WO2015058501A1 - 一种同步绝缘分隔电力开关装置 - Google Patents

一种同步绝缘分隔电力开关装置 Download PDF

Info

Publication number
WO2015058501A1
WO2015058501A1 PCT/CN2014/075894 CN2014075894W WO2015058501A1 WO 2015058501 A1 WO2015058501 A1 WO 2015058501A1 CN 2014075894 W CN2014075894 W CN 2014075894W WO 2015058501 A1 WO2015058501 A1 WO 2015058501A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
partition plate
moving
switch contact
insulating partition
Prior art date
Application number
PCT/CN2014/075894
Other languages
English (en)
French (fr)
Inventor
杜文福
何明伟
Original Assignee
通能顺达科技国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310503314.9A external-priority patent/CN103531379B/zh
Application filed by 通能顺达科技国际有限公司 filed Critical 通能顺达科技国际有限公司
Publication of WO2015058501A1 publication Critical patent/WO2015058501A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/32Insulating body insertable between contacts

Definitions

  • the invention relates to a power switching device, in particular to a synchronous insulation separating power switching device.
  • the power switch device is used for controlling and protecting the operation of the power distribution system or the electrical equipment.
  • the existing power switch device generally uses air as the medium insulation, and the power separation requires a long distance to achieve sufficient insulation, and the contacts are separated. The generated arc easily burns in the air between the joint and the joint, thus damaging the joint.
  • the arc chute is a relatively common device that is installed in the vicinity of the path around the arc that occurs to guide the arc into the arc chute, reducing arcing time at the contacts, reducing arc temperature, and thereby accelerating arc extinction.
  • the arc extinguishing cover is subject to the high temperature of the arc, so there are certain requirements for the material of the arc extinguishing cover, the manufacturing cost is high, and the arc extinguishing cover is also easy to burn out;
  • the arc extinguishing cover cannot be too Being close to the electrode contacts or conductors, so that the discharge arc is not necessarily absorbed by the arc chute, making the arc chute easy to fail; again, because the arc chute is not extinguishing the arc, Just direct the arc to the arc chute as much as possible to reduce the arc staying at the contact time, and the arc extinguishing effect is often not ideal.
  • an object of the present invention is to provide a synchronous insulation divided power switch device which can effectively prevent arc continuation, has good insulation, can avoid damage to contacts, and can greatly shorten the contact separation distance.
  • a synchronous insulation-separated power switching device comprising two switch contact electrodes, wherein the switch contact electrodes are provided with power switch contact points, wherein at least one of the switch contact electrodes is a movable electrode, and the switch contact electrode contacts are energized or separated De-energizing, further comprising a piece of insulating partitioning plate, wherein the insulating separating plate and the two switch contact electrodes are synchronously interlocked with each other, and when the two switch contact electrodes are separated, the insulating partition plate is moved to the same Between the two power switch contact points, when the two switch contact electrodes are ready to contact energization, the insulating partition plate is interlocked between the two switch contact electrodes.
  • the insulating partition plate and the two switch contact electrodes are synchronously linked with each other, and the switch contact electrode drives the insulating partition plate to move, or the insulating partition plate drives the switch contact electrode to move.
  • the two switch contact electrodes include a moving electrode and a fixed electrode, the moving electrode is provided with a moving contact point, the fixed electrode is provided with a fixed contact point, and a partition plate shutter is further included, the partition
  • the plate shutter includes a rotating shaft center of the partition plate, a movable curved surface that can be pushed by the moving electrode to rotate and open, and/or a moving moving electrode, and the partitioning plate flap rotates around the rotating shaft of the dividing plate, when the moving electrode and the fixed electrode
  • the partition plate shutter is lowered around the rotation axis of the partition plate to move the insulating partition plate between the moving contact point and the fixed contact point, and when the moving electrode and the fixed electrode are ready to contact the energization, the moving electrode and the movable arc
  • the surface abuts and pushes the partition plate shutter along the movable arc surface, so that the insulating partition plate is separated from the two switch contact electrodes, so that the moving contact point and the fixed contact point are in contact.
  • the moving electrode is mounted on a moving contact group, and the moving contact group is provided with a transitional arc surface matching the active curved surface.
  • partitioning plate shutter is further provided with a lower pressing spring for applying a downward pressure to the dividing plate shutter.
  • the method further includes a movable board disposed above the contact surfaces of the two switch contact electrodes, the insulating partition board is installed in the middle of the movable board, and the two switches need to be separated and powered off when contacting the electrodes.
  • the switch contact electrode is pushed away in the left and right directions, and the insulating partition plate is moved between the two power switch contact points.
  • the movable board includes a plug and a strut above the plug, the width of the plug is less than a sum of thicknesses of two power switch contact points, and the width of the strut is greater than two power switch contact points and insulation points The sum of the thicknesses of the spacers.
  • the two switch contact electrodes (1) include a moving electrode (11) and a fixed electrode (12), and the insulating partition plate (3) is mounted on the moving electrode (11) and fixed The electrodes (12) are movable back and forth, and when the insulating partition plate (3) is inserted between the moving electrode (11) and the fixed electrode (12), the two power switch contact points are separated.
  • a side of the insulating partition plate (3) facing the moving electrode (11) is provided with a cut surface (31) for facilitating insertion of the insulating partition plate (3) between the two power switch contact points (2),
  • the moving electrode (11) is connected with a compression spring (7), and when the insulating partition plate (3) is inserted between the moving electrode (11) and the fixed electrode (12), the compression spring (7) contracts, when The compression spring (7) is extended when the insulating partition plate (3) is pulled away from the moving electrode (11) and the fixed electrode (12).
  • the two switch contact electrodes (1) are both moving electrodes (11), and the insulating partition plate (3) faces both sides of the two moving electrodes (11). Separately, a cut surface (31) for inserting the insulating partition plate (3) between the two power switch contact points (2) is provided, and the moving electrode (11) is connected with a compression spring (7).
