WO2015056557A1 - Intermediate for papermaking additive, and method for manufacturing papermaking additive - Google Patents

Intermediate for papermaking additive, and method for manufacturing papermaking additive Download PDF

Info

Publication number
WO2015056557A1
WO2015056557A1 PCT/JP2014/075871 JP2014075871W WO2015056557A1 WO 2015056557 A1 WO2015056557 A1 WO 2015056557A1 JP 2014075871 W JP2014075871 W JP 2014075871W WO 2015056557 A1 WO2015056557 A1 WO 2015056557A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
reaction
additive
papermaking additive
acrylamide polymer
Prior art date
Application number
PCT/JP2014/075871
Other languages
French (fr)
Japanese (ja)
Inventor
嘉義 陳
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201480054205.6A priority Critical patent/CN105593435B/en
Priority to KR1020167008800A priority patent/KR101626284B1/en
Publication of WO2015056557A1 publication Critical patent/WO2015056557A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide

Definitions

  • the present invention relates to a papermaking additive intermediate comprising a polyacrylamide polymer and a method for producing a papermaking additive characterized by subjecting the intermediate to a Hofmann decomposition reaction.
  • C-PAM cationic copolymer
  • DAA dimethylaminoethyl (meth) acrylate
  • AAM acrylamide
  • polyethyleneimine and polyvinylamine are mainly used as the drainage improver.
  • the DAA-PAM yield improver has a large molecular weight, but the DAA cationic group is separated from the main chain. Therefore, although the effect of improving the yield rate is remarkable, there is a problem that the floc of papermaking is large, the formation often collapses, and poor dehydration is caused.
  • Polyethyleneimine and polyvinylamine have a high drainage improvement effect, but they have a problem that they have a low molecular weight and need to be used in a large amount and lack a yield improvement effect. In particular, since polyethyleneimine is too cationic, it cannot be effective unless it is added in a large amount. Polyvinylamine has a problem that it is expensive and difficult to use.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an intermediate for providing a paper additive with an excellent balance of yield improvement effect and drainage improvement effect and a method for producing the paper additive.
  • the present inventor has a well-balanced effect of improving the yield and the drainage of the paper additive obtained by subjecting the intermediate of the paper additive containing a predetermined acrylamide polymer to the Hofmann decomposition reaction. As a result, the present invention has been completed. Specifically, the present invention provides the following.
  • a method for producing a papermaking additive comprising a step of subjecting the intermediate of the papermaking additive described in (1) or (2) to a Hofmann decomposition reaction.
  • the intermediate of the papermaking additive in the present invention is an acrylamide having an intrinsic viscosity (measured value at 30 ° C. in 1N—NaNO 3 aqueous solution) of 12.5 to 28 dl / g and anionization degree of 0.05 meq / g or less. It is characterized by containing a system polymer. When the inherent clay and the anionization degree are within the above ranges, the papermaking additive can have a sufficient effect in a balanced manner in terms of yield improvement and drainage improvement.
  • Intrinsic viscosity and molecular weight of acrylamide polymers are generally correlated. That is, when the intrinsic viscosity decreases, the molecular weight decreases, and the freeness and yield decrease. Therefore, in order to improve drainage and yield, the intrinsic viscosity of the acrylamide polymer needs to be 12.5 dl / g or more.
  • the intrinsic viscosity of the acrylamide polymer is more preferably 13.0 dl / g or more, further preferably 14.0 dl / g or more, and most preferably 14.5 dl / g or more.
  • the intrinsic viscosity of the acrylamide polymer needs to be 28 dl / g or less.
  • the intrinsic viscosity of the acrylamide polymer is more preferably 24 dl / g or less, further preferably 20 dl / g or less, and most preferably 16 dl / g or less.
  • the intrinsic viscosity is calculated by measuring the flow time using a Canon Fenceke viscometer and using the Huggins equation and the Mead-Fuoss equation from the measured value.
  • the anionization degree of the acrylamide polymer for improving the yield is preferably 0.05 meq / g or less, more preferably 0.04 meq / g or less, and further preferably 0.03 meq / g or less. And most preferably 0.01 meq / g or less.
  • the degree of anionization is represented by a colloid equivalent value, and the colloid equivalent value is measured by the following method as described in paragraph 0029 of JP-A-2009-228162.
  • the high drainage is particularly effective in papermaking systems that do not use sulfuric acid bands. Not only that, it means that water drainage in the paper machine is good, and the formation of a tight floc has the effect that press dehydration is good, leading to a reduction in steam consumption in the drying section. That is, the present invention also has a feature of high press dewaterability.
  • High press dewaterability means that wet paper web moisture at the press inlet is reduced, and crushing is suppressed. Moreover, since the steam consumption of a drying part is the bottleneck of the paper making speed of a normal paper machine, steam reduction leads to the speeding up of the machine.
  • the yield rate is remarkably improved as compared with polyethyleneimine, and the paper strength is superior as compared with polyethyleneimine and polyvinylamine.
  • Paper additive refers to what is used as an additive in the paper making process, and is mainly used for the purpose of improving yield, improving drainage or improving paper strength. However, it is not necessarily limited to these purposes, and may be appropriately selected according to the purpose.
  • the intermediate of the paper additive is an acrylamide polymer that is a precursor of the paper additive. More specifically, it refers to an acrylamide polymer intended to be subjected to a Hofmann decomposition reaction.
  • Acrylamide polymer refers to a polymer obtained by polymerization reaction of acrylamide, and may contain other cationic monomers.
  • the anionic monomer may or may not be contained, but the acrylamide polymer obtained by the polymerization reaction has an intrinsic viscosity of 12.5 to 28 dl / g and an anionization degree of 0.05 meq / g or less. Need to be. However, in order to improve the yield by lowering the degree of anionization and suppressing hydrolysis decomposition of the acrylamide polymer during polymerization, it is preferable not to contain an anionic monomer.
  • the acrylamide polymer preferably has a linear structure (linear polymer) in order to further improve the drainage and yield of the paper additive. That is, as a monomer other than acrylamide used for the polymerization reaction of the acrylamide polymer, it is preferable that the crosslinkable monomer is not polymerized.
  • crosslinkable monomer examples include methylene bisacrylamide, hexamethylene bisacrylamide, N, N-diallylacrylamide trimethylolpropane triacrylate, methylolacrylamide, and N-methoxymethylacrylamide.
  • the solvent used for the polymerization reaction of the acrylamide polymer for example, water, alcohol, dimethylformamide and the like can be used. In view of cost, water is preferable.
  • the polymerization initiator for the acrylamide polymer is not particularly limited as long as it is soluble in a solvent.
  • examples thereof include azo compounds such as 2,2'-azobis-2-amidinopropane hydrochloride, azobisisobutyronitrile, and 2,2'-azobis-2,4-dimethylvaleronitrile.
  • peroxides such as ammonium persulfate, potassium persulfate, hydrogen peroxide, ammonium peroxodisulfate, benzoyl peroxide, lauroyl peroxide, succinic peroxide, octanoyl peroxide, t-butylperoxy 2-ethylhexanoate The system is raised. Further, a redox system in which ammonium peroxodisulfate is combined with sodium sulfite, sodium hydrogen sulfite, tetramethylethylenediamine, trimethylamine, or the like can be given.
  • the temperature and time of the polymerization reaction of the acrylamide polymer are not particularly limited as long as the obtained acrylamide polymer has an intrinsic viscosity of 12.5 to 28 dl / g and an anionization degree of 0.05 meq / g or less.
  • an acrylamide polymer that satisfies the above conditions can be polymerized. If the starting temperature is too high, the intrinsic viscosity decreases, and a hydrolyzate of acrylamide is generated during the reaction to increase the degree of anionization. Therefore, a lower starting temperature is better. More specifically, the starting temperature is preferably 10 ° C. to 30 ° C., more preferably 15 ° C.
  • the upper limit of the temperature that rises after the start of polymerization is preferably 80 ° C. or less, more preferably 70 ° C. or less, and even more preferably 65 ° C. or less in that it is easy to control heat generation during polymerization. .
  • a solution obtained by polymerization reaction of an acrylamide polymer may be used as it is, or may be diluted. Moreover, you may prepare a solution separately as needed.
  • the concentration of the acrylamide polymer used for the Hofmann decomposition reaction is set high, the reaction becomes heterogeneous, and a sufficient yield improvement effect, drainage improvement effect, and paper strength improvement effect cannot be obtained.
  • the concentration of the acrylamide polymer is preferably 2% by mass or less. More preferably, it is 1.5 mass% or less, More preferably, it is 1 mass% or less. Further, if the concentration of the acrylamide polymer is too low, the efficiency of the Hoffman decomposition reaction is deteriorated, so that it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.00. 1% by mass or more.
  • the Hofmann decomposition reaction is carried out by allowing hypohalous acid to act on the amide group of the acrylamide polymer under alkaline conditions.
  • the Hoffmann decomposition reaction can be carried out in a specific pH range of 11-14.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. are used, for example.
  • hypohalites such as a hypochlorite, a hypobromite, a hypoiodite, are used, for example.
  • hypochlorite, hypobromite, and hypoiodite examples include alkali metal salts or alkaline earth metal salts thereof.
  • alkali metal of hypochlorous acid include sodium hypochlorite, potassium hypochlorite, and lithium hypochlorite.
  • the amount of hypohalite used for the Hofmann decomposition reaction is not particularly limited, but if the amount of the acrylamide polymer relative to the hypohalite is too small or too large, the amount of the acrylamide polymer that is not subjected to the reaction or Since the amount of halite increases, the efficiency of the reaction decreases.
  • the molar ratio of hypohalite to acrylamide polymer is preferably 1:10 to 10:10, more preferably 2.5: 10 to 10:10, Preferably, it is 5:10 to 10:10.
  • the reaction in the Hofmann decomposition reaction is possible at a temperature of 0 to 110 ° C.
  • the temperature is low or the time is too short, the reaction becomes insufficient, and if the temperature is too high or the time is too long, an undesirable side reaction may occur. . Therefore, in order to prevent such a situation and perform the reaction efficiently, for example, the reaction temperature and reaction time of 10 ° C. to 40 ° C. for 30 to 60 minutes or the temperature of 50 to 80 ° C. for 10 seconds to 10 minutes.
  • the Hofmann decomposition reaction may be performed in combination.
  • the reaction can be stopped by adding a reducing agent such as strong acid such as hydrochloric acid, sulfuric acid or nitric acid, sodium sulfite, sodium thiosulfate, ethyl malonate, triethylamine or thioglycerol.
  • a reducing agent such as strong acid such as hydrochloric acid, sulfuric acid or nitric acid, sodium sulfite, sodium thiosulfate, ethyl malonate, triethylamine or thioglycerol.
  • the reaction can also be stopped by diluting with a large amount of water or cooling to low temperature.
  • the paper produced by adding the paper additive thus obtained has excellent properties balanced in drainage, yield, and paper strength.
  • the papermaking additive of the present invention and a conventional papermaking additive may be used in combination.
  • Evaluation of the drainage yield improvement effect is carried out by first using 100% used paper 1% corrugated pulp slurry as a slurry, and a CSF (Canadian Standard Freeness) value of 450 ml. Next, a chemical addition rate (vs. corrugated cardboard SS) is added so as to be 500 ppm, and stirred at 800 rpm for 10 seconds. Thereafter, the drainage, sheet moisture (press dewaterability) and yield are evaluated. Freeness is evaluated by the CSF measurement method. The sheet moisture (press dewaterability) is measured by DDA (Dynamic Drainage Analyzer: manufactured by AB Akribiki Kemikonsulter). The yield is measured by DFS (Dynamic Filtration System: manufactured by Mutek).
  • Evaluation of the paper strength improvement effect is first made in accordance with JISP8209, using a papermaking additive with an LBKP (Hardwood Bleached Kraft Pulp) slurry and various papermaking additives, using hand-made round handmade sheet machine.
  • handmade paper is prepared so as to have a basis weight of 120 g / m 2 .
  • the basis weight is measured by the method specified in JIS P 8124.
  • the paper strength improvement effect is evaluated by measuring the specific burst strength and short span of the prepared handmade paper.
  • the specific burst strength is a numerical value obtained by dividing the burst strength of paper expressed in kilopascal (kPa) by the basis weight.
  • the short span refers to a value obtained by dividing the maximum load when the span of a test piece to which a load is applied is shortened (0.7 mm) and compressed and broken by the basis weight.
  • the specific burst strength is measured according to JIS P8112. Further, the short span of the prepared handmade paper is measured according to JIS P 8156.
  • the intrinsic viscosity of this polymer was about 14.8 dl / g. Further, a nonionic polymer having an anionization degree of 0.01 meq / g and a very high purity could be obtained.
  • the intrinsic viscosity was calculated by measuring the flow time using a Canon Fenceke viscometer and using the Huggins equation and the Mead-Fuoss equation from the measured values. The degree of anionization was measured by the method described in paragraph 0029 of JP-A-2009-228162.
  • the polymers of Examples 1 to 4 can perform the Hoffman reaction at any temperature of room temperature, 60 ° C., and 70 ° C., and can achieve a certain degree of modification. It was. These polymers were confirmed to be excellent in all of drainage, press dewaterability (sheet moisture), yield, and paper strength. Although the polymers of Comparative Examples 1 and 2 are excellent in paper strength, the molecular weight is low or the spread of the molecules is reduced by crosslinking, so the drainage, press dewaterability (sheet moisture), and the yield are insufficient. I understood that. The normal C-PAM of Comparative Example 5 was excellent in both drainage and yield, but showed a tendency to decrease the press dewaterability of the wet paper, and the paper strength was low.
  • Polyethyleneimine and polyethyleneamine were excellent in freeness and press dewaterability, but the paper strength was low. In particular, polyethyleneimine had a low yield. C-PAM was excellent in drainage and yield, but low in press dewaterability and paper strength. Therefore, it was found that only Examples 1 to 4 were excellent in balance in all properties. In Examples 1 to 4, since the DDA pressure was lower than those in Comparative Examples 1 to 4 and 6, it was confirmed that the sheet had good resistance (breathability), and the value of Comparative Example 5 was about 217 lower. From this, it was confirmed that the uniformity of the sheet was maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

