WO2015058449A1 - 一种可与其它显微结构表征技术联用的冷热台型高速量热仪 - Google Patents

一种可与其它显微结构表征技术联用的冷热台型高速量热仪 Download PDF

Info

Publication number
WO2015058449A1
WO2015058449A1 PCT/CN2013/090170 CN2013090170W WO2015058449A1 WO 2015058449 A1 WO2015058449 A1 WO 2015058449A1 CN 2013090170 W CN2013090170 W CN 2013090170W WO 2015058449 A1 WO2015058449 A1 WO 2015058449A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
temperature
sample
cold
cold stage
Prior art date
Application number
PCT/CN2013/090170
Other languages
English (en)
French (fr)
Inventor
周东山
卫来
姜菁
薛奇
陈葳
王晓亮
江伟
希克⋅克里斯托夫
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US15/028,972 priority Critical patent/US10060804B2/en
Publication of WO2015058449A1 publication Critical patent/WO2015058449A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/006Microcalorimeters, e.g. using silicon microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the invention relates to the technical field of a phase and a microstructure analysis device thereof, in particular to a hot and cold table type high-speed calorimeter which can be combined with other microstructural characterization techniques, and realizes high-speed heat treatment of a sample at the same time, Analytical equipment for structural in situ characterization.
  • Metastable or Evanescent Materials Due to their often singular physicochemical properties, many of the best performing materials are in a particular metastable state. For example, in the process of steel processing, it is transformed from austenite to metastable martensite by quenching, thereby greatly improving its performance.
  • the structure and properties of metastable materials have long been a hot topic in research, covering a wide range of scientific fields such as materials science, physics, chemistry, biology, energy, pharmacy, food, and the environment.
  • thermal analysis especially high-speed thermal analysis, is one of the most effective and reliable means of studying metastable materials.
  • high-speed scanning calorimetry can study the thermodynamic properties of some metastable materials, and can also obtain the metastable state of these materials through high-speed heat treatment.
  • the information provided by high-speed scanning calorimetry has limited information and cannot meet the research needs for the structure and properties of metastable materials. Therefore, it is necessary to develop a high-speed thermal analysis of the sample to obtain its thermal properties, and at the same time, through the combination with the microstructural characterization means to obtain its structural information technology under metastable state.
  • the operation space available for the microstructure characterization equipment is mostly small, and the existing FSC uses the vacuum tube to immerse into the Dewar tank to achieve temperature control, and cannot be performed with other equipment. Combined on site.
  • the sample can only be removed and placed in other equipment, and the internal structure of the sample may have changed during this process.
  • the existing FSC uses power compensation to control the temperature of the sample. When the influence of the incident light used for structural characterization on the sample temperature exceeds the power compensation limit, the sample temperature will be out of control, which may result in a change in the sample structure.
  • a hot and cold table type high-speed calorimeter has been invented.
  • FSC has the following features: 1.
  • a transmissive window and a reflection window are formed on the opposite wall of the sealed sample chamber.
  • the device responds quickly and adjusts to changes in sample temperature.
  • the FSC adopts power compensation to realize the temperature control of the sample instead of directly monitoring the sample temperature through the program, so as to ensure that it is stable at the set value and avoid the influence of the incident light of the structure characterization device.
  • the device is placed under a microscope to meet the needs of reflection and transmission detection and can be used in conjunction with a variety of structural characterization equipment.
  • the hot and cold table type high speed calorimeter provided by the invention comprises: a sample chamber (100), a sample chamber temperature control system (400) and a high speed calorimetric system (200).
  • the sample chamber (100) includes: a hot and cold stage (110), a reflection window (107), and a transmission window (108) including a heating element and a refrigerant flow conduit to control the temperature thereof and having a transmission hole (109).
  • the reflection window (107) facilitates the incidence of light onto the sample and reflects it, and the transmission window (108) allows light to be incident on the sample through the transmission aperture (109) and exit through the reflection window (107).
  • the reflective window (107) and the transmissive window (108) are made of different light-transmissive materials depending on the application, such as calcium fluoride lenses for optical detection in the ultraviolet, visible and infrared bands, and polyacyl groups for X-ray-related detection. Imine film lens;
  • the hot and cold stage is used to provide ambient temperature to the sample.
  • the surface of the hot and cold table (110) is made of pure silver or other material with good heat conduction to facilitate uniform temperature throughout the surface of the hot and cold table.
  • the hot and cold stage (110) has built-in temperature sensors, heating elements, and cooling ducts for the passage of refrigerants such as liquid nitrogen.
  • the refrigerant inlet (103) and the refrigerant outlet (104) are used for the refrigerant such as liquid nitrogen to enter the inside of the hot and cold stage.
  • the transmission hole (109) penetrates through the hot and cold stage, facing the reflection window (107) and the transmission window (108), facilitating light to enter the sample through the hot and cold stage.
  • the thin film sensor terminal (101) connects the signal line of the thin film sensor to the thin film sensor signal line interface (102).
  • the hot and cold stage temperature control signal interface (105) is used for temperature control with the sample chamber
  • the system (400) is connected such that the hot and cold stage temperature is controlled by it.
  • the atmosphere channel (106) allows the atmosphere inside and outside the sample to communicate.
  • the sample chamber temperature control system (400) has both heating and cooling functions to stabilize the temperature of the surface of the hot and cold table at a certain set value.
  • the high speed calorimetric system (200) includes: a thin film sensor (220) for reference, a thin film sensor (210) for loading samples, a high speed temperature control and measurement system (300), and for program control and data processing Computer (500).
  • the film sensor (220) for reference and the film sensor (210) for loading a sample must contain a thermocouple or thermopile for detecting temperature and a heating resistor.
  • a thermocouple or thermopile for detecting temperature and a heating resistor.
  • commercially available vacuum heat-conducting gauges of XEN-39391, XEN-39392, XEN-39394, XEN-39395, etc. which are manufactured by Xensor Integration of the Netherlands and based on XEN-014 ceramics, can be used as sensors.
