WO2015056599A1 - Production method for vacuum multilayer glass - Google Patents

Production method for vacuum multilayer glass Download PDF

Info

Publication number
WO2015056599A1
WO2015056599A1 PCT/JP2014/076759 JP2014076759W WO2015056599A1 WO 2015056599 A1 WO2015056599 A1 WO 2015056599A1 JP 2014076759 W JP2014076759 W JP 2014076759W WO 2015056599 A1 WO2015056599 A1 WO 2015056599A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
assembly
metal foil
glass
bonding layer
Prior art date
Application number
PCT/JP2014/076759
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 柏
佳佑 加藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015056599A1 publication Critical patent/WO2015056599A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/08Joining glass to glass by processes other than fusing with the aid of intervening metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66342Section members positioned at the edges of the glazing unit characterised by their sealed connection to the panes
    • E06B3/66352Section members positioned at the edges of the glazing unit characterised by their sealed connection to the panes with separate sealing strips between the panes and the spacer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a method for producing a vacuum double-glazed glass.
  • a so-called “vacuum double-glazed glass” having a gap held between a pair of glass substrates at a low pressure or in a vacuum state has an excellent heat insulating effect, and thus, for example, a window glass for buildings such as buildings and houses. Widely used in applications.
  • Vacuum multi-layer glass is manufactured as follows. First, a first glass substrate and a second glass substrate are prepared. A bonding layer is formed on the surface of one glass substrate along the periphery. Next, the first and second glass substrates are laminated so that both are opposed to each other through the bonding layer to form an assembly. Next, this assembly is heated to melt and soften the bonding layer and bond both glass substrates. Thereby, a gap is formed between the two glass substrates. Next, the inside of the gap is decompressed using an opening provided in advance in the first glass substrate. Then, the opening utilized for the decompression process is sealed, and a vacuum double-glazed glass is manufactured (Patent Document 1).
  • the step of decompressing the inside of the gap of the assembly using the opening provided in the glass substrate and the step of sealing the subsequent opening are performed. included.
  • some vacuum double-glazed glass includes metal foil in the surrounding sealing structure.
  • a frame-shaped metal foil is interposed between the first bonding layer installed around the first glass substrate and the second bonding layer installed around the second glass substrate. It is comprised by letting.
  • FIG. 1 shows a state in which the first and second glass substrates 110 and 120 are heated and bonded together in a vacuum chamber.
  • the first and second glass substrates 110 and 120 are bonded to each other in the vacuum chamber, first, the first glass substrate 110 having the first bonding layer 170 in the vacuum chamber.
  • the second glass substrate 120 having the frame-shaped metal foil 160 and the second bonding layer 180 is prepared.
  • the second glass substrate 120 is formed of the first glass substrate 110 and the frame shape by a supporting member.
  • An assembly 101 is formed that is maintained away from the metal foil 160.
  • the metal foil 160 is disposed at a position 160A (broken line) indicated by a broken line in FIG.
  • the metal foil 160 is displaced with respect to the first and second bonding layers 170 and 180. That is, the metal foil 160 is stretched toward the outside (right direction in FIG. 1) by heating, and the metal foil 160 is positioned as shown by a position 160B (solid line) in FIG. 1 so as to follow this behavior. Moves outward.
  • the present invention has been made in view of such a background.
  • a vacuum double-layer glass is manufactured by a “flow method”
  • the metal foil constituting the seal structure is unlikely to be displaced. It aims at providing the manufacturing method of layer glass.
  • a method for producing a vacuum multi-layer glass comprising a decompressed gap between a first glass substrate and a second glass substrate facing each other, (A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Providing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil; (B) disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position or an outer peripheral position; A step arranged to contact one bonding layer; (C) heat-treating the first assembly to fix the metal foil on the first glass substrate; (D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is Two bonding layers are arranged in a non-contact state with respect to the first assembly, and the third surface is disposed on the metal foil side; (E) carrying the second
  • the metal foil may be disposed so as to be in contact with the first bonding layer at both an inner peripheral position and an outer peripheral position.
  • the manufacturing method according to the present invention further includes: (G) After the step (f), the method may include a step of cutting the joined body such that the joining layer inside the first joining layer and the second joining layer remain. .
  • the bonding layer may have a vitrified layer.
  • the present invention can provide a method for producing a vacuum double-glazed glass that is less likely to be displaced in the metal foil constituting the seal structure when the vacuum double-glazed glass is produced by the “flow method”.
  • FIG. 2 schematically shows an example of the structure of the vacuum double-glazed glass.
  • the vacuum double-glazed glass 100 includes a first glass substrate 110, a second glass substrate 120, a gap 130 formed between the two glass substrates 110, 120, and the gap And a seal member 150 surrounding the portion 130.
  • the first glass substrate 110 has a first surface 112 and a second surface 114.
  • the first glass substrate 110 is disposed so that the second surface 114 side is the outside.
  • the second glass substrate 120 has a third surface 122 and a fourth surface 124.
  • the second glass substrate 120 is disposed such that the fourth surface 124 side is the outside. Accordingly, the gap 130 is formed between the first surface 112 of the first glass substrate 110 and the third surface 122 of the second glass substrate 120.
  • the inside of the gap 130 is maintained in a vacuum state.
  • vacuum state is a concept that includes a low pressure (decompression) state in addition to a high vacuum state.
  • the degree of vacuum of the gap 130 is not particularly limited, and may be any pressure lower than atmospheric pressure. In general, the pressure in the gap 130 is about 0.2 Pa to 0.001 Pa.
  • the vacuum multilayer glass 100 may have one or more spacers 190 in the gap 130.
  • the seal member 150 is a member for hermetically holding the gap portion 130, and the seal member 150 is configured around the gap portion 130.
  • the seal member 150 includes a metal foil 160, a first bonding layer 170, and a second bonding layer 180.
  • the first bonding layer 170 is provided in a “frame shape” around the first glass substrate 110 on the first surface 112 side of the first glass substrate 110.
  • the second bonding layer 180 is provided in a “frame shape” around the second glass substrate 120 on the third surface 122 side of the second glass substrate 120.
  • the term “frame shape” means a general term for a shape composed of a “frame” having an outer contour and an inner contour, with the inside of a flat plate shape removed in plan view.
  • the outer contour and / or inner contour of the “frame-shaped” member is not necessarily limited to a substantially rectangular parallelepiped shape such as a forehead.
  • the outer contour and the inner contour of the “frame-shaped” member are not necessarily similar, and both may be different shapes, for example.
  • the metal foil 160 has a frame shape. A part of the first surface 162 of the metal foil 160 is bonded to the first bonding layer 170 on the first glass substrate 110, and a part of the second surface 164 of the metal foil 160 is the second. The second bonding layer 180 on the glass substrate 110 is bonded.
  • the first surface 162 of the metal foil 160 is not joined to other members at a place other than the joined portion joined to the first joining layer 170.
  • the second surface 164 of the metal foil 160 is not joined to another member at a place other than the joined portion joined to the second joining layer 180.
  • the first bonding layer 170 is displaced from the second bonding layer 180.
  • the first bonding layer 170 is disposed on the inner side of the second bonding layer 180.
  • the first bonding layer 170 may be disposed outside the second bonding layer 180.
  • the metal foil 160 has a “step” shape with a contour that is linearly bent when viewed in cross section.
  • the shape of the metal foil 160 is not particularly limited.
  • the metal foil 160 when viewed in cross section, may have a curved shape, or a contour composed of a combination of straight lines and curves.
  • the metal foil 160 may have a substantially flat shape when viewed in cross section.
  • the vacuum double-glazed glass 100 provided with such a sealing member 150 can significantly suppress the influence of deformation due to thermal stress due to the deformability of the metal member 160. For example, even when a temperature difference occurs between the first glass substrate 110 and the second glass substrate 120 during use of the vacuum multilayer glass 100, the first glass substrate 110 of the metal member 160 is first. Due to the deformability in the direction parallel to the surface 112 (X direction in FIG. 2), the influence of the difference in thermal expansion between the two glass substrates 110 and 120 can be reduced. Therefore, a vacuum double-glazed glass that is hardly affected by deformation is obtained.
  • a 2nd glass substrate is made into 1st.
  • the first and second bonding layers 170 and 180 are melted and softened by heating, and the first and second glass substrates 110 and 120 are mutually connected.
  • the “position shift” is likely to occur in the metal foil 160.
  • the metal foil is previously fixed to the first bonding layer at the inner peripheral position or the outer peripheral position.
  • FIG. 3 schematically shows a state in which the first and second glass substrates 110 and 120 are heated and bonded together in a vacuum chamber according to an embodiment of the present invention.
  • Metal foil 160 is placed so as to have a predetermined positional relationship.
  • the metal foil 160 is disposed on the glass substrate 110 such that the first bonding layer 170 is disposed on the inner peripheral side of the metal foil 160 when viewed from above. .
  • the first assembly thus obtained is heated and cooled, and the first bonding layer is melted and solidified.
  • the metal foil 160 is bonded to the first glass substrate 110 via the first bonding layer 170.
  • a weight is placed on the metal foil 160, and a pressing pressure is applied from above. For this reason, the metal foil 160 does not deform (thermally expand) during heating.
  • a first assembly that is, the first glass substrate 110 to which the metal foil 160 is bonded
  • a second The glass substrate 120 is laminated in a vacuum chamber to form the second assembly 102.
  • the metal foil 160 is disposed at a position (broken line) indicated by a broken line in FIG.
  • the metal foil 160 is bonded to the first bonding layer 170 in advance. For this reason, even if the 2nd assembly 102 is heated within a vacuum chamber, the position with respect to the 1st joining layer 170 of the metal foil 160 does not change. Further, even when the metal foil 160 extends outward, the problem that the metal foil 160 does not come into contact with the second bonding layer 180 does not occur.
  • the metal foil is unlikely to be displaced, and the metal foil and the first and second bonding layers are in a predetermined state. It is possible to form seal members arranged in a positional relationship.
  • FIG. 3 shows an example in which the first bonding layer 170 is disposed on the inner peripheral side of the metal foil 160 and the second bonding layer 180 is disposed on the outer peripheral side of the metal foil 160 as viewed from above.
  • the effect of the invention has been described. However, the same effect can be obtained even when the first bonding layer 170 is disposed on the outer peripheral side of the metal foil 160 and the second bonding layer 180 is disposed on the inner peripheral side of the metal foil 160 in a top view. It will be clear that it is obtained.
  • the metal foil 160 extends inward when the assembly is heated. However, also in this case, the problem that the metal foil 160 does not come into contact with the second bonding layer 180 can be significantly avoided.
  • Glass substrate 110, 120 The composition of the glass constituting the glass substrates 110 and 120 is not particularly limited.
  • the glass of the glass substrates 110 and 120 may be, for example, soda lime glass and / or alkali-free glass.
  • composition of the first glass substrate 110 and the second glass substrate 120 may be the same or different.
  • Metal foil 160 The type of the metal material that constitutes the metal foil 160 is not particularly limited.
  • the metal foil 160 may be selected from, for example, aluminum and aluminum alloys, copper and copper alloys, titanium and titanium alloys, and stainless steel.
  • the thickness of the metal foil 160 is not particularly limited, but may have a thickness in the range of 5 ⁇ m to 500 ⁇ m, for example.
  • the bonding layers 170 and 180 are not particularly limited in material and configuration as long as they can be bonded to the metal foil 160 by heat treatment.
  • the bonding layers 170 and 180 may be vitrified layers (softening point 350 to 600 ° C.).
  • the vitrified layer is formed by firing a paste containing glass frit.
  • the vitrified layer contains a glass component, but may further contain ceramic particles.
  • the composition of the glass component contained in the vitrified layer is not particularly limited.
  • the glass component contained in the vitrified layer may be, for example, ZnO—Bi 2 O 3 —B 2 O 3 or ZnO—SnO—P 2 O 5 glass.
  • Table 1 shows an example of the composition of a ZnO—Bi 2 O 3 —B 2 O 3 -based glass that can be used as a glass component contained in the vitrified layer.
  • Table 2 shows an example of the composition of ZnO—SnO—P 2 O 5 based glass that can be used for the glass component contained in the vitrified layer.
  • the bonding layers 170, 180 may include a brazing material or a solder material.
  • bonding layers 170 and 180 are not necessarily configured by a single layer, and may be configured by a plurality of layers.
  • the thickness of the bonding layer (in the case of a plurality of layers, the total thickness) is not limited to this, but may be, for example, in the range of 10 ⁇ m to 1000 ⁇ m.
  • the spacer 190 may have the same material, shape, and / or dimensions as the spacer used in typical vacuum double glazing.
  • FIG. 4 schematically shows a flow of a manufacturing method (first manufacturing method) of vacuum double-glazed glass according to an embodiment of the present invention.