 Provided are an intermediate that yields a papermaking additive having excellent balance between a yield improvement effect and a freeness improvement effect, and a method for manufacturing the papermaking additive. An acrylamide polymer included in the intermediate for the papermaking additive has an intrinsic viscosity of 12.5-28 dL/g and an anionization degree of 0.005 meq/g or less. No crosslinking agent is added in a polymerization reaction step for generating the acrylamide polymer included in the intermediate. The method for manufacturing the papermaking additive has a step for subjecting the intermediate for the papermaking additive to a Hoffman degradation reaction.

Description

製紙用添加剤の中間体及び製紙用添加剤の製造方法Intermediate for papermaking additive and method for producing papermaking additive
 本発明は、ポリアクリルアミド系ポリマーを含む製紙用添加剤の中間体及び、この中間体をホフマン分解反応に付することを特徴とする製紙用添加剤の製造方法に関する。 The present invention relates to a papermaking additive intermediate comprising a polyacrylamide polymer and a method for producing a papermaking additive characterized by subjecting the intermediate to a Hofmann decomposition reaction.
 近年、製紙工程において、歩留や濾水性を向上させる様々な製紙用添加剤が使用されている。例えば、歩留向上剤としては、主にジメチルアミノエチル(メタ)アクリレート(DAA)とアクリルアミド(AAM)のカチオン性共重合物(C-PAM)が使用されている。また、濾水性向上剤としては、主にポリエチレンイミン、ポリビニルアミンが使用されている。 In recent years, various paper additives for improving yield and drainage have been used in the paper manufacturing process. For example, as a yield improver, a cationic copolymer (C-PAM) of dimethylaminoethyl (meth) acrylate (DAA) and acrylamide (AAM) is mainly used. In addition, polyethyleneimine and polyvinylamine are mainly used as the drainage improver.
 DAA-PAM系の歩留向上剤は、分子量が大きいが、DAAのカチオン基団が主鎖から離れている。そのため、歩留率の向上効果は顕著であるが、製紙のフロックが大きく、しばしば地合が崩れ、脱水不良を引起すという問題があった。 The DAA-PAM yield improver has a large molecular weight, but the DAA cationic group is separated from the main chain. Therefore, although the effect of improving the yield rate is remarkable, there is a problem that the floc of papermaking is large, the formation often collapses, and poor dehydration is caused.
 ポリエチレンイミンやポリビニルアミンは、濾水性向上効果は高いが、分子量が小さいので多量に使う必要があり、また、歩留向上効果に欠けるという問題があった。特に、ポリエチレンイミンはカチオン性が強すぎるため、多量に添加しないと効果を発揮できず、また、ポリビニルアミンは価格が高く、実用が困難であるという問題があった。 Polyethyleneimine and polyvinylamine have a high drainage improvement effect, but they have a problem that they have a low molecular weight and need to be used in a large amount and lack a yield improvement effect. In particular, since polyethyleneimine is too cationic, it cannot be effective unless it is added in a large amount. Polyvinylamine has a problem that it is expensive and difficult to use.
 ホフマン反応を利用した製紙用添加剤も開発されているが、主に紙力の増強を目的とした紙力剤であった。また、ホフマン反応物は、分子構造の十分な広がりを得られず、フロックが弱いため、十分な歩留向上効果や濾水向上効果を得られないという問題があった(特許文献1参照)。 Although an additive for papermaking utilizing the Hoffman reaction has been developed, it was a paper strength agent mainly for the purpose of enhancing paper strength. In addition, the Hoffman reactant has a problem in that it cannot obtain a sufficient spread of molecular structure and a floc is weak, so that a sufficient yield improvement effect or drainage improvement effect cannot be obtained (see Patent Document 1).
特許第2907498号公報Japanese Patent No. 2907498
 これらの製紙用添加剤は、歩留向上効果、濾水性向上効果などの点において、その一部の性質において高い効果を有するものの、これら全ての性質において十分な効果を有するものではなく、製紙用添加剤としてはバランスに欠けるものであった。 Although these paper additives have high effects in some properties in terms of yield improvement effect, drainage improvement effect, etc., they do not have sufficient effects in all these properties, The additive was unbalanced.
 本発明は、以上の実情に鑑みてなされたものであり、歩留向上効果、濾水性向上効果のバランスに優れた製紙用添加剤を与える中間体及び製紙用添加剤の製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an intermediate for providing a paper additive with an excellent balance of yield improvement effect and drainage improvement effect and a method for producing the paper additive. And
 本発明者は、所定のアクリルアミド系ポリマーを含む製紙用添加剤の中間体をホフマン分解反応に付することにより得られた製紙用添加剤が、歩留向上効果及び濾水性向上効果をバランスよく有することを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。 The present inventor has a well-balanced effect of improving the yield and the drainage of the paper additive obtained by subjecting the intermediate of the paper additive containing a predetermined acrylamide polymer to the Hofmann decomposition reaction. As a result, the present invention has been completed. Specifically, the present invention provides the following.
 (1)固有粘度が12.5~28dl/g、アニオン化度が0.05meq/g以下であるアクリルアミド系ポリマーを含む、製紙用添加剤の中間体。 (1) An intermediate of a paper additive containing an acrylamide polymer having an intrinsic viscosity of 12.5 to 28 dl / g and an anionization degree of 0.05 meq / g or less.
 (2)前記アクリルアミド系ポリマーを生ずる重合反応の工程において、架橋剤が添加されていない(1)記載の製紙用添加剤の中間体。 (2) The intermediate of the papermaking additive according to (1), wherein no crosslinking agent is added in the polymerization reaction step for producing the acrylamide polymer.
 (3)(1)又は(2)記載の製紙用添加剤の中間体をホフマン分解反応に付する工程を含む製紙用添加剤の製造方法。 (3) A method for producing a papermaking additive comprising a step of subjecting the intermediate of the papermaking additive described in (1) or (2) to a Hofmann decomposition reaction.
 (4)前記ホフマン分解反応において、前記アクリルアミド系ポリマーが2質量%以下の溶液として反応に供される(3)記載の製紙用添加剤の製造方法。 (4) The method for producing a paper additive according to (3), wherein in the Hofmann decomposition reaction, the acrylamide polymer is subjected to the reaction as a solution of 2% by mass or less.
 本発明によれば、歩留向上効果及び濾水性向上効果をバランスよく有する新規の製紙用添加剤を提供できる。 According to the present invention, it is possible to provide a new papermaking additive having a good balance between yield improvement and drainage improvement.
 以下、本発明の実施形態について説明するが、本発明はこれに特に限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not particularly limited thereto.
 <製紙用添加剤の中間体>
 本発明における製紙用添加剤の中間体は、固有粘度(1N-NaNO水溶液中30℃での測定値)が12.5~28dl/g、アニオン化度が0.05meq/g以下であるアクリルアミド系ポリマーを含むことを特徴とする。固有粘土及びアニオン化度が上記数値の範囲にあることにより、製紙用添加剤が、歩留向上、濾水性向上の点において、バランスよく十分な効果を有することができる。
<Intermediate of paper additive>
The intermediate of the papermaking additive in the present invention is an acrylamide having an intrinsic viscosity (measured value at 30 ° C. in 1N—NaNO 3 aqueous solution) of 12.5 to 28 dl / g and anionization degree of 0.05 meq / g or less. It is characterized by containing a system polymer. When the inherent clay and the anionization degree are within the above ranges, the papermaking additive can have a sufficient effect in a balanced manner in terms of yield improvement and drainage improvement.
