WO2015057004A1 - Method for stabilizing metalloprotein by cross-linking - Google Patents

Method for stabilizing metalloprotein by cross-linking Download PDF

Info

Publication number
WO2015057004A1
WO2015057004A1 PCT/KR2014/009767 KR2014009767W WO2015057004A1 WO 2015057004 A1 WO2015057004 A1 WO 2015057004A1 KR 2014009767 W KR2014009767 W KR 2014009767W WO 2015057004 A1 WO2015057004 A1 WO 2015057004A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
protein
metal protein
stabilizing
insoluble carrier
Prior art date
Application number
PCT/KR2014/009767
Other languages
French (fr)
Korean (ko)
Inventor
김중배
전승현
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015057004A1 publication Critical patent/WO2015057004A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/06Peptides being immobilised on, or in, an organic carrier attached to the carrier via a bridging agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/825Metallothioneins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier

Definitions

  • the present invention relates to a method of stabilizing a metal protein by crosslinking, and more particularly, to a metal protein capable of maintaining the catalytic activity of the metal protein for a long time by preventing crosslinking between the metal proteins to prevent ions from being released from the metal protein. It relates to a stabilization method.
  • Metalloprotein is a protein containing a metal ion in the protein, exists in vivo to perform a variety of functions.
  • iron in heme can perform both oxidation and reduction (Fe 2+ -Fe 3+ ) to perform a variety of biological functions, consisting of heme protein (hemeprotein), metalloenzyme (metalloenzyme) have.
  • Changes or loss of protein function degrade enzyme function. Loss of enzyme function makes life a lot difficult.
  • Heavy metals that have penetrated the body penetrate (bind) the protein and interfere with its own function. Keratin, which makes up hair and nails, hemoglobin that carries oxygen, and collagen, which attaches calcium to bone and makes up bone, are all proteins.
  • Hemoglobin contains iron in the globin protein.
  • heavy metals mercury
  • mercury adheres to collagen, which weakens bones and fractures easily.
  • workers lose their inherent function. Therefore, if the metal contained in the metal protein is released, it can be a big problem because it loses the function of the metal protein.
  • Carbonic anhydrase (CA), known as a representative metal protein, is known as the optimal metal protein that can be used in biological carbon dioxide abatement techniques. This metal protein contains zinc in its interior, and carbon dioxide interacts with it to convert bicarbonate ions (HCO 3 ⁇ ) very quickly. Carbonic anhydrase converts 10 6 carbon dioxide molecules per second, which means that a sufficient supply of carbon dioxide can theoretically convert more than 4,600 tons of carbon dioxide per hour using 1 kg of metal protein. The converted bicarbonate ions can be used for various purposes, and their potential value is very high. The stabilization of carbonic anhydrase allows development of a process to convert carbon dioxide to calcium carbonate. When bicarbonate ions are continuously supplied by stabilized carbonic anhydrase, it can react with calcium chloride to form calcium carbonate. Calcium carbonate is the main raw material of cement and is used in various neutralizing agents such as these.
  • Metallic proteins are relatively expensive catalysts and are therefore usually immobilized on a carrier for reuse after use in a process.
  • the immobilized metal protein increases the activity of the catalyst and can be prolonged while maintaining the activity.
  • the immobilization method is an essential element in the use of metal proteins as industrial biocatalysts.
  • a general metal protein immobilization method using nanostructures a simple adsorption method, which is an enzyme immobilization method, or a covalent attachment method using covalent bonds, has been used.
  • the high surface area provided by the nanostructures may increase the amount of metal protein supported and also increase the activity of metal protein per unit weight.
  • the present inventors have stabilized the metal protein and thus have a high catalytic activity and create a method for storing metal ions in the protein.
  • the first problem to be solved by the present invention is to provide a method for stabilizing the metal protein by preventing metal ions in the metal protein from being released through crosslinking.
  • the second problem to be solved by the present invention is to provide a metal protein complex that exhibits high catalytic activity and is easy to separate and reuse even after use.
  • the present invention has been made to solve the above problems,
  • a first aspect of the present invention provides a method for preparing an insoluble carrier comprising (a) immobilizing a metal protein on an insoluble carrier; And (b) adding a crosslinking agent to form a crosslink between the immobilized metal protein.
  • step (a) after the step (a), it may further comprise the step of adding a precipitation agent to the insoluble carrier to precipitate the metal protein immobilized on the insoluble carrier.
  • step (b) after the step (b), it may further comprise the step of removing the added cross-linking agent and / or precipitation agent.
  • a second aspect of the present invention provides a metal protein stabilized by the above method.
  • a third aspect of the invention provides an insoluble carrier; And a metal protein immobilized on the insoluble carrier, and a crosslink is formed between the metal proteins to prevent desorption of metal ions.
  • the insoluble carrier may be any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites.
  • the polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co- It may be any one or more selected from the group consisting of glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
  • the metal protein is carbonated anhydrous metal protein, heme protein, transferrin, metallothionein, formic acid dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, nitrogen fixase, calmodulin, troponin It may be one or more selected from the group consisting of pulp albumin and calpine.
  • the precipitation agent is methanol, ethanol, 1-propanol, 2-propanol, butyl alcohol, acetone, polyethylene glycol, ammonium sulfate, ammonium sulfide, sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, potassium phosphate and their
  • the aqueous solution may be single or mixed.
  • the crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Esters) and diacid chlorides.
  • metal proteins are efficiently formed in aggregates, so that metal ions do not flow out of the protein, and a large amount of metal protein aggregates can be accumulated in a carrier of the same weight. As it is stable to environmental changes, it is possible to maximize the catalytic activity efficiency and maintain stability for a long time.
  • FIG. 1 is a schematic diagram of a method for preparing a carbonic anhydrase-polymer nanofiber complex according to an embodiment of the present invention.
  • Figure 2 is a graph showing the initial activity and stability of the immobilized carbonic anhydrase according to an embodiment of the present invention.
  • Figure 3 is a graph showing the stability according to the leakage prevention of metal ions in the immobilized carbonic anhydrase according to an embodiment of the present invention.
  • Figure 4 is a graph showing the stability in various environments of the immobilized carbonic anhydrase according to an embodiment of the present invention.
  • 4A is a graph showing the stability of immobilized metalloproteins in agitation conditions in a seawater environment.
  • 4B is a graph showing the stability of the immobilized metal protein under carbon dioxide injection conditions in a seawater environment.
  • Figure 4c is a graph showing the stability of the immobilized metal protein according to various similar environments distilled water, tap water, pH.
  • immobilization of metal proteins is an essential element in the use of metal proteins as industrial biocatalysts.
  • simple adsorption or covalent attachment which is an enzyme immobilization method, is used, but there are still many problems such as deterioration of the catalytic reaction due to mass transfer resistance and inactivation of the action site. have.
  • Metallic proteins used in the present invention are carbonic anhydrase, heme protein, transferrin, metallothionein, formic acid dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, nitrogen fixase, calmodulin It may be one or more selected from the group consisting of, troponin, pulp albumin and calpine.
  • the carrier is an insoluble carrier, and may be any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites. It doesn't work.
  • the polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic It may be any one or more selected from the group consisting of -co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
  • the crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Esters) and diacid chlorides.
  • the method may further include adding a precipitation agent to the insoluble carrier to precipitate the attached metal protein.
  • the precipitation agents include methanol, ethanol, 1-propanol, 2-propanol, butyl alcohol, acetone, polyethylene glycol, ammonium sulfate, ammonium sulfide, sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, potassium phosphate and these
  • the aqueous solution of may be single or mixed.
  • FIG. 1 is a schematic diagram showing a method for preparing a metal protein-polymer nanofiber composite according to an embodiment of the present invention.
  • a carbonic anhydride enzyme to the polymer nanofibers attached to the surface of the polymer nanofibers, the enzyme is present in a nearly single layer on the surface of the polymer nanofibers.
  • the attached enzyme is thus precipitated to form an aggregate consisting of tens to hundreds of enzymes. These aggregates are not monolayers, but enzymes form dozens or hundreds of layers through crosslinking, so that much more enzymes can be immobilized per polymer nanofiber surface area than in the prior art, as well as more tightly fixed, Do not allow the metal ions in the enzyme to escape even after passing.
  • washing the stabilized metal protein may further comprise the step of removing the added cross-linking agent and / or precipitation agent.
  • the present invention provides a metal protein stabilized by the above method.
  • the metal protein may be reused while maintaining the nature and function of the metal protein, and may be applied to a carbon dioxide capture technology, a biomedical field, etc. because of excellent storage and stability.
  • the present invention is an insoluble carrier; And a metal protein immobilized on the insoluble carrier, and cross-linking is formed between the metal proteins to prevent desorption of metal ions.
  • the metal protein is immobilized on an insoluble carrier through adsorption or covalent bonds, and crosslinks are formed between the metal proteins to prevent the metal ions inside the metal protein from escaping from the outside of the metal protein, thereby maintaining the function and activity of the metal protein for a long time. Do it. Therefore, the metal protein complex of the present invention not only facilitates storage and reacquisition, but also maintains the activity of the metal ions so that the catalytic activity is not reduced, so that the metal protein complex has the same efficiency as that of the unfixed metal protein.
  • the carrier is an insoluble carrier, and may be any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites. It doesn't work.
  • the polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic It may be any one or more selected from the group consisting of -co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
  • the crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Esters) and diacid chlorides.
  • carbonic anhydrase derived from bovine was used as a metal protein for immobilization. Carbonic anhydrase was purchased from Sigma-Aldrich (St. Louis, MO, USA).
  • a polymer nanofiber is used as a carrier.
  • phosphate buffer (PB) 10 100 mM, pH 7.6 was used, and glutaraldehyde was used for the carbonic anhydride coating.
  • Tris buffer 50mM, pH 7.6 was used to prevent maleic anhydride groups in the polymer nanofibers after carbonic anhydrase coating.
  • Para-nitrophenyl acetate (NPA) was used as a reactor to measure the activity and physical properties of carbonic anhydrase.
  • Nanofibers for immobilization of carbonic anhydrase are made of polystyrene (PS) and poly (styrene-co-maleic anhydride) (PSMA). (maleic anhydride) is immobilized covalently with the amine group of the carbonic anhydrase.
  • the production method of PS + PSMA nanofiber is as follows. PS and PSMA were mixed at a weight ratio of 2: 1 at room temperature, dissolved in tetrahydrofuran (THF), and then mixed for about 3 hours using a magnetic stirrer. Thereafter, the acetone solution was mixed to lower the viscosity of the polymer solution, and then the polymer solution was placed in a 5 mL syringe with a 30 gauge stainless steel needle. The operating condition of the voltage was 7 kV, and the flow rate was 0.1 ml / hr using a syringe pump. The nanofibers from the electrospinning were collected in clean aluminum foil.
  • the alcohol treatment process for making dispersed nanofibers is as follows. Nanofibers were placed in a vial containing 50% v / v alcohol solution (ethanol), followed by shaking for 10 minutes at 200 rpm. Once the nanofibers were completely dispersed, they were washed without drying until alcohol was completely removed from the solution. The dispersed nanofibers were stored in buffer solution until carbonic anhydrase immobilization.
  • Immobilization of metal protein (carbonic anhydrase) using an insoluble carrier (polymer nanofibers) was carried out using the following two types of covalent enzyme immobilization method using alcohol-treated nanofibers (CA-CA / EtOH-NF). ), Enzyme precipitation coating method using alcohol-treated nanofibers (EPC-CA / EtOH-NF)].
  • the dispersed nanofibers prepared above were incubated in a carbonic anhydride solution (10 mg / ml, 50 mM sodium phosphate buffer, pH 7.6) for carbonic anhydrase immobilization.
  • a carbonic anhydride solution (10 mg / ml, 50 mM sodium phosphate buffer, pH 7.6) for carbonic anhydrase immobilization.
  • the vial containing the carbonic anhydrase solution and the nanofibers was shaken at 200 rpm for 30 minutes, and then incubated at 4 ° C. for 2 hours to immobilize the carbonic anhydrase with the covalent bond to the nanofibers. (CA-CA / EtOH-NF).
  • EPC-CA enzyme precipitate coating of carbonic anhydrase
  • 45% ammonium sulfide was added to biocatalytic nanofibers (CA-CA / EtOH-NF) for 1 hour, and then A glutaraldehyde solution (0.5% w / v) as a crosslinking agent was added thereto, and then incubated overnight at 4 ° C (EPC-CA / EtOH-NF).
  • the biocatalyst nanofibers (CA-CA / EtOH-NF, EPC-CA / EtOH-NF) incubated overnight were washed with 100 mM sodium phosphate buffer (pH 7.6) and the reaction remaining on the nanofibers. Shaking was performed for 30 minutes using 100 mM sodium phosphate buffer (pH 7.6) to prevent aldehyde groups.
  • the finished biocatalyst nanofibers were completely washed with 50 mM sodium phosphate buffer (pH 7.6) and stored at 4 ° C.
  • NPA para-nitrophenyl acetate
  • the absorbance of the product was measured with a spectrophotometer at 348 nm.
  • the stability of the enzyme was measured by measuring the activity after the immobilized sample was incubated at 200 rpm stirring conditions, the same sample was reused over time to measure the activity in the same manner as compared to the initial activity.
  • Ethylenediaminetetraacetic acid is an organic compound, and the chemical formula is C10H16N2O8. It can act as a six-digit ligand and combine with metal ions to form a chiral chelate compound. It can act as a six-digit ligand and combine with metal ions to form a chiral chelate compound. EDTA can co-ordinate six vertices of an octahedron centered on metal ions, resulting in the central metal being surrounded by a ligand. EDTA thus has a strong affinity for certain metal ions. In biochemistry and molecular biology, EDTA is used to remove metal ions needed by enzymes to prevent DNA from damaging the sample.
  • the method for stabilizing metal proteins by crosslinking of the present invention can be used in various industries by effectively stabilizing metal proteins used in various fields.
  • carbonic anhydrase one of the representative metal proteins
  • the representative carbon dioxide capture technology reducing energy consumption of the desorption process is one of the most important issues.
  • carbonic anhydrase a metal protein of which the lifespan of the present invention is dramatically improved, it is possible to simply convert carbon dioxide to bicarbonate at room temperature without adsorption and desorption, and to convert bicarbonate to various carbon dioxide. By using it, it can be used industrially by developing an enzyme-based carbon dioxide conversion and utilization process that can replace the existing carbon dioxide capture and storage technology in the long term.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Inorganic Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to: a metalloprotein-insoluble carrier for adsorbing a metalloprotein in an insoluble carrier to stabilize the metalloprotein and maintaining the catalytic activity of a metalloprotein for a long time by cross-linking the metalloproteins so as to prevent a metal ion from escaping out of the protein; and a preparation method therefor. The metalloprotein-insoluble carrier conjugate of the present invention and the preparation method therefor effectively form a metalloprotein aggregate, thereby allowing aggregates of an equal weight of insoluble carriers and a large amount of metalloproteins to be accumulated, and are stable toward external environment changes. As one embodiment of the present invention, the efficiency of carbonic anhydrase in a carbon dioxide conversion process can be maximized. In addition, carbon dioxide can be converted so as to be stored in a desired place, and calcium carbonate generated by using the carbon dioxide is a main material of cement, and can be applied to various high value-added industries such as various neutralizing agents.