  • the first manufacturing method is: (A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Preparing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil; (Step S110); (B) disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position or an outer peripheral position; A first assembly configuration step (step S120), arranged to be in contact with one bonding layer; (C) A metal foil fixing step (step S130) of heat-treating the first assembly to fix the metal foil on the first glass substrate; (D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is A second assembly configuration step (step S140), wherein the second bonding layer is disposed so that the third surface is on the metal foil side in a state of non-contact with the first assembly
  • step S150 for joining the second glass substrate to the first assembly through a layer
  • step S160 for unloading the joined body from the vacuum chamber
  • Step S110 First, a first glass substrate 210 having a frame-shaped first bonding layer 270 as shown in FIG. 5, a second glass substrate 220 having a frame-shaped second bonding layer 280, and a frame-shaped metal foil. 260 is prepared.
  • the first glass substrate 210 having the frame-shaped first bonding layer 270 is manufactured as follows.
  • a first glass substrate 210 having first and second surfaces 212 and 214 is prepared.
  • a frame-shaped first bonding layer 270 is formed on the first surface 212 of the first glass substrate 210 by the following method.
  • the material of the first bonding layer 270 is not particularly limited, but here, in the case where the first bonding layer 270 is formed of a vitrified layer, the first glass substrate 210 is formed as an example. A method for forming the first bonding layer 270 on the first surface 212 will be described.
  • a paste for the vitrified layer is prepared.
  • the paste includes glass frit, ceramic particles, a polymer, an organic binder, and the like.
  • the ceramic particles may be omitted.
  • the glass frit finally becomes a glass component constituting the vitrified layer.
  • the prepared paste is applied around the first surface 212 of the first glass substrate 210.
  • the first glass substrate 210 containing the paste is dried.
  • the conditions for the drying treatment are not particularly limited as long as the organic binder in the paste is removed.
  • the drying process may be performed, for example, by holding the first glass substrate 210 at a temperature of 100 ° C. to 200 ° C. for about 30 minutes to 1 hour.
  • the first glass substrate 210 is heat-treated at a high temperature.
  • the conditions for the heat treatment are not particularly limited as long as the polymer contained in the paste is removed.
  • the heat treatment may be performed, for example, by holding the first glass substrate 210 in a temperature range of 300 ° C. to 470 ° C. for about 30 minutes to 1 hour. Thereby, a paste is baked and a glass solidification layer is formed.
  • the frame-shaped second bonding layer 280 can be formed on the third surface 222 of the second glass substrate 220 by the same method.
  • Step S120 Next, the metal foil 260 is disposed on the first surface 212 of the first glass substrate 210 to form the first assembly 203.
  • FIG. 6 schematically shows the first assembly 203.
  • 6A is a schematic perspective view of the first assembly 203
  • FIG. 6B is a schematic cross-sectional view of the first assembly 203.
  • the metal foil 260 is disposed so as to come into contact with the first bonding layer 270 on the inner peripheral side as viewed from above.
  • the metal foil 260 may be disposed so as to be in contact with the first bonding layer 270 on the outer peripheral side in a top view.
  • Step S130 Next, the first assembly 203 is heated to melt and soften the first bonding layer 270. As a result, the metal foil 260 is bonded to the first glass substrate 210.
  • the heating temperature is not particularly limited as long as the first bonding layer 270 is melted and softened.
  • the heating temperature may be in the range of 400 ° C. to 600 ° C., for example.
  • the metal foil 260 In the heat treatment of the first assembly 203, a weight is placed on the metal foil 260, and a pressing pressure is applied from above. For this reason, the metal foil 260 does not deform (thermally expand) during heating. Therefore, when the first assembly 203 is cooled, as shown in FIG. 6, the metal foil 260 is in a predetermined position with respect to the first bonding layer 270 (for example, the first bonding layer 270 is fixed such that 270 is on the inner peripheral side of the metal foil 260.
  • Step S140 Next, the second glass substrate 220 is disposed on the first assembly 203 in which the first bonding layer 270 and the metal foil 260 are bonded, and the second assembly 205 is configured.
  • FIG. 7 shows a schematic cross-sectional view of the second assembly 205.
  • the second glass substrate 220 has a third surface 222 and a fourth surface 224. Further, when the second assembly 205 is configured, the second glass substrate 220 is arranged such that the third surface 222 side on which the second bonding layer 280 is formed becomes the first assembly 203 side. Placed in.
  • the second glass substrate 220 is disposed on the first assembly 203 so as to be in a non-contact state with the first assembly 203.
  • a non-contact state can be realized, for example, by using a support member (not shown) that supports the second glass substrate 220 on the top of the first assembly 203.
  • the first assembly 203 is disposed on the lower side, and the second glass substrate 220 is disposed on the upper side.
  • the second assembly may be configured such that the first assembly 203 is disposed on the upper side and the second glass substrate 220 is disposed on the lower side.
  • Step S150 Next, the second assembly 205 is carried into the vacuum chamber.
  • the inside of the vacuum chamber may be in a depressurized state before the second assembly 205 is introduced.
  • the inside of the vacuum chamber may be decompressed after the second assembly 205 is introduced.
  • the pressure in the vacuum chamber in the reduced pressure state may be in the range of 1 ⁇ 10 ⁇ 5 Pa to 10 Pa, for example.
  • the space between the first assembly 203 and the second glass substrate 220 reaches a sufficiently reduced pressure state.
  • the support member that supports the second glass substrate 220 is removed, and the second glass substrate 220 falls onto the upper portion of the first assembly 203.
  • the 3rd assembly 207 of the state which the 2nd joining layer 280 and the metal foil 260 contacted is comprised.
  • FIG. 8 shows a schematic cross-sectional view of such a third assembly 207. It will be apparent that in the third assembly 207, the gap 230 formed between the glass substrates 210 and 220 is in a reduced pressure state.
  • the third assembly 207 is heated in the vacuum chamber.
  • a weight may be placed on the third assembly 207.
  • the second bonding layer 280 is distributed uniformly around the periphery of the third assembly 207, and more between the first glass substrate 210 and the second glass substrate 220. Good bonding can be obtained.
  • the heating temperature is not particularly limited as long as the second bonding layer 280 is melted and softened.
  • the heating temperature may be in the range of 400 ° C. to 600 ° C., for example.
  • the heating temperature in this step may be substantially the same as the heating temperature in step S130 described above.
  • the heating temperature in this step may be substantially higher than the heating temperature in step S130 described above.
  • the metal foil 260 is already bonded to the first bonding layer 270, and the position on the inner peripheral side is solidified. For this reason, even if the 3rd assembly 207 is heated within a vacuum chamber, the position with respect to the 1st joining layer 270 of the metal foil 260 does not change. Even if the metal foil 260 extends outward, there is no problem that the metal foil 260 does not come into contact with the second bonding layer 280.
  • a seal member in which the metal foil 260 and the first and second bonding layers 270 and 280 are arranged in a predetermined positional relationship is formed.
  • the 1st glass substrate 210 and the 2nd glass substrate 220 are joined via a sealing member, and a joined body is manufactured.
  • Step S160 Thereafter, the joined body is unloaded from the vacuum chamber.
  • the metal foil 260 is hardly displaced during the heat treatment for bonding the first glass substrate 210 and the second glass substrate 220 in the vacuum chamber.
  • FIG. 9 schematically shows a flow of another manufacturing method (second manufacturing method) of vacuum double-glazed glass according to an embodiment of the present invention.
  • the second manufacturing method is (A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Preparing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil; (Step S210); (B) a step of disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position and an outer peripheral position, A first assembly configuration step (step S220), arranged to be in contact with the first bonding layer and the third bonding layer; (C) A metal foil fixing step (step S230) of heat-treating the first assembly to fix the metal foil on the first glass substrate; (D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is A second assembly configuration step (step S240), wherein the second bonding layer is disposed so that the third surface is on the metal foil side in
  • step S250 A joined body configuration step for joining the second glass substrate to the first assembly through a layer
  • step S260 A joined body unloading step for unloading the joined body from the vacuum chamber
  • step S270 A bonded body cutting step (step S270), which is performed when necessary, and cuts the bonded body so that the first bonding layer and the second bonding layer remain.
  • Step S210 First, as shown in FIG. 10, a first glass substrate 310 having a first bonding layer 370 and a third bonding layer 372, a second glass substrate 320 having a second bonding layer 380, and a frame-like shape A metal foil 360 is prepared.
  • the first glass substrate 310 has a first surface 312 and a second surface 314, and the first bonding layer 370 and the third bonding layer 372 are formed on the first surface 312.
  • the second glass substrate 320 has a third surface 322 and a fourth surface 324, and the second bonding layer 380 is formed on the third surface 322.
  • the arrangement positions of the first bonding layer 370, the second bonding layer 380, and the third bonding layer 372 are as viewed from above when the first and second glass substrates 310 and 320 are superposed in a predetermined arrangement.
  • the first bonding layer 370 is the innermost side
  • the third bonding layer 372 is the outermost side.
  • first bonding layer 370 the second bonding layer 380, and the third bonding layer 372 is the same as in the case of the first manufacturing method described above, and will not be described further here.
  • Step S220 Next, as shown in FIG. 11, the metal foil 360 is disposed on the first surface 312 of the first glass substrate 310, and the first assembly 303 is configured.
  • the metal foil 360 is in contact with the first bonding layer 370 on the inner peripheral side of the metal foil 360 as viewed from above, and the third bonding layer 372 on the outer peripheral side of the metal foil 360. Arranged to touch.
  • Step S230 Next, the first assembly 303 is heated to melt and soften the first and third bonding layers 370 and 372. Thereby, the metal foil 360 is bonded to the first glass substrate 310.
  • the metal foil 360 has the first bonding layer 370 disposed on the inner peripheral side and the third bonding layer on the outer peripheral side. 372 is arranged and fixed on the first glass substrate 310.
  • Step S240 Next, the second glass substrate 320 is disposed on the first assembly 303 to form the second assembly 305.
  • FIG. 12 shows a schematic cross-sectional view of the second assembly 305.
  • the second glass substrate 320 has a first surface 303 on the third surface 322 side on which the second bonding layer 380 is formed. It is arranged to be on the side.
  • the second glass substrate 320 is disposed on the first assembly 303 so as to be in a non-contact state with the first assembly 303.
  • the arrangement relationship of the bonding layers 370, 372, and 380 is that the first bonding layer 370 is the innermost side and the third bonding layer 372 is the outermost side, as described above. (See FIG. 12).
  • Step S250 Next, the second assembly 305 is carried into the vacuum chamber. Further, after a predetermined time elapses, the second glass substrate 320 falls onto the upper part of the first assembly 303. Thereby, the 3rd assembly 307 of the state which the 2nd joining layer 380 and the metal foil 360 contacted is comprised.
  • FIG. 13 shows a schematic cross-sectional view of such a third assembly 307. It will be apparent that in the third assembly 307, the gap 330 formed between the glass substrates 310 and 320 is in a reduced pressure state.
  • a sealing member in which the metal foil 360 and the first to third bonding layers 370, 372, and 380 are arranged in a predetermined positional relationship is formed by the same heat treatment as in the first manufacturing method.
  • the 1st glass substrate 310 and the 2nd glass substrate 320 are joined via a sealing member, and a joined body is manufactured.
  • the metal foil 360 is fixed by the first bonding layer 370 on the inner peripheral side and fixed by the third bonding layer 372 on the outer peripheral side before the heat treatment in the vacuum chamber. ing. For this reason, during the heat treatment, the metal foil 260 is difficult to extend in both the outer and inner directions of the second assembly 205. As a result, in the second manufacturing method, both movement and deformation (expansion) of the metal foil 260 that can occur during the heat treatment can be suppressed.
  • a sealing member can be configured.
  • Step S260 Thereafter, the joined body is unloaded from the vacuum chamber.
  • Step S270 A vacuum double-glazed glass can be manufactured by the process up to step S260. However, if necessary, a joined body cutting step may be performed after step S260.
  • FIG. 14 schematically shows a cross section of the joined body 309 before and after the cutting step.
  • the broken line indicates the shape of the bonded body 309 before cutting
  • the solid line indicates the shape of the bonded body 309 after cutting.
  • the periphery of the bonded body 309 is cut and removed. More specifically, the bonded body 309 is cut at a position where the first bonding layer 370 and the second bonding layer 380 are left and the second bonding layer 372 is removed.
  • a known method can be applied as the cutting method. For example, in the case of cutting with a water jet, the first glass substrate 310, the second glass substrate 320, and the metal foil 360 can be cut at a time.
  • the width of the seal member can be reduced.
  • a cutting step of the peripheral end of the joined body may be performed.
  • This step is significant in the case where the first bonding layer is disposed on the inner peripheral side of the metal foil. This is because in this aspect, the outer periphery of the metal foil tends to extend outward due to the heat treatment in the vacuum chamber.
  • the timing for installing the spacer 190 shown in FIG. 2 is not particularly mentioned.
  • the spacer 190 is preliminarily installed on the first and / or second glass substrate in the step S110, or is installed when the second assembly is configured in the step S140. It will be apparent to those skilled in the art that it may be installed.
  • the present invention can be used for vacuum double glazing and the like used for window glass of buildings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

A production method for vacuum multilayer glass, having: a step in which a first glass substrate having a frame-shaped first bonding layer, a second glass substrate having a frame-shaped second bonding layer, and a frame-shaped metal box are prepared; a step in which the metal box is arranged upon the first glass substrate and a first assembly is prepared, said metal box being arranged at an inner peripheral position or an outer peripheral position so as to be in contact with the first bonding layer; a step in which the first assembly is heat treated and the metal box is fixed upon the first glass substrate; a step in which the second glass substrate is arranged on the metal box side of the first assembly, and a second assembly is prepared; and a step in which the second assembly is held in a reduced-pressure environment and the second glass substrate is bonded to the first assembly via the second bonding layer.