  • the invention has the beneficial effects that the synchronous insulation separating power switch device used in the present invention is provided with an insulating partition plate made of an insulating material between the contact points of the power switch, and the insulating partition plates are synchronously moved. Between the two power switch contact points that have been contacted or have been disconnected or have been disconnected, the arc generated when the contacts are separated is immediately separated by the insulating partition and pushed away from the contact contacts, which effectively blocks the arc. Continuation, to avoid damage to the joint, the distance separating the contacts can be greatly shortened compared with the conventional air power switching device, and the insulation between the contacts can be improved, and the invention does not affect the normal between the power switch contact points during normal use. Conduction also has the advantages of simple structure, convenient installation, small size, low cost and fast response.
  • FIG. 1 is a schematic structural view of a power switch contact point in a connected state according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a mobile electrode in a first embodiment of the present invention when the mobile electrode is disconnected;
  • FIG. 3 is a schematic structural view of the mobile electrode when the mobile electrode is completely disconnected according to the first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a moving electrode moving toward a fixed electrode in the first embodiment of the present invention
  • FIG. 5 is a schematic structural view of a moving electrode connected to a fixed electrode according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a power switch contact point in a connected state according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural view of a movable plug connector inserted into a gap between contact electrodes of a switch according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural view of the strut of the second embodiment of the present invention when the switch contact electrode is opened;
  • FIG. 9 is a schematic structural view of the second embodiment of the present invention when the insulating partition plate is moved between the contact points of the power switch;
  • Figure 10 is a schematic structural view of Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural view of a moving electrode separated according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural view of the third embodiment of the present invention when the insulating partition plate is completely moved between the power switch contact points;
  • Figure 13 is a schematic structural view of Embodiment 5 of the present invention.
  • FIG. 14 is a schematic structural view of a fifth switch contact electrode according to an embodiment of the present invention.
  • Fig. 15 is a structural schematic view showing the case where the insulating partition plate is completely moved between the contact points of the power switch in the fifth embodiment of the present invention.
  • FIG 15 shows a synchronous insulation-separated power switching device of the present invention comprising two switch contact electrodes 1, said switch contact electrode 1 being provided with a power switch contact point 2, and two power switch contact points 2, at least One switch contact electrode 1 is a movable electrode, and the switch contact electrode 1 is connected to the two power switch contact points 2 during normal operation, and is connected to the power supply.
  • the separate power off contact is energized or separated, and a piece of insulation is included.
  • the partitioning plate 3, the insulating partitioning plate 3 and the two switch contact electrodes 1 are synchronously interlocked with each other, and the mutually synchronous interlocking can drive the insulating partition plate 3 to move the switch contact electrode 1 also
  • the switch contact electrode 1 can be moved for the insulating partition plate 3.
  • the insulating partition plate 3 is interlocked to move between the two power switch contact points 2, and when the two switch contact electrodes 1 are ready to be contacted, the insulation is interlocked.
  • the partition plate 3 leaves between the two switch contact electrodes 1.
  • the present invention provides an insulating partition plate 3 made of an insulating material between the power switch contact points 2, and the insulating partition plates 3 are synchronously moved to the two that have been contacted or just opened or have been disconnected. Between the power switch contact points 2, the arc generated when the contacts are separated is immediately separated by the insulating partition plate 3 and pushed away from the contact contacts, which can effectively prevent the arc from continuing and avoid damage to the contacts, compared with the conventional air power switch device.
  • the distance separating the contacts can be greatly shortened, and the insulation between the contacts can be further improved, and the invention does not affect the normal conduction between the power switch contact points 2 in normal use, and has the advantages of simple structure, convenient installation and small volume. The advantages of low cost and fast response.
  • one of the two switch contact electrodes 1 is a moving electrode 11 and the other is a fixed electrode 12, and the moving electrode 11 is provided with
  • the movable contact point 21 is provided with a fixed contact point 22, and the movable electrode 11 is mounted on a moving contact group 4, and the moving contact group 4 drives the moving electrode 11 to move in the left-right direction.
  • the moving contact point 21 and the fixed contact point 22 are in contact with each other.
  • the moving contact group 4 drives the moving electrode 11 to move to the left to separate from the left.
  • the moving contact group 4 is moved.
  • the moving electrode 11 is moved to the right to be connected to the fixed electrode 12.
  • an arc is generated between the moving contact point 21 and the fixed contact point 22.
  • the moving electrode 11 moves the insulating partitioning plate 3 to the moving contact point 21 and The contacts 22 are fixed to separate or absorb the arc.
  • a partitioning plate shutter 5 which includes a partitioning plate rotating shaft center 51 and a movable curved surface 52 which can be pushed by the moving contact group 4 to rotate and open and/or to move the moving electrode 11 to be separated.
  • the shutter 5 is rotated about the partition rotation axis 51, and the insulating partition 3 is mounted on the partition flap 5 and perpendicular to the radius of rotation of the partition flap 5, and the partition flap 5 is further
  • a pressing spring 53 is provided, one end of the lower pressing spring 53 abuts on the upper side of the partitioning flap 5, and applies a downward pressure to the partitioning shutter 5, and the insulating partition 3 can be associated with the partitioning shutter 5 is rotated between the moving contact point 21 and the fixed contact point 22, as shown in FIG.
  • the area of the insulating partitioning plate 3 is larger than the area of the moving contact point 21 and the fixed contact point 22, and the moving contact point 21 and the fixing can be completely blocked.
  • the moving contact group 4 is provided with a transitional arc surface 41 matching the movable curved surface 52, and the partitioning flap 5 can be pushed upward along the movable curved surface 52, although the partitioning shutter 5 is operated by gravity in this embodiment. It is also possible to rotate downward, but the rotation speed of the partitioning shutter 5 can be accelerated by providing the pressing spring 53, and the present invention can be applied to the mounting manner at different positions, and the pressure of the lower pressing spring 53 drives the insulating partition. 3 moving between the moving contact point 21 and the fixed contact point 22, the reliability and stability thereof are high, wherein the specific working process of the embodiment is as follows:
  • the moving contact point 21 on the moving electrode 11 and the fixed contact point 22 on the fixed electrode 12 are brought into contact with each other, and the partitioning shutter 5 and the insulating partitioning plate 3 are pushed to Above the moving contact point 21 and the fixed contact point 22, the pressing spring 53 is in a compressed state and exerts a downward force.
  • the power switching device responds to the disconnection, at which time the moving electrode 11 moves to the left, and the moving contact point 21 and the fixed contact point 22 are disconnected, with the direction of the moving contact group 4 Moving left, at this time, the partitioning shutter 5 is synchronously rotated downward by the action of the pressing spring 53 until the insulating partitioning plate 3 is vertically moved between the moving contact point 21 and the fixed contact point 22, wherein when the moving contact point 21 is separated
  • the partition plate shutter 5 is quickly closed, and the moving contact group 4 can continue to move to the left, increasing the distance between the moving contact point 21 and the fixed contact point 22, so that the isolation effect is better, as shown in FIG.
  • the insulating partition plate 3 can also drive the switch contact electrode 1 to move, that is, when the separation and power off is required, the partition plate shutter 5 is rotated downward, and the movable contact is pushed through the movable curved surface 52.
  • the group 4 drives the moving electrode 11 to move to the left while the insulating partitioning plate 3 is vertically moved between the moving contact point 21 and the fixed contact point 22.
  • the moving contact group 4 drives the moving electrode 11 to move to the right, at this time, the transitional arc surface 41 on the moving contact group 4 and the partitioning plate shutter 5 are The movable curved surface 52 abuts and pushes the partitioning plate shutter 5 to rotate upward synchronously, wherein the moving plate contact door 21 starts to open when moving to a point close to the fixed contact point 22, and the insulating partition plate is opened. 3 is rotated upward with the partitioning shutter 5 to above the moving contact point 21 and the fixed contact point 22 until the moving contact point 21 and the fixed contact point 22 are in contact with each other, that is, the state shown in FIG.
  • the insulating partition plate 3 drives the movable electrode 11 to move synchronously, or the moving electrode 11 drives the insulating partition plate 3 to move synchronously, so that the insulating partition plate 3 can be quickly placed not only at the moving contact point 21 but also at the fixed contact point 22. Between, the normal conduction between the power switch contact points 2 is not affected, and the partition plate shutter 5 and the insulating partition plate 3 can be reset synchronously following the reset contact of the moving electrode 11 without manual reset, which is convenient to operate. .
  • the transitional arc surface 41 on the moving contact group 4 abuts the movable curved surface 52 on the partitioning shutter 5, and when the moving contact 21 moves to a position close to the fixed contact 22, the partitioning shutter 5 is It will start to open.
  • the quick closing of the partitioning plate shutter 5 is realized, so that the isolation and arc extinguishing effect is better.
  • This embodiment employs contact friction to drive the insulating partition plate 3 and the moving electrode 11, and has the advantages of high reliability and stability with respect to the general lever linkage.
  • the moving contact point 11 is designed to have a virtual position-free structure, and the overall position of the device is reduced relative to the general lever linkage structure switching device, and the moving contact point 11 directly drives the partitioning plate shutter 5 through the frictional movable arc surface 52.
  • the overall structure of the device is simpler, and the reliability and stability are higher.
  • the left and right switch contact electrodes 1 are pressed against each other by a spring, and the power switch contact points 2 are in contact with each other, and further includes The two switch contacts the movable insert 6 above the contact surface of the electrode 1, the insulating partition 3 being mounted in the middle of the movable insert 6, wherein the movable insert 6 comprises a plug 61 and a stay 62 above the plug 61.
  • the width of the plug 61 is less than the sum of the thicknesses of the two power switch contact points 2, and the width of the riser 62 is greater than the sum of the thicknesses of the two power switch contact points 2 and the insulating partition plate 3.
  • the left and right switch contact electrodes 1 are pressed against each other.
  • the active card is controlled. 6 moves downward, the plug 61 is first inserted into the gap of the two switch contact electrodes 1 to play a guiding role. Then, referring to FIG. 8, the movable board 6 continues to move downward, and the stay 62 will be left and right. The two switch contact electrodes 1 are pushed away in the left and right directions, and the power switch contact point 2 is separated and disconnected. Referring to FIG. 9, the movable board 6 continues to move downward, and the insulating partition board 3 is moved to two. The power switch is in contact between points 2. When the contact energization is required, it is only necessary to control the movable insertion plate 6 to move upwards, so that the left and right switch contacts the electrode 1 to re-contact the energization.
  • the two switch contact electrodes 1 include a moving electrode 11 and a fixed electrode 12, and a side of the insulating partition plate 3 facing the moving electrode 11 is disposed. It is convenient to insert the insulating partition 3 into the cut surface 31 between the two power switch contact points 2. This design allows the insulating spacer 3 to be easily and quickly inserted between the two power switch contacts 2.
  • the moving electrode 11 is connected to a compression spring 7. Referring to FIG. 10, when two power switch contact points 2 are in contact, the insulating partition plate 3 is above the contact surface of the two power switch contact points 2, and the compression spring 7 is in an extended state; referring to FIG.
  • the insulating partition plate 3 is pressed downward, the moving electrode 11 and the fixed electrode 12 are separated, the circuit is de-energized, and the pressure of the moving electrode 11 causes the compression spring 7 to contract; referring to FIG. 12, the insulation
  • the partition plate 3 continues to press down until it moves between the two power switch contact points 2, the circuit is de-energized, the pressure of the moving electrode 11 causes the compression spring 7 to fully contract, and the arc generated by the separation of the two power switch contact points 2 is insulated.
  • the partition plate is cut off.
  • a fourth embodiment of the present invention is different from the third embodiment in that the two switch contact electrodes 1 are both moving electrodes 11 and the two ear light moving electrodes 11 are connected.
  • a compression spring 7 is provided, and the two sides of the two movable electrodes 11 are respectively provided with a cut surface 31 for facilitating insertion of the insulating partition plate 3 between the two power switch contact points 2, The two cut faces 31 form a tip end portion.
  • the working process is similar to that of the third embodiment, and is not described here.

