WO2015056707A1 - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
WO2015056707A1
WO2015056707A1 PCT/JP2014/077425 JP2014077425W WO2015056707A1 WO 2015056707 A1 WO2015056707 A1 WO 2015056707A1 JP 2014077425 W JP2014077425 W JP 2014077425W WO 2015056707 A1 WO2015056707 A1 WO 2015056707A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
supply pipe
stator
coolant supply
oil
Prior art date
Application number
PCT/JP2014/077425
Other languages
French (fr)
Japanese (ja)
Inventor
林 裕人
英滋 土屋
育充 長田
亘 土方
渡辺 隆男
遠山 智之
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015056707A1 publication Critical patent/WO2015056707A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • This invention relates to a rotating electrical machine having a coil cooling structure.
  • Patent Document 1 describes a cooling structure that directly cools a coil end of a stator coil wound around a stator core in a stator of a rotating electrical machine.
  • a substantially U-shaped pipe is disposed above each of the cylindrical coil ends protruding from both ends of the cylindrical stator core.
  • oil is dripped to each coil end from two places at the tip of each substantially U-shaped pipe, and the dropped oil flows downward along the circumference of each coil end in each coil end, In the process, the coil end, that is, the stator coil is cooled.
  • a stator coil and a coil end are configured by three-phase coils corresponding to the U phase, the V phase, and the W phase. For this reason, oil is dripped at the coil of the same phase between the coil ends of both ends of the stator core. Furthermore, depending on the case, in each coil end, two dripping positions of oil may become a coil of the same phase. Therefore, there is a case where only one of the three-phase coils is efficiently cooled, but the remaining two-phase coils are hardly cooled. As a result, the coil end, that is, the stator coil is cooled. There is a problem that a large bias occurs.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a rotating electrical machine that can directly cool a plurality of coils in the rotating electrical machine with oil.
  • a rotating electrical machine includes a stator in which a multi-phase coil is wound around a cylindrical stator core, and the multi-phase coil extends from an end of the stator core in the cylindrical axis direction.
  • the rotating electrical machine includes a cooling liquid supply pipe that is provided on the outer peripheral side of the stator core and is located above the coil end and supplies a cooling liquid to the coil end.
  • the phase coils at least a plurality of dropping holes for dropping the coolant on the coil ends corresponding to the two-phase coils are provided.
  • FIG. 1 is a perspective view of a stator of a rotating electrical machine according to an embodiment of the present invention and a structure around the stator. It is the figure which looked at the cross-sectional side view of FIG. 1 along the coil end of one oil supply pipe and a stator along the direction II. It is the figure which looked at the cross-sectional side view of FIG. 1 along the coil end of the other oil supply pipe and the stator along the direction III.
  • FIG. 2 is a perspective view of the oil supply pipe assembly of FIG. 1. It is the bottom view which looked at the oil supply pipe assembly of FIG. 4 from the downward direction which is a dripping hole side.
  • the rotating electrical machine 1 includes a cylindrical stator 10 and a motor housing 2 that houses therein a rotor (not shown) disposed inside the stator 10.
  • the stator 10 includes a stator core 11 made of a magnetic material such as a cylindrical metal, and a stator coil 12 formed by winding a winding around the stator core 11.
  • the motor housing 2 includes a substantially cylindrical motor chamber 21, a rectangular parallelepiped cooling chamber 22 above the motor chamber 21, and an oil sump chamber 23 below the motor chamber 21.
  • the rotating electrical machine 1 is installed with the oil sump chamber 23 facing downward.
  • the cooling chamber 22 communicates with the motor chamber 21 in the entire lower portion thereof.
  • the oil sump chamber 23 is partitioned from the motor chamber 21 by a partially cylindrical partition wall 2 a integrated with the motor housing 2.
  • the motor chamber 21 communicates with the oil sump chamber 23 through a communication hole 2ac formed in the bottom of the recessed portion 2ab that is recessed downward in the partition wall 2a.
  • the upper part of the cooling chamber 22 is opened, and one side of the motor chamber 21, the cooling chamber 22, and the oil sump chamber 23 is opened.
  • the open upper portion of the cooling chamber 22 is closed by a ceiling plate (not shown), and the opened side portions of the motor chamber 21, the cooling chamber 22 and the oil sump chamber 23 are end plates (not shown). It is comprised so that it may be plugged up by.
  • the inner peripheral surface of the wall portion 2 b 1 forming the motor chamber 21 has a shape along the outer peripheral surface 11 a of the cylindrical stator core 11.
  • the stator 10 is disposed in the motor chamber 21 so that the outer peripheral surface 11a of the stator core 11 is supported by the peripheral wall 2b in the radial direction perpendicular to the cylindrical axis.
  • the stator core 11 is integrally formed with a plurality of fixing ribs 11 c protruding from the outer peripheral surface 11 a.
  • Each of the fixing ribs 11c is screwed and fixed to an end wall 2c that closes a side end portion of the peripheral wall 2b in the motor housing 2.
  • stator core 11 is fixed to the motor housing 2.
  • a cylindrical rotor (not shown) that rotates integrally with the rotating shaft of the rotating electrical machine 1 is arranged inside the stator core 11 fixed to the motor housing 2.
  • shaft of the stator core 11 are located on coaxial.
  • the stator core 11 of the stator 10 is integrally formed with a plurality of teeth 11b protruding inward in the radial direction.
  • Each tooth 11b has a belt-like main body portion 11b1 extending along the cylindrical axis direction of the stator core 11 and a tip portion 11b2 extending radially inward from the main body portion 11b1 in a T shape.
  • the plurality of teeth 11 b are arranged at equal intervals along the circumferential direction of the stator core 11 at intervals. Thereby, between the main body parts 11b1 of the teeth 11b, slots opened on both sides in the axial direction and radially inward are formed.
  • a winding 13 constituting the stator coil 12 is wound around the main body 11b1 of each tooth 11b, and the winding 13 is accommodated in the slot.
  • the winding 13 is configured so that three-phase AC power is applied.
  • winding 13 is the 1st coil part 12a connected to the U phase of a three-phase alternating current power supply, the 2nd coil part 12b connected to a V phase, and the 3rd coil part 12c connected to a W phase. Is forming.
  • the first coil portion 12a, the second coil portion 12b, and the third coil portion 12c are wound around mutually different teeth 11b, and the first coil portion 12a, the second coil portion 12b, and the third coil are wound along the circumferential direction of the stator core 11.
  • the stator coil 12 including the first coil portion 12a, the second coil portion 12b, and the third coil portion 12c is a concentrated winding type coil in which the winding 13 is intensively wound around one tooth 11b. Forming.
  • the first coil portion 12a, the second coil portion 12b, and the third coil portion 12c protrude from the both end portions of the stator core 11 in the cylindrical axis direction, and the portions 12aa and 12ab from which the first coil portion 12a protrudes, the second coil, respectively.
  • the protruding portions 12ba and 12bb of the portion 12b and the protruding portions 12ca and 12cb of the third coil portion 12c form coil ends 12d and 12e of the stator coil 12, respectively.
  • the coil end 12d constitutes a first coil end protruding from one end of the stator core 11 in the cylindrical axis direction
  • the coil end 12e is a first end protruding from the other end of the stator core 11 in the cylindrical axis direction. Constructs a two-coil end.
  • the oil supply pipe assembly 30 includes a manifold 31 and oil supply pipes 32 and 33 having the same shape and connected to the manifold 31.
  • the manifold 31 has a hollow structure with a substantially T-shaped outer shape.
  • the manifold 31 has an oil receiving port 31a that opens substantially at the center, and insertion ports 31b and 31c that open to opposite sides of the oil receiving port 31a at both ends.
  • the oil receiving port 31 a communicates with the insertion ports 31 b and 31 c through the inside of the manifold 31.
  • the oil supply pipe assembly 30 constitutes a coolant supply pipe assembly.
  • the oil supply pipes 32 and 33 constitute a coolant supply pipe. More specifically, the oil supply pipe 32 constitutes a first coolant supply pipe, and the oil supply pipe 33 constitutes a second coolant supply pipe. To do.
  • the oil receiving port 31a constitutes a coolant receiving port.
  • Each of the oil supply pipes 32 and 33 is closed at one end by plugs 32 a and 33 a, and the other open end is press-fitted into the insertion ports 31 b and 31 c of the manifold 31 and assembled to the manifold 31. ing.
  • the oil supply pipes 32 and 33 assembled to the manifold 31 extend in parallel and in the same direction, and the insides of the oil supply pipes 32 and 33 communicate with the oil receiving port 31a.
  • the manifold 31 to which the oil supply pipes 32 and 33 are assembled forms an oil supply pipe assembly 30 that is one assembly together with the oil supply pipes 32 and 33.
  • two drop holes 32b and 32c and two drop holes 33b and 33c are formed through the cylindrical peripheral walls of the oil supply pipes 32 and 33, respectively.
  • the dropping holes 32b and 32c constitute a plurality of first dropping holes
  • the dropping holes 33b and 33c constitute a plurality of second dropping holes.
  • the dropping holes 32b and 32c and the dropping holes 33b and 33c open in the same direction perpendicular to the direction in which the oil supply pipes 32 and 33 are arranged in parallel.
  • the drip holes 32b and 32c are arranged on the center side of the oil supply pipes 32 and 33 with respect to the drip holes 33b and 33c. That is, the interval between the dropping holes 32b and 32c is narrower than the interval between the dropping holes 33b and 33c.
  • the oil supply pipe assembly 30 includes oil supply pipes 32 and 33 from the outside to through holes 2b2a and 2b2b formed in the wall portion 2b2 of the peripheral wall 2b of the motor housing 2, respectively. It is inserted and attached to the motor housing 2. Further, the inserted oil supply pipes 32 and 33 are respectively inserted into through holes 2b3a and 2b3b formed in the wall 2b3 which forms the cooling chamber 22 in the peripheral wall 2b and faces the wall 2b2, thereby Supported by 2b2 and 2b3.
  • the manifold 31 is fixed to the wall 2b2 with screws.
  • the oil supply pipe 32 is connected to the stator coil 12 on the outer peripheral surface 11a side of the stator core 11. It is located above the coil end 12 d and extends along a direction substantially perpendicular to the cylindrical axis of the stator core 11. Further, the dropping holes 32b and 32c of the oil supply pipe 32 open downward toward the coil end 12d, and are located at equal distances upward from the coil end 12d.
  • the drip hole 32b is located directly above the protruding portion 12aa from the stator core 11 in the first coil portion 12a
  • the dripping hole 32c is located directly above the protruding portion 12ba from the stator core 11 in the second coil portion 12b.
  • the oil supply pipe 33 of the oil supply pipe assembly 30 attached and fixed to the motor housing 2 is located on the outer peripheral surface 11a side of the stator core 11 away from the coil end 12e of the stator coil 12, and is positioned above the stator core 11. It extends along a direction substantially perpendicular to the cylindrical axis. Further, the dropping holes 33b and 33c of the oil supply pipe 33 are opened downward toward the coil end 12e, and are located at equal distances upward from the coil end 12e. That is, the drip holes 33b and 33c are located directly above the different projecting portions 12cb from the stator core 11 in the third coil portion 12c.
  • a plurality of air holes 2 ca penetrating through the wall portion are formed in the wall portion of the end wall 2 c of the motor housing 2 that forms the cooling chamber 22. Further, a plurality of air holes penetrating the wall portion are formed in the wall portion forming the cooling chamber 22 in the end plate (not shown) facing the end wall 2c. Therefore, outside air is introduced into the cooling chamber 22 from the air hole 2ca, and the introduced outside air cools the stator 10 and is discharged from the air hole of the end plate.