Description

真空複層ガラスの製造方法Method for producing vacuum double-glazed glass
 本発明は、真空複層ガラスの製造方法に関する。 The present invention relates to a method for producing a vacuum double-glazed glass.
 一対のガラス基板の間に、低圧または真空状態に保持された間隙部を有する、いわゆる「真空複層ガラス」は、優れた断熱効果を有するため、例えばビルおよび住宅等の建築物用の窓ガラス用途に広く利用されている。 A so-called “vacuum double-glazed glass” having a gap held between a pair of glass substrates at a low pressure or in a vacuum state has an excellent heat insulating effect, and thus, for example, a window glass for buildings such as buildings and houses. Widely used in applications.
 真空複層ガラスは、以下のように製造される。まず、第1のガラス基板と、第2のガラス基板とを準備する。一方のガラス基板の表面には、周囲に沿って、接合層が形成されている。次に、第1および第2のガラス基板を、両者が接合層を介して対向するように積層して、組立体を構成する。次に、この組立体を加熱して、接合層を溶融、軟化させ、両ガラス基板を接合する。これにより、両ガラス基板の間には、間隙部が形成される。次に、第1のガラス基板に予め設けられていた開口を利用して、間隙部内が減圧処理される。その後、減圧処理に利用された開口が封止され、真空複層ガラスが製造される(特許文献1)。 Vacuum multi-layer glass is manufactured as follows. First, a first glass substrate and a second glass substrate are prepared. A bonding layer is formed on the surface of one glass substrate along the periphery. Next, the first and second glass substrates are laminated so that both are opposed to each other through the bonding layer to form an assembly. Next, this assembly is heated to melt and soften the bonding layer and bond both glass substrates. Thereby, a gap is formed between the two glass substrates. Next, the inside of the gap is decompressed using an opening provided in advance in the first glass substrate. Then, the opening utilized for the decompression process is sealed, and a vacuum double-glazed glass is manufactured (Patent Document 1).
特開平10-2161号公報Japanese Patent Laid-Open No. 10-2161
 前述のように、従来の真空複層ガラスの製造方法では、ガラス基板に設けられた開口を利用して、組立体の間隙部内を減圧処理する工程、およびその後の開口を封止処理する工程が含まれる。 As described above, in the conventional method for manufacturing a vacuum double-glazed glass, the step of decompressing the inside of the gap of the assembly using the opening provided in the glass substrate and the step of sealing the subsequent opening are performed. included.
 しかしながら、このような製造方法は、いわゆる「バッチ式」では実施できるものの、「流れ方式」で実施することは難しい。すなわち、従来の製造方法では、生産ライン等において、流れ作業的に真空複層ガラスを連続的に製造することには適していない。このため、生産効率の観点から、真空複層ガラスを真空チャンバ内で流れ作業的に製造する技術が要望されている。 However, although such a manufacturing method can be carried out by the so-called “batch type”, it is difficult to carry out by the “flow type”. That is, the conventional manufacturing method is not suitable for continuously manufacturing the vacuum double-glazed glass in a flow operation on a production line or the like. For this reason, from the viewpoint of production efficiency, there is a demand for a technique for manufacturing a vacuum double-glazed glass in a vacuum chamber.
 ところで、真空複層ガラスの中には、周囲のシール構造に金属箔が含まれるものがある。このシール構造は、第1のガラス基板の周囲に設置された第1の接合層と、第2のガラス基板の周囲に設置された第2の接合層の間に、額縁状の金属箔を介在させることにより構成される。 By the way, some vacuum double-glazed glass includes metal foil in the surrounding sealing structure. In this sealing structure, a frame-shaped metal foil is interposed between the first bonding layer installed around the first glass substrate and the second bonding layer installed around the second glass substrate. It is comprised by letting.
 ところが、そのようなシール構造を有する真空複層ガラスを「流れ方式」で製造しようとした場合、真空チャンバ内で間隙部を真空にするために、例えば第2のガラス基板を第1のガラス基板に対して離した状態で加熱することになるが、加熱により第1および第2の接合層を溶融、軟化させ、第1および第2のガラス基板を相互に接合する際に、金属箔に「位置ずれ」が生じてしまう。 However, when vacuum multilayer glass having such a sealing structure is to be manufactured by the “flow method”, for example, the second glass substrate is replaced with the first glass substrate in order to evacuate the gap in the vacuum chamber. However, when the first and second bonding layers are melted and softened by heating and the first and second glass substrates are bonded to each other, “Position shift” occurs.
 図1を用いて、この問題についてより詳しく説明する。 This problem will be described in more detail with reference to FIG.
 図1には、真空チャンバ内で第1および第2のガラス基板110、120を加熱し、両者を接合する際の様子を示す。 FIG. 1 shows a state in which the first and second glass substrates 110 and 120 are heated and bonded together in a vacuum chamber.
 図1に示すように、真空チャンバ内で第1および第2のガラス基板110、120を相互に接合する場合、まず、真空チャンバ内で、第1の接合層170を有する第1のガラス基板110、額縁状の金属箔160、および第2の接合層180を有する第2のガラス基板120が準備され、例えば支持部材によって、第2のガラス基板120は、第1のガラス基板110、額縁状の金属箔160から離れた状態に維持された組立体101が形成される。この段階では、金属箔160は、図1の破線で示される位置160A(破線)に配置されている。 As shown in FIG. 1, when the first and second glass substrates 110 and 120 are bonded to each other in the vacuum chamber, first, the first glass substrate 110 having the first bonding layer 170 in the vacuum chamber. The second glass substrate 120 having the frame-shaped metal foil 160 and the second bonding layer 180 is prepared. For example, the second glass substrate 120 is formed of the first glass substrate 110 and the frame shape by a supporting member. An assembly 101 is formed that is maintained away from the metal foil 160. At this stage, the metal foil 160 is disposed at a position 160A (broken line) indicated by a broken line in FIG.
 次に、第1の接合層170および第2の接合層180を溶融、軟化させるため、組立体101を加熱すると、第1および第2のガラス基板110、120と、金属箔160との間の熱膨張の差異によって、金属箔160は、第1および第2の接合層170、180に対して位置がずれる。すなわち、金属箔160は、加熱によって外側(図1の右方向)に向かって延伸するとともに、この挙動に追随するように金属箔160は、図1の位置160B(実線)に示すように、位置が外側に移動する。 Next, in order to melt and soften the first bonding layer 170 and the second bonding layer 180, when the assembly 101 is heated, a gap between the first and second glass substrates 110 and 120 and the metal foil 160 is obtained. Due to the difference in thermal expansion, the metal foil 160 is displaced with respect to the first and second bonding layers 170 and 180. That is, the metal foil 160 is stretched toward the outside (right direction in FIG. 1) by heating, and the metal foil 160 is positioned as shown by a position 160B (solid line) in FIG. 1 so as to follow this behavior. Moves outward.
 金属箔160にこのような位置ずれが生じた状態で、第1および第2のガラス基板110、120を重ね合わせて相互に接合すると、金属箔160と第1および第2の接合層170、180とが所望の位置関係で配置されたシール部材150を形成することができなくなる。特に、この挙動が顕著になると、金属箔160が下側の表面で第1の接合層170と接触しなくなり、シール部材150そのものが形成できなくなるという問題が生じる。 When the first and second glass substrates 110 and 120 are overlapped and bonded to each other in a state where such a positional deviation has occurred in the metal foil 160, the metal foil 160 and the first and second bonding layers 170 and 180 are bonded together. And the sealing member 150 arranged in a desired positional relationship cannot be formed. In particular, when this behavior becomes remarkable, there arises a problem that the metal foil 160 does not come into contact with the first bonding layer 170 on the lower surface, and the seal member 150 itself cannot be formed.
 従って、真空複層ガラスを上記のような「流れ方式」で製造する際には、金属箔に位置ずれが生じ難いプロセスを確立する必要が生じると考えられる。 Therefore, when manufacturing the vacuum double-glazed glass by the “flow method” as described above, it is considered that it is necessary to establish a process in which the displacement of the metal foil hardly occurs.
 本発明は、このような背景に鑑みなされたものであり、本発明では、真空複層ガラスを「流れ方式」で製造する際に、シール構造を構成する金属箔に位置ずれが生じ難い真空複層ガラスの製造方法を提供することを目的とする。 The present invention has been made in view of such a background. In the present invention, when a vacuum double-layer glass is manufactured by a “flow method”, the metal foil constituting the seal structure is unlikely to be displaced. It aims at providing the manufacturing method of layer glass.
 本発明では、相互に対向する第1のガラス基板と第2のガラス基板との間に、減圧された間隙部を備える真空複層ガラスの製造方法であって、
 (a)第1および第2の表面を有し、前記第1の表面に額縁状の第1の接合層を有する第1のガラス基板、第3および第4の表面を有し、前記第3の表面に額縁状の第2の接合層を有する第2のガラス基板、ならびに額縁状の金属箔を準備するステップと、
 (b)前記第1のガラス基板の前記第1の表面に前記金属箔を配置し第1の組立体を構成するステップであって、前記金属箔は、内周位置または外周位置で、前記第1の接合層と接触するように配置されるステップと、
 (c)前記第1の組立体を熱処理して、前記第1のガラス基板上に前記金属箔を固定化するステップと、
 (d)前記第1の組立体の前記金属箔側に、前記第2のガラス基板を配置して、第2の組立体を構成するステップであって、前記第2のガラス基板は、前記第2の接合層が前記第1の組立体に対して非接触の状態で、前記第3の表面が前記金属箔側となるようにして配置されるステップと、
 (e)前記第2の組立体を真空チャンバに搬入し、接合体を構成するステップであって、前記第2の組立体を減圧された環境に保持してから、前記第2の接合層を介して前記第2のガラス基板を前記第1の組立体と接合させるステップと、
 (f)前記接合体を前記真空チャンバから搬出するステップと、
 を有する真空複層ガラスの製造方法が提供される。
In the present invention, there is provided a method for producing a vacuum multi-layer glass comprising a decompressed gap between a first glass substrate and a second glass substrate facing each other,
(A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Providing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil;
(B) disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position or an outer peripheral position; A step arranged to contact one bonding layer;
(C) heat-treating the first assembly to fix the metal foil on the first glass substrate;
(D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is Two bonding layers are arranged in a non-contact state with respect to the first assembly, and the third surface is disposed on the metal foil side;
(E) carrying the second assembly into a vacuum chamber to form a joined body, the second assembly being held in a decompressed environment, and then the second joining layer being Bonding the second glass substrate to the first assembly via:
(F) unloading the joined body from the vacuum chamber;
A method for producing a vacuum double-glazed glass is provided.
 ここで、本発明による製造方法では、
 前記(a)のステップにおいて、前記額縁状の第1の接合層は、2つ存在し、
 前記(b)のステップにおいて、前記金属箔は、内周位置および外周位置の両位置で、前記第1の接合層と接触するように配置されても良い。
Here, in the manufacturing method according to the present invention,
In the step (a), there are two frame-shaped first bonding layers,
In the step (b), the metal foil may be disposed so as to be in contact with the first bonding layer at both an inner peripheral position and an outer peripheral position.
 また、本発明による製造方法は、さらに、
 (g)前記(f)のステップの後、前記第1の接合層の内側の接合層および前記第2の接合層が残されるようにして、前記接合体を切断するステップ
 を有しても良い。
The manufacturing method according to the present invention further includes:
(G) After the step (f), the method may include a step of cutting the joined body such that the joining layer inside the first joining layer and the second joining layer remain. .
 また、本発明による製造方法において、前記接合層は、ガラス固化層を有しても良い。 Moreover, in the manufacturing method according to the present invention, the bonding layer may have a vitrified layer.
 本発明では、真空複層ガラスを「流れ方式」で製造する際に、シール構造を構成する金属箔に位置ずれが生じ難い真空複層ガラスの製造方法を提供することができる。 The present invention can provide a method for producing a vacuum double-glazed glass that is less likely to be displaced in the metal foil constituting the seal structure when the vacuum double-glazed glass is produced by the “flow method”.
真空チャンバ内で第1および第2のガラス基板を加熱し、両者を接合する際の課題を概略的に示した図である。It is the figure which showed schematically the subject at the time of heating the 1st and 2nd glass substrate within a vacuum chamber, and joining both. 本発明の製造方法によって製造され得る真空複層ガラスの構成の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the vacuum multilayer glass which can be manufactured with the manufacturing method of this invention. 本発明の一実施例により、真空チャンバ内で第1および第2のガラス基板を加熱し、両者を接合する際の様子を概略的に示した図である。It is the figure which showed the mode at the time of heating the 1st and 2nd glass substrate within a vacuum chamber, and joining both by one Example of this invention. 本発明の一実施例による真空複層ガラスの製造方法を概略的に示したフロー図である。It is the flowchart which showed schematically the manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of the manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of the manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of the manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of the manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの別の製造方法を概略的に示したフロー図である。It is the flowchart which showed schematically another manufacturing method of the vacuum double layer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの別の製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of another manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの別の製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of another manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの別の製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of another manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの別の製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of another manufacturing method of the vacuum multilayer glass by one Example of this invention. 本発明の一実施例による真空複層ガラスの別の製造方法のある工程における態様を概略的に示した図である。It is the figure which showed schematically the aspect in a certain process of another manufacturing method of the vacuum multilayer glass by one Example of this invention.
