,连接所述多路模拟开关4和模数转换器5的低频滤波器9,以防止所述多路模拟开关4输出的测量信号受工频信号和环境高频信号的干扰,优选的,所述低频滤波器9为MAX7410低通滤波 器,以滤除10Hz以上的交流信号,达到抗干扰的目的。
与所述模数转换器5相连的微处理器6,根据所述模数转换器5输出的数字信号,获得抽样气体中各气体成分的变化情况。在本实施例中,所述微处理器6对所述模数转换器5输出的数字信号进行归类、统计和分析,根据所述模数转换器5输出的数字信号,获得抽样气体中各气体成分的变化情况,并以此判断所述高压开关柜的发热状态。
与所述微处理器6相连的显示器7,对所述高压开关柜中各气体成分的变化情况进行选择性显示,即根据具体实际需求分时显示所述高压开关柜中不同气体含量的变化情况。
与所述微处理器6相连的选择按键8,控制所述显示器7选择性显示所述高压开关柜中各气体成分的变化情况。在本实施例中,由于所述高压开关柜热故障检测装置中包括烷烃传感器、硫化氢传感器和烟雾传感器,因此,可以通过选择按键8控制所述显示器7选择性的显示所述高压开关柜的抽样气体中,烷烃、硫化氢或烟雾等不同气体的变化情况。
需要说明的是,本发明实施例所提供的高压开关柜热故障检测装置能够实现多个高压开关柜的同时监测,并通过选择按键8选择各高压开关柜所对应的高压开关柜编号,显示相应高压开关柜的监测数据。还需要说明的是,本发明实施例所提供的高压开关柜热故障检测装置还可以实现对待监测高压开关柜1年监测数据的保存,并以一个月为一个数据文件,从而通过选择按键8实现对已保存数据文件的显示。
在本发明的另一个实施例中,所述高压开关柜热故障检测装置还包括与所述微处理器6相连,将所述微处理器6的输出信号传输至监控中心进行分析的通讯总线10。
由于各种气体传感器(包括烷烃传感器、硫化氢传感器和烟雾传感器)的输出电阻均与其特征气体浓度成反比,即随着其特征气体浓度的增加,所述气 体传感器的输出电阻降低,相应的,所述气体传感器(烷烃传感器、硫化氢传感器或烟雾传感器)两端的电压也随之下降,又因为气体浓度的变化不是很快,因此,可以通过所述多路模拟开关4采用分时采样测量的方法,将由三种气体浓度变化所引起的电压信号的变化传输给模数转换器5转换成数字信号,并输送给微处理器6,从而通过微处理器6对该数字信号的统计、分析,获得抽样气体中三种气体的浓度变化情况,进而推断出高压开关柜的发热状态,实现对高压开关柜发热状态的测量和监视,避免重大事故的发生,控制故障的恶化,保证高压开关柜的正常运行,提高电力系统运行可靠性和自动化程度。
实施例二:
本发明实施例提供了一种高压开关柜热故障检测方法,应用于实施例一中所述高压开关柜热故障检测装置,如图3所示,包括:
步骤S1:打开电源,为所述高压开关柜热故障检测装置提供电压。优选的,在本发明的一个实施例中,所述高压开关柜热故障检测方法还包括利用与所述电源并联的电容单元稳定所述电源的输出电压。
步骤S2:利用真空泵电机,从所述高压开关柜中获取抽样气体。在本发明的一个实施例中,所述真空泵电机上设置有取气按钮,按下所述取气按钮,所述真空泵电机开始从所述高开开关柜中取气,按回取气按钮,所述真空泵电机停止从所述高压开关柜中取气。
步骤S3:利用气体传感器电路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出。在本发明实施例中,所述气体传感器电路包括相互并联的烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路。
在本发明的一个实施例中,所述烷烃传感器支路包括:烷烃传感器,所述 烷烃传感器包括相互并联的加热丝和烷烃电阻;与所述烷烃电阻相串联的第一电阻R1,其中,所述加热丝与烷烃电阻的公共端与电源负极相连,所述加热丝与所述第一电阻R1的公共端与电源正极相连,从而可以将所述真空泵电机获得的抽样气体传输给烷烃传感器,而烷烃传感器内的烷烃电阻随着所述抽样气体中烷烃的浓度变化而发生变化,进而将所述抽样气体中烷烃的浓度变化转换为所述烷烃电阻两端的电压变化。
所述硫化氢传感器支路包括:硫化氢传感器,所述硫化氢传感器包括相互并联的第一加热电阻和硫化氢电阻;与所述第一加热电阻相串联的第三电阻R3;与所述硫化氢电阻相串联的恒流二极管D1,其中,所述第一加热电阻与硫化氢电阻的公共端与电源的负极相连,所述第三电阻R3与恒流二极管D1的公共端与电源的正极相连,从而可以将所述真空泵电机获得的抽样气体传输给硫化氢传感器,而硫化氢传感器中的硫化氢电阻随着所述抽样气体中硫化氢浓度的变化而发生变化,进而将所述抽样气体中硫化氢浓度的变化转换为所述硫化氢电阻两端的电压变化。