  • the high speed temperature control and measurement system (300) includes: a PID temperature controller (310) for receiving a reference film sensor (220) temperature signal and generating a control signal, for receiving a sample sensor (210) and a reference sensor (220) a temperature signal and a differential amplifier (320) that generates a control signal, and a high-speed digital-to-analog converter (not shown) for signal output and acquisition, the high-speed digital-to-analog converter integrated with the computer (500) together.
  • the controller (310) provides an average heating power for the sample sensor (210) and the reference sensor (220) based on the received temperature signal.
  • the differential amplifier (320) provides compensation power to the sample sensor (210) based on the received temperature signals of the sample sensor (210) and the reference sensor (220).
  • the high speed digital-to-analog converter usually requires one digital-to-analog conversion interface and eight analog-to-digital conversion interfaces, and different sampling rates and precisions are required according to requirements.
  • the converter uses asynchronous 1.25 MS/S and above sampling rates and 16-bit and above precision.
  • the converter must have an input and output buffer matched with the sampling rate, and write a temperature program to the output buffer according to the temperature rising or cooling rate by a device such as a computer (500), and output it to the above by digital-analog conversion.
  • a controller (310) for providing an average heating power sets the port.
  • the controller (310) adopts a PID controller, and the set end of the controller is connected with the signal output end of the high speed digital-to-analog converter, and the measuring end is connected with the thermopile of the reference sensor (220) according to the set end and the measuring end.
  • the signal produces a heating voltage that provides the average heating power for the sample sensor (210) and the reference sensor (220).
  • the differential amplifier (320) is an adder or a subtractor composed of an integrated operational amplifier circuit, and a PID controller can also be used.
  • the differential amplifier (320) is simultaneously connected to the thermoelectric stack of the sample sensor (210) and the reference sensor (220).
  • a heating compensation voltage is generated based on the temperature signals of the two sensors to provide compensation power to the sample sensor (210).
  • the hot and cold table type high-speed calorimeter provided by the invention can realize the calorimetric analysis of the sample at a temperature rise and fall rate of up to 200,000 K/S, and the high-speed heat treatment of the sample, especially the polymer sample, at such a temperature rise and fall rate, Get some kind of metastable state.
  • the invention is unique in that after obtaining a metastable sample, the sample can be inspected in situ by a reflection window (107), a transmission window (108), and a transmission hole (109) to obtain microstructure information.
  • the temperature of the sample can be monitored in a millisecond time period to stabilize at a certain set temperature, preventing the incident light from causing the sample to heat up and changing, affecting the test results.
  • Related work is not possible on other similar devices (such as the high speed scanning calorimeter described in U.S. Patent No. 2,100,046, 573, A1).
  • Fig. 1 is a block diagram showing the structure of a hot and cold stage type high speed calorimeter according to the present invention.
  • 100 represents a sample chamber
  • 107 represents a reflection window located on the upper surface of the sample chamber (100);
  • 108 represents a transmission window located on the lower surface of the sample chamber (100);
  • 200 represents a high-speed calorimetric system;
  • 210 represents a thin film sensor for loading a sample 220 denotes a thin film sensor for reference;
  • 300 denotes a high-speed temperature control and measurement system;
  • 301 denotes a thin film sensor signal transmission line;
  • 400 denotes a sample chamber temperature control system for controlling the temperature of the surface of the hot and cold stage in the sample chamber;
  • 401 denotes a sample Room temperature control signal line;
  • 500 means computer (with high speed digital to analog converter) for program control and data processing;
  • 501 represents data transmission line between computer (500) and sample room temperature control system (400);
  • 502 represents computer
  • 610 represents a light emitter and detector of a structurable structural characterization device
  • 611 represents the incident light and the reflected light to be received by the light emitter and detector (610) of the structurable structural characterization device ( Or transmitted light in the case of transmission) optical path, the detection light is incident on the surface of the sample from the light emitter and detector (610) of the structural characterization device and reflected
  • 620 represents the light emitter of the structural characterization device that can be used
  • the combined structure characterizes the incident light path produced by the light emitter (620) of the device, which is incident on the sample from the bottom surface of the sample through the sensor film and transmitted to the light emitters and detectors of the associated structural characterization device (610) Receive.
  • the light emitters and detectors (610) of the structural characterization device and the light emitters (620) and optical paths (611) and (621) of the structural characterization device are not included in the present invention, and are only for illustration. this invention.
  • FIG. 100 is the sample chamber; 110 is the hot and cold stage in the sample chamber (100); 101 is the film sensor terminal; 102 is the film sensor signal line interface; 103 is the refrigerant inlet; 104 is the refrigerant outlet; 105 is the hot and cold stage temperature Control signal interface; 106 is the sample chamber atmosphere channel; 210 is the film sensor for loading the sample; 214 A wire for signal transmission of the sample sensor (210); 220 is a thin film sensor for reference; 224 is a wire for signal transmission of the reference sensor (220); 107 is a reflection window. It should be noted that the reflection window (107) is above the profile, and is only used to illustrate its location.
  • Fig. 3 is a side cross-sectional view showing the sample chamber of the hot and cold stage type high-speed calorimeter according to the present invention, and the cross-sectional position thereof is shown by a broken line in Fig. 2 .
  • 100 is a sample chamber; 101 is a film sensor terminal; 107 is a reflection window; 108 is a transmission window; 110 is a hot and cold stage; 109 is a transmission hole penetrating the inside of the hot and cold stage; 210 is a film sensor for loading a sample; 214 is a cable for signal transmission of the sample sensor (210).
  • FIG. 4 is a block diagram of a high-speed temperature control and measurement system (300) of a hot and cold table type high-speed calorimeter according to the present invention.
  • 110 represents a hot and cold stage
  • 210 represents a thin film sensor for loading a sample
  • 220 represents a thin film sensor for reference
  • 310 represents a PID temperature controller
  • 320 represents a differential amplifier
  • 211 represents a sample sensor (210) thermopile signal line 212 denotes a PID temperature controller (310) for loading a signal line of the average heating power for the sample sensor (210);