 アクリルアミド系ポリマーの固有粘度と分子量は一般的に相関関係にある。つまり、固有粘度が低下すると、分子量が低下し、濾水性及び歩留が低下する。従って、濾水性と歩留を向上させるためには、アクリルアミド系ポリマーの固有粘度が12.5dl/g以上である必要がある。アクリルアミド系ポリマーの固有粘度は、より好ましくは、13.0dl/g以上であり、さらに好ましくは14.0dl/g以上であり、最も好ましくは14.5dl/g以上である。また、アクリルアミド系ポリマーの固有粘度が高すぎると、分子量が大きくなりすぎ、製紙工程において添加した際に、凝集剤として作用してしまい、製紙の地合いが崩れてしまう。従って、凝集を防止するために、アクリルアミド系ポリマーの固有粘度が28dl/g以下である必要がある。アクリルアミド系ポリマーの固有粘度は、より好ましくは24dl/g以下であり、さらに好ましくは20dl/g以下であり、最も好ましくは16dl/g以下である。なお、固有粘度は、キャノンフェンスケ型粘度計を使用して流下時間を測定し、その測定値から、Hugginsの式及びMead-Fuossの式を用いて算出する。 Intrinsic viscosity and molecular weight of acrylamide polymers are generally correlated. That is, when the intrinsic viscosity decreases, the molecular weight decreases, and the freeness and yield decrease. Therefore, in order to improve drainage and yield, the intrinsic viscosity of the acrylamide polymer needs to be 12.5 dl / g or more. The intrinsic viscosity of the acrylamide polymer is more preferably 13.0 dl / g or more, further preferably 14.0 dl / g or more, and most preferably 14.5 dl / g or more. On the other hand, if the intrinsic viscosity of the acrylamide polymer is too high, the molecular weight becomes too large, and when added in the papermaking process, it acts as a flocculant and the papermaking texture is destroyed. Therefore, in order to prevent aggregation, the intrinsic viscosity of the acrylamide polymer needs to be 28 dl / g or less. The intrinsic viscosity of the acrylamide polymer is more preferably 24 dl / g or less, further preferably 20 dl / g or less, and most preferably 16 dl / g or less. The intrinsic viscosity is calculated by measuring the flow time using a Canon Fenceke viscometer and using the Huggins equation and the Mead-Fuoss equation from the measured value.
 アクリルアミド系ポリマーのアニオン化度が高すぎると、アクリルアミド系ポリマー分子内においてカチオン基とアニオン基とのイオン反応が起こるので、歩留が低下する。従って、歩留を向上させるためのアクリルアミド系ポリマーのアニオン化度は、好ましくは0.05meq/g以下であり、より好ましくは0.04meq/g以下であり、さらに好ましくは0.03meq/g以下であり、最も好ましくは0.01meq/g以下である。 If the degree of anionization of the acrylamide polymer is too high, an ionic reaction between a cation group and an anion group occurs in the acrylamide polymer molecule, resulting in a decrease in yield. Therefore, the anionization degree of the acrylamide polymer for improving the yield is preferably 0.05 meq / g or less, more preferably 0.04 meq / g or less, and further preferably 0.03 meq / g or less. And most preferably 0.01 meq / g or less.
 アニオン化度は、コロイド等量値によって表され、コロイド等量値は、特開2009-228162の段落0029に記載されているとおり、以下の方法で行う。 The degree of anionization is represented by a colloid equivalent value, and the colloid equivalent value is measured by the following method as described in paragraph 0029 of JP-A-2009-228162.
 〔コロイド当量値の測定方法〕
 50ppm水溶液(純水で希釈)に希釈したアニオン性高分子化合物を100mlメスシリンダーに採取して200mlビーカーに移す。回転子を入れて攪拌しながら2N水酸化ナトリウム溶液(和光純薬工業(株)製)0.5mlをホールピペットで加えた後、N/200メチルグリコールキトサン溶液(和光純薬工業(株)製)5mlをホールピペットで加える。トルイジンブルー指示薬(和光純薬工業(株)製)を2~3滴入れ、N/400ポリビニルアルコール硫酸カリウム溶液(和光純薬工業(株)製)で滴定する。青色が赤紫色に変わり数秒経っても赤紫色が消えない点を終点とする。同様に純水にて空試験を行う(ブランク)。
コロイド当量値(meq/g)=〔アニオン性高分子化合物の測定値(ml)-空試験の滴定量(ml)〕/2
[Method of measuring colloidal equivalent value]
An anionic polymer compound diluted in a 50 ppm aqueous solution (diluted with pure water) is collected in a 100 ml graduated cylinder and transferred to a 200 ml beaker. After adding 0.5 ml of 2N sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) with a whole pipette while stirring the rotor, N / 200 methyl glycol chitosan solution (manufactured by Wako Pure Chemical Industries, Ltd.) ) Add 5 ml with a whole pipette. Put 2 to 3 drops of toluidine blue indicator (Wako Pure Chemical Industries, Ltd.) and titrate with N / 400 polyvinyl alcohol potassium sulfate solution (Wako Pure Chemical Industries, Ltd.). The end point is the point where the blue color changes to magenta and does not disappear after a few seconds. Similarly, a blank test is performed with pure water (blank).
Colloid equivalent value (meq / g) = [Measured value of anionic polymer compound (ml) −Titrate of blank test (ml)] / 2
 濾水性が高いことは、特に硫酸バンドが使われていない抄紙系ではその効果が顕著である。それだけでなく、抄紙マシンでの水切れがよいことを意味し、引き締まったフロックの形成により、プレス脱水がよく、乾燥部での蒸気消費量の低減に繋がるという効果をもたらす。すなわち、本発明は、プレス脱水性も高いという特徴も有する。 The high drainage is particularly effective in papermaking systems that do not use sulfuric acid bands. Not only that, it means that water drainage in the paper machine is good, and the formation of a tight floc has the effect that press dehydration is good, leading to a reduction in steam consumption in the drying section. That is, the present invention also has a feature of high press dewaterability.
 プレス脱水性が高いということは、プレス入口での湿紙水分が低下し、つぶれの発生が抑えられる。また、通常の抄紙マシンは乾燥部の蒸気消費量がマシンの抄造速度のネックであるため、蒸気低減はマシンのスピードアップに繋がる。 High press dewaterability means that wet paper web moisture at the press inlet is reduced, and crushing is suppressed. Moreover, since the steam consumption of a drying part is the bottleneck of the paper making speed of a normal paper machine, steam reduction leads to the speeding up of the machine.
 本発明は、ポリエチレンイミンに比べ、歩留率の改善が顕著であり、ポリエチレンイミンとポリビニルアミンに比べ、紙力が優れている。 In the present invention, the yield rate is remarkably improved as compared with polyethyleneimine, and the paper strength is superior as compared with polyethyleneimine and polyvinylamine.
 製紙用添加剤とは、製紙工程において添加剤として使用されるものを指し、主に歩留向上効果、濾水性向上効果又は紙力向上効果などを目的として使用されるものである。しかし、これらの目的に限定されるわけではなく、目的に応じて適宜選択されてもよい。 Paper additive refers to what is used as an additive in the paper making process, and is mainly used for the purpose of improving yield, improving drainage or improving paper strength. However, it is not necessarily limited to these purposes, and may be appropriately selected according to the purpose.
 製紙用添加剤の中間体とは、製紙添加剤の前駆体となるアクリルアミド系ポリマーである。より具体的には、ホフマン分解反応に供されることを目的としたアクリルアミド系ポリマーなどをいう。 The intermediate of the paper additive is an acrylamide polymer that is a precursor of the paper additive. More specifically, it refers to an acrylamide polymer intended to be subjected to a Hofmann decomposition reaction.
 アクリルアミド系ポリマーとは、アクリルアミドを重合反応して得られるポリマーをいい、他のカチオンモノマーを含有してもよい。また、アニオン性モノマーは、含んでもよく、含まなくてもよいが、重合反応により得られたアクリルアミド系ポリマーが、固有粘度が12.5~28dl/g、アニオン化度が0.05meq/g以下である必要がある。ただし、アニオン化度を低くし、重合される際のアクリルアミド系ポリマーの加水分解分解を抑制することによって歩留を向上させるには、アニオン性モノマーは含まない方が好ましい。 Acrylamide polymer refers to a polymer obtained by polymerization reaction of acrylamide, and may contain other cationic monomers. The anionic monomer may or may not be contained, but the acrylamide polymer obtained by the polymerization reaction has an intrinsic viscosity of 12.5 to 28 dl / g and an anionization degree of 0.05 meq / g or less. Need to be. However, in order to improve the yield by lowering the degree of anionization and suppressing hydrolysis decomposition of the acrylamide polymer during polymerization, it is preferable not to contain an anionic monomer.