 以下、図面を参照して、本発明について説明する。 Hereinafter, the present invention will be described with reference to the drawings.
 (真空複層ガラスの構成について)
 まず、図2を参照して、本発明の製造方法によって製造され得る真空複層ガラスの構成の一例について、簡単に説明する。
(About the structure of the vacuum double-layer glass)
First, with reference to FIG. 2, an example of the structure of the vacuum double-layer glass that can be produced by the production method of the present invention will be briefly described.
 図2には、真空複層ガラスの構成の一例を概略的に示す。 FIG. 2 schematically shows an example of the structure of the vacuum double-glazed glass.
 図2に示すように、この真空複層ガラス100は、第1のガラス基板110と、第2のガラス基板120と、両ガラス基板110、120の間に構成された間隙部130と、該間隙部130を取り囲むシール部材150とを有する。 As shown in FIG. 2, the vacuum double-glazed glass 100 includes a first glass substrate 110, a second glass substrate 120, a gap 130 formed between the two glass substrates 110, 120, and the gap And a seal member 150 surrounding the portion 130.
 第1のガラス基板110は、第1の表面112および第2の表面114を有する。真空複層ガラス100において、第1のガラス基板110は、第2の表面114の側が外側となるようにして配置される。同様に、第2のガラス基板120は、第3の表面122および第4の表面124を有する。真空複層ガラス100において、第2のガラス基板120は、第4の表面124の側が外側となるようにして配置される。従って、間隙部130は、第1のガラス基板110の第1の表面112と、第2のガラス基板120の第3の表面122との間に形成される。 The first glass substrate 110 has a first surface 112 and a second surface 114. In the vacuum multi-layer glass 100, the first glass substrate 110 is disposed so that the second surface 114 side is the outside. Similarly, the second glass substrate 120 has a third surface 122 and a fourth surface 124. In the vacuum double-glazed glass 100, the second glass substrate 120 is disposed such that the fourth surface 124 side is the outside. Accordingly, the gap 130 is formed between the first surface 112 of the first glass substrate 110 and the third surface 122 of the second glass substrate 120.
 間隙部130内は、真空状態に維持される。なお、本願において、「真空状態」と言う用語は、高真空状態の他、低圧(減圧)状態を含む概念である。間隙部130の真空度は、特に限られず、大気圧よりも低いいかなる圧力であっても良い。一般に、間隙部130の圧力は、0.2Pa~0.001Pa程度である。 The inside of the gap 130 is maintained in a vacuum state. In the present application, the term “vacuum state” is a concept that includes a low pressure (decompression) state in addition to a high vacuum state. The degree of vacuum of the gap 130 is not particularly limited, and may be any pressure lower than atmospheric pressure. In general, the pressure in the gap 130 is about 0.2 Pa to 0.001 Pa.
 必要な場合、真空複層ガラス100は、間隙部130内に、1または2以上のスペーサ190を有しても良い。 If necessary, the vacuum multilayer glass 100 may have one or more spacers 190 in the gap 130.
 シール部材150は、間隙部130を密閉保持するための部材であり、シール部材150は、間隙部130の周囲にわたって構成される。 The seal member 150 is a member for hermetically holding the gap portion 130, and the seal member 150 is configured around the gap portion 130.
 図2の例では、シール部材150は、金属箔160と、第1の接合層170と、第2の接合層180とを有する。 2, the seal member 150 includes a metal foil 160, a first bonding layer 170, and a second bonding layer 180.
 第1の接合層170は、第1のガラス基板110の第1の表面112側に、第1のガラス基板110の周囲にわたって、「額縁状」に設置されている。同様に、第2の接合層180は、第2のガラス基板120の第3の表面122側に、第2のガラス基板120の周囲にわたって、「額縁状」に設置されている。 The first bonding layer 170 is provided in a “frame shape” around the first glass substrate 110 on the first surface 112 side of the first glass substrate 110. Similarly, the second bonding layer 180 is provided in a “frame shape” around the second glass substrate 120 on the third surface 122 side of the second glass substrate 120.
 なお、本願において、「額縁状」という用語は、平面視において、平板形状の内部が取り除かれ、外側輪郭および内側輪郭を有する「枠」で構成された形状の総称を意味する。ただし、「額縁状」の部材の外側輪郭および/または内側輪郭は、必ずしも額のような略直方体の形状に限られず、例えば、三角形、略三角形、台形、略台形、五角形、および略五角形などの多角形、ならびに円形、略円形、略円形、楕円形、または略楕円形の形状であっても良い。また、「額縁状」の部材の外側輪郭と内側輪郭は、必ずしも相似形である必要はなく、両者は、例えば、異なる形状であっても良い。 In the present application, the term “frame shape” means a general term for a shape composed of a “frame” having an outer contour and an inner contour, with the inside of a flat plate shape removed in plan view. However, the outer contour and / or inner contour of the “frame-shaped” member is not necessarily limited to a substantially rectangular parallelepiped shape such as a forehead. For example, a triangular shape, a substantially triangular shape, a trapezoidal shape, a substantially trapezoidal shape, a pentagonal shape, a substantially pentagonal shape, etc. It may be a polygonal shape as well as a circular, substantially circular, substantially circular, elliptical, or substantially elliptical shape. Further, the outer contour and the inner contour of the “frame-shaped” member are not necessarily similar, and both may be different shapes, for example.
 同様に、金属箔160は、額縁状の形状を有する。金属箔160の第1の表面162は、一部が第1のガラス基板110上の第1の接合層170と接合されており、金属箔160の第2の表面164は、一部が第2のガラス基板110上の第2の接合層180と接合されている。 Similarly, the metal foil 160 has a frame shape. A part of the first surface 162 of the metal foil 160 is bonded to the first bonding layer 170 on the first glass substrate 110, and a part of the second surface 164 of the metal foil 160 is the second. The second bonding layer 180 on the glass substrate 110 is bonded.
 ここで、図2からは明確ではないが、金属箔160の第1の表面162は、第1の接合層170と接合された接合部分以外の箇所では、他の部材とは接合されておらず、金属箔160の第2の表面164は、第2の接合層180と接合された接合部分以外の箇所では、他の部材とは接合されていない。 Here, although it is not clear from FIG. 2, the first surface 162 of the metal foil 160 is not joined to other members at a place other than the joined portion joined to the first joining layer 170. The second surface 164 of the metal foil 160 is not joined to another member at a place other than the joined portion joined to the second joining layer 180.
 なお、図2の例では、真空複層ガラス100を上部(厚さ方向:図2のZ方向)から見たとき、第1の接合層170は、第2の接合層180とは位置がずれており、第1の接合層170は、第2の接合層180よりも内側に配置される。しかしながら、これは一例であって、第1の接合層170は、第2の接合層180よりも外側に配置されても良い。 In the example of FIG. 2, when the vacuum double-glazed glass 100 is viewed from the top (thickness direction: Z direction in FIG. 2), the first bonding layer 170 is displaced from the second bonding layer 180. The first bonding layer 170 is disposed on the inner side of the second bonding layer 180. However, this is an example, and the first bonding layer 170 may be disposed outside the second bonding layer 180.
 また、図2の例では、金属箔160は、断面で見たとき、直線的に折れ曲がった輪郭の「段差」形状を有する。しかしながら、金属箔160の形状は、特に限られない。例えば、金属箔160は、断面で見たとき、曲線的に湾曲した形状、または直線と曲線の組み合わせで構成された輪郭を有しても良い。あるいは、金属箔160は、断面で見たとき、略平坦な形状を有しても良い。 Further, in the example of FIG. 2, the metal foil 160 has a “step” shape with a contour that is linearly bent when viewed in cross section. However, the shape of the metal foil 160 is not particularly limited. For example, when viewed in cross section, the metal foil 160 may have a curved shape, or a contour composed of a combination of straight lines and curves. Alternatively, the metal foil 160 may have a substantially flat shape when viewed in cross section.
 このようなシール部材150を備える真空複層ガラス100は、金属部材160の変形能により、熱応力による変形の影響を有意に抑制することができる。例えば、真空複層ガラス100の使用中に、第1のガラス基板110と第2のガラス基板120との間に温度差が生じた場合でも、金属部材160の第1のガラス基板110の第1の表面112と平行な方向(図2のX方向)における変形能のため、両ガラス基板110、120の間の熱膨張の差異の影響を緩和することが可能となる。従って、変形の影響を受け難い真空複層ガラスが得られる。 The vacuum double-glazed glass 100 provided with such a sealing member 150 can significantly suppress the influence of deformation due to thermal stress due to the deformability of the metal member 160. For example, even when a temperature difference occurs between the first glass substrate 110 and the second glass substrate 120 during use of the vacuum multilayer glass 100, the first glass substrate 110 of the metal member 160 is first. Due to the deformability in the direction parallel to the surface 112 (X direction in FIG. 2), the influence of the difference in thermal expansion between the two glass substrates 110 and 120 can be reduced. Therefore, a vacuum double-glazed glass that is hardly affected by deformation is obtained.
 ところで、このようなシール部材150を備える真空複層ガラス100を、「流れ方式」で製造しようとした場合、真空チャンバ内で間隙部を真空にするために、例えば第2のガラス基板を第1のガラス基板に対して離した状態で加熱することになるが、加熱により第1および第2の接合層170、180を溶融、軟化させ、第1および第2のガラス基板110、120を相互に接合する際に、金属箔160に「位置ずれ」が生じやすい。 By the way, when it is going to manufacture the vacuum multilayer glass 100 provided with such a sealing member 150 by a "flow system", in order to make a gap | interval part into a vacuum in a vacuum chamber, for example, a 2nd glass substrate is made into 1st. The first and second bonding layers 170 and 180 are melted and softened by heating, and the first and second glass substrates 110 and 120 are mutually connected. At the time of joining, the “position shift” is likely to occur in the metal foil 160.
 これに対して、本発明による真空複層ガラスの製造方法では、以降に詳しく説明するように、真空チャンバ内で第1および第2のガラス基板を相互に接合する工程の前に、額縁状の金属箔は、予め内周位置または外周位置で第1の接合層に対して固定されている。 On the other hand, in the method for manufacturing a vacuum double-layer glass according to the present invention, as described in detail later, before the step of bonding the first and second glass substrates to each other in the vacuum chamber, The metal foil is previously fixed to the first bonding layer at the inner peripheral position or the outer peripheral position.
 このため、真空チャンバ内で組立体を加熱しても、金属箔の第1の接合層に対する位置は変化せず、金属箔と第1および第2の接合層との間の位置ずれが生じ難くなる。 For this reason, even if the assembly is heated in the vacuum chamber, the position of the metal foil relative to the first bonding layer does not change, and misalignment between the metal foil and the first and second bonding layers hardly occurs. Become.
 この効果を、図3を用いて説明する。 This effect will be described with reference to FIG.
 図3には、本発明の一実施例により、真空チャンバ内で第1および第2のガラス基板110、120を加熱し、両者を接合する際の様子を概略的に示す。 FIG. 3 schematically shows a state in which the first and second glass substrates 110 and 120 are heated and bonded together in a vacuum chamber according to an embodiment of the present invention.
 本発明の一実施例により、真空チャンバ内で第1および第2のガラス基板110、120を相互に接合する場合、最初に、第1の接合層170を有する第1のガラス基板110上に、所定の位置関係となるように金属箔160が設置される。例えば、図3に示す例では、金属箔160は、上から見たとき、第1の接合層170が金属箔160の内周側に配置されるようにして、ガラス基板110上に配置される。 According to an embodiment of the present invention, when the first and second glass substrates 110 and 120 are bonded to each other in a vacuum chamber, first, on the first glass substrate 110 having the first bonding layer 170, Metal foil 160 is placed so as to have a predetermined positional relationship. For example, in the example illustrated in FIG. 3, the metal foil 160 is disposed on the glass substrate 110 such that the first bonding layer 170 is disposed on the inner peripheral side of the metal foil 160 when viewed from above. .
 次に、このようにして得られた第1の組立体を加熱、冷却し、第1の接合層を溶融、固化する。これにより、第1の接合層170を介して、金属箔160が第1のガラス基板110と接合される。ここで、第1の組立体の加熱の際には、金属箔160の上に重しが載せられ、上部から押し圧が印加される。このため、加熱の際に金属箔160は、変形(熱膨張)しない。 Next, the first assembly thus obtained is heated and cooled, and the first bonding layer is melted and solidified. As a result, the metal foil 160 is bonded to the first glass substrate 110 via the first bonding layer 170. Here, when heating the first assembly, a weight is placed on the metal foil 160, and a pressing pressure is applied from above. For this reason, the metal foil 160 does not deform (thermally expand) during heating.