Landscapes

  • Contacts (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

一种同步绝缘分隔电力开关装置,通过在电力开关接触点(2)之间设置由绝缘材料制作的绝缘分隔板(3),使绝缘分隔板同步移动到已接触导电或刚断路或已经断路的两个电力开关接触点之间,接点分离时所产生的电弧立即被绝缘分隔板分隔并推离接点触头之外,能够有效阻止电弧延续,避免损害接点,与传统空气电力开关装置相比可将接点分离的距离缩短,提高接点间的绝缘度,该电力开关装置正常使用时不会影响电力开关触点之间的正常导通,其结构简单、安装方便、体积小、成本低廉、响应速度快。

Description

一种同步绝缘分隔电力开关装置
技术领域
本发明涉及一种电力开关装置,特别是一种同步绝缘分隔电力开关装置。
背景技术
电力开关装置用于为配电系统或用电设备的运行进行控制和保护,现有的电力开关装置一般使用空气为介质绝缘,接电分离需要较长距离才能达到足够绝缘度,而且接点分离时产生的电弧,容易在接点与接点之间的空气中继续燃烧,因而损害接点。
传统的空气电力开关装置通过使用灭弧罩来抑制电弧。灭弧罩是安装在环绕着发生的电弧的路径的附近,用以将电弧引导到灭弧罩内,减少电弧维持在触点的时间,降低电弧温度,从而加速电弧熄灭的比较常用的装置。首先,灭弧罩要受电弧高温的作用,所以对灭弧罩的材料也有一定的要求,其制作成本高,而且灭弧罩也容易烧坏;其次,为了确保绝缘安全,灭弧罩不能太过接近电极接点或导体,从而导致放电电弧不一定会被灭弧罩吸收,使灭弧罩容易失效;再次,由于灭弧罩的作用并不是消灭电弧, 只是将电弧尽量引导到灭弧罩内, 减少电弧维持在触点的时间,其灭弧效果往往不甚理想。
发明内容
为解决上述问题,本发明的目的在于提供一种能有效阻止电弧延续,绝缘度好,能避免损害接点而且可将接点分离距离大大缩短的同步绝缘分隔电力开关装置。
本发明解决其问题所采用的技术方案是:
一种同步绝缘分隔电力开关装置,包括两个开关接触电极,所述开关接触电极上设置有电力开关接触点,其中至少一个开关接触电极为可移动的电极,所述开关接触电极接触通电或分离断电,还包括一片绝缘分隔板,所述绝缘分隔板与所述两个开关接触电极互相同步连动,当两个开关接触电极分离时,连动所述绝缘分隔板移动到所述两个电力开关接触点之间,当两个开关接触电极准备接触通电时,连动所述绝缘分隔板离开所述两个开关接触电极之间。
作为上述的一种实施方式,所述绝缘分隔板与所述两个开关接触电极互相同步连动,包括开关接触电极带动绝缘分隔板移动,或绝缘分隔板带动开关接触电极移动。
进一步地,所述的两个开关接触电极包括移动电极和固定电极,所述移动电极上设置有移动接触点,固定电极上设置有固定接触点,还包括一分隔板活门,所述分隔板活门包括分隔板旋转轴心、可被移动电极推动使其转动打开和/或推动移动电极移动的活动弧面,分隔板活门绕分隔板旋转轴心转动,当移动电极和固定电极分离时,所述分隔板活门绕分隔板旋转轴心下降将绝缘分隔板移动到移动接触点和固定接触点之间,当移动电极和固定电极准备接触通电时,移动电极与活动弧面抵接并沿该活动弧面推动打开分隔板活门,使绝缘分隔板离开两个开关接触电极之间后让移动接触点和固定接触点相接触。
进一步地,所述移动电极安装于一个移动接点组上,所述移动接点组上设置有与活动弧面相匹配的过渡弧面。
进一步地,所述分隔板活门上还设置有用于向分隔板活门施加向下压力的下压弹簧。
作为上述的另一种实施方式,还包括设置于两个开关接触电极接触面上方的活动插板,所述绝缘分隔板安装在活动插板的中部,当两个开关接触电极需要分离断电时,所述活动插板向下运动,将开关接触电极往左右两个方向推开,同时将绝缘分隔板移动至两个电力开关接触点之间。
进一步地,所述活动插板包括插头和在插头上方的撑板,所述插头的宽度小于两个电力开关接触点厚度之和,所述撑板的宽度大于两个电力开关接触点及绝缘分隔板的厚度之和。
作为上述的第三种实施方式,所述两个开关接触电极(1)包括移动电极(11)和固定电极(12),所述绝缘分隔板(3)安装在移动电极(11)和固定电极(12)之间并且可往返移动,当所述绝缘分隔板(3)插进移动电极(11)和固定电极(12)之间时,所述两个电力开关接触点分离。
进一步地,所述绝缘分隔板(3)面向移动电极(11)的一侧设置有方便将绝缘分隔板(3)插入两个电力开关接触点(2)之间的切面(31),所述移动电极(11)连接有压缩弹簧(7),当所述绝缘分隔板(3)插进移动电极(11)和固定电极(12)之间时,压缩弹簧(7)收缩,当所述绝缘分隔板(3)抽离移动电极(11)和固定电极(12)之间时,压缩弹簧(7)伸展。
作为上述的第四种实施方式,所述的两个开关接触电极(1)均为移动电极(11),所述绝缘分隔板(3)面向所述两个移动电极(11)的两侧分别设置有方便将绝缘分隔板(3)插入两个电力开关接触点(2)之间的切面(31),所述移动电极(11)连接有压缩弹簧(7)。