所述烟雾传感器支路包括:烟雾传感器,所述烟雾传感器包括相互并联的第二加热电阻与烟雾电阻;与所述第二加热电阻相串联的第四电阻R4;与所述烟雾电阻相串联的第二电阻R2,其中,所述第二加热电阻与所述烟雾电阻的公共端与电源的负极相连,所述第二电阻R2与所述第四电阻R4的公共端与电源的正极相连,从而可以将所述真空泵电机获得的抽样气体传输给烟雾传感器,而烟雾传感器中的烟雾电阻随着所述抽样气体中烟雾的浓度变化而发生变化,进而将所述抽样气体中烟雾的浓度变化转换为烟雾电阻两端的电压变化。
需要说明的是,在本实施例中,所述第一电阻R1为所述烷烃传感器的限流电阻,以避免当所述烷烃传感器的输出电阻较小时,流过所述烷烃传感器的电流过大,烧毁所述烷烃传感器;所述第二电阻R2为所述烟雾传感器的限流 电阻,以避免所述烟雾传感器的输出电阻较小时,流过所述烟雾传感器的电流过大,烧毁所述烟雾传感器;所述恒流二极管D1为所述硫化氢传感器的恒流二极管,以保证流过所述硫化氢的电流为恒定值,避免所述硫化氢的输出电阻较小时,流过所述硫化氢传感器的电流过大,烧毁所述硫化氢传感器。所述第三电阻R3为硫化氢传感器的辅助电源电阻,用于为硫化氢传感器内部的电解质或辅助电源提供稳定的直流电流;所述第四电阻R4为烟雾传感器的辅助电源电阻,用于为烟雾传感器内部的电解质或辅助电源提供稳定的直流电流。
步骤S4:利用多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出。在本实施例中,所述多路模拟开关具有三个输入端,其中,第一输入端与所述烷烃传感器支路中烷烃传感器与第一电阻R1的公共端相连,第二输入端与所述硫化氢传感器支路中,硫化氢传感器与恒流二极管D1的公共端相连,第三输入端与所述烟雾传感器支路中,所述烟雾传感器与第二电阻R2的公共端相连,从而可以将所述烷烃电阻两端的电压变化、硫化氢电阻两端的电压变化、烟雾电阻两端的电压变化分时通过所述多路模拟开关进行输出。
步骤S5:利用模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号。需要说明的是,由于所述模数转换器中接收到的信号是一种缓变信号,故在本发明的一个实施例中,优选采用串口模式的AD7894进行模数转换,然后将转换后的信号进行输出。
在本发明的另一个实施例中,所述高压开关柜热故障检测装置还包括位于所述多路模拟开关和模数转换器之间,连接所述多路模拟开关和模数转换器的低频滤波器,以防止所述多路模拟开关输出的测量信号受工频信号和环境高频信号的干扰,优选的,所述低频滤波器为MAX7410低通滤波器,以滤除10Hz以上的交流信号,达到抗干扰的目的。
步骤S6:利用微处理器,根据所述模数转换器输出的数字信号,获得抽 样气体中各气体成分的变化情况。在本实施例中,所述微处理器对所述模数转换器输出的数字信号进行归类、统计和分析,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况,并以此判断所述高压开关柜的发热状态。
步骤S7:利用显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示,即根据具体实际需求,分时显示所述高压开关柜中不同气体含量的变化情况。
步骤S8:利用选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。在本实施例中,由于所述高压开关柜热故障检测装置中包括烷烃传感器、硫化氢传感器和烟雾传感器,因此,可以通过选择按键控制所述显示器选择性的显示所述高压开关柜的抽样气体中,烷烃、硫化氢或烟雾等不同气体的变化情况。
在本发明的一个实施例中,所述高压开关柜热故障的检测方法还包括:
步骤S9:根据所述显示器上的显示内容,判断所述高压开关柜的发热状态。
需要说明的是,尽管本发明实施例所提供的检测方法在将采集的电压信号传输给模数转换器之前,对采集的电压信号进行了滤波,滤除了工频干扰和高频干扰,但是,在采集过程中仍可能存在瞬变的干扰信号,影响后续高压开关柜运行状态的判断,因此,在本发明的一个实施例中,所述检测方法包括将采集到的数据与前面的数据进行比较,如出现较大的变化,则将数据存入异常数据区域,然后继续对数据进行采集,如果后续的数据又回到原来的状态,则说明异常的数据为干扰数据,对其进行滤除,如果后续的数据仍然出现较大的变化,则说明高压开关柜处于故障状态,进入故障分析,从而避免由于异常数据导致对高压开关柜运行状态做出误判的现象。