  • an oil discharge pipe 41 is connected to the lower part of the end wall 2 c of the motor housing 2.
  • the oil discharge pipe 41 is connected to an oil pan 40 located below the rotating electrical machine 1, and communicates the oil sump chamber 23 of the motor housing 2 with the oil pan 40.
  • the oil pan 40 is used for storing lubricating oil, hydraulic oil, or the like in a device in which the rotating electrical machine 1 is mounted. For example, when the rotating electrical machine 1 is mounted in an automobile, a gear box of an automatic transmission is used. Is done.
  • An oil feed pipe 42 extends from the oil pan 40 and is connected to the oil receiving port 31 a of the oil supply pipe assembly 30.
  • the oil supply pipe 42 communicates the inside of the oil pan 40 with the inside of the manifold 31 of the oil supply pipe assembly 30. Further, an oil pump 43 that pumps oil in the oil pan 40 into the manifold 31 is provided in the middle of the oil feed pipe 42.
  • stator 10 In the rotating electrical machine 1, when three-phase AC power is applied to the stator coil 12 of the stator 10, the coil portions 12a, 12b of each phase of the U phase, the V phase, and the W phase. And 12c generate rotating magnetic fields that are out of phase with each other. As a result, a rotor (not shown) inside the stator 10 is driven to rotate together with the rotating shaft around the rotating shaft coaxial with the stator core 11.
  • the oil pump 43 is driven to supply the oil in the oil pan 40 to the oil supply pipe assembly 30, and the supplied oil is supplied to the oil supply pipe.
  • Drops are dropped onto the coil ends 12 d and 12 e of the stator coil 12 from the dropping holes 32 b, 32 c, 33 b and 33 c of 32 and 33.
  • the oil from the dropping holes 32b and 32c respectively drops to the part 12aa of the first coil part 12a and the part 12ba of the second coil part 12b in the coil end 12d, and the oil from the dropping holes 33b and 33c is supplied to the coil end 12e. It dripped at the site
  • the U-phase, V-phase, and W-phase coil end portions are directly cooled by the oil. That is, the plurality of dropping holes 32b, 32c, 33b and 33c are coil end portions corresponding to all the coil portions 12a, 12b and 12c among the U-phase, V-phase and W-phase coil portions 12a, 12b and 12c. It is arrange
  • first coil part 12a connected to the first coil part 12a, the second coil part 12b, and the third coil part 12c to which oil directly drops is wound and wound around another tooth 11b.
  • the second coil portion 12b and the third coil portion 12c are also cooled by cold heat conduction from the coil portion that is directly cooled by oil.
  • the oil which cooled each of the 1st coil part 12a, the 2nd coil part 12b, and the 3rd coil part 12c directly cools an adjacent coil part, when flowing down. Therefore, the bias of the cooling effect in the entire first coil portion 12a, second coil portion 12b, and third coil portion 12c that are directly cooled by oil is reduced.
  • the rotating electrical machine 1 includes the stator 10 in which the multi-phase stator coil 12 is wound around the cylindrical stator core 11.
  • Coil portions 12a, 12b, and 12c corresponding to each phase of the multi-phase stator coil 12 are portions 12aa, 12ab, 12ba, and 12bb constituting coil ends 12d and 12e protruding from the end portions of the stator core 11 in the cylindrical axis direction, respectively. , 12ca, 12cb.
  • the rotating electrical machine 1 includes oil supply pipes 32 and 33 that are provided on the outer peripheral side of the stator core 11 and located above the coil ends 12d and 12e of the stator coil 12, and the oil supply pipes 32 and 33 are coil ends.
  • the oil supply pipes 32 and 33 include a plurality of oil drops that are dropped onto the portions 12aa to 12ca and 12ab to 12cb of the coil ends 12d and 12e corresponding to at least the two-phase coil portions 12a to 12c of the plurality of stator coils 12. It has drip holes 32b, 32c, 33b, 33c.
  • the oil from the dropping holes 32b, 32c, 33b, 33c of the oil supply pipes 32, 33 is dropped on the coil ends of the coil portions of the plurality of phases constituting the stator coil 12 to directly cool them.
  • the coil part to which oil drops directly is cooled effectively, the other coil part which is in phase with this coil part and is connected via the winding is also cooled.
  • the coil part adjacent to the coil part to which oil directly drops is cooled by the oil after direct cooling. Therefore, it is possible to reduce the variation in the cooling effect in the coil portions of each phase.
  • the oil supply pipes 32 and 33 are disposed above the coil ends 12 d and 12 e protruding from both ends of the stator core 11 in the cylindrical axis direction and substantially perpendicular to the cylindrical axis of the stator core 11.
  • the intervals between the dropping holes 32b and 32c in the oil supply pipes 32 and 33 are different from the intervals between the dropping holes 33b and 33c.
  • the coil part cooled between the both sides of the stator core 11 can be made different by making the space
  • the number of phases can be increased.
  • the plurality of drip holes 32 b, 32 c, 33 b, 33 c of the oil supply pipes 32 and 33 disposed above the coil ends 12 d and 12 e at both ends of the stator core 11 are the drip holes.
  • the drip holes are arranged so that oil can be dripped onto the portions of the coil ends 12d and 12e corresponding to the coil portions of all phases of the stator coil 12.
  • the coil ends of the coil portions of all phases can be directly cooled with oil, and variations in the cooling effect in the coil portions of each phase can be reduced.
  • the rotating electrical machine 1 includes a motor housing 2 that houses the stator 10, and an oil supply pipe assembly 30 that is separate from the motor housing 2 and attached to the motor housing 2. Further, the oil supply pipe assembly 30 includes oil supply pipes 32 and 33 and a manifold 31.
  • the manifold 31 has an oil receiving port 31a and distributes oil received from the oil receiving port 31a to the oil supply pipes 32 and 33, respectively. At this time, it is necessary to change the dropping position and the dropping flow rate of the oil to the coil ends 12d and 12e according to the configuration of the stator coil 12 of the stator 10 such that the stator coil is a concentrated winding type or a distributed winding type.
  • the manifold 31 of the oil supply pipe assembly 30 has a flow rate of oil distributed to the oil supply pipes 32 and 33, based on the distance relationship between the oil receiving inlet 31 a and the oil supply pipes 32 and 33.
  • the configuration can be changed. If the pressure loss increases as the distance between the oil receiving port 31a and the oil supply pipe increases, the flow rate of the oil flowing through the oil supply pipe decreases. Then, if it is necessary to differentiate the amount of oil dropped for direct cooling at the coil ends 12d and 12e at both ends of the stator core 11, the position of the oil receiving port 31a may be changed.
  • the concentrated winding type stator coil 12 is wound around the stator core 11 of the stator 10, but the present invention is not limited to this.
  • a distributed winding type stator coil 212 may be wound around the stator core 211.
  • the stator core 211 is integrally formed with a plurality of teeth 211b projecting radially inward. Each tooth 211b has a trapezoidal radial cross section and extends along the cylindrical axis direction of the cylindrical stator core 211. Further, the plurality of teeth 211b are arranged side by side along the inner circumferential direction of the stator core 211, and a narrow groove is formed between them.
  • the third coil part 212c is wound.
  • the first coil part 212a, the second coil part 212b, and the third coil part 212c are positioned so as to wrap in the circumferential direction at the end of the stator core 211, and the first coil part 212a, The second coil part 212b, the third coil part 212c, the first coil part 212a,...
  • the first coil portions 212a wound between the plurality of teeth 211b, the second coil portions 212b, and the third coil portions 212c are formed by continuous windings. Therefore, the stator coil 212 including the first coil portion 212a, the second coil portion 212b, and the third coil portion 212c forms a distributed winding type coil in which the winding is wound across the plurality of teeth 211b. .
  • the oil supply pipe 32 of the oil supply pipe assembly 30 is located above and away from the coil end 212d of the stator coil 212 and extends in a direction substantially perpendicular to the cylindrical axis of the stator core 211. Extend.
  • the dropping hole 32b is located right above the protruding portion 212aa of the first coil portion 212a, and the dropping hole 32c is located right above the protruding portion 212ba of the second coil portion 212b.
  • the oil supply pipe 33 is located above and away from the coil end 212 e of the stator coil 212, and extends along a direction substantially perpendicular to the cylindrical axis of the stator core 211.
  • the dropping holes 33b and 33c are located directly above the protruding portion 212cb of the different third coil portion 212c. Therefore, the oil dripped from the four places of the oil supply pipes 32 and 33 falls directly on the coil ends of the first coil part 212a, the second coil part 212b, and the third coil part 212c, and can cool them.
  • one end of the oil supply pipes 32 and 33 of the oil supply pipe assembly 30 is closed with the plugs 32a and 33a, and the dripping holes 32b, 32c, 33b, and 33c are
  • the oil supply pipes 32 and 33 are formed through the peripheral walls, but the present invention is not limited to this.
  • one end of the oil supply pipes 32 and 33 may be crushed together, and the one end of the oil supply pipes 32 and 33 may be closed by welding the crushed portions. Thereby, since the number of parts decreases, cost reduction becomes possible.
  • one end of each of the oil supply pipes 32 and 33 is not closed, and drip holes 32 b and 33 b are formed, and drip holes 32 c and 33 c are respectively formed on the peripheral walls of the oil supply pipes 32 and 33. It is also possible to form only. Further, by making the lengths of the oil supply pipes 32 and 33 different from each other, the oil dropping positions from the dropping holes 32b and 33b can be made different between the coil ends 12d and 12e. And by employ
  • the two oil supply pipes 32 and 33 of the oil supply pipe assembly 30 are each formed with two dripping holes.
  • the present invention is not limited to this.
  • At least one of the oil supply pipes 32 and 33 may have three or more drip holes.
  • the three dropping holes are arranged so that oil can be dropped onto the coil ends of the U-phase, V-phase, and W-phase coil portions. May be.
  • at least one of the oil supply pipes 32 and 33 may have less than two drip holes.
  • the drip hole is formed in the coil ends of the coil portions of two different phases of the U phase, the V phase, and the W phase. What is necessary is just to arrange
  • the oil supply pipes 32 and 33 of the oil supply pipe assembly 30 are each provided with the same number of drip holes.
  • a drip hole may be formed.
  • two dripping holes may be formed in one of the oil supply pipes 32 and 33, and one dripping hole may be formed in the other.
  • the three dripping holes by the oil supply pipes 32 and 33 are arranged so that oil can be dripped onto the coil ends of the U-phase, V-phase and W-phase coil sections, so that the coil ends of all phases are Cooled directly by oil.
  • the oil receiving inlet 31a of the manifold 31 is disposed at a substantially equidistant position from the insertion ports 31b and 31c of the oil supply pipes 32 and 33, respectively.
  • the oil receiving port 31a may be arranged at a position biased to either the insertion port 31b or 31c.
  • the manifold 31 is connected to the insertion port 31b than the distribution flow rate to the oil supply pipe 33 connected to the insertion port 31c.
  • the distribution flow rate to the oil supply pipe 32 is increased.
  • the coil ends 12d and 12e of the stator coil 12 were cooled with oil, it is not limited to this, A cooling fluid can be dripped at the coil ends 12d and 12e. Any liquid can be used.
  • the rotary electric machine 1 of embodiment was demonstrated as a structure by which one rotor is arrange
  • a double rotor type configuration in which two rotors are disposed may be used.
  • the rotating electrical machine may be configured such that a rotatable rotor is provided outside the stator. That is, the rotating electrical machine may be configured to cool directly by dropping a coolant such as oil on the coil end of the stator.

Abstract

 A rotating electrical machine (1) is provided with a stator (10) in which a plurality of phases of stator coils (12) are wound around a cylindrical stator core (11). The rotating electrical machine (1) is also provided with lubricant supply tubes (32, 33) located above coil ends (12d, 12e) of the stator coils (12) protruding from the cylinder-axis-direction ends of the stator core (11), the lubricant supply tubes (32, 33) being provided outside of the stator core (11). The lubricant supply tubes (32, 33) have a plurality of dropping holes (32b, 32c, 33b, 33c) via which lubricant is provided in droplets to portions of the coil ends (12d, 12e) corresponding to at least the second phase coil among the plurality of phases of stator coils (12).

Description

回転電機Rotating electric machine
 この発明は、コイル冷却構造を備えた回転電機に関する。 This invention relates to a rotating electrical machine having a coil cooling structure.
 回転電機では、ステータ、ロータ等に巻回されたコイルは、電流が流れることによって発熱し、回転電機の運転効率を低下させるため、コイルの冷却構造が設けられている。
 例えば、特許文献1には、回転電機のステータにおいて、ステータコアに巻回されたステータコイルのコイルエンドを直接冷却する冷却構造が記載されている。具体的には、この冷却構造では、円筒状のステータコアの両端部から突出する円筒状のコイルエンドそれぞれの上方に、略コの字状の配管が配置されている。そして、略コの字状の各配管の先端の2箇所から各コイルエンドに油が滴下され、滴下された油は、各コイルエンド内をコイルエンドの円周に沿って下方に向かって流れ、その過程でコイルエンド、つまり、ステータコイルを冷却する。
In a rotating electrical machine, a coil wound around a stator, a rotor or the like is provided with a coil cooling structure in order to generate heat when current flows and to reduce the operating efficiency of the rotating electrical machine.
For example, Patent Document 1 describes a cooling structure that directly cools a coil end of a stator coil wound around a stator core in a stator of a rotating electrical machine. Specifically, in this cooling structure, a substantially U-shaped pipe is disposed above each of the cylindrical coil ends protruding from both ends of the cylindrical stator core. And oil is dripped to each coil end from two places at the tip of each substantially U-shaped pipe, and the dropped oil flows downward along the circumference of each coil end in each coil end, In the process, the coil end, that is, the stator coil is cooled.
特開2005-229671号公報JP 2005-229671 A
 特許文献1に記載されるようなステータコイルの冷却方法では、コイルエンドへの滴下時点での油によるコイルエンドの冷却効果は大きいが、コイルエンド内を流れる過程で油温が上昇するため、コイルエンド内での油の冷却効果は小さく期待できない。さらに、特許文献1では、油をコイルエンドの円周に沿って流下させるために、コイルエンドへの油の2つの滴下位置とステータの円筒軸とを結んで形成される線分の角度を所定の角度とするように、コイルエンドへの油の滴下位置を設定している。このため、ステータコア両端のコイルエンドの間では、同一の位置に油が滴下される。しかしながら、三相交流電力を動力とする回転電機では、ステータコイル及びコイルエンドがU相、V相、W相に対応する3つの相のコイルによって構成されている。このため、ステータコア両端のコイルエンドの間では、油が同じ相のコイルに滴下されることになる。さらに、場合によっては、各コイルエンドにおいて、油の2つの滴下位置が、同じ相のコイルになることがある。よって、3つの相のコイルのうち1つの相のコイルのみが効率的に冷却されるが残り2つの相のコイルがほとんど冷却されない場合が生じ、その結果、コイルエンド、つまり、ステータコイルの冷却に大きい偏りが生じるという問題がある。 In the stator coil cooling method described in Patent Document 1, although the cooling effect of the coil end by oil at the time of dropping to the coil end is large, the oil temperature rises in the process of flowing through the coil end. The cooling effect of oil in the end is small and cannot be expected. Further, in Patent Document 1, in order to make oil flow down along the circumference of the coil end, the angle of a line segment formed by connecting the two dripping positions of the oil to the coil end and the cylindrical shaft of the stator is predetermined. The oil dripping position on the coil end is set so as to be an angle of. For this reason, oil is dripped at the same position between the coil ends at both ends of the stator core. However, in a rotating electrical machine powered by three-phase AC power, a stator coil and a coil end are configured by three-phase coils corresponding to the U phase, the V phase, and the W phase. For this reason, oil is dripped at the coil of the same phase between the coil ends of both ends of the stator core. Furthermore, depending on the case, in each coil end, two dripping positions of oil may become a coil of the same phase. Therefore, there is a case where only one of the three-phase coils is efficiently cooled, but the remaining two-phase coils are hardly cooled. As a result, the coil end, that is, the stator coil is cooled. There is a problem that a large bias occurs.
 この発明はこのような問題点を解決するためになされたものであり、回転電機における複数相のコイルを油で直接冷却することを可能にする回転電機を提供することを目的とする。 The present invention has been made to solve such problems, and an object of the present invention is to provide a rotating electrical machine that can directly cool a plurality of coils in the rotating electrical machine with oil.
 上記の課題を解決するために、この発明に係る回転電機は、円筒状のステータコアに複数相のコイルが巻回されたステータを備え、複数相のコイルは、ステータコアの円筒軸方向の端部から突出するコイルエンドをそれぞれ有する回転電機において、ステータコアの外周側に設けられ、且つコイルエンドの上方に位置し、コイルエンドに冷却液を供給する冷却液供給管を備え、冷却液供給管は、複数相のコイルのうち、少なくとも二相のコイルに対応するコイルエンドに冷却液を滴下する複数の滴下穴を有する。 In order to solve the above problems, a rotating electrical machine according to the present invention includes a stator in which a multi-phase coil is wound around a cylindrical stator core, and the multi-phase coil extends from an end of the stator core in the cylindrical axis direction. In the rotating electrical machines each having a protruding coil end, the rotating electrical machine includes a cooling liquid supply pipe that is provided on the outer peripheral side of the stator core and is located above the coil end and supplies a cooling liquid to the coil end. Among the phase coils, at least a plurality of dropping holes for dropping the coolant on the coil ends corresponding to the two-phase coils are provided.
 この発明に係る回転電機によれば、複数相のコイルを冷却液で直接冷却することが可能になる。 According to the rotating electric machine according to the present invention, it is possible to directly cool a multi-phase coil with a coolant.
この発明の実施の形態に係る回転電機のステータ及びその周辺の構造の斜視図である。1 is a perspective view of a stator of a rotating electrical machine according to an embodiment of the present invention and a structure around the stator. 一方の油供給管及びステータのコイルエンドに沿った図1の断面側面図を方向IIに沿って見た図である。It is the figure which looked at the cross-sectional side view of FIG. 1 along the coil end of one oil supply pipe and a stator along the direction II. 他方の油供給管及びステータのコイルエンドに沿った図1の断面側面図を方向IIIに沿って見た図である。It is the figure which looked at the cross-sectional side view of FIG. 1 along the coil end of the other oil supply pipe and the stator along the direction III. 図1の油供給管アセンブリの斜視図である。FIG. 2 is a perspective view of the oil supply pipe assembly of FIG. 1. 図4の油供給管アセンブリを滴下穴側である下方から見た下面図である。It is the bottom view which looked at the oil supply pipe assembly of FIG. 4 from the downward direction which is a dripping hole side. 分布巻型のステータコイルを用いた場合のステータのコイルエンドを図2と同様にして示す断面側面図である。It is a cross-sectional side view which shows the coil end of the stator at the time of using a distributed winding type stator coil similarly to FIG. 分布巻型のステータコイルを用いた場合のステータのコイルエンドを図3と同様にして示す断面側面図である。It is a cross-sectional side view which shows the coil end of the stator at the time of using a distributed winding type stator coil similarly to FIG. 油供給管アセンブリにおける油供給管の変形例を図5と同様にして示す下面図である。It is a bottom view which shows the modification of the oil supply pipe in an oil supply pipe assembly similarly to FIG. 油供給管アセンブリにおける油供給管の別の変形例を図5と同様にして示す下面図である。It is a bottom view which shows another modification of the oil supply pipe | tube in an oil supply pipe | tube assembly similarly to FIG.
実施の形態
 以下、この発明の実施の形態について添付図面に基づいて説明する。
 まず、この発明の実施の形態に係る回転電機1におけるステータ10及びその周辺の構成を説明する。なお、本実施の形態では、回転電機1のステータ10には三相交流電力が印加され、ステータ10には、三相交流電力の3つの相それぞれに対応するコイルによって構成される集中巻型のステータコイルが巻回されているものとして、説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the structure of the stator 10 and its periphery in the rotary electric machine 1 which concerns on embodiment of this invention is demonstrated. In the present embodiment, three-phase AC power is applied to the stator 10 of the rotating electrical machine 1, and the stator 10 is a concentrated winding type constituted by coils corresponding to the three phases of the three-phase AC power. The description will be made assuming that the stator coil is wound.
 図1を参照すると、回転電機1は、円筒状のステータ10、及びステータ10の内側に配設される図示しないロータを内部に収容するモータ筐体2を備えている。
 詳細は後述するが、ステータ10は、円筒状の金属等の磁性体からなるステータコア11と、ステータコア11に巻線が巻回されて形成されるステータコイル12とによって構成されている。
 モータ筐体2は、その内部に、略円筒状のモータ室21と、モータ室21の上方の直方体状の冷却室22と、モータ室21の下方の油溜め室23とを有している。そして、回転電機1は、油溜め室23を下方にして設置される。
 冷却室22は、その下方全体において、モータ室21と連通している。油溜め室23は、モータ筐体2と一体の部分円筒状の隔壁2aによってモータ室21と仕切られている。そして、隔壁2aにおける下方に向かって窪んだ陥凹部2abの底部に形成された連通孔2acを介して、モータ室21が油溜め室23に連通する。
Referring to FIG. 1, the rotating electrical machine 1 includes a cylindrical stator 10 and a motor housing 2 that houses therein a rotor (not shown) disposed inside the stator 10.
Although details will be described later, the stator 10 includes a stator core 11 made of a magnetic material such as a cylindrical metal, and a stator coil 12 formed by winding a winding around the stator core 11.
The motor housing 2 includes a substantially cylindrical motor chamber 21, a rectangular parallelepiped cooling chamber 22 above the motor chamber 21, and an oil sump chamber 23 below the motor chamber 21. The rotating electrical machine 1 is installed with the oil sump chamber 23 facing downward.
The cooling chamber 22 communicates with the motor chamber 21 in the entire lower portion thereof. The oil sump chamber 23 is partitioned from the motor chamber 21 by a partially cylindrical partition wall 2 a integrated with the motor housing 2. The motor chamber 21 communicates with the oil sump chamber 23 through a communication hole 2ac formed in the bottom of the recessed portion 2ab that is recessed downward in the partition wall 2a.
 図1において、モータ筐体2では、冷却室22の上部が開放され、モータ室21、冷却室22及び油溜め室23の一方の側部が開放されて示されている。製品としての回転電機1では、冷却室22の開放した上部が、図示しない天端プレートによって塞がれ、モータ室21、冷却室22及び油溜め室23の開放した側部が、図示しないエンドプレートによって塞がれるように構成されている。 In FIG. 1, in the motor housing 2, the upper part of the cooling chamber 22 is opened, and one side of the motor chamber 21, the cooling chamber 22, and the oil sump chamber 23 is opened. In the rotating electrical machine 1 as a product, the open upper portion of the cooling chamber 22 is closed by a ceiling plate (not shown), and the opened side portions of the motor chamber 21, the cooling chamber 22 and the oil sump chamber 23 are end plates (not shown). It is comprised so that it may be plugged up by.
 モータ筐体2における略円筒状の周壁2bにおいて、モータ室21を形成する壁部2b1の内周面は、円筒状のステータコア11の外周面11aに沿う形状を有している。そして、ステータ10は、周壁2bによってステータコア11の外周面11aがその円筒軸に垂直な径方向で支持されるようにして、モータ室21内に配置される。さらに、図2に示すように、ステータコア11には、その外周面11aから突出する複数の固定用リブ11cが一体に形成されている。固定用リブ11cはそれぞれ、モータ筐体2における周壁2bの側方端部を閉鎖する端壁2cにねじ留め固定される。上述より、ステータコア11は、モータ筐体2に対して固定されている。また、モータ筐体2に固定されたステータコア11の内側には、回転電機1の回転シャフトと一体に回転する図示しない円筒状のロータが、配設されるように構成されている。そして、ロータの回転シャフトと、ステータコア11の円筒軸とは、同軸上に位置している。 In the substantially cylindrical peripheral wall 2 b of the motor housing 2, the inner peripheral surface of the wall portion 2 b 1 forming the motor chamber 21 has a shape along the outer peripheral surface 11 a of the cylindrical stator core 11. The stator 10 is disposed in the motor chamber 21 so that the outer peripheral surface 11a of the stator core 11 is supported by the peripheral wall 2b in the radial direction perpendicular to the cylindrical axis. Further, as shown in FIG. 2, the stator core 11 is integrally formed with a plurality of fixing ribs 11 c protruding from the outer peripheral surface 11 a. Each of the fixing ribs 11c is screwed and fixed to an end wall 2c that closes a side end portion of the peripheral wall 2b in the motor housing 2. As described above, the stator core 11 is fixed to the motor housing 2. A cylindrical rotor (not shown) that rotates integrally with the rotating shaft of the rotating electrical machine 1 is arranged inside the stator core 11 fixed to the motor housing 2. And the rotating shaft of a rotor and the cylindrical axis | shaft of the stator core 11 are located on coaxial.
