WO2015058445A1 - 永磁同步电机带速重新投入的控制方法、装置及系统 - Google Patents

永磁同步电机带速重新投入的控制方法、装置及系统 Download PDF

Info

Publication number
WO2015058445A1
WO2015058445A1 PCT/CN2013/089575 CN2013089575W WO2015058445A1 WO 2015058445 A1 WO2015058445 A1 WO 2015058445A1 CN 2013089575 W CN2013089575 W CN 2013089575W WO 2015058445 A1 WO2015058445 A1 WO 2015058445A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
synchronous motor
magnet synchronous
current
speed
Prior art date
Application number
PCT/CN2013/089575
Other languages
English (en)
French (fr)
Inventor
冯江华
刘可安
许峻峰
尚敬
文宇良
何亚屏
张朝阳
刘雄
南永辉
刘华东
肖磊
郑汉锋
Original Assignee
南车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南车株洲电力机车研究所有限公司 filed Critical 南车株洲电力机车研究所有限公司
Priority to US15/031,479 priority Critical patent/US10033313B2/en
Priority to GB1607342.1A priority patent/GB2535368B/en
Publication of WO2015058445A1 publication Critical patent/WO2015058445A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/029Restarting, e.g. after power failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/10Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for preventing overspeed or under speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the invention relates to the technical field of permanent magnet synchronous motor control, in particular to a control method, device and system for re-input of a permanent magnet synchronous motor.
  • PMSM Magnetic Synchronous Motor
  • FIG. 1 the figure is a schematic diagram of a PMSM transmission system in the prior art.
  • the rail transit permanent magnet traction system may mainly include a control unit 100, an inverter 200, an isolating contactor 300, and a permanent magnet synchronous motor 400.
  • the control unit 100 is mainly used to control the operation of the inverter 200, send a PWM pulse signal to control the switching state of each tube in the inverter 200, and enable the inverter 200 to output a required voltage to supply power to the permanent magnet synchronous motor 400. ;
  • the isolation contactor 300 is connected between the inverter 200 and the permanent magnet synchronous motor 400; the control unit 100 is further configured to control the switching state of the isolation contactor to control the connection between the inverter 200 and the permanent magnet synchronous motor 400. relationship.
  • the PMSM400 is magnetized with permanent magnets.
  • the PMSM400 generates a back EMF at the motor end as long as it is rotated.
  • the formula is expressed as follows:
  • the reaction potential E can be seen from the formula (1).
  • the amplitude is strictly proportional to the rotor speed. Therefore, when the PMSM400 rotates at a high speed, the back electromotive force may be higher than the DC side voltage of the inverter 200. If the PMSM 400 is idling and there is no isolation contactor 300 disconnected between the PMSM 400 end and the inverter 400, it is directly turned on. Then, the capacitance of the inverter 400 will all endure the ultra-high back electromotive force generated by the rotation of the PMSM 400, which brings a risk of damage to the capacitance of the inverter 400.
  • an isolation contactor 300 is installed between the PMSM 400 and the inverter 400.
  • the speed re-input means that the inverter 400 is thrown in the case of the PMSM400 speed operation, that is, the isolation contactor 300 is closed, and the inverter 400 is connected to the PMSM400.
  • the vector control of permanent magnet synchronous motor generally controls the stator current or voltage by detecting or estimating the position and amplitude of the rotor flux of the motor. Its rotor flux position is the same as the rotor mechanical position, so by detecting the actual position of the rotor current The magnetic flux position of the rotor is obtained.
  • the mechanical position sensor is generally used in the current measurement of the rotor position, but the method is costly and increases the volume of the motor, so that the motor The anti-interference is reduced, and the environmental conditions such as temperature and vibration are limited, which is not conducive to the wide application of the motor. Therefore, the research on the position sensorless has become a hot spot of the permanent magnet synchronous motor drive system. For the research of position sensorless, direct calculation, observer based estimation method, model reference adaptive, artificial intelligence and other methods are generally used.
  • Either of the above methods is a certain position estimation scheme after the motor is in normal operation, that is, after the closed-loop control is established.
  • the key to re-injection with speed is to detect or calculate the rotor position and speed of the permanent magnet synchronous motor at the input point before the stable closed-loop control of the motor has been established, so as to ensure that the closed-loop control system can be quickly and stably after the motor is put into operation. Established.
  • none of the above methods considers the problem from a system perspective, and does not consider the input logic of the isolated contactor during re-injection. It is impossible to guarantee the stable operation of the closed-loop control system after the permanent magnet synchronous motor is put into operation.
  • the technical problem to be solved by the present invention is to provide a control method for the re-input of the permanent magnet synchronous motor with a speed, which can ensure the stable operation of the permanent magnet synchronous motor after the input is closed.
  • Embodiments of the present invention provide a control method for re-input of a permanent magnet synchronous motor with a speed, including the following Steps:
  • the permanent magnet synchronous motor is controlled to be in a short circuit state, and the current angle of the stationary coordinate system is obtained by the highest amplitude of the three-phase current of the permanent magnet synchronous motor short-circuit state, and the permanent magnet synchronous motor is The duration of the short circuit state calculates the current angle of the dq coordinate system, and the difference between the current angle of the dq coordinate system and the current angle of the stationary coordinate system is the rotor position angle; the permanent magnet synchronous motor is started by the rotor position angle;
  • the rotor speed of the permanent magnet synchronous motor is less than or equal to the predetermined speed, a voltage space vector of different directions is applied to the permanent magnet synchronous motor, the three-phase current of the permanent magnet synchronous motor is measured, and the three-phase current of the permanent magnet synchronous motor is used to obtain the rotor.
  • the position angle, the permanent magnet synchronous motor is started by the rotor position angle.
  • the controlled permanent magnet synchronous motor is in a short circuit state
  • the current angle of the static coordinate system is obtained from the highest amplitude of the three-phase current of the permanent magnet synchronous motor short-circuit state
  • the dq coordinate is calculated from the duration of the permanent magnet synchronous motor in the short-circuit state.
  • the current angle of the system, the difference between the current angle of the dq coordinate system and the current angle of the stationary coordinate system is the rotor position angle, specifically:
  • the rotor position angle is:
  • the permanent magnet synchronous motor applies voltage space vectors in different directions to measure the three-phase current of the permanent magnet synchronous motor, specifically:
  • the voltage space vectors s1 and H s4 are sequentially applied for a predetermined period of time to obtain the phase A current of the permanent magnet synchronous motor;
  • N is a predetermined integer
  • the voltage space vectors s2 and ii s5 are sequentially applied for a predetermined period of time to obtain the B-phase current of the permanent magnet synchronous motor;
  • the voltage space vectors ii s3 and ii s6 are sequentially applied for a predetermined period of time to obtain the C-phase current of the permanent magnet synchronous motor;
  • sl , sl , n s3 , n s4 , ⁇ and ⁇ are sequentially space vectors which are 60 degrees out of phase in the counterclockwise direction.
  • the three-phase current of the permanent magnet synchronous motor obtains a rotor position angle, specifically:
  • ⁇ c ⁇ - [ + L q ) ⁇ (L d - L q ) cos 2 ( ⁇ ⁇ - ⁇ ⁇ / ⁇ ⁇ .
  • the back electromotive force of the permanent magnet synchronous motor is calculated by the following formula:
  • E The permanent magnet synchronous motor back electromotive force; the permanent magnet synchronous motor rotor electrical angular velocity; f is the permanent magnet flux linkage.
  • the embodiment of the invention further provides a control device for re-input of a permanent magnet synchronous motor with a speed, comprising: a voltage judging unit, an isolated contactor control unit, a rotor rotation speed judging unit, a rotor position angle obtaining unit at a medium and high speed, and a rotor position at a low speed.
  • Angular obtaining unit a control device for re-input of a permanent magnet synchronous motor with a speed, comprising: a voltage judging unit, an isolated contactor control unit, a rotor rotation speed judging unit, a rotor position angle obtaining unit at a medium and high speed, and a rotor position at a low speed.
  • the voltage determining unit is configured to determine whether a back electromotive force of the permanent magnet synchronous motor is greater than a voltage of the inverter side;
  • the isolation contactor control unit when the voltage determination unit determines that the back electromotive force of the permanent magnet synchronous motor is greater than the voltage of the inverter side, the control isolation contactor is disconnected, and the re-injection operation is prohibited;
  • the rotor rotation speed judging unit is configured to determine whether the reciprocal potential of the permanent magnet synchronous motor is less than or equal to the voltage on the inverter side, and determine whether the rotor rotation speed of the permanent magnet synchronous motor is greater than a predetermined rotation speed;
  • the medium-high speed rotor position angle obtaining unit when the rotor speed determining unit determines that the rotor speed of the permanent magnet synchronous motor is greater than a predetermined speed, is used to control the permanent magnet synchronous motor in a short circuit state, and the permanent magnet synchronous motor is short-circuited
  • the highest amplitude of the three-phase current obtains the current angle of the stationary coordinate system, and the current angle of the dq coordinate system is calculated from the duration of the permanent magnet synchronous motor in the short-circuit state, and the difference between the current angle of the dq coordinate system and the current angle of the stationary coordinate system is the rotor Position angle; starting the permanent magnet synchronous motor by the rotor position angle;
  • the low speed rotor position angle obtaining unit when the rotor speed determining unit determines that the rotor speed of the permanent magnet synchronous motor is less than or equal to a predetermined speed, is used to apply a voltage space vector of different directions to the permanent magnet synchronous motor, and measure the permanent magnet synchronization
  • the three-phase current of the motor is obtained from the three-phase current of the permanent magnet synchronous motor to obtain the rotor position angle, and the permanent magnet synchronous motor is started by the rotor position angle.
  • the medium and high speed rotor position angle obtaining unit comprises: a motor short-circuit control sub-unit for applying a zero voltage vector to make the permanent magnet synchronous motor in a short-circuit state;
  • the motor short-circuit current obtains a sub-unit at the angle of the stationary coordinate system for obtaining the angle of the current in the stationary coordinate system by the following formula;
  • the low speed rotor position angle obtaining unit comprises: a voltage space vector applying subunit, a three-phase current obtaining subunit, and a driving pulse blocking subunit;
  • the voltage space vector applying subunit is configured to sequentially apply a voltage space vector and each predetermined time period without interruption; the three-phase current obtaining subunit is configured to obtain a phase A current of the permanent magnet synchronous motor; Blocking subunit, used to block the drive pulse of the inverter for N milliseconds; N The voltage space vector applying subunit is configured to sequentially apply the voltage space vector sl and the predetermined time period to obtain the B phase current of the permanent magnet synchronous motor; the driving pulse blocking subunit is used for blocking the inverter The drive pulse of the device is N milliseconds; N is a predetermined integer;
  • the voltage space vector applying sub-unit is configured to sequentially apply the voltage space vectors ⁇ and ⁇ for a predetermined period of time to obtain the C-phase current of the permanent magnet synchronous motor;