  • 213 denotes a signal line for which the differential amplifier (320) loads the compensation power for the sample sensor (210);
  • 221 denotes a reference sensor ( 220)
  • Thermopile signal line; 222 indicates that the PID temperature controller (310) is a signal line for loading the average heating power of the reference sensor (220).
  • Figure 5 is a graph showing the effect of the Raman laser on the sample and the temperature of the sample after removal and the temperature control of the device.
  • Fig. 1 is a block diagram showing the structure of a hot and cold stage type high speed calorimeter according to an example of the present invention.
  • the film sensor (210) for loading the sample and the film sensor (220) for reference are placed on the surface of the hot and cold table (110) in the sample chamber (100) (see Fig. 2), controlled by the temperature of the sample chamber.
  • the system (400) controls the ambient temperature of the two film sensors (210 and 220).
  • the high-speed temperature control and measurement system (300) controls and collects the temperature of the heating zones of the two membrane sensors (210 and 220) based on the temperature programmed value of the computer (500) on the basis of the ambient temperature provided by the hot and cold stage (110). And transfer the corresponding data to the computer (500) for subsequent calculation and processing, including thermodynamic information of the sample during the temperature program.
  • the sample chamber temperature control system (400) controls the temperature and temperature of the ambient temperature of the two membrane sensors (210 and 220).
  • the hot and cold stage (110) has built-in temperature measurement and heating elements, and the sample chamber temperature control system (400) obtains the surface temperature of the hot and cold stage (110) through the hot and cold stage temperature control signal interface (105), and generates heating and system according to the temperature. Cold signal.
  • the heating signal is loaded by the interface (105) to the heating element in the hot and cold stage; and the cooling signal controls the external liquid nitrogen pump or solenoid valve, etc., and the refrigerant (such as liquid nitrogen, etc.) enters the hot and cold stage through the refrigerant inlet (103).
  • the internal circulation is discharged through the refrigerant outlet (104).
  • the sample chamber temperature control system (400) realizes the control of the surface temperature of the hot and cold table by the above method.
  • 106 is an atmosphere channel that connects the inside and outside of the sample, and can be used to control the atmosphere in the sample chamber to prevent the atmosphere from affecting the sample.
  • the film sensor (210) for loading a sample and the film sensor (220) for reference have a film heating zone as shown in Fig. 2, and a heating resistor and a thermopile for measuring the temperature of the heating zone are disposed around the heating zone.
  • the temperature difference between the heating zone (ie, the hot end) and the ambient temperature (ie, the cold end) is obtained by the thermopile, and the temperature of the heated area of the sensor is calculated by combining the surface temperature of the hot and cold table (generally considered that the ambient temperature is equal).
  • the temperature and heating signals of the two sensors are connected to the terminal (101) through the wires (214 and 224) and to the sample chamber through the interface (102).
  • the PID temperature controller (310) shown in FIG. 4 obtains the temperature of the heating zone of the reference sensor (220) via the temperature signal line (221), and according to the programmed value and the measured temperature of the heating zone of the reference sensor (220), The reference sensor (220) and the sample sensor (210) simultaneously provide an average heating power.
  • the differential amplifier (320) provides a compensation power to the sample sensor (210) based on the measured temperature of the reference sensor (220) and the sample sensor (210), to maintain the sample sensor (210) and the reference sensor (220).
  • the heating zone temperature is equal.
  • the hot and cold stage (110) keeps its surface temperature constant, which is equivalent to ensure that the temperature of the cold end of the sensor is constant.
  • the reflection window (107), transmission window (108), and transmission aperture (109) shown in Figure 3 are facing the heating zone of the sample sensor (210).
  • the reflection window (107) and the transmission window (108) can be selected according to specific needs (such as refractive index, transmittance, etc. of a light source), such as calcium fluoride lenses for optical detection in the ultraviolet, visible and infrared bands.
  • a polyimide film lens or the like can be used for the X-ray related detection.
  • the hot and cold table type high-speed calorimeter When the hot and cold table type high-speed calorimeter is used in combination with the spectroscopy method, if the reflected light is to be detected, the incident light is incident on the surface of the sample through the reflection window (107) and reflected for detection; if the transmitted light is to be detected, The incident light is incident on the sample through the transmission window (108) and the transmission hole (109), and the transmitted light is emitted through the reflection window (107) for detection.
  • the size of the hot and cold table type sample chamber (100) can be designed to grow up to a height of 170 mm x 18 mm x 30.34 mm or less. Therefore, the hot and cold stage high-speed calorimeter can be effectively combined with a variety of microstructure characterization devices, including optical microscopy, micro-Raman spectroscopy, and X-ray transmission.
  • the temperature of the sample is obtained by calculation using the signal collected by the high-speed temperature control and measurement system (300), and the temperature is detected in real time by a computer (500) by program control, and It is regulated by the high-speed temperature control and measurement system (300) in the millisecond time period to stabilize it at the set value.
  • PTT polyethylene terephthalate
  • the temperature of the light source has a influence on the temperature of the sample of less than ⁇ 0.8K, and the temperature of the sample can be adjusted to a set value within a time of not exceeding 0.6 s.
  • the hot and cold stage type high-speed calorimeter in combination with the microstructure characterization equipment, the following experimental scheme is required: 1. Using a hot and cold stage type high-speed calorimeter to set the temperature program Heat treatment to obtain the sample in the expected state; 2. Cool the sample to a temperature far below the structural transition and keep the temperature constant at a cooling rate that can inhibit the structural change of the sample (except for the glass transition); 3. Use the microstructure used together The characterization device characterizes the sample structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种可与其它显微结构表征技术联用的冷热台型高速量热仪,属于物相及其微结构分析设备技术领域。该冷热台型高速量热仪包括:一个壁上有光透射视窗(108)和反射视窗(107)的样品室(100)、一个内部包含加热元件和冷媒流通管道以控制其温度并有一个透射孔(109)的冷热台(110),一个样品室控温系统(400)和一个高速量热系统(200)。该冷热台型高速量热仪的优点为:1:将具有升降温速率的高速量热系统微型化至冷热台中,利用反射、透射视窗和冷热台透射孔进行量热与显微结构表征的现场联用;2:通过程控迅速响应,将结构测量中入射光引起的样品温度扰动进行动态的补偿,稳定样品温度,从而方便地用于亚稳态的研究。