本发明的有益效果是:本发明采用的一种同步绝缘分隔电力开关装置,通过在电力开关接触点之间设置有由绝缘材料制作而成的绝缘分隔板,所述绝缘分隔板同步移动至已接触导电或刚断路或已经断路所述之两个电力开关接触点之间,接点分离时所产生的电弧立即被绝缘分隔板所分隔及推离接点触头之外,能有效阻止电弧延续,避免损害接点,与传统空气电力开关装置相比可将接点分离的距离大大缩短,更可提高接点间的绝缘度,而且本发明在正常使用时不会影响电力开关接触点之间的正常导通,还具有结构简单、安装方便、体积小、成本低廉、响应速度快之优点。
附图说明
下面结合附图和实例对本发明作进一步说明。
图1是本发明的实施例一电力开关接触点在连接状态下的结构示意图;
图2是本发明实施例一中移动电极断开连接时的结构示意图;
图3是本发明实施例一中移动电极完全断开连接时的结构示意图;
图4是本发明实施例一中移动电极向固定电极方向移动时的结构示意图;
图5是本发明实施例一中移动电极与固定电极连接后的结构示意图;
图6是本发明实施例二中电力开关接触点在连接状态下的结构示意图;
图7是本发明实施例二中活动插板插头插进开关接触电极间空隙时的结构示意图;
图8是本发明实施例二中撑板将开关接触电极撑开时的结构示意图;
图9时本发明实施例二中绝缘分隔板移动至电力开关接触点之间时的结构示意图;
图10是本发明实施例三的结构示意图;
图11是本发明实施例三移动电极分离时的结构示意图;
图12是本发明实施例三中绝缘分隔板完全移动至电力开关接触点之间时的结构示意图;
图13是本发明实施例五的结构示意图;
图14是本发明实施例五开关接触电极分离时的结构示意图;
图15是本发明实施例五中绝缘分隔板完全移动至电力开关接触点之间时的结构示意图。
具体实施方式
参照图1- 图15所示,本发明的一种同步绝缘分隔电力开关装置,包括两个开关接触电极1,所述开关接触电极1上设置有电力开关接触点2,两个电力开关接触点2,其中至少一个开关接触电极1为可移动的电极,所述开关接触电极1两个电力开关接触点2在正常工作时接触通电,当发生电路故障时分离断电接触通电或分离断电,还包括一片绝缘分隔板3,所述绝缘分隔板3与所述两个开关接触电极1互相同步连动,所述的相互同步连动,既可以为开关接触电极1带动绝缘分隔板3移动,也可以为绝缘分隔板3带动开关接触电极1移动。当两个开关接触电极1分离时,连动所述绝缘分隔板3移动到所述两个电力开关接触点2之间,当两个开关接触电极1准备接触通电时,连动所述绝缘分隔板3离开所述两个开关接触电极1之间。本发明通过在电力开关接触点2之间设置有由绝缘材料制作而成的绝缘分隔板3,所述绝缘分隔板3同步移动至已接触导电或刚断路或已经断路所述之两个电力开关接触点2之间,接点分离时所产生的电弧立即被绝缘分隔板3所分隔及推离接点触头以外,能有效阻止电弧延续,避免损害接点,与传统空气电力开关装置相比可将接点分离的距离大大缩短,更可提高接点间的绝缘度,而且本发明在正常使用时不会影响电力开关接触点2之间的正常导通,还具有结构简单、安装方便、体积小、成本低廉、响应速度快之优点。
参照图1至图5所示,为本发明的第一实施例,其中所述的两个开关接触电极1其中一个为移动电极11,另一个为固定电极12,所述移动电极11上设置有移动接触点21,固定电极12上设置有固定接触点22,所述移动电极11安装在一个移动接点组4上,所述移动接点组4带动移动电极11往左右方向运动。
当需要接触通电时,移动接触点21和固定接触点22相互接触,当需要分离断电时,移动接点组4带动移动电极11向左移动分离,当需要进行复位接触通电时,移动接点组4带动移动电极11向右移动与固定电极12连接。当移动接触点21和固定接触点22分离时,移动接触点21和固定接触点22之间会产生电弧,为了防止损害接点,移动电极11连动绝缘分隔板3移动至移动接触点21和固定接触点22之间,从而将电弧分隔或吸收。本实施例中,设置有一分隔板活门5,其包括分隔板旋转轴心51和可被移动接点组4推动使其转动打开和/或推动移动电极11移动的活动弧面52,分隔板活门5绕分隔板旋转轴心51转动,所述绝缘分隔板3安装于分隔板活门5上,且垂直于分隔板活门5的转动半径,所述分隔板活门5上还设置下压弹簧53,所述下压弹簧53的一端抵接在分隔板活门5的上侧,向分隔板活门5施加向下的压力,所述绝缘分隔板3可随分隔板活门5转动至移动接触点21和固定接触点22之间,如图3所示,绝缘分隔板3的面积大于移动接触点21和固定接触点22的面积,能完全阻隔移动接触点21和固定接触点22之间所产生的电弧。其中移动接点组4上设置有与活动弧面52相匹配的过渡弧面41,可沿活动弧面52推动分隔板活门5向上转动,虽然本实施例在重力的作用下分隔板活门5也可以向下转动,但是通过设置下压弹簧53能加快分隔板活门5的转动速度,也能让本发明适用于不同位置的安装方式,而且采用下压弹簧53的压力驱动绝缘分隔板3移动至移动接触点21和固定接触点22之间,其可靠性和稳定性高,其中本实施例的具体工作过程如下:
参照图1所示,当需要接触通电时,移动电极11上的移动接触点21与固定电极12上的固定接触点22相互接触通电,这时分隔板活门5及绝缘分隔板3被推至移动接触点21和固定接触点22的上方,下压弹簧53呈压缩状态,并施加向下的力。