  • , u s3 , 4 , ⁇ and 6 are sequentially space vectors which are 60 degrees out of phase in the counterclockwise direction.
  • the embodiment of the invention further provides a control system for re-input of a permanent magnet synchronous motor with a speed, comprising: a control unit, a permanent magnet synchronous motor, an inverter and an isolating contactor;
  • the control unit is configured to control an on state of the isolation contactor; the isolation contactor is connected between the inverter and the permanent magnet synchronous motor;
  • the control unit is further configured to output a driving pulse to control a switching state of the tube in the inverter; the control unit is further configured to determine whether a back electromotive force of the permanent magnet synchronous motor is greater than a voltage of the inverter side; If the back electromotive force of the magnetic synchronous motor is greater than the voltage on the inverter side, the control isolation contactor is disconnected, and the re-injection operation is prohibited; if the back electromotive force of the permanent magnet synchronous motor is less than or equal to the voltage on the inverter side, the permanent magnet is continuously determined.
  • the permanent magnet synchronous motor is controlled to be in a short circuit state, and the static coordinate system is obtained from the highest amplitude of the three-phase current of the permanent magnet synchronous motor short circuit state
  • the current angle, the current angle of the dq coordinate system is calculated from the duration of the permanent magnet synchronous motor in the short circuit state, and the difference between the current angle of the dq coordinate system and the current angle of the stationary coordinate system is the rotor position angle;
  • Magnetic synchronous motor if the rotor speed of the permanent magnet synchronous motor is less than or equal to the predetermined speed, Voltage space vector is applied to the synchronous motor in different directions, measuring the phase current of the permanent magnet synchronous motor, a permanent magnet synchronous three-phase current of the motor rotor position angle is obtained, starting from the position angle of the rotor permanent magnet synchronous motor.
  • control unit applies a voltage space vector of different directions to the permanent magnet synchronous motor to measure the three-phase current of the permanent magnet synchronous motor, specifically:
  • the voltage space vectors s1 and 4 are sequentially applied for a predetermined period of time to obtain the phase A current of the permanent magnet synchronous motor;
  • N is a predetermined integer
  • the voltage space vector and the predetermined time period of s5 are continuously applied in sequence to obtain permanent magnet synchronous power.
  • the voltage space vectors ii s3 and ii s6 are sequentially applied for a predetermined period of time to obtain the C-phase current of the permanent magnet synchronous motor;
  • sl , H s2 , u s3 , u s4 , s5 and ⁇ are sequentially space vectors which are 60 degrees out of phase in the counterclockwise direction.
  • the present invention has the following advantages:
  • PMSM is obtained from the speed of the trailer. Thereby obtaining the back EMF of the PMSM.
  • the back EMF is compared with the voltage on the inverter side. If the back EMF is higher than the voltage on the inverter side, the PMSM speed re-injection is not allowed, and the PMSM speed re-injection is allowed.
  • the PMSM speed re-injection will close the isolation contactor, and the PMSM speed re-injection will be prohibited to disconnect the isolation contactor.
  • PMSM speed re-entry requires knowledge of the rotor position angle.
  • the rotor position angle is calculated by dividing the two working conditions of low speed and medium height, and different working conditions correspond to different rotor position angles, and the PMSM is started by the rotor position angle.
  • the method provided by the invention proposes a comprehensive control method from the system point of view, prohibiting the re-injection of the belt speed in the high speed section of the PMSM (the corresponding back electromotive force is too large at the high speed), and calculating the rotor position angle by using the short circuit method in the middle and high speed sections to determine the re-injection Point position, the low speed section uses the INFORM method to calculate the rotor position angle to determine the position of the re-point.
  • FIG. 1 is a schematic view of a PMSM transmission system in the prior art
  • Figure 2 is a voltage phasor diagram of a permanent magnet synchronous motor
  • FIG. 3 is a first-class diagram of an embodiment of a control method for a re-input of a permanent magnet synchronous motor provided by the present invention
  • FIG. 5 is a schematic diagram of current angles of current vectors in different coordinate systems provided by the present invention
  • FIG. 6 is a flow chart of calculating a rotor position angle by using the INFORM method provided by the present invention
  • 7 is a schematic diagram of a voltage space vector provided by the present invention
  • Figure 8 is a schematic diagram of current measuring points provided by the present invention.
  • FIG. 9 is a schematic view showing an embodiment of a control device for re-injection of a permanent magnet synchronous motor with a speed of the present invention.
  • Figure 10 is a schematic diagram of Embodiment 2 of the apparatus provided by the present invention.
  • Figure 11 is a schematic view showing the third embodiment of the apparatus provided by the present invention.
  • Fig. 12 is a view showing an embodiment of a control system for re-injection of a permanent magnet synchronous motor with a speed of the present invention.
  • FIG. 3 there is shown a flow chart of a first embodiment of a method for controlling the re-input of a permanent magnet synchronous motor with a speed.
  • the PMSM will reverse charge the DC side of the inverter.
  • the capacitor on the DC side of the inverter will be charged higher than the capacitor's safe allowable value, causing damage to the capacitor.
  • the belt speed re-injection can be performed at all speeds of the PMSM, and it is necessary to judge the speed of the PMSM according to the re-point.
  • the method provided by the embodiment of the invention is based on the safety of the rail transit, and the re-entry logic is defined based on the system trailer speed from the system perspective.
  • the speed of the PMSM can be obtained by using the system trailer speed.
  • back EMF of PMSM can be obtained by using formula (1), which can be obtained by system trailer.
  • the voltage on the inverter side can be determined by using the voltage on the DC side of the inverter.
  • the voltage on the inverter side can be used.
  • S303 if the back electromotive force of the permanent magnet synchronous motor is less than or equal to the voltage on the inverter side, continue to determine whether the rotor speed of the permanent magnet synchronous motor is greater than a predetermined speed; If the back EMF of the permanent magnet synchronous motor is less than or equal to the voltage on the inverter side, the isolation contactor is allowed to close, but it is further necessary to know the rotor position angle of the PMSM to start the PMSM. Therefore, the following needs to be obtained according to the speed of the trailer.
  • the size is divided into two cases to obtain the rotor position angle respectively. One is how to obtain the rotor position angle in the case of low speed, and the other is how to obtain the rotor position angle in the middle and high speed.
  • the method provided by S304 can be summarized as a short circuit method.
  • this short-circuit method the mid-high-speed lower rotor position angle can be obtained, thereby knowing the initial position of the rotor to start the PMSM.
  • the method provided by S305 mainly applies the INFORM (Indirect Flux detection by On-line Reactance Measurement) method.
  • the method provided by the present invention obtains the PMSM from the speed of the trailer from a system perspective. Thereby the back EMF of the PMSM is obtained. The back EMF is compared with the voltage on the inverter side. If the back EMF is higher than the voltage on the inverter side, the PMSM speed re-injection is not allowed, and the PMSM speed re-injection is allowed. The PMSM speed re-injection will close the isolation contactor, and the PMSM speed re-injection will be prohibited to disconnect the isolation contactor. However, the PMSM speed re-injection requires knowledge of the rotor position angle.
  • the rotor position angle is calculated by dividing the two working conditions of low speed and medium height, and different working conditions correspond to different rotor position angles, and the PMSM is started by the rotor position angle.
  • the method provided by the invention proposes a comprehensive control method from the system point of view, prohibiting the re-injection of the belt speed in the high speed section of the PMSM (the corresponding back electromotive force is too large at the high speed), and calculating the rotor position angle by using the short circuit method in the middle and high speed sections to determine the re-injection Point position, the low speed section uses the INFORM method to calculate the rotor position angle to determine the position of the re-point.
  • Method embodiment two provides a detailed description of the rotor position angle obtained by a short circuit method when the PMSM is in the middle and high speed sections.
  • FIG. 4 the figure is a flow chart of a short circuit method in the middle and high speed sections provided by the present invention.
  • the short-circuit method can be used to obtain the rotor position angle.
  • the permanent magnet synchronous motor can also be in a short circuit state; when all the tubes of the lower arm are turned on, the permanent magnet synchronous motor can also be in a short circuit state, which is not specifically limited in the embodiment of the present invention. Specifically, all the tubes of the upper arm are turned on, or all the tubes of the lower arm are turned on.
  • S402 Keep the permanent magnet synchronous motor short-circuited for a predetermined period of time r s3 ⁇ 4 to obtain the highest amplitude of the three-phase current of the PMSM.
  • Figure 5 the two coordinate systems are drawn in the same figure, that is, Figure 5 includes the dq coordinate system and the stationary coordinate system.
  • the embodiment of the present invention details how to calculate the rotor position angle in the middle and high speed stages by the one-time short circuit method. That is, using the results of the equations (5) and (7), the rotor position angle is obtained by the formula (8).
  • this figure is a flow chart for calculating the rotor position angle using the INFORM method provided by the present invention.
  • the magnetic circuit of the motor has a convex polarity, and the inductance value of the stator winding is a rotor.
  • the function of position, so the current response generated by the voltage space vector at different positions must contain rotor position information.
  • the motor model can be written in the form of a vector equation, namely:
  • Li-AL ALsin 2 ⁇ +ALcos20 e can be seen from equation (1). Under the action of voltage space vector ⁇ in a certain direction, the current response depends on the inductance matrix, and the stator winding inductance changes with the position of the rotor electrical angle.
  • the voltage space vector can be generated by various methods in the specific implementation process, and one of the more simple methods is to directly use the inverter in the system, as shown in FIG. 7 , the voltage space vector, respectively Along the axis of the ABC winding, alternately applying a voltage space vector from both the forward and reverse directions, for example, for the A-axis of the PMSM, can be applied and, and the pulse-width modulated switching voltage vector generated by the inverter is implemented, due to the inverter
  • the switching frequency is 4 ⁇ high, so the applied sl and s4 are also high frequency stator voltage signals.
  • ⁇ and ⁇ can be applied
  • the force s3 and ° can be applied
  • the following is an example of applying a voltage space vector to an A-axis phase winding.
  • FIG 8 the figure is a schematic diagram of current measurement points provided by the present invention.
  • stator three-phase current deviation can be expressed as a space vector form / ( ⁇ ), which has:
  • f(Ai s ) By measuring the highest amplitude of the three-phase current of the stator of the PMSM, f(Ai s ) can be calculated from equation (19), and the spatial phase can be obtained. It can be known from equation (20) that it is equal to (2 + ⁇ ) and can be estimated by equation (20;
  • the predetermined time period can be set according to a specific situation.
  • the predetermined time period can be set to 100 us.
  • S602 Blocking the driving pulse of the inverter for N milliseconds; N is a predetermined integer;
  • the drive pulse of the inverter is blocked for N milliseconds, that is, no voltage space vector is applied, in order to zero the current of the PMSM.