Description

一种可与其它显微结构表征技术联用的冷热台型高速量热仪 技术领域
本发明涉及物相及其微结构分析设备技术领域, 具体是一种可与其它显微结构表征 技术联用的冷热台型高速量热仪, 实现对样品进行高速热处理的同时, 对其微结构进行 原位表征的分析设备。
背景技术
亚稳态或易逝态材料由于其通常具有奇异的理化性质, 许多性能优良的材料均处在 特殊的亚稳态。 比如对钢材加工过程中, 通过淬火使其由奥氏体转变为亚稳的马氏体, 从而大大提高了其使用性能。亚稳态材料的结构和性质一直以来都是人们研究的热点之 一, 研究领域涉及材料学、 物理、 化学、 生物、 能源、 药学、 食品以及环境等众多科学 领域。 当前, 获得材料亚稳态最简单而直接的方式是对其进行热处理, 因而热分析尤其 是高速热分析技术成为研究亚稳态材料最有效和最可靠的手段之一。
近年来, Christoph Schick 教授等利用商用的薄膜真空传感器 (真空热导规, TCG-3880 , Xensor Integration , NL ) 搭建了最早的高速扫描量热仪 (Fast Scanning Calorimeter, FSC) (专利号: US20100046573A1 ), 其可控升降温速率为 lK/s~10000K/s 甚至更高。其具体的做法是将纳克至微克级样品装载在薄膜传感器上, 大幅减小样品和 附加热容, 从而提高其升降温速率。 这一方法成功地进行了许多高分子的熔融 -再结晶- 再熔融过程的研究, 如聚邻苯二甲酸二甲酯、 聚丙烯、 聚酰胺共混物以及等规聚苯乙烯 等。 由于这样的升降温速率已经足以抑制某些材料的结构转变, 因而高速扫描量热技术 既可以研究某些亚稳态材料的热力学性质, 同时也可以经过高速热处理, 获得这些材料 的亚稳状态。 但是, 高速扫描量热技术所能提供的信息有限, 无法满足对亚稳态材料结 构和性质的研究需要。 因此需要开发一种能对样品进行高速热分析获得其热学性质, 同 时通过与显微结构表征手段的联用得到其亚稳态下的结构信息技术手段。
要实现上述技术手段,存在以下两个难点: 1. 显微结构表征设备可用的操作空间大 多较小,而现有的 FSC采用真空管浸没到杜瓦罐的方式实现控温,无法与其他设备进行 现场联用。要对由 FSC制备的亚稳态材料进行结构表征,只能将样品取出然后放入其他 设备, 而这个过程中样品内部结构可能已经发生了变化。 2.由于高速量热仪所用的样品 以及传感器的附加热容都很小, 因此即使小功率的入射光照射也会对样品温度造成较大 的影响。而现有的 FSC采用功率补偿的方式实现对样品控温, 当用于结构表征的入射光 对样品温度的影响超过了功率补偿极限时, 样品温度即会失控, 进而可能导致样品结构 发生改变。
发明内容
为了克服上述难点,发明了一种冷热台型高速量热仪, 除了具备 FSC的性能之外还 具备以下几个特点: 1. 密闭的样品室对面的壁上开有透射视窗和反射视窗,有一个内部 包含加热元件和冷媒流通管道的冷热台, 冷热台内有透射孔; 一个温控系统。 2.该设备 对样品温度变化能快速响应并调节。将 FSC采用功率补偿的方式实现对样品控温改为通 过程序直接高速监控样品温度, 从而保证其稳定在设定值, 避免结构表征设备入射光的 影响。 3. 该设备放置在显微镜下, 满足反射、透射的检测需要, 可以与多种结构表征设 备联用。
本发明提供的冷热台型高速量热仪, 包括: 样品室 (100)、 样品室控温系统 (400) 和高速量热系统 (200)。
所述样品室 (100)包括:一个内部包含加热元件和冷媒流通管道以控制其温度并有一 个透射孔 (109) 的冷热台 (110)、、 反射视窗 (107)、 透射视窗 (108)、 薄膜传感器接 线柱 (101 )、 薄膜传感器信号线接口 (102)、 冷媒入口 (103)、 冷媒出口 (104)、 冷热 台温控信号接口 (105) 和气氛通道 (106), 反射视窗和透射视窗位于密闭的样品室对 面的壁上。
反射视窗(107)利于光入射到样品上并反射后出射, 透射视窗(108)允许光入射, 经透射孔 (109) 入射到样品上并经反射视窗 (107) 出射。 反射视窗 (107 ) 和透射视 窗 (108) 根据不同用途选用不同的透光材料, 如对于紫外、 可见和红外波段的光学检 测可选用氟化钙镜片, 而对于 X射线相关的检测可选用聚酰亚胺薄膜镜片;
采用冷热台为样品提供环境温度。
所述冷热台 (110)表面用纯银或其他热传导良好的材料制成, 以利于冷热台表面各 处温度均匀。 冷热台 (110) 内置温度传感器、 发热元件以及用于冷媒 (如液氮等) 通 过的冷却管道。 冷媒入口 (103)和冷媒出口 (104)用于液氮等冷媒进入冷热台内部循 环。 所述透射孔 (109) 贯穿冷热台, 正对反射视窗 (107) 和透射视窗 (108), 利于光 穿过冷热台入射到样品上。 所述薄膜传感器接线柱 (101 ) 将薄膜传感器的信号线接出 到薄膜传感器信号线接口 (102)。 所述冷热台温控信号接口 (105) 用于与样品室控温 系统 (400)连接使得冷热台温度受其控制。 所述气氛通道 (106)使得样品室内外气氛 连通。
所述样品室控温系统 (400) 同时具有加热和制冷的功能, 可将冷热台表面的温度 稳定在某个设定值。
所述高速量热系统 (200) 包括: 用于参比的薄膜传感器 (220)、 用于装载样品的 薄膜传感器 (210)、 高速控温和测量系统 (300) 和用于程序控制和数据处理的计算机 (500)。
所述用于参比的薄膜传感器(220)和用于装载样品的薄膜传感器 (210) 必须包含 用于检测温度的热电偶或者热电堆以及加热电阻。优选地, 可根据需要采用荷兰 Xensor Integration公司生产的以 XEN-014陶瓷为衬底的 XEN-39391、 XEN-39392、 XEN-39394、 XEN-39395等型号商用真空导热规作为传感器。