参照图2所示,当需要分离断电时,电力开关装置响应进行断路,这时移动电极11向左运动,移动接触点21和固定接触点22断开连接,随着移动接点组4的向左移动,这时分隔板活门5受到下压弹簧53的作用同步向下转动,直至绝缘分隔板3垂直移动至移动接触点21和固定接触点22之间,其中当移动接触点21离开时快速关闭分隔板活门5,这时移动接点组4可继续向左运动,增加移动接触点21和固定接触点22之间的距离,使其隔离效果更好,如图3所示。
另外,不同于上述的工作过程,所述绝缘分隔板3也可带动开关接触电极1移动,即当需要分离断电时,分隔板活门5向下转动,通过活动弧面52推动移动接点组4带动移动电极11向左移动,同时绝缘分隔板3垂直移动至移动接触点21和固定接触点22之间。
参照图4所示,当需要对电力开关装置进行复位接触通电时,移动接点组4带动移动电极11向右移动,这时移动接点组4上的过渡弧面41与分隔板活门5上的活动弧面52抵接,并推动分隔板活门5同步向上转动,其中移动接触点21在移动到很接近固定接触点22时,分隔板活门5才会开始开启,这时绝缘分隔板3随分隔板活门5向上转动至移动接触点21和固定接触点22的上方,直至移动接触点21和固定接触点22与接触,即图5所示状态。
本实施例中绝缘分隔板3带动移动电极11同步移动,或移动电极11带动绝缘分隔板3同步移动,不仅能将绝缘分隔板3快速置于移动接触点21和固定接触点22之间,不会影响电力开关接触点2之间的正常导通,而且分隔板活门5及绝缘分隔板3能跟随着移动电极11的复位接触通电同步进行复位,无需进行手动复位,操作方便。本实施例中移动接点组4上的过渡弧面41与分隔板活门5上的活动弧面52抵接,当移动接触点21移动至接近固定接触点22的位置时,分隔板活门5才会开始开启,当移动接触点21离开固定接触点22时,实现分隔板活门5的快速关闭,使隔离灭弧效果更优。本实施例采用接触摩擦带动绝缘分隔板3和移动电极11,相对于一般的杠杆连动具有可靠性和稳定性高的优点。而且本实施例中移动接触点11采用无虚位带动结构设计,装置整体相对于一般杠杆连动结构开关装置虚位减少,加之移动接触点11直接通过摩擦活动弧面52带动分隔板活门5,使得该装置整体结构更为简单,可靠性和稳定性更高。
参照图6至图9所示,为本发明的第二实施例,本实施例中,左右两个开关接触电极1通过弹簧相互压紧,电力开关接触点2相互接触导通,还包括设置于两个开关接触电极1接触面上方的活动插板6,所述绝缘分隔板3安装在活动插板6的中部,其中所述活动插板6包括插头61和在插头61上方的撑板62,所述插头61的宽度小于两个电力开关接触点2厚度之和,所述撑板62的宽度大于两个电力开关接触点2及绝缘分隔板3的厚度之和。本实施例的具体工作过程如下:
参照图6所示,当需要接触通电时,左右两个开关接触电极1相互压紧导通,参照图7所示,当两个开关接触电极1需要分离断电时,控制所述活动插板6向下移动,所述插头61首先插进两个开关接触电极1的间隙中,起到导向的作用,然后,参照图8所示,活动插板6继续向下移动,撑板62将左右两个开关接触电极1往左右两个方向推开,并让电力开关接触点2分离断开,参照图9所示,活动插板6继续向下移动,将绝缘分隔板3移动至两个电力开关接触点2之间。当需要接触通电时,只需控制活动插板6向上移动,即可让左右两个开关接触电极1重新接触通电。
参照图10至图12所示,为本发明的第三实施例,所述的两个开关接触电极1包括移动电极11和固定电极12,绝缘分隔板3面向移动电极11的一侧设置有方便将绝缘分隔板3插入两个电力开关接触点2之间的切面31。该设计能让绝缘分隔板3方便、快速地插进两个电力开关接触点2之间。所述移动电极11连接有压缩弹簧7。参照图10,当两个电力开关接触点2接触时,所述绝缘分隔板3在两个电力开关接触点2的接触面上方,所述压缩弹簧7呈伸展状态;参照图11,当两个开关接触电极准备分离断电时,绝缘分隔板3向下挤压,使移动电极11和固定电极12分离,电路断电,移动电极11的压力使压缩弹簧7收缩;参照图12,绝缘分隔板3继续下压直至移动至两个电力开关接触点2之间,电路断电,移动电极11的压力使压缩弹簧7完全收缩,两个电力开关接触点2分离所产生的电弧被绝缘分隔板截断。显然,当两个电力开关接触点2准备接触通电时,绝缘分隔板3抽离两个电力开关接触点2中间,收缩状态的压缩弹簧7伸展提供压力压迫移动电极11迅速移动与固定电极12接触。
参照图13至图15所示,为本发明的第四实施例,与第三实施例不同的地方在于,所述的两个开关接触电极1均为移动电极11,两耳光移动电极11均连接有压缩弹簧7,所述绝缘分隔板3面向所述两个移动电极11的两侧分别设置有方便将绝缘分隔板3插入两个电力开关接触点2之间的切面31,所述的两个切面31形成一个尖端部。其工作过程与实施例三类似,在此不累述。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。