而且,在本发明实施例中,还可以通过对抽样气体中各气体浓度的等间隔 测量,并结合高压开关柜的体积,即将抽样气体的浓度与高压开关柜的体积进行相乘,得到相应气体的含量,然后将相应气体的含量与采样时间进行相除,从而得到故障气体的产生速率,为对高压开关柜的运行状态做出可靠判断提供又一有效数据。
具体的,在本发明的一个实施例中,对所述高压开关柜的运行状态做出判断包括:将抽样气体中各气体浓度的采样值和预先设置的报警值进行比较,如果采样值大于报警值时,则说明高压开关柜内的故障气体含量已经很高,可能存在发热故障,产生报警信息,反之,则说明高压开关柜处于正常运行状态。需要说明的是,在该实施例中,对采样值的判断,只能在故障气体含量很高的情况下实现报警,但是,由于所述高压开光柜中气体浓度的测量值随着故障气体的产生而上升,在产生故障初期,高压开关柜内的故障气体浓度很低,尽管高压开关柜已处于发热状态,大量的故障气体在产生,但其含量的增加很缓慢,导致上述采样值判断的方法无法对高压开关柜的运行状态迅速作出判断,因此,在本发明的有一个实施例中,采用产气速率的判断方法,即通过测量产气速率和预设产气速率的报警值进行比较,如果大于预设产气速率的报警值,则说明高压开关柜处于发热状态,发出报警信息,从而避免高压开关柜发生发热故障而引起电力事故的发生,反之,则说明高压开关柜处于正常运行状态。
还需要说明的是,本发明实施例所提供的高压开关柜热故障检测方法中,三种不同的气体对应了不同的故障原因,如当烷烃和硫化氢的产气速率大于预设产气速率的报警值时,说明所述高压开关柜的发热故障是由触头发热引起的,当烟雾的产气速率大于预设产气速率的报警值时,说明所述高压开关柜的发热故障是由金属连接处发热引起的。
另外,本发明实施例提供的高压开关柜热故障检测方法还可以通过更改微处理器中采样速度的设置,更改采样周期,从而方便的对所需区间的可靠性进行检测,如在发现有故障趋势时,将采样周期缩短,便于故障的及时发现,而 且,还可以通过根据运行人员的经验对报警值的更改,以实现对高压开关柜的可靠诊断。
此外,本发明实施例提供的高压开关柜热故障检测方法,还包括:利用与所述微处理器相连的通信总线,将所述微处理器的输出信号传输至监控中心进行分析。
综上所述,本发明实施例所提供的高压开关柜热故障检测方法,利用真空泵电机从所述高压开关柜中获取抽样气体,并传输给气体传感器电路,然后利用气体传感器电路对所述抽样气体进行检测,并将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,分时传输给模数转换器转换为数字信号,最后传输给微处理器进行分析,获得抽样气体中各气体成分的变化情况,从而获得高压开关柜的发热状态,实现对高压开关柜发热状态的测量和监视,避免重大事故的发生,控制故障的恶化,保证高压开关柜的正常运行,提高电力系统运行可靠性和自动化程度。
本说明书中各个部分采用递进的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高压开关柜热故障检测装置,其特征在于,包括:
    电源,为所述高压开关柜热故障检测装置提供电压;
    与所述电源相连的真空泵电机,对所述高压开关柜中的气体进行抽样;
    与所述真空泵电机相连的气体传感器电路,所述气体传感器电路包括相互并联的烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出;
    与所述烷烃传感器支路、硫化氢传感器支路和烟雾传感器支路均相连的多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出;
    与所述多路模拟开关相连的模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号;
    与所述模数转换器相连的微处理器,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况;
    与所述微处理器相连的显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示;
    与所述微处理器相连的选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。
  2. 根据权利要求1所述的热故障检测装置,其特征在于,所述真空泵电机上设置有取气按钮。
  3. 根据权利要求1所述的热故障检测装置,其特征在于,还包括:与所述电源并联的电容单元。