所述高速控温和测量系统 (300)包括: 用于接收参比薄膜传感器 (220)温度信号 并且产生控制信号的 PID温度控制器 (310)、 用于接收样品传感器 (210) 以及参比传感 器(220) 的温度信号并且产生控制信号的差分放大器 (320) 以及用于信号输出和采集 的高速数模转换器 (附图中未标出), 高速数模转换器与计算机 (500)集成在一起。 控 制器 (310) 根据接收到的温度信号为样品传感器 (210) 和参比传感器 (220) 提供平 均加热功率。差分放大器(320)根据接收到的样品传感器(210)以及参比传感器(220) 的温度信号来为样品传感器 (210) 提供补偿功率。 所述高速数模转换器通常需要 1个 数模转换接口和 8个模数转换接口, 并根据要求采用不同的采样率和精度。 优选地, 该 转换器采用异步 1.25MS/S及以上采样率以及 16位及以上精度。 同时, 该转换器必须具 有与采样率相匹配的输入、 输出缓冲区, 通过计算机 (500) 等设备, 根据升温或降温 速率向输出缓冲区写入温度程序,经过数模转换输出到以上所述用于提供平均加热功率 的控制器(310)设定端口。 控制器 (310)采用 PID控制器, 该控制器的设定端与高速 数模转换器的信号输出端连接, 测量端与参比传感器 (220) 的热电堆连接, 根据设定 端和测量端的信号产生一个加热电压, 为样品传感器 (210)和参比传感器 (220)提供 平均加热功率。 差分放大器 (320) 采用集成运算放大电路组成的加法器或减法器, 也 可采用 PID控制器,该差分放大器(320)同时与样品传感器(210)以及参比传感器(220) 的热电堆连接,根据两个传感器的温度信号产生一个加热补偿电压,为样品传感器(210) 提供补偿功率。 本发明提供的冷热台型高速量热仪, 可以实现在最高 200000K/S的升降温速率下对 样品进行量热分析, 在这样的升降温速率下对样品特别是高分子样品进行高速热处理, 得到其某种亚稳态。 本发明的特别之处在于, 在得到亚稳态样品之后, 可以通过反射视 窗 (107)、 透射视窗 (108) 以及透射孔 (109) 对样品进行原位光谱学检测, 获得其微 结构信息。 同时, 通过程序控制, 可实现毫秒级的时间周期内对样品温度进行监控, 使 其稳定在某个设定温度, 防止入射光导致样品升温而发生转变, 影响测试结果。 相关的 工作在其他类似的设备上 (如专利号为 US20100046573A1所述高速扫描量热仪) 是无 法完成的。
附图说明
图 1为本发明所述的冷热台型高速量热仪的模块结构图。其中 100表示样品室; 107 表示位于样品室 (100) 上表面的反射视窗; 108表示位于样品室 (100) 下表面的透射 视窗; 200表示高速量热系统; 210表示用于装载样品的薄膜传感器; 220表示用于参比 的薄膜传感器; 300 表示高速控温和测量系统; 301 表示薄膜传感器信号传输线; 400 表示样品室控温系统, 用于控制样品室内冷热台表面的温度; 401表示样品室温控信号 线; 500表示计算机(内有高速数模转换器), 用于程序控制以及数据处理; 501表示计 算机(500)与样品室控温系统(400) 间数据传输线; 502表示计算机(500)与高速控 温和测量系统 (300) 间数据传输线。
图 1中 610表示可联用的结构表征设备的光发射器和检测器; 611表示可联用的结 构表征设备的光发射器和检测器 (610) 产生的入射光和待接收的反射光 (或透射情况 下的透射光) 光路, 检测光从结构表征设备的光发射器和检测器 (610) 入射到样品表 面并反射; 620表示可联用的结构表征设备的光发射器; 621表示可联用的结构表征设 备的光发射器 (620) 产生的入射光光路, 该光路从样品底面透过传感器的薄膜入射到 样品上并透射至可联用的结构表征设备的光发射器和检测器 (610) 接收。 需要说明的 是, 结构表征设备的光发射器和检测器 (610)和结构表征设备的光发射器 (620) 以及 光路 (611 ) 和 (621 ) 并不是本发明所包含内容, 仅用于说明本发明。
图 2为本发明所述的冷热台型高速量热仪样品室俯视图剖面图, 其剖面位置如图 3 中虚线所示。 其中 100为样品室; 110为样品室 (100) 内的冷热台; 101为薄膜传感器 接线柱; 102为薄膜传感器信号线接口; 103为冷媒入口; 104为冷媒出口; 105为冷热 台温控信号接口; 106 为样品室内气氛通道; 210 为用于装载样品的薄膜传感器; 214 为用于样品传感器(210)信号传输的排线; 220为用于参比的薄膜传感器; 224为用于 参比传感器(220)信号传输的排线; 107表示反射视窗。需要说明的是,反射视窗(107) 处于本剖面图的上方, 此处仅用于说明其所处位置。
图 3为本发明所述的冷热台型高速量热仪样品室侧视剖面图, 其剖面位置如图 2中 虚线所示。其中 100为样品室; 101为薄膜传感器接线柱; 107为反射视窗; 108为透射 视窗; 110为冷热台; 109为贯穿冷热台内部的透射孔; 210为用于装载样品的薄膜传感 器; 214为用于样品传感器 (210) 信号传输的排线。
图 4为本发明所述的冷热台型高速量热仪高速控温和测量系统(300)模块结构图。 其中 110表示冷热台; 210表示用于装载样品的薄膜传感器; 220表示用于参比的薄膜 传感器; 310表示 PID温度控制器; 320表示差分放大器; 211表示样品传感器 (210) 热电堆信号线; 212表示 PID温度控制器 (310) 为样品传感器 (210) 加载平均加热功 率的信号线; 213表示差分放大器(320)为样品传感器(210)加载补偿功率的信号线; 221表示参比传感器 (220) 热电堆信号线; 222表示 PID温度控制器 (310) 为参比传 感器 (220) 加载平均加热功率的信号线。