Claims (10)

  1. 一种同步绝缘分隔电力开关装置,其特征在于:包括两个开关接触电极(1),所述开关接触电极(1)上设置有电力开关接触点(2),其中至少一个开关接触电极(1)为可移动的电极,所述开关接触电极(1)接触通电或分离断电,还包括一片绝缘分隔板(3),所述绝缘分隔板(3)与所述两个开关接触电极(1)互相同步连动,当两个开关接触电极(1)分离时,连动所述绝缘分隔板(3)移动到所述两个电力开关接触点(2)之间,当两个开关接触电极(1)准备接触通电时,连动所述绝缘分隔板(3)离开所述两个开关接触电极(1)之间。
  2. 根据权利要求1所述的一种同步绝缘分隔电力开关装置,其特征在于:上述的绝缘分隔板(3)与所述两个开关接触电极(1)互相同步连动,包括开关接触电极(1)带动绝缘分隔板(3)移动,或绝缘分隔板(3)带动开关接触电极(1)移动。
  3. 根据权利要求1或2所述的一种同步绝缘分隔电力开关装置,其特征在于:所述的两个开关接触电极(1)包括移动电极(11)和固定电极(12),所述移动电极(11)上设置有移动接触点(21),固定电极(12)上设置有固定接触点(22),还包括一分隔板活门(5),所述分隔板活门(5)包括分隔板旋转轴心(51)、可被移动电极(11)推动使其转动打开和/或推动移动电极(11)移动的活动弧面(52),分隔板活门(5)绕分隔板旋转轴心(51)转动,当移动电极(11)和固定电极(12)分离时,所述分隔板活门(5)绕分隔板旋转轴心(51)下降将绝缘分隔板(3)移动到移动接触点(21)和固定接触点(22)之间,当移动电极(11)和固定电极(12)准备接触通电时,移动电极(11)与活动弧面(52)抵接并沿该活动弧面(52)推动打开分隔板活门(5),使绝缘分隔板(3)离开两个开关接触电极(1)之间后让移动接触点(21)和固定接触点(22)相接触。
  4. 根据权利要求3所述的一种同步绝缘分隔电力开关装置,其特征在于:所述移动电极(11)安装于一个移动接点组(4)上,所述移动接点组(4)上设置有与活动弧面(52)相匹配的过渡弧面(41)。
  5. 根据权利要求2至4任一所述的一种同步绝缘分隔电力开关装置,其特征在于:所述分隔板活门(5)上还设置有用于向分隔板活门(5)施加向下压力的下压弹簧(53)。
  6. 根据权利要求1或2所述的一种同步绝缘分隔电力开关装置,其特征在于:还包括设置于两个开关接触电极(1)接触面上方的活动插板(6),所述绝缘分隔板(3)安装在活动插板(6)的中部,当两个开关接触电极(1)需要分离断电时,所述活动插板(6)向下运动,将开关接触电极(1)往左右两个方向推开,同时将绝缘分隔板(3)移动至两个电力开关接触点(2)之间。
  7. 根据权利要求6所述的一种同步绝缘分隔电力开关装置,其特征在于:所述活动插板(6)包括插头(61)和在插头(61)上方的撑板(62),所述插头(61)的宽度小于两个电力开关接触点(2)厚度之和,所述撑板(62)的宽度大于两个电力开关接触点(2)及绝缘分隔板(3)的厚度之和。
  8. 根据权利要求1或2所述的一种同步绝缘分隔电力开关装置,其特征在于:
    所述两个开关接触电极(1)包括移动电极(11)和固定电极(12),所述绝缘分隔板(3)安装在移动电极(11)和固定电极(12)之间并且可往返移动,当所述绝缘分隔板(3)插进移动电极(11)和固定电极(12)之间时,所述两个电力开关接触点分离。
  9. 根据权利要求8所述的一种同步绝缘分隔电力开关装置,其特征在于:所述绝缘分隔板(3)面向移动电极(11)的一侧设置有方便将绝缘分隔板(3)插入两个电力开关接触点(2)之间的切面(31),所述移动电极(11)连接有压缩弹簧(7),当所述绝缘分隔板(3)插进移动电极(11)和固定电极(12)之间时,压缩弹簧(7)收缩,当所述绝缘分隔板(3)抽离移动电极(11)和固定电极(12)之间时,压缩弹簧(7)伸展。
  10. 根据权利要求8所述的一种同步绝缘分隔电力开关装置,其特征在于:所述的两个开关接触电极(1)均为移动电极(11),所述绝缘分隔板(3)面向所述两个移动电极(11)的两侧分别设置有方便将绝缘分隔板(3)插入两个电力开关接触点(2)之间的切面(31),所述移动电极(11)连接有压缩弹簧(7)。
PCT/CN2014/075894 2013-10-23 2014-04-22 一种同步绝缘分隔电力开关装置 WO2015058501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310503314.9A CN103531379B (zh) 2013-10-23 一种同步绝缘分隔电力开关装置
CN201310503314.9 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015058501A1 true WO2015058501A1 (zh) 2015-04-30