  4. 根据权利要求1所述的热故障检测装置,其特征在于,还包括:位于所述多路模拟开关和模数转换器之间,连接所述多路模拟开关和模数转换器的 低频滤波器。
  5. 根据权利要求1所述的热故障检测装置,其特征在于,还包括:与所述微处理器相连,将所述微处理器的输出信号传输至监控中心的通讯总线。
  6. 一种高压开关柜热故障检测方法,应用于权利要求1-5任一项所述的高压开关柜热故障检测装置,其特征在于,包括:
    打开电源,为所述高压开关柜热故障检测装置提供电压;
    利用真空泵电机,从所述高压开关柜中获取抽样气体;
    利用气体传感器电路,对所述真空泵电机获得的抽样气体进行检测,将抽样气体中各气体成分的浓度变化转换为模拟信号的变化,并进行输出;
    利用多路模拟开关,对所述传感器电路的输出信号中与各气体成分的浓度变化相对应的模拟信号进行分时输出;
    利用模数转换器,将所述多路模拟开关输出的模拟信号转换为数字信号;
    利用微处理器,根据所述模数转换器输出的数字信号,获得抽样气体中各气体成分的变化情况;
    利用显示器,对所述高压开关柜中各气体成分的变化情况进行选择性显示;
    利用选择按键,控制所述显示器选择性显示所述高压开关柜中各气体成分的变化情况。
  7. 根据权利要求6所述的热故障检测方法,其特征在于,还包括:根据所述显示器上的显示内容,判断所述高压开关柜的发热状态。
  8. 根据权利要求6所述的热故障检测方法,其特征在于,还包括:利用与所述电源并联的电容单元稳定所述电源的输出电压。
  9. 根据权利要求6所述的热故障检测方法,其特征在于,还包括:利用位于所述多路模拟开关与模数转换器之间的低频滤波器,滤除所述多路模拟开 关输出信号中的工频信号和环境高频信号。
  10. 根据权利要求6所述的热故障检测方法,其特征在于,还包括:利用与所述微处理器相连的通信总线,将所述微处理器的输出信号传输至监控中心。
PCT/CN2014/089120 2013-10-25 2014-10-22 高压开关柜热故障检测装置及检测方法 WO2015058687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310513984.9 2013-10-25
CN201310513984.9A CN103529333B (zh) 2013-10-25 2013-10-25 高压开关柜热故障检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2015058687A1 true WO2015058687A1 (zh) 2015-04-30

Family

ID=49931498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089120 WO2015058687A1 (zh) 2013-10-25 2014-10-22 高压开关柜热故障检测装置及检测方法

Country Status (2)

Country Link
CN (1) CN103529333B (zh)
WO (1) WO2015058687A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443544A (zh) * 2018-11-27 2019-03-08 安徽理工大学 非接触式高压开关柜母线温升预警系统
CN111505431A (zh) * 2020-06-16 2020-08-07 东莞市仟泰自动化设备有限公司 一种超级电容器的检测设备
CN111769419A (zh) * 2020-08-18 2020-10-13 国网福建省电力有限公司南平供电公司 电力高压设备的高导电银浆带电处理组合装置及方法
CN113253015A (zh) * 2021-04-08 2021-08-13 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种开关柜的在线异常监测方法
CN113791176A (zh) * 2021-08-12 2021-12-14 深圳供电局有限公司 开关柜内气体监测方法和系统
CN114740303A (zh) * 2022-06-13 2022-07-12 山东中安电力科技有限公司 一种无线无源高压开关柜的故障监测系统
CN115808643A (zh) * 2023-02-06 2023-03-17 北京瑞阳伟业科技有限公司 一种具有实时数据获取的电气柜功能测试台