图 5为拉曼激光照射到样品上以及撤除后对样品温度的影响以及本设备对温度的调 控结果图。
具体实施方式
下面结合附图, 对本发明的具体实施方式作进一步详细描述。 以下实例用于说明本 发明, 但不用于限制本发明的范围。
图 1是本发明实例所述的冷热台型高速量热仪的模块结构图。所述用于装载样品的 薄膜传感器(210)和用于参比的薄膜传感器(220)即置于样品室(100)内冷热台(110) 表面(见图 2), 由样品室温度控制系统(400)控制两薄膜传感器(210和 220) 的环境 温度。 高速控温和测量系统 (300)在冷热台 (110)提供环境温度的基础上, 根据计算 机(500) 的温度程序设定值对两薄膜传感器 (210和 220)加热区域温度进行控制和采 集, 并将相应的数据传输至计算机 (500) 进行后续计算和处理, 包括温度程序过程中 样品的热力学信息等。
上述样品室温度控制系统(400)对两薄膜传感器 (210和 220)周围环境温度的控 制测温和控温。 冷热台 (110) 内置测温和加热元件, 样品室温度控制系统 (400) 通过 冷热台温控信号接口 (105) 获取冷热台 (110)表面温度, 并根据该温度产生加热和制 冷信号。 加热信号由接口 (105) 加载到冷热台内加热元件; 而制冷信号则控制外置液 氮泵或电磁阀等装置, 将冷媒 (如液氮等) 经过冷媒入口 (103)进入冷热台内部循环, 并经冷媒出口 (104)排出。 样品室温度控制系统 (400) 即通过上述方式实现冷热台表 面温度的控制。此外, 106为连通样品室内外的气氛通道, 可用于控制样品室内的气氛, 以防止气氛对样品造成影响。
图 2所示用于装载样品的薄膜传感器(210)和用于参比的薄膜传感器 (220)具有 薄膜加热区, 在加热区周围设置了加热电阻和用于测量加热区温度的热电堆。 通过热电 堆获得加热区 (即热端) 与环境温度 (即冷端) 的温差, 结合冷热台表面温度 (一般认 为环境温度与之相等), 计算可得到传感器加热区域的温度。 两传感器的温度信号和加 热信号通过排线 (214和 224) 连接到接线柱 (101 ), 并经过接口 (102) 接出样品室。
图 4所示 PID温度控制器 (310) 经由温度信号线 (221 ) 获得参比传感器 (220) 加热区温度, 并根据程序设定值和测量得到的参比传感器 (220) 加热区温度, 为参比 传感器 (220)和样品传感器 (210) 同时提供一个平均加热功率。 而差分放大器 (320) 根据测量得到的参比传感器(220)和样品传感器(210)加热区温度,为样品传感器(210) 提供一个补偿功率, 以保持样品传感器(210)与参比传感器(220)的加热区温度相等。 以上过程中冷热台 (110) 保持其表面温度恒定, 即等效地保证传感器冷端温度恒定。
图 3所示反射视窗(107)、透射视窗(108)以及透射孔(109)正对样品传感器(210) 加热区。 反射视窗 (107) 和透射视窗 (108) 可根据具体需求 (如对某光源的折射率、 透射率等)选择不同的材料, 如对于紫外、 可见和红外波段的光学检测可选用氟化钙镜 片,而对于 X射线相关的检测可选用聚酰亚胺薄膜镜片等。将冷热台型高速量热仪与光 谱学方法联用时, 若需检测反射光, 则将入射光经反射视窗 (107) 入射至样品表面并 反射进行检测; 若需检测透射光, 则可将入射光经透射视窗 (108) 和透射孔 (109) 入 射至样品上, 其透射光经反射视窗 (107) 出射以供检测。
根据图 2和图 3所示布局方式, 所述冷热台型样品室 (100) 的尺寸可以设计成长 宽高分别为 170mmxl08mmx30.34mm甚至更小。 因此, 该冷热台型高速量热仪可以方 便有效地与多种显微结构表征设备联用,包括光学显微镜、显微拉曼光谱仪以及 X射线 透射等。
为了避免外来检测光对样品温度造成影响, 利用高速控温和测量系统 (300) 采集 的信号通过计算获得样品温度, 采用程序控制通过计算机 (500) 实时检测该温度, 并 通过高速控温和测量系统 (300) 在毫秒级的时间周期内对其进行调控, 使其稳定在设 定值。 为了验证光照对待测样品的温度造成的影响, 我们用聚对苯二甲酸乙二醇酯 (polyethylene terephthalate, 简称 PET) 作为样品, 在 320K下用 785nm波长、 样品区 激光能量 6mW的激光光源对样品进行了照射并启和关闭的实验, 这个过程中样品的温 度如图 5所示。 从图中可以发现, 不论是突然开启还是突然关闭激光, 该光源对样品的 温度影响小于 ±0.8K, 并且在不超过 0.6s的时间内, 即可将样品温度调整至设定值。
此外, 为了保证冷热台型高速量热仪与显微结构表征设备联用时检测结果的可靠 性,需采用以下实验方案:1. 利用冷热台型高速量热仪设定温度程序对样品进行热处理, 获得预期状态的样品; 2. 以可以抑制样品结构变化(玻璃化转变除外)的降温速率将样 品冷却到远低于结构转变的温度并保持恒温; 3.利用所联用的显微结构表征设备对样品 结构进行表征。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领域的普通技 术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各种变化和变型, 因此所 有等同的技术方案也属于本发明的范畴, 本发明的专利保护范围应由权利要求限定。