Family

ID=49933311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075894 WO2015058501A1 (zh) 2013-10-23 2014-04-22 一种同步绝缘分隔电力开关装置

Country Status (1)

Country Link
WO (1) WO2015058501A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3288126B1 (en) * 2016-08-24 2020-01-29 Anord Mardix Databar Busway Limited Improvements in and relating to power distribution systems
CN112053865A (zh) * 2019-06-06 2020-12-08 矢崎总业株式会社 电源电路切断装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458225A (en) * 1982-11-18 1984-07-03 Eaton Corporation Circuit breaker with independent magnetic and thermal responsive contact separation means
EP0310469A1 (fr) * 1987-10-02 1989-04-05 Telemecanique Interrupteur de protection à écran de coupure d'arc
CN1457065A (zh) * 2003-03-12 2003-11-19 北京人民电器厂 断路器强制灭弧装置
CN201689799U (zh) * 2010-05-13 2010-12-29 漳州马可电器科技有限公司 一种带断弧装置的隔离开关
CN202076163U (zh) * 2011-04-18 2011-12-14 尹明志 一种小型断路器
CN102376505A (zh) * 2011-11-15 2012-03-14 江苏大全凯帆电器股份有限公司 触头保护片及高分断能力塑壳断路器触头
CN103531379A (zh) * 2013-10-23 2014-01-22 通能顺达科技国际有限公司 一种同步绝缘分隔电力开关装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458225A (en) * 1982-11-18 1984-07-03 Eaton Corporation Circuit breaker with independent magnetic and thermal responsive contact separation means
EP0310469A1 (fr) * 1987-10-02 1989-04-05 Telemecanique Interrupteur de protection à écran de coupure d'arc
CN1457065A (zh) * 2003-03-12 2003-11-19 北京人民电器厂 断路器强制灭弧装置
CN201689799U (zh) * 2010-05-13 2010-12-29 漳州马可电器科技有限公司 一种带断弧装置的隔离开关
CN202076163U (zh) * 2011-04-18 2011-12-14 尹明志 一种小型断路器
CN102376505A (zh) * 2011-11-15 2012-03-14 江苏大全凯帆电器股份有限公司 触头保护片及高分断能力塑壳断路器触头
CN103531379A (zh) * 2013-10-23 2014-01-22 通能顺达科技国际有限公司 一种同步绝缘分隔电力开关装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3288126B1 (en) * 2016-08-24 2020-01-29 Anord Mardix Databar Busway Limited Improvements in and relating to power distribution systems
CN112053865A (zh) * 2019-06-06 2020-12-08 矢崎总业株式会社 电源电路切断装置
EP3748659A1 (en) * 2019-06-06 2020-12-09 Yazaki Corporation Power circuit shut off device
US11217939B2 (en) 2019-06-06 2022-01-04 Yazaki Corporation Power circuit shut off device
CN112053865B (zh) * 2019-06-06 2023-05-12 矢崎总业株式会社 电源电路切断装置

Also Published As

Publication number Publication date
CN103531379A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2018090548A1 (zh) 双断口隔离开关模块
WO2016074525A1 (zh) 一种采用连接母排实现负载侧外接地的三工位真空开关
CN105702535A (zh) 一种漏电断路器
CN111816500B (zh) 一种真空断路器的灭弧装置
CN102810799A (zh) 一种漏电保护插头
WO2015058501A1 (zh) 一种同步绝缘分隔电力开关装置
WO2023138257A1 (zh) 一种真空断路器用绝缘筒装置
CN202840125U (zh) 一种新型漏电保护插头
CN205959807U (zh) 一种电力自动化控制及综合保护设备
CN103166143B (zh) 一种固体绝缘环网柜
CN202796775U (zh) 一种线路板取电装置
CN105655160A (zh) 一种具有双断点动触头结构的双电源转换开关
CN109244926A (zh) 一种组合式开关电器
CN105762039B (zh) 断路器触头系统及断路器
CN206628399U (zh) 一种接触性能强的高压隔离开关动触头
CN203850481U (zh) 一种双断点立体布置结构的接触件及其高压电连接器
CN206806233U (zh) 一种新型共箱式断路器
CN114884018A (zh) 一种利用霍尔传感时分双用电机的紧急保护电路装置
CN106887360B (zh) 一种共箱式断路器
CN110729606A (zh) 一种安全电源插座及其操作方法
CN106098489B (zh) 一种带有自锁功能的断路器
CN205752993U (zh) 一种电气配件的安装结构以及应用该安装结构的配电柜
CN202183330U (zh) 高压真空断路器
CN205646555U (zh) 一种环保型高低压配电柜结构
CN220963194U (zh) 高低压配电保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855754

Country of ref document: EP

Kind code of ref document: A1