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529333B (zh) * 2013-10-25 2016-08-17 国家电网公司 高压开关柜热故障检测装置及检测方法
CN105651936A (zh) * 2014-11-12 2016-06-08 长沙理工大学 一种气体传感器综合测试仪及测量方法
CN105589017B (zh) * 2015-12-15 2017-09-12 国家电网公司 一种基于特征气体检测的开关柜内绝缘件缺陷预测方法
CN109459671A (zh) * 2018-09-27 2019-03-12 国网浙江省电力有限公司湖州供电公司 一种基于遗传算法的改进神经网络的开关柜状态监测方法
CN110068657A (zh) * 2019-04-30 2019-07-30 江苏健雄电气安装工程有限公司 一种高压柜有毒气体监测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116123B4 (de) * 2001-03-30 2006-03-23 Klaus Kazenwadel Prüfeinrichtung für Schaltschränke
CN201993124U (zh) * 2011-01-30 2011-09-28 辉景电子科技(上海)有限公司 多通道物理量测量装置
CN103105557A (zh) * 2013-01-29 2013-05-15 温州电力局 高压开关柜多故障诊断方法及装置
CN103149324A (zh) * 2013-01-29 2013-06-12 温州电力局 高压开关柜气体检测方法及装置
CN103335715A (zh) * 2013-06-17 2013-10-02 成都荣耀科技有限公司 监测高压开关柜温度的系统
CN203232017U (zh) * 2013-01-29 2013-10-09 温州电力局 高压开关柜气体检测装置
CN103529333A (zh) * 2013-10-25 2014-01-22 国家电网公司 高压开关柜热故障检测装置及检测方法
CN203551691U (zh) * 2013-10-25 2014-04-16 国家电网公司 高压开关柜热故障检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965527A (ja) * 1995-08-23 1997-03-07 Toshiba Corp 故障点標定システム
CN202939246U (zh) * 2012-12-03 2013-05-15 昆明绿电科技有限公司 斜单轴跟踪支架与固定支架发电效率对比测试装置
CN203071482U (zh) * 2013-01-29 2013-07-17 温州电力局 具有气体分析功能的高压开关柜
CN203054136U (zh) * 2013-01-29 2013-07-10 温州电力局 便携式高压开关柜多故障检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116123B4 (de) * 2001-03-30 2006-03-23 Klaus Kazenwadel Prüfeinrichtung für Schaltschränke
CN201993124U (zh) * 2011-01-30 2011-09-28 辉景电子科技(上海)有限公司 多通道物理量测量装置
CN103105557A (zh) * 2013-01-29 2013-05-15 温州电力局 高压开关柜多故障诊断方法及装置
CN103149324A (zh) * 2013-01-29 2013-06-12 温州电力局 高压开关柜气体检测方法及装置
CN203232017U (zh) * 2013-01-29 2013-10-09 温州电力局 高压开关柜气体检测装置
CN103335715A (zh) * 2013-06-17 2013-10-02 成都荣耀科技有限公司 监测高压开关柜温度的系统
CN103529333A (zh) * 2013-10-25 2014-01-22 国家电网公司 高压开关柜热故障检测装置及检测方法
CN203551691U (zh) * 2013-10-25 2014-04-16 国家电网公司 高压开关柜热故障检测装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443544A (zh) * 2018-11-27 2019-03-08 安徽理工大学 非接触式高压开关柜母线温升预警系统