Claims

权 利 要 求 书
1.一种可与其它显微结构表征技术联用的冷热台型高速量热仪, 包括: 样品室 (100), 其 特征在于, 样品室对面的壁上有反射视窗 (107 ) 和透射视窗 (108 ), 还包括一个内部 包含加热元件和冷媒流通管道以控制其温度并有一个透射孔 (109) 的冷热台 (110)、 样品室控温系统 (400) 和高速量热系统 (200)。
2.据权利要求 1所述的冷热台型高速量热仪, 其特征在于, 样品室(100)包括: 内有透 射孔 (109) 的冷热台 (110)、 反射视窗 (107)、 透射视窗 (108)、 薄膜传感器接线柱
( 101 )、 薄膜传感器信号线接口 (102)、 冷媒入口 (103)、 冷媒出口 (104)、 冷热台温 控信号接口 (105 ) 和气氛通道 (106), 反射视窗和透射视窗位于密闭的样品室对面的 壁上。
3.据权利要求 1所述的冷热台型高速量热仪, 其特征在于, 样品室控温系统(400) 同时 具有加热和制冷的功能, 可将冷热台表面的温度稳定在某个设定值。
4.据权利要求 1所述的冷热台型高速量热仪, 其特征在于, 高速量热系统 (200) 包括: 用于参比的薄膜传感器(220)、 用于装载样品的薄膜传感器 (210)、 高速控温和测量系 统 (300) 和用于程序控制和数据处理的计算机 (500)。
5.据权利要求 2所述的冷热台型高速量热仪, 其特征在于, 采用冷热台为样品提供环境 温度, 冷热台 (110) 表面用纯银或其他热传导良好的材料制成, 以利于冷热台表面各 处温度均匀; 冷热台 (110) 内置温度传感器、 发热元件和用于冷媒通过的冷却管道; 冷媒入口 (103) 和冷媒出口 (104) 用于冷媒进入冷热台内部循环; 透射孔 (109) 贯 穿冷热台, 正对反射视窗 (107)和透射视窗 (108), 利于光穿过冷热台入射到样品上; 薄膜传感器接线柱(101 )将薄膜传感器的信号线接出到薄膜传感器信号线接口 (102); 冷热台温控信号接口 (105)用于与样品室控温系统(400)连接使得冷热台温度受其控 制; 气氛通道 (106) 使得样品室内外气氛连通。
6.据权利要求 4所述的冷热台型高速量热仪,其特征在于,用于参比的薄膜传感器(220) 和用于装载样品的薄膜传感器 (210) 必须包含用于检测温度的热电偶或者热电堆以及 加热电阻。
7.据权利要求 4所述的冷热台型高速量热仪, 其特征在于, 高速控温和测量系统 (300) 包括: 用于接收参比薄膜传感器 (220) 温度信号并且产生控制信号的 PID温度控制器 (310)、 用于接收样品传感器(210) 以及参比传感器(220) 的温度信号并且产生控制信 号的差分放大器 (320) 以及用于信号输出和采集的高速数模转换器。
PCT/CN2013/090170 2013-10-22 2013-12-20 一种可与其它显微结构表征技术联用的冷热台型高速量热仪 WO2015058449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/028,972 US10060804B2 (en) 2013-10-22 2013-12-20 Stage-type fast scanning calorimetry which can be integrated with other structure characterization approaches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310499799.9 2013-10-22
CN201310499799.9A CN103743775B (zh) 2013-10-22 2013-10-22 一种可与其它显微结构表征技术联用的冷热台型高速量热仪

Publications (1)

Publication Number Publication Date
WO2015058449A1 true WO2015058449A1 (zh) 2015-04-30

Family

ID=50500813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090170 WO2015058449A1 (zh) 2013-10-22 2013-12-20 一种可与其它显微结构表征技术联用的冷热台型高速量热仪

Country Status (3)