 図1~図3をあわせて参照すると、ステータ10のステータコア11には、径方向内側に向かって突出する複数のティース11bが一体に形成されている。各ティース11bは、ステータコア11の円筒軸方向に沿って延在する帯状の本体部11b1と、径方向内側で本体部11b1から周方向にT字状に拡がった先端部11b2とを有している。さらに、複数のティース11bは、ステータコア11の周方向に沿って互いに間隔をあけて等間隔に配置されている。これにより、ティース11bの本体部11b1同士の間にはそれぞれ、軸方向両側及び径方向内側で開放したスロットが形成されている。 1 to 3 together, the stator core 11 of the stator 10 is integrally formed with a plurality of teeth 11b protruding inward in the radial direction. Each tooth 11b has a belt-like main body portion 11b1 extending along the cylindrical axis direction of the stator core 11 and a tip portion 11b2 extending radially inward from the main body portion 11b1 in a T shape. . Further, the plurality of teeth 11 b are arranged at equal intervals along the circumferential direction of the stator core 11 at intervals. Thereby, between the main body parts 11b1 of the teeth 11b, slots opened on both sides in the axial direction and radially inward are formed.
 そして、各ティース11bの本体部11b1の周りには、ステータコイル12を構成する巻線13が巻回され、巻線13はスロット内に収められる。巻線13は、三相交流電力が印加されるように構成されている。そして、巻線13は、三相交流電源のU相に接続される第一コイル部12aと、V相に接続される第二コイル部12bと、W相に接続される第三コイル部12cとを形成している。第一コイル部12a、第二コイル部12b及び第三コイル部12cは、互いに異なるティース11bに巻回され、ステータコア11の周方向に沿って第一コイル部12a、第二コイル部12b、第三コイル部12c、第一コイル部12a・・・・・・とする順序を繰り返すようにして、ティース11bに配置される。さらに、複数のティース11bに巻回された第一コイル部12a同士は互いに巻線で接続され、同様に、複数のティース11bに巻回された第二コイル部12b同士も互いに巻線で接続され、複数のティース11bに巻回された第三コイル部12c同士も互いに巻線で接続されている。
 よって、第一コイル部12a、第二コイル部12b及び第三コイル部12cからなるステータコイル12は、1つのティース11bに対して集中的に巻線13が巻回される集中巻型のコイルを形成している。
A winding 13 constituting the stator coil 12 is wound around the main body 11b1 of each tooth 11b, and the winding 13 is accommodated in the slot. The winding 13 is configured so that three-phase AC power is applied. And the coil | winding 13 is the 1st coil part 12a connected to the U phase of a three-phase alternating current power supply, the 2nd coil part 12b connected to a V phase, and the 3rd coil part 12c connected to a W phase. Is forming. The first coil portion 12a, the second coil portion 12b, and the third coil portion 12c are wound around mutually different teeth 11b, and the first coil portion 12a, the second coil portion 12b, and the third coil are wound along the circumferential direction of the stator core 11. It arrange | positions at the teeth 11b so that the order made into the coil part 12c and the 1st coil part 12a .... may be repeated. Furthermore, the first coil portions 12a wound around the plurality of teeth 11b are connected to each other by windings. Similarly, the second coil portions 12b wound around the plurality of teeth 11b are also connected to each other by windings. The third coil portions 12c wound around the plurality of teeth 11b are also connected to each other by windings.
Therefore, the stator coil 12 including the first coil portion 12a, the second coil portion 12b, and the third coil portion 12c is a concentrated winding type coil in which the winding 13 is intensively wound around one tooth 11b. Forming.
 また、第一コイル部12a、第二コイル部12b及び第三コイル部12cはそれぞれ、ステータコア11の両端部から円筒軸方向に突出し、第一コイル部12aの突出する部位12aa及び12ab、第二コイル部12bの突出する部位12ba及び12bb、並びに、第三コイル部12cの突出する部位12ca及び12cbはそれぞれ、ステータコイル12のコイルエンド12d及び12eを形成している。ここで、コイルエンド12dは、ステータコア11の円筒軸方向の一方の端部から突出する第一コイルエンドを構成し、コイルエンド12eは、ステータコア11の円筒軸方向の他方の端部から突出する第二コイルエンドを構成する。 The first coil portion 12a, the second coil portion 12b, and the third coil portion 12c protrude from the both end portions of the stator core 11 in the cylindrical axis direction, and the portions 12aa and 12ab from which the first coil portion 12a protrudes, the second coil, respectively. The protruding portions 12ba and 12bb of the portion 12b and the protruding portions 12ca and 12cb of the third coil portion 12c form coil ends 12d and 12e of the stator coil 12, respectively. Here, the coil end 12d constitutes a first coil end protruding from one end of the stator core 11 in the cylindrical axis direction, and the coil end 12e is a first end protruding from the other end of the stator core 11 in the cylindrical axis direction. Constructs a two-coil end.
 図1を参照すると、モータ筐体2における略円筒状の周壁2bにおいて、冷却室22を形成する壁部2b2には、冷却液である油をステータコイル12のコイルエンド12d及び12eに供給するための油供給管アセンブリ30が取り付けられている。
 図4及び図5をあわせて参照すると、油供給管アセンブリ30は、マニホールド31と、マニホールド31に連結される互いに同形状をした油供給管32及び33とを有している。
 マニホールド31は、略T字状の外形をした中空構造である。マニホールド31は、略中央で開口する油受入口31aと、両端部で油受入口31aと反対側に開口する挿入口31b及び31cとを有している。油受入口31aは、マニホールド31の内部を介して挿入口31b及び31cと連通している。
 ここで、油供給管アセンブリ30は冷却液供給管アセンブリを構成する。また、油供給管32及び33は冷却液供給管を構成し、さらに詳細には、油供給管32は第一冷却液供給管を構成し、油供給管33は第二冷却液供給管を構成する。また、油受入口31aは冷却液受入口を構成している。
Referring to FIG. 1, in the substantially cylindrical peripheral wall 2 b in the motor housing 2, oil as a coolant is supplied to the coil ends 12 d and 12 e of the stator coil 12 in the wall portion 2 b 2 forming the cooling chamber 22. The oil supply pipe assembly 30 is attached.
4 and 5 together, the oil supply pipe assembly 30 includes a manifold 31 and oil supply pipes 32 and 33 having the same shape and connected to the manifold 31.
The manifold 31 has a hollow structure with a substantially T-shaped outer shape. The manifold 31 has an oil receiving port 31a that opens substantially at the center, and insertion ports 31b and 31c that open to opposite sides of the oil receiving port 31a at both ends. The oil receiving port 31 a communicates with the insertion ports 31 b and 31 c through the inside of the manifold 31.
Here, the oil supply pipe assembly 30 constitutes a coolant supply pipe assembly. The oil supply pipes 32 and 33 constitute a coolant supply pipe. More specifically, the oil supply pipe 32 constitutes a first coolant supply pipe, and the oil supply pipe 33 constitutes a second coolant supply pipe. To do. The oil receiving port 31a constitutes a coolant receiving port.
 油供給管32及び33はそれぞれ、一方の端部が栓32a及び33aによって塞がれており、他方の開口端部がマニホールド31の挿入口31b及び31cに圧入嵌合されてマニホールド31に組み付けられている。マニホールド31に組み付けられた油供給管32及び33は、互いに平行に且つ同じ方向に向かって延在し、油供給管32及び33の内部は、油受入口31aに連通する。
 そして、油供給管32及び33が組み付けられたマニホールド31は、油供給管32及び33と一体となって1つのアセンブリである油供給管アセンブリ30を形成する。
 また、油供給管32並びに33の円筒状の周壁にはそれぞれ、2つずつの滴下穴32b及び32c並びに滴下穴33b及び33cが貫通形成されている。ここで、滴下穴32b及び32cは、複数の第一滴下穴を構成し、滴下穴33b及び33cは、複数の第二滴下穴を構成している。
 滴下穴32b及び32c並びに滴下穴33b及び33cは、油供給管32及び33が並列にならぶ方向に対して垂直な同じ方向に向かって開口している。
 さらに、滴下穴32b及び32cは、滴下穴33b及び33cに対して、油供給管32及び33の中央側に配置されている。つまり、滴下穴32b及び32cの間隔は、滴下穴33b及び33cの間隔よりも狭くなっている。
Each of the oil supply pipes 32 and 33 is closed at one end by plugs 32 a and 33 a, and the other open end is press-fitted into the insertion ports 31 b and 31 c of the manifold 31 and assembled to the manifold 31. ing. The oil supply pipes 32 and 33 assembled to the manifold 31 extend in parallel and in the same direction, and the insides of the oil supply pipes 32 and 33 communicate with the oil receiving port 31a.
The manifold 31 to which the oil supply pipes 32 and 33 are assembled forms an oil supply pipe assembly 30 that is one assembly together with the oil supply pipes 32 and 33.
In addition, two drop holes 32b and 32c and two drop holes 33b and 33c are formed through the cylindrical peripheral walls of the oil supply pipes 32 and 33, respectively. Here, the dropping holes 32b and 32c constitute a plurality of first dropping holes, and the dropping holes 33b and 33c constitute a plurality of second dropping holes.
The dropping holes 32b and 32c and the dropping holes 33b and 33c open in the same direction perpendicular to the direction in which the oil supply pipes 32 and 33 are arranged in parallel.
Further, the drip holes 32b and 32c are arranged on the center side of the oil supply pipes 32 and 33 with respect to the drip holes 33b and 33c. That is, the interval between the dropping holes 32b and 32c is narrower than the interval between the dropping holes 33b and 33c.
 図1~図5を合わせて参照すると、油供給管アセンブリ30は、油供給管32及び33をそれぞれ、モータ筐体2の周壁2bの壁部2b2に形成された貫通穴2b2a及び2b2bに外側から挿入して、モータ筐体2に取り付けられる。さらに、挿入された油供給管32及び33はそれぞれ、周壁2bにおいて冷却室22を形成し且つ壁部2b2に対向する壁部2b3に形成された貫通穴2b3a及び2b3bに挿入され、それにより壁部2b2及び2b3によって支持される。また、マニホールド31は、壁部2b2にねじ留め固定される。 Referring to FIGS. 1 to 5 together, the oil supply pipe assembly 30 includes oil supply pipes 32 and 33 from the outside to through holes 2b2a and 2b2b formed in the wall portion 2b2 of the peripheral wall 2b of the motor housing 2, respectively. It is inserted and attached to the motor housing 2. Further, the inserted oil supply pipes 32 and 33 are respectively inserted into through holes 2b3a and 2b3b formed in the wall 2b3 which forms the cooling chamber 22 in the peripheral wall 2b and faces the wall 2b2, thereby Supported by 2b2 and 2b3. The manifold 31 is fixed to the wall 2b2 with screws.
 図1~図3をあわせて参照すると、上述のようにモータ筐体2に取付・固定された油供給管アセンブリ30では、油供給管32が、ステータコア11の外周面11a側においてステータコイル12のコイルエンド12dから離れて上方に位置し、ステータコア11の円筒軸に実質的に垂直な方向に沿って延在する。さらに、油供給管32の滴下穴32b及び32cは、コイルエンド12dへ向かう下方に向かって開口し、コイルエンド12dから上方に等距離の位置に位置している。つまり、滴下穴32bは、第一コイル部12aにおけるステータコア11からの突出部位12aaの真上に位置し、滴下穴32cは、第二コイル部12bにおけるステータコア11からの突出部位12baの真上に位置する。 1 to 3 together, in the oil supply pipe assembly 30 attached and fixed to the motor housing 2 as described above, the oil supply pipe 32 is connected to the stator coil 12 on the outer peripheral surface 11a side of the stator core 11. It is located above the coil end 12 d and extends along a direction substantially perpendicular to the cylindrical axis of the stator core 11. Further, the dropping holes 32b and 32c of the oil supply pipe 32 open downward toward the coil end 12d, and are located at equal distances upward from the coil end 12d. That is, the drip hole 32b is located directly above the protruding portion 12aa from the stator core 11 in the first coil portion 12a, and the dripping hole 32c is located directly above the protruding portion 12ba from the stator core 11 in the second coil portion 12b. To do.
 また、モータ筐体2に取付・固定された油供給管アセンブリ30の油供給管33は、ステータコア11の外周面11a側においてステータコイル12のコイルエンド12eから離れて上方に位置し、ステータコア11の円筒軸に実質的に垂直な方向に沿って延在する。さらに、油供給管33の滴下穴33b及び33cは、コイルエンド12eへ向かう下方に向かって開口し、コイルエンド12eから上方に等距離の位置に位置している。つまり、滴下穴33b及び33cは、第三コイル部12cにおけるステータコア11からの異なる突出部位12cbの真上に位置する。 Further, the oil supply pipe 33 of the oil supply pipe assembly 30 attached and fixed to the motor housing 2 is located on the outer peripheral surface 11a side of the stator core 11 away from the coil end 12e of the stator coil 12, and is positioned above the stator core 11. It extends along a direction substantially perpendicular to the cylindrical axis. Further, the dropping holes 33b and 33c of the oil supply pipe 33 are opened downward toward the coil end 12e, and are located at equal distances upward from the coil end 12e. That is, the drip holes 33b and 33c are located directly above the different projecting portions 12cb from the stator core 11 in the third coil portion 12c.
 また、冷却室22を形成するモータ筐体2の端壁2cの壁部には、この壁部を貫通する複数の空気穴2caが形成されている。さらに、端壁2cに対向する図示しないエンドプレートにおける冷却室22を形成する壁部にも、この壁部を貫通する複数の空気穴が形成されている。よって、冷却室22内には、空気穴2caから外気が導入され、導入された外気は、ステータ10を冷却してエンドプレートの空気穴から排出される。 In addition, a plurality of air holes 2 ca penetrating through the wall portion are formed in the wall portion of the end wall 2 c of the motor housing 2 that forms the cooling chamber 22. Further, a plurality of air holes penetrating the wall portion are formed in the wall portion forming the cooling chamber 22 in the end plate (not shown) facing the end wall 2c. Therefore, outside air is introduced into the cooling chamber 22 from the air hole 2ca, and the introduced outside air cools the stator 10 and is discharged from the air hole of the end plate.
 図1を参照すると、モータ筐体2の端壁2cの下部には、油排出管41が接続されている。油排出管41は、回転電機1の下方に位置するオイルパン40に接続されており、モータ筐体2の油溜め室23をオイルパン40の内部に連通する。オイルパン40には、回転電機1が搭載される装置における潤滑油、作動油等を貯留するものが採用され、例えば、回転電機1が自動車に搭載される場合、オートマチックトランスミッションのギヤボックスなどが採用される。
 また、オイルパン40から油給送管42が延びて油供給管アセンブリ30の油受入口31aに接続している。つまり、油給送管42は、オイルパン40の内部を油供給管アセンブリ30のマニホールド31の内部に連通している。さらに、油給送管42の途中には、オイルパン40内の油をマニホールド31内に圧送するオイルポンプ43が設けられている。
Referring to FIG. 1, an oil discharge pipe 41 is connected to the lower part of the end wall 2 c of the motor housing 2. The oil discharge pipe 41 is connected to an oil pan 40 located below the rotating electrical machine 1, and communicates the oil sump chamber 23 of the motor housing 2 with the oil pan 40. The oil pan 40 is used for storing lubricating oil, hydraulic oil, or the like in a device in which the rotating electrical machine 1 is mounted. For example, when the rotating electrical machine 1 is mounted in an automobile, a gear box of an automatic transmission is used. Is done.
An oil feed pipe 42 extends from the oil pan 40 and is connected to the oil receiving port 31 a of the oil supply pipe assembly 30. That is, the oil supply pipe 42 communicates the inside of the oil pan 40 with the inside of the manifold 31 of the oil supply pipe assembly 30. Further, an oil pump 43 that pumps oil in the oil pan 40 into the manifold 31 is provided in the middle of the oil feed pipe 42.
 次に、この発明の実施の形態に係る回転電機1におけるステータ10及びその周辺の動作を説明する。
 図1~図3をあわせて参照すると、回転電機1において、ステータ10のステータコイル12に三相交流電力が印加されると、U相、V相及びW相の各相のコイル部12a、12b及び12cが互いに位相をずらした回転磁界を発生する。これにより、ステータ10の内部の図示しないロータが、ステータコア11と同軸の回転シャフトを中心として、この回転シャフトと共に回転駆動される。
Next, the operation of the stator 10 and its surroundings in the rotating electrical machine 1 according to the embodiment of the present invention will be described.
Referring also to FIGS. 1 to 3, in the rotating electrical machine 1, when three-phase AC power is applied to the stator coil 12 of the stator 10, the coil portions 12a, 12b of each phase of the U phase, the V phase, and the W phase. And 12c generate rotating magnetic fields that are out of phase with each other. As a result, a rotor (not shown) inside the stator 10 is driven to rotate together with the rotating shaft around the rotating shaft coaxial with the stator core 11.
 このとき、各相のコイル部12a、12b及び12cが発熱するため、オイルポンプ43が駆動されてオイルパン40内の油を油供給管アセンブリ30に供給し、供給された油が、油供給管32,33の滴下穴32b,32c,33b,33cからステータコイル12のコイルエンド12d,12eに滴下する。
 滴下穴32b及び32cからの油がそれぞれ、コイルエンド12dにおける第一コイル部12aの部位12aa及び第二コイル部12bの部位12baに滴下し、滴下穴33b及び33cからの油が、コイルエンド12eにおける2つの第三コイル部12cの部位12cbに滴下する。よって、U相、V相及びW相のコイルエンド部が油によって直接冷却される。つまり、複数の滴下穴32b、32c、33b及び33cは、U相、V相及びW相のコイル部12a、12b及び12cのうち、全てのコイル部12a、12b及び12cに対応するコイルエンドの部位に油を滴下できるように配置されている。
At this time, since the coil portions 12a, 12b and 12c of each phase generate heat, the oil pump 43 is driven to supply the oil in the oil pan 40 to the oil supply pipe assembly 30, and the supplied oil is supplied to the oil supply pipe. Drops are dropped onto the coil ends 12 d and 12 e of the stator coil 12 from the dropping holes 32 b, 32 c, 33 b and 33 c of 32 and 33.
The oil from the dropping holes 32b and 32c respectively drops to the part 12aa of the first coil part 12a and the part 12ba of the second coil part 12b in the coil end 12d, and the oil from the dropping holes 33b and 33c is supplied to the coil end 12e. It dripped at the site | part 12cb of the two 3rd coil parts 12c. Therefore, the U-phase, V-phase, and W-phase coil end portions are directly cooled by the oil. That is, the plurality of dropping holes 32b, 32c, 33b and 33c are coil end portions corresponding to all the coil portions 12a, 12b and 12c among the U-phase, V-phase and W- phase coil portions 12a, 12b and 12c. It is arrange | positioned so that oil can be dripped in.
 さらに、油が直接滴下する第一コイル部12a、第二コイル部12b及び第三コイル部12cそれぞれに巻線を介して接続され且つ他のティース11bに巻回された他の第一コイル部12a、第二コイル部12b及び第三コイル部12cも、油によって直接冷却されるコイル部からの冷熱伝導によって冷却される。
 また、第一コイル部12a、第二コイル部12b及び第三コイル部12cをそれぞれ直接冷却した油は、流下する際に隣り合うコイル部を冷却する。
 よって、油によって直接冷却される第一コイル部12a、第二コイル部12b及び第三コイル部12cそれぞれ全体における冷却効果の偏りが低減されている。
Furthermore, the other first coil part 12a connected to the first coil part 12a, the second coil part 12b, and the third coil part 12c to which oil directly drops is wound and wound around another tooth 11b. The second coil portion 12b and the third coil portion 12c are also cooled by cold heat conduction from the coil portion that is directly cooled by oil.
Moreover, the oil which cooled each of the 1st coil part 12a, the 2nd coil part 12b, and the 3rd coil part 12c directly cools an adjacent coil part, when flowing down.
Therefore, the bias of the cooling effect in the entire first coil portion 12a, second coil portion 12b, and third coil portion 12c that are directly cooled by oil is reduced.
 このように、この発明の実施の形態に係る回転電機1は、円筒状のステータコア11に複数相のステータコイル12が巻回されたステータ10を備える。複数相のステータコイル12の各相に対応するコイル部12a,12b,12cはそれぞれ、ステータコア11の円筒軸方向の端部から突出するコイルエンド12d,12eを構成する部位12aa,12ab,12ba,12bb,12ca,12cbを有する。そして、この回転電機1は、ステータコア11の外周側に設けられ且つステータコイル12のコイルエンド12d,12eの上方に位置する油供給管32,33を備え、油供給管32,33は、コイルエンド12d,12eに油を供給するように構成される。油供給管32,33は、複数相のステータコイル12のうちの少なくとも二相のコイル部12a~12cに対応するコイルエンド12d,12eの部位12aa~12ca,12ab~12cbに油を滴下する複数の滴下穴32b,32c,33b,33cを有する。 As described above, the rotating electrical machine 1 according to the embodiment of the present invention includes the stator 10 in which the multi-phase stator coil 12 is wound around the cylindrical stator core 11. Coil portions 12a, 12b, and 12c corresponding to each phase of the multi-phase stator coil 12 are portions 12aa, 12ab, 12ba, and 12bb constituting coil ends 12d and 12e protruding from the end portions of the stator core 11 in the cylindrical axis direction, respectively. , 12ca, 12cb. The rotating electrical machine 1 includes oil supply pipes 32 and 33 that are provided on the outer peripheral side of the stator core 11 and located above the coil ends 12d and 12e of the stator coil 12, and the oil supply pipes 32 and 33 are coil ends. It is comprised so that oil may be supplied to 12d and 12e. The oil supply pipes 32 and 33 include a plurality of oil drops that are dropped onto the portions 12aa to 12ca and 12ab to 12cb of the coil ends 12d and 12e corresponding to at least the two-phase coil portions 12a to 12c of the plurality of stator coils 12. It has drip holes 32b, 32c, 33b, 33c.
 このとき、油供給管32,33の滴下穴32b,32c,33b,33cからの油は、ステータコイル12を構成する複数相のコイル部のコイルエンドに滴下してこれらを直接冷却する。そして、油が直接滴下するコイル部が効果的に冷却されるため、このコイル部と同相であり且つ巻線を介して接続されている他のコイル部も冷却を受ける。さらに、油が直接滴下するコイル部に隣り合うコイル部が、直接冷却後の油によって冷却される。よって、各相のコイル部における冷却効果のばらつきを低減することができる。 At this time, the oil from the dropping holes 32b, 32c, 33b, 33c of the oil supply pipes 32, 33 is dropped on the coil ends of the coil portions of the plurality of phases constituting the stator coil 12 to directly cool them. And since the coil part to which oil drops directly is cooled effectively, the other coil part which is in phase with this coil part and is connected via the winding is also cooled. Furthermore, the coil part adjacent to the coil part to which oil directly drops is cooled by the oil after direct cooling. Therefore, it is possible to reduce the variation in the cooling effect in the coil portions of each phase.
 また、回転電機1において、油供給管32及び33は、ステータコア11の円筒軸方向の両端部から突出するコイルエンド12d及び12eそれぞれの上方に配設され且つステータコア11の円筒軸に実質的に垂直な方向に延在し、油供給管32及び33における滴下穴32b,32cの間隔と滴下穴33b,33cの間隔とが異なっている。これにより、油によって直接冷却するコイル部のコイルエンドの数を増加させることができる。さらに、滴下穴32b,32cの間隔と滴下穴33b,33cの間隔とを異ならせることで、ステータコア11の両側の間で冷却するコイル部を異ならせることができ、油で直接冷却されるコイル部の相の数を増加させることができる。 Further, in the rotary electric machine 1, the oil supply pipes 32 and 33 are disposed above the coil ends 12 d and 12 e protruding from both ends of the stator core 11 in the cylindrical axis direction and substantially perpendicular to the cylindrical axis of the stator core 11. The intervals between the dropping holes 32b and 32c in the oil supply pipes 32 and 33 are different from the intervals between the dropping holes 33b and 33c. Thereby, the number of coil ends of the coil part directly cooled by oil can be increased. Furthermore, the coil part cooled between the both sides of the stator core 11 can be made different by making the space | interval of dripping hole 32b, 32c and the space | interval of dripping hole 33b, 33c differ, The coil part cooled directly with oil The number of phases can be increased.
 また、回転電機1において、ステータコア11の両端部のコイルエンド12d及び12eの上方に配設された油供給管32及び33の複数の滴下穴32b,32c,33b,33cは、これら複数の滴下穴の全てによってステータコイル12の全ての相のコイル部に対応するコイルエンド12d,12eの部位に油を滴下できるように配置されている。これによって、全ての相のコイル部のコイルエンドを油で直接冷却することができ、各相のコイル部における冷却効果のばらつきを低減することができる。 In the rotating electrical machine 1, the plurality of drip holes 32 b, 32 c, 33 b, 33 c of the oil supply pipes 32 and 33 disposed above the coil ends 12 d and 12 e at both ends of the stator core 11 are the drip holes. Are arranged so that oil can be dripped onto the portions of the coil ends 12d and 12e corresponding to the coil portions of all phases of the stator coil 12. As a result, the coil ends of the coil portions of all phases can be directly cooled with oil, and variations in the cooling effect in the coil portions of each phase can be reduced.
 また、回転電機1は、ステータ10を収容するモータ筐体2と、モータ筐体2とは別体であり且つモータ筐体2に取り付けられる油供給管アセンブリ30とを備えている。さらに、油供給管アセンブリ30は、油供給管32及び33とマニホールド31とを有する。マニホールド31は、油受入口31aを有すると共に油受入口31aから受け入れた油を油供給管32及び33それぞれに分配する。このとき、ステータコイルが集中巻型である又は分布巻型である等、ステータ10のステータコイル12の構成に応じてコイルエンド12d,12eへの油の滴下位置及び滴下流量を変更する必要があるが、油供給管アセンブリ30の構造、例えば滴下穴の位置、大きさ等を変更することだけによって、モータ筐体2に変更を加えることなく上記変更に対応することができる。さらには、油供給管アセンブリ30の油供給管32及び33の構造を変更するだけでも対応できる。 The rotating electrical machine 1 includes a motor housing 2 that houses the stator 10, and an oil supply pipe assembly 30 that is separate from the motor housing 2 and attached to the motor housing 2. Further, the oil supply pipe assembly 30 includes oil supply pipes 32 and 33 and a manifold 31. The manifold 31 has an oil receiving port 31a and distributes oil received from the oil receiving port 31a to the oil supply pipes 32 and 33, respectively. At this time, it is necessary to change the dropping position and the dropping flow rate of the oil to the coil ends 12d and 12e according to the configuration of the stator coil 12 of the stator 10 such that the stator coil is a concentrated winding type or a distributed winding type. However, only by changing the structure of the oil supply pipe assembly 30, for example, the position and size of the drip hole, it is possible to cope with the change without changing the motor housing 2. Furthermore, it is possible to cope only by changing the structure of the oil supply pipes 32 and 33 of the oil supply pipe assembly 30.
 また、回転電機1において、油供給管アセンブリ30のマニホールド31は、油受入口31aと油供給管32及び33それぞれとの距離関係に基づき、油供給管32及び33それぞれに分配する油の流量を変更可能な構成である。油受入口31aと油供給管との距離が大きくなるほど圧力損失が大きくなるようにすると、このような油供給管に流れる油の流量が小さくなる。そして、ステータコア11の両端部のコイルエンド12d及び12eにおいて直接冷却のための油の滴下量を差異付ける必要がある場合、油受入口31aの位置を変更して対応すればよい。 Further, in the rotary electric machine 1, the manifold 31 of the oil supply pipe assembly 30 has a flow rate of oil distributed to the oil supply pipes 32 and 33, based on the distance relationship between the oil receiving inlet 31 a and the oil supply pipes 32 and 33. The configuration can be changed. If the pressure loss increases as the distance between the oil receiving port 31a and the oil supply pipe increases, the flow rate of the oil flowing through the oil supply pipe decreases. Then, if it is necessary to differentiate the amount of oil dropped for direct cooling at the coil ends 12d and 12e at both ends of the stator core 11, the position of the oil receiving port 31a may be changed.
 また、実施の形態の回転電機1において、ステータ10のステータコア11には集中巻型のステータコイル12が巻回されていたが、これに限定されるものでない。図6及び図7に示すように、ステータ210において、ステータコア211に分布巻型のステータコイル212が巻回されてもよい。
 ステータコア211には、その径方向内側に向かって突出する複数のティース211bが一体に形成されている。各ティース211bは、台形状の径方向断面を有して円筒状のステータコア211の円筒軸方向に沿って延在している。さらに、複数のティース211bは、ステータコア211の内周方向に沿って並んで配置され、互いの間に狭幅の溝を形成している。
In the rotating electrical machine 1 according to the embodiment, the concentrated winding type stator coil 12 is wound around the stator core 11 of the stator 10, but the present invention is not limited to this. As shown in FIGS. 6 and 7, in the stator 210, a distributed winding type stator coil 212 may be wound around the stator core 211.
The stator core 211 is integrally formed with a plurality of teeth 211b projecting radially inward. Each tooth 211b has a trapezoidal radial cross section and extends along the cylindrical axis direction of the cylindrical stator core 211. Further, the plurality of teeth 211b are arranged side by side along the inner circumferential direction of the stator core 211, and a narrow groove is formed between them.
 そして、狭幅の溝内を通り且つ複数のティース211b(図6及び図7では4つのティース211b)に跨るようにして、ステータコイル212を構成する第一コイル部212a、第二コイル部212b及び第三コイル部212cが巻回されている。第一コイル部212a、第二コイル部212b及び第三コイル部212cは、ステータコア211の端部では互いに周方向にラップするように位置し、ステータコア211の周方向に沿って第一コイル部212a、第二コイル部212b、第三コイル部212c、第一コイル部212a・・・・・・とする順序を繰り返すようにして配置されている。さらに、複数のティース211bに跨って巻回された第一コイル部212a同士、第二コイル部212b同士、第三コイル部212c同士は、互いに連続した巻線で形成されている。
 よって、第一コイル部212a、第二コイル部212b及び第三コイル部212cからなるステータコイル212は、複数のティース211bに跨って巻線が巻回される分布巻型のコイルを形成している。
The first coil portion 212a, the second coil portion 212b, and the second coil portion 212b that constitute the stator coil 212 so as to pass through the narrow groove and straddle the plurality of teeth 211b (four teeth 211b in FIGS. 6 and 7). The third coil part 212c is wound. The first coil part 212a, the second coil part 212b, and the third coil part 212c are positioned so as to wrap in the circumferential direction at the end of the stator core 211, and the first coil part 212a, The second coil part 212b, the third coil part 212c, the first coil part 212a,... Furthermore, the first coil portions 212a wound between the plurality of teeth 211b, the second coil portions 212b, and the third coil portions 212c are formed by continuous windings.
Therefore, the stator coil 212 including the first coil portion 212a, the second coil portion 212b, and the third coil portion 212c forms a distributed winding type coil in which the winding is wound across the plurality of teeth 211b. .
 上述のステータコイル212に対して、油供給管アセンブリ30の油供給管32は、ステータコイル212のコイルエンド212dから離れて上方に位置し、ステータコア211の円筒軸に実質的に垂直な方向に沿って延在する。そして、滴下穴32bは、第一コイル部212aの突出部位212aaの真上に位置し、滴下穴32cは、第二コイル部212bの突出部位212baの真上に位置する。油供給管33は、ステータコイル212のコイルエンド212eから離れて上方に位置し、ステータコア211の円筒軸に実質的に垂直な方向に沿って延在する。さらに、滴下穴33b及び33cは、異なる第三コイル部212cの突出部位212cbの真上に位置する。
 よって、油供給管32及び33の4箇所から滴下する油は、第一コイル部212a、第二コイル部212b及び第三コイル部212cのコイルエンドに直接落下し、これらを冷却することができる。
With respect to the stator coil 212 described above, the oil supply pipe 32 of the oil supply pipe assembly 30 is located above and away from the coil end 212d of the stator coil 212 and extends in a direction substantially perpendicular to the cylindrical axis of the stator core 211. Extend. The dropping hole 32b is located right above the protruding portion 212aa of the first coil portion 212a, and the dropping hole 32c is located right above the protruding portion 212ba of the second coil portion 212b. The oil supply pipe 33 is located above and away from the coil end 212 e of the stator coil 212, and extends along a direction substantially perpendicular to the cylindrical axis of the stator core 211. Furthermore, the dropping holes 33b and 33c are located directly above the protruding portion 212cb of the different third coil portion 212c.
Therefore, the oil dripped from the four places of the oil supply pipes 32 and 33 falls directly on the coil ends of the first coil part 212a, the second coil part 212b, and the third coil part 212c, and can cool them.
 また、実施の形態の回転電機1において、油供給管アセンブリ30の油供給管32及び33では、一方の端部が栓32a及び33aで塞がれ、滴下穴32b、32c、33b及び33cが、油供給管32及び33の周壁に貫通形成されていたが、これに限定されるものでない。
 図8に示すように、油供給管32及び33の一方の端部を一緒に潰して、潰した箇所を溶接することによって、油供給管32及び33の一方の端部を塞いでもよい。これにより、部品点数が減少するため、コスト低減が可能になる。
 又は、図9に示すように、油供給管32及び33それぞれの一方の端部を塞がずに滴下穴32b及び33bとし、油供給管32及び33の周壁にはそれぞれ、滴下穴32c及び33cのみを形成するようにしてもよい。さらに、油供給管32及び33の長さを互いに異ならせることによって、滴下穴32b及び33bからの油の滴下位置をコイルエンド12d及び12eの間で異ならせることができる。そして、上述の構成を採用することによって、部品点数が減少すると共に加工工数も減少するため、コスト低減が可能になる。
In the rotating electrical machine 1 of the embodiment, one end of the oil supply pipes 32 and 33 of the oil supply pipe assembly 30 is closed with the plugs 32a and 33a, and the dripping holes 32b, 32c, 33b, and 33c are The oil supply pipes 32 and 33 are formed through the peripheral walls, but the present invention is not limited to this.
As shown in FIG. 8, one end of the oil supply pipes 32 and 33 may be crushed together, and the one end of the oil supply pipes 32 and 33 may be closed by welding the crushed portions. Thereby, since the number of parts decreases, cost reduction becomes possible.
Alternatively, as shown in FIG. 9, one end of each of the oil supply pipes 32 and 33 is not closed, and drip holes 32 b and 33 b are formed, and drip holes 32 c and 33 c are respectively formed on the peripheral walls of the oil supply pipes 32 and 33. It is also possible to form only. Further, by making the lengths of the oil supply pipes 32 and 33 different from each other, the oil dropping positions from the dropping holes 32b and 33b can be made different between the coil ends 12d and 12e. And by employ | adopting the above-mentioned structure, since a number of parts reduces and a processing man-hour also reduces, cost reduction becomes possible.
 また、実施の形態の回転電機1において、油供給管アセンブリ30の油供給管32及び33ではそれぞれ、2つの滴下穴が形成されていたが、これに限定されるものでない。油供給管32及び33の少なくとも一方で、3つ以上の滴下穴が形成されていてもよい。例えば、油供給管32及び33それぞれに3つの滴下穴が形成される場合、3つの滴下穴が、U相、V相及びW相のコイル部のコイルエンドに油を滴下できるように配置されていてもよい。
 或いは、油供給管32及び33の少なくとも一方で、2つ未満の滴下穴が形成されていてもよい。このとき、例えば、油供給管32及び33にそれぞれ1つの滴下穴が形成される場合、滴下穴は、U相、V相及びW相のうちの異なる2つの相のコイル部のコイルエンドに油を滴下できるように配置されればよい。
In the rotary electric machine 1 according to the embodiment, the two oil supply pipes 32 and 33 of the oil supply pipe assembly 30 are each formed with two dripping holes. However, the present invention is not limited to this. At least one of the oil supply pipes 32 and 33 may have three or more drip holes. For example, when three dropping holes are formed in each of the oil supply pipes 32 and 33, the three dropping holes are arranged so that oil can be dropped onto the coil ends of the U-phase, V-phase, and W-phase coil portions. May be.
Alternatively, at least one of the oil supply pipes 32 and 33 may have less than two drip holes. At this time, for example, when one drip hole is formed in each of the oil supply pipes 32 and 33, the drip hole is formed in the coil ends of the coil portions of two different phases of the U phase, the V phase, and the W phase. What is necessary is just to arrange | position so that can be dripped.
 また、実施の形態の回転電機1において、油供給管アセンブリ30の油供給管32及び33ではそれぞれ、同数の滴下穴が形成されていたが、これに限定されるものでなく、互いに異なる数の滴下穴が形成されていてもよい。例えば、油供給管32及び33の一方に2つの滴下穴が形成され、他方に1つの滴下穴が形成されていてもよい。このとき、油供給管32及び33による3つの滴下穴が、U相、V相及びW相のコイル部のコイルエンドに油を滴下できるように配置されることで、全ての相のコイルエンドが油によって直接冷却される。 In the rotary electric machine 1 according to the embodiment, the oil supply pipes 32 and 33 of the oil supply pipe assembly 30 are each provided with the same number of drip holes. A drip hole may be formed. For example, two dripping holes may be formed in one of the oil supply pipes 32 and 33, and one dripping hole may be formed in the other. At this time, the three dripping holes by the oil supply pipes 32 and 33 are arranged so that oil can be dripped onto the coil ends of the U-phase, V-phase and W-phase coil sections, so that the coil ends of all phases are Cooled directly by oil.
 また、実施の形態の回転電機1の油供給管アセンブリ30において、マニホールド31の油受入口31aは、油供給管32及び33の挿入口31b及び31cそれぞれから略等距離の位置に配置されていたが、これに限定されるものでない。油受入口31aは、挿入口31b及び31cのいずれかに偏った位置に配置されていてもよい。例えば、油受入口31aが挿入口31bの方に近くなるように配置されると、マニホールド31は、挿入口31cに連結される油供給管33への分配流量よりも、挿入口31bに連結される油供給管32への分配流量を大きくする。 Further, in the oil supply pipe assembly 30 of the rotary electric machine 1 according to the embodiment, the oil receiving inlet 31a of the manifold 31 is disposed at a substantially equidistant position from the insertion ports 31b and 31c of the oil supply pipes 32 and 33, respectively. However, it is not limited to this. The oil receiving port 31a may be arranged at a position biased to either the insertion port 31b or 31c. For example, when the oil receiving port 31a is disposed so as to be closer to the insertion port 31b, the manifold 31 is connected to the insertion port 31b than the distribution flow rate to the oil supply pipe 33 connected to the insertion port 31c. The distribution flow rate to the oil supply pipe 32 is increased.
 また、実施の形態の回転電機1において、ステータコイル12のコイルエンド12d及び12eを油で冷却していたが、これに限定されるものでなく、冷却液は、コイルエンド12d及び12eに滴下可能な液体であればよい。
 また、実施の形態の回転電機1は、ステータ10の内側に1つのロータが配設される構成として説明されていたが、これに限定されるものでなく、ステータ10の内側に二重になった2つのロータが配設されるダブルロータ型の構成であってもよい。或いは、回転電機は、ステータの外側に回転可能なロータが設けられる構成であってもよい。つまり、回転電機は、ステータのコイルエンドに油等の冷却液を滴下して直接冷却する構成であればよい。
Moreover, in the rotary electric machine 1 of embodiment, although the coil ends 12d and 12e of the stator coil 12 were cooled with oil, it is not limited to this, A cooling fluid can be dripped at the coil ends 12d and 12e. Any liquid can be used.
Moreover, although the rotary electric machine 1 of embodiment was demonstrated as a structure by which one rotor is arrange | positioned inside the stator 10, it is not limited to this, It becomes double inside the stator 10. Alternatively, a double rotor type configuration in which two rotors are disposed may be used. Alternatively, the rotating electrical machine may be configured such that a rotatable rotor is provided outside the stator. That is, the rotating electrical machine may be configured to cool directly by dropping a coolant such as oil on the coil end of the stator.