 次に、真空チャンバ内で第1および第2のガラス基板110、120を相互に接合するため、第1の組立体(すなわち金属箔160が接合された第1のガラス基板110)と、第2のガラス基板120とが、真空チャンバ内で積層され、第2の組立体102が形成される。この段階では、金属箔160は、図3の破線で示される位置(破線)に配置されている。 Next, in order to bond the first and second glass substrates 110 and 120 to each other in the vacuum chamber, a first assembly (that is, the first glass substrate 110 to which the metal foil 160 is bonded), and a second The glass substrate 120 is laminated in a vacuum chamber to form the second assembly 102. At this stage, the metal foil 160 is disposed at a position (broken line) indicated by a broken line in FIG.
 次に、第2の接合層180を溶融、軟化させるため、第2の組立体102を加熱すると、第1および第2のガラス基板110、120と、金属箔160との間の熱膨張の差異によって、金属箔160は、図3の矢印に示すように、外側(図3の右方向)に向かって延伸する。 Next, when the second assembly 102 is heated to melt and soften the second bonding layer 180, the difference in thermal expansion between the first and second glass substrates 110 and 120 and the metal foil 160. As a result, the metal foil 160 extends outward (to the right in FIG. 3) as indicated by the arrows in FIG.
 しかしながら、この第2の組立体102の場合、金属箔160は、予め第1の接合層170と接合されている。このため、真空チャンバ内で第2の組立体102を加熱しても、金属箔160の第1の接合層170に対する位置は変化しない。また、金属箔160が外側に向かって延伸しても、金属箔160が第2の接合層180と接触しなくなるという問題が生じることはない。 However, in the case of the second assembly 102, the metal foil 160 is bonded to the first bonding layer 170 in advance. For this reason, even if the 2nd assembly 102 is heated within a vacuum chamber, the position with respect to the 1st joining layer 170 of the metal foil 160 does not change. Further, even when the metal foil 160 extends outward, the problem that the metal foil 160 does not come into contact with the second bonding layer 180 does not occur.
 その結果、第2の組立体102の加熱後には、金属箔160と、第1および第2の接合層170、180とが所定の位置関係で配置されたシール部材を形成することができる。 As a result, after the second assembly 102 is heated, a seal member in which the metal foil 160 and the first and second bonding layers 170 and 180 are arranged in a predetermined positional relationship can be formed.
 このように、本発明による真空複層ガラスの製造方法では、「流れ方式」で製造しても、金属箔に位置ずれが生じ難く、金属箔と第1および第2の接合層とが所定の位置関係で配置されたシール部材を形成することが可能となる。 As described above, in the method for manufacturing a vacuum double-layer glass according to the present invention, even when manufactured by the “flow method”, the metal foil is unlikely to be displaced, and the metal foil and the first and second bonding layers are in a predetermined state. It is possible to form seal members arranged in a positional relationship.
 なお、図3では、上面視、金属箔160の内周側に第1の接合層170が配置され、金属箔160の外周側に第2の接合層180が配置される場合を例に、本発明の効果について説明した。しかしながら、上面視、金属箔160の外周側に第1の接合層170が配置され、金属箔160の内周側に第2の接合層180が配置される場合であっても、同様の効果が得られることは明らかであろう。この構成の場合、組立体の加熱の際に、金属箔160は、内側に向かって延伸する。しかしながら、この場合も、金属箔160が第2の接合層180と接触しなくなるという問題を有意に回避することができる。 Note that FIG. 3 shows an example in which the first bonding layer 170 is disposed on the inner peripheral side of the metal foil 160 and the second bonding layer 180 is disposed on the outer peripheral side of the metal foil 160 as viewed from above. The effect of the invention has been described. However, the same effect can be obtained even when the first bonding layer 170 is disposed on the outer peripheral side of the metal foil 160 and the second bonding layer 180 is disposed on the inner peripheral side of the metal foil 160 in a top view. It will be clear that it is obtained. In the case of this configuration, the metal foil 160 extends inward when the assembly is heated. However, also in this case, the problem that the metal foil 160 does not come into contact with the second bonding layer 180 can be significantly avoided.
 (真空複層ガラスの構成部材について)
 次に、前述の図2に示した真空複層ガラス100を例に、その構成部材について簡単に説明しておく。
(Constituent members of vacuum double-glazed glass)
Next, the constituent members will be briefly described by taking the vacuum double-glazed glass 100 shown in FIG. 2 as an example.
 (ガラス基板110、120)
  ガラス基板110、120を構成するガラスの組成は、特に限られない。ガラス基板110、120のガラスは、例えば、ソーダライムガラスおよび/または無アルカリガラス等であっても良い。
(Glass substrate 110, 120)
The composition of the glass constituting the glass substrates 110 and 120 is not particularly limited. The glass of the glass substrates 110 and 120 may be, for example, soda lime glass and / or alkali-free glass.
 また、第1のガラス基板110と第2のガラス基板120の組成は、同一であっても異なっていても良い。 Further, the composition of the first glass substrate 110 and the second glass substrate 120 may be the same or different.
 (金属箔160)
 金属箔160を構成する金属材料の種類は、特に限られない。金属箔160は、例えば、アルミニウムおよびアルミニウム合金、銅および銅合金、チタンおよびチタン合金、ならびにステンレス鋼等から選定されても良い。
(Metal foil 160)
The type of the metal material that constitutes the metal foil 160 is not particularly limited. The metal foil 160 may be selected from, for example, aluminum and aluminum alloys, copper and copper alloys, titanium and titanium alloys, and stainless steel.
 金属箔160の厚さは、特に限られないが、例えば5μm~500μmの範囲の厚さを有しても良い。 The thickness of the metal foil 160 is not particularly limited, but may have a thickness in the range of 5 μm to 500 μm, for example.
 (接合層170、180)
 接合層170、180は、熱処理によって、金属箔160と接合することができるものであれば、その材質および構成は、特に限られない。例えば、接合層170、180は、ガラス固化層(軟化点350~600℃)であっても良い。
(Junction layers 170, 180)
The bonding layers 170 and 180 are not particularly limited in material and configuration as long as they can be bonded to the metal foil 160 by heat treatment. For example, the bonding layers 170 and 180 may be vitrified layers (softening point 350 to 600 ° C.).
 ガラス固化層は、ガラスフリットを含むペーストを焼成することにより形成される。ガラス固化層は、ガラス成分を含むが、さらにセラミック粒子を含んでも良い。 The vitrified layer is formed by firing a paste containing glass frit. The vitrified layer contains a glass component, but may further contain ceramic particles.
 ガラス固化層に含まれるガラス成分の組成は、特に限られない。ガラス固化層に含まれるガラス成分は、例えば、ZnO-Bi-B系またはZnO-SnO-P系のガラスであっても良い。 The composition of the glass component contained in the vitrified layer is not particularly limited. The glass component contained in the vitrified layer may be, for example, ZnO—Bi 2 O 3 —B 2 O 3 or ZnO—SnO—P 2 O 5 glass.
 表1には、ガラス固化層に含まれるガラス成分に使用され得る、ZnO-Bi-B系のガラスの組成の一例を示す。また、表2には、ガラス固化層に含まれるガラス成分に使用され得る、ZnO-SnO-P系のガラスの組成の一例を示す。 Table 1 shows an example of the composition of a ZnO—Bi 2 O 3 —B 2 O 3 -based glass that can be used as a glass component contained in the vitrified layer. Table 2 shows an example of the composition of ZnO—SnO—P 2 O 5 based glass that can be used for the glass component contained in the vitrified layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 あるいは、接合層170、180は、ろう材またははんだ材料を含んでも良い。
Figure JPOXMLDOC01-appb-T000002
Alternatively, the bonding layers 170, 180 may include a brazing material or a solder material.
 また、接合層170、180は、必ずしも単一の層で構成される必要はなく、複数の層で構成されても良い。 In addition, the bonding layers 170 and 180 are not necessarily configured by a single layer, and may be configured by a plurality of layers.
 接合層の厚さ(複数の層で構成される場合は、全体の厚さ)は、これに限られるものではないが、例えば、10μm~1000μmの範囲であっても良い。 The thickness of the bonding layer (in the case of a plurality of layers, the total thickness) is not limited to this, but may be, for example, in the range of 10 μm to 1000 μm.
 (スペーサ190)
 スペーサ190は、一般的な真空複層ガラスにおいて使用されるスペーサと同様の材料、形状、および/または寸法を有しても良い。
(Spacer 190)
The spacer 190 may have the same material, shape, and / or dimensions as the spacer used in typical vacuum double glazing.
 (本発明の一実施例による真空複層ガラスの製造方法について)
 次に、図4~図8を参照して、本発明の一実施例による真空複層ガラスの製造方法について、詳しく説明する。
(About the manufacturing method of the vacuum double layer glass by one Example of this invention)
Next, with reference to FIGS. 4 to 8, a method for manufacturing a vacuum double-layer glass according to an embodiment of the present invention will be described in detail.
 図4には、本発明の一実施例による真空複層ガラスの製造方法(第1の製造方法)のフローを概略的に示す。 FIG. 4 schematically shows a flow of a manufacturing method (first manufacturing method) of vacuum double-glazed glass according to an embodiment of the present invention.
 図4に示すように、第1の製造方法は、
 (a)第1および第2の表面を有し、前記第1の表面に額縁状の第1の接合層を有する第1のガラス基板、第3および第4の表面を有し、前記第3の表面に額縁状の第2の接合層を有する第2のガラス基板、ならびに額縁状の金属箔を準備する、準備ステップ(ステップS110)と、
 (b)前記第1のガラス基板の前記第1の表面に前記金属箔を配置し第1の組立体を構成するステップであって、前記金属箔は、内周位置または外周位置で、前記第1の接合層と接触するように配置される、第1の組立体構成ステップ(ステップS120)と、
 (c)前記第1の組立体を熱処理して、前記第1のガラス基板上に前記金属箔を固定化する、金属箔固定ステップ(ステップS130)と、
 (d)前記第1の組立体の前記金属箔側に、前記第2のガラス基板を配置して、第2の組立体を構成するステップであって、前記第2のガラス基板は、前記第2の接合層が前記第1の組立体に対して非接触の状態で、前記第3の表面が前記金属箔側となるようにして配置される、第2の組立体構成ステップ(ステップS140)と、
 (e)前記第2の組立体を真空チャンバに搬入し、接合体を構成するステップであって、前記第2の組立体を減圧された環境に保持してから、加熱により前記第2の接合層を介して前記第2のガラス基板を前記第1の組立体と接合させる、接合体構成ステップ(ステップS150)と、
 (f)前記接合体を前記真空チャンバから搬出する、接合体搬出ステップ(ステップS160)と、
 を有する。
As shown in FIG. 4, the first manufacturing method is:
(A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Preparing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil; (Step S110);
(B) disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position or an outer peripheral position; A first assembly configuration step (step S120), arranged to be in contact with one bonding layer;
(C) A metal foil fixing step (step S130) of heat-treating the first assembly to fix the metal foil on the first glass substrate;
(D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is A second assembly configuration step (step S140), wherein the second bonding layer is disposed so that the third surface is on the metal foil side in a state of non-contact with the first assembly. When,
(E) carrying the second assembly into a vacuum chamber to form a joined body, the second assembly being held in a reduced-pressure environment and then heated to heat the second joint; A joined body configuration step (step S150) for joining the second glass substrate to the first assembly through a layer;
(F) A joined body unloading step (step S160) for unloading the joined body from the vacuum chamber;
Have
 以下、各工程について、詳しく説明する。 Hereinafter, each process will be described in detail.
 (ステップS110)
 まず、図5に示すような額縁状の第1の接合層270を有する第1のガラス基板210、額縁状の第2の接合層280を有する第2のガラス基板220、および額縁状の金属箔260が準備される。
(Step S110)
First, a first glass substrate 210 having a frame-shaped first bonding layer 270 as shown in FIG. 5, a second glass substrate 220 having a frame-shaped second bonding layer 280, and a frame-shaped metal foil. 260 is prepared.
 ここで、額縁状の第1の接合層270を有する第1のガラス基板210は、以下のように製造される。 Here, the first glass substrate 210 having the frame-shaped first bonding layer 270 is manufactured as follows.
 最初に、第1および第2の表面212、214を有する第1のガラス基板210が準備される。次に、以下の方法で、第1のガラス基板210の第1の表面212に、額縁状の第1の接合層270が形成される。 First, a first glass substrate 210 having first and second surfaces 212 and 214 is prepared. Next, a frame-shaped first bonding layer 270 is formed on the first surface 212 of the first glass substrate 210 by the following method.
 (接合層の形成)
 前述のように、第1の接合層270の材質は、特に限られないが、ここでは、第1の接合層270がガラス固化層で形成される場合を例に、第1のガラス基板210の第1の表面212に第1の接合層270を形成する方法について説明する。
(Formation of bonding layer)
As described above, the material of the first bonding layer 270 is not particularly limited, but here, in the case where the first bonding layer 270 is formed of a vitrified layer, the first glass substrate 210 is formed as an example. A method for forming the first bonding layer 270 on the first surface 212 will be described.