Description

가교결합에 의한 금속 단백질의 안정화 방법Method of stabilizing metal proteins by crosslinking
본 발명은 가교결합에 의한 금속 단백질의 안정화 방법에 관한 것으로, 보다 상세하게는 금속 단백질 간에 가교결합이 형성되어 금속 단백질에서 이온이 탈리되지 않도록 함으로써 금속 단백질의 촉매 활성을 장기간 유지할 수 있는 금속 단백질의 안정화 방법에 관한 것이다.The present invention relates to a method of stabilizing a metal protein by crosslinking, and more particularly, to a metal protein capable of maintaining the catalytic activity of the metal protein for a long time by preventing crosslinking between the metal proteins to prevent ions from being released from the metal protein. It relates to a stabilization method.
금속 단백질(metalloprotein)은 단백질 내에 금속 이온이 함유되어 있는 단백질로서, 생체 내에 존재하여 다양한 기능을 수행한다. 예로써, 헴(heme) 안의 철은 산화 및 환원(Fe2+ - Fe3+)을 모두 수행할 수 있어 다양한 생물학적 기능을 수행하며, 헴 단백질(hemeprotein), 금속 효소(metalloenzyme) 등으로 구성되어 있다. 단백질 기능이 변하거나 소실되면 효소 기능이 무너진다. 효소 기능이 상실되면 생명 부지가 어렵다. 체내에 침투한 중금속은 단백질을 파고들어(결합) 단백질 고유 기능을 방해한다. 머리털이나 손발톱을 구성하는 케라틴, 산소를 운반하는 헤모글로빈, 뼈에 칼슘을 부착시키고 뼈를 구성하는 콜라겐 등도 모두 단백질이다. 헤모글로빈은 글로빈 단백질에 철분을 함유한다. 하지만 중금속, 수은이 철분을 몰아내고 그 자리를 차지하면 산소를 운반할 수 없다. 또한 콜라겐에 수은이 붙으면 뼈가 약해지고 쉽게 골절된다. 중금속이 효소 단백질과 결합하면 일꾼은 고유 기능을 상실한다. 따라서 금속단백질 내에 함유되어 있는 금속이 빠져나가게 된다면 금속단백질의 기능을 잃어버리기 때문에 큰 문제가 될 수 있다.Metalloprotein (metalloprotein) is a protein containing a metal ion in the protein, exists in vivo to perform a variety of functions. For example, iron in heme can perform both oxidation and reduction (Fe 2+ -Fe 3+ ) to perform a variety of biological functions, consisting of heme protein (hemeprotein), metalloenzyme (metalloenzyme) have. Changes or loss of protein function degrade enzyme function. Loss of enzyme function makes life a lot difficult. Heavy metals that have penetrated the body penetrate (bind) the protein and interfere with its own function. Keratin, which makes up hair and nails, hemoglobin that carries oxygen, and collagen, which attaches calcium to bone and makes up bone, are all proteins. Hemoglobin contains iron in the globin protein. However, heavy metals, mercury, can't transport oxygen if they drive iron out of its place. In addition, mercury adheres to collagen, which weakens bones and fractures easily. When heavy metals bind to enzyme proteins, workers lose their inherent function. Therefore, if the metal contained in the metal protein is released, it can be a big problem because it loses the function of the metal protein.
대표적 금속 단백질로 알려진 탄산무수화 효소(carbonic anhydrase, CA)는 생물학적 이산화탄소 저감 기술에 사용될 수 있는 최적의 금속 단백질로 알려져 있다. 이 금속 단백질은 내부에 아연을 포함하고 있는데, 이산화탄소는 이 아연과 상호작용하여 매우 빨리 중탄산염 이온(HCO3-)으로 전환된다. 탄산무수화 효소는 초당 106개의 이산화탄소 분자를 전환시키는데, 이는 이산화탄소의 공급이 충분하면 이론상으로 1 kg의 금속 단백질을 이용하여 시간당 4,600톤 이상의 이산화탄소를 전환시킬 수 있음을 의미한다. 전환된 중탄산염 이온은 다양한 용도로 응용이 될 수 있어 그 잠재적 가치가 매우 크다고 볼 수 있다. 탄산무수화 효소를 안정화시키게 되면 이산화탄소를 탄산칼슘(calcium carbonate)으로 전환하는 공정 개발이 가능하다. 안정화된 탄산무수화 효소에 의해 중탄산염 이온이 지속적으로 공급되면 이를 염화칼슘과 반응시켜 탄산칼슘을 만들 수 있게 된다. 탄산칼슘은 시멘트의 주원료이고, 등의 각종 중화제로 사용되고 있다.Carbonic anhydrase (CA), known as a representative metal protein, is known as the optimal metal protein that can be used in biological carbon dioxide abatement techniques. This metal protein contains zinc in its interior, and carbon dioxide interacts with it to convert bicarbonate ions (HCO 3 − ) very quickly. Carbonic anhydrase converts 10 6 carbon dioxide molecules per second, which means that a sufficient supply of carbon dioxide can theoretically convert more than 4,600 tons of carbon dioxide per hour using 1 kg of metal protein. The converted bicarbonate ions can be used for various purposes, and their potential value is very high. The stabilization of carbonic anhydrase allows development of a process to convert carbon dioxide to calcium carbonate. When bicarbonate ions are continuously supplied by stabilized carbonic anhydrase, it can react with calcium chloride to form calcium carbonate. Calcium carbonate is the main raw material of cement and is used in various neutralizing agents such as these.
금속 단백질은 상대적으로 고가의 촉매이므로 공정에서 사용 후 재사용하기 위해 일반적으로 담체에 고정화시킨다. 고정화된 금속 단백질은 촉매의 활성이 증대되고, 활성을 유지하면서 장기화가 가능하다. 따라서, 고정화 방법은 산업적인 생촉매로서의 금속 단백질의 사용에서 필수적인 요소라 할 수 있다. 나노 구조물을 이용한 일반적인 금속 단백질 고정화 방법으로서 효소 고정화 방법인 단순 흡착(adsorption)이나 공유결합을 이용한 금속 단백질 부착(covalent attachment)의 방법이 사용되고 있다. 나노 구조물이 제공하는 높은 표면적은 금속 단백질의 담지량을 높여주고, 또한 단위 무게당 금속 단백질의 활성을 높여주는 효과를 나타낼 수 있다. 그러나, 안정성 및 지속성에 있어서는 아직 많은 문제점들을 가지고 있다.Metallic proteins are relatively expensive catalysts and are therefore usually immobilized on a carrier for reuse after use in a process. The immobilized metal protein increases the activity of the catalyst and can be prolonged while maintaining the activity. Thus, the immobilization method is an essential element in the use of metal proteins as industrial biocatalysts. As a general metal protein immobilization method using nanostructures, a simple adsorption method, which is an enzyme immobilization method, or a covalent attachment method using covalent bonds, has been used. The high surface area provided by the nanostructures may increase the amount of metal protein supported and also increase the activity of metal protein per unit weight. However, there are still many problems with stability and persistence.
또한, 이러한 금속 단백질은 환경에 민감하여 작은 변화에도 금속 이온이 쉽게 빠져나가 그 기능을 다하지 못하는 문제점이 있었다. In addition, such a metal protein is sensitive to the environment, there is a problem that the metal ion easily escapes even if a small change does not perform its function.
이에 따라 본 발명자들은 금속 단백질을 안정화하여 촉매 활성이 높고, 금속 이온을 단백질 내에 저장하기 위한 방안을 창출하였다.Accordingly, the present inventors have stabilized the metal protein and thus have a high catalytic activity and create a method for storing metal ions in the protein.
본 발명이 해결하려는 첫 번째 과제는 가교결합을 통하여 금속 단백질내 금속 이온이 탈리되는 것을 방지함으로써 금속 단백질을 안정화시키는 방법을 제공하는 것이다.The first problem to be solved by the present invention is to provide a method for stabilizing the metal protein by preventing metal ions in the metal protein from being released through crosslinking.
본 발명이 해결하려는 두 번째 과제는 높은 촉매 활성을 나타내고, 사용 후에도 분리 및 재사용이 용이한 금속 단백질 복합체를 제공하는 것이다.The second problem to be solved by the present invention is to provide a metal protein complex that exhibits high catalytic activity and is easy to separate and reuse even after use.
본 발명은 상술한 과제를 해결하기 위해 안출된 것으로, The present invention has been made to solve the above problems,
본 발명의 제1 양태는 (a) 불용성 담체에 금속 단백질을 고정화시키는 단계; 및 (b) 상기 고정화된 금속 단백질 간에 가교결합을 형성시키기 위해 가교결합제를 첨가하는 단계를 포함하는 금속 단백질의 안정화 방법을 제공한다.A first aspect of the present invention provides a method for preparing an insoluble carrier comprising (a) immobilizing a metal protein on an insoluble carrier; And (b) adding a crosslinking agent to form a crosslink between the immobilized metal protein.
본 발명의 일 실시예에 따르면, 상기 (a) 단계 후에, 상기 불용성 담체에 고정화된 금속 단백질을 석출시키기 위하여 상기 불용성 담체에 석출화제를 첨가하는 단계를 더 포함할 수 있다.According to one embodiment of the present invention, after the step (a), it may further comprise the step of adding a precipitation agent to the insoluble carrier to precipitate the metal protein immobilized on the insoluble carrier.
본 발명의 또 다른 일 실시예에 따르면, 상기 (b) 단계 후에, 첨가된 가교결합제 및/또는 석출화제를 제거하는 단계를 더 포함할 수 있다.According to another embodiment of the present invention, after the step (b), it may further comprise the step of removing the added cross-linking agent and / or precipitation agent.
또한, 본 발명의 제2 양태는 상기 방법에 의해서 안정화된 금속 단백질을 제공한다.In addition, a second aspect of the present invention provides a metal protein stabilized by the above method.
또한, 본 발명의 제3 양태는 불용성 담체; 및 상기 불용성 담체에 고정화된 금속 단백질을 포함하고, 상기 금속 단백질 간에 가교결합이 형성되어 금속 이온의 탈리를 방지하는 것을 특징으로 하는 가교결합된 금속 단백질 복합체를 제공한다.In addition, a third aspect of the invention provides an insoluble carrier; And a metal protein immobilized on the insoluble carrier, and a crosslink is formed between the metal proteins to prevent desorption of metal ions.
상기 불용성 담체는 고분자 나노섬유, 탄소나노섬유, 세라믹 멤브레인, 활성탄, 실리카계 담체, 알루미나계 담체, 세라이트계 담체 및 제올라이트로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있다.The insoluble carrier may be any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites.
상기 고분자 나노섬유는 폴리(스티렌-co-무수말레산), 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀룰로우즈, 키토산, 폴리락틱산, 폴리락틱-co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴리피롤, 폴리아닐린 및 폴리비닐알코올로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있다.The polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co- It may be any one or more selected from the group consisting of glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
상기 금속 단백질은 탄산무수화 금속 단백질, 헴(heme) 단백질, 트랜스페린, 메탈로티오네인, 포름산탈수소효소, 포름알데히드탈수소효소, 알콜탈수소효소, 글리세롤탈수소효소, 질소고정화효소, 칼모듈린, 트로포닌, 펄프알부민 및 칼파인으로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있다.The metal protein is carbonated anhydrous metal protein, heme protein, transferrin, metallothionein, formic acid dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, nitrogen fixase, calmodulin, troponin It may be one or more selected from the group consisting of pulp albumin and calpine.
상기 석출화제는 메탄올, 에탄올, 1-프로판올, 2-프로판올, 부틸알코올, 아세톤, 폴리에틸렌글리콜, 암모늄 설페이트, 암모늄 설파이드, 소듐 클로라이드, 소듐 설페이트, 소듐 포스페이트, 포타슘 클로라이드, 포타슘 설페이트, 포타슘 포스페이트 및 이들의 수용액을 단독 또는 혼합한 것일 수 있다.The precipitation agent is methanol, ethanol, 1-propanol, 2-propanol, butyl alcohol, acetone, polyethylene glycol, ammonium sulfate, ammonium sulfide, sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, potassium phosphate and their The aqueous solution may be single or mixed.
상기 가교결합제는 글루타르알데하이드, 디이소시아네이트, 디안히드라이드, 디에폭사이드, 디알데하이드, 디이미드, 1-에틸-3-디메틸 아미노프로필카보디이미드, 비스(이미도 에스테르), 비스(석신이미딜 에스테르) 및 디애시드 클로라이드로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상의 화합물일 수 있다.The crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Esters) and diacid chlorides.
본 발명의 가교결합을 통한 금속 단백질의 안정화 방법은 금속 단백질끼리 응집체를 효율적으로 형성함으로써 금속 이온이 단백질 밖으로 유출되지 않으며, 같은 무게의 담체에 많은 양의 금속 단백질 응집체가 집적이 가능하며, 외부의 환경 변화에도 안정하므로 촉매 활성 효율을 극대화할 수 있으며, 장기간 안정성을 유지할 수 있다.In the method of stabilizing metal proteins through cross-linking of the present invention, metal proteins are efficiently formed in aggregates, so that metal ions do not flow out of the protein, and a large amount of metal protein aggregates can be accumulated in a carrier of the same weight. As it is stable to environmental changes, it is possible to maximize the catalytic activity efficiency and maintain stability for a long time.
도 1. 본 발명의 일 실시예에 따른 탄산무수화 효소-고분자 나노섬유 복합체의 제조방법에 관한 모식도이다.1 is a schematic diagram of a method for preparing a carbonic anhydrase-polymer nanofiber complex according to an embodiment of the present invention.
도 2. 본 발명의 일 실시예에 따른 고정화된 탄산무수화 효소의 초기활성 및 안정성을 보여주는 그래프이다.Figure 2 is a graph showing the initial activity and stability of the immobilized carbonic anhydrase according to an embodiment of the present invention.
도 3. 본 발명의 일 실시예에 따른 고정화된 탄산무수화 효소 내 금속이온의 누출 방지에 따른 안정성을 보여주는 그래프이다.Figure 3 is a graph showing the stability according to the leakage prevention of metal ions in the immobilized carbonic anhydrase according to an embodiment of the present invention.
도 4. 본 발명의 일 실시예에 따른 고정화된 탄산무수화 효소의 다양한 환경에서의 안정성을 보여주는 그래프이다. 도 4a는 바닷물 환경 내 교반 조건에서의 고정화된 금속단백질의 안정성을 보여주는 그래프이다. 도 4b는 바닷물 환경 내 이산화탄소 주입 조건에서의 고정화된 금속단백질의 안정성을 보여주는 그래프이다. 도 4c는 다양한 유사환경인 증류수, 수돗물, pH에 따른 고정화된 금속단백질의 안정성을 보여주는 그래프이다.Figure 4 is a graph showing the stability in various environments of the immobilized carbonic anhydrase according to an embodiment of the present invention. 4A is a graph showing the stability of immobilized metalloproteins in agitation conditions in a seawater environment. 4B is a graph showing the stability of the immobilized metal protein under carbon dioxide injection conditions in a seawater environment. Figure 4c is a graph showing the stability of the immobilized metal protein according to various similar environments distilled water, tap water, pH.
이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
상술한 바와 같이, 금속 단백질의 고정화는 산업적인 생촉매로서의 금속 단백질의 사용에서 필수적인 요소라 할 수 있다. 일반적인 금속 단백질 고정화 방법으로는 효소 고정화 방법인 단순 흡착(adsorption)이나 공유결합 방법(covalent attachment)이 사용되고 있으나, 물질전달 저항으로 인한 촉매 반응의 효율성 저하 및 작용 부위의 불활성화 등 아직 많은 문제점들을 가지고 있다.As mentioned above, immobilization of metal proteins is an essential element in the use of metal proteins as industrial biocatalysts. As a general metal protein immobilization method, simple adsorption or covalent attachment, which is an enzyme immobilization method, is used, but there are still many problems such as deterioration of the catalytic reaction due to mass transfer resistance and inactivation of the action site. have.
이에 본 발명에서는 (a) 불용성 담체에 금속 단백질을 고정화시키는 단계; 및 (b) 상기 고정화된 금속 단백질 간에 가교결합을 시키기 위해 가교결합제를 첨가하는 단계를 포함하는 금속 단백질의 안정화 방법을 제공한다. 이를 통해 종래 고정화된 금속 단백질에 비하여 단위 면적당 많은 양의 금속 단백질이 담체 표면에 고정화되고 상기 단백질로부터 금속 이온이 빠져나가는 것을 방지하여 금속 단백질의 기능을 오래 안정적으로 유지할 수 있다.In the present invention, (a) fixing the metal protein to the insoluble carrier; And (b) adding a crosslinking agent to crosslink the immobilized metal protein. As a result, a large amount of metal protein per unit area is immobilized on the surface of the carrier and metal ions can be escaped from the protein as compared to the conventionally immobilized metal protein, thereby maintaining the function of the metal protein for a long time.
본 발명에 사용되는 금속 단백질은 탄산무수화 효소, 헴(heme) 단백질, 트랜스페린, 메탈로티오네인, 포름산탈수소효소, 포름알데히드탈수소효소, 알콜탈수소효소, 글리세롤탈수소효소, 질소고정화효소, 칼모듈린, 트로포닌, 펄프알부민 및 칼파인으로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있다.Metallic proteins used in the present invention are carbonic anhydrase, heme protein, transferrin, metallothionein, formic acid dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, nitrogen fixase, calmodulin It may be one or more selected from the group consisting of, troponin, pulp albumin and calpine.
상기 담체는 불용성 담체로서, 고분자 나노섬유, 탄소나노섬유, 세라믹 멤브레인, 활성탄, 실리카계 담체, 알루미나계 담체, 세라이트계 담체 및 제올라이트로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있으며 이에 의해 한정되지 않는다.The carrier is an insoluble carrier, and may be any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites. It doesn't work.
상기 담체로서, 고분자 나노섬유는 폴리(스티렌-co-무수말레산), 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀룰로우즈, 키토산, 폴리락틱산, 폴리락틱-co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴리피롤, 폴리아닐린 및 폴리비닐알코올로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있다.As the carrier, the polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic It may be any one or more selected from the group consisting of -co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
상기 가교결합제는 글루타르알데하이드, 디이소시아네이트, 디안히드라이드, 디에폭사이드, 디알데하이드, 디이미드, 1-에틸-3-디메틸 아미노프로필카보디이미드, 비스(이미도 에스테르), 비스(석신이미딜 에스테르) 및 디애시드 클로라이드로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상의 화합물일 수 있다.The crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Esters) and diacid chlorides.
본 발명의 일 실시예에 따르면 상기 부착된 금속 단백질을 석출시키기 위하여 상기 불용성 담체에 석출화제를 첨가하는 단계를 더 포함할 수 있다. 상기 석출화제로는 메탄올, 에탄올, 1-프로판올, 2-프로판올, 부틸알코올, 아세톤, 폴리에틸렌글리콜, 암모늄 설페이트, 암모늄 설파이드, 소듐 클로라이드, 소듐 설페이트, 소듐 포스페이트, 포타슘 클로라이드, 포타슘 설페이트, 포타슘 포스페이트 및 이들의 수용액을 단독 또는 혼합한 것일 수 있다.According to an embodiment of the present invention, the method may further include adding a precipitation agent to the insoluble carrier to precipitate the attached metal protein. The precipitation agents include methanol, ethanol, 1-propanol, 2-propanol, butyl alcohol, acetone, polyethylene glycol, ammonium sulfate, ammonium sulfide, sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, potassium phosphate and these The aqueous solution of may be single or mixed.
도 1은 본 발명의 일 실시예에 따른 금속 단백질-고분자 나노섬유 복합체의 제조방법을 나타낸 모식도이다. 도 1을 살펴보면, 고분자 나노섬유에 탄산무수화 효소를 첨가하여 고분자 나노섬유 표면에 부착하는데 부착된 효소는 고분자 나노섬유 표면에 거의 단일층으로 존재한다. 이에 상기 부착된 효소를 석출시켜 수십 내지 수백 효소로 이루어진 집적체를 형성하도록 한다. 이 집접체는 단일층이 아니라 효소들이 가교결합을 통해 수십 내지 수백 층을 형성하므로 종래에 비하여 고분자 나노섬유 표면적 당 훨씬 많은 양의 효소가 고정될 수 있을 뿐 아니라, 더 단단히 고정되며, 오랜 시간이 경과한 후에도 효소 내 금속 이온이 빠져나가지 못하도록 한다.1 is a schematic diagram showing a method for preparing a metal protein-polymer nanofiber composite according to an embodiment of the present invention. Referring to Figure 1, by adding a carbonic anhydride enzyme to the polymer nanofibers attached to the surface of the polymer nanofibers, the enzyme is present in a nearly single layer on the surface of the polymer nanofibers. The attached enzyme is thus precipitated to form an aggregate consisting of tens to hundreds of enzymes. These aggregates are not monolayers, but enzymes form dozens or hundreds of layers through crosslinking, so that much more enzymes can be immobilized per polymer nanofiber surface area than in the prior art, as well as more tightly fixed, Do not allow the metal ions in the enzyme to escape even after passing.
또한 상기 (b)단계 이후에, 바람직하게는 상기 안정화된 금속 단백질을 수세하여, 첨가된 가교결합제 및/또는 석출화제를 제거하는 단계를 더 포함할 수 있다.In addition, after the step (b), preferably washing the stabilized metal protein may further comprise the step of removing the added cross-linking agent and / or precipitation agent.
본 발명은 상기 방법에 의해서 안정화된 금속 단백질을 제공한다. 상기 금속 단백질은 금속 단백질 본연의 성질 및 기능은 유지하면서 재사용이 가능하고, 저장성 및 안정성이 우수하여 이산화탄소 포집 기술, 바이오 의학 분야등에 적용이 가능할 것이다.The present invention provides a metal protein stabilized by the above method. The metal protein may be reused while maintaining the nature and function of the metal protein, and may be applied to a carbon dioxide capture technology, a biomedical field, etc. because of excellent storage and stability.
또한, 본 발명은 불용성 담체; 및 상기 불용성 담체에 고정화되어 있는 금속 단백질을 포함하고, 상기 금속 단백질 간에 가교결합이 형성되어 금속 이온의 탈리를 방지하는 것을 특징으로 하는 금속 단백질 복합체를 제공한다. 불용성 담체에 금속 단백질을 흡착 또는 공유결합 등을 통하여 고정화시키고, 다시 금속 단백질 간에 가교결합을 형성시켜 금속 단백질 내부에 있는 금속 이온이 금속 단백질 외부에 빠져나가지 못하도록 하여 금속 단백질의 기능 및 활성을 오래 유지하도록 한다. 따라서, 본 발명의 금속 단백질 복합체는 저장 및 재수득이 용이할 뿐만 아니라 금속 이온의 활성도 유지되어 촉매 활성도 감소되지 않아 고정화 되지 않은 금속 단백질과 동등한 효율을 가진다.In addition, the present invention is an insoluble carrier; And a metal protein immobilized on the insoluble carrier, and cross-linking is formed between the metal proteins to prevent desorption of metal ions. The metal protein is immobilized on an insoluble carrier through adsorption or covalent bonds, and crosslinks are formed between the metal proteins to prevent the metal ions inside the metal protein from escaping from the outside of the metal protein, thereby maintaining the function and activity of the metal protein for a long time. Do it. Therefore, the metal protein complex of the present invention not only facilitates storage and reacquisition, but also maintains the activity of the metal ions so that the catalytic activity is not reduced, so that the metal protein complex has the same efficiency as that of the unfixed metal protein.
상기 담체는 불용성 담체로서, 고분자 나노섬유, 탄소나노섬유, 세라믹 멤브레인, 활성탄, 실리카계 담체, 알루미나계 담체, 세라이트계 담체 및 제올라이트로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있으며 이에 의해 한정되지 않는다.The carrier is an insoluble carrier, and may be any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites. It doesn't work.
상기 담체로서, 고분자 나노섬유는 폴리(스티렌-co-무수말레산), 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀룰로우즈, 키토산, 폴리락틱산, 폴리락틱-co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴리피롤, 폴리아닐린 및 폴리비닐알코올로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상일 수 있다.As the carrier, the polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic It may be any one or more selected from the group consisting of -co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
상기 가교결합제는 글루타르알데하이드, 디이소시아네이트, 디안히드라이드, 디에폭사이드, 디알데하이드, 디이미드, 1-에틸-3-디메틸 아미노프로필카보디이미드, 비스(이미도 에스테르), 비스(석신이미딜 에스테르) 및 디애시드 클로라이드로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상의 화합물일 수 있다.The crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Esters) and diacid chlorides.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
[실시예 1] Example 1
재료의 준비Preparation of the ingredients
(1) 금속 단백질(1) metal protein
고정화를 위한 금속 단백질은 소(bovine)에서 유래된 탄산무수화 효소(carbonic anhydrase)를 사용하였다. 탄산무수화 효소는 Sigma-Aldrich(St. Louis, MO, USA)에서 구입하였다.As a metal protein for immobilization, carbonic anhydrase derived from bovine was used. Carbonic anhydrase was purchased from Sigma-Aldrich (St. Louis, MO, USA).
(2) 고분자 나노섬유 (polymer nanofiber)(2) polymer nanofibers
본 발명에서는 담체로서 고분자 나노섬유를 사용하였다. 고분자 나노섬유를 만들기 위한 고분자는 PS(Polystyrene, molecular weight(MW) = 950,400) 와 폴리(스티렌-co-무수말레산)(Poly(styrene-co-maleic anhydride), PSMA, Mw = 224,000)을 사용하였고, 고분자를 녹이기 위한 유기용매는 테트라하이드로퓨란(Tetrahydrofuran, THF)과 아세톤(acetone)을 사용하였다. 이들 재료는 Sigma-Aldrich(St. Louis, MO, USA)에서 구입하였다.In the present invention, a polymer nanofiber is used as a carrier. The polymers used to make the polymer nanofibers are PS (Polystyrene, molecular weight (MW) = 950,400) and Poly (styrene-co-maleic anhydride) (Poly (styrene-co-maleic anhydride), PSMA, Mw = 224,000). Tetrahydrofuran (THF) and acetone were used as the organic solvent for dissolving the polymer. These materials were purchased from Sigma-Aldrich (St. Louis, MO, USA).
(3) 버퍼(buffer) 및 화학 물질(3) buffers and chemicals
버퍼는 인산염 버퍼(phosphate buffer, PB) 10, 100 mM, pH 7.6를 사용하였고, 탄산무수화 효소 코팅을 사용하기 위해 글루타르알데히드(glutaraldehyde)를 사용하였다. 탄산무수화 효소 코팅 후 고분자 나노섬유에 있는 무수말레산(maleic anhydride) 기를 막아주기 위해 트리스 버퍼(Tris buffer) 50mM, pH 7.6를 사용하였다. 탄산무수화 효소의 활성 및 물성 측정을 위해 반응기질로 파라 나이트로페닐 아세테이트(para-nitrophenyl acetate, NPA)를 사용하였다. As a buffer, phosphate buffer (PB) 10, 100 mM, pH 7.6 was used, and glutaraldehyde was used for the carbonic anhydride coating. Tris buffer (50mM, pH 7.6) was used to prevent maleic anhydride groups in the polymer nanofibers after carbonic anhydrase coating. Para-nitrophenyl acetate (NPA) was used as a reactor to measure the activity and physical properties of carbonic anhydrase.
[실시예 2] Example 2
불용성 담체에 탄산무수화 효소의 고정화Immobilization of Carbonic Anhydrase in an Insoluble Carrier
(1) 전기방사 방법을 이용한 PS + PSMA 나노섬유의 준비 및 고분자 나노섬유의 알코올 처리(1) Preparation of PS + PSMA Nanofibers by Electrospinning Method and Alcohol Treatment of Polymeric Nanofibers
탄산무수화 효소 고정화를 위한 나노섬유는 폴리스티렌(polystyrene, PS)과 폴리(스티렌-co-무수말레산)(Poly(styrene-co-maleic anhydride), PSMA)를 사용하게 되는데, PSMA의 무수말레산(maleic anhydride)에 탄산무수화 효소의 아민(amine) 그룹과 공유결합으로 고정화된다. PS + PSMA 나노섬유의 생산방법은 다음과 같다. 상온에서 PS와 PSMA를 2 : 1 무게 비로 섞은 후 테트라하이드로퓨란(tetrahydrofuran, THF)에 녹인 후, 자성 교반기(magnetic stirrer)를 이용해 3시간 정도 섞어주었다. 그 후, 고분자 용액의 점성을 낮춰주기 위해 아세톤(acetone) 용액을 섞어준 후, 고분자 용액을 30 게이지 스테인레스 스틸 니들(gauge stainless steel needle)이 있는 5 mL 시린지(syringe)에 담았다. 전압의 운용 조건은 7 kV이며, 시린지 펌프(syringe pump)를 이용해 유속은 0.1 ml/hr로 진행하였다. 전기방사를 통해 나온 나노섬유는 깨끗한 알루미늄 호일에 모았다.Nanofibers for immobilization of carbonic anhydrase are made of polystyrene (PS) and poly (styrene-co-maleic anhydride) (PSMA). (maleic anhydride) is immobilized covalently with the amine group of the carbonic anhydrase. The production method of PS + PSMA nanofiber is as follows. PS and PSMA were mixed at a weight ratio of 2: 1 at room temperature, dissolved in tetrahydrofuran (THF), and then mixed for about 3 hours using a magnetic stirrer. Thereafter, the acetone solution was mixed to lower the viscosity of the polymer solution, and then the polymer solution was placed in a 5 mL syringe with a 30 gauge stainless steel needle. The operating condition of the voltage was 7 kV, and the flow rate was 0.1 ml / hr using a syringe pump. The nanofibers from the electrospinning were collected in clean aluminum foil.
분산된 나노섬유를 만들기 위한 알코올 처리 과정은 다음과 같다. 50% v/v 알코올 용액(에탄올)이 들어있는 바이알(vial)에 나노섬유를 넣은 후, 200 rpm에서 10분간 쉐이킹(shaking) 시켰다. 나노섬유가 완전히 분산되면 용액 상에 알코올이 완전히 제거될 때까지 건조과정 없이 씻어주었다. 분산된 나노섬유는 탄산무수화 효소 고정화 전까지 버퍼 용액에 보관하였다.The alcohol treatment process for making dispersed nanofibers is as follows. Nanofibers were placed in a vial containing 50% v / v alcohol solution (ethanol), followed by shaking for 10 minutes at 200 rpm. Once the nanofibers were completely dispersed, they were washed without drying until alcohol was completely removed from the solution. The dispersed nanofibers were stored in buffer solution until carbonic anhydrase immobilization.
(2) 불용성 담체를 이용한 공유결합된 효소 고정화(2) Covalently Enzyme Immobilization Using Insoluble Carriers
불용성 담체(고분자 나노섬유)를 이용한 금속 단백질(탄산무수화 효소) 고정화는 다음과 같은 2가지 종류를 이용해 진행되었다[알코올 처리된 나노섬유를 이용한 공유결합 효소 고정화 방법(CA-CA/EtOH-NF), 알코올 처리된 나노섬유를 이용한 효소 석출코팅 방법(EPC-CA/EtOH-NF)].Immobilization of metal protein (carbonic anhydrase) using an insoluble carrier (polymer nanofibers) was carried out using the following two types of covalent enzyme immobilization method using alcohol-treated nanofibers (CA-CA / EtOH-NF). ), Enzyme precipitation coating method using alcohol-treated nanofibers (EPC-CA / EtOH-NF)].
탄산무수화 효소 고정화를 위해 상기에서 제조한 분산된 나노섬유를 탄산무수화 효소용액(10 mg/ml, 50 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6))에 배양하였다. 탄산무수화 효소 용액과 나노섬유가 들어있는 바이알(vial)을 30분간 200 rpm으로 쉐이킹(shaking) 한 후, 탄산무수화 효소를 나노섬유에 공유결합을 이용해 고정화하기 위해 4℃ 에서 2시간 동안 배양하였다(CA-CA/EtOH-NF).The dispersed nanofibers prepared above were incubated in a carbonic anhydride solution (10 mg / ml, 50 mM sodium phosphate buffer, pH 7.6) for carbonic anhydrase immobilization. The vial containing the carbonic anhydrase solution and the nanofibers was shaken at 200 rpm for 30 minutes, and then incubated at 4 ° C. for 2 hours to immobilize the carbonic anhydrase with the covalent bond to the nanofibers. (CA-CA / EtOH-NF).
효소 석출 코팅(Enzyme precipitate coating of carbonic anhydrase, EPC-CA)의 합성을 위해서, 생촉매 나노섬유(CA-CA/EtOH-NF)에 45% 황화암모늄(ammonium sulfide)을 넣어 1시간 반응한 후, 가교결합제인 글루타르알데히드(glutaraldehyde) 용액(0.5% w/v)을 넣은 후, 4℃ 에서 하룻밤 동안 배양하였다(EPC-CA/EtOH-NF). For the synthesis of enzyme precipitate coating of carbonic anhydrase (EPC-CA), 45% ammonium sulfide was added to biocatalytic nanofibers (CA-CA / EtOH-NF) for 1 hour, and then A glutaraldehyde solution (0.5% w / v) as a crosslinking agent was added thereto, and then incubated overnight at 4 ° C (EPC-CA / EtOH-NF).
하룻밤 동안 배양한 생촉매 나노섬유(CA-CA/EtOH-NF, EPC-CA/EtOH-NF)는 100 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6)로 씻어준 후, 나노섬유에 남아있는 반응하지 않은 알데히드(aldehyde)기을 막아주기 위해 100 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6)을 이용해 30분 동안 쉐이킹(shaking) 시켰다. 이렇게 완성된 생촉매 나노섬유는 50 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6)로 완전히 씻어준 후 4 ℃에 보관하였다.The biocatalyst nanofibers (CA-CA / EtOH-NF, EPC-CA / EtOH-NF) incubated overnight were washed with 100 mM sodium phosphate buffer (pH 7.6) and the reaction remaining on the nanofibers. Shaking was performed for 30 minutes using 100 mM sodium phosphate buffer (pH 7.6) to prevent aldehyde groups. The finished biocatalyst nanofibers were completely washed with 50 mM sodium phosphate buffer (pH 7.6) and stored at 4 ° C.
[시험예 1] [Test Example 1]
안정화된 금속 단백질의 활성 및 안정성 측정Determination of Activity and Stability of Stabilized Metal Proteins
탄산무수화 효소 활성의 측정은 수용액 버퍼 내에서의 탄산무수화 효소의 반응기질인 파라 나이트로페닐 아세테이트(para-nitrophenyl acetate, NPA)의 가수분해를 통해 측정하였다. 활성측정을 위한 NPA 용액은 NPA를 용매인 아세토니트릴(10.9 mg/ml in acetonitrile)을 이용해 용해시킨 후, 이 용액을 50 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6)을 이용하여 1/100로 희석시켜 사용하였다. 나노 구조물에 고정화된 효소의 경우에는 실시간으로 측정이 불가능하므로 20 mL의 NPA 용액에 생촉매 나노섬유를 넣어 200 rpm으로 반응시킨 후, 시간별로 1 mL씩 샘플을 취하여 측정하는 방법을 사용하였다. 그 후, 50 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6)을 이용해 1/10로 희석한 후 생성물의 농도를 348 nm에서 분광광도계(spectrophotometer)로 흡광도를 측정하였다. 효소의 안정성 측정은 활성 측정후 고정화된 샘플은 200 rpm 교반조건에서 배양한 후, 시간에 따라 같은 샘플을 재사용하여 위와 같은 방법으로 활성을 측정하여 초기활성과 비교하였다.Carbonic anhydrase activity was measured by hydrolysis of para-nitrophenyl acetate (NPA), which is a reactive substance of carbonic anhydrase in aqueous buffer. NPA solution for activity measurement was dissolved in NPA using acetonitrile (10.9 mg / ml in acetonitrile) as a solvent, and then the solution was diluted to 1/100 using 50 mM sodium phosphate buffer (pH 7.6). Diluted to use. In the case of enzymes immobilized on the nanostructure, it is impossible to measure in real time, so that the biocatalytic nanofibers were added to 20 mL of NPA solution at 200 rpm, and then 1 mL of sample was taken every hour. Then, after diluting to 1/10 with 50 mM sodium phosphate buffer (pH 7.6), the absorbance of the product was measured with a spectrophotometer at 348 nm. The stability of the enzyme was measured by measuring the activity after the immobilized sample was incubated at 200 rpm stirring conditions, the same sample was reused over time to measure the activity in the same manner as compared to the initial activity.
초기 활성 측정 결과, 공유결합된 탄산무수화효소(CA-CA/EtOH-NF), 효소석출코팅된 탄산무수화효소(EPC-CA/EtOH-NF)의 초기 활성은 각각 0.23, 10.2 uM/min으로 측정되었다 (도 2). 즉, 같은 양의 나노섬유를 이용해 고정화하였을 때, 효소석출코팅에 의한 탄산무수화효소 고정화 방법이 공유결합에 의한 산무수화효소 고정화 방법이 비해 약 45 배 활성이 높은 것을 의미한다. 이는 무수히 많은 양의 효소응집체가 나노섬유에 고정화되어 있음을 의미한다. As a result of initial activity measurement, the initial activities of covalently bound carbonic anhydrase (CA-CA / EtOH-NF) and enzyme-coated carbonic anhydrase (EPC-CA / EtOH-NF) were 0.23 and 10.2 uM / min, respectively. It was measured as (FIG. 2). In other words, when immobilized using the same amount of nanofibers, it means that the carbonic anhydrase immobilization method by enzyme precipitation coating is about 45 times higher activity than the acid anhydrase immobilization method by covalent bonding. This means that a myriad of enzyme aggregates are immobilized on the nanofibers.
다음으로 안정성 측정 결과, 공유결합된 탄산무수화효소는 수일 내에 효소의 활성을 잃어버리는 반면, 효소석출코팅된 탄산무수화효소의 경우 790일 동안 효소의 활성을 잃지 않고, 초기 활성 대비 80%를 유지하는 것을 볼 수 있다(도 2). 이를 통해 효소석출코팅의 통한 효소응집체는 외부 환경 변화에도 효소의 활성을 잃지 않고 유지하는 것을 증명하는 것이다.Next, as a result of the stability measurement, the covalently bonded carbonic anhydrase loses its activity within a few days, whereas the enzyme-coated carbonic anhydrase does not lose the activity of the enzyme for 790 days and is 80% of the initial activity. It can be seen that it is maintained (FIG. 2). This proves that the enzyme aggregate coating through enzyme precipitation maintains the activity of the enzyme without losing the activity of the external environment.
[시험예 2] [Test Example 2]
안정화된 금속 단백질 내의 금속이온의 누출에 대한 저항성 확인Identification of resistance to leakage of metal ions in stabilized metal proteins
에틸렌다이아민테트라아세트산(Ethylenediaminetetraacetic acid, EDTA)은 유기화합물의 일종으로, 화학식은 C10H16N2O8이다. 여섯 자리 리간드로 작용할 수 있으며 금속 이온과 결합하여 카이랄성을 가진 킬레이트 화합물을 만든다. 여섯 자리 리간드로 작용할 수 있으며 금속 이온과 결합하여 카이랄성을 가진 킬레이트 화합물을 만든다. EDTA는 금속 이온을 중심으로 하는 팔면체의 여섯 꼭지점에 동시에 배위할 수 있으며, 그 결과 중심 금속은 리간드에 의해 둘러쌓여지게 된다. 따라서 EDTA는 특정 금속 이온에 대하여 강한 친화력을 가진다. 생화학이나 분자생물학에서는 DNA나 단백질에 관련된 실험을 할 때, 시료가 효소로 인하여 손상되는 것을 막기 위해 효소가 필요로 하는 금속 이온을 제거할 목적으로 EDTA를 사용한다.Ethylenediaminetetraacetic acid (EDTA) is an organic compound, and the chemical formula is C10H16N2O8. It can act as a six-digit ligand and combine with metal ions to form a chiral chelate compound. It can act as a six-digit ligand and combine with metal ions to form a chiral chelate compound. EDTA can co-ordinate six vertices of an octahedron centered on metal ions, resulting in the central metal being surrounded by a ligand. EDTA thus has a strong affinity for certain metal ions. In biochemistry and molecular biology, EDTA is used to remove metal ions needed by enzymes to prevent DNA from damaging the sample.
금속효소 내에 금속이온이 빠져나갈 경우, EDTA가 금속이온과 결합하여 금속효소 내의 금속이온이 제거되기 때문에 금속효소의 활성을 유지할 수 없게 된다. 따라서 본 실험에서는 효소 내 금속 이온 탈착을 위해 탈찰된 금속 이온이 다시 효소에 들어가지 못하도록 에틸렌다이아민테트라아세트산을 다양한 농도로 첨가하여 교반조건에서 배양한 후, 시간에 따라 고정화된 탄산무수화 효소를 재사용하여 효소의 안정성을 측정하였다. 안정성 측정 결과, 공유결합된 탄산무수화 효소는 효소 내 금속 이온이 쉽게 탈착되어 탈착된 금속이온이 에틸렌다이아민테트라아세트산에 결합하여 다시 효소에 들어가지 못하기 때문에 24시간 내에 효소의 활성 대부분을 잃어버리는 반면, 가교결합된 탄산무수화 효소의 경우 약간의 효소의 활성이 감소하지만 그 안정성을 유지하는 것을 볼 수 있다(도 2). 이를 통해 가교결합된 금속 단백질-고분자 나노섬유 복합체는 효소 내의 금속의 탈착을 방지함으로써 외부 환경 변화에도 금속 단백질의 활성을 잃지 않고 유지하는 것을 증명하는 것이다.When metal ions escape from metal enzymes, EDTA binds to metal ions and metal ions in metal enzymes are removed, thereby preventing the activity of metal enzymes. Therefore, in this experiment, ethylenediaminetetraacetic acid was added at various concentrations to prevent the desorbed metal ions from entering the enzyme, and then cultured under stirring conditions. It was reused to determine the stability of the enzyme. As a result of stability measurement, covalently bonded carbonic anhydrase loses most of its activity within 24 hours because metal ions in the enzyme are easily desorbed and the desorbed metal ions bind to ethylenediaminetetraacetic acid and cannot enter the enzyme again. On the other hand, in the case of cross-linked carbonic anhydrase, the activity of some enzymes is reduced but the stability can be seen (FIG. 2). This demonstrates that the crosslinked metal protein-polymer nanofiber complex prevents the desorption of metals in the enzyme, thereby maintaining the activity of the metal protein even when the external environment changes.
[시험예 3]  [Test Example 3]
다양한 환경에서의 안정화된 금속 단백질 내의 안정성 확인Identification of stability in stabilized metal proteins in various environments
바닷물은 자연계에 풍부하게 존재하며 고농도의 염을 포함하고 있어, 경제적일 뿐만 아니라 충분한 완충효과를 보일 것으로 기대된다. 따라서 본 발명에서는 바닷물 조성을 갖춘 유사바닷물 용액을 사용하여 효소의 안정성을 확인하였다. 실험 결과, 200 rpm 교반 조건 에서의 안정성 및 이산화탄소를 직접 주입하면서 performance stability를 측정하였을 때 모두 효소의 안정성이 유지됨을 확인하였다(도 4). 또한 일반적인 생물화학공정에서 사용되는 완충 용액의 경우 비용적인 측면에서 공정의 경제성을 크게 저해할 수 있어, 이를 해결하기 위한 방안으로 다양한 수용액에서 효소의 안정성 확보가 필요하다. 따라서 증류수(DI water), 수돗물(tap water), pH에 따른 효소안정성을 확인하였다. 실험 결과 효소석출코팅 방법으로 고정화한 탄산무수화효소의 경우, 다양한 조건에서도 안정성을 보임을 확인할 수 있었다(도 4).Seawater is abundant in nature and contains high concentrations of salts, which are expected to be economical and have sufficient buffering effects. Therefore, in the present invention, the stability of the enzyme was confirmed using a seawater solution having a seawater composition. As a result, it was confirmed that the stability of the enzyme was maintained when the stability under the 200 rpm stirring condition and the performance stability were measured while directly injecting carbon dioxide (FIG. 4). In addition, in the case of a buffer solution used in a general biochemical process, it can significantly impair the economics of the process in terms of cost, it is necessary to secure the stability of the enzyme in a variety of aqueous solution to solve this problem. Therefore, distilled water (DI water), tap water (tap water), the enzyme stability according to the pH was confirmed. As a result of the experiment, in the case of the carbonic anhydrase immobilized by the enzyme precipitation coating method, it was confirmed that it showed stability even under various conditions (FIG. 4).
본 발명의 가교결합에 의한 금속 단백질의 안정화 방법은 다양한 분야에서 사용되고 있는 금속 단백질을 효과적으로 안정화시킴으로써 다양한 산업분야에 이용될 수 있다. 특히 대표적 금속 단백질 중 하나인 탄산무수화효소의 경우 효소 기반 이산화탄소 전환 및 활용 공정에 이용될 수 있다. 현재 대표적인 이산화탄소 포집 기술에서는 탈착공정의 에너지 소모를 줄이는 것이 가장 중요한 이슈 중에 하나다. 이러한 문제점을 해결하기 위한 방안으로서, 본 발명의 수명이 획기적으로 향상된 금속 단백질인 탄산무수화효소를 이용하여, 흡착 및 탈착공정 없이 이산화탄소를 상온에서 간단히 중탄산염으로 전환함과 동시에, 중탄산염을 다양한 이산화탄소의 활용에 사용함으로써, 장기적으로 기존의 이산화탄소 포집 및 저장 기술을 대체할 수 있는 효소 기반 이산화탄소 전환 및 활용 공정 개발을 통해 산업상 이용이 가능하다.The method for stabilizing metal proteins by crosslinking of the present invention can be used in various industries by effectively stabilizing metal proteins used in various fields. In particular, carbonic anhydrase, one of the representative metal proteins, may be used in an enzyme-based carbon dioxide conversion and utilization process. In the representative carbon dioxide capture technology, reducing energy consumption of the desorption process is one of the most important issues. As a solution to this problem, by using carbonic anhydrase, a metal protein of which the lifespan of the present invention is dramatically improved, it is possible to simply convert carbon dioxide to bicarbonate at room temperature without adsorption and desorption, and to convert bicarbonate to various carbon dioxide. By using it, it can be used industrially by developing an enzyme-based carbon dioxide conversion and utilization process that can replace the existing carbon dioxide capture and storage technology in the long term.

Claims (13)

  1. (a) 불용성 담체에 금속 단백질을 고정화시키는 단계; 및(a) immobilizing a metal protein on an insoluble carrier; And
    (b) 상기 고정화된 금속 단백질 간에 가교결합을 형성시키기 위해 가교결합제를 첨가하는 단계(b) adding a crosslinking agent to form a crosslink between the immobilized metal proteins
    를 포함하는 금속 단백질의 안정화 방법.Metal protein stabilization method comprising a.
  2. 제1항에 있어서, 상기 (a) 단계 후에,According to claim 1, After the step (a),
    상기 고정화된 금속 단백질을 석출시키기 위하여 상기 불용성 담체에 석출화제를 첨가하는 단계를 더 포함하는 금속 단백질의 안정화 방법.And adding a precipitation agent to the insoluble carrier to precipitate the immobilized metal protein.
  3. 제1항에 있어서, 상기 (b) 단계 후에,The method of claim 1, wherein after step (b),
    가교결합제를 제거하는 단계를 더 포함하는 금속 단백질의 안정화 방법.The method of stabilizing the metal protein further comprising the step of removing the crosslinking agent.
  4. 제2항에 있어서, 상기 (b) 단계 후에,The method of claim 2, wherein after step (b),
    석출화제 및 가교결합제를 제거하는 단계를 더 포함하는 금속 단백질의 안정화 방법.The method of stabilizing the metal protein further comprising the step of removing the precipitation agent and crosslinking agent.
  5. 제1항에 있어서,The method of claim 1,
    상기 불용성 담체는 고분자 나노섬유, 탄소나노섬유, 세라믹 멤브레인, 활성탄, 실리카계 담체, 알루미나계 담체, 세라이트계 담체 및 제올라이트로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상인 금속 단백질의 안정화 방법.The insoluble carrier is a method of stabilizing a metal protein of any one or more selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites.
  6. 제5항에 있어서,The method of claim 5,
    상기 고분자 나노섬유는 폴리(스티렌-co-무수말레산), 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀룰로우즈, 키토산, 폴리락틱산, 폴리락틱-co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴리피롤, 폴리아닐린 및 폴리비닐알코올로 이루어진 군으로부터 선택되는 어느 하나 이상 또는 그 이상인 금속 단백질의 안정화 방법.The polymer nanofibers may be poly (styrene-co-maleic anhydride), polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co- Method for stabilizing a metal protein of at least one or more selected from the group consisting of glycolic acid, polyglycolic acid polycaprolactone, collagen, polypyrrole, polyaniline and polyvinyl alcohol.
  7. 제1항에 있어서,The method of claim 1,
    상기 금속 단백질은 탄산무수화 효소, 헴(heme) 단백질, 트랜스페린, 메탈로티오네인, 포름산탈수소효소, 포름알데히드탈수소효소, 알콜탈수소효소, 글리세롤탈수소효소, 질소고정화효소, 칼모듈린, 트로포닌, 펄프알부민 및 칼파인으로 이루어진 군으로부터 선택되는 어느 하나 이상 또는 그 이상의 금속 단백질인 금속 단백질의 안정화 방법.The metal protein is carbonic anhydrase, heme protein, transferrin, metallothionein, formic acid dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, nitrogen fixase, calmodulin, troponin, A method of stabilizing a metal protein, which is at least one or more metal proteins selected from the group consisting of pulp albumin and calpine.
  8. 제1항에 있어서,The method of claim 1,
    상기 가교결합제는 글루타르알데하이드, 디이소시아네이트, 디안히드라이드, 디에폭사이드, 디알데하이드, 디이미드, 1-에틸-3-디메틸 아미노프로필카보디이미드, 비스(이미도 에스테르), 비스(석신이미딜 에스테르) 및 디애시드 클로라이드로 이루어진 군으로부터 선택되는 어느 하나 이상 또는 그 이상의 화합물인 금속 단백질의 안정화 방법.The crosslinking agent is glutaraldehyde, diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, bis (imido ester), bis (succinimidyl Ester) and diacid chloride, wherein the method of stabilizing a metal protein is at least one or more compounds selected from the group consisting of.
  9. 제2항에 있어서,The method of claim 2,
    상기 석출화제는 메탄올, 에탄올, 1-프로판올, 2-프로판올, 부틸알코올, 아세톤, 폴리에틸렌글리콜, 암모늄 설페이트, 암모늄 설파이드, 소듐 클로라이드, 소듐 설페이트, 소듐 포스페이트, 포타슘 클로라이드, 포타슘 설페이트, 포타슘 포스페이트 및 이들의 수용액을 단독 또는 혼합한 것인 금속 단백질의 안정화 방법.The precipitation agent is methanol, ethanol, 1-propanol, 2-propanol, butyl alcohol, acetone, polyethylene glycol, ammonium sulfate, ammonium sulfide, sodium chloride, sodium sulfate, sodium phosphate, potassium chloride, potassium sulfate, potassium phosphate and their A method for stabilizing a metal protein, in which an aqueous solution is used alone or in combination.
  10. 제1항 내지 제9항 중 어느 한 항의 방법에 따라 안정화된 금속 단백질.A metal protein stabilized according to the method of any one of claims 1 to 9.
  11. 불용성 담체; 및 상기 불용성 담체에 고정화되어 있는 금속 단백질을 포함하고, 상기 금속 단백질 간에 가교결합이 형성되어 금속 이온의 탈리를 방지하는 것을 특징으로 하는 가교결합된 금속 단백질 복합체.Insoluble carriers; And a metal protein immobilized on the insoluble carrier, wherein a crosslink is formed between the metal proteins to prevent desorption of metal ions.
  12. 제11항에 있어서,The method of claim 11,
    상기 불용성 담체는 고분자 나노섬유, 탄소나노섬유, 세라믹 멤브레인, 활성탄, 실리카계 담체, 알루미나계 담체, 세라이트계 담체 및 제올라이트로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상인 가교결합된 금속 단백질 복합체.The insoluble carrier is at least one selected from the group consisting of polymer nanofibers, carbon nanofibers, ceramic membranes, activated carbon, silica carriers, alumina carriers, celite carriers and zeolites.
  13. 제11항에 있어서,The method of claim 11,
    상기 금속 단백질은 탄산무수화 효소, 헴(heme) 단백질, 트랜스페린, 메탈로티오네인, 포름산탈수소효소, 포름알데히드탈수소효소, 알콜탈수소효소, 글리세롤탈수소효소, 질소고정화효소, 칼모듈린, 트로포닌, 펄프알부민 및 칼파인으로 이루어진 군으로부터 선택되는 어느 하나 또는 그 이상인 가교결합된 금속 단백질 복합체.The metal protein is carbonic anhydrase, heme protein, transferrin, metallothionein, formic acid dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase, glycerol dehydrogenase, nitrogen fixase, calmodulin, troponin, A crosslinked metal protein complex of any one or more selected from the group consisting of pulp albumin and calpine.
PCT/KR2014/009767 2013-10-18 2014-10-17 Method for stabilizing metalloprotein by cross-linking WO2015057004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0124419 2013-10-18
KR20130124419 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015057004A1 true WO2015057004A1 (en) 2015-04-23

Family

ID=52828378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009767 WO2015057004A1 (en) 2013-10-18 2014-10-17 Method for stabilizing metalloprotein by cross-linking

Country Status (2)

Country Link
KR (1) KR101651235B1 (en)
WO (1) WO2015057004A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008435B1 (en) * 2016-10-13 2019-08-08 고려대학교 산학협력단 Enzyme-porous carrier composite and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110128128A (en) * 2010-05-20 2011-11-28 고려대학교 산학협력단 Complex of enzyme-3 dimensional structure of fiber matrix, manufacturing method and use thereof
US20130203155A1 (en) * 2010-10-29 2013-08-08 Co2 Solutions Inc. Enzyme enhanced co2 capture and desorption processes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438209B1 (en) * 2011-05-23 2014-09-15 고려대학교 산학협력단 Enzyme-immunoassay complex and manufacturing method thereof
KR20130018382A (en) * 2011-08-12 2013-02-21 충북대학교 산학협력단 High efficiency conversion of carbon dioxide to bicarbonate using immobilized carbonic anhydrase and method for improving the production of physiologically active materials with photosynthetic microorganisms by using the same
KR101567135B1 (en) * 2012-05-03 2015-11-09 고려대학교 산학협력단 fiber matrix complex of enzyme-3 dimensional network structure comprising enzyme bonded by functional group and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110128128A (en) * 2010-05-20 2011-11-28 고려대학교 산학협력단 Complex of enzyme-3 dimensional structure of fiber matrix, manufacturing method and use thereof
US20130203155A1 (en) * 2010-10-29 2013-08-08 Co2 Solutions Inc. Enzyme enhanced co2 capture and desorption processes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM ET AL.: "Synthesis and characterization of CLEA-lysozyme immobilized PS/PSMA nanofiber", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 11, no. 9, 2011, pages 7894 - 7900 *
PARK ET AL.: "Enhancing the production of Rhodobacter sphaeroides-derived physiologically active substances using carbonic anhydrase-immobilized electrospun nanofibers", BIOMACROMOLECULES, vol. 13, no. 11, 2012, pages 3780 - 3786 *
TRAN ET AL.: "Perspective of recent progress in immobilization of enzymes", ACS CATALYSIS, vol. 1, no. 8, 2011, pages 956 - 968, XP055251522, DOI: doi:10.1021/cs200124a *

Also Published As

Publication number Publication date
KR20150045896A (en) 2015-04-29
KR101651235B1 (en) 2016-08-26

Similar Documents

Publication Publication Date Title
Jangi et al. High throughput urease immobilization onto a new metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) for water treatment and safe blood cleaning
Wan et al. Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization
Xue et al. Laccase-mediator system assembling co-immobilized onto functionalized calcium alginate beads and its high-efficiency catalytic degradation for acridine
Moradzadegan et al. Immobilization of acetylcholinesterase in nanofibrous PVA/BSA membranes by electrospinning
WO2015057004A1 (en) Method for stabilizing metalloprotein by cross-linking
WO2016032031A1 (en) Enzyme immobilization using iron oxide yolk-shell nanostructure
CN109012219A (en) A kind of preparation method of fixation in situ laccase ultrafiltration membrane, a kind of processing method of phenol wastewater
CN108977433A (en) A kind of preparation method and application of immobilization lignin peroxidase
US7723084B2 (en) Fibrous protein-immobilization systems
CN110438114A (en) A kind of nano-cellulose/light-cured resin prepares the method and immobilised enzymes obtained and application of immobilised enzymes
Zhou et al. Directly covalent immobilization of Candida antarctica lipase B on oxidized aspen powder by introducing poly‑lysines: An economical approach to improve enzyme performance
XIAO et al. Immobilization of laccase on amine-terminated magnetic nano-composite by glutaraldehyde crosslinking method
Akgöl et al. New generation polymeric nanospheres for catalase immobilization
CN101185852A (en) Preparation method and application for modified acrylic fibre superfine fibre film containing reactivity group phospholipid
CN110028063A (en) Graphene oxide affinity immobilized carrier and preparation method and application thereof
CN101096665A (en) Application of halloysite in enzyme immobilization carrier
Manuel et al. Functionalized polyacrylonitrile nanofibrous membranes for covalent immobilization of glucose oxidase
EP0197784A1 (en) Method for immobilizing a biological material
WO2020159314A1 (en) Enzyme-carrier complex
CN100371372C (en) Phospholipid modified acrylon nano fiber composite film and its preparation and immobilized enzyme thereof
CN104404021A (en) Preparation method of immobilized enzyme
CN111019934A (en) Enzyme immobilized composite material and preparation method thereof
Huang et al. A semipermeable enzymatic nanoreactor as an efficient modulator for reversible pH regulation
Liu et al. Immobilization of glucose oxidase in the regenerated silk fibroin membrane: Characterization of the membrane structure and its application to an amperometric glucose sensor employing ferrocene as electron shuttle
JP2012050343A (en) Method for producing enzyme-immobilized hydrogel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854176

Country of ref document: EP

Kind code of ref document: A1