CN111505431A (zh) * 2020-06-16 2020-08-07 东莞市仟泰自动化设备有限公司 一种超级电容器的检测设备
CN111769419A (zh) * 2020-08-18 2020-10-13 国网福建省电力有限公司南平供电公司 电力高压设备的高导电银浆带电处理组合装置及方法
CN111769419B (zh) * 2020-08-18 2024-05-17 国网福建省电力有限公司南平供电公司 电力高压设备的高导电银浆带电处理组合装置及方法
CN113253015A (zh) * 2021-04-08 2021-08-13 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种开关柜的在线异常监测方法
CN113253015B (zh) * 2021-04-08 2023-02-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种开关柜的在线异常监测方法
CN113791176A (zh) * 2021-08-12 2021-12-14 深圳供电局有限公司 开关柜内气体监测方法和系统
CN114740303A (zh) * 2022-06-13 2022-07-12 山东中安电力科技有限公司 一种无线无源高压开关柜的故障监测系统
CN114740303B (zh) * 2022-06-13 2022-08-26 山东中安电力科技有限公司 一种无线无源高压开关柜的故障监测系统
CN115808643A (zh) * 2023-02-06 2023-03-17 北京瑞阳伟业科技有限公司 一种具有实时数据获取的电气柜功能测试台

Also Published As

Publication number Publication date
CN103529333A (zh) 2014-01-22
CN103529333B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015058687A1 (zh) 高压开关柜热故障检测装置及检测方法
CN201532590U (zh) 一种温湿度控制器
CN203279178U (zh) 一种扬声器故障检测装置
CN206074685U (zh) 模拟量检测电路
CN103105557A (zh) 高压开关柜多故障诊断方法及装置
CN104793058A (zh) 高压绝缘电阻监测报警仪及其工作方法
US20210249868A1 (en) Battery connection device health status detection system and method, and unmanned aerial vehicle
CN115459448A (zh) 一种开关柜潜伏性故障诊断预警检测系统及方法
CN113945760A (zh) 电动汽车绝缘电阻检测系统
CN201984123U (zh) 医院隔离供电系统监测装置
CN203232106U (zh) 高压开关柜多故障诊断装置
CN111141957A (zh) 快换连接器的接触电阻的测量电路、测试设备及电动汽车
CN203551691U (zh) 高压开关柜热故障检测装置
CN205541252U (zh) 带短路、断路报警的电气火灾探测器
CN203396921U (zh) 一种多加载电压开关电源测试装置
CN203054169U (zh) 高压开关柜局部放电和六氟化硫泄露双故障检测装置
CN201104260Y (zh) 对有一定电流的设备进行监控的装置
CN115015664A (zh) 一种功率型电阻温升测试装置
CN103308744B (zh) 高压电缆屏蔽网接地线泄漏电流检测仪
CN209460354U (zh) 一种耐电压测试仪
CN103424714A (zh) 微机保护开关电源监视插件
CN203071425U (zh) 可自我检测的高压开关柜
CN103163376A (zh) 一种智能多用绝缘电阻测试仪
CN104698281A (zh) 一种电阻温度特性测试装置
CN206272002U (zh) 一种带过电流保护的可调整过流保护值插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855070

Country of ref document: EP

Kind code of ref document: A1