 第1のガラス基板210の第1の表面212の周囲に、ガラス固化層を形成する場合、まず、ガラス固化層用のペーストが調製される。通常、ペーストは、ガラスフリット、セラミック粒子、ポリマー、および有機バインダ等を含む。ただし、セラミック粒子は、省略しても良い。ガラスフリットは、最終的に、ガラス固化層を構成するガラス成分となる。 When forming a vitrified layer around the first surface 212 of the first glass substrate 210, first, a paste for the vitrified layer is prepared. Usually, the paste includes glass frit, ceramic particles, a polymer, an organic binder, and the like. However, the ceramic particles may be omitted. The glass frit finally becomes a glass component constituting the vitrified layer.
 調製されたペーストは、第1のガラス基板210の第1の表面212の周囲に塗布される。 The prepared paste is applied around the first surface 212 of the first glass substrate 210.
 次に、ペーストを含む第1のガラス基板210が乾燥処理される。乾燥処理の条件は、ペースト中の有機バインダが除去される条件である限り、特に限られない。乾燥処理は、例えば、第1のガラス基板210を、100℃~200℃の温度に、30分~1時間程度保持することにより実施されても良い。 Next, the first glass substrate 210 containing the paste is dried. The conditions for the drying treatment are not particularly limited as long as the organic binder in the paste is removed. The drying process may be performed, for example, by holding the first glass substrate 210 at a temperature of 100 ° C. to 200 ° C. for about 30 minutes to 1 hour.
 次に、ペーストを仮焼成するため、第1のガラス基板210が高温で熱処理される。熱処理の条件は、ペースト中に含まれるポリマーが除去される条件である限り、特に限られない。熱処理は、例えば300℃~470℃の温度範囲に、第1のガラス基板210を30分~1時間程度保持することにより実施しても良い。これにより、ペーストが焼成され、ガラス固化層が形成される。 Next, in order to pre-fire the paste, the first glass substrate 210 is heat-treated at a high temperature. The conditions for the heat treatment are not particularly limited as long as the polymer contained in the paste is removed. The heat treatment may be performed, for example, by holding the first glass substrate 210 in a temperature range of 300 ° C. to 470 ° C. for about 30 minutes to 1 hour. Thereby, a paste is baked and a glass solidification layer is formed.
 同様の方法で、第2のガラス基板220の第3の表面222に、額縁状の第2の接合層280を形成することができる。 The frame-shaped second bonding layer 280 can be formed on the third surface 222 of the second glass substrate 220 by the same method.
 (ステップS120)
 次に、第1のガラス基板210の第1の表面212に金属箔260が配置され、第1の組立体203が構成される。
(Step S120)
Next, the metal foil 260 is disposed on the first surface 212 of the first glass substrate 210 to form the first assembly 203.
 図6には、第1の組立体203を概略的に示す。図6(a)は、第1の組立体203の概略的な斜視図であり、図6(b)は、第1の組立体203の概略的な断面図である。 FIG. 6 schematically shows the first assembly 203. 6A is a schematic perspective view of the first assembly 203, and FIG. 6B is a schematic cross-sectional view of the first assembly 203.
 図6に示すように、金属箔260は、上面視、その内周側で第1の接合層270と接触するように配置される。ただし、これは単なる一例であって、金属箔260は、上面視、その外周側で第1の接合層270と接触するように配置されても良い。 As shown in FIG. 6, the metal foil 260 is disposed so as to come into contact with the first bonding layer 270 on the inner peripheral side as viewed from above. However, this is merely an example, and the metal foil 260 may be disposed so as to be in contact with the first bonding layer 270 on the outer peripheral side in a top view.
 (ステップS130)
 次に、第1の組立体203を加熱し、第1の接合層270を溶融、軟化させる。これにより、第1のガラス基板210に金属箔260が接合される。
(Step S130)
Next, the first assembly 203 is heated to melt and soften the first bonding layer 270. As a result, the metal foil 260 is bonded to the first glass substrate 210.
 加熱温度は、第1の接合層270が溶融、軟化される温度である限り、特に限られない。第1の接合層270がガラス固化層である場合、加熱温度は、例えば400℃~600℃の範囲であっても良い。 The heating temperature is not particularly limited as long as the first bonding layer 270 is melted and softened. When the first bonding layer 270 is a vitrified layer, the heating temperature may be in the range of 400 ° C. to 600 ° C., for example.
 なお、第1の組立体203の加熱処理の際には、金属箔260の上に重しが載せられ、上部から押し圧が印加される。このため、加熱の際に金属箔260は、変形(熱膨張)しない。従って、第1の組立体203が冷却された際には、図6に示すように、金属箔260は、第1の接合層270に対して、所定の位置に(例えば、第1の接合層270が金属箔260の内周側となるようにして)固定化される。 In the heat treatment of the first assembly 203, a weight is placed on the metal foil 260, and a pressing pressure is applied from above. For this reason, the metal foil 260 does not deform (thermally expand) during heating. Therefore, when the first assembly 203 is cooled, as shown in FIG. 6, the metal foil 260 is in a predetermined position with respect to the first bonding layer 270 (for example, the first bonding layer 270 is fixed such that 270 is on the inner peripheral side of the metal foil 260.
 (ステップS140)
 次に、第1の接合層270と金属箔260が接合された第1の組立体203の上部に第2のガラス基板220が配置され、第2の組立体205が構成される。
(Step S140)
Next, the second glass substrate 220 is disposed on the first assembly 203 in which the first bonding layer 270 and the metal foil 260 are bonded, and the second assembly 205 is configured.
 図7には、第2の組立体205の概略的な断面図を示す。 FIG. 7 shows a schematic cross-sectional view of the second assembly 205.
 図7に示すように、第2のガラス基板220は、第3の表面222および第4の表面224を有する。また、第2の組立体205を構成する際には、第2のガラス基板220は、第2の接合層280が形成された第3の表面222側が第1の組立体203の側になるように配置される。 As shown in FIG. 7, the second glass substrate 220 has a third surface 222 and a fourth surface 224. Further, when the second assembly 205 is configured, the second glass substrate 220 is arranged such that the third surface 222 side on which the second bonding layer 280 is formed becomes the first assembly 203 side. Placed in.
 また、第2のガラス基板220は、第1の組立体203とは非接触な状態となるようにして、第1の組立体203の上部に配置される。このような非接触状態は、例えば、第2のガラス基板220を第1の組立体203の上部に支持する支持部材(図示されていない)等を用いることにより、実現することができる。 In addition, the second glass substrate 220 is disposed on the first assembly 203 so as to be in a non-contact state with the first assembly 203. Such a non-contact state can be realized, for example, by using a support member (not shown) that supports the second glass substrate 220 on the top of the first assembly 203.
 なお、図7に示した例では、第2の組立体205において、下側に第1の組立体203が配置され、上側に第2のガラス基板220が配置されている。しかしながら、上側に第1の組立体203が配置され、下側に第2のガラス基板220が配置されるようにして、第2の組立体を構成しても良い。 In the example shown in FIG. 7, in the second assembly 205, the first assembly 203 is disposed on the lower side, and the second glass substrate 220 is disposed on the upper side. However, the second assembly may be configured such that the first assembly 203 is disposed on the upper side and the second glass substrate 220 is disposed on the lower side.
 (ステップS150)
 次に、第2の組立体205が真空チャンバ内に搬入される。
(Step S150)
Next, the second assembly 205 is carried into the vacuum chamber.
 真空チャンバの内部は、第2の組立体205を導入する前から減圧状態になっていても良い。あるいは、真空チャンバの内部は、第2の組立体205を導入してから減圧状態にされても良い。 The inside of the vacuum chamber may be in a depressurized state before the second assembly 205 is introduced. Alternatively, the inside of the vacuum chamber may be decompressed after the second assembly 205 is introduced.
 減圧状態における真空チャンバ内の圧力は、例えば、1×10-5Pa~10Paの範囲であっても良い。 The pressure in the vacuum chamber in the reduced pressure state may be in the range of 1 × 10 −5 Pa to 10 Pa, for example.
 第2の組立体205を真空チャンバ内に導入してから、所定の時間経過後、より詳しくは、第1の組立体203と第2のガラス基板220の間の空間が十分な減圧状態に達した後に、例えば第2のガラス基板220を支持する支持部材が除去され、第2のガラス基板220が第1の組立体203の上部に落下する。これにより、第2の接合層280と、金属箔260が接触した状態の第3の組立体207が構成される。 More specifically, after a predetermined time has elapsed after the second assembly 205 is introduced into the vacuum chamber, more specifically, the space between the first assembly 203 and the second glass substrate 220 reaches a sufficiently reduced pressure state. After that, for example, the support member that supports the second glass substrate 220 is removed, and the second glass substrate 220 falls onto the upper portion of the first assembly 203. Thereby, the 3rd assembly 207 of the state which the 2nd joining layer 280 and the metal foil 260 contacted is comprised.
 図8には、そのような第3の組立体207の概略的な断面図を示す。第3の組立体207において、両ガラス基板210、220の間に形成される間隙部230が減圧状態となることは明らかであろう。 FIG. 8 shows a schematic cross-sectional view of such a third assembly 207. It will be apparent that in the third assembly 207, the gap 230 formed between the glass substrates 210 and 220 is in a reduced pressure state.
 次に、この状態で、真空チャンバ内で第3の組立体207が加熱される。加熱の際には、第3の組立体207の上に重しを載せても良い。重しを用いることにより、第3の組立体207の周囲にわたって、第2の接合層280が均一に分布するようになり、第1のガラス基板210と第2のガラス基板220の間に、より良好な接合を得ることができる。 Next, in this state, the third assembly 207 is heated in the vacuum chamber. During heating, a weight may be placed on the third assembly 207. By using the weight, the second bonding layer 280 is distributed uniformly around the periphery of the third assembly 207, and more between the first glass substrate 210 and the second glass substrate 220. Good bonding can be obtained.
 加熱温度は、第2の接合層280が溶融、軟化される温度である限り、特に限られない。例えば、第2の接合層280がガラス固化層である場合、加熱温度は、例えば400℃~600℃の範囲であっても良い。 The heating temperature is not particularly limited as long as the second bonding layer 280 is melted and softened. For example, when the second bonding layer 280 is a vitrified layer, the heating temperature may be in the range of 400 ° C. to 600 ° C., for example.
 なお、この工程での加熱温度は、前述のステップS130における加熱温度と実質的に同じ温度であっても良い。あるいは、この工程での加熱温度は、前述のステップS130における加熱温度よりも実質的に高い温度であっても良い。 Note that the heating temperature in this step may be substantially the same as the heating temperature in step S130 described above. Alternatively, the heating temperature in this step may be substantially higher than the heating temperature in step S130 described above.
 第3の組立体207が加熱されると、第1および第2のガラス基板210、220と、金属箔260との間の熱膨張の差異によって、金属箔260は、第3の組立体207の外側(図の右側)に向かって幾分延伸する。 When the third assembly 207 is heated, a difference in thermal expansion between the first and second glass substrates 210 and 220 and the metal foil 260 causes the metal foil 260 to Stretch somewhat toward the outside (right side of the figure).
 しかしながら、第3の組立体207において、金属箔260は、既に第1の接合層270と接合され、内周側の位置が固体化されている。このため、真空チャンバ内で第3の組立体207を加熱しても、金属箔260の第1の接合層270に対する位置は変化しない。また、金属箔260が外側に向かって延伸しても、金属箔260が第2の接合層280と接触しなくなるという問題が生じることはない。 However, in the third assembly 207, the metal foil 260 is already bonded to the first bonding layer 270, and the position on the inner peripheral side is solidified. For this reason, even if the 3rd assembly 207 is heated within a vacuum chamber, the position with respect to the 1st joining layer 270 of the metal foil 260 does not change. Even if the metal foil 260 extends outward, there is no problem that the metal foil 260 does not come into contact with the second bonding layer 280.
 その結果、第3の組立体207の加熱後には、金属箔260と、第1および第2の接合層270、280とが所定の位置関係で配置されたシール部材が形成される。また、シール部材を介して、第1のガラス基板210と第2のガラス基板220とが接合され、接合体が製造される。 As a result, after the third assembly 207 is heated, a seal member in which the metal foil 260 and the first and second bonding layers 270 and 280 are arranged in a predetermined positional relationship is formed. Moreover, the 1st glass substrate 210 and the 2nd glass substrate 220 are joined via a sealing member, and a joined body is manufactured.
 (ステップS160)
 その後、接合体が真空チャンバから搬出される。
(Step S160)
Thereafter, the joined body is unloaded from the vacuum chamber.
 以上の工程を経て、真空複層ガラスを製造することができる。 Through the above steps, a vacuum double-glazed glass can be produced.
 このような第1の製造方法では、真空チャンバ内での第1のガラス基板210と第2のガラス基板220を接合する加熱処理の際に、金属箔260の位置ずれが生じ難くなる。 In such a first manufacturing method, the metal foil 260 is hardly displaced during the heat treatment for bonding the first glass substrate 210 and the second glass substrate 220 in the vacuum chamber.
