WO2015056618A1 - Composite nonwoven fabric - Google Patents

Composite nonwoven fabric Download PDF

Info

Publication number
WO2015056618A1
WO2015056618A1 PCT/JP2014/076957 JP2014076957W WO2015056618A1 WO 2015056618 A1 WO2015056618 A1 WO 2015056618A1 JP 2014076957 W JP2014076957 W JP 2014076957W WO 2015056618 A1 WO2015056618 A1 WO 2015056618A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
web
support layer
nonwoven fabric
thermoplastic resin
Prior art date
Application number
PCT/JP2014/076957
Other languages
French (fr)
Japanese (ja)
Inventor
敦至 宮川
鈴木 得仁
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015056618A1 publication Critical patent/WO2015056618A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • D04H13/02Production of non-woven fabrics by partial defibrillation of oriented thermoplastics films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density

Definitions

  • the present invention relates to a composite nonwoven fabric in which fibers of a web layer are entangled with a reinforcing support layer by a spunlace method, and the web layer and the reinforcing support layer are integrated.
  • Patent Document 1 discloses a reinforcement in which a web layer and a reinforced support layer are integrated by entanglement of a fiber of a web layer made of short fiber-like cellulose fiber or synthetic fiber with a reinforced support layer by a spunlace method.
  • Nonwoven fabric is described.
  • the reinforced support layer is formed of a breathable oriented body, and is excellent in balance between tensile strength and longitudinal and transverse tensile strength, and is excellent in flexibility, texture, and the like. And it is widely used for industrial materials such as filters and industrial wipers, and medical disposable products such as surgical clothes, sheets, towels and masks.
  • the reinforcing support layer a commercially available split fiber nonwoven fabric, for example, the most lightweight and flexible product among Warif (registered trademark) and CLAF (registered trademark) manufactured by JX Nippon Mining & Energy Corporation is used.
  • the split fiber nonwoven fabric is rigid, and when the web layer fibers are hydroentangled by the spunlace method, the jet water flow is rebounded and the fibers cannot be sufficiently intertwined. For this reason, it is difficult for the fibers of the web layer to be entangled with the flat net-like portion of the split fiber nonwoven fabric, and the web layer becomes uneven.
  • the pattern of the reinforced support layer appears on the surface of the composite nonwoven fabric, and the flexibility, flexibility, and touch are deteriorated, and it cannot be put into practical use.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a composite nonwoven fabric that can improve flexibility, flexibility, and touch, and can be expanded to applications that could not be used conventionally. There is to do.
  • a uniaxially oriented body comprising a thermoplastic resin layer and first and second adhesive layers laminated on both surfaces of the thermoplastic resin layer and having a melting point lower than that of the thermoplastic resin is aligned.
  • a network-like reinforcing support layer obtained by laminating via the first or second adhesive layer so that the axes cross each other, and short fiber cellulose entangled with the reinforcing support layer by a spunlace method
  • the layer constitution ratio of the first adhesive layer, the thermoplastic resin layer and the second adhesive layer in the oriented body is 20/60/20 to 30/40/30, and the longitudinal direction and width of the reinforced support layer
  • the average value of the bending resistance by the direction cantilever method 0mm and below, the composite nonwoven fabric is provided.
  • the bending resistance of the reinforcing support layer is as low as 50 mm or less and becomes soft, so that the jet water flow when hydroentangling the fibers of the web layer by the spunlace method is easily entangled with the reinforcing support layer.
  • the fibers can be sufficiently entangled.
  • the basis weight of the reinforcing support layer is as light as 5 to 13 g / m 2 , the number of fibers to be entangled can be increased. As a result, flexibility, flexibility, and touch can be improved, and expansion to applications that could not be used in the past can be achieved.
  • FIGS. 4 and 5 are schematic diagrams illustrating an example of a supply process and subsequent steps for explaining a method for manufacturing a composite nonwoven fabric using a reinforcing support layer formed by the manufacturing method illustrated in FIGS. 4 and 5. It is a figure for demonstrating the examination by the sample which changed the fabric weight of a reinforcement laminated body, the layer composition ratio of a uniaxially oriented body, and the bending resistance by a cantilever method. It is a characteristic view which shows the relationship between the fabric weight of a reinforcement support layer, and the bending resistance by a cantilever method.
  • a web layer composed of short fiber-like cellulose fibers or synthetic fibers is entangled with the reinforcing support layer by a spunlace method, and the web layer and the reinforcing support layer are integrated.
  • the fibers of the web layer are hydroentangled by the spunlace method, paying attention to the fact that the jet water stream is rebounded by the rigidity of the split fiber nonwoven fabric, the fibers cannot be sufficiently entangled, and the reinforcing support layer
  • the web layer fibers are easily entangled by providing flexibility and flexibility. Therefore, first, the structure and manufacturing method of the reinforcing support layer, which is one of the features of the present embodiment, will be described, and then the manufacturing method of the composite nonwoven fabric in which the web layer is entangled with the reinforcing support layer.
  • the reinforcing support layer 1 shown in FIG. 1 is formed of a nonwoven fabric that is laminated so that the orientation axis 2a of the split web 2 and the orientation axis 3a of the slit web 3 intersect each other. And the contact site
  • the split web 2 shown in FIG. 2A is formed by uniaxially stretching a thermoplastic resin film in the longitudinal direction (axial direction of the orientation axis 2a of the split web 2), splitting in the longitudinal direction, and widening. .
  • the split web 2 is made of a thermoplastic resin such as high-density polyethylene and a thermoplastic resin having a melting point lower than that of the thermoplastic resin, such as first and second low-density polyethylenes.
  • a multilayer film (uniaxially oriented body) produced by a molding method such as a multilayer T-die method and having first and second low-density polyethylenes laminated on both sides of a high-density polyethylene is at least in the longitudinal direction (longitudinal direction). Stretch 3 times. After that, splitting is performed using a splitter in a staggered pattern in the same direction to form a net-like film, which is further widened to a predetermined width.
  • the trunk fibers 4 and the branch fibers 5 are formed by the widening to form a net-like body as shown in the figure.
  • the split web 2 has a relatively high strength in the longitudinal direction over the entire width direction.
  • FIG. 2B is an enlarged perspective view of a region B surrounded by an alternate long and short dash line in FIG. 2A.
  • the split web 2 has a three-layer structure in which thermoplastic resin layers 7-1 and 7-2 having a melting point lower than that of the thermoplastic resin are laminated on both surfaces of the thermoplastic resin layer 6.
  • the thermoplastic resin layers 7-1 and 7-2 function as adhesive layers (first and second adhesive layers) between the webs when they are laminated with the slit web 3 when the reinforced support layer 1 is formed.
  • the slit web 3 shown in FIG. 3A is formed by inserting a large number of slits in a lateral direction (axial direction of the orientation axis 3a of the slit web 3) in a thermoplastic resin film and then uniaxially stretching the lateral direction. .
  • the slit web 3 is formed in the lateral direction (width direction) in the portion excluding both ears of the multilayer film, for example, by forming intermittent slits such as a staggered hook in parallel with a hot blade or the like, and then in the lateral direction. It is formed by stretching.
  • the slit web 3 has a relatively high strength in the lateral direction.
  • FIG. 3B is an enlarged perspective view of a region B surrounded by an alternate long and short dash line in FIG. 3A.
  • the slit web 3 has a three-layer structure in which thermoplastic resin layers 7-1 'and 7-2' having a melting point lower than that of the thermoplastic resin are laminated on both surfaces of the thermoplastic resin layer 6 '.
  • These thermoplastic resin layers 7-1 ′ and 7-2 ′ serve as adhesive layers (first and second adhesive layers) between the webs when they are laminated with the split web 2 when the reinforced support layer 1 is formed. Function.
  • the basis weight of the reinforced support layer 1 is 5 to 13 g / m 2 , the thermoplastic resin layers 7-1 and 7-1 ′ (first adhesive layer) in the uniaxially oriented body (split web 2 and slit web 3), thermoplasticity
  • the layer composition ratio of the resin layers 6 and 6 ′ and the thermoplastic resin layers 7-2 and 7-2 ′ (second adhesive layer) is 20/60/20 to 30/40/30.
  • the average value of the bending resistance by the cantilever method in the longitudinal direction (MD) and the width direction (CD) is 50 mm or less.
  • FIG. 4 shows an outline of the manufacturing process of the split web 2.
  • FIG. 5 shows an outline of a process for manufacturing the reinforced support layer 1 by laminating the slit web 3 on the split web 2.
  • the split web 2 includes a multilayer film forming process, a multilayer film orientation process, a split process in which the oriented multilayer film is split in parallel with the orientation axis, and a winding process in which the split film is wound up. It is manufactured through.
  • the film forming process of the multilayer film is a molten resin in the extruder 10, that is, a thermoplastic resin having a low melting point that functions as the first and second adhesive layers, for example, low density polyethylene, and a thermoplastic resin layer, for example, Each high density polyethylene is fed into a separate manifold in a flat die. These resins are joined and joined immediately before the die lip to form the multilayer film 11. The flow rate of each molten resin and the product thickness are adjusted by adjusting the choke bar and lip in the die.
  • roll orientation is performed at a predetermined orientation ratio with respect to the initial dimension through the cooling rollers 12a and 12b that are mirror-finished on the multilayer film 11.
  • the oriented multilayer film 11 is brought into sliding contact with a splitter (rotary blade) 13 that rotates at high speed, and the multilayer film 11 is split (split).
  • the split web 2 formed by splitting is expanded to a predetermined width, and then subjected to a heat treatment in the heat treatment section 14 and wound up to a predetermined length in a winding process. It becomes 15.
  • the horizontal web (slit web 3) is laminated on the vertical web (split web 2) fed out from the winding body 15 formed as described above.
  • the manufacturing process of a horizontal web includes a film forming process of a multilayer film, a slit process in which slit processing is performed at right angles to the longitudinal direction of the multilayer film, and an orientation process of the multilayer slit film.
  • a vertical web is laminated
  • the film forming process of the multilayer film for the slit web 3 includes a molten resin, that is, a thermoplastic resin having a low melting point that functions as the first and second adhesive layers, for example, low density polyethylene. , And a thermoplastic resin layer, such as high density polyethylene, each is fed into a separate manifold in a flat die. These resins are joined and joined immediately before the die lip to form a multilayer film 21. The flow rate of each molten resin and the product thickness are adjusted by adjusting the choke bar and lip in the die.
  • the formed multilayer film 21 is pinched and flattened, and then finely oriented by rolling.
  • transverse slits are put in a staggered manner at right angles to the running direction.
  • the film 21 subjected to the slit treatment is subjected to horizontal alignment in the horizontal alignment step 23.
  • the slit web 3 (lateral web) thus obtained is conveyed to the thermocompression bonding step 24.
  • the longitudinal web (split web 2) is fed from the raw roll 25, is run at a predetermined supply speed, is sent to the widening step 26, is widened several times by a widening machine (not shown), and if necessary. Heat treatment is performed. Thereafter, the longitudinal web is sent to the thermocompression bonding step 24, where the longitudinal web and the transverse web are laminated so that their orientation axes intersect and thermocompression bonded.
  • the longitudinal web 2 and the transverse web 3 are sequentially guided between the thermal cylinder 24a whose outer peripheral surface is a mirror surface and the mirror surface rolls 24b and 24c, and a nip pressure is applied to them, thereby being thermocompression bonded to each other.
  • This manufacturing method includes a web layer forming step, a supplying step for supplying the web layer and the reinforcing support layer, a high-pressure water entanglement step for performing water injection, a drying step, a product winding step, and the like.
  • the fiber arrangement method of the web is as follows: (1) Card parallel by a mechanical card web forming method in which two-dimensionally arranged in the longitudinal direction Method, (2) Card cross layer method by mechanical cross web forming method crossed in oblique direction, (3) Semi-random method by two- and three-dimensional intermediate arrangement semi-random machine, (4) Air fiber Examples include a random method in which three-dimensional arrangement is performed at random by an air-lay web forming method in which a web is formed by flying on a blow and accumulating on a mesh screen.
  • the web forming method varies depending on the type of raw material.
  • a material obtained by wet spinning of recycled fiber or the like, or a material obtained by melt spinning a synthetic fiber by a usual method is used as a raw material
  • a method is used in which fibers are aligned on a card machine to form a web.
  • a method of forming a web as it is is used.
  • short fibers of the web layer examples include short fiber-like cellulosic fibers (natural fibers), and synthetic fibers (including core-sheath fibers) such as polyethylene terephthalate (PET) and polypropylene (PP).
  • short fiber-like cellulosic fibers natural fibers
  • synthetic fibers including core-sheath fibers
  • PET polyethylene terephthalate
  • PP polypropylene
  • FIG. 6 is a schematic diagram showing an example of the steps after the supplying step among the above steps.
  • the web layer 41 fed from the supply roll 41a is supplied to the upper surface of the reinforced support layer 1 fed from the supply roll 42a, or the webs from the supply rolls 41a and 41a ′ are fed to both sides of the reinforced support layer 1.
  • the reinforced support layer 1 fed out from the supply roll 42a is superposed on the web layer directly supplied from the web layer forming step and fed to the subsequent high-pressure water entangling step.
  • a high-pressure water flow is applied to the laminate 44 of the fed web layer and the reinforced support layer on a screen or roll as the transfer support 43 that is permeable or impermeable to treated water.
  • a plurality of thin water streams 45 a are ejected from the injector 45.
  • the screen is not particularly limited, but in order to facilitate the discharge treatment of the treated water, the material, aperture, wire It is preferable to select a diameter or the like.
  • the opening of the screen is usually 20 to 200 mesh.
  • the treated water is easily discharged. Therefore, it is avoided that the web is scattered by jetting a water flow to impair the uniformity. However, a considerable amount of energy still remains in the treated water once permeated through the web, and the energy utilization efficiency is not high.
  • the jet water flow that has permeated the web collides with the transfer support and becomes a repulsive flow and acts on the web again. Entanglement is efficiently performed by the interaction.
  • the high-pressure water flow is jetted onto the web floating in water, the stability of entanglement is lowered.
  • a method of performing a jet treatment of a high-pressure water stream on a treated water-permeable transfer support is preferable in that a stable treatment can be performed and a uniform composite nonwoven fabric can be obtained.
  • the pressure of the jet water flow is 10 to 300 kg / cm 3 , preferably 60 to 150 kg / cm 3 .
  • the web can be entangled even at a relatively low pressure since the bending resistance of the reinforced support layer 1 is low, but the entanglement effect is insufficient when the pressure is less than 10 kg / cm 3 .
  • the cost for generating a high-pressure water flow increases, and handling is difficult, so neither is preferable.
  • the injection is performed once or more, but it is preferable to perform the entanglement by three injections. That is, high-pressure and large-volume water injection mainly for entanglement, low-pressure and small-water injection for surface finishing, intermediate injection, and the like can be used.
  • the shape of the high-pressure fluid is not particularly limited, but a columnar flow is preferable from the viewpoint of energy efficiency.
  • the cross-sectional shape of the columnar flow is determined by the cross-sectional shape of the nozzle or the internal structure of the nozzle outlet, but can be freely selected according to the material, purpose, application, etc. of the web.
  • the processing speed of the high-pressure water jet is 1 to 150 m / min, preferably 20 to 100 m / min. If the processing speed is less than 1 m / min, the productivity is low, and if it exceeds 150 m / min, the entanglement effect is insufficient.
  • the basis weight of the web layer to be entangled with water is preferably 10 to 250 g / m 2 , more preferably 20 to 100 g / m 2 when entangled on one side or both sides. It is. This is because if the basis weight is less than 10 g / m 2 , the fiber density is uneven during high-pressure water treatment, and if it exceeds 250 g / m 2 , the fiber is too dense and inferior in formability, resulting in an increase in cost. Neither is preferred.
  • the basis weight of the reinforcing support layer 1 used as a reinforcing material is 5 to 13 g / m 2 , the strength of the composite nonwoven fabric after hydroentanglement can be improved.
  • the basis weight of the web layer that can remarkably exert the influence of the reinforcing material is preferably 20 to 100 g / m 2 .
  • the laminate composed of the web layer and the reinforcing support layer entangled by high-pressure water jet is then fed to the drying step, where it is dried by, for example, an oven 48, a hot stove or a hot cylinder.
  • the non-woven fabric thus dried is wound up as a composite non-woven fabric 49 in the product winding process to become a product.
  • the surface can be provided with a concavo-convex structure using the heat shrinkage of the reinforced support layer 1 as a base material, and a bulky composite nonwoven fabric can be obtained.
  • a bulky composite non-woven fabric When used as a wiper, a bulky composite non-woven fabric has an advantage that it has a good texture for personal use and can easily capture dust and the like for objective use.
  • the sample number S8 includes the product number 3S (T) of a split fiber nonwoven fabric called Warif (registered trademark) manufactured by JX Nippon Mining & Energy Corporation as Comparative Example 1, and the sample number S9 includes Comparative Example 2
  • the product number S (F) EL and the sample number S10 are the same product number HS (T) as Comparative Example 3.
  • Sample numbers S8 to S10 are all relatively heavy with a basis weight of 18 to 35 g / m 2 , a high proportion of high density polyethylene (74 to 78%), and a layer composition ratio of 13/74/13 to 11/78 / 11 For this reason, strength (tensile strength) and durability are high and firm. However, there is no flexibility and flexibility, and the average value of the bending resistance by the cantilever method is as high as 63 to 78 mm.
  • sample numbers S4 to S6 the basis weight is constant (10 g / m 2 ) and the layer composition ratio is changed.
  • sample numbers S4 and S5 are not satisfactory in terms of flexibility, flexibility, and touch. There wasn't. This is presumably because Sample Nos. S4 and S5 have a high proportion of high-density polyethylene, and the average values of the bending resistance by the cantilever method are 55 mm and 52 mm, respectively.
  • FIG. 8 is a plot of the basis weight of FIG. 7 and the average value of the bending resistance extracted.
  • the basis weight is an inflection point of about several tens of g / m 2, and it is estimated that flexibility, flexibility, touch, and the like are changed.
  • the basis weight preferable for obtaining a practical strength is 5 to 13 g / m 2 as a reinforced support layer with good flexibility, flexibility and touch.
  • the layer composition ratio with which a preferable result was obtained is 26/48/26, but when considering the data of other sample numbers, the layer composition ratio of various commercial products, etc., the change is about several percent.
  • a preferable layer constitution ratio is considered to be 20/60/20 to 30/40/30.
  • the average value of the bending resistance by the cantilever method is 50 mm or less. Sample numbers S2, S3, S6, and S7 that satisfy all of these conditions serve as a reinforced support layer that can sufficiently achieve the intended purpose as a reinforced support layer.
  • sample numbers S2, S3, S6, and S7 are thinner than 80 ⁇ m and the aperture ratio is higher than 50%.
  • flexibility bending softness
  • strength can be achieved at the same time, and that flexibility can be improved by reducing the thickness.
  • the reinforcing support layer that satisfies all the above-mentioned conditions is soft and easily entangled with fibers, and if it has a constant basis weight, it is lightly entangled with water. You can increase the amount of web.
  • FIG. 9 shows the aperture ratio, the base material tensile strength, the base material softness, and the evaluation of the completed reinforced support layer 1 when the basis weight of the reinforced support layer 1 is 10 g / m 2 .
  • Comparative Examples 1 and 2 are product number HS (T) and product number 3S (T), respectively, of the Walliff (registered trademark) manufactured by JX Nippon Oil & Energy Corporation.
  • cotton was used as the web, and entangled with both sides of the reinforcing support layer 1, product number HS (T), and product number 3S (T). The amount of cotton was 30 g for all samples.
  • FIG. 10 shows the evaluation of the finished reinforcing support layer 1 and the aperture ratio, the base material tensile strength and the base material softness when the sum of the basis weight of the reinforcing support layer 1 and the web layer is 55 g / m 2. ing.
  • the product number HS (T) and the product number 3S (T) were used as in FIG.
  • cotton is used as the web, and is entangled with both sides of the reinforcing support layer 1, product number HS (T) and product number 3S (T).
  • the width of the fiber of the reinforcing support layer 1 is preferably a thickness that can ensure the necessary tensile strength, and is preferably thinner than 0.92 mm.
  • the basis weight of the reinforcing support layer is 5 to 13 g / m 2
  • the layer constitution ratio of the first adhesive layer, the thermoplastic resin layer, and the second adhesive layer in the uniaxially oriented body is 20/60/20 to 30. / 40/30.
  • the average value of the bending resistance by the cantilever method is 50 mm or less, and by entwining the web layer made of short fiber-like cellulosic fibers or synthetic fibers with the reinforced support layer by the spunlace method, Flexibility, suppleness, and touch can be improved, and expansion to applications that could not be used in the past can be achieved.
  • FIG. 11 is for explaining a modified example of the above-mentioned reinforcing support layer, and shows another manufacturing method.
  • This reinforcing support layer is formed by laminating two split webs 2 shown in FIGS. 2A and 2B.
  • the vertical web (split web 2-1) produced as shown in FIG. 4 is fed from the raw roll 30 and is fed at a predetermined supply speed to the widening step 31, where it is widened (not shown). Is expanded several times, and heat treatment is performed if necessary.
  • Another split web 2-2 (transverse web) is fed from the raw fabric feed roll 32 in the same manner as the vertical web, traveled at a predetermined supply speed, sent to the widening step 33, and several times by a widening machine (not shown). To widen. After heat treatment if necessary, the sheet is cut to a length equal to the width of the longitudinal web and fed from a direction perpendicular to the running film of the longitudinal web, and the orientation axes of the webs are mutually aligned via the adhesive layers in the laminating step 34. The process is laminated so as to be orthogonal.
  • thermocompression bonding step 35 the longitudinal web and the horizontal web that have been laminated are sequentially guided between the thermal cylinder 35a whose outer peripheral surface is a mirror surface and the mirror surface rolls 35b and 35c to apply nip pressure. Thereby, a vertical web and a horizontal web are mutually thermocompression bonded and integrated. In addition, the contact portions between the adjacent vertical webs and the horizontal webs are entirely surface-bonded.
  • the longitudinal web and the transverse web integrated in this manner are wound up in a winding process to form a wound body 36 of a background laminated nonwoven fabric.
  • the same basis weight (5 to 13 g / m 2 ), layer composition ratio (20/60/20 to 30/40/30) as in the first embodiment, and cantilever method The same effect can be obtained by satisfying all the conditions of the average value (50 mm or less) of the bending resistance.
  • the thickness is preferably less than 80 ⁇ m and the aperture ratio is preferably higher than 50%.
  • the uniaxially oriented body laminates the split web 2 and the slit web 3 two sets of uniaxially oriented tapes arranged in parallel may be laminated.
  • the lamination is performed so that the orientation axis of one set of uniaxially oriented tapes and the orientation axis of the other set of uniaxially oriented tapes are orthogonal to each other.
  • the uniaxially oriented tape has three layers in which first and second adhesive layers (thermoplastic resins) having a melting point lower than that of the thermoplastic resin are laminated on both surfaces of the thermoplastic resin layer.
  • the film is uniaxially oriented in the vertical or horizontal direction and cut into a multilayer stretched tape.
  • the thickness should be thinner than 80 ⁇ m and the aperture ratio should be higher than 50%.
  • the product that touches the human body can improve flexibility, flexibility, and touch. Further, for example, the same effect can be obtained when used for a personal wiper such as an antiperspirant sheet, a makeup remover, and a sweat wipe. Further, when used for an objective wiper such as a factory oil wipe, a flooring wiper, a kitchen towel, etc., it is possible to further improve the trapping and wiping properties of deposits such as dust and oil.

Abstract

Provided is a composite nonwoven fabric capable of improving flexibility, suppleness and texture, and expanding the use thereof to previously unfeasible applications. This composite nonwoven fabric is provided with: a reticulated, strengthened support layer (1) obtained by layering, in the warp and weft directions, uniaxially oriented bodies (2, 3) containing a thermoplastic resin layer and first and second adhesive layers having a lower melting point than that of the thermoplastic resin and layered on both surfaces of the thermoplastic resin layer, and layering the uniaxially oriented bodies (2, 3) with the first or the second adhesive layer interposed therebetween and in a manner such that the orientation axes (2a, 3a) intersect one another; and a web layer comprising short-fiber-shaped cellulose-based fibers or synthetic fibers intertwined with the strengthened support layer via the spunlace process. Therein, the web layer and the strengthened support layer are integrated with one another. The mass per unit area of the strengthened support layer is 5-13 g/m2, the layer composition ratio in the uniaxially oriented bodies of the first adhesive layer, the thermoplastic resin layer, and the second adhesive layer is 20/60/20 to 30/40/30, and the average bending resistance value measured by the cantilever method is 50mm or less.

Description

複合不織布Composite nonwoven fabric
 本発明は、強化支持層にウェブ層の繊維をスパンレース法により絡合させ、これらウェブ層と強化支持層とを一体化させてなる複合不織布に関する。 The present invention relates to a composite nonwoven fabric in which fibers of a web layer are entangled with a reinforcing support layer by a spunlace method, and the web layer and the reinforcing support layer are integrated.
 特許文献1には、短繊維状のセルロース系繊維または合成繊維からなるウェブ層の繊維をスパンレース法により強化支持層に絡合させることにより、ウェブ層と強化支持層とを一体化させた強化不織布が記載されている。この強化不織布は、強化支持層が通気性配向体で形成され、引張強度及び縦横の引張強度のバランスに優れ、かつ柔軟性、風合い等にも優れている。そして、フィルターや工業用ワイパー等の産業用資材、及び手術衣、シーツ、タオル、マスク等のメディカルディスポーザブル製品等に広く用いられる。 Patent Document 1 discloses a reinforcement in which a web layer and a reinforced support layer are integrated by entanglement of a fiber of a web layer made of short fiber-like cellulose fiber or synthetic fiber with a reinforced support layer by a spunlace method. Nonwoven fabric is described. In this reinforced nonwoven fabric, the reinforced support layer is formed of a breathable oriented body, and is excellent in balance between tensile strength and longitudinal and transverse tensile strength, and is excellent in flexibility, texture, and the like. And it is widely used for industrial materials such as filters and industrial wipers, and medical disposable products such as surgical clothes, sheets, towels and masks.
日本国公開特許公報:特開平8-158233Japanese Patent Publication: JP-A-8-158233
 ところで、上記強化不織布は、比較的強度が高くコシがあるため、人体に直接触れる製品では、柔軟性やしなやかさ、肌触りの点での改良が望まれている。また、対物用ワイパーのような用途では、塵や油等の付着物の捕捉性や拭き取り性を更に向上させたい、という要求がある。 By the way, since the above-mentioned reinforced nonwoven fabric is relatively high in strength and firm, improvement in flexibility, flexibility, and touch is desired for products that directly touch the human body. In addition, in applications such as an objective wiper, there is a demand for further improving the capturing and wiping performance of deposits such as dust and oil.
 しかしながら、強化支持層として、市販されている割繊維不織布、例えばJX日鉱日石エネルギー株式会社製のワリフ(登録商標)やCLAF(登録商標)のうち、最も軽量で柔軟性のある製品を用いても、所期の柔軟性やしなやかさ、肌触りを満足する複合不織布を製造するのは困難であった。これは、割繊維不織布に剛性があるため、スパンレース法でウェブ層の繊維を水流絡合させる際に、噴射水流が跳ね返され、繊維を十分に絡合させることができないからである。このため、割繊維不織布の平らな網状部分にウェブ層の繊維が絡合され難く、ウェブ層がムラになる。この結果、複合不織布の表面に強化支持層の模様が出てしまい、柔軟性やしなやかさ、肌触りが悪化し、実用に耐えないものとなる。 However, as the reinforcing support layer, a commercially available split fiber nonwoven fabric, for example, the most lightweight and flexible product among Warif (registered trademark) and CLAF (registered trademark) manufactured by JX Nippon Mining & Energy Corporation is used. However, it has been difficult to produce a composite nonwoven fabric that satisfies the desired flexibility, flexibility, and touch. This is because the split fiber nonwoven fabric is rigid, and when the web layer fibers are hydroentangled by the spunlace method, the jet water flow is rebounded and the fibers cannot be sufficiently intertwined. For this reason, it is difficult for the fibers of the web layer to be entangled with the flat net-like portion of the split fiber nonwoven fabric, and the web layer becomes uneven. As a result, the pattern of the reinforced support layer appears on the surface of the composite nonwoven fabric, and the flexibility, flexibility, and touch are deteriorated, and it cannot be put into practical use.
 本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、柔軟性やしなやかさ、肌触りを向上でき、従来は使用できなかった用途への拡大が図れる複合不織布を提供することにある。 The present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a composite nonwoven fabric that can improve flexibility, flexibility, and touch, and can be expanded to applications that could not be used conventionally. There is to do.
 本発明の一態様によると、熱可塑性樹脂層と、該熱可塑性樹脂層の両面に積層され、該熱可塑性樹脂より融点が低い第1、第2の接着層とを含む一軸配向体を、配向軸が交差するように各々の前記第1または第2の接着層を介して経緯積層してなる網状の強化支持層と、前記強化支持層にスパンレース法により絡合された短繊維状のセルロース系繊維または合成繊維からなるウェブ層と、を備え、前記ウェブ層と前記強化支持層とが一体化された複合不織布であって、前記強化支持層の目付が5~13g/m、前記一軸配向体における前記第1の接着層、前記熱可塑性樹脂層及び前記第2の接着層の層構成比が20/60/20~30/40/30であり、前記強化支持層の長手方向及び幅方向のカンチレバー法による剛軟度の平均値を50mm以下にした、複合不織布が提供される。 According to one aspect of the present invention, a uniaxially oriented body comprising a thermoplastic resin layer and first and second adhesive layers laminated on both surfaces of the thermoplastic resin layer and having a melting point lower than that of the thermoplastic resin is aligned. A network-like reinforcing support layer obtained by laminating via the first or second adhesive layer so that the axes cross each other, and short fiber cellulose entangled with the reinforcing support layer by a spunlace method A composite nonwoven fabric in which the web layer and the reinforcing support layer are integrated, the basis weight of the reinforcing support layer being 5 to 13 g / m 2 , the uniaxial The layer constitution ratio of the first adhesive layer, the thermoplastic resin layer and the second adhesive layer in the oriented body is 20/60/20 to 30/40/30, and the longitudinal direction and width of the reinforced support layer The average value of the bending resistance by the direction cantilever method 0mm and below, the composite nonwoven fabric is provided.
 本発明によれば、強化支持層の剛軟度が50mm以下と低く、柔らかくなることで、スパンレース法でウェブ層の繊維を水流絡合させる際の噴射水流が強化支持層に絡み易くなり、繊維を十分に絡合させることができる。また、強化支持層の目付が5~13g/mと軽いことで、絡合させる繊維を増やすことができる。これによって、柔軟性やしなやかさ、肌触りを向上でき、従来は使用できなかった用途への拡大が図れる。 According to the present invention, the bending resistance of the reinforcing support layer is as low as 50 mm or less and becomes soft, so that the jet water flow when hydroentangling the fibers of the web layer by the spunlace method is easily entangled with the reinforcing support layer. The fibers can be sufficiently entangled. Further, when the basis weight of the reinforcing support layer is as light as 5 to 13 g / m 2 , the number of fibers to be entangled can be increased. As a result, flexibility, flexibility, and touch can be improved, and expansion to applications that could not be used in the past can be achieved.
本発明の実施形態に係る複合不織布で用いられる強化支持層を示す平面図である。It is a top view which shows the reinforcement | strengthening support layer used with the composite nonwoven fabric which concerns on embodiment of this invention. 図1に示した強化支持層を構成する一軸配向体の構成例を示す斜視図である。It is a perspective view which shows the structural example of the uniaxially oriented body which comprises the reinforcement | strengthening support layer shown in FIG. 図2Aの一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of FIG. 2A. 図1に示した強化支持層を構成する一軸配向体の構成例を示す斜視図である。It is a perspective view which shows the structural example of the uniaxially oriented body which comprises the reinforcement | strengthening support layer shown in FIG. 図3Aの一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of Drawing 3A. 図2A及び図2Bに示した一軸配向体の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the uniaxially oriented body shown to FIG. 2A and 2B. 図1に示した強化支持層の第1の製造方法を示す斜視図である。It is a perspective view which shows the 1st manufacturing method of the reinforcement | strengthening support layer shown in FIG. 図4及び図5に示した製造方法で形成した強化支持層を用いた、複合不織布の製造方法について説明するためのもので、供給工程以降の一例を示す概略図である。FIG. 6 is a schematic diagram illustrating an example of a supply process and subsequent steps for explaining a method for manufacturing a composite nonwoven fabric using a reinforcing support layer formed by the manufacturing method illustrated in FIGS. 4 and 5. 強化積層体の目付、一軸配向体の層構成比、及びカンチレバー法による剛軟度を変えたサンプルによる検討について説明するための図である。It is a figure for demonstrating the examination by the sample which changed the fabric weight of a reinforcement laminated body, the layer composition ratio of a uniaxially oriented body, and the bending resistance by a cantilever method. 強化支持層の目付と、カンチレバー法による剛軟度との関係を示す特性図である。It is a characteristic view which shows the relationship between the fabric weight of a reinforcement support layer, and the bending resistance by a cantilever method. 基材の目付を変え、ウェブ層の目付を一定にしたときの、開口率、基材引張強度、基材剛軟度及び強化支持層の剛軟度と、その評価について説明するための図である。It is a figure for explaining opening ratio, base material tensile strength, base material bending resistance, bending strength of reinforced support layer, and evaluation thereof when changing the basis weight of the base material and making the basis weight of the web layer constant. is there. 基材とウェブ層の目付の和を一定にしたときの、開口率、基材引張強度、基材剛軟度及び強化支持層の剛軟度と、その評価について説明するための図である。It is a figure for demonstrating the opening ratio, base-material tensile strength, base-material bending resistance, the bending-softness of a reinforced support layer, and its evaluation when the sum of the fabric weight of a base material and a web layer is made constant. 図1に示した強化支持層の第2の製造方法を示す斜視図である。It is a perspective view which shows the 2nd manufacturing method of the reinforcement | strengthening support layer shown in FIG.
 以下、本発明の実施形態について図面を参照して説明する。
 本発明の実施形態に係る複合不織布は、強化支持層に、短繊維状のセルロース系繊維または合成繊維からなるウェブ層をスパンレース法により絡合し、ウェブ層と強化支持層とを一体化したものである。本発明では、スパンレース法でウェブ層の繊維を水流絡合させる際に、割繊維不織布の剛性により噴射水流が跳ね返され、繊維を十分に絡合させることができないことに着目し、強化支持層に柔軟性やしなやかさを持たせることで、ウェブ層の繊維を絡み易くしている。そこで、まず、本実施形態の特徴の一つである強化支持層の構成及び製造方法について説明し、次に、この強化支持層にウェブ層を絡合する複合不織布の製造方法について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
In the composite nonwoven fabric according to the embodiment of the present invention, a web layer composed of short fiber-like cellulose fibers or synthetic fibers is entangled with the reinforcing support layer by a spunlace method, and the web layer and the reinforcing support layer are integrated. Is. In the present invention, when the fibers of the web layer are hydroentangled by the spunlace method, paying attention to the fact that the jet water stream is rebounded by the rigidity of the split fiber nonwoven fabric, the fibers cannot be sufficiently entangled, and the reinforcing support layer The web layer fibers are easily entangled by providing flexibility and flexibility. Therefore, first, the structure and manufacturing method of the reinforcing support layer, which is one of the features of the present embodiment, will be described, and then the manufacturing method of the composite nonwoven fabric in which the web layer is entangled with the reinforcing support layer.
[強化支持層の構成]
 図1に示す強化支持層1は、スプリットウェブ2の配向軸2aとスリットウェブ3の配向軸3aとが互いに交差するように経緯積層された不織布で形成されている。そして、隣接するスプリットウェブ2とスリットウェブ3の接触部位同士が面接着で接合されている。
[Configuration of reinforced support layer]
The reinforcing support layer 1 shown in FIG. 1 is formed of a nonwoven fabric that is laminated so that the orientation axis 2a of the split web 2 and the orientation axis 3a of the slit web 3 intersect each other. And the contact site | parts of the adjacent split web 2 and the slit web 3 are joined by surface adhesion.
 図2A及び図3Aはそれぞれ、図1に示した強化支持層1を構成するスプリットウェブ2とスリットウェブ3を示している。図2Aに示すスプリットウェブ2は、熱可塑性樹脂製のフィルムを縦方向(スプリットウェブ2の配向軸2aの軸方向)に一軸延伸させて、縦方向に割繊し、かつ拡幅させて形成される。スプリットウェブ2には、熱可塑性樹脂、例えば高密度ポリチレンと、この熱可塑性樹脂より融点が低い熱可塑性樹脂、例えば第1、第2の低密度ポリエチレンとを用いる。 2A and 3A show a split web 2 and a slit web 3 constituting the reinforced support layer 1 shown in FIG. 1, respectively. The split web 2 shown in FIG. 2A is formed by uniaxially stretching a thermoplastic resin film in the longitudinal direction (axial direction of the orientation axis 2a of the split web 2), splitting in the longitudinal direction, and widening. . The split web 2 is made of a thermoplastic resin such as high-density polyethylene and a thermoplastic resin having a melting point lower than that of the thermoplastic resin, such as first and second low-density polyethylenes.
 詳しくは、多層Tダイ法等の成形法により作製され、高密度ポリチレンの両面に第1、第2の低密度ポリエチレンを積層した多層フィルム(一軸配向体)を、縦方向(長手方向)に少なくとも3倍に延伸させる。その後、同方向に千鳥掛けにスプリッターを用いて割繊(スプリット処理)して網状のフィルムとし、更に所定幅に拡幅させて形成する。拡幅によって幹繊維4と枝繊維5が形成され、図示するような網状体となる。このスプリットウェブ2は、幅方向全体にわたって縦方向に比較的高い強度を有する。 Specifically, a multilayer film (uniaxially oriented body) produced by a molding method such as a multilayer T-die method and having first and second low-density polyethylenes laminated on both sides of a high-density polyethylene is at least in the longitudinal direction (longitudinal direction). Stretch 3 times. After that, splitting is performed using a splitter in a staggered pattern in the same direction to form a net-like film, which is further widened to a predetermined width. The trunk fibers 4 and the branch fibers 5 are formed by the widening to form a net-like body as shown in the figure. The split web 2 has a relatively high strength in the longitudinal direction over the entire width direction.
 図2Bは、図2Aの一点鎖線で囲んだ領域Bの拡大斜視図である。スプリットウェブ2は、熱可塑性樹脂層6の両面に、この熱可塑性樹脂より融点が低い熱可塑性樹脂層7-1,7-2が積層された3層構造になっている。熱可塑性樹脂層7-1,7-2は、強化支持層1の形成時にスリットウェブ3と共に経緯積層される際のウェブ相互の接着層(第1、第2の接着層)として機能する。 FIG. 2B is an enlarged perspective view of a region B surrounded by an alternate long and short dash line in FIG. 2A. The split web 2 has a three-layer structure in which thermoplastic resin layers 7-1 and 7-2 having a melting point lower than that of the thermoplastic resin are laminated on both surfaces of the thermoplastic resin layer 6. The thermoplastic resin layers 7-1 and 7-2 function as adhesive layers (first and second adhesive layers) between the webs when they are laminated with the slit web 3 when the reinforced support layer 1 is formed.
 図3Aに示すスリットウェブ3は、熱可塑性樹脂製のフィルムに、横方向(スリットウェブ3の配向軸3aの軸方向)に多数のスリットを入れた後に、横方向に一軸延伸させて形成される。詳しくは、スリットウェブ3は、上記多層フィルムの両耳部を除く部分に、横方向(幅方向)に、例えば熱刃などにより平行に千鳥掛け等の断続したスリットを形成した後、横方向に延伸させて形成される。このスリットウェブ3は、横方向に比較的高い強度を有する。 The slit web 3 shown in FIG. 3A is formed by inserting a large number of slits in a lateral direction (axial direction of the orientation axis 3a of the slit web 3) in a thermoplastic resin film and then uniaxially stretching the lateral direction. . Specifically, the slit web 3 is formed in the lateral direction (width direction) in the portion excluding both ears of the multilayer film, for example, by forming intermittent slits such as a staggered hook in parallel with a hot blade or the like, and then in the lateral direction. It is formed by stretching. The slit web 3 has a relatively high strength in the lateral direction.
 図3Bは、図3Aの一点鎖線で囲んだ領域Bの拡大斜視図である。スリットウェブ3は、熱可塑性樹脂層6’の両面に、この熱可塑性樹脂より融点が低い熱可塑性樹脂の層7-1’,7-2’が積層された3層構造である。これらの熱可塑性樹脂層7-1’,7-2’は、強化支持層1の形成時にスプリットウェブ2と共に経緯積層される際のウェブ相互の接着層(第1、第2の接着層)として機能する。 FIG. 3B is an enlarged perspective view of a region B surrounded by an alternate long and short dash line in FIG. 3A. The slit web 3 has a three-layer structure in which thermoplastic resin layers 7-1 'and 7-2' having a melting point lower than that of the thermoplastic resin are laminated on both surfaces of the thermoplastic resin layer 6 '. These thermoplastic resin layers 7-1 ′ and 7-2 ′ serve as adhesive layers (first and second adhesive layers) between the webs when they are laminated with the split web 2 when the reinforced support layer 1 is formed. Function.
 上記強化支持層1の目付は5~13g/m、一軸配向体(スプリットウェブ2及びスリットウェブ3)における熱可塑性樹脂層7-1,7-1’(第1の接着層)、熱可塑性樹脂層6,6’及び熱可塑性樹脂層7-2,7-2’(第2の接着層)の層構成比は20/60/20~30/40/30である。長手方向(MD)及び幅方向(CD)のカンチレバー法による剛軟度の平均値が50mm以下になっている。 The basis weight of the reinforced support layer 1 is 5 to 13 g / m 2 , the thermoplastic resin layers 7-1 and 7-1 ′ (first adhesive layer) in the uniaxially oriented body (split web 2 and slit web 3), thermoplasticity The layer composition ratio of the resin layers 6 and 6 ′ and the thermoplastic resin layers 7-2 and 7-2 ′ (second adhesive layer) is 20/60/20 to 30/40/30. The average value of the bending resistance by the cantilever method in the longitudinal direction (MD) and the width direction (CD) is 50 mm or less.
[強化支持層の製造方法]
 次に、図1、図2A、図2B、図3A及び図3Bに示した強化支持層1の製造方法について、図4及び図5により説明する。図4は、スプリットウェブ2の製造工程の概略を示している。また、図5はスプリットウェブ2にスリットウェブ3を積層して強化支持層1を製造する工程の概略を示している。
[Method for producing reinforced support layer]
Next, a method for manufacturing the reinforced support layer 1 shown in FIGS. 1, 2A, 2B, 3A, and 3B will be described with reference to FIGS. FIG. 4 shows an outline of the manufacturing process of the split web 2. FIG. 5 shows an outline of a process for manufacturing the reinforced support layer 1 by laminating the slit web 3 on the split web 2.
 図4に示すように、スプリットウェブ2は、多層フィルムの製膜工程、多層フィルムの配向工程、配向多層フィルムを配向軸と平行にスプリットするスプリット工程、及びスプリットしたフィルムを巻き取る巻取工程等を経て製造される。 As shown in FIG. 4, the split web 2 includes a multilayer film forming process, a multilayer film orientation process, a split process in which the oriented multilayer film is split in parallel with the orientation axis, and a winding process in which the split film is wound up. It is manufactured through.
 多層フィルムの製膜工程は、本例では、押出機10に溶融樹脂、すなわち第1、第2の接着層として機能する融点が低い熱可塑性樹脂、例えば低密度ポリエチレン、及び熱可塑性樹脂層、例えば高密度ポリエチレンをそれぞれフラットダイ中の別々のマニホールドに送り込む。これらの樹脂を、ダイリップの直前で合流、接合して多層フィルム11を形成する。各溶融樹脂の流量調整や製品厚みの調整はダイ内のチョークバーやリップの調整によって行う。 In this example, the film forming process of the multilayer film is a molten resin in the extruder 10, that is, a thermoplastic resin having a low melting point that functions as the first and second adhesive layers, for example, low density polyethylene, and a thermoplastic resin layer, for example, Each high density polyethylene is fed into a separate manifold in a flat die. These resins are joined and joined immediately before the die lip to form the multilayer film 11. The flow rate of each molten resin and the product thickness are adjusted by adjusting the choke bar and lip in the die.
 配向工程では、多層フィルム11を鏡面処理された冷却ローラ12a,12b間を介して、初期寸法に対して所定の配向倍率でロール配向を行う。 In the orientation step, roll orientation is performed at a predetermined orientation ratio with respect to the initial dimension through the cooling rollers 12a and 12b that are mirror-finished on the multilayer film 11.
 スプリット(割繊)工程では、上記配向した多層フィルム11を、高速で回転するスプリッター(回転刃)13に摺動接触させて、多層フィルム11にスプリット処理(割繊化)を行う。 In the split (split) step, the oriented multilayer film 11 is brought into sliding contact with a splitter (rotary blade) 13 that rotates at high speed, and the multilayer film 11 is split (split).
 割繊して形成されたスプリットウェブ2は、所定幅に拡幅された後、熱処理部14での熱処理を経て、巻取工程において所定の長さに巻き取られて、スプリットウェブ2の巻取体15になる。 The split web 2 formed by splitting is expanded to a predetermined width, and then subjected to a heat treatment in the heat treatment section 14 and wound up to a predetermined length in a winding process. It becomes 15.
 図5に示すように、上記のように形成した巻取体15から繰り出した縦ウェブ(スプリットウェブ2)に、横ウェブ(スリットウェブ3)を積層する。横ウェブの製造工程は、多層フィルムの製膜工程、多層フィルムの長手方向に対して直角にスリット処理を行うスリット工程、及び多層スリットフィルムの配向工程を含む。そして、横ウェブに縦ウェブを積層させて熱圧着する(圧着工程)。 As shown in FIG. 5, the horizontal web (slit web 3) is laminated on the vertical web (split web 2) fed out from the winding body 15 formed as described above. The manufacturing process of a horizontal web includes a film forming process of a multilayer film, a slit process in which slit processing is performed at right angles to the longitudinal direction of the multilayer film, and an orientation process of the multilayer slit film. And a vertical web is laminated | stacked on a horizontal web, and it thermocompression-bonds (crimping process).
 スリットウェブ3用の多層フィルムの製膜工程は、多層フィルム11と同様に、押出機20に溶融樹脂、すなわち第1、第2の接着層として機能する融点が低い熱可塑性樹脂、例えば低密度ポリエチレン、及び熱可塑性樹脂層、例えば高密度ポリエチレンをそれぞれフラットダイ中の別々のマニホールドに送り込む。これらの樹脂を、ダイリップの直前で合流、接合して多層のフィルム21を形成する。各溶融樹脂の流量調整や製品厚みの調整はダイ内のチョークバーやリップの調整によって行う。 As in the case of the multilayer film 11, the film forming process of the multilayer film for the slit web 3 includes a molten resin, that is, a thermoplastic resin having a low melting point that functions as the first and second adhesive layers, for example, low density polyethylene. , And a thermoplastic resin layer, such as high density polyethylene, each is fed into a separate manifold in a flat die. These resins are joined and joined immediately before the die lip to form a multilayer film 21. The flow rate of each molten resin and the product thickness are adjusted by adjusting the choke bar and lip in the die.
 スリット工程では、上記製膜した多層フィルム21をピンチして扁平化し、次いで圧延により微配向し、横スリット工程22にて、走行方向に対して直角に、千鳥掛けに横スリットを入れる。 In the slitting process, the formed multilayer film 21 is pinched and flattened, and then finely oriented by rolling. In the horizontal slitting process 22, transverse slits are put in a staggered manner at right angles to the running direction.
 配向工程では、上記スリット処理を行ったフィルム21に横配向工程23にて横配向を施す。このようにして得られたスリットウェブ3(横ウェブ)は、熱圧着工程24に搬送する。 In the alignment step, the film 21 subjected to the slit treatment is subjected to horizontal alignment in the horizontal alignment step 23. The slit web 3 (lateral web) thus obtained is conveyed to the thermocompression bonding step 24.
 一方、縦ウェブ(スプリットウェブ2)を、原反繰出しロール25から繰出して、所定の供給速度で走行させて拡幅工程26に送り、拡幅機(図示せず)により数倍に拡幅し、必要により熱処理を行う。この後、縦ウェブを熱圧着工程24に送り、そこで縦ウェブと横ウェブとを各々の配向軸が交差するように積層させて熱圧着する。具体的には、外周面が鏡面である熱シリンダ24aと鏡面ロール24b,24cとの間に順次縦ウェブ2及び横ウェブ3を導いてこれらにニップ圧を加えることにより互いに熱圧着させて一体化させる。これにより、隣接する縦ウェブ2と横ウェブ3との接触部位同士が全面的に面接着する。このようにして一体化された縦ウェブ及び横ウェブは巻取工程に搬送されて巻き取られ、強化支持層1の巻取体27になる。 On the other hand, the longitudinal web (split web 2) is fed from the raw roll 25, is run at a predetermined supply speed, is sent to the widening step 26, is widened several times by a widening machine (not shown), and if necessary. Heat treatment is performed. Thereafter, the longitudinal web is sent to the thermocompression bonding step 24, where the longitudinal web and the transverse web are laminated so that their orientation axes intersect and thermocompression bonded. Specifically, the longitudinal web 2 and the transverse web 3 are sequentially guided between the thermal cylinder 24a whose outer peripheral surface is a mirror surface and the mirror surface rolls 24b and 24c, and a nip pressure is applied to them, thereby being thermocompression bonded to each other. Let Thereby, the contact site | parts of the adjacent vertical web 2 and the horizontal web 3 adhere to the whole surface. The longitudinal web and the transverse web integrated in this way are conveyed to the winding process and wound up to become a wound body 27 of the reinforcing support layer 1.
[複合不織布の製造方法]
 次に、上記強化支持層1にウェブ層をスパンレース法により絡合し、ウェブ層と強化支持層とを一体化して複合不織布を製造する方法について詳述する。この製造方法は、ウェブ層形成工程、ウェブ層と強化支持層とを供給する供給工程、水の噴射処理を行う高圧水流絡合工程、乾燥工程、及び製品巻取工程等を含んでいる。
[Production method of composite nonwoven fabric]
Next, a method for producing a composite nonwoven fabric by entanglement of the web layer with the reinforced support layer 1 by a spunlace method and integrating the web layer and the reinforced support layer will be described in detail. This manufacturing method includes a web layer forming step, a supplying step for supplying the web layer and the reinforcing support layer, a high-pressure water entanglement step for performing water injection, a drying step, a product winding step, and the like.
 まず、ウェブ層形成工程においては、原料の種類及び最終用途によりウェブの配列や形成の方法として種々の形式が用いられる。ウェブの特性としては、その平面内において繊維の分布が均一であることが要求され、ウェブの繊維配列方式としては、(1)縦方向に二次元配列した機械式カードウェブ形成法によるカード・パラレル方式、(2)斜方向に交差配列した機械式クロスウェブ形成法によるカード・クロスレイヤー方式、(3)二次元と三次元の中間配列のセミランダム機によるセミランダム方式、(4)繊維をエアーブローに乗せて飛ばし、メッシュスクリーン上に集積してウェブを形成するエアーレイ式ウェブ形成法により三次元にアトランダムに配列するランダム方式等が挙げられる。 First, in the web layer forming step, various types of web alignment and forming methods are used depending on the type of raw material and the end use. The characteristics of the web require that the fiber distribution be uniform within the plane, and the fiber arrangement method of the web is as follows: (1) Card parallel by a mechanical card web forming method in which two-dimensionally arranged in the longitudinal direction Method, (2) Card cross layer method by mechanical cross web forming method crossed in oblique direction, (3) Semi-random method by two- and three-dimensional intermediate arrangement semi-random machine, (4) Air fiber Examples include a random method in which three-dimensional arrangement is performed at random by an air-lay web forming method in which a web is formed by flying on a blow and accumulating on a mesh screen.
 また、原料の種類によりウェブ形成方法が異なる。再生繊維等を湿式紡糸したものまたは合成繊維を通常の方法により溶融紡糸したものなどをカットして原料とする場合には、カード機で繊維を引き揃えてウェブに形成する方法が用いられる。メルトブロー法により紡糸したものの場合にはそのままウェブに形成する方法が用いられる。さらに天然繊維をカード機により引き揃えてウェブに形成する方法または叩解して抄紙する湿式ウェブ形成法等がある。 Also, the web forming method varies depending on the type of raw material. When a material obtained by wet spinning of recycled fiber or the like, or a material obtained by melt spinning a synthetic fiber by a usual method, is used as a raw material, a method is used in which fibers are aligned on a card machine to form a web. In the case of a material spun by a melt blow method, a method of forming a web as it is is used. Further, there are a method of forming natural fibers into a web by drawing them with a card machine, or a wet web forming method of making paper by beating.
 上記ウェブ層の短繊維の一例を挙げると、短繊維状のセルロース系繊維(天然繊維)や、ポリエチレンテフタレート(PET)、ポリプロピレン(PP)等の合成繊維(芯鞘繊維を含む)がある。 Examples of the short fibers of the web layer include short fiber-like cellulosic fibers (natural fibers), and synthetic fibers (including core-sheath fibers) such as polyethylene terephthalate (PET) and polypropylene (PP).
 図6は、上記工程のうち、供給工程以降の工程の一例を示す概略図である。供給工程においては、供給ロール42aから繰り出される強化支持層1の上面に、供給ロール41aから繰り出されるウェブ層41を供給するか、または強化支持層1の両面に供給ロール41a、41a’からのウェブ層41、41’を供給する。あるいはウェブ層形成工程から直接供給されたウェブ層に、供給ロール42aから繰り出される強化支持層1を重ね合わせて、後続の高圧水流絡合工程に給送する。 FIG. 6 is a schematic diagram showing an example of the steps after the supplying step among the above steps. In the supplying step, the web layer 41 fed from the supply roll 41a is supplied to the upper surface of the reinforced support layer 1 fed from the supply roll 42a, or the webs from the supply rolls 41a and 41a ′ are fed to both sides of the reinforced support layer 1. Supply layers 41, 41 '. Alternatively, the reinforced support layer 1 fed out from the supply roll 42a is superposed on the web layer directly supplied from the web layer forming step and fed to the subsequent high-pressure water entangling step.
 次の高圧水流絡合工程では、処理水透過性または不透過性の移送用支持体43としてのスクリーンまたはロールの上で、給送されたウェブ層と強化支持層の積層体44に、高圧水流インジェクター45から細い複数の水流45aを噴射する。なお、高圧水流を噴射する際に、高圧水流のエネルギーにより、重ねたウェブ層と強化支持層が相互にずれたり、あるいは両者の剥離が生じたりすると、絡合処理に安定性を欠き、また優れた物性を有する均一な複合不織布が得られない。よって、水流を噴射する前に、上記積層体を浸水装置46において予め水46aに浸すことが好ましい。また、水流噴射後には、乾燥効率を高めるために、減圧吸引手段などを設けた水分吸引装置47により水分を吸引除去することが好ましい。 In the subsequent high-pressure water flow entanglement step, a high-pressure water flow is applied to the laminate 44 of the fed web layer and the reinforced support layer on a screen or roll as the transfer support 43 that is permeable or impermeable to treated water. A plurality of thin water streams 45 a are ejected from the injector 45. When jetting a high-pressure water stream, if the web layer and the reinforced support layer are displaced from each other due to the energy of the high-pressure water stream, or if both of them peel off, the entanglement process lacks stability and is excellent. Thus, a uniform composite nonwoven fabric having excellent physical properties cannot be obtained. Therefore, it is preferable to immerse the laminated body in the water 46 a in advance in the water immersion device 46 before jetting the water flow. In addition, after water jetting, in order to increase the drying efficiency, it is preferable to suck and remove moisture by a moisture suction device 47 provided with a decompression suction means and the like.
 上記高圧水流絡合工程において、高圧水流処理をスクリーン上で行う場合、スクリーンは特に限定されないが、処理水の排出処理を容易にするために、目的や用途等に合わせて材質、目開き、線径等を選択することが好ましい。スクリーンの目開きは通常20~200メッシュである。処理水透過性の移送用支持体を用いる方法においては、処理水が容易に排出されるため、水流の噴射によりウェブを飛散させて均一性を損なうことは避けられる。しかしながら、一旦ウェブを透過した処理水にはまだかなりのエネルギーが残存しており、エネルギーの利用効率が高くない。一方、処理水不透過性の移送用支持体を用いる方法においては、ウェブを透過した噴射水流は、移送用支持体に衝突して反発流となり再びウェブに作用するため、噴射流と反発流の相互作用により絡合が効率よく行われる。しかしながら、水中に浮遊しているウェブに高圧水流を噴射する状態となるため、絡合の安定性が低くなる。これらの内では、安定した処理を行うことが可能であり、かつ均一な複合不織布が得られる点において、処理水透過性の移送用支持体上で高圧水流の噴射処理を行う方法が好ましい。 In the above high-pressure water flow entanglement process, when the high-pressure water flow treatment is performed on the screen, the screen is not particularly limited, but in order to facilitate the discharge treatment of the treated water, the material, aperture, wire It is preferable to select a diameter or the like. The opening of the screen is usually 20 to 200 mesh. In the method using the treated water-permeable transfer support, the treated water is easily discharged. Therefore, it is avoided that the web is scattered by jetting a water flow to impair the uniformity. However, a considerable amount of energy still remains in the treated water once permeated through the web, and the energy utilization efficiency is not high. On the other hand, in the method using the transfer support that is impermeable to the treated water, the jet water flow that has permeated the web collides with the transfer support and becomes a repulsive flow and acts on the web again. Entanglement is efficiently performed by the interaction. However, since the high-pressure water flow is jetted onto the web floating in water, the stability of entanglement is lowered. Among these, a method of performing a jet treatment of a high-pressure water stream on a treated water-permeable transfer support is preferable in that a stable treatment can be performed and a uniform composite nonwoven fabric can be obtained.
 上記噴射水流の圧力は10~300kg/cmであり、好ましくは60~150kg/cmである。強化支持層1の剛軟度が低いことから比較的低圧でもウェブを絡合できるが、圧力が10kg/cm未満では絡合効果が不十分である。また、300kg/cmを超えると高圧水流を生成するコストが増大する上に、取扱いが困難であるため、いずれも好ましくない。噴射は1回以上行うが、3回の噴射により絡合を行うことが好ましい。すなわち、絡合を主目的とした高圧及び大水量の噴射、表面仕上げのための低圧及び小水量の噴射、並びにその中間の噴射等を使い分けて用いることが可能である。高圧流体の形状は特に限定しないが、エネルギー効率の点から柱状流が好ましい。柱状流の断面形状は、ノズルの断面形状あるいはノズルの噴出口の内部構造により決定されるが、ウェブの材質、目的、用途等に応じて自由に選択することができる。高圧水流噴射の処理速度は1~150m/minであり、好ましくは20~100m/minである。処理速度が1m/min未満では生産性が低く、また150m/minを超えると絡合効果が不十分であるため、いずれも好ましくない。 The pressure of the jet water flow is 10 to 300 kg / cm 3 , preferably 60 to 150 kg / cm 3 . The web can be entangled even at a relatively low pressure since the bending resistance of the reinforced support layer 1 is low, but the entanglement effect is insufficient when the pressure is less than 10 kg / cm 3 . On the other hand, if it exceeds 300 kg / cm 3 , the cost for generating a high-pressure water flow increases, and handling is difficult, so neither is preferable. The injection is performed once or more, but it is preferable to perform the entanglement by three injections. That is, high-pressure and large-volume water injection mainly for entanglement, low-pressure and small-water injection for surface finishing, intermediate injection, and the like can be used. The shape of the high-pressure fluid is not particularly limited, but a columnar flow is preferable from the viewpoint of energy efficiency. The cross-sectional shape of the columnar flow is determined by the cross-sectional shape of the nozzle or the internal structure of the nozzle outlet, but can be freely selected according to the material, purpose, application, etc. of the web. The processing speed of the high-pressure water jet is 1 to 150 m / min, preferably 20 to 100 m / min. If the processing speed is less than 1 m / min, the productivity is low, and if it exceeds 150 m / min, the entanglement effect is insufficient.
 上述した強化支持層1を基材に用いて、水流絡合するウェブ層の目付は、片面もしくは両面に絡合する際、10~250g/mが好ましく、より好ましくは20~100g/mである。これは、目付けが10g/m未満では高圧水流処理の際に繊維の密度にムラを生じ、また250g/mを超えると緻密すぎて成形性に劣り、経済的にもコストアップとなるため、いずれも好ましくない。補強材として用いる強化支持層1の目付が5~13g/mにおいて、水流絡合後の複合不織布の強度を向上できる。補強材の影響を顕著に発揮できるウェブ層の目付は、20~100g/mが好ましい。 When the reinforced support layer 1 described above is used as a base material, the basis weight of the web layer to be entangled with water is preferably 10 to 250 g / m 2 , more preferably 20 to 100 g / m 2 when entangled on one side or both sides. It is. This is because if the basis weight is less than 10 g / m 2 , the fiber density is uneven during high-pressure water treatment, and if it exceeds 250 g / m 2 , the fiber is too dense and inferior in formability, resulting in an increase in cost. Neither is preferred. When the basis weight of the reinforcing support layer 1 used as a reinforcing material is 5 to 13 g / m 2 , the strength of the composite nonwoven fabric after hydroentanglement can be improved. The basis weight of the web layer that can remarkably exert the influence of the reinforcing material is preferably 20 to 100 g / m 2 .
 高圧水流の噴射により絡合処理したウェブ層と強化支持層とからなる積層体は、次いで乾燥工程へ給送され、乾燥工程においては、例えばオーブン48、熱風炉または熱シリンダ等により乾燥される。なお、乾燥前に予め吸引などによって脱水してもよく、また乾燥工程においてはウェブをシュリンクさせても良い。このようにして乾燥された不織布は、製品巻取工程において複合不織布49として巻取られ、製品となる。 The laminate composed of the web layer and the reinforcing support layer entangled by high-pressure water jet is then fed to the drying step, where it is dried by, for example, an oven 48, a hot stove or a hot cylinder. In addition, you may dehydrate by suction etc. previously before drying, and you may shrink a web in a drying process. The non-woven fabric thus dried is wound up as a composite non-woven fabric 49 in the product winding process to become a product.
 上記乾燥工程では、温度を調整することによって基材である強化支持層1の熱収縮を利用して、表面に凹凸構造を付与することが可能であり、嵩高い複合不織布とすることができる。嵩高い複合不織布は、ワイパーとして利用した場合には、対人用では肌ざわりがよく、対物用では塵等を容易に捕捉することができる利点がある。 In the drying step, by adjusting the temperature, the surface can be provided with a concavo-convex structure using the heat shrinkage of the reinforced support layer 1 as a base material, and a bulky composite nonwoven fabric can be obtained. When used as a wiper, a bulky composite non-woven fabric has an advantage that it has a good texture for personal use and can easily capture dust and the like for objective use.
[検証]
 本発明者等は、スパンレース法でウェブ層の繊維を水流絡合させる際に、噴射水流が跳ね返されることに着目し、強化積層体1の目付、一軸配向体の層構成比、長手方向及び幅方向のカンチレバー法による剛軟度の平均値等を変えたサンプルを用意して検討を行なった。また、ウェブ層をスパンレース法により絡合してウェブ層と強化支持層とを一体化したときの柔軟性やしなやかさ、肌触り等について検証した。この結果、次のような知見を得た。
[Verification]
The present inventors pay attention to the fact that the jet water flow is bounced back when the fibers of the web layer are hydroentangled by the spunlace method, and the basis weight of the reinforced laminate 1, the layer composition ratio of the uniaxially oriented body, the longitudinal direction, and Samples with different average values of bending resistance by the cantilever method in the width direction were prepared and examined. Moreover, the web layer was intertwined by the spunlace method, and the flexibility, flexibility, touch, etc. were verified when the web layer and the reinforcing support layer were integrated. As a result, the following knowledge was obtained.
 図7において、サンプル番号S8には、比較例1としてJX日鉱日石エネルギー株式会社製のワリフ(登録商標)と呼ばれる割繊維不織布の製品番号3S(T)、サンプル番号S9には、比較例2として同製品番号S(F)EL、サンプル番号S10には、比較例3として同製品番号HS(T)を用いている。 In FIG. 7, the sample number S8 includes the product number 3S (T) of a split fiber nonwoven fabric called Warif (registered trademark) manufactured by JX Nippon Mining & Energy Corporation as Comparative Example 1, and the sample number S9 includes Comparative Example 2 The product number S (F) EL and the sample number S10 are the same product number HS (T) as Comparative Example 3.
 サンプル番号S8~S10は、何れも目付が18~35g/mと比較的重く、高密度ポリエチレンの割合が高く(74~78%)、層構成比が13/74/13~11/78/11となっている。このため、強度(引張強度)や耐久性が高くコシがある。しかし、柔軟性やしなやかさがなく、カンチレバー法による剛軟度の平均値は63~78mmと高くなっている。 Sample numbers S8 to S10 are all relatively heavy with a basis weight of 18 to 35 g / m 2 , a high proportion of high density polyethylene (74 to 78%), and a layer composition ratio of 13/74/13 to 11/78 / 11 For this reason, strength (tensile strength) and durability are high and firm. However, there is no flexibility and flexibility, and the average value of the bending resistance by the cantilever method is as high as 63 to 78 mm.
 これに対し、サンプル番号S1~S7は、目付が4~13g/mと軽量であり、かつカンチレバー法による剛軟度の平均値が6~55mmとなった。これらサンプル番号S1~S7は、柔軟でしなやかであり、肌触りも良かった。しかし、目付が4g/mのサンプル番号S1の場合には、長手方向(MD)の引張強度がMD=18(N/50mm)、幅方向(CD)の引張強度がCD=15(N/50mm)であり、共に20N/50mm以下となってしまい、強化支持層としての実用強度に満たなかった。 On the other hand, sample numbers S1 to S7 were lightweight with a basis weight of 4 to 13 g / m 2 , and the average value of the bending resistance by the cantilever method was 6 to 55 mm. These sample numbers S1 to S7 were flexible and supple, and the touch was good. However, in the case of sample number S1 having a basis weight of 4 g / m 2 , the tensile strength in the longitudinal direction (MD) is MD = 18 (N / 50 mm), and the tensile strength in the width direction (CD) is CD = 15 (N / 50 mm), both of which were 20 N / 50 mm or less, and did not satisfy the practical strength as a reinforced support layer.
 また、サンプル番号S4~S6では、目付を一定(10g/m)にして層構成比を変化させているが、サンプル番号S4,S5は柔軟性やしなやかさ、肌触りの点で満足できるものではなかった。これは、サンプル番号S4,S5では、高密度ポリエチレンの割合が高く、カンチレバー法による剛軟度の平均値がそれぞれ55mm、52mmとなっており、コシがあるためと考えられる。 In sample numbers S4 to S6, the basis weight is constant (10 g / m 2 ) and the layer composition ratio is changed. However, sample numbers S4 and S5 are not satisfactory in terms of flexibility, flexibility, and touch. There wasn't. This is presumably because Sample Nos. S4 and S5 have a high proportion of high-density polyethylene, and the average values of the bending resistance by the cantilever method are 55 mm and 52 mm, respectively.
 図8は、上記図7の目付と、剛軟度の平均値を抽出してプロットしたものである。図8から分かるように、目付が10数g/m程度に変曲点があり、柔軟性、しなやかさ、肌触り等が変化していることが推定される。 FIG. 8 is a plot of the basis weight of FIG. 7 and the average value of the bending resistance extracted. As can be seen from FIG. 8, the basis weight is an inflection point of about several tens of g / m 2, and it is estimated that flexibility, flexibility, touch, and the like are changed.
 この図8及び図7の測定結果から、強化支持層として、柔軟性、しなやかさ、肌触りが良く、実用強度(引張強度)を得るために好ましい目付は、5~13g/mの範囲内であることが分かった。また、好ましい結果が得られた層構成比は26/48/26であるが、他のサンプル番号のデータや、市販されている種々の商品の層構成比等を考慮すると、数%程度の変化では急激な変化はなく、好ましい層構成比は20/60/20~30/40/30であると考えられる。更に、カンチレバー法による剛軟度の平均値が50mm以下になっている。これらの条件を全て満たすサンプル番号S2,S3,S6,S7が、強化支持層として、所期の目的を十分に達成できる強化支持層となる。 From the measurement results of FIG. 8 and FIG. 7, the basis weight preferable for obtaining a practical strength (tensile strength) is 5 to 13 g / m 2 as a reinforced support layer with good flexibility, flexibility and touch. I found out. In addition, the layer composition ratio with which a preferable result was obtained is 26/48/26, but when considering the data of other sample numbers, the layer composition ratio of various commercial products, etc., the change is about several percent. Thus, there is no abrupt change, and a preferable layer constitution ratio is considered to be 20/60/20 to 30/40/30. Furthermore, the average value of the bending resistance by the cantilever method is 50 mm or less. Sample numbers S2, S3, S6, and S7 that satisfy all of these conditions serve as a reinforced support layer that can sufficiently achieve the intended purpose as a reinforced support layer.
 加えて、上記サンプル番号S2,S3,S6,S7の厚さは80μmより薄く、開口率は50%より高くなっている。このような数値範囲にあると、しなやかさ(剛軟度)と強度を両立できるとともに、厚さを薄くすることで、よりしなやかさを向上できることを確認した。また、上述した製造工程において、強化支持層1の引張強度を20N/50mm以上にするには、多層フィルム11,21の延伸倍率を3倍以上にするのが望ましい。 In addition, the sample numbers S2, S3, S6, and S7 are thinner than 80 μm and the aperture ratio is higher than 50%. In such a numerical range, it was confirmed that flexibility (bending softness) and strength can be achieved at the same time, and that flexibility can be improved by reducing the thickness. Moreover, in the manufacturing process mentioned above, in order to make the tensile strength of the reinforcement | strengthening support layer 1 20 N / 50mm or more, it is desirable to make the draw ratio of the multilayer films 11 and 21 3 times or more.
 上述した条件を全て満たす強化支持層は、図9及び図10に実施例として示すように、柔らかいことで繊維が絡み易く、一定の目付にするのであれば、軽量であることで水流絡合させるウェブの量を増やすことができる。 As shown in the examples in FIGS. 9 and 10, the reinforcing support layer that satisfies all the above-mentioned conditions is soft and easily entangled with fibers, and if it has a constant basis weight, it is lightly entangled with water. You can increase the amount of web.
 図9は、強化支持層1の目付を10g/mとしたときの、開口率、基材引張強度及び基材剛軟度と、完成した強化支持層1の評価を示している。比較例1,2はそれぞれ、JX日鉱日石エネルギー株式会社製のワリフ(登録商標)のうち、製品番号HS(T)と製品番号3S(T)である。ここでは、ウェブとして綿を用い、強化支持層1、製品番号HS(T)及び製品番号3S(T)の両面にそれぞれ絡合させた。綿の量は全てのサンプルで30gとした。 FIG. 9 shows the aperture ratio, the base material tensile strength, the base material softness, and the evaluation of the completed reinforced support layer 1 when the basis weight of the reinforced support layer 1 is 10 g / m 2 . Comparative Examples 1 and 2 are product number HS (T) and product number 3S (T), respectively, of the Walliff (registered trademark) manufactured by JX Nippon Oil & Energy Corporation. Here, cotton was used as the web, and entangled with both sides of the reinforcing support layer 1, product number HS (T), and product number 3S (T). The amount of cotton was 30 g for all samples.
 図9に示すように、HS(T)では芯材である強化支持層1の表面が噴射水流を弾いてしまい、綿の絡みが少なくムラがあり実用に耐えるものではない。3S(T)でも芯材である強化支持層1の表面が噴射水流をある程度弾くため、綿の絡みが十分ではなく、ムラも発生し、十分ではなかった。これに対し、実施例の場合には、綿がムラなく綺麗に絡んでいた。このように、綿の絡みは目付が軽いほど良くなり、絡みムラは実施例が最も少なかった。 As shown in FIG. 9, in HS (T), the surface of the reinforcing support layer 1 as a core repels the jet water flow, and there is little cotton entanglement and unevenness, which is not practical. Even in 3S (T), the surface of the reinforcing support layer 1 as a core material repels the jet water flow to some extent, so that the entanglement of cotton was not sufficient and unevenness was generated, which was not sufficient. On the other hand, in the case of the example, the cotton was entangled neatly without unevenness. As described above, the cotton entanglement was improved as the basis weight was lighter, and the entanglement unevenness was the least in Examples.
 図10は、強化支持層1とウェブ層の目付の和を55g/mとしたときの、開口率、基材引張強度及び基材剛軟度と、完成した強化支持層1の評価を示している。比較例1,2にはそれぞれ、図9と同様に製品番号HS(T)と製品番号3S(T)を用いた。ここでも、ウェブとして綿を用い、強化支持層1、製品番号HS(T)及び製品番号3S(T)の両面にそれぞれ絡合させている。 FIG. 10 shows the evaluation of the finished reinforcing support layer 1 and the aperture ratio, the base material tensile strength and the base material softness when the sum of the basis weight of the reinforcing support layer 1 and the web layer is 55 g / m 2. ing. In Comparative Examples 1 and 2, the product number HS (T) and the product number 3S (T) were used as in FIG. Here too, cotton is used as the web, and is entangled with both sides of the reinforcing support layer 1, product number HS (T) and product number 3S (T).
 図10に示すように、HS(T)では綿の量が少なく、芯材である強化支持層1の表面が噴射水流を弾いてしまい、綿の絡みが少なくムラがあり実用に耐えるものではない。3S(T)では芯材である強化支持層1の表面が噴射水流をある程度弾くため、綿の絡みが十分ではなく、ムラも発生し十分なものではない。実施例では綿がムラなく綺麗に絡んでいる。このように、強化支持層1に対してウェブ層の目付が多いほど綿の絡みが良く、絡みムラは実施例が最も少なかった。 As shown in FIG. 10, in HS (T), the amount of cotton is small, and the surface of the reinforcing support layer 1 that is a core material repels the jet water flow, and there is little entanglement of cotton and unevenness, which is not practical. . In 3S (T), since the surface of the reinforcing support layer 1 as a core repels the jet water flow to some extent, the entanglement of cotton is not sufficient and unevenness occurs, which is not sufficient. In the embodiment, cotton is entangled cleanly without unevenness. Thus, the more the basis weight of the web layer with respect to the reinforced support layer 1, the better the entanglement of the cotton, and the entanglement unevenness was the least in Examples.
 なお、図9及び図10に示すように、3S(T)及び実施例は、サンプルS1に比べてMD繊維が細くなっており、繊維が細いことからも噴射水流を弾き難いことが推定される。よって、強化支持層1の繊維の幅は、必要な引張強度を確保できる太さで、0.92mmより細くすると良い。 In addition, as shown in FIG.9 and FIG.10, it is estimated that 3S (T) and an Example have MD fiber thinner than sample S1, and since it is thin, it is hard to play a jet water flow. . Therefore, the width of the fiber of the reinforcing support layer 1 is preferably a thickness that can ensure the necessary tensile strength, and is preferably thinner than 0.92 mm.
 上述したように、強化支持層の目付が5~13g/m、一軸配向体における第1の接着層、熱可塑性樹脂層及び第2の接着層の層構成比が20/60/20~30/40/30である。そして、カンチレバー法による剛軟度の平均値を50mm以下にし、この強化支持層にスパンレース法により短繊維状のセルロース系繊維または合成繊維からなるウェブ層を絡合せて複合不織布とすることで、柔軟性やしなやかさ、肌触りを向上でき、従来は使用できなかった用途への拡大が図れる。 As described above, the basis weight of the reinforcing support layer is 5 to 13 g / m 2 , and the layer constitution ratio of the first adhesive layer, the thermoplastic resin layer, and the second adhesive layer in the uniaxially oriented body is 20/60/20 to 30. / 40/30. And the average value of the bending resistance by the cantilever method is 50 mm or less, and by entwining the web layer made of short fiber-like cellulosic fibers or synthetic fibers with the reinforced support layer by the spunlace method, Flexibility, suppleness, and touch can be improved, and expansion to applications that could not be used in the past can be achieved.
<変形例1>
 図11は、上述した強化支持層の変形例について説明するためのもので、他の製造方法を示している。この強化支持層は、図2A及び図2Bに示したスプリットウェブ2を2枚積層するものである。図4に示したようにして製造した縦ウェブ(スプリットウェブ2-1)を、原反繰出しロール30から繰出し、所定の供給速度で走行させて拡幅工程31に送り、拡幅機(図示せず)により数倍に拡幅し、必要により熱処理を行う。
<Modification 1>
FIG. 11 is for explaining a modified example of the above-mentioned reinforcing support layer, and shows another manufacturing method. This reinforcing support layer is formed by laminating two split webs 2 shown in FIGS. 2A and 2B. The vertical web (split web 2-1) produced as shown in FIG. 4 is fed from the raw roll 30 and is fed at a predetermined supply speed to the widening step 31, where it is widened (not shown). Is expanded several times, and heat treatment is performed if necessary.
 別のスプリットウェブ2-2(横ウェブ)を、縦ウェブと同様に原反繰出しロール32から繰出し、所定の供給速度で走行させて拡幅工程33に送り、拡幅機(図示せず)により数倍に拡幅する。必要により熱処理した後、縦ウェブの幅に等しい長さに切断し、縦ウェブの走行フィルムに対し直角の方向から供給して、積層工程34において各接着層を介して各ウェブの配向軸が互いに直交するように経緯積層させる。経緯積層した縦ウェブ及び横ウェブを、熱圧着工程35において、外周面が鏡面である熱シリンダ35aと鏡面ロール35b,35cとの間に順次導いてニップ圧を加える。これにより、縦ウェブと横ウェブとが互いに熱圧着されて一体化される。また、隣接する縦ウェブと横ウェブとの接触部位同士が全面的に面接着する。このようにして一体化された縦ウェブ及び横ウェブは巻取工程にて巻き取られて、経緯積層不織布の巻取体36になる。 Another split web 2-2 (transverse web) is fed from the raw fabric feed roll 32 in the same manner as the vertical web, traveled at a predetermined supply speed, sent to the widening step 33, and several times by a widening machine (not shown). To widen. After heat treatment if necessary, the sheet is cut to a length equal to the width of the longitudinal web and fed from a direction perpendicular to the running film of the longitudinal web, and the orientation axes of the webs are mutually aligned via the adhesive layers in the laminating step 34. The process is laminated so as to be orthogonal. In the thermocompression bonding step 35, the longitudinal web and the horizontal web that have been laminated are sequentially guided between the thermal cylinder 35a whose outer peripheral surface is a mirror surface and the mirror surface rolls 35b and 35c to apply nip pressure. Thereby, a vertical web and a horizontal web are mutually thermocompression bonded and integrated. In addition, the contact portions between the adjacent vertical webs and the horizontal webs are entirely surface-bonded. The longitudinal web and the transverse web integrated in this manner are wound up in a winding process to form a wound body 36 of a background laminated nonwoven fabric.
 上記のようにして製造した強化支持層においても、第1の実施形態と同じ目付(5~13g/m)、層構成比(20/60/20~30/40/30)、カンチレバー法による剛軟度の平均値(50mm以下)の条件を全て満たすことで、同様な効果が得られる。この場合にも、厚さは80μmより薄く、開口率は50%より高くすると良い。 Also in the reinforcing support layer produced as described above, the same basis weight (5 to 13 g / m 2 ), layer composition ratio (20/60/20 to 30/40/30) as in the first embodiment, and cantilever method The same effect can be obtained by satisfying all the conditions of the average value (50 mm or less) of the bending resistance. Also in this case, the thickness is preferably less than 80 μm and the aperture ratio is preferably higher than 50%.
<変形例2>
 上記一軸配向体がスプリットウェブ2とスリットウェブ3を経緯積層する場合について説明したが、一軸配向テープを平行に並べたものを2組積層して形成しても良い。この場合には、一方の組の一軸配向テープの配向軸と他方の組の一軸配向テープの配向軸とが互いに直交するように経緯積層する。一軸配向テープは、スプリットウェブ2及びスリットウェブ3と同様に、熱可塑性樹脂層の両面に、この熱可塑性樹脂より融点が低い第1、第2の接着層(熱可塑性樹脂)を積層した3層のフィルムを、縦又は横方向に一軸配向させ、裁断して多層の延伸テープとしたものを用いる。
<Modification 2>
Although the case where the uniaxially oriented body laminates the split web 2 and the slit web 3 is described, two sets of uniaxially oriented tapes arranged in parallel may be laminated. In this case, the lamination is performed so that the orientation axis of one set of uniaxially oriented tapes and the orientation axis of the other set of uniaxially oriented tapes are orthogonal to each other. As with the split web 2 and the slit web 3, the uniaxially oriented tape has three layers in which first and second adhesive layers (thermoplastic resins) having a melting point lower than that of the thermoplastic resin are laminated on both surfaces of the thermoplastic resin layer. The film is uniaxially oriented in the vertical or horizontal direction and cut into a multilayer stretched tape.
 このように、一軸配向テープを平行に並べたものを2組積層する場合にも、第1の実施形態と同じ目付、層構成比、カンチレバー法による剛軟度の平均値の条件を全て満たすことで、同様な効果が得られる。厚さは80μmより薄く、開口率は50%より高くすると良いのはもちろんである。 As described above, even when two sets of uniaxially oriented tapes arranged in parallel are laminated, the same basis weight, layer composition ratio, and average value of the bending resistance by the cantilever method as in the first embodiment must be satisfied. Thus, the same effect can be obtained. Of course, the thickness should be thinner than 80 μm and the aperture ratio should be higher than 50%.
 上記のような構成の複合不織布によれば、メディカルディスポーザブル製品等の人体に触れる製品では、柔軟性やしなやかさ、肌触りを向上できる。また、例えば制汗シート、化粧落とし、汗拭き等の対人用ワイパーに用いる場合にも同様な効果が得られる。更に、工場の油拭き、フローリングワイパー、キッチンタオル等の対物用ワイパーに用いる場合には、塵や油等の付着物の捕捉性や拭き取り性を更に向上できる。 According to the composite nonwoven fabric having the above-described configuration, the product that touches the human body, such as a medical disposable product, can improve flexibility, flexibility, and touch. Further, for example, the same effect can be obtained when used for a personal wiper such as an antiperspirant sheet, a makeup remover, and a sweat wipe. Further, when used for an objective wiper such as a factory oil wipe, a flooring wiper, a kitchen towel, etc., it is possible to further improve the trapping and wiping properties of deposits such as dust and oil.
1…強化支持層
2…スプリットウェブ
2a…配向軸
3…スリットウェブ
3a…配向軸
4…幹繊維
5…枝繊維
6,6’…熱可塑性樹脂層
7-1,7-1’…接着層
7-2,7-2’…接着層
DESCRIPTION OF SYMBOLS 1 ... Reinforcement support layer 2 ... Split web 2a ... Orientation axis 3 ... Slit web 3a ... Orientation axis 4 ... Trunk fiber 5 ... Branch fiber 6, 6 '... Thermoplastic resin layer 7-1, 7-1' ... Adhesion layer 7 -2, 7-2 '... Adhesive layer