Claims (5)

  1.  円筒状のステータコアに複数相のコイルが巻回されたステータを備え、
     前記複数相のコイルは、前記ステータコアの円筒軸方向の端部から突出するコイルエンドをそれぞれ有する回転電機において、
     前記ステータコアの外周側に設けられ、且つ前記コイルエンドの上方に位置し、前記コイルエンドに冷却液を供給する冷却液供給管を備え、
     前記冷却液供給管は、
     前記複数相のコイルのうち、少なくとも二相のコイルに対応する前記コイルエンドに前記冷却液を滴下する複数の滴下穴を有する回転電機。
    A stator having a plurality of coils wound around a cylindrical stator core,
    In the rotating electric machine, each of the plurality of phase coils has a coil end protruding from an end portion of the stator core in the cylindrical axis direction.
    A cooling liquid supply pipe that is provided on the outer peripheral side of the stator core and is located above the coil end and supplies a cooling liquid to the coil end;
    The coolant supply pipe is
    A rotating electrical machine having a plurality of dropping holes for dropping the cooling liquid to the coil ends corresponding to at least two-phase coils among the plurality of phases of coils.
  2.  前記コイルエンドは、
     前記ステータコアの円筒軸方向の一方の端部から突出する第一コイルエンドと、
     前記ステータコアの円筒軸方向の他方の端部から突出する第二コイルエンドと
    を含み、
     前記冷却液供給管は、
     前記第一コイルエンドの上方に配設される第一冷却液供給管と、
     前記第二コイルエンドの上方に配設される第二冷却液供給管と
    を含み、
     前記第一冷却液供給管及び前記第二冷却液供給管は、前記ステータコアの円筒軸に実質的に垂直な方向に延在し、
     前記複数の滴下穴は、
     前記第一冷却液供給管が有する複数の第一滴下穴と、
     前記第二冷却液供給管が有する複数の第二滴下穴と
    を含み、
     前記複数の第一滴下穴の間隔と、前記複数の第二滴下穴の間隔とは、互いに異なる請求項1に記載の回転電機。
    The coil end is
    A first coil end protruding from one end of the stator core in the cylindrical axis direction;
    A second coil end protruding from the other end of the stator core in the cylindrical axial direction,
    The coolant supply pipe is
    A first coolant supply pipe disposed above the first coil end;
    A second coolant supply pipe disposed above the second coil end,
    The first coolant supply pipe and the second coolant supply pipe extend in a direction substantially perpendicular to a cylindrical axis of the stator core;
    The plurality of dripping holes are
    A plurality of first dropping holes of the first coolant supply pipe;
    A plurality of second drip holes that the second coolant supply pipe has,
    The rotating electrical machine according to claim 1, wherein an interval between the plurality of first dropping holes and an interval between the plurality of second dropping holes are different from each other.
  3.  前記複数の第一滴下穴及び前記複数の第二滴下穴は、前記複数相のコイルのうち、全ての相のコイルに対応する前記コイルエンドに前記冷却液を滴下できるように配置される請求項2に記載の回転電機。 The plurality of first dropping holes and the plurality of second dropping holes are arranged so that the cooling liquid can be dropped onto the coil ends corresponding to all phase coils of the plurality of phase coils. Item 3. The rotating electrical machine according to Item 2.
  4.  前記ステータを収容する筐体と、
     前記筐体とは別体であり、且つ前記筐体に取り付けられる冷却液供給管アセンブリと
    をさらに備え、
     前記冷却液供給管アセンブリは、
     前記第一冷却液供給管及び前記第二冷却液供給管と、
     冷却液受入口を有すると共に、前記冷却液受入口から受け入れた冷却液を前記第一冷却液供給管と前記第二冷却液供給管とに分配するマニホールドと
    を含む請求項2または3に記載の回転電機。
    A housing for housing the stator;
    A coolant supply pipe assembly that is separate from the casing and attached to the casing;
    The coolant supply pipe assembly includes:
    The first coolant supply pipe and the second coolant supply pipe;
    4. The apparatus according to claim 2, further comprising a manifold that has a coolant inlet and distributes the coolant received from the coolant inlet to the first coolant supply pipe and the second coolant supply pipe. Rotating electric machine.
  5.  前記マニホールドは、前記冷却液受入口と前記第一冷却液供給管及び前記第二冷却液供給管それぞれとの距離関係に基づき、前記第一冷却液供給管及び前記第二冷却液供給管それぞれに分配する前記冷却液の流量を変更可能な構成である請求項4に記載の回転電機。 The manifold is connected to each of the first coolant supply pipe and the second coolant supply pipe based on a distance relationship between the coolant inlet and the first coolant supply pipe and the second coolant supply pipe. The rotating electrical machine according to claim 4, wherein the flow rate of the coolant to be distributed is changeable.
PCT/JP2014/077425 2013-10-16 2014-10-15 Rotating electrical machine WO2015056707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-215673 2013-10-16
JP2013215673A JP2015080330A (en) 2013-10-16 2013-10-16 Rotating electrical machine

Publications (1)

Publication Number Publication Date
WO2015056707A1 true WO2015056707A1 (en) 2015-04-23

Family

ID=52828149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077425 WO2015056707A1 (en) 2013-10-16 2014-10-15 Rotating electrical machine

Country Status (2)

Country Link
JP (1) JP2015080330A (en)
WO (1) WO2015056707A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882987A (en) * 2015-05-14 2015-09-02 于浩 Radiating seat of servo motor for driving rolling brush
JP6500742B2 (en) * 2015-10-26 2019-04-17 トヨタ自動車株式会社 Motor cooling structure
JP2017225269A (en) * 2016-06-16 2017-12-21 アイシン精機株式会社 Rotary electric machine
US20230216378A1 (en) 2020-06-15 2023-07-06 Hitachi Astemo, Ltd. Rotating electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795151A (en) * 1980-11-29 1982-06-12 Toshiba Corp Coolant supplying unit in liquid-cooled, closed type motor
JP2010246268A (en) * 2009-04-06 2010-10-28 Toyota Motor Corp Rotary electric machine
JP2013066348A (en) * 2011-09-20 2013-04-11 Hitachi Constr Mach Co Ltd Generator motor and electric vehicle using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795151A (en) * 1980-11-29 1982-06-12 Toshiba Corp Coolant supplying unit in liquid-cooled, closed type motor
JP2010246268A (en) * 2009-04-06 2010-10-28 Toyota Motor Corp Rotary electric machine
JP2013066348A (en) * 2011-09-20 2013-04-11 Hitachi Constr Mach Co Ltd Generator motor and electric vehicle using the same

Also Published As

Publication number Publication date
JP2015080330A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2015056707A1 (en) Rotating electrical machine
EP2461463B1 (en) Rotating electric machine
JP5146363B2 (en) Electric motor
EP2369723A2 (en) Cooling arrangement for an electric machine
US9825503B2 (en) Motor with cooling system
JP5594350B2 (en) Electric motor
JP2013141334A (en) Rotary electric machine
JP6641081B2 (en) Versatile cooling housing for electric motors
JP6914904B2 (en) Rotating electric machine stator unit
EP3944472A1 (en) Intelligent power generation module
JP2009089513A (en) Cooling structure in rotary electric machine
US20150349606A1 (en) Electric device, gearbox and associated method
CN103053101B (en) Cooling structure of generator motor, and generator motor
WO2020017101A1 (en) Stator cooling structure
CN103081313A (en) Cooling structure of generator motor, and generator motor
CN102447342A (en) Housing of rotating motor
CN110957842A (en) Rotating electrical machine
EP2731236B1 (en) Motor
KR20160129039A (en) Electric machine
CN102906973B (en) Generator motor cooling structure and generator motor
JP6212998B2 (en) Rotating machine and manufacturing method of rotating machine
US20150207387A1 (en) Rotary electric machine
JP2020014332A (en) Stator cooling structure
JP6871077B2 (en) Motor generator device
JP2012090405A (en) Cooling structure of rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854674

Country of ref document: EP

Kind code of ref document: A1