 従って、このような第1の製造方法では、所望の構成のシール部材を有する真空複層ガラスを、「流れ方式」で連続的に製造することができる。このため、真空複層ガラスの生産性が向上する。 Therefore, in such a first manufacturing method, it is possible to continuously manufacture a vacuum double-glazed glass having a seal member having a desired configuration by the “flow method”. For this reason, the productivity of the vacuum double-glazed glass is improved.
 (本発明の一実施例による真空複層ガラスの別の製造方法について)
 次に、図9~図14を参照して、本発明の一実施例による真空複層ガラスの別の製造方法について、詳しく説明する。
(About another manufacturing method of the vacuum double-glazed glass by one Example of this invention)
Next, another method for manufacturing a vacuum double-glazed glass according to an embodiment of the present invention will be described in detail with reference to FIGS.
 図9には、本発明の一実施例による真空複層ガラスの別の製造方法(第2の製造方法)のフローを概略的に示す。 FIG. 9 schematically shows a flow of another manufacturing method (second manufacturing method) of vacuum double-glazed glass according to an embodiment of the present invention.
 図9に示すように、第2の製造方法は、
 (a)第1および第2の表面を有し、前記第1の表面に額縁状の第1の接合層を有する第1のガラス基板、第3および第4の表面を有し、前記第3の表面に額縁状の第2の接合層を有する第2のガラス基板、ならびに額縁状の金属箔を準備する、準備ステップ(ステップS210)と、
 (b)前記第1のガラス基板の前記第1の表面に前記金属箔を配置し第1の組立体を構成するステップであって、前記金属箔は、内周位置および外周位置で、それぞれ、前記第1の接合層および前記第3の接合層と接触するように配置される、第1の組立体構成ステップ(ステップS220)と、
 (c)前記第1の組立体を熱処理して、前記第1のガラス基板上に前記金属箔を固定化する、金属箔固定ステップ(ステップS230)と、
 (d)前記第1の組立体の前記金属箔側に、前記第2のガラス基板を配置して、第2の組立体を構成するステップであって、前記第2のガラス基板は、前記第2の接合層が前記第1の組立体に対して非接触の状態で、前記第3の表面が前記金属箔側となるようにして配置される、第2の組立体構成ステップ(ステップS240)と、
 (e)前記第2の組立体を真空チャンバに搬入し、接合体を構成するステップであって、前記第2の組立体を減圧された環境に保持してから、加熱により前記第2の接合層を介して前記第2のガラス基板を前記第1の組立体と接合させる、接合体構成ステップ(ステップS250)と、
 (f)前記接合体を前記真空チャンバから搬出する、接合体搬出ステップ(ステップS260)と、
 (g)必要な場合に実施される、前記第1の接合層および前記第2の接合層が残されるようにして、前記接合体を切断する、接合体切断ステップ(ステップS270)と、
 を有する。
As shown in FIG. 9, the second manufacturing method is
(A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Preparing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil; (Step S210);
(B) a step of disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position and an outer peripheral position, A first assembly configuration step (step S220), arranged to be in contact with the first bonding layer and the third bonding layer;
(C) A metal foil fixing step (step S230) of heat-treating the first assembly to fix the metal foil on the first glass substrate;
(D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is A second assembly configuration step (step S240), wherein the second bonding layer is disposed so that the third surface is on the metal foil side in a non-contact state with respect to the first assembly. When,
(E) carrying the second assembly into a vacuum chamber to form a joined body, the second assembly being held in a reduced-pressure environment and then heated to heat the second joint; A joined body configuration step (step S250) for joining the second glass substrate to the first assembly through a layer;
(F) A joined body unloading step (Step S260) for unloading the joined body from the vacuum chamber;
(G) A bonded body cutting step (step S270), which is performed when necessary, and cuts the bonded body so that the first bonding layer and the second bonding layer remain.
Have
 なお、第2の製造方法の基本的な工程は、前述の第1の製造方法の各工程と同様である。従って、ここでは、各工程のうち、第1の製造方法の工程と異なる部分を中心に説明する。 Note that the basic steps of the second manufacturing method are the same as those of the first manufacturing method described above. Therefore, here, it demonstrates centering on a different part from the process of a 1st manufacturing method among each process.
 (ステップS210)
 まず、図10に示すような、第1の接合層370および第3の接合層372を有する第1のガラス基板310、第2の接合層380を有する第2のガラス基板320、ならびに額縁状の金属箔360が準備される。
(Step S210)
First, as shown in FIG. 10, a first glass substrate 310 having a first bonding layer 370 and a third bonding layer 372, a second glass substrate 320 having a second bonding layer 380, and a frame-like shape A metal foil 360 is prepared.
 第1のガラス基板310は、第1の表面312および第2の表面314を有し、第1の接合層370および第3の接合層372は、第1の表面312に形成される。また、第2のガラス基板320は、第3の表面322および第4の表面324を有し、第2の接合層380は、第3の表面322に形成される。 The first glass substrate 310 has a first surface 312 and a second surface 314, and the first bonding layer 370 and the third bonding layer 372 are formed on the first surface 312. In addition, the second glass substrate 320 has a third surface 322 and a fourth surface 324, and the second bonding layer 380 is formed on the third surface 322.
 第1の接合層370、第2の接合層380、および第3の接合層372の配置位置は、第1および第2のガラス基板310、320を所定の配置で重ね合わせた際に、上面視、第1の接合層370が最も内側となり、第3の接合層372が最も外側となるように構成される。 The arrangement positions of the first bonding layer 370, the second bonding layer 380, and the third bonding layer 372 are as viewed from above when the first and second glass substrates 310 and 320 are superposed in a predetermined arrangement. The first bonding layer 370 is the innermost side, and the third bonding layer 372 is the outermost side.
 なお、第1の接合層370、第2の接合層380、および第3の接合層372の形成方法は、前述の第1の製造方法の場合と同様であり、ここではこれ以上説明しない。 Note that the method of forming the first bonding layer 370, the second bonding layer 380, and the third bonding layer 372 is the same as in the case of the first manufacturing method described above, and will not be described further here.
 (ステップS220)
 次に、図11に示すように、第1のガラス基板310の第1の表面312に金属箔360が配置され、第1の組立体303が構成される。
(Step S220)
Next, as shown in FIG. 11, the metal foil 360 is disposed on the first surface 312 of the first glass substrate 310, and the first assembly 303 is configured.
 ここで、図11に示すように、金属箔360は、上面視、金属箔360の内周側で第1の接合層370と接触し、金属箔360の外周側で第3の接合層372と接触するように配置される。 Here, as shown in FIG. 11, the metal foil 360 is in contact with the first bonding layer 370 on the inner peripheral side of the metal foil 360 as viewed from above, and the third bonding layer 372 on the outer peripheral side of the metal foil 360. Arranged to touch.
 (ステップS230)
 次に、第1の組立体303を加熱し、第1および第3の接合層370、372を溶融、軟化させる。これにより、第1のガラス基板310に金属箔360が接合される。
(Step S230)
Next, the first assembly 303 is heated to melt and soften the first and third bonding layers 370 and 372. Thereby, the metal foil 360 is bonded to the first glass substrate 310.
 ここで、前述のように、第1の組立体303の加熱処理の際には、金属箔360の上に重しが載せられ、上部から押し圧が印加される。このため、加熱の際に金属箔360は、変形(熱膨張)しない。従って、第1の組立体303が冷却された際には、図11に示すように、金属箔360は、内周側に第1の接合層370が配置され、外周側に第3の接合層372が配置されるようにして、第1のガラス基板310上に固定化される。 Here, as described above, in the heat treatment of the first assembly 303, a weight is placed on the metal foil 360, and a pressing pressure is applied from above. For this reason, the metal foil 360 does not deform (thermally expand) during heating. Therefore, when the first assembly 303 is cooled, as shown in FIG. 11, the metal foil 360 has the first bonding layer 370 disposed on the inner peripheral side and the third bonding layer on the outer peripheral side. 372 is arranged and fixed on the first glass substrate 310.
 (ステップS240)
 次に、第1の組立体303の上部に第2のガラス基板320が配置され、第2の組立体305が構成される。
(Step S240)
Next, the second glass substrate 320 is disposed on the first assembly 303 to form the second assembly 305.
 図12には、第2の組立体305の概略的な断面図を示す。 FIG. 12 shows a schematic cross-sectional view of the second assembly 305.
 図12に示すように、第2の組立体305を構成する際には、第2のガラス基板320は、第2の接合層380が形成された第3の表面322側が第1の組立体303の側になるように配置される。 As shown in FIG. 12, when the second assembly 305 is formed, the second glass substrate 320 has a first surface 303 on the third surface 322 side on which the second bonding layer 380 is formed. It is arranged to be on the side.
 また、第2のガラス基板320は、第1の組立体303とは非接触な状態となるようにして、第1の組立体303の上部に配置される。 In addition, the second glass substrate 320 is disposed on the first assembly 303 so as to be in a non-contact state with the first assembly 303.
 第2の組立体305において、各接合層370、372、380の配置関係は、前述のように、上面視、第1の接合層370が最も内側となり、第3の接合層372が最も外側となるように構成される(図12参照)。 In the second assembly 305, as described above, the arrangement relationship of the bonding layers 370, 372, and 380 is that the first bonding layer 370 is the innermost side and the third bonding layer 372 is the outermost side, as described above. (See FIG. 12).
 (ステップS250)
 次に、第2の組立体305が真空チャンバ内に搬入される。また、所定の時間経過後、第2のガラス基板320が第1の組立体303の上部に落下する。これにより、第2の接合層380と、金属箔360が接触した状態の第3の組立体307が構成される。
(Step S250)
Next, the second assembly 305 is carried into the vacuum chamber. Further, after a predetermined time elapses, the second glass substrate 320 falls onto the upper part of the first assembly 303. Thereby, the 3rd assembly 307 of the state which the 2nd joining layer 380 and the metal foil 360 contacted is comprised.
 図13には、そのような第3の組立体307の概略的な断面図を示す。第3の組立体307において、両ガラス基板310、320の間に形成される間隙部330が減圧状態となることは明らかであろう。 FIG. 13 shows a schematic cross-sectional view of such a third assembly 307. It will be apparent that in the third assembly 307, the gap 330 formed between the glass substrates 310 and 320 is in a reduced pressure state.
 その後は、第1の製造方法の場合と同様の加熱処理により、金属箔360と、第1~第3の接合層370、372、380とが所定の位置関係で配置されたシール部材が形成される。また、シール部材を介して、第1のガラス基板310と第2のガラス基板320とが接合され、接合体が製造される。 Thereafter, a sealing member in which the metal foil 360 and the first to third bonding layers 370, 372, and 380 are arranged in a predetermined positional relationship is formed by the same heat treatment as in the first manufacturing method. The Moreover, the 1st glass substrate 310 and the 2nd glass substrate 320 are joined via a sealing member, and a joined body is manufactured.
 ここで、第2の製造方法では、真空チャンバ内での加熱処理の前に、金属箔360は、内周側が第1の接合層370によって固定され、外周側が第3の接合層372によって固定されている。このため、加熱処理の際に、金属箔260は、第2の組立体205の外側および内側のいずれの方向にも延伸し難くなる。その結果、第2の製造方法では、加熱処理の際に生じ得る、金属箔260の移動および変形(膨脹)の両方の挙動を抑制することができる。 Here, in the second manufacturing method, the metal foil 360 is fixed by the first bonding layer 370 on the inner peripheral side and fixed by the third bonding layer 372 on the outer peripheral side before the heat treatment in the vacuum chamber. ing. For this reason, during the heat treatment, the metal foil 260 is difficult to extend in both the outer and inner directions of the second assembly 205. As a result, in the second manufacturing method, both movement and deformation (expansion) of the metal foil 260 that can occur during the heat treatment can be suppressed.
 従って、第2の製造方法では、金属箔360の位置ずれがよりいっそう抑制され、金属箔360および、第1~第3の接合層370、380、372とが所定の位置関係で適正に配置されたシール部材を構成することができる。 Therefore, in the second manufacturing method, the displacement of the metal foil 360 is further suppressed, and the metal foil 360 and the first to third bonding layers 370, 380, 372 are properly arranged in a predetermined positional relationship. A sealing member can be configured.
 (ステップS260)
 その後、接合体が真空チャンバから搬出される。
(Step S260)
Thereafter, the joined body is unloaded from the vacuum chamber.
 (ステップS270)
 ステップS260までの工程により、真空複層ガラスを製造することができる。ただし、必要な場合、ステップS260の後に、接合体の切断工程を実施しても良い。
(Step S270)
A vacuum double-glazed glass can be manufactured by the process up to step S260. However, if necessary, a joined body cutting step may be performed after step S260.
 図14には、切断工程前後の接合体309の断面を模式的に示す。図14において、破線は、切断前の接合体309の形状を示しており、実線は、切断後の接合体309の形状を示している。 FIG. 14 schematically shows a cross section of the joined body 309 before and after the cutting step. In FIG. 14, the broken line indicates the shape of the bonded body 309 before cutting, and the solid line indicates the shape of the bonded body 309 after cutting.