 アクリルアミド系ポリマーは、製紙用添加剤の濾水性、歩留をさらに向上させるために、直鎖構造(リニアポリマー)である方が好ましい。つまり、アクリルアミド系ポリマーの重合反応に使用されるアクリルアミド以外のモノマーとして、架橋性のモノマーは重合反応させないほうが好ましい。 The acrylamide polymer preferably has a linear structure (linear polymer) in order to further improve the drainage and yield of the paper additive. That is, as a monomer other than acrylamide used for the polymerization reaction of the acrylamide polymer, it is preferable that the crosslinkable monomer is not polymerized.
 架橋性のモノマーとしては、メチレンビスアクリルアミド、ヘキサメチレンビスアクリルアミド、N,N-ジアリルアクリルアミドトリメチロールプロパントリアクリレート、メチロールアクリルアミド、N-メトキシメチルアクリルアミドなどがあげられる。 Examples of the crosslinkable monomer include methylene bisacrylamide, hexamethylene bisacrylamide, N, N-diallylacrylamide trimethylolpropane triacrylate, methylolacrylamide, and N-methoxymethylacrylamide.
 アクリルアミド系ポリマーの重合反応に使用される溶媒としては、例えば、水、アルコール、ジメチルホルムアミドなどが使用可能である。コスト面を考慮すると、水が好ましい。 As the solvent used for the polymerization reaction of the acrylamide polymer, for example, water, alcohol, dimethylformamide and the like can be used. In view of cost, water is preferable.
 アクリルアミド系ポリマーの重合開始剤としては、溶媒に溶けるものであれば特に限定されない。例えば、2,2’-アゾビス-2-アミジノプロパンハイドロクロライド、アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリルなどのアゾ化合物があげられる。また、過硫酸アンモニウム、過硫酸カリ、過酸化水素、ペルオクソ二硫酸アンモニウム、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、サクシニックペルオキサイド、オクタノイルペルオキサイド、t-ブチルペルオキシ2-エチルヘキサノエートなどの過酸化物系があげられる。また、ペルオクソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、テトラメチルエチレンジアミン又はトリメチルアミンなどを組み合わせる、レドックス系があげられる。 The polymerization initiator for the acrylamide polymer is not particularly limited as long as it is soluble in a solvent. Examples thereof include azo compounds such as 2,2'-azobis-2-amidinopropane hydrochloride, azobisisobutyronitrile, and 2,2'-azobis-2,4-dimethylvaleronitrile. In addition, peroxides such as ammonium persulfate, potassium persulfate, hydrogen peroxide, ammonium peroxodisulfate, benzoyl peroxide, lauroyl peroxide, succinic peroxide, octanoyl peroxide, t-butylperoxy 2-ethylhexanoate The system is raised. Further, a redox system in which ammonium peroxodisulfate is combined with sodium sulfite, sodium hydrogen sulfite, tetramethylethylenediamine, trimethylamine, or the like can be given.
 アクリルアミド系ポリマーの重合反応の温度及び時間は、得られたアクリルアミド系ポリマーが、固有粘度12.5~28dl/g、アニオン化度0.05meq/g以下となれば特に限定されないが、例えば、開始温度を低温から、徐々に温度を上昇させることにより、上記条件を満たすアクリルアミド系ポリマーを重合することができる。開始温度が高すぎると、固有粘度が下がり、また、反応時にアクリルアミドの加水分解物が生じてアニオン化度が上がるので、開始温度は低い方がよい。より具体的には、開始温度は10℃~30℃が好ましく、15℃~25℃がより好ましく、18℃~22℃がさらに好ましい。また、重合時の発熱を制御しやすいという点において、重合開始後の上昇する温度の上限は、好ましくは80℃以下であり、より好ましくは70℃以下であり、さらに好ましくは65℃以下である。 The temperature and time of the polymerization reaction of the acrylamide polymer are not particularly limited as long as the obtained acrylamide polymer has an intrinsic viscosity of 12.5 to 28 dl / g and an anionization degree of 0.05 meq / g or less. By gradually raising the temperature from a low temperature, an acrylamide polymer that satisfies the above conditions can be polymerized. If the starting temperature is too high, the intrinsic viscosity decreases, and a hydrolyzate of acrylamide is generated during the reaction to increase the degree of anionization. Therefore, a lower starting temperature is better. More specifically, the starting temperature is preferably 10 ° C. to 30 ° C., more preferably 15 ° C. to 25 ° C., and further preferably 18 ° C. to 22 ° C. In addition, the upper limit of the temperature that rises after the start of polymerization is preferably 80 ° C. or less, more preferably 70 ° C. or less, and even more preferably 65 ° C. or less in that it is easy to control heat generation during polymerization. .
 <製紙用添加剤の製造方法>
 製紙用添加剤の中間体に含まれるアクリルアミド系ポリマーをホフマン分解反応に付することにより、歩留向上効果、濾水性向上効果をバランスよく十分に有する製紙用添加剤を製造することができる。
<Method for producing paper additive>
By subjecting the acrylamide polymer contained in the intermediate of the papermaking additive to the Hofmann decomposition reaction, it is possible to produce a papermaking additive having a sufficient yield improvement effect and drainage improvement effect in a well-balanced manner.
 ホフマン分解反応を行う場合、アクリルアミド系ポリマーを重合反応した溶液をそのまま使用してもよいし、希釈して使用してもよい。また、必要に応じて別途溶液を準備してもよい。 When performing the Hofmann decomposition reaction, a solution obtained by polymerization reaction of an acrylamide polymer may be used as it is, or may be diluted. Moreover, you may prepare a solution separately as needed.
 ホフマン分解反応に供されるアクリルアミド系ポリマーの濃度を高く設定すると、不均一な反応となってしまい、十分な歩留向上効果、濾水性向上効果及び紙力向上効果を得ることができない。これらの効果を十分に得るためには、アクリルアミド系ポリマーの濃度は2質量%以下であるのが好ましい。より好ましくは1.5質量%以下であり、さらに好ましくは1質量%以下である。また、アクリルアミド系ポリマーの濃度が低すぎると、ホフマン分解反応の効率が悪くなるので、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上である。 If the concentration of the acrylamide polymer used for the Hofmann decomposition reaction is set high, the reaction becomes heterogeneous, and a sufficient yield improvement effect, drainage improvement effect, and paper strength improvement effect cannot be obtained. In order to obtain these effects sufficiently, the concentration of the acrylamide polymer is preferably 2% by mass or less. More preferably, it is 1.5 mass% or less, More preferably, it is 1 mass% or less. Further, if the concentration of the acrylamide polymer is too low, the efficiency of the Hoffman decomposition reaction is deteriorated, so that it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.00. 1% by mass or more.
 ホフマン分解反応はアルカリ条件下で、アクリルアミド系ポリマーのアミド基に次亜ハロゲン酸を作用させることにより行う。具体的なpHは11~14の範囲でホフマン分解反応を行うことができる。アルカリ条件にするために、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物などを使用する。また、次亜ハロゲン酸を作用させるために、例えば、次亜塩素酸塩、次亜臭素酸塩、次亜ヨウ素酸塩などの次亜ハロゲン酸塩を使用する。 The Hofmann decomposition reaction is carried out by allowing hypohalous acid to act on the amide group of the acrylamide polymer under alkaline conditions. The Hoffmann decomposition reaction can be carried out in a specific pH range of 11-14. In order to make it alkaline conditions, alkali metal hydroxides, such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. are used, for example. Moreover, in order to make hypohalous acid act, hypohalites, such as a hypochlorite, a hypobromite, a hypoiodite, are used, for example.
 次亜塩素酸塩、次亜臭素酸塩、次亜ヨウ素酸塩として、例えば、これらのアルカリ金属塩又はアルカリ土類金属塩などがあげられる。次亜塩素酸のアルカリ金属としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸リチウムなどがあげられる。 Examples of hypochlorite, hypobromite, and hypoiodite include alkali metal salts or alkaline earth metal salts thereof. Examples of the alkali metal of hypochlorous acid include sodium hypochlorite, potassium hypochlorite, and lithium hypochlorite.
 ホフマン分解反応に供される次亜ハロゲン酸塩の量は特に限定されないが、アクリルアミド系ポリマーの次亜ハロゲン酸塩に対する量が少なすぎ、又は多すぎると、反応に供さないアクリルアミド系ポリマー又は次亜ハロゲン酸塩が多くなってしまうので、反応の効率が低下する。効率よく反応を行うためには、次亜ハロゲン酸塩とアクリルアミドポリマーのモル比は、好ましくは1:10~10:10であり、より好ましくは2.5:10~10:10であり、さらに好ましくは、5:10~10:10である。 The amount of hypohalite used for the Hofmann decomposition reaction is not particularly limited, but if the amount of the acrylamide polymer relative to the hypohalite is too small or too large, the amount of the acrylamide polymer that is not subjected to the reaction or Since the amount of halite increases, the efficiency of the reaction decreases. In order to carry out the reaction efficiently, the molar ratio of hypohalite to acrylamide polymer is preferably 1:10 to 10:10, more preferably 2.5: 10 to 10:10, Preferably, it is 5:10 to 10:10.
 ホフマン分解反応における温度は0℃~110℃において反応可能である。反応温度と反応時間の組合せについては、温度が低かったり、時間が短すぎると、反応が不十分となり、また、温度が高すぎたり、時間が長すぎると、好ましくない副反応が生じるおそれがある。従って、このような事態を防ぎ、効率よく反応を行うために、例えば、10℃~40℃で30~60分間、又は、温度50~80℃で10秒~10分間の反応温度と反応時間の組合せによりホフマン分解反応を行ってもよい。 The reaction in the Hofmann decomposition reaction is possible at a temperature of 0 to 110 ° C. Regarding the combination of reaction temperature and reaction time, if the temperature is low or the time is too short, the reaction becomes insufficient, and if the temperature is too high or the time is too long, an undesirable side reaction may occur. . Therefore, in order to prevent such a situation and perform the reaction efficiently, for example, the reaction temperature and reaction time of 10 ° C. to 40 ° C. for 30 to 60 minutes or the temperature of 50 to 80 ° C. for 10 seconds to 10 minutes. The Hofmann decomposition reaction may be performed in combination.
 反応の停止は、塩酸、硫酸、硝酸などの強酸、亜硫酸ナトリウム、チオ硫酸ナトリウム、マロン酸エチル、トリエチルアミン、チオグリセロールなどの還元剤の添加によりすることができる。また、大量の水で希釈し、又は、冷却して低温にすることによっても反応を停止することができる。 The reaction can be stopped by adding a reducing agent such as strong acid such as hydrochloric acid, sulfuric acid or nitric acid, sodium sulfite, sodium thiosulfate, ethyl malonate, triethylamine or thioglycerol. The reaction can also be stopped by diluting with a large amount of water or cooling to low temperature.
 このようにして得られた製紙用添加剤を添加して作製された紙は、濾水性、歩留、紙力においてバランスのとれた優れた性質を有する。 The paper produced by adding the paper additive thus obtained has excellent properties balanced in drainage, yield, and paper strength.
 製紙工程において、本発明の製紙用添加剤と従来の製紙用添加剤を併用して使用してもよい。 In the papermaking process, the papermaking additive of the present invention and a conventional papermaking additive may be used in combination.
 <濾水歩留向上効果の評価の方法>
 濾水性歩留向上効果の評価は、まず、スラリーとして、古紙100%の段ボール1%パルプスラリーを用い、CSF(カナディアン・スタンダード・フリーネス)値で450mlとする。次に、薬品添加率(対段ボールSS)を500ppmとなるように添加し、800rpmで10秒撹拌する。その後、濾水性、シート水分(プレス脱水性)及び歩留を評価する。濾水性はCSF測定方法により評価する。シート水分(プレス脱水性)はDDA(Dynamic Drainage Analyzer:AB Akribi Kemikonsulter社製)により測定する。歩留はDFS(ダイナミックフィルトレーションシステム:ミューテック社製)により測定する。
<Method of evaluating drainage yield improvement effect>
Evaluation of the drainage yield improvement effect is carried out by first using 100% used paper 1% corrugated pulp slurry as a slurry, and a CSF (Canadian Standard Freeness) value of 450 ml. Next, a chemical addition rate (vs. corrugated cardboard SS) is added so as to be 500 ppm, and stirred at 800 rpm for 10 seconds. Thereafter, the drainage, sheet moisture (press dewaterability) and yield are evaluated. Freeness is evaluated by the CSF measurement method. The sheet moisture (press dewaterability) is measured by DDA (Dynamic Drainage Analyzer: manufactured by AB Akribiki Kemikonsulter). The yield is measured by DFS (Dynamic Filtration System: manufactured by Mutek).
 <紙力向上効果の評価の方法>
 紙力向上効果の評価は、まず、JISP8209に準じ、LBKP(広葉樹漂白クラフトパルプ)スラリーに各種製紙用添加剤を用いて、王研式丸型手漉きシートマシンにより手漉き紙を作成する。その際、手漉き紙を坪量120グラム/mとなるように作成する。坪量は、JIS P 8124に規定する方法によって測定する。紙力向上効果の評価は、作成した手漉き紙の比破裂強度とショートスパンを測定することにより行う。比破裂強度とは、キロパスカル(kPa)単位で表した紙の破裂強度を坪量で除した数値をいう。ショートスパン(比圧縮強さ)とは、荷重がかかる試験片のスパンを短く(0.7mm)して、圧縮及び破壊させたときの最大荷重を坪量で除した値をいう。比破裂強度は、JIS P 8112に準じて測定する。また、作成した手漉き紙のショートスパンをJIS P 8156に準じて測定する。
<Method of evaluating paper strength improvement effect>
Evaluation of the paper strength improvement effect is first made in accordance with JISP8209, using a papermaking additive with an LBKP (Hardwood Bleached Kraft Pulp) slurry and various papermaking additives, using hand-made round handmade sheet machine. At that time, handmade paper is prepared so as to have a basis weight of 120 g / m 2 . The basis weight is measured by the method specified in JIS P 8124. The paper strength improvement effect is evaluated by measuring the specific burst strength and short span of the prepared handmade paper. The specific burst strength is a numerical value obtained by dividing the burst strength of paper expressed in kilopascal (kPa) by the basis weight. The short span (specific compressive strength) refers to a value obtained by dividing the maximum load when the span of a test piece to which a load is applied is shortened (0.7 mm) and compressed and broken by the basis weight. The specific burst strength is measured according to JIS P8112. Further, the short span of the prepared handmade paper is measured according to JIS P 8156.
 <実施例>(ポリマーA)
 攪拌機及び温度センサーを備えた四つ口フラスコに、アクリルアミド(AAM)粉体を198g、イオン交換水を793g加えて、モノマー重量が全体の20%、総重量990gとなるように調整した。次に、温度を20℃に温調し、窒素置換を行った。調整した溶液に過硫酸アンモニウム0.1%水溶液を1ml、0.3gの2,2′アゾビス―2―アミジノプロパンハイドロクロライドを含む水溶液を添加し、さらに窒素置換を続け、約5分後に重合が開始された。徐々に温度が約65℃に向上し、5時間で重合は完結した。
<Example> (Polymer A)
To a four-necked flask equipped with a stirrer and a temperature sensor, 198 g of acrylamide (AAM) powder and 793 g of ion-exchanged water were added, and the monomer weight was adjusted to 20% of the whole and the total weight was 990 g. Next, the temperature was adjusted to 20 ° C. and nitrogen substitution was performed. Add 1 ml of ammonium persulfate 0.1% aqueous solution and 0.3 g of 2,2 'azobis-2-amidinopropane hydrochloride aqueous solution to the prepared solution, and continue to purge with nitrogen. After about 5 minutes, polymerization starts. It was done. The temperature gradually increased to about 65 ° C., and the polymerization was completed in 5 hours.
 重合中、内容物が高粘度となり、攪拌が困難となったため、攪拌は途中で停止した。重合完了後、内容物を取り出した。この重合体の固有粘度は約14.8dl/gであった。また、アニオン化度が0.01meq/gと非常に純度の高いノニオンポリマーを得ることができた。なお、固有粘度は、キャノンフェンスケ型粘度計を使用して流下時間を測定し、その測定値から、Hugginsの式及びMead-Fuossの式を用いて算出した。また、アニオン化度は、特開2009-228162の段落0029に記載されている方法で測定した。 During the polymerization, the contents became highly viscous and stirring became difficult, so stirring was stopped halfway. After the polymerization was completed, the contents were taken out. The intrinsic viscosity of this polymer was about 14.8 dl / g. Further, a nonionic polymer having an anionization degree of 0.01 meq / g and a very high purity could be obtained. The intrinsic viscosity was calculated by measuring the flow time using a Canon Fenceke viscometer and using the Huggins equation and the Mead-Fuoss equation from the measured values. The degree of anionization was measured by the method described in paragraph 0029 of JP-A-2009-228162.
 <比較例1>(ポリマーB)
 攪拌機及び温度センサーを備えた四つ口フラスコにアクリルアミドを71g仕込み、水を加えて全量を443.8gとした。過硫酸アンモニウムを0.22g、亜硫酸水素ナトリウムを0.1g投入して重合を開始した。85℃で保温し、2時間後に反応を終了させた。その結果、ポリマー濃度が15%、固有粘度が7.9dl/gのポリマーを得られた。また、反応時にアクリルアミドの加水分解物が生じ、アニオン化度は0.11meq/gであった。(特許文献1記載の比較例1の重合方法を参考)
<Comparative Example 1> (Polymer B)
A four-necked flask equipped with a stirrer and a temperature sensor was charged with 71 g of acrylamide, and water was added to make a total amount of 443.8 g. Polymerization was initiated by adding 0.22 g of ammonium persulfate and 0.1 g of sodium bisulfite. The temperature was kept at 85 ° C., and the reaction was terminated after 2 hours. As a result, a polymer having a polymer concentration of 15% and an intrinsic viscosity of 7.9 dl / g was obtained. Moreover, the hydrolyzate of acrylamide produced | generated at the time of reaction, and the anionization degree was 0.11 meq / g. (Refer to the polymerization method of Comparative Example 1 described in Patent Document 1)
 <比較例2>(ポリマーC)
 攪拌機及び温度センサーを備えた四つ口フラスコにアクリルアミドを70.93g、メチレンビスアクリルアミドを0.154g仕込み、過硫酸アンモニウムを0.22g、亜硫酸水素ナトリウムを0.1g投入して重合を開始した。85℃で保温し、2時間後に反応を終了させた。その結果、ポリマー濃度が15%、固有粘度5.5dl/gのポリマーを得られた。反応時にアクリルアミドの加水分解物が生じ、アニオン化度は0.12meq/gであった。(特許文献1記載の実施例1の重合方法を参考)
<Comparative Example 2> (Polymer C)
In a four-necked flask equipped with a stirrer and a temperature sensor, 70.93 g of acrylamide and 0.154 g of methylenebisacrylamide were charged, 0.22 g of ammonium persulfate and 0.1 g of sodium hydrogen sulfite were added to initiate polymerization. The temperature was kept at 85 ° C., and the reaction was terminated after 2 hours. As a result, a polymer having a polymer concentration of 15% and an intrinsic viscosity of 5.5 dl / g was obtained. An acrylamide hydrolyzate was produced during the reaction, and the anionization degree was 0.12 meq / g. (Refer to the polymerization method of Example 1 described in Patent Document 1)
 <ホフマン分解反応>
 実施例、比較例1~2で得られたアクリルアミド系ポリマーを、まず1質量%以下に希釈した。次に、加熱を行い、次亜塩素酸ソーダと苛性ソーダを添加して反応を行った。塩酸を用いて反応を停止させた。反応条件を表1に示す。
<Hoffmann decomposition reaction>
The acrylamide polymers obtained in Examples and Comparative Examples 1 and 2 were first diluted to 1% by mass or less. Next, heating was performed, and sodium hypochlorite and caustic soda were added to react. The reaction was stopped with hydrochloric acid. The reaction conditions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <濾水歩留向上効果の評価>
 スラリーとして、古紙100%の段ボール1%パルプスラリーを用い、CSF(カナディアン・スタンダード・フリーネス)値で450mlとした。薬品添加率(対段ボールSS)を500ppmとなるように添加し、800rpmで10秒撹拌した。その後、測定試験を行った。評価はCSF測定方法により実施した。また、シート水分はDDAにより測定した。歩留はDFSにより測定した。結果を表2に示す。
<Evaluation of drainage yield improvement effect>
As a slurry, a 1% corrugated cardboard pulp slurry made of 100% waste paper was used, and the CSF (Canadian Standard Freeness) value was 450 ml. The chemical addition rate (vs. corrugated cardboard SS) was added to 500 ppm and stirred at 800 rpm for 10 seconds. Thereafter, a measurement test was performed. Evaluation was performed by the CSF measurement method. Sheet moisture was measured by DDA. Yield was measured by DFS. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <紙力向上効果の評価>
 紙力向上効果の評価は、まず、JISP8209に準じ、LBKPスラリーに各種製紙用添加剤を用いて、王研式丸型手漉きシートマシンにより手漉き紙を作成した。その際、手漉き紙を坪量120グラム/mとなるように作成した。坪量は、JIS P 8124に規定する方法によって測定した。手漉き紙の比破裂強度は、JIS P 8112に準じて測定した。また、手漉き紙のショートスパンをJIS P 8156に準じて測定した。この結果を表3に示す。
<Evaluation of paper strength improvement effect>
Evaluation of the paper strength improvement effect was carried out in accordance with JISP8209. First, handmade paper was prepared by a Wangken type round handmade sheet machine using various papermaking additives in the LBKP slurry. At that time, handmade paper was prepared so as to have a basis weight of 120 g / m 2 . The basis weight was measured by the method specified in JIS P 8124. The specific burst strength of the handmade paper was measured according to JIS P8112. Further, the short span of the handmade paper was measured according to JIS P 8156. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果を踏まえると、実施例1~4のポリマーは、室温、60℃、70℃のいずれの温度下でも、ホフマン反応を行うことが可能であり、一定の変性率を実現できることが確認できた。そして、これらのポリマーは、濾水性、プレス脱水性(シート水分)、歩留及び紙力の全てにおいて優れることが確認された。比較例1、2のポリマーは、紙力については優れるが、分子量が低いか、又は架橋により分子の広がりが低下したため、濾水性、プレス脱水性(シート水分)、歩留率が不十分であることが分かった。比較例5の通常のC-PAMでは濾水性と歩留が両方とも優れているが、湿紙のプレス脱水性の低下傾向が見られ、また、紙力が低かった。ポリエチレンイミン及びポリエチレンアミンは、濾水度、プレス脱水性に優れるが、紙力が低かった。特に、ポリエチレンイミンは歩留が低かった。C-PAMは、濾水性、歩留に優れるが、プレス脱水性、紙力が低かった。従って、全ての性質においてバランスよく優れているのは実施例1~4だけであることがわかった。また、実施例1~4は、DDA圧力が比較例1~4、6より低かったので、シートの抵抗性(通気性)がよいことが確認され、また、比較例5の値の217程低くなかったことから、シートの均一性が保たれたことが確認された。 Based on the above results, it can be confirmed that the polymers of Examples 1 to 4 can perform the Hoffman reaction at any temperature of room temperature, 60 ° C., and 70 ° C., and can achieve a certain degree of modification. It was. These polymers were confirmed to be excellent in all of drainage, press dewaterability (sheet moisture), yield, and paper strength. Although the polymers of Comparative Examples 1 and 2 are excellent in paper strength, the molecular weight is low or the spread of the molecules is reduced by crosslinking, so the drainage, press dewaterability (sheet moisture), and the yield are insufficient. I understood that. The normal C-PAM of Comparative Example 5 was excellent in both drainage and yield, but showed a tendency to decrease the press dewaterability of the wet paper, and the paper strength was low. Polyethyleneimine and polyethyleneamine were excellent in freeness and press dewaterability, but the paper strength was low. In particular, polyethyleneimine had a low yield. C-PAM was excellent in drainage and yield, but low in press dewaterability and paper strength. Therefore, it was found that only Examples 1 to 4 were excellent in balance in all properties. In Examples 1 to 4, since the DDA pressure was lower than those in Comparative Examples 1 to 4 and 6, it was confirmed that the sheet had good resistance (breathability), and the value of Comparative Example 5 was about 217 lower. From this, it was confirmed that the uniformity of the sheet was maintained.

Claims (4)

  1.  固有粘度が12.5~28dl/g、アニオン化度が0.05meq/g以下であるアクリルアミド系ポリマーを含む、製紙用添加剤の中間体。 An intermediate for a paper additive containing an acrylamide polymer having an intrinsic viscosity of 12.5 to 28 dl / g and an anionization degree of 0.05 meq / g or less.
  2.  前記アクリルアミド系ポリマーを生ずる重合反応の工程において、架橋剤が添加されていない請求項1記載の製紙用添加剤の中間体。 The intermediate of the papermaking additive according to claim 1, wherein no crosslinking agent is added in the polymerization reaction step for producing the acrylamide polymer.
  3.  請求項1又は2記載の製紙用添加剤の中間体をホフマン分解反応に付する工程を含む製紙用添加剤の製造方法。 A method for producing a paper additive, comprising a step of subjecting the intermediate of the paper additive according to claim 1 or 2 to a Hofmann decomposition reaction.
  4.  前記ホフマン分解反応において、前記アクリルアミド系ポリマーが2質量%以下の溶液として反応に供される請求項3記載の製紙用添加剤の製造方法。 The method for producing an additive for papermaking according to claim 3, wherein in the Hofmann decomposition reaction, the acrylamide polymer is subjected to the reaction as a solution of 2% by mass or less.
PCT/JP2014/075871 2013-10-15 2014-09-29 Intermediate for papermaking additive, and method for manufacturing papermaking additive WO2015056557A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480054205.6A CN105593435B (en) 2013-10-15 2014-09-29 The intermediate of additive for papermaking and the manufacture method of additive for papermaking
KR1020167008800A KR101626284B1 (en) 2013-10-15 2014-09-29 Intermediate for papermaking additive, and method for manufacturing papermaking additive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-214724 2013-10-15
JP2013214724A JP5817802B2 (en) 2013-10-15 2013-10-15 Intermediate for papermaking additive and method for producing papermaking additive

Publications (1)

Publication Number Publication Date
WO2015056557A1 true WO2015056557A1 (en) 2015-04-23

Family

ID=52828006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075871 WO2015056557A1 (en) 2013-10-15 2014-09-29 Intermediate for papermaking additive, and method for manufacturing papermaking additive

Country Status (4)

Country Link
JP (1) JP5817802B2 (en)
KR (1) KR101626284B1 (en)
CN (1) CN105593435B (en)
WO (1) WO2015056557A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044273A (en) * 2016-09-16 2018-03-22 栗田工業株式会社 Manufacturing method of paper, manufacturing device of additive for making paper and manufacturing device of paper
JP6458897B2 (en) * 2018-10-23 2019-01-30 栗田工業株式会社 Paper manufacturing method, paper manufacturing additive manufacturing apparatus, and paper manufacturing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125492A (en) * 1977-04-11 1978-11-01 Toagosei Chem Ind Co Ltd Preparation of acrylamide polymer
JPS6485398A (en) * 1987-09-24 1989-03-30 Dic Hercules Chemicals Inc Production of paper
JPH0457991A (en) * 1990-06-25 1992-02-25 Mitsui Toatsu Chem Inc Additive for paper-making process
JP2003082596A (en) * 2001-09-06 2003-03-19 Daiyanitorikkusu Kk Method of production for nonionic thickener for paper making
JP2008229497A (en) * 2007-03-20 2008-10-02 Daiyanitorikkusu Kk Dehydrator for treating civil engineering and construction sludge
JP2009079210A (en) * 2007-09-04 2009-04-16 Toray Ind Inc Aromatic polyamide and aromatic polyamide film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907498B2 (en) 1990-06-27 1999-06-21 三井化学株式会社 Papermaking additives
CN1081705C (en) * 1995-12-25 2002-03-27 海茂株式会社 Papermaking process
US6255400B1 (en) * 1997-11-28 2001-07-03 Mitsui Chemicals, Inc. Polymer and applications thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125492A (en) * 1977-04-11 1978-11-01 Toagosei Chem Ind Co Ltd Preparation of acrylamide polymer
JPS6485398A (en) * 1987-09-24 1989-03-30 Dic Hercules Chemicals Inc Production of paper
JPH0457991A (en) * 1990-06-25 1992-02-25 Mitsui Toatsu Chem Inc Additive for paper-making process
JP2003082596A (en) * 2001-09-06 2003-03-19 Daiyanitorikkusu Kk Method of production for nonionic thickener for paper making
JP2008229497A (en) * 2007-03-20 2008-10-02 Daiyanitorikkusu Kk Dehydrator for treating civil engineering and construction sludge
JP2009079210A (en) * 2007-09-04 2009-04-16 Toray Ind Inc Aromatic polyamide and aromatic polyamide film

Also Published As

Publication number Publication date
CN105593435A (en) 2016-05-18
KR101626284B1 (en) 2016-06-01
JP2015078453A (en) 2015-04-23
KR20160042171A (en) 2016-04-18
CN105593435B (en) 2017-07-28
JP5817802B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6354417B2 (en) Paper strength enhancer, paper obtained thereby, and method for producing paper
KR102293150B1 (en) Aqueous solution of cationic copolymers derived from acrylamide, preparation method and use
JP7081674B2 (en) Papermaking additives, paper and paper manufacturing methods
JP5640458B2 (en) Method for producing paper-making paper strength enhancer
JP5817802B2 (en) Intermediate for papermaking additive and method for producing papermaking additive
KR102123132B1 (en) Improved Method for Manufacturing Paper Using a Cationic Polymer Obtained by Hofmann Degradation
JP5637527B2 (en) Paper making method
CN104420396A (en) Paper strengthening agent and papermaking method using same
CN108026699B (en) Polyacrylamide-based additive for papermaking, method for producing same, and method for producing paper
JPH08269891A (en) Additive for producing paper
JP5024719B2 (en) Paper manufacturing method
JP6458897B2 (en) Paper manufacturing method, paper manufacturing additive manufacturing apparatus, and paper manufacturing apparatus
US11459702B2 (en) Method for manufacturing paper, device for manufacturing additive for manufacturing paper, and device for manufacturing paper
CN113614307B (en) Paper strength enhancer, paper and method for producing paper
JP2001020198A (en) Papermaking additive
JP2000273790A (en) Internal additive for papermaking and production of paper
JP3627387B2 (en) Neutral paper manufacturing method
JP2013234390A (en) Paper-strengthening agent and method for producing paper using the same
JP2008297655A (en) Method for improving paper strength of bulky paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008800

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201603148

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14854856

Country of ref document: EP

Kind code of ref document: A1