  • N can also select different values as needed.
  • N can take a value of 1, that is, the drive pulse is blocked for 1 ms.
  • S603 sequentially applying the voltage space vectors ⁇ and ⁇ for a predetermined period of time to obtain the B-phase current of the permanent magnet synchronous motor;
  • S605 sequentially applying the voltage space vectors ⁇ and 6 for a predetermined period of time to obtain the C-phase current of the permanent magnet synchronous motor;
  • sl , sl , n s3 , s4 , ⁇ and 6 are sequentially space vectors which are 60 degrees out of phase in the counterclockwise direction.
  • the voltage space vector can be specifically referred to FIG. Device embodiment 1:
  • the present invention also provides a control device for re-injecting the speed of the permanent magnet synchronous motor, which will be described in detail below with reference to the specific drawings.
  • Fig. 9 is a schematic view showing a first embodiment of a control device for re-injecting a speed of a permanent magnet synchronous motor according to the present invention.
  • the control device for the re-input of the permanent magnet synchronous motor with the speed of the present invention includes: a voltage judging unit 901, an isolating contactor control unit 902, a rotor rotational speed determining unit 903, a middle-high speed rotor position angle obtaining unit 904, and a low speed rotor.
  • the voltage determining unit 901 is configured to determine whether the back electromotive force of the permanent magnet synchronous motor is greater than the inverter Side voltage
  • back EMF of PMSM can be obtained by using formula (1), which can be obtained by system trailer.
  • the voltage on the inverter side can be used as a criterion by using the voltage on the DC side of the inverter.
  • the voltage on the inverter side can be t/ / ⁇ .
  • the isolation contactor control unit 902 when the voltage determination unit 901 determines that the back electromotive force of the permanent magnet synchronous motor is greater than the voltage of the inverter side, controls the isolation contactor to be disconnected, and the re-injection operation is prohibited; The safety of the DC side capacitor of the transformer.
  • the isolation contactor is allowed to close, but it is further necessary to know the rotor position angle of the PMSM to start the PMSM. Therefore, the following is required according to the speed of the trailer.
  • the size of the wheel is divided into two cases to obtain the rotor position angle. One is how to obtain the rotor position angle at low speed, and the other is how to obtain the rotor position angle at medium and high speed.
  • the medium-high speed rotor position angle obtaining unit 904 is configured to control the permanent magnet synchronous motor to be in a short-circuit state and short-circuited by the permanent magnet synchronous motor when the rotor rotational speed determining unit 903 determines that the permanent magnet synchronous motor has a rotor rotational speed greater than a predetermined rotational speed.
  • the highest amplitude of the three-phase current of the state obtains the current angle of the stationary coordinate system, and the current angle of the dq coordinate system is calculated from the duration of the permanent magnet synchronous motor in the short-circuit state, and the difference between the current angle of the dq coordinate system and the current angle of the stationary coordinate system
  • the rotor position angle; the permanent magnet synchronous motor is started by the rotor position angle;
  • the low speed rotor position angle obtaining unit 905 when the rotor speed determining unit 903 determines that the rotor speed of the permanent magnet synchronous motor is less than or equal to the predetermined speed, is used to apply a voltage space vector of different directions to the permanent magnet synchronous motor, and the measurement is permanent.
  • the three-phase current of the magnetic synchronous motor is obtained from the three-phase current of the permanent magnet synchronous motor to obtain the rotor position angle, and the permanent magnet synchronous motor is started by the rotor position angle.
  • the rotor position angle is obtained at low speed.
  • the INFORM Indirect Flux detection by On-line Reactance Measurement
  • the INFORM Indirect Flux detection by On-line Reactance Measurement
  • the apparatus provided by the present invention obtains the PMSM from the speed of the trailer from a system perspective. Thereby the back EMF of the PMSM is obtained. The back EMF is compared with the voltage on the inverter side. If the back EMF is higher than the voltage on the inverter side, the PMSM speed re-injection is not allowed, and the PMSM speed re-injection is allowed. The PMSM speed re-injection will close the isolation contactor, and the PMSM speed re-injection will be prohibited to disconnect the isolation contactor. However, the PMSM speed re-injection requires knowledge of the rotor position angle.
  • the rotor position angle is calculated by dividing the two working conditions of low speed and medium height, and different working conditions correspond to different rotor position angles, and the PMSM is started by the rotor position angle.
  • the device provided by the invention proposes comprehensive control from the system point of view, prohibiting the re-injection of the belt speed in the high speed section of the PMSM (the corresponding back electromotive force is too large at the high speed), and calculating the rotor position angle by using the short circuit method in the middle and high speed sections to determine the re-pointing point.
  • Position, low speed section uses the INFORM method to calculate the rotor position angle to determine the position of the re-point.
  • Device embodiment 2 is
  • FIG. 10 the figure is a schematic diagram of Embodiment 2 of the apparatus provided by the present invention.
  • the medium and high speed rotor position angle obtaining unit comprises: a motor short circuit control subunit 904a and a rotor position angle first obtaining unit 904b.
  • the motor short circuit control sub-unit 904a is configured to apply a zero voltage vector to make the permanent magnet synchronous motor be in a short circuit state
  • the permanent magnet synchronous motor can also be in a short circuit state; when all the tubes of the lower arm are turned on, the permanent magnet synchronous motor can also be in a short circuit state, which is not specifically limited in the embodiment of the present invention. Specifically, all the tubes of the upper arm are turned on, or all the tubes of the lower arm are turned on.
  • the motor short-circuit current obtains a sub-unit at the angle of the stationary coordinate system for obtaining the angle of the current in the stationary coordinate system by the following formula;
  • the motor short-circuit current is obtained at the angle of the dq coordinate system to obtain a sub-unit for obtaining the current in the dq coordinate system by the following formula;
  • Device embodiment three
  • FIG. 11 the figure is a schematic diagram of Embodiment 3 of the apparatus provided by the present invention.
  • the low speed rotor position angle obtaining unit includes: a voltage space vector applying subunit 905a, a three-phase current obtaining subunit 905b, and a driving pulse blocking subunit 905c;
  • the voltage space vector applying sub-unit 905a is configured to sequentially apply a voltage space vector and a predetermined time period without interruption; the three-phase current obtaining sub-unit 905b is configured to obtain a phase A current of the permanent magnet synchronous motor;
  • the driving pulse blocking subunit 905c is configured to block the driving pulse of the inverter for N milliseconds; N is a predetermined integer;
  • the voltage space vector applying sub-unit 905a is further configured to sequentially apply a voltage space vector and a predetermined time period without interruption to obtain a B-phase current of the permanent magnet synchronous motor; the driving pulse blocking sub-unit 905c is used for blocking
  • the driving pulse of the inverter is N milliseconds; N is a predetermined integer;
  • the voltage space vector applying sub-unit 905a is also used to sequentially apply voltage space without interruption Vector and 6 predetermined time periods, obtaining a C-phase current of the permanent magnet synchronous motor;
  • , u s3 , U s4 , ⁇ and 6 are sequentially space vectors which are 60 degrees out of phase in the counterclockwise direction.
  • the present invention Based on the control method and apparatus for the re-input of the permanent magnet synchronous motor with the speed of the above-described embodiments, the present invention also provides a control system for re-injecting the speed of the permanent magnet synchronous motor.
  • FIG. 12 there is shown a first embodiment of a control system for re-input of a permanent magnet synchronous motor with a speed.
  • the control unit is configured to control an on state of the isolation contactor 300; the isolation contactor 300 is connected between the inverter 200 and the permanent magnet synchronous motor 400;
  • the control unit 100 is further configured to output a driving pulse to control a switching state of the tube in the inverter 200;
  • the control unit 100 is further configured to determine whether the back electromotive force of the permanent magnet synchronous motor 400 is greater than the voltage of the inverter 200 side; if the back electromotive force of the permanent magnet synchronous motor 400 is greater than the voltage of the inverter 200 side, the control isolation contact If the back electromotive force of the permanent magnet synchronous motor 400 is less than or equal to the voltage of the inverter 200 side, it is determined whether the rotor speed of the permanent magnet synchronous motor 400 is greater than a predetermined speed; if the permanent magnet is synchronized When the rotor speed of the motor 400 is greater than the predetermined speed, the permanent magnet synchronous motor 400 is controlled to be in a short-circuit state, and the current angle of the static coordinate system is obtained by the highest amplitude of the three-phase current in the short-circuit state of the permanent magnet synchronous motor 400, and the permanent magnet synchronous motor 400 is The duration of the short circuit state calculates the current angle of the dq coordinate system, the difference between the current angle of the dq coordinate
  • the system provided by the invention is obtained from the perspective of the rail transit traction system by the speed of the trailer PMSM of e. Thereby the back EMF of the PMSM is obtained.
  • the back EMF is compared with the voltage on the inverter side. If the back EMF is higher than the voltage on the inverter side, the PMSM speed re-injection is not allowed, and the PMSM speed re-injection is allowed.
  • the PMSM speed re-injection will close the isolation contactor, and the PMSM speed re-injection will be prohibited to disconnect the isolation contactor.
  • the PMSM speed re-injection requires knowledge of the rotor position angle.
  • the rotor position angle is calculated by dividing the two working conditions of low speed and medium height, and different working conditions correspond to different rotor position angles, and the PMSM is started by the rotor position angle.
  • the system provided by the invention proposes comprehensive control from the system point of view, prohibiting the re-injection of the belt speed in the high speed section of the PMSM (the corresponding back electromotive force is too large at the high speed), and calculating the rotor position angle by using the short circuit method in the middle and high speed sections to determine the re-pointing point.
  • Position, low speed section uses the INFORM method to calculate the rotor position angle to determine the position of the re-point.
  • the control unit applies a voltage space vector of different directions to the permanent magnet synchronous motor, and measures the three-phase current of the permanent magnet synchronous motor, specifically:
  • the voltage space vectors s1 and 4 are sequentially applied for a predetermined period of time to obtain the phase A current of the permanent magnet synchronous motor;
  • N is a predetermined integer
  • the voltage space vector and the predetermined time period are continuously applied in sequence to obtain the B phase current of the permanent magnet synchronous motor;
  • the voltage space vectors s3 and s6 are sequentially applied for a predetermined period of time to obtain the c-phase current of the permanent magnet synchronous motor;
  • i si , s2 , s3 , U s4 , ⁇ and 6 are sequentially space vectors which are 60 degrees out of phase in the counterclockwise direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种永磁同步电机(400)带速重新投入的控制方法、装置及系统,由拖车速度获得PMSM的反电势。将反电势与逆变器(200)侧的电压进行比较,如果反电势高于逆变器侧的电压则不允许PMSM带速重投,反之允许PMSM带速重投。PMSM带速重投即将隔离接触器(300)闭合,禁止PMSM带速重投即将隔离接触器断开。根据PMSM转子电角度速度ωe的大小,分为低速和中高度两个工况来计算转子位置角,不同工况对应不同的转子位置角,由转子位置角启动PMSM。从系统角度出发提出了全面控制方法,在PMSM高速段禁止带速重投,中高速段采用一次短路法计算转子位置角来确定重投点位置,低速段采用INFORM法计算转子位置角来确定重投点的位置。

Description

兹同步电机带速重新投入的控制方法、 装置及系统 本申请要求于 2013 年 10 月 25 日提交中国专利局、 申请号为 201310512095.0、 发明名称为"永磁同步电机带速重新投入的控制方法、 装置 及系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及永磁同步电机控制技术领域,特别涉及一种永磁同步电机带速 重新投入的控制方法、 装置及系统。
背景技术
7j磁同步电机(PMSM, Permanent Magnet Synchronous Motor )传动系统 是指以 PMSM为控制对象, 通过调频调压方式控制永磁同步电机的转速和转 矩的一种新型传动系统。相对于传动的以异步电机为控制系统的交流传动系统 而言, PMSM传动系统有着结构筒单、 功率密度大, 低速输出扭矩大, 效率 高, 维护方便等一系列交流电机无法媲美的优势,正逐渐取代异步电机交流传 动系统, 成为未来的主流。
参见图 1 , 该图为现有技术中的 PMSM传动系统示意图。
轨道交通永磁牵引系统主要可以包括控制单元 100、 逆变器 200、 隔离接 触器 300和永磁同步电机 400。
其中, 控制单元 100主要用于控制逆变器 200的运行, 发送 PWM脉沖信 号以控制逆变器 200中各个管子的开关状态,使逆变器 200输出需要的电压为 永磁同步电机 400提供电源;
其中隔离接触器 300连接于逆变器 200和永磁同步电机 400之间;控制单 元 100还用于控制隔离接触器的开关状态,以控制逆变器 200和永磁同步电机 400之间的连接关系。
PMSM400采用永磁体励磁, PMSM400只要旋转就会在电机端产生反电 势, 利用公式表示如下:
Eo = ωβψί ( 1 )
其中, E。为 PMSM400反电动势; 为 PMSM400转子电角速度; ^为
7 磁体磁链。 从公式(1 )可以看出反动势 E。幅值与转子转速 成严格的正比关系。 因此, 当 PMSM400高速旋转时反电动势将有可能比逆变器 200直流侧电 压还要高, 如果 PMSM400空转且在 PMSM400端与逆变器 400之间没有隔离 接触器 300断开而是直接导通,则逆变器 400的电容将全部承受 PMSM400旋 转产生的超高反电动势, 给逆变器 400的电容带来损坏风险。
当逆变器 400有故障发生时, 如果逆变器 400依然被连接到带电压的 PMSM400端, 则有可能给逆变器 400带来二次损害。 所以在轨道交通及其他 的一些工业应用领域都会在 PMSM400与逆变器 400之间加装隔离接触器 300。
带速度重新投入指的是在 PMSM400带速运转的情况下,将逆变器 400投 入, 即隔离接触器 300闭合, 将逆变器 400与 PMSM400进行连接。
永磁同步电机的矢量控制一般通过检测或估计电机转子磁通的位置及幅 值来控制定子电流或电压, 它的转子磁通位置与转子机械位置相同,故通过检 测转子电流的实际位置就可以得出转子的磁通位置,相比异步电机的矢量控制 筒单一些, 在目前对转子位置的测量中, 一般采用机械位置传感器, 但是该方 法成本高, 增大了电机的体积, 使得电机的抗干扰性降低, 同时受温度, 振动 等环境条件的限制较大, 不利于电机的广泛应用, 因此对于无位置传感器的研 究成了永磁同步电机传动系统的一个热点。对于无位置传感器的研究一般采用 直接计算、 观测器基础上的估算方法、 模型参考自适应、 人工智能等方法。
无论上面的哪种方法都是在电机正常运转起来之后即闭环控制建立起来 之后的某种位置估算方案。而带速度重新投入的关键是在电机稳定闭环控制还 没有建立起来之前就必须检测或计算出投入点的永磁同步电机转子位置与速 度, 这样才能保证电机投入后闭环控制系统能迅速、 稳定的建立起来。
并且, 以上所有方法没有一个是从系统角度考虑问题,也没有考虑重投时 隔离接触器的投入逻辑。无法保证永磁同步电机投入后闭合控制系统的稳定运 行。
发明内容
本发明要解决的技术问题是提供一种永磁同步电机带速重新投入的控制 方法, 能够保证永磁同步电机投入后闭合控制系统的稳定运行。
本发明实施例提供一种永磁同步电机带速重新投入的控制方法,包括以下 步骤:
判断永磁同步电机的反电势是否大于逆变器侧的电压;
如果永磁同步电机的反电势大于逆变器侧的电压, 则控制隔离接触器断 开, 禁止重投操作;
如果永磁同步电机的反电势小于或等于逆变器侧的电压,则继续判断永磁 同步电机的转子转速是否大于预定转速;
如果永磁同步电机的转子转速大于预定转速,则控制永磁同步电机处于短 路状态,由永磁同步电机短路状态的三相电流最高幅值获得 静止坐标系的 电流角度, 由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流角 度, dq 坐标系的电流角度与 静止坐标系的电流角度的差为转子位置角; 由该转子位置角启动永磁同步电机;
如果永磁同步电机的转子转速小于或等于预定转速,则给永磁同步电机施 加不同方向的电压空间矢量, 测量永磁同步电机的三相电流, 由永磁同步电机 的三相电流来获得转子位置角, 由该转子位置角启动永磁同步电机。
优选地, 所述控制永磁同步电机处于短路状态, 由永磁同步电机短路状态 的三相电流最高幅值获得 静止坐标系的电流角度,由永磁同步电机处于短 路状态的持续时间计算 dq坐标系的电流角度, dq坐标系的电流角度与 静 止坐标系的电流角度的差为转子位置角, 具体为:
施加零电压矢量, 使永磁同步电机处于短路状态;
由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流:
Figure imgf000005_0001
sin( ¾) 其中, 7 ¾为永磁同步电机处于短路状态的持续时间; Ld、 L分别为直轴 同步电感和交轴同步电感; ^为永磁体磁链; id¾分别是定子电流在 d轴和 g 轴上的分量, 分别称为直轴电流和交轴电流;
将所述三相电流最高幅值在 静止坐标系下分解为„、 ip ,定义^ j为 在 静止坐标系的角度;
Figure imgf000006_0001
所述三相电流最高幅值在 dq坐标系的角度为 :
Figure imgf000006_0002
所述转子位置角为: 优选地, 所述给永磁同步电机施加不同方向的电压空间矢量, 测量永磁同 步电机的三相电流, 具体为:
依次不间断地施加电压空间矢量 sl和 Hs4各预定时间段, 获得永磁同步电 机的 A相电流;
封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
依次不间断地施加电压空间矢量 s2和 iis5各预定时间段, 获得永磁同步电 机的 B相电流;
封锁逆变器的驱动脉沖 N毫秒;
依次不间断地施加电压空间矢量 iis3和 iis6各预定时间段, 获得永磁同步电 机的 C相电流;
其中, slsl、 ns3、 ns4、 ^和^依次为逆时针方向依次相差 60度的空 间矢量。
优选地, 所述由永磁同步电机的三相电流来获得转子位置角, 具体为:
Q = arg(/) - ^- e _ 2
其中, /为三相电流偏差的空间矢量形式;
Figure imgf000006_0003
其中, = lL d +L q)-(L d - L q )cos ]Δί; = ff- [(Ld + Lq )- (Ld - Lq )cos 2(0e - 4π )^ί;
Δ c = γ- [ + Lq )~ (Ld - Lq )cos 2(θε - Ιπ/^ΐ。 优选地, 所述永磁同步电机的反电势由以下公式计算:
Eo = ωβψί
其中, E。为永磁同步电机反电动势; 为永磁同步电机转子电角速度; f 为永磁体磁链。
本发明实施例还提供一种永磁同步电机带速重新投入的控制装置, 包括: 电压判断单元、 隔离接触器控制单元、 转子转速判断单元、 中高速时转子位置 角获得单元和低速时转子位置角获得单元;
所述电压判断单元,用于判断永磁同步电机的反电势是否大于逆变器侧的 电压;
所述隔离接触器控制单元,当所述电压判断单元判断永磁同步电机的反电 势大于逆变器侧的电压, 则控制隔离接触器断开, 禁止重投操作;
所述转子转速判断单元,当所述电压判断单元判断所述永磁同步电机的反 电势小于或等于逆变器侧的电压,用于判断永磁同步电机的转子转速是否大于 预定转速;
所述中高速时转子位置角获得单元,当所述转子转速判断单元判断永磁同 步电机的转子转速大于预定转速时, 用于控制永磁同步电机处于短路状态, 由 永磁同步电机短路状态的三相电流最高幅值获得 静止坐标系的电流角度, 由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流角度, dq坐标 系的电流角度与 静止坐标系的电流角度的差为转子位置角;由该转子位置 角启动永磁同步电机;
所述低速时转子位置角获得单元,当所述转子转速判断单元判断永磁同步 电机的转子转速小于或等于预定转速,用于给永磁同步电机施加不同方向的电 压空间矢量, 测量永磁同步电机的三相电流, 由永磁同步电机的三相电流来获 得转子位置角, 由该转子位置角启动永磁同步电机。
优选地, 所述中高速时转子位置角获得单元包括: 电机短路控制子单元, 用于施加零电压矢量,使永磁同步电机处于短路状 态;
电机短路电流在 静止坐标系的角度获得子单元,用于由以下公式获得 电流在 静止坐标系的角度;
由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流:
- (l -cos(orj)
L
其中, 7 ¾为永磁同步电机处于短路状态的持续时间; Ld、 L分别为直轴 同步电感和交轴同步电感; 为永磁体磁链; id、 ^分别是定子电流在 d轴和 g 轴上的分量, 分别称为直轴电流和交轴电流;
将所述三相电流最高幅值在 静止坐标系下分解为 ^、 ίβ ,定义^ ^为 在 静止坐标系的角度;
Θ, = tan 电机短路电流在 dq坐标系的角度获得子单元, 用于由以下公式获得电流 在 dq坐标系的角度;
- sin«¾ )
Θ, = tan tan
^(l - cos(^r)) 转子位置角第一获得单元, 用于由以下公式获得转子位置角 θε = θ1άρ - θ1αβ 。 优选地,所述低速时转子位置角获得单元包括:电压空间矢量施加子单元、 三相电流获得子单元和驱动脉沖封锁子单元;
所述电压空间矢量施加子单元, 用于依次不间断地施加电压空间矢量 和 各预定时间段; 所述三相电流获得子单元, 用于获得永磁同步电机的 A 相电流; 所述驱动脉沖封锁子单元, 用于封锁逆变器的驱动脉沖 N 毫秒; N 所述电压空间矢量施加子单元, 用于依次不间断地施加电压空间矢量 sl 和^各预定时间段, 获得永磁同步电机的 B相电流; 所述驱动脉沖封锁子单 元, 用于封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
所述电压空间矢量施加子单元, 用于依次不间断地施加电压空间矢量^ 和^各预定时间段, 获得永磁同步电机的 C相电流;
其中, 、 、 us3 , 4、 ^和 6依次为逆时针方向依次相差 60度的空 间矢量。
本发明实施例还提供一种永磁同步电机带速重新投入的控制系统, 包括: 控制单元、 永磁同步电机、 逆变器和隔离接触器;
所述控制单元, 用于控制隔离接触器的导通状态; 所述隔离接触器连接在 所述逆变器和所述永磁同步电机之间;
所述控制单元, 还用于输出驱动脉沖, 以控制逆变器中管子的开关状态; 所述控制单元,还用于判断永磁同步电机的反电势是否大于逆变器侧的电 压;如果永磁同步电机的反电势大于逆变器侧的电压,则控制隔离接触器断开, 禁止重投操作; 如果永磁同步电机的反电势小于或等于逆变器侧的电压, 则继 续判断永磁同步电机的转子转速是否大于预定转速;如果永磁同步电机的转子 转速大于预定转速, 则控制永磁同步电机处于短路状态, 由永磁同步电机短路 状态的三相电流最高幅值获得 静止坐标系的电流角度,由永磁同步电机处 于短路状态的持续时间计算 dq 坐标系的电流角度, dq 坐标系的电流角度与 静止坐标系的电流角度的差为转子位置角;由该转子位置角启动永磁同步 电机; 如果永磁同步电机的转子转速小于或等于预定转速, 则给永磁同步电机 施加不同方向的电压空间矢量, 测量永磁同步电机的三相电流, 由永磁同步电 机的三相电流来获得转子位置角, 由该转子位置角启动永磁同步电机。
优选地, 所述控制单元给永磁同步电机施加不同方向的电压空间矢量, 测 量永磁同步电机的三相电流, 具体为:
依次不间断地施加电压空间矢量 sl4各预定时间段, 获得永磁同步电 机的 A相电流;
封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
依次不间断地施加电压空间矢量 和 s5各预定时间段, 获得永磁同步电 机的 B相电流;
封锁逆变器的驱动脉沖 N毫秒;
依次不间断地施加电压空间矢量 iis3和 iis6各预定时间段, 获得永磁同步电 机的 C相电流;
其中, sl、 Hs2、 us3 , us4 , s5和^依次为逆时针方向依次相差 60度的空 间矢量。
与现有技术相比, 本发明具有以下优点:
从系统的角度出发, 由拖车速度获得 PMSM的 。 从而获得 PMSM的反 电势。将反电势与逆变器侧的电压进行比较,如果反电势高于逆变器侧的电压 则不允许 PMSM带速重投, 反之允许 PMSM带速重投。 PMSM带速重投即将 隔离接触器闭合, 禁止 PMSM带速重投即将隔离接触器断开。 但是 PMSM带 速重投需要知道转子位置角。 因此, 本发明根据 的大小, 分为低速和中高度 两个工况来计算转子位置角, 不同工况对应不同的转子位置角, 由转子位置角 启动 PMSM。 本发明提供的方法从系统角度出发提出了全面控制方法, 在 PMSM高速段禁止带速重投(高速时对应的反电势太大), 中高速段采用一次 短路法计算转子位置角来确定重投点位置, 低速段采用 INFORM法计算转子 位置角来确定重投点的位置。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中的 PMSM传动系统示意图;
图 2是永磁同步电机电压相量图;
图 3 是本发明提供的永磁同步电机带速重新投入的控制方法实施例一流 程图;
图 4是本发明提供的中高速段时的一次短路法流程图;
图 5是本发明提供的不同坐标系下的电流矢量的电流角度示意图; 图 6是本发明提供的利用 INFORM法计算转子位置角的流程图; 图 7是本发明提供的电压空间矢量示意图;
图 8是本发明提供的电流测量点示意图;
图 9 是本发明提供的永磁同步电机带速重新投入的控制装置实施例一示 意图;
图 10是本发明提供的装置实施例二示意图;
图 11是本发明提供的装置实施例三示意图;
图 12是本发明提供的永磁同步电机带速重新投入的控制系统实施例一示 意图。
具体实施方式
为了本领域技术人员能够更好地理解和实施本发明的技术方案,下面首先 介绍永磁同步电机 PMSM的一些基本工作原理。
首先, PMSM的稳态数学模型;
为了筒化分析、 降低方程维数, 采用永磁同步电动机在 同步旋转坐标系 下的数学模型。 永磁同步电动机在 dq同步旋转坐标系下的电压方程和磁链方 程分别可以表示为公式(1 :
Figure imgf000011_0001
^ f +Ld-idf + (L -iq) 其中 id、 iq、 ud、 uq、 ψά和 ψ9 ^"另 ll为定子电 ¾ 、 电压和 ϋ在 d 由和 q 由上 的分量; Ld、 分别为直轴同步电感和交轴同步电感; 为电机电角速度且
( 为电机极对数, 为电机机械角速度); p为微分算子,且 p=^。
dt 在稳态时, 电压方程(1)可筒化成如下方程(3)和(4) , 具体原理可 以参照图 2, 该图为永磁同步电机电压相量图:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。 方法实施例一:
参见图 3, 该图为本发明提供的永磁同步电机带速重新投入的控制方法实 施例一流程图。
首先, 介绍本发明基于的工作原理。
由公式 ( 1 ) 可以看出, 只要转速 足够高, 则反电势 E。将要高于逆变器 中间直流侧电压 如果这个时候进行带速重投操作、 投入隔离接触器, 则
PMSM将会向逆变器的直流侧反向充电。 逆变器直流侧的电容被充电压幅值 将可能高于电容安全允许值, 对电容带来损坏。
因此, 带速重投不是在 PMSM所有速度下都能进行, 需要根据重投点对 应 PMSM的转速来判断。 本发明实施例提供的方法便是依据轨道交通以安全 为导向, 从系统角度出发以系统拖车速度为依据明确了重投逻辑。
需要说明的是, 可以利用系统拖车速度得到 PMSM的转速 。
下面结合流程图来详细介绍本发明的技术方案。
S301 : 判断永磁同步电机的反电势是否大于逆变器侧的电压;
需要说明的是, PMSM的反电势可以利用公式(1 )获得, 其中, 可以 通过系统拖车来获得。
为了判断的方便,所述逆变器侧的电压可以采用逆变器直流侧的电压来作 为判据。 例如逆变器侧的电压可以采用
Figure imgf000012_0001
S302: 如果永磁同步电机的反电势大于逆变器侧的电压,则控制隔离接触 器断开, 禁止重投操作;
这样是为了保护逆变器直流侧电容的安全。
S303: 如果永磁同步电机的反电势小于或等于逆变器侧的电压,则继续判 断永磁同步电机的转子转速是否大于预定转速; 如果永磁同步电机的反电势小于或等于逆变器侧的电压,则允许隔离接触 器闭合, 但是进一步需要知道 PMSM的转子位置角, 才可以启动 PMSM。 因 此, 需要下面根据拖车速度获得 , 由 的大小分为两种情况来分别获取转 子位置角, 一种是低速情况下如何获取转子位置角, 另一种是中高速情况下如 何获取转子位置角。
S304: 如果永磁同步电机的转子转速大于预定转速,则控制永磁同步电机 处于短路状态,由永磁同步电机短路状态的三相电流最高幅值获得 静止坐 标系的电流角度, 由永磁同步电机处于短路状态的持续时间计算 dq坐标系的 电流角度, dq 坐标系的电流角度与 静止坐标系的电流角度的差为转子位 置角; 由该转子位置角启动永磁同步电机;
S304提供的方法可以筒单概括为一次短路法。 通过该一次短路法可以获 取中高速下转子位置角, 从而知道转子的初始位置来启动 PMSM。
S305: 如果永磁同步电机的转子转速小于或等于预定转速,则给永磁同步 电机施加不同方向的电压空间矢量, 测量永磁同步电机的三相电流, 由永磁同 步电机的三相电流来获得转子位置角, 由该转子位置角启动永磁同步电机。
S305 提供的方法主要应用了基于在线电感检测的磁链估算(INFORM, INdirect Flux detection by On-line Reactance Measurement ) 方法。
本发明提供的方法, 从系统的角度出发, 由拖车速度获得 PMSM的 。 从而获得 PMSM的反电势。 将反电势与逆变器侧的电压进行比较, 如果反电 势高于逆变器侧的电压则不允许 PMSM带速重投,反之允许 PMSM带速重投。 PMSM带速重投即将隔离接触器闭合, 禁止 PMSM带速重投即将隔离接触器 断开。 但是 PMSM带速重投需要知道转子位置角。 因此, 本发明根据 的大 小, 分为低速和中高度两个工况来计算转子位置角, 不同工况对应不同的转子 位置角, 由转子位置角启动 PMSM。 本发明提供的方法从系统角度出发提出 了全面控制方法,在 PMSM高速段禁止带速重投(高速时对应的反电势太大), 中高速段采用一次短路法计算转子位置角来确定重投点位置, 低速段采用 INFORM法计算转子位置角来确定重投点的位置。 方法实施例二 下面结合附图来详细介绍本发明提供的当 PMSM处于中高速段时利用一 次短路法获取转子位置角。
参见图 4, 该图为本发明提供的中高速段时的一次短路法流程图。
由于 PMSM空转时反电势的存在, 如果将 PMSM的 3相短路, 则 3相短 路电流中必含有 PMSM转子的位置信息, 因此可以利用短路法来获取转子位 置角。
S401: 施加零电压矢量, 使永磁同步电机处于短路状态;
需要说明的是, 零电压矢量有两个, 一个是 ^和^ , 即可以通过施加这 两个不同的零电压矢量使逆变器的上桥臂的所有管子导通或者下桥臂的所有 管子导通; 上桥臂所有管子导通时, 永磁同步电机也可以处于短路状态; 下桥 臂所有管子导通时,永磁同步电机也可以处于短路状态,在本发明实施例中不 具体限定具体是上桥臂的所有管子导通, 还是下桥臂的所有管子导通。
S402: 使永磁同步电机保持短路状态预定时间段 r , 获取 PMSM的三相 电流最高幅值。
S403: 将所述三相电流最高幅值在 静止坐标系下分解为„、 ίβ ;
S404: 由所述 静止坐标系下的电流„、 ^计算 静止坐标系下的电 流角度, 具体公式如下:
Figure imgf000014_0001
S405: 由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流 如果 q轴定子绕组的时间常数 Lq /Rm远大于 Tsh , 则 Rm可以忽略不计。
当忽略定子电阻且逆变器的管子全部导通时, PMSM处于被短路的状态, 其端电压等于零, 即 = 0、 vq = 0 , 则公式(3 )和(4 )可以筒化为下面的公 式。
Figure imgf000014_0003
Figure imgf000014_0002
PMSM短路电流矢量表示为: Ϊ = [id iq ,并假设 ω为常量、初始电流为 0, 对公式(6 )进行拉普拉斯变换, 则可以得到式(7 ):
Figure imgf000015_0001
即由公式(7 )可以计算得出 dq坐标系的电流 、 iq ;
S406: 由 dq坐标系的电流 、 ^计算 dq坐标系下的电流角度, 具体参见 公式( 7 ) ;
( 7 )
Figure imgf000015_0002
具体可以结合图 5所示的不同坐标系下的电流矢量的电流角度示意图。 图 5中将两个坐标系画在了同一个图中, 即图 5中包括 dq坐标系和 静止坐 标系。
S407: 由两个坐标系下的电流角度计算转子位置角, 具体公式如下:
( 8 ) 本发明实施例详细介绍了如何利用一次短路法计算中高速阶段的转子位 置角。 即利用公式(5 )和(7 ) 的结果, 通过公式(8 )来获得转子位置角。
需要说明的是, 在 PMSM短路之前, 如果电枢电流不为零, 则控制逆变 器所有的管子关断, 使电枢电流为零, 此时 PMSM是被处于断开状态。 方法实施例三:
下面介绍当处于氐速阶段时, 本发明利用 INFORM法获取转子位置角。 参见图 6, 该图为本发明提供的利用 INFORM 法计算转子位置角的流程 图。
首先介绍 INFORM方法的基本原理: 从不同方向为电机端施加电压空间 矢量, 通过测量它们的不同电流响应来估计转子位置。
其中运用的基本原理是: 电机磁路具有凸极性, 定子绕组的电感值是转子 位置的函数,因此不同位置的电压空间矢量所产生的电流响应中一定会含有转 子位置信息。
由于施加的电压空间矢量是高频电压信号, 电流响应也为高频信号, 因此 电机模型可以写成矢量方程形式, 即如下式:
Figure imgf000016_0001
Lo+ALcos20e AL sin 20e
Figure imgf000016_0002
AL sin 20e L0+ALcos 20e
^ -ALcos20e -AL sin 20e
(11)
-AL sin 20er L0 + AL cos 26e y
( , - ALcos 26e -AL sin 2θί
Li-AL ALsin 2Θ +ALcos20e 从公式(1)可以看出, 在某一方向的电压空间矢量 ^作用下, 电流响应 取决于电感矩阵, 而定子绕组电感随转子电角度的位置变化而变化。
可以理解的是, 具体实现过程中可以用多种方法来生成电压空间矢量, 而其中一种较为筒单的方法是直接利用系统中的逆变器,如图 7所示的电压空 间矢量, 分别沿着 ABC绕组的轴线, 从正反两个方向上交替施加电压空间矢 例如对于 PMSM的 A轴, 可施加 和 , 和 由逆变器生成的脉宽 调制开关电压矢量来实现,由于逆变器的开关频率 4艮高,因此施加的 sls4也 是高频定子电压信号。对于 PMSM的 B轴, 可施加 ^和^; 对于 PMSM的 C 轴, 可施力口 s3和 °
下面以 A轴相绕组施加电压空间矢量为例进行介绍。
参见图 8, 该图为本发明提供的电流测量点示意图。
如图 8所示记录的电流测量点为^、 iA2、 iA3、 ίΜΟ
△' = 2-^ (12)
M a ( 13) Λ;( ι) 八;( 4)
^ = 1 (" -"- s4) (1 ) 因此可得, AiA = Aiu - Δ,ί") = [Ls(
Figure imgf000017_0001
( 15 ) 将公式( 11 )代入公式( 15 )可得:
Figure imgf000017_0002
与 A轴类似, 对于作用于 B轴相绕组的电压空间矢量同样有:
Δ = " - + L J- (Lr )cos 2( - 4 3) (17) 与 A轴类似, 对于作用于 C轴相绕组的电压空间矢量同样有:
Figure imgf000017_0003
可将定子三相电流偏差表示为空间矢量形式 /(Δζ ) , 既有:
Figure imgf000017_0004
对公式(19)进行化筒后可得:
Figure imgf000017_0005
通过对 PMSM 的定子三相电流最高幅值的测量, 由式(19)可以计算出 f(Ais) ,便可得其空间相位。 由式(20)可知, 它等于 (2 + τ), 于是可由式(20 估计 ;
θβ = ^(/)-π (21) 下面介绍本发明提供的基于 INFORM法计算低速下的转子位置角的流程; S601: 依次不间断地施加电压空间矢量^和 各预定时间段, 获得永磁 同步电机的 A相电流;
获取 A相电流在此指的是通过公式( 12 )和( 13 )获取 和 , 再由 公式(15)获得 Δ4。 需要说明的是, 依次不间断地施加指的是, 先施加^预定时间段, 中间没 有时间间隔, 立即施加 预定时间段;
可以理解的是, 预定时间段可以根据具体情况进行设置, 例如本实施例中 可以设置预定时间段为 100us。
S602: 封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
需要说明的是, 封锁逆变器的驱动脉沖 N毫秒, 即不施加任何电压空间 矢量, 是为了使 PMSM的电流归零。
N也可以根据需要来选择不同的数值, 例如本实施例中 N可以取值为 1 , 即封锁驱动脉沖 1ms。
B和 C的施加方法与 A相同, 在此不再具体赘述。
S603: 依次不间断地施加电压空间矢量^和^各预定时间段, 获得永磁 同步电机的 B相电流;
S604: 封锁逆变器的驱动脉沖 N毫秒;
S605: 依次不间断地施加电压空间矢量^和 6各预定时间段, 获得永磁 同步电机的 C相电流;
S606: 通过公式( 19 )和( 21 )计算转子位置角。
其中, slsl、 ns3s4、 ^和 6依次为逆时针方向依次相差 60度的空 间矢量。 电压空间矢量可以具体参照图 7。 装置实施例一:
基于以上本发明提供的一种永磁同步电机带速重新投入的控制方法,本发 明还提供了一种永磁同步电机带速重新投入的控制装置,下面结合具体附图来 详细介绍。
参见图 9, 该图为本发明提供的永磁同步电机带速重新投入的控制装置实 施例一示意图。
本实施例提供的永磁同步电机带速重新投入的控制装置, 包括: 电压判断 单元 901、 隔离接触器控制单元 902、 转子转速判断单元 903、 中高速时转子 位置角获得单元 904和低速时转子位置角获得单元 905;
所述电压判断单元 901 , 用于判断永磁同步电机的反电势是否大于逆变器 侧的电压;
需要说明的是, PMSM的反电势可以利用公式(1 )获得, 其中, 可以 通过系统拖车来获得。
为了判断的方便,所述逆变器侧的电压可以采用逆变器直流侧的电压来作 为判据。 例如逆变器侧的电压可以采用 t/ / ^。
所述隔离接触器控制单元 902, 当所述电压判断单元 901判断永磁同步电 机的反电势大于逆变器侧的电压, 则控制隔离接触器断开, 禁止重投操作; 这样是为了保护逆变器直流侧电容的安全。
所述转子转速判断单元 903 , 当所述电压判断单元 901判断永磁同步电机 的反电势小于或等于逆变器侧的电压,用于判断永磁同步电机的转子转速是否 大于预定转速;
如果永磁同步电机的反电势小于或等于逆变器侧的电压,则允许隔离接触 器闭合, 但是进一步需要知道 PMSM的转子位置角, 才可以启动 PMSM。 因 此, 需要下面根据拖车速度获得 , 由 的大小分为两种情况来分别获取转 子位置角, 一种是低速情况下如何获取转子位置角, 另一种是中高速情况下如 何获取转子位置角。
所述中高速时转子位置角获得单元 904, 当所述转子转速判断单元 903判 断永磁同步电机的转子转速大于预定转速时,用于控制永磁同步电机处于短路 状态,由永磁同步电机短路状态的三相电流最高幅值获得 静止坐标系的电 流角度,由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流角度, dq 坐标系的电流角度与 静止坐标系的电流角度的差为转子位置角; 由该 转子位置角启动永磁同步电机;
所述低速时转子位置角获得单元 905 , 当所述转子转速判断单元 903判断 永磁同步电机的转子转速小于或等于预定转速,用于给永磁同步电机施加不同 方向的电压空间矢量, 测量永磁同步电机的三相电流, 由永磁同步电机的三相 电流来获得转子位置角, 由该转子位置角启动永磁同步电机。
低速时获取转子位置角主要应用了基于在线电感检测的磁链估算 ( INFORM , INdirect Flux detection by On-line Reactance Measurement ) 方法。
本发明提供的装置, 从系统的角度出发, 由拖车速度获得 PMSM的 。 从而获得 PMSM的反电势。 将反电势与逆变器侧的电压进行比较, 如果反电 势高于逆变器侧的电压则不允许 PMSM带速重投,反之允许 PMSM带速重投。 PMSM带速重投即将隔离接触器闭合, 禁止 PMSM带速重投即将隔离接触器 断开。 但是 PMSM带速重投需要知道转子位置角。 因此, 本发明根据 的大 小, 分为低速和中高度两个工况来计算转子位置角, 不同工况对应不同的转子 位置角, 由转子位置角启动 PMSM。 本发明提供的装置从系统角度出发提出 了全面控制, 在 PMSM高速段禁止带速重投(高速时对应的反电势太大), 中 高速段采用一次短路法计算转子位置角来确定重投点位置, 低速段采用 INFORM法计算转子位置角来确定重投点的位置。 装置实施例二:
参见图 10, 该图为本发明提供的装置实施例二示意图。
本实施例中提供的装置, 所述中高速时转子位置角获得单元包括: 电机短 路控制子单元 904a和转子位置角第一获得单元 904b。
所述电机短路控制子单元 904a, 用于施加零电压矢量, 使永磁同步电机 处于短路状态;
需要说明的是, 零电压矢量有两个, 一个是 ^和^ , 即可以通过施加这 两个不同的零电压矢量使逆变器的上桥臂的所有管子导通或者下桥臂的所有 管子导通; 上桥臂所有管子导通时, 永磁同步电机也可以处于短路状态; 下桥 臂所有管子导通时,永磁同步电机也可以处于短路状态,在本发明实施例中不 具体限定具体是上桥臂的所有管子导通, 还是下桥臂的所有管子导通。
电机短路电流在 静止坐标系的角度获得子单元,用于由以下公式获得 电流在 静止坐标系的角度;
由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流:
- (1 - cos( ¾)) sin( ) 其中, 7 ¾为永磁同步电机处于短路状态的持续时间; Ld、 分别为直轴 同步电感和交轴同步电感; ^为永磁体磁链; id、 ^分别是定子电流在 d轴和 g 轴上的分量, 分别称为直轴电流和交轴电流;
将所述三相电流最高幅值在 静止坐标系下分解为 i, 、 ίβ ,定义 为 在 静止坐标系的角度;
Figure imgf000021_0001
电机短路电流在 dq坐标系的角度获得子单元, 用于由以下公式获得电流 在 dq坐标系的角度;
Figure imgf000021_0002
所述转子位置角第一获得单元 904b , 用于由以下公式获得转子位置角 θ = θ, —Θ, 本实施例中, 利用一次短路法进行中高速阶段转子位置角的计算, 具体工 作原理和计算公式可以参照方法实施例二, 在此不再赘述。 装置实施例三:
参见图 11 , 该图为本发明提供的装置实施例三示意图。
本实施例提供的控制装置中, 所述低速时转子位置角获得单元包括: 电压 空间矢量施加子单元 905a、 三相电流获得子单元 905b和驱动脉沖封锁子单元 905c;
所述电压空间矢量施加子单元 905a, 用于依次不间断地施加电压空间矢 量^和 各预定时间段; 所述三相电流获得子单元 905b, 用于获得永磁同步 电机的 A相电流; 所述驱动脉沖封锁子单元 905c, 用于封锁逆变器的驱动脉 沖 N毫秒; N为预定整数;
所述电压空间矢量施加子单元 905a, 还用于依次不间断地施加电压空间 矢量 和^各预定时间段, 获得永磁同步电机的 B相电流; 所述驱动脉沖封 锁子单元 905c, 用于封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
所述电压空间矢量施加子单元 905a, 还用于依次不间断地施加电压空间 矢量 和 6各预定时间段, 获得永磁同步电机的 C相电流;
其中, 、 、 us3 , Us4 , ^和 6依次为逆时针方向依次相差 60度的空 间矢量。
需要说明的是, 装置实施例二中的具体工作原理 INFORM法和计算公式 可以参照方法实施例三。 在此不再赘述。 基于以上实施例提供的永磁同步电机带速重新投入的控制方法和装置,本 发明还提供了一种永磁同步电机带速重新投入的控制系统。
参见图 12, 该图为本发明提供的永磁同步电机带速重新投入的控制系统 实施例一示意图。
本实施例提供的永磁同步电机带速重新投入的控制系统, 包括: 控制单元
100、 永磁同步电机 400、 逆变器 200和隔离接触器 300;
所述控制单元, 用于控制隔离接触器 300 的导通状态; 所述隔离接触器 300连接在所述逆变器 200和所述永磁同步电机 400之间;
所述控制单元 100, 还用于输出驱动脉沖, 以控制逆变器 200中管子的开 关状态;
所述控制单元 100, 还用于判断永磁同步电机 400的反电势是否大于逆变 器 200侧的电压; 如果永磁同步电机 400的反电势大于逆变器 200侧的电压, 则控制隔离接触器 300断开, 禁止重投操作; 如果永磁同步电机 400的反电势 小于或等于逆变器 200侧的电压,则继续判断永磁同步电机 400的转子转速是 否大于预定转速; 如果永磁同步电机 400的转子转速大于预定转速, 则控制永 磁同步电机 400处于短路状态,由永磁同步电机 400短路状态的三相电流最高 幅值获得 静止坐标系的电流角度,由永磁同步电机 400处于短路状态的持 续时间计算 dq坐标系的电流角度, dq坐标系的电流角度与 静止坐标系的 电流角度的差为转子位置角; 由该转子位置角启动永磁同步电机 400; 如果永 磁同步电机 400的转子转速小于或等于预定转速,则给永磁同步电机 400施加 不同方向的电压空间矢量, 测量永磁同步电机 400的三相电流, 由永磁同步电 机 400的三相电流来获得转子位置角,由该转子位置角启动永磁同步电机 400。
本发明提供的系统, 从轨道交通牵引系统的角度出发, 由拖车速度获得 PMSM的 e。 从而获得 PMSM的反电势。 将反电势与逆变器侧的电压进行比 较, 如果反电势高于逆变器侧的电压则不允许 PMSM 带速重投, 反之允许 PMSM带速重投。 PMSM带速重投即将隔离接触器闭合, 禁止 PMSM带速重 投即将隔离接触器断开。 但是 PMSM带速重投需要知道转子位置角。 因此, 本发明根据 的大小,分为低速和中高度两个工况来计算转子位置角, 不同工 况对应不同的转子位置角, 由转子位置角启动 PMSM。 本发明提供的系统从 系统角度出发提出了全面控制, 在 PMSM高速段禁止带速重投(高速时对应 的反电势太大 ),中高速段采用一次短路法计算转子位置角来确定重投点位置, 低速段采用 INFORM法计算转子位置角来确定重投点的位置。
所述控制单元给永磁同步电机施加不同方向的电压空间矢量,测量永磁同 步电机的三相电流, 具体为:
依次不间断地施加电压空间矢量 sl4各预定时间段, 获得永磁同步电 机的 A相电流;
封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
依次不间断地施加电压空间矢量 和 ^各预定时间段, 获得永磁同步电 机的 B相电流;
封锁逆变器的驱动脉沖 N毫秒;
依次不间断地施加电压空间矢量 s3s6各预定时间段, 获得永磁同步电 机的 c相电流;
其中, isis2s3 , Us4 , ^和 6依次为逆时针方向依次相差 60度的空 间矢量。
需要说明的是,系统实施例中在低速阶段计算转子位置角的具体工作原理 INFORM法和计算公式可以参照方法实施例三。 在此不再赘述。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明。 任何 熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述 揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改 为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本 于本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种永磁同步电机带速重新投入的控制方法, 其特征在于, 包括以下 步骤:
判断永磁同步电机的反电势是否大于逆变器侧的电压;
如果永磁同步电机的反电势大于逆变器侧的电压, 则控制隔离接触器断 开, 禁止重投操作;
如果永磁同步电机的反电势小于或等于逆变器侧的电压,则继续判断永磁 同步电机的转子转速是否大于预定转速;
如果永磁同步电机的转子转速大于预定转速,则控制永磁同步电机处于短 路状态,由永磁同步电机短路状态的三相电流最高幅值获得 静止坐标系的 电流角度, 由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流角 度, dq 坐标系的电流角度与 静止坐标系的电流角度的差为转子位置角; 由该转子位置角启动永磁同步电机;
如果永磁同步电机的转子转速小于或等于预定转速,则给永磁同步电机施 加不同方向的电压空间矢量, 测量永磁同步电机的三相电流, 由永磁同步电机 的三相电流来获得转子位置角, 由该转子位置角启动永磁同步电机。
2、 根据权利要求 1所述的永磁同步电机带速重新投入的控制方法, 其特 征在于, 所述控制永磁同步电机处于短路状态, 由永磁同步电机短路状态的三 相电流最高幅值获得 静止坐标系的电流角度,由永磁同步电机处于短路状 态的持续时间计算 dq坐标系的电流角度, dq坐标系的电流角度与 静止坐 标系的电流角度的差为转子位置角, 具体为:
施加零电压矢量, 使永磁同步电机处于短路状态;
由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流:
¾))
Figure imgf000025_0001
其中, 7 ¾为永磁同步电机处于短路状态的持续时间; Ld、 L分别为直轴 同步电感和交轴同步电感; ^为永磁体磁链; id¾分别是定子电流在 d轴和 g 轴上的分量, 分别称为直轴电流和交轴电流; 将所述三相电流最高幅值在 静止坐标系下分解为 ^、 ip,定义^ !: 在 静止坐标系的角度;
Figure imgf000026_0001
所述三相电流最高幅值在 d 坐标系的角度为 :
Figure imgf000026_0002
所述转子位置角为: θε=θ! -θ, 。
3、 根据权利要求 1或 2所述的永磁同步电机带速重新投入的控制方法, 其特征在于, 所述给永磁同步电机施加不同方向的电压空间矢量, 测量永磁同 步电机的三相电流, 具体为:
依次不间断地施加电压空间矢量 和 ils4各预定时间段, 获得永磁同步电 机的 A相电流;
封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
依次不间断地施加电压空间矢量 s2s5各预定时间段, 获得永磁同步电 机的 B相电流;
封锁逆变器的驱动脉沖 N毫秒;
依次不间断地施加电压空间矢量 和 s6各预定时间段, 获得永磁同步电 机的 C相电流;
其中, 、 、 us3, Us4, ^和 6依次为逆时针方向依次相差 60度的空 间矢量。
4、 根据权利要求 3所述的永磁同步电机带速重新投入的控制方法, 其特 征在于, 所述由永磁同步电机的三相电流来获得转子位置角, 具体为:
_ arg(J)-^- 其中, /为三相电流偏差的空间矢量形式; 其中, Δ Α
Figure imgf000027_0001
A = J- [ + L q )- (L d - )cos 2{θ - 4^/3)]Δί;
Δ c = γ- [ + Lq )~ (Ld - Lq )cos 2(θε - Ιπ/^ΐ。
5、 根据权利要求 1所述的永磁同步电机带速重新投入的控制方法, 其特 征在于, 所述永磁同步电机的反电势由以下公式计算:
Eo = ωβψΙ
其中, E。为永磁同步电机反电动势; 为永磁同步电机转子电角速度; f 为永磁体磁链。
6、 一种永磁同步电机带速重新投入的控制装置, 其特征在于, 包括: 电 压判断单元、 隔离接触器控制单元、 转子转速判断单元、 中高速时转子位置角 获得单元和低速时转子位置角获得单元;
所述电压判断单元,用于判断永磁同步电机的反电势是否大于逆变器侧的 电压;
所述隔离接触器控制单元,当所述电压判断单元判断永磁同步电机的反电 势大于逆变器侧的电压, 则控制隔离接触器断开, 禁止重投操作;
所述转子转速判断单元,当所述电压判断单元判断所述永磁同步电机的反 电势小于或等于逆变器侧的电压,用于判断永磁同步电机的转子转速是否大于 预定转速;
所述中高速时转子位置角获得单元,当所述转子转速判断单元判断永磁同 步电机的转子转速大于预定转速时, 用于控制永磁同步电机处于短路状态, 由 永磁同步电机短路状态的三相电流最高幅值获得 静止坐标系的电流角度, 由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流角度, dq坐标 系的电流角度与 静止坐标系的电流角度的差为转子位置角;由该转子位置 角启动永磁同步电机; 所述低速时转子位置角获得单元,当所述转子转速判断单元判断永磁同步 电机的转子转速小于或等于预定转速,用于给永磁同步电机施加不同方向的电 压空间矢量, 测量永磁同步电机的三相电流, 由 7 磁同步电机的三相电流来获 得转子位置角, 由该转子位置角启动永磁同步电机。
7、 根据权利要求 6所述的永磁同步电机带速重新投入的控制装置, 其特 征在于, 所述中高速时转子位置角获得单元包括:
电机短路控制子单元, 用于施加零电压矢量,使永磁同步电机处于短路状 态;
电机短路电流在 静止坐标系的角度获得子单元,用于由以下公式获得 电流在 静止坐标系的角度;
由永磁同步电机处于短路状态的持续时间计算 dq坐标系的电流:
(1— cos( ¾)) ^sin(^rj 其中, 7 ¾为永磁同步电机处于短路状态的持续时间; Ld、 L分别为直轴 同步电感和交轴同步电感; ^为永磁体磁链; id¾分别是定子电流在 d轴和 g 轴上的分量, 分别称为直轴电流和交轴电流;
将所述三相电流最高幅值在 静止坐标系下分解为 ^、 ίβ ,定义^ !为 在 静止坐标系的角度;
Figure imgf000028_0001
电机短路电流在 dq坐标系的角度获得子单元, 用于由以下公式获得电流 在 dq坐标系的角度;
Figure imgf000028_0002
转子位置角第一获得单元, 用于由以下公式获得转子位置角 =
8、 根据权利要求 6或 7所述的永磁同步电机带速重新投入的控制装置, 其特征在于,所述低速时转子位置角获得单元包括:电压空间矢量施加子单元、 三相电流获得子单元和驱动脉沖封锁子单元;
所述电压空间矢量施加子单元, 用于依次不间断地施加电压空间矢量^ 和 各预定时间段; 所述三相电流获得子单元, 用于获得永磁同步电机的 A 相电流; 所述驱动脉沖封锁子单元, 用于封锁逆变器的驱动脉沖 N 毫秒; N 为预定整数;
所述电压空间矢量施加子单元, 用于依次不间断地施加电压空间矢量 s2 和^各预定时间段, 获得永磁同步电机的 B相电流; 所述驱动脉沖封锁子单 元, 用于封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
所述电压空间矢量施加子单元, 用于依次不间断地施加电压空间矢量^ 和 6各预定时间段, 获得永磁同步电机的 C相电流;
其中, 、 、 us3 , Hs4、 ^和 6依次为逆时针方向依次相差 60度的空 间矢量。
9、 一种永磁同步电机带速重新投入的控制系统, 其特征在于, 包括: 控 制单元、 永磁同步电机、 逆变器和隔离接触器;
所述控制单元, 用于控制隔离接触器的导通状态; 所述隔离接触器连接在 所述逆变器和所述永磁同步电机之间;
所述控制单元, 还用于输出驱动脉沖, 以控制逆变器中管子的开关状态; 所述控制单元,还用于判断永磁同步电机的反电势是否大于逆变器侧的电 压;如果永磁同步电机的反电势大于逆变器侧的电压,则控制隔离接触器断开, 禁止重投操作; 如果永磁同步电机的反电势小于或等于逆变器侧的电压, 则继 续判断永磁同步电机的转子转速是否大于预定转速;如果永磁同步电机的转子 转速大于预定转速, 则控制永磁同步电机处于短路状态, 由永磁同步电机短路 状态的三相电流最高幅值获得 静止坐标系的电流角度,由永磁同步电机处 于短路状态的持续时间计算 dq 坐标系的电流角度, dq 坐标系的电流角度与 "-^静止坐标系的电流角度的差为转子位置角;由该转子位置角启动永磁同步 电机; 如果永磁同步电机的转子转速小于或等于预定转速, 则给永磁同步电机 施加不同方向的电压空间矢量, 测量永磁同步电机的三相电流, 由永磁同步电 机的三相电流来获得转子位置角, 由该转子位置角启动永磁同步电机。
10、根据权利要求 9所述的永磁同步电机带速重新投入的控制系统, 其特 征在于, 所述控制单元给永磁同步电机施加不同方向的电压空间矢量, 测量永 磁同步电机的三相电流, 具体为:
依次不间断地施加电压空间矢量 和 各预定时间段, 获得永磁同步电 机的 A相电流;
封锁逆变器的驱动脉沖 N毫秒; N为预定整数;
依次不间断地施加电压空间矢量 s2s5各预定时间段, 获得永磁同步电 机的 B相电流;
封锁逆变器的驱动脉沖 N毫秒;
依次不间断地施加电压空间矢量 和 s6各预定时间段, 获得永磁同步电 机的 C相电流;
其中, 、 、 us3 , Hs4、 ^和 6依次为逆时针方向依次相差 60度的空 间矢量。
PCT/CN2013/089575 2013-10-25 2013-12-16 永磁同步电机带速重新投入的控制方法、装置及系统 WO2015058445A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/031,479 US10033313B2 (en) 2013-10-25 2013-12-16 Control method for restarting permanent magnet synchronous motor with speed, device and system thereof
GB1607342.1A GB2535368B (en) 2013-10-25 2013-12-16 Control method for restarting permanent magnet synchronous motor with speed, device and system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310512095.0 2013-10-25
CN201310512095.0A CN103516281B (zh) 2013-10-25 2013-10-25 永磁同步电机带速重新投入的控制方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015058445A1 true WO2015058445A1 (zh) 2015-04-30