Claims (7)

  1.  熱可塑性樹脂層と、該熱可塑性樹脂層の両面に積層され、該熱可塑性樹脂より融点が低い第1、第2の接着層とを含む一軸配向体を、配向軸が交差するように各々の前記第1または第2の接着層を介して経緯積層してなる網状の強化支持層と、前記強化支持層にスパンレース法により絡合された短繊維状のセルロース系繊維または合成繊維からなるウェブ層と、を備え、前記ウェブ層と前記強化支持層とが一体化された複合不織布であって、
     前記強化支持層の目付が5~13g/m、前記一軸配向体における前記第1の接着層、前記熱可塑性樹脂層及び前記第2の接着層の層構成比が20/60/20~30/40/30であり、前記強化支持層の長手方向及び幅方向のカンチレバー法による剛軟度の平均値を50mm以下にした、ことを特徴とする複合不織布。
    A uniaxially oriented body that includes a thermoplastic resin layer and first and second adhesive layers that are laminated on both surfaces of the thermoplastic resin layer and have a melting point lower than that of the thermoplastic resin, so that the orientation axes intersect each other. A web composed of a network-like reinforcing support layer obtained by laminating via the first or second adhesive layer, and a short fibrous cellulosic fiber or synthetic fiber entangled with the reinforcing support layer by a spunlace method A composite nonwoven fabric in which the web layer and the reinforcing support layer are integrated,
    The basis weight of the reinforced support layer is 5 to 13 g / m 2 , and the layer constitution ratio of the first adhesive layer, the thermoplastic resin layer, and the second adhesive layer in the uniaxially oriented body is 20/60/20 to 30 / 40/30, wherein the average value of the bending resistance by the cantilever method in the longitudinal direction and the width direction of the reinforcing support layer is 50 mm or less.
  2.  前記熱可塑性樹脂層が高密度ポリチレン、前記第1、第2の接着層がそれぞれ低密度ポリエチレンを含む、ことを特徴とする請求項1に記載の複合不織布。 The composite nonwoven fabric according to claim 1, wherein the thermoplastic resin layer contains high-density polyethylene, and the first and second adhesive layers each contain low-density polyethylene.
  3.  前記強化支持層の繊維の幅が0.92mmより細い、ことを特徴とする請求項1に記載の複合不織布。 The composite nonwoven fabric according to claim 1, wherein the fiber width of the reinforcing support layer is thinner than 0.92 mm.
  4.  前記強化支持層の繊維の幅が0.92mmより細い、ことを特徴とする請求項2に記載の複合不織布。 The composite nonwoven fabric according to claim 2, wherein the fiber width of the reinforcing support layer is thinner than 0.92 mm.
  5.  前記強化支持層の開口率が50%より高い、ことを特徴とする請求項1に記載の複合不織布。 The composite nonwoven fabric according to claim 1, wherein an opening ratio of the reinforced support layer is higher than 50%.
  6.  前記強化支持層の開口率が50%より高い、ことを特徴とする請求項2に記載の複合不織布。 The composite nonwoven fabric according to claim 2, wherein an opening ratio of the reinforced support layer is higher than 50%.
  7.  前記強化支持層の開口率が50%より高い、ことを特徴とする請求項3に記載の複合不織布。 The composite nonwoven fabric according to claim 3, wherein an opening ratio of the reinforced support layer is higher than 50%.
PCT/JP2014/076957 2013-10-18 2014-10-08 Composite nonwoven fabric WO2015056618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013217740A JP5986976B2 (en) 2013-10-18 2013-10-18 Composite nonwoven fabric
JP2013-217740 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056618A1 true WO2015056618A1 (en) 2015-04-23

Family

ID=52828064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076957 WO2015056618A1 (en) 2013-10-18 2014-10-08 Composite nonwoven fabric

Country Status (3)

Country Link
JP (1) JP5986976B2 (en)
TW (1) TWI625437B (en)
WO (1) WO2015056618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088218A (en) * 2016-12-27 2019-08-02 Jxtg能源株式会社 Adhesive tape

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607126B (en) * 2015-12-18 2017-12-01 財團法人紡織產業綜合研究所 Nonwoven fabric and method for manufacturing the same
JP6866851B2 (en) * 2016-09-07 2021-04-28 東レ株式会社 Laminated non-woven fabric

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847994A (en) * 1994-08-05 1996-02-20 Nippon Petrochem Co Ltd Lightweight ultra-strong sheet and production thereof
JPH08169076A (en) * 1994-12-16 1996-07-02 Nippon Petrochem Co Ltd Laminate, nonwoven fabric or fabric and reinforced laminate using the same
JPH10128927A (en) * 1996-10-30 1998-05-19 Nippon Petrochem Co Ltd Laminate with outstanding heat retaining properties, unwoven fabric, and woven textile
JPH11156986A (en) * 1997-11-25 1999-06-15 Nippon Petrochem Co Ltd Flat reticular body and manufacture thereof
JP2003166205A (en) * 2001-12-03 2003-06-13 Nippon Petrochemicals Co Ltd Geotextile used for block pavement
JP2004076237A (en) * 2002-08-22 2004-03-11 Nippon Petrochemicals Co Ltd Reinforced drawn nonwoven fabric
JP2011174201A (en) * 2010-02-24 2011-09-08 Sekisui Chem Co Ltd Network body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847994A (en) * 1994-08-05 1996-02-20 Nippon Petrochem Co Ltd Lightweight ultra-strong sheet and production thereof
JPH08169076A (en) * 1994-12-16 1996-07-02 Nippon Petrochem Co Ltd Laminate, nonwoven fabric or fabric and reinforced laminate using the same
JPH10128927A (en) * 1996-10-30 1998-05-19 Nippon Petrochem Co Ltd Laminate with outstanding heat retaining properties, unwoven fabric, and woven textile
JPH11156986A (en) * 1997-11-25 1999-06-15 Nippon Petrochem Co Ltd Flat reticular body and manufacture thereof
JP2003166205A (en) * 2001-12-03 2003-06-13 Nippon Petrochemicals Co Ltd Geotextile used for block pavement
JP2004076237A (en) * 2002-08-22 2004-03-11 Nippon Petrochemicals Co Ltd Reinforced drawn nonwoven fabric
JP2011174201A (en) * 2010-02-24 2011-09-08 Sekisui Chem Co Ltd Network body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088218A (en) * 2016-12-27 2019-08-02 Jxtg能源株式会社 Adhesive tape
CN110088218B (en) * 2016-12-27 2022-05-03 Jxtg能源株式会社 Adhesive tape
US11325342B2 (en) 2016-12-27 2022-05-10 Eneos Corporation Adhesive tape

Also Published As

Publication number Publication date
TW201529923A (en) 2015-08-01
TWI625437B (en) 2018-06-01
JP2015077764A (en) 2015-04-23
JP5986976B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
US7968025B2 (en) Method for manufacturing a particularly soft and three-dimensional nonwoven and nonwoven thus obtained
TWI382908B (en) Compact having nonwoven fiber structure
CN109477270B (en) Hydroformed expanded spunbond nonwoven web and hydroformed composite, and methods of making same
US20100112273A1 (en) Method for manufacturing soft, resistant and bulky nonwoven and nonwoven thus obtained
EP2842732B1 (en) Nonwoven fabric composite and method for making the same
CN110268113B (en) Hydraulically treated nonwoven fabric and method of making same
TWI633219B (en) Verfahren zur herstellung eines strukturierten mikrofilamentvliesstoffs
US20060191115A1 (en) Method of making a filamentary laminate and the products thereof
JP2011032631A (en) Sheet for cosmetic and method for producing the same
CZ2016612A3 (en) A spunbonded non-woven fabric for the acquisition distribution layer and an absorbent product
WO2015056618A1 (en) Composite nonwoven fabric
TWI616570B (en) Nonwoven fabric and reinforced laminate
JP2008297673A (en) Filament nonwoven fabric and method for producing base material for artificial leather
US20170136502A1 (en) Nonwoven composite including natural fiber web layer and method of forming the same
JP2014100625A (en) Semipermeable membrane support and method of producing the same
JP7049842B2 (en) Laminated non-woven fabric sheet and its manufacturing method
JP6564656B2 (en) Designable sheet and method for producing the designed sheet
JPH08109563A (en) Thin, lightweight, reinforced, and water jet-interlaced nonwoven fabric and its production
JP2024004315A (en) Sheet for liquid absorbing roll and liquid absorbing roll
JP2023006231A (en) Composite nonwoven fabric and method for manufacturing the same
EP2097569B1 (en) Method for manufacturing soft, resistant and bulky nonwoven and nonwoven thus obtained
WO2009127816A1 (en) Hydroentangled tubular fabrics
JP2015027640A (en) Filtration filter material
JP2013101282A (en) Drum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854143

Country of ref document: EP

Kind code of ref document: A1