Country Link
US (1) US10060804B2 (zh)
CN (1) CN103743775B (zh)
WO (1) WO2015058449A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950250B (zh) * 2017-05-05 2019-09-27 中国科学院化学研究所 具有可见-紫外光谱测量功能的热功率测量装置
CN107643104A (zh) * 2017-10-30 2018-01-30 佛山科学技术学院 一种具有高低温及气氛环境控制的多功能测试装置
CN107884259A (zh) * 2017-11-06 2018-04-06 南京大学 利用液滴冷却实现微量材料高速降温的装置及方法
JP7141608B2 (ja) * 2018-12-13 2022-09-26 株式会社東レリサーチセンター 高速カロリメトリーを用いた熱硬化性樹脂のガラス転移温度の測定方法
CN110823943A (zh) * 2019-11-20 2020-02-21 南京大学射阳高新技术研究院 一种模块化结构超快扫描量热仪
WO2021097932A1 (zh) * 2019-11-20 2021-05-27 南京大学射阳高新技术研究院 一种激光加热的单传感器快速扫描量热仪
CN111537558B (zh) * 2020-06-07 2022-04-22 苏州大学 织物热防护性能评估值的测评方法
CN111610149A (zh) * 2020-06-10 2020-09-01 上海乾勃仪器仪表有限公司 一种结晶熔融炉和高聚物光学解偏振仪
CN111913014A (zh) * 2020-08-26 2020-11-10 重庆渝微电子技术研究院有限公司 通用型电学冷热台
CN111929248A (zh) * 2020-08-26 2020-11-13 重庆渝微电子技术研究院有限公司 半导体冷热台
CN114081290B (zh) * 2021-10-09 2023-06-27 南京百米需供应链管理有限公司 一种智能快递柜的取件方法及智能快递柜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466226A1 (de) * 1990-07-09 1992-01-15 METALLGESELLSCHAFT Aktiengesellschaft Verfahren zur Ermittlung des Flächengewichtes von Konversionsschichten
CN201060192Y (zh) * 2007-06-28 2008-05-14 上海理工大学 一种低温显微与差式扫描量热复合测试系统
CN101334398A (zh) * 2007-06-26 2008-12-31 上海理工大学 低温显微差示扫描量热系统主体装置
CN101487806A (zh) * 2009-02-20 2009-07-22 中山大学 一种兼容可视化功能的差示扫描量热仪
WO2009149333A1 (en) * 2008-06-06 2009-12-10 Perkinelmer Health Sciences, Inc. Calorimeter and methods of using it and control systems therefor
CN102914558A (zh) * 2012-10-25 2013-02-06 上海大学 一种测试ttt曲线的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1074366A (en) * 1965-03-10 1967-07-05 Ici Ltd Differential scanning calorimeter
US4821303A (en) * 1986-12-05 1989-04-11 The Dow Chemical Company Combined thermal analyzer and x-ray diffractometer
US5439291C1 (en) * 1992-03-02 2002-04-16 Ta Instr Inc Method and apparatus for ac differential thermal analysis
US6079873A (en) * 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
US7033840B1 (en) * 1999-11-09 2006-04-25 Sri International Reaction calorimeter and differential scanning calorimeter for the high-throughput synthesis, screening and characterization of combinatorial libraries
JP2001318068A (ja) * 2000-05-08 2001-11-16 Seiko Instruments Inc 熱分析装置
AU2002249778A1 (en) * 2000-11-17 2002-08-12 Thermogenic Imaging, Inc. Apparatus and methods for infrared calorimetric measurements
US7371006B2 (en) * 2004-02-10 2008-05-13 Perkinelmer Las, Inc. Differential scanning calorimeter (DSC) with temperature controlled furnace
US7399117B2 (en) * 2005-12-09 2008-07-15 Con-Trol-Cure, Inc. Thin film calorimeter
CN203203952U (zh) * 2009-11-25 2013-09-18 珀金埃尔默保健科学公司 用于研究样本的系统
WO2012003553A1 (en) * 2010-07-08 2012-01-12 Katholieke Universiteit Leuven Adiabatic scanning calorimeter
WO2012097221A1 (en) * 2011-01-14 2012-07-19 The Charles Stark Draper Laboratory, Inc. System and method for a microfluidic calorimeter
US20120201268A1 (en) * 2011-01-28 2012-08-09 Stc.Unm Optical absorption meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466226A1 (de) * 1990-07-09 1992-01-15 METALLGESELLSCHAFT Aktiengesellschaft Verfahren zur Ermittlung des Flächengewichtes von Konversionsschichten
CN101334398A (zh) * 2007-06-26 2008-12-31 上海理工大学 低温显微差示扫描量热系统主体装置
CN201060192Y (zh) * 2007-06-28 2008-05-14 上海理工大学 一种低温显微与差式扫描量热复合测试系统
WO2009149333A1 (en) * 2008-06-06 2009-12-10 Perkinelmer Health Sciences, Inc. Calorimeter and methods of using it and control systems therefor
CN101487806A (zh) * 2009-02-20 2009-07-22 中山大学 一种兼容可视化功能的差示扫描量热仪
CN102914558A (zh) * 2012-10-25 2013-02-06 上海大学 一种测试ttt曲线的方法

Also Published As

Publication number Publication date
CN103743775B (zh) 2016-04-20
US20160238465A1 (en) 2016-08-18
US10060804B2 (en) 2018-08-28
CN103743775A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2015058449A1 (zh) 一种可与其它显微结构表征技术联用的冷热台型高速量热仪
Wang et al. Vanadium oxide microbolometer with gold black absorbing layer
US7907264B1 (en) Measurement of thin film porosity
Wang et al. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm
CN106596244B (zh) 一种控温样品台
CN109001254A (zh) 一种快速测试冶金熔渣高温导热系数的装置及方法
Zhang et al. Spectral properties of an UV fused silica within 0.8 to 5 µm at elevated temperatures
Shoifet et al. High frequency alternating current chip nano calorimeter with laser heating
JP5120927B2 (ja) 薄膜の物性評価方法および評価装置
CN105842274B (zh) 三维扩散率
US7234860B2 (en) Dynamic dew point analysis method and a device for determining the dew point temperature and relative humidity
JPH08105831A (ja) 熱重量測定方法
CN110376136A (zh) 高温加载下测量薄膜光学常数及形貌参数的装置及方法
Xu et al. Development of a compact NDIR CO2 gas sensor for harsh environments
CN103411914B (zh) 一种可控温的掠角反射红外光谱装置
Wang et al. A MEMS differential scanning calorimeter for thermodynamic characterization of biomolecules
US4185497A (en) Adiabatic laser calorimeter
Sotnikova et al. Direct measurements of the dynamics of the electrocaloric response of ferroelectrics under conditions of arbitrary heat transfer
Ancey et al. New concept of integrated Peltier cooling device for the preventive detection of water condensation
Chen et al. Chip calorimetry for fast cooling and thin films: a review
CN100422717C (zh) 一种用于椭圆偏振光谱测量的光学低温恒温器
Laarraj et al. Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition
CN115326740A (zh) 一种应力环境下的显微红外光谱样品台
RU2183323C2 (ru) Способ исследования низкотемпературных свойств многокомпонентных жидкостей и устройство для его осуществления
Wang et al. A MEMS differential calorimeter for biomolecular characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896016

Country of ref document: EP

Kind code of ref document: A1