Family

ID=49898459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089575 WO2015058445A1 (zh) 2013-10-25 2013-12-16 永磁同步电机带速重新投入的控制方法、装置及系统

Country Status (4)

Country Link
US (1) US10033313B2 (zh)
CN (1) CN103516281B (zh)
GB (1) GB2535368B (zh)
WO (1) WO2015058445A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528504A (zh) * 2016-06-17 2017-12-29 半导体元件工业有限责任公司 电机驱动系统
TWI717001B (zh) * 2019-09-05 2021-01-21 登騰電子股份有限公司 電動機控制器與電動機控制方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980076A (zh) * 2015-06-29 2015-10-14 苏州八方电机科技有限公司 一种永磁电机系统的弱磁故障控制方法
CN105946588B (zh) * 2016-06-20 2018-03-13 中车株洲电力机车研究所有限公司 电力机车重投方法、重投系统及电力机车
US10812003B2 (en) * 2016-07-06 2020-10-20 Danfoss Power Electronics A/S Motor control system and method
CN106515750A (zh) * 2016-09-30 2017-03-22 中车南京浦镇车辆有限公司 永磁直驱地铁列车
CN108964558B (zh) 2017-05-24 2021-04-06 浙江三花智能控制股份有限公司 电机控制方法以及电机控制系统
CN107196579B (zh) * 2017-05-31 2019-08-30 华中科技大学 一种永磁同步电机带速度重新投入的控制方法及控制装置
CN107134963B (zh) * 2017-06-07 2018-09-07 深圳市高德威技术有限公司 永磁同步电机的转子位置追踪方法
JP7049623B2 (ja) * 2017-06-14 2022-04-07 青島海爾洗衣机有限公司 洗濯機
CN107404273A (zh) * 2017-06-20 2017-11-28 奥克斯空调股份有限公司 一种永磁同步电机电流解耦控制方法
CN108749645B (zh) * 2018-04-21 2020-11-03 浙江合众新能源汽车有限公司 电动车辆在空挡滑行时的控制保护方法
CN108809202A (zh) * 2018-06-07 2018-11-13 沈阳工业大学 一种具有带速重投功能的交流电机供电装置
CN108879611B (zh) * 2018-07-25 2019-12-17 中车株洲电力机车有限公司 一种永磁电机系统的故障控制方法及系统
CN110875709B (zh) * 2018-08-30 2021-10-22 比亚迪股份有限公司 逆变器的保护方法和系统以及车辆
CN109379007B (zh) * 2018-10-12 2020-05-05 浙江工业大学 一种永磁同步电机无位置传感器控制带速重投方法
CN109742732B (zh) * 2018-12-03 2020-05-29 浙江零跑科技有限公司 一种永磁同步电机的开断式端部短路保护方法
SE544612C2 (en) * 2019-05-07 2022-09-20 Bombardier Transp Gmbh A method of determining the position of a freely rotating rotor in a permanent magnet motor, and a control ciruit and a system therefore
US11374520B2 (en) 2019-06-10 2022-06-28 Black & Decker Inc. Field-oriented sensorless brushless motor control in a power tool
KR102309413B1 (ko) 2019-06-20 2021-10-06 엘지전자 주식회사 모터의 고속 결선 모드 절환을 제어하기 위한 장치 및 방법
CN111224600B (zh) * 2020-02-27 2023-07-28 合肥阳光电动力科技有限公司 永磁同步电机速度控制方法、装置、计算机设备及介质
CN111404434B (zh) * 2020-03-24 2022-01-07 华中科技大学 一种变磁通永磁电机带速重投控制方法及系统
CN111580436B (zh) * 2020-05-25 2022-09-09 福州大学 基于状态观测器的接触器磁链闭环控制方法
CN111697894B (zh) * 2020-05-28 2022-12-27 格至控智能动力科技(上海)有限公司 混合励磁同步电机零位标定方法
CN112054734A (zh) * 2020-09-02 2020-12-08 湖南大学 永磁同步电机的低速无速度传感器mtpa控制方法及系统
CN112202369B (zh) * 2020-09-27 2021-12-03 湖南大学 单直流母线电流采样大惯量永磁同步电机带速重投方法
CN112234889B (zh) * 2020-10-09 2022-02-11 北京理工大学 一种开绕组永磁同步电机的单矢量控制方法
CN112701988B (zh) * 2020-12-23 2022-04-26 欧瑞传动电气股份有限公司 一种适用于高速永磁同步电机的飞车启动方法
CN113078866B (zh) * 2021-03-17 2022-08-26 天津工业大学 基于控制电源供电高频注入ipmsm带速重投控制方法
CN112977173B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN113098339B (zh) * 2021-05-20 2022-12-20 神华准格尔能源有限责任公司 无编码永磁同步电机的带速启动方法、存储介质及电子设备
CN113489402A (zh) * 2021-06-29 2021-10-08 青岛海尔空调电子有限公司 直流风机相电流检测方法、启动方法及装置
CN114244243B (zh) * 2021-12-24 2023-11-24 中车大同电力机车有限公司 隔离电路中反电势的装置和方法
CN114362620A (zh) * 2021-12-31 2022-04-15 东南大学 一种高速永磁同步电机全速域飞启方法
CN114710073B (zh) * 2022-04-13 2022-10-25 哈尔滨工业大学 永磁同步电机高转速下转子初始位置和转速检测方法
CN114640291B (zh) * 2022-05-19 2022-07-29 希望森兰科技股份有限公司 一种异步电机短时停机转速跟踪启动方法
CN116232151B (zh) * 2022-09-09 2023-10-27 北方工业大学 一种无位置传感器永磁同步电机全速域带速重投的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791984A (zh) * 2010-03-05 2010-08-04 株洲南车时代电气股份有限公司 城市轨道交通列车动力系统
CN103312241A (zh) * 2013-06-08 2013-09-18 西北工业大学 一种大惯量负载永磁同步电机断电-寻优重投控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142756A1 (ja) * 2007-05-18 2008-11-27 Mitsubishi Heavy Industries, Ltd. 永久磁石型同期モータの制御装置および方法ならびにプログラム
US8340848B2 (en) * 2007-11-29 2012-12-25 GM Global Technology Operations LLC Method and system for sensorless control of an electric motor
US8054030B2 (en) * 2008-01-22 2011-11-08 GM Global Technology Operations LLC Permanent magnet AC motor systems and control algorithm restart methods
CN102414037B (zh) * 2009-07-08 2014-11-05 丰田自动车株式会社 车辆用减振器系统
US9966889B2 (en) * 2013-05-12 2018-05-08 Infineon Technologies Ag Optimized control for synchronous motors
FR3022887B1 (fr) * 2014-06-25 2016-10-21 Messier Bugatti Dowty Procede de gestion d'un moteur electrique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791984A (zh) * 2010-03-05 2010-08-04 株洲南车时代电气股份有限公司 城市轨道交通列车动力系统
CN103312241A (zh) * 2013-06-08 2013-09-18 西北工业大学 一种大惯量负载永磁同步电机断电-寻优重投控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROBEISCHL, E. ET AL.: "Optimized INFORM Measurement Sequence for Sensorless PM Synchronous Motor Drives with Respect to Minimum Current Distortion", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 40, no. 2, 30 April 2004 (2004-04-30), pages 591 - 598 *
WANG, GAOLIN ET AL.: "Hybrid Sensorless Control Strategy for Permanent Magnet Synchronous Motors", PROCEEDINGS OF THE CSEE, vol. 32, no. 24, 5 August 2012 (2012-08-05), pages 103 - 109 *
WEN, YULIANG ET AL.: "Calculation Research of Re-starting with Speed for PMSM Based on the Sensor-less", HIGH POWER CONVERTER TECHNOLOGY, 2012, pages 39 - 42 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528504A (zh) * 2016-06-17 2017-12-29 半导体元件工业有限责任公司 电机驱动系统
TWI717001B (zh) * 2019-09-05 2021-01-21 登騰電子股份有限公司 電動機控制器與電動機控制方法

Also Published As

Publication number Publication date
GB2535368A (en) 2016-08-17
CN103516281B (zh) 2015-02-11
GB2535368B (en) 2021-04-07
CN103516281A (zh) 2014-01-15
GB2535368A8 (en) 2016-08-31
US20160285397A1 (en) 2016-09-29
US10033313B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2015058445A1 (zh) 永磁同步电机带速重新投入的控制方法、装置及系统
US9590552B2 (en) Motor drive device and electric compressor
Fatu et al. IF starting method with smooth transition to EMF based motion-sensorless vector control of PM synchronous motor/generator
CN110622410B (zh) 无刷直流电机控制方法、控制装置和电动工具
CN109379007B (zh) 一种永磁同步电机无位置传感器控制带速重投方法
CN106160605B (zh) 柴油机变频起动方法及柴油发电机组、机车
Iura et al. An estimation method of rotational direction and speed for free-running ac machines without speed and voltage sensor
JP2014204451A (ja) 車両用発電電動機の制御装置およびその方法
Patel et al. Encoderless IPM traction drive for EV/HEV's
Dong et al. A sensorless control strategy of injecting HF voltage into d-axis for IPMSM in full speed range
JP2000156993A (ja) 永久磁石型同期機の制御装置及びその制御方法
Semenov et al. Position estimation for sensorless FOC of five-phase PMSM in electric vehicles
JP2002272198A (ja) 永久磁石形同期電動機の制御装置
CN108540031B (zh) 无轴承同步磁阻电机的转速估计方法及转矩控制系统
Chen et al. A new starting method of sensorless PMSM motors based on STM32F103B
Huo et al. Research on sensorless control system of permanent magnet synchronous motor for CNC machine tool
Lin et al. Position sensorless direct torque control for pmsm based on pulse high frequency stator flux injection at low speed
Ghule et al. High frequency injection based rotor position self-sensing for synchronous electrostatic machines
Zhenfeng et al. Speed Sensorless Control of Synchronous Reluctance Motor At Full Speed Range
Wang et al. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection
Li et al. Sensorless Vector Control for Automotive Auxiliary Motors in the Full Speed Range
JP2009201284A (ja) Pmモータの可変速駆動装置
Kano et al. Signal-injection-based sensorless IPM traction drive for wide-torque range operation at low speed
Fan et al. Sensorless control of five-phase IPM motor based on high-frequency sinusoidal voltage injection
Zhao et al. Research on sensorless control system of permanent magnet synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15031479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201607342

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131216

122 Ep: pct application non-entry in european phase

Ref document number: 13895837

Country of ref document: EP

Kind code of ref document: A1