 図14に示すように、切断工程では、接合体309の周囲が切断除去される。より具体的には、接合体309は、第1の接合層370および第2の接合層380が残され、第2の接合層372が除去されるような位置で切断される。切断方法は、公知の方法が適用できる。例えば、ウォータージェットによる切断であれば、第1のガラス基板310、第2のガラス基板320および金属箔360を一度に切断することが可能となる。 As shown in FIG. 14, in the cutting process, the periphery of the bonded body 309 is cut and removed. More specifically, the bonded body 309 is cut at a position where the first bonding layer 370 and the second bonding layer 380 are left and the second bonding layer 372 is removed. A known method can be applied as the cutting method. For example, in the case of cutting with a water jet, the first glass substrate 310, the second glass substrate 320, and the metal foil 360 can be cut at a time.
 切断工程を実施することにより、シール部材の幅を低減することができる。 幅 By carrying out the cutting step, the width of the seal member can be reduced.
 以上、第1の製造方法および第2の製造方法を参照して、本発明の一実施例について説明した。しかしながら、本発明は、これらの態様に限定されるものではないことに留意する必要がある。 The embodiment of the present invention has been described above with reference to the first manufacturing method and the second manufacturing method. However, it should be noted that the present invention is not limited to these embodiments.
 例えば、第1の製造方法においても、接合体が真空チャンバから搬出された後に、接合体の周囲端部の切断工程を実施しても良い。この工程は、第1の接合層が金属箔の内周側に配置される態様の場合、有意である。この態様では、真空チャンバ内での加熱処理により、金属箔の外周が外側に延伸する傾向にあるためである。接合体の切断工程を実施することにより、外側に突出した金属箔部分を除去することができる。 For example, also in the first manufacturing method, after the joined body is carried out of the vacuum chamber, a cutting step of the peripheral end of the joined body may be performed. This step is significant in the case where the first bonding layer is disposed on the inner peripheral side of the metal foil. This is because in this aspect, the outer periphery of the metal foil tends to extend outward due to the heat treatment in the vacuum chamber. By carrying out the cutting process of the joined body, the metal foil portion protruding outward can be removed.
 また、第1の製造方法および第2の製造方法の説明の際に、図2に示したスペーサ190を設置するタイミングについては、特に言及していない。しかしながら、スペーサ190は、ステップS110の段階で、第1および/または第2のガラス基板に予め設置したり、あるいはステップS140において、第2の組立体を構成する際に設置するなど、いかなるタイミングで設置しても良いことは、当業者には明らかである。 In the description of the first manufacturing method and the second manufacturing method, the timing for installing the spacer 190 shown in FIG. 2 is not particularly mentioned. However, the spacer 190 is preliminarily installed on the first and / or second glass substrate in the step S110, or is installed when the second assembly is configured in the step S140. It will be apparent to those skilled in the art that it may be installed.
 本発明は、建築物の窓ガラス等に使用される真空複層ガラス等に利用することができる。 The present invention can be used for vacuum double glazing and the like used for window glass of buildings.
 本願は、2013年10月18日に出願した日本国特許出願2013-217185号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2013-217185 filed on Oct. 18, 2013, the entire contents of which are incorporated herein by reference.
 100    真空複層ガラス
 101    組立体
 102    第2の組立体
 110    第1のガラス基板
 112    第1の表面
 114    第2の表面
 120    第2のガラス基板
 122    第3の表面
 124    第4の表面
 130    間隙部
 150    シール部材
 160    金属箔
 162    金属部材の第1の表面
 164    金属部材の第2の表面
 170    第1の接合層
 180    第2の接合層
 190    スペーサ
 203    第1の組立体
 205    第2の組立体
 207    第3の組立体
 210    第1のガラス基板
 212    第1の表面
 214    第2の表面
 220    第2のガラス基板
 222    第3の表面
 224    第4の表面
 230    間隙部
 260    金属箔
 270    第1の接合層
 280    第2の接合層
 303    第1の組立体
 305    第2の組立体
 307    第3の組立体
 309    接合体
 310    第1のガラス基板
 312    第1の表面
 314    第2の表面
 320    第2のガラス基板
 322    第3の表面
 324    第4の表面
 330    間隙部
 360    金属箔
 370    第1の接合層
 372    第3の接合層
 380    第2の接合層
DESCRIPTION OF SYMBOLS 100 Vacuum multilayer glass 101 Assembly 102 2nd assembly 110 1st glass substrate 112 1st surface 114 2nd surface 120 2nd glass substrate 122 3rd surface 124 4th surface 130 Gap 150 Seal member 160 Metal foil 162 First surface of metal member 164 Second surface of metal member 170 First bonding layer 180 Second bonding layer 190 Spacer 203 First assembly 205 Second assembly 207 Third Assembly 210 first glass substrate 212 first surface 214 second surface 220 second glass substrate 222 third surface 224 fourth surface 230 gap 260 metal foil 270 first bonding layer 280 second Bonding layer 303 First assembly 305 Second assembly 3 07 Third assembly 309 Bonded body 310 First glass substrate 312 First surface 314 Second surface 320 Second glass substrate 322 Third surface 324 Fourth surface 330 Gap 360 Metal foil 370 First Bonding layer 372 Third bonding layer 380 Second bonding layer

Claims (4)

  1.  相互に対向する第1のガラス基板と第2のガラス基板との間に、減圧された間隙部を備える真空複層ガラスの製造方法であって、
     (a)第1および第2の表面を有し、前記第1の表面に額縁状の第1の接合層を有する第1のガラス基板、第3および第4の表面を有し、前記第3の表面に額縁状の第2の接合層を有する第2のガラス基板、ならびに額縁状の金属箔を準備するステップと、
     (b)前記第1のガラス基板の前記第1の表面に前記金属箔を配置し第1の組立体を構成するステップであって、前記金属箔は、内周位置または外周位置で、前記第1の接合層と接触するように配置されるステップと、
     (c)前記第1の組立体を熱処理して、前記第1のガラス基板上に前記金属箔を固定化するステップと、
     (d)前記第1の組立体の前記金属箔側に、前記第2のガラス基板を配置して、第2の組立体を構成するステップであって、前記第2のガラス基板は、前記第2の接合層が前記第1の組立体に対して非接触の状態で、前記第3の表面が前記金属箔側となるようにして配置されるステップと、
     (e)前記第2の組立体を真空チャンバに搬入し、接合体を構成するステップであって、前記第2の組立体を減圧された環境に保持してから、前記第2の接合層を介して前記第2のガラス基板を前記第1の組立体と接合させるステップと、
     (f)前記接合体を前記真空チャンバから搬出するステップと、
     を有する真空複層ガラスの製造方法。
    A method for producing a vacuum double-glazed glass comprising a reduced-pressure gap between a first glass substrate and a second glass substrate facing each other,
    (A) a first glass substrate having first and second surfaces, having a frame-shaped first bonding layer on the first surface, and third and fourth surfaces; Providing a second glass substrate having a frame-shaped second bonding layer on the surface thereof, and a frame-shaped metal foil;
    (B) disposing the metal foil on the first surface of the first glass substrate to form a first assembly, wherein the metal foil is at an inner peripheral position or an outer peripheral position; A step arranged to contact one bonding layer;
    (C) heat-treating the first assembly to fix the metal foil on the first glass substrate;
    (D) disposing the second glass substrate on the metal foil side of the first assembly to constitute a second assembly, wherein the second glass substrate is Two bonding layers are arranged in a non-contact state with respect to the first assembly, and the third surface is disposed on the metal foil side;
    (E) carrying the second assembly into a vacuum chamber to form a joined body, the second assembly being held in a decompressed environment, and then the second joining layer being Bonding the second glass substrate to the first assembly via:
    (F) unloading the joined body from the vacuum chamber;
    A method for producing a vacuum double-glazed glass.
  2.  前記(a)のステップにおいて、前記額縁状の第1の接合層は、2つ存在し、
     前記(b)のステップにおいて、前記金属箔は、内周位置および外周位置の両位置で、前記第1の接合層と接触するように配置される請求項1に記載の真空複層ガラスの製造方法。
    In the step (a), there are two frame-shaped first bonding layers,
    In the step (b), the metal foil is disposed so as to be in contact with the first bonding layer at both an inner peripheral position and an outer peripheral position. Method.
  3.  さらに、
     (g)前記(f)のステップの後、前記第1の接合層の内側の接合層および前記第2の接合層が残されるようにして、前記接合体を切断するステップ
     を有する請求項2に記載の真空複層ガラスの製造方法。
    further,
    (G) After the step (f), the method further comprises the step of cutting the joined body such that the joining layer inside the first joining layer and the second joining layer remain. The manufacturing method of the vacuum double layer glass of description.
  4.  前記接合層は、ガラス固化層を有する請求項1乃至3のいずれか一つに記載の真空複層ガラスの製造方法。 The method for producing a vacuum double-layer glass according to any one of claims 1 to 3, wherein the bonding layer has a glass solidified layer.
PCT/JP2014/076759 2013-10-18 2014-10-07 Production method for vacuum multilayer glass WO2015056599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013217185A JP2016210627A (en) 2013-10-18 2013-10-18 Manufacturing method of vacuum double glazing
JP2013-217185 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056599A1 true WO2015056599A1 (en) 2015-04-23

Family

ID=52828045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076759 WO2015056599A1 (en) 2013-10-18 2014-10-07 Production method for vacuum multilayer glass

Country Status (2)

Country Link
JP (1) JP2016210627A (en)
WO (1) WO2015056599A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063157A (en) * 1998-08-11 2000-02-29 Nippon Sheet Glass Co Ltd Glass panel and its production
WO2012103745A1 (en) * 2011-01-31 2012-08-09 Luoyang Landglass Technology Co., Ltd. Method for vacuum acquisition during manufacturing of vacuum glass component
JP2013512164A (en) * 2009-11-27 2013-04-11 洛▲陽▼▲蘭▼▲廸▼玻璃机器有限公司 Method of sealing tempered vacuum glass and tempered vacuum glass
JP2013527101A (en) * 2009-11-18 2013-06-27 エージーシー グラス ユーロップ Insulating plate glass manufacturing method
WO2013154193A1 (en) * 2012-04-13 2013-10-17 旭硝子株式会社 Vacuum multilayer glass, sealing member, and method for manufacturing vacuum multilayer glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063157A (en) * 1998-08-11 2000-02-29 Nippon Sheet Glass Co Ltd Glass panel and its production
JP2013527101A (en) * 2009-11-18 2013-06-27 エージーシー グラス ユーロップ Insulating plate glass manufacturing method
JP2013512164A (en) * 2009-11-27 2013-04-11 洛▲陽▼▲蘭▼▲廸▼玻璃机器有限公司 Method of sealing tempered vacuum glass and tempered vacuum glass
JP2013512162A (en) * 2009-11-27 2013-04-11 洛▲陽▼▲蘭▼▲廸▼玻璃机器有限公司 Vacuum glass sealing method and vacuum glass product
WO2012103745A1 (en) * 2011-01-31 2012-08-09 Luoyang Landglass Technology Co., Ltd. Method for vacuum acquisition during manufacturing of vacuum glass component
WO2013154193A1 (en) * 2012-04-13 2013-10-17 旭硝子株式会社 Vacuum multilayer glass, sealing member, and method for manufacturing vacuum multilayer glass

Also Published As

Publication number Publication date
JP2016210627A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6187470B2 (en) Multi-layer glass and method for producing multi-layer glass
JP6500902B2 (en) Method of manufacturing vacuum double glass, and vacuum double glass
CN107406295B (en) Method for manufacturing glass panel unit and method for manufacturing glass window
JP6495928B2 (en) Frit used in vacuum insulated glass (VIG) unit and / or associated method
TWI599709B (en) Vacuum glass slabs, glass windows, and vacuum glass slab manufacturing methods
WO2014136152A1 (en) Multiple pane glass and method for producing multiple pane glass
KR20120083500A (en) Compound sealing method for glass plate
WO2016009949A1 (en) Vacuum multilayer glass and method for manufacturing vacuum multilayer glass
CN107074642B (en) Method for manufacturing glass panel unit
WO2017056419A1 (en) Glass panel unit manufacturing method and glass window manufacturing method
JP2017535696A (en) Method for producing insulating window glass
JP2014525387A (en) Vacuum glass including pillars with different arrangement intervals and method of manufacturing the same
WO2016009948A1 (en) Vacuum multi-layer glass
WO2015056599A1 (en) Production method for vacuum multilayer glass
KR101581996B1 (en) Vacuum glass having sealing material isolating separate region and method of manufaturing plurality of vaccum glass
WO2015064458A1 (en) Vacuum multi-layer glass manufacturing method
JP2016030718A (en) Method and apparatus for production of vacuum multiple glass
JP2016210626A (en) Method for producing vacuum multi-layered glass
JP2014162701A (en) Double glazing, and production method thereof
JP2014080313A (en) Double glass, and manufacturing method of double glass
JP2015202992A (en) vacuum double glazing
JP2016210625A (en) Method for producing vacuum multi-layered glass
JP2002241149A (en) Glass panel
WO2015056606A1 (en) Production method for vacuum multilayer glass
JP7133792B2 (en) Manufacturing method of glass panel unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP