JP2013234390A - Paper-strengthening agent and method for producing paper using the same - Google Patents

Paper-strengthening agent and method for producing paper using the same Download PDF

Info

Publication number
JP2013234390A
JP2013234390A JP2012105325A JP2012105325A JP2013234390A JP 2013234390 A JP2013234390 A JP 2013234390A JP 2012105325 A JP2012105325 A JP 2012105325A JP 2012105325 A JP2012105325 A JP 2012105325A JP 2013234390 A JP2013234390 A JP 2013234390A
Authority
JP
Japan
Prior art keywords
paper
parts
acrylamide
paper strength
strength agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012105325A
Other languages
Japanese (ja)
Other versions
JP5910994B2 (en
Inventor
Kunihiro Hirose
国博 廣瀬
Katsuhiro Shimamoto
勝浩 島本
Sho Minabe
翔 美邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2012105325A priority Critical patent/JP5910994B2/en
Publication of JP2013234390A publication Critical patent/JP2013234390A/en
Application granted granted Critical
Publication of JP5910994B2 publication Critical patent/JP5910994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acrylamide-based paper-strengthening agent which has an excellent fixing property to pulp and is capable of exhibiting a high paper-strengthening effect even to pulp fiber slurry including a large amount of anionic foreign substances and having high electric conductivity, and to provide a method for producing paper using the same.SOLUTION: The paper-strengthening agent contains a (meta) acrylamide-based copolymer having a weight average molecular weight of 3.5 millions to 8 millions obtained by copolymerization of polymerization components including (meta) acrylamide, a cationic vinyl monomer, an anionic vinyl monomer, and a chain transferring monomer. When the concentration of the (meta) acrylamide-based copolymer is 0.2 wt% and pH is 7.0 (25°C), the paper-strengthening agent has a measured potential of 200 mV or less by a PCD electrometer.

Description

本発明は、紙の製造に使用される紙力剤、およびこれを用いた紙の製造方法に関する。 The present invention relates to a paper strength agent used for paper manufacture and a paper manufacturing method using the same.

従来より紙に強度を付与する紙力剤として、アニオン性、カチオン性又は両性のアクリルアミド系ポリマーが広く使用されている。
しかし、古紙の使用比率の増加により紙の原料であるパルプの短繊維化及び劣化が進み、また、環境対策として、紙または板紙の製造プロセスにおけるクローズド化から紙製造系内において、アニオン性の夾雑物が多量に存在することにより、パルプスラリーの電気伝導度を上昇させることから、イオン性を有するこれらの紙力剤は、その紙力増強効果を十分に発現することができない状況になっている。
Conventionally, anionic, cationic or amphoteric acrylamide polymers have been widely used as paper strength agents for imparting strength to paper.
However, as the ratio of used paper increases, pulp fibers, which are raw materials for paper, are shortened and deteriorated, and as an environmental measure, the use of closed paper in the paper or paperboard manufacturing process has led to anionic contamination in the paper manufacturing system. Since the electrical conductivity of the pulp slurry is increased due to the presence of a large amount of materials, these paper strength agents having ionicity are in a situation where the effect of enhancing the paper strength cannot be sufficiently exhibited. .

また、板紙などのより高い紙力が求められる紙の製造では、紙力剤の添加量を多くする必要があるが、このような場合いっそうの水質悪化を招くことから問題はより深刻である。 Further, in the manufacture of paper such as paperboard, which requires higher paper strength, it is necessary to increase the amount of paper strength agent added. In such a case, the problem is more serious because water quality is further deteriorated.

かかる課題に対し、イオン性ポリアクリルアミド成分を添加する前に、特定のカルボキシメチルセルロースを添加して抄紙する紙の製造方法が提案されている(特許文献1)。
しかし、かかる方法では、抄紙条件によっては充分な効果が得られない場合があることや、イオン性ポリアクリルアミド成分以外にカルボキシメチルセルロースを添加しなければならず、コストアップになるという問題がある。
In order to deal with this problem, a method for producing paper for making paper by adding a specific carboxymethyl cellulose before adding an ionic polyacrylamide component has been proposed (Patent Document 1).
However, this method has a problem that a sufficient effect may not be obtained depending on papermaking conditions, and carboxymethylcellulose must be added in addition to the ionic polyacrylamide component, resulting in an increase in cost.

特開2002−194694号公報JP 2002-194694 A

本発明の目的は、アニオン性夾雑物が多量に存在し、高い電気伝導度を有するパルプスラリーに対しても、パルプへの定着性に優れ、高い紙力増強効果を発現することができるアクリルアミド系紙力剤およびこれを用いた紙の製造方法を提供することにある。 An object of the present invention is to provide an acrylamide type which is excellent in fixability to pulp and exhibits a high paper strength enhancing effect even for a pulp slurry having a large amount of anionic impurities and having high electrical conductivity. It is to provide a paper strength agent and a method for producing paper using the same.

本発明は、紙力剤として用いるアクリルアミド系ポリマーの分子量を特定の範囲に設定し、特定条件下における紙力剤の水溶液または水分散液のPCD電位計による測定電位を特定の範囲とした紙力剤とすれば、上記課題の解決を図ることができることを明らかにしたものである。 The present invention relates to a paper strength in which the molecular weight of an acrylamide polymer used as a paper strength agent is set within a specific range, and the measurement potential of the aqueous solution or dispersion of the paper strength agent under a specific condition is a specific range. It is clarified that the above-mentioned problems can be solved by using an agent.

すなわち、本発明は、
(メタ)アクリルアミド、カチオン性ビニルモノマー、アニオン性ビニルモノマーおよび連鎖移動性モノマーを含む重合成分を共重合して得られる重量平均分子量350万〜800万の(メタ)アクリルアミド系共重合体を含有する紙力剤であって、前記(メタ)アクリルアミド系共重合体の濃度を0.2重量%、かつpH7.0(25℃)とした場合におけるPCD電位計による測定電位が200mV以下であることを特徴とする紙力剤;(メタ)アクリルアミド系共重合体の重合成分として、さらに、架橋性モノマーを含有する前記紙力剤;(メタ)アクリルアミド系共重合体の重合成分の比率が、(メタ)アクリルアミド57〜97.8モル%、カチオン性ビニルモノマー1〜20モル%およびアニオン性ビニルモノマー1〜20モル%、連鎖移動性モノマー0.2〜2モル%、架橋性モノマー0〜1モル%である前記紙力剤;電気伝導度が1.5mS/cm以上のパルプ繊維スラリーに、請求項1〜3のいずれかに記載の紙力剤を添加して抄紙することを特徴とする紙の製造方法;紙力剤の添加量が、固形分重量換算で、パルプ繊維スラリーの固形分重量に対し、0.5重量%以上である前記紙の製造方法;紙力剤の前記PCD電位計による測定電位が0mV以下であり、その添加量がパルプ繊維スラリーの固形分重量に対し、1.0重量%以上である前記紙の製造方法、
に関する。
That is, the present invention
Contains a (meth) acrylamide copolymer having a weight average molecular weight of 3.5 million to 8 million obtained by copolymerizing polymerization components including (meth) acrylamide, cationic vinyl monomer, anionic vinyl monomer and chain transfer monomer It is a paper strength agent, and the potential measured by a PCD electrometer when the concentration of the (meth) acrylamide copolymer is 0.2 wt% and pH 7.0 (25 ° C.) is 200 mV or less. The paper strength agent characterized in that: as the polymerization component of the (meth) acrylamide copolymer, the paper strength agent further containing a crosslinkable monomer; the ratio of the polymerization component of the (meth) acrylamide copolymer is (meta ) Acrylamide 57-97.8 mol%, cationic vinyl monomer 1-20 mol% and anionic vinyl monomer 1-20 mol% The chain strength monomer is 0.2 to 2 mol%, the crosslinkable monomer is 0 to 1 mol%; and the pulp fiber slurry having an electric conductivity of 1.5 mS / cm or more; A method for producing paper, characterized in that the paper strength agent according to any one of the above is added to make paper; the amount of the paper strength agent added is, in terms of solid content weight, 0. 0 relative to the solid content weight of the pulp fiber slurry. The paper manufacturing method of 5% by weight or more; the potential measured by the PCD electrometer of the paper strength agent is 0 mV or less, and the amount added is 1.0% by weight or more with respect to the solid content weight of the pulp fiber slurry. A method for producing the paper,
About.

本発明の紙力剤は、アニオン性夾雑物が多量に存在し、高い電気伝導度を有するパルプスラリーに対しても、パルプへの定着性に優れ、高い紙力増強効果を発揮することができる。よって、(メタ)アクリルアミド系紙力剤およびこれを用いた紙の製造方法を提供することにある。 The paper strength agent of the present invention has a large amount of anionic impurities and is excellent in fixability to pulp even for pulp slurries having high electrical conductivity, and can exert a high paper strength enhancing effect. . Accordingly, it is an object of the present invention to provide a (meth) acrylamide paper strength agent and a method for producing paper using the same.

実施例5と比較例1の紙力剤を用い、それらの添加率を変化させて抄紙した場合において、得られた紙の圧縮強度との関係を表わした図である。It is the figure showing the relationship with the compressive strength of the obtained paper, when making paper by using the paper strength agent of Example 5 and Comparative Example 1, and changing those addition ratios. 実施例5と比較例1の紙力剤を用い、それらの添加率を変化させて抄紙した場合において、得られた紙の内部強度との関係を表わした図である。It is a figure showing the relationship with the internal intensity | strength of the obtained paper, when using the paper strength agent of Example 5 and the comparative example 1, and changing those addition ratios.

本発明の紙力剤は、(メタ)アクリルアミド、カチオン性ビニルモノマーおよびアニオン性ビニルモノマーおよび連鎖移動性モノマーを含む重合成分を共重合して得られる重量平均分子量350万〜800万の(メタ)アクリルアミド系共重合体を含有してなる水溶液または水分散液である。   The paper strength agent of the present invention is a (meth) having a weight average molecular weight of 3.5 to 8 million obtained by copolymerizing a polymerization component containing (meth) acrylamide, a cationic vinyl monomer, an anionic vinyl monomer, and a chain transfer monomer. An aqueous solution or an aqueous dispersion containing an acrylamide copolymer.

本発明において、(メタ)アクリルアミドとは、アクリルアミドまたはメタクリルアミドをいい(以下、(メタ)とは同様の意味である)、これらは単独使用または併用できるが、経済性の面からはアクリルアミドを単独使用するのがよい。(メタ)アクリルアミドの比率は、特に限定されないが、通常、十分な紙力効果を確保する観点から、(メタ)アクリルアミド系共重合体の重合成分の総モル和に対し57〜97.8モル%である。 In the present invention, (meth) acrylamide means acrylamide or methacrylamide (hereinafter, (meth) has the same meaning), and these can be used alone or in combination, but from the economical aspect, acrylamide is used alone. It is good to use. Although the ratio of (meth) acrylamide is not particularly limited, it is usually 57 to 97.8 mol% based on the total molar sum of the polymerization components of the (meth) acrylamide copolymer from the viewpoint of securing a sufficient paper strength effect. It is.

カチオン性ビニルモノマーとしては、たとえば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドなどの無機酸もしくは有機酸の塩類、または該第3級アミノ基含有ビニルモノマーとメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロルヒドリンなどの四級化剤との反応によって得られる第四級アンモニウム塩を有するビニルモノマーなどが挙げられる。カチオン性ビニルモノマーの比率は、特に限定されないが、通常、十分な紙力効果を確保し、かつ、アクリルアミド共重合体の凝集による地合いの乱れを防止する観点から(メタ)アクリルアミド系共重合体の重合成分の総モル和に対し通常1〜20モル%、好ましくは2〜10モル%である。 Examples of the cationic vinyl monomer include inorganic or organic acid salts such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, or the like. And vinyl monomers having a quaternary ammonium salt obtained by reaction of a tertiary amino group-containing vinyl monomer with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate, epichlorohydrin, and the like. The ratio of the cationic vinyl monomer is not particularly limited. Usually, the (meth) acrylamide copolymer is used from the viewpoint of securing a sufficient paper strength effect and preventing disorder of formation due to aggregation of the acrylamide copolymer. It is 1-20 mol% normally with respect to the total molar sum of a polymerization component, Preferably it is 2-10 mol%.

アニオン性ビニルモノマーとしては、たとえば(メタ)アクリル酸、クロトン酸等のモノカルボン酸ビニルモノマー;マレイン酸、フマル酸、イタコン酸、ムコン酸等のジカルボン酸ビニルモノマー;ビニルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸などの有機スルホン酸ビニルモノマー;またはこれら各種有機酸のナトリウム塩、カリウム塩等のアルカリ金属塩およびこれらのアンモニウム塩等があげられる。アニオン性ビニルモノマーの比率は、特に限定されないが、通常、十分な紙力効果を確保し、かつ、アクリルアミド共重合体の凝集による地合いの乱れを防止する観点からアクリルアミド系共重合体の重合成分の総モル和に対し通常1〜20モル%、好ましくは2〜10モル%である。 Anionic vinyl monomers include, for example, (meth) acrylic acid, crotonic acid and other monocarboxylic acid vinyl monomers; maleic acid, fumaric acid, itaconic acid, muconic acid and other dicarboxylic acid vinyl monomers; vinyl sulfonic acid, styrene sulfonic acid, Organic vinyl sulfonate monomers such as 2-acrylamido-2-methylpropane sulfonic acid; or alkali metal salts such as sodium salts and potassium salts of these various organic acids and ammonium salts thereof. The ratio of the anionic vinyl monomer is not particularly limited, but usually the polymerization component of the acrylamide copolymer is used from the viewpoint of securing a sufficient paper strength effect and preventing disorder of the formation due to aggregation of the acrylamide copolymer. It is 1-20 mol% normally with respect to the total mol sum, Preferably it is 2-10 mol%.

連鎖移動性モノマーとしては、たとえば(メタ)アリルスルホン酸、またはこれらのナトリウム塩、カリウム塩等のアルカリ金属塩およびこれらのアンモニウム塩等があげられる。連鎖移動性モノマーの比率は、特に限定されないが、通常、(メタ)アクリルアミド系共重合体の重合成分の総モル和に対し通常0.2〜2モル%とすることが、本発明で規定する分子量範囲のものを得やすくなることから好ましい。同様の観点からより好ましくは、0.5〜1モル%である。 Examples of the chain transfer monomer include (meth) allylsulfonic acid, alkali metal salts such as sodium salts and potassium salts thereof, and ammonium salts thereof. Although the ratio of the chain transfer monomer is not particularly limited, it is usually specified in the present invention that the ratio is usually 0.2 to 2 mol% with respect to the total molar sum of the polymerization components of the (meth) acrylamide copolymer. The molecular weight range is preferable because it is easy to obtain. From the same viewpoint, it is more preferably 0.5 to 1 mol%.

本発明のアクリルアミド系共重合体は、重合成分として、さらに、架橋性モノマーを含めることができる。架橋性モノマーとしては、たとえば、エチレングリコールジ(メタ)アクリレート、ジアリルアミン、N−メチロールアクリルアミド等の2官能モノマー、トリアリルイソシアネート、N,N−ジアリルアクリルアミド等の3官能モノマー、テトラアリルオキシエタン等の4官能性モノマーや、アリル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ジメチルアクリルアミド等のビニルモノマー等があげられる。架橋性モノマーを使用する場合、その比率は、ゲル化防止の観点から、(メタ)アクリルアミド系共重合体の重合成分の総モル和に対し通常1モル%程度以下、好ましくは0.5モル%以下である。 The acrylamide copolymer of the present invention can further contain a crosslinkable monomer as a polymerization component. Examples of the crosslinkable monomer include bifunctional monomers such as ethylene glycol di (meth) acrylate, diallylamine and N-methylolacrylamide, trifunctional monomers such as triallyl isocyanate and N, N-diallylacrylamide, and tetraallyloxyethane. Examples thereof include tetrafunctional monomers and vinyl monomers such as allyl (meth) acrylate, diethylene glycol mono (meth) acrylate, and dimethylacrylamide. When a crosslinkable monomer is used, the ratio is usually about 1 mol% or less, preferably 0.5 mol%, based on the total molar amount of polymerization components of the (meth) acrylamide copolymer, from the viewpoint of preventing gelation. It is as follows.

本発明の紙力剤の特性である後述のPCD電位計による測定電位が200mVを超えなければ、カチオン性ビニルモノマー/アニオン性ビニルモノマーのモル%比は任意に選定できる。ただし、より好ましいPCD電位計による測定電位である0mVを超えないものを得やすくする観点から、カチオン性ビニルモノマー/アニオン性ビニルモノマーのモル%比を1以下とすることが好ましい。 If the potential measured by the PCD electrometer described later, which is a characteristic of the paper strength agent of the present invention, does not exceed 200 mV, the molar ratio of cationic vinyl monomer / anionic vinyl monomer can be arbitrarily selected. However, from the viewpoint of easily obtaining a product that does not exceed 0 mV, which is a potential measured by a PCD electrometer, it is preferable to set the molar ratio of cationic vinyl monomer / anionic vinyl monomer to 1 or less.

また、上記単量体組成を満たす限りにおいて、必要により、ノニオン性ビニルモノマーを併用してもよい。ノニオン性ビニルモノマーとしては、前記アニオン性ビニルモノマーのアルキルエステル(アルキル基の炭素数1〜8)、アクリロニトリル、スチレン類、酢酸ビニル、メチルビニルエーテルなどがあげられる。ノニオン性ビニルモノマーの使用比率は、通常、全重合成分の総モル和に対して、通常、10モル%以下、好ましくは、5モル以下である。10モル%を超えて使用する場合は、本発明の効果を損ねる可能性があるため好ましくない。 Moreover, as long as the said monomer composition is satisfy | filled, you may use a nonionic vinyl monomer together as needed. Examples of the nonionic vinyl monomer include alkyl esters of the anionic vinyl monomers (alkyl group having 1 to 8 carbon atoms), acrylonitrile, styrenes, vinyl acetate, and methyl vinyl ether. The use ratio of the nonionic vinyl monomer is usually 10 mol% or less, preferably 5 mol or less, based on the total molar sum of all polymerization components. When it exceeds 10 mol%, since the effect of this invention may be impaired, it is unpreferable.

本発明に用いられる共重合体の合成は、従来公知の各種方法により行うことができる。例えば、所定の反応容器に前記(メタ)アクリルアミド、カチオン性ビニルモノマーおよびアニオン性ビニルモノマーを含む重合成分および水を仕込み、ラジカル重合開始剤を加え、撹拌下、加温することにより目的とする水溶性の(メタ)アクリルアミド系共重合体を水溶液または分散液として得ることができる。反応温度は、通常50〜100℃程度、反応時間は1〜5時間程度である。モノマーの仕込み方法は同時重合、連続滴下重合等の従来公知の各種方法により行うことができる。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、またはこれらと亜硫酸水素ナトリウムのごとき還元剤とを組み合わせた形のレドックス系重合開始剤等の通常のラジカル重合開始剤を使用できる。また、前記ラジカル重合開始剤には、アゾ系開始剤を併用してもよい。ラジカル重合開始剤の使用量は、重合成分の総重量和に対し0.05〜2.0重量%、好ましくは0.1〜0.5重量%である。0.05重量%では重合自体が十分に進行せず、2.0重量%を越える場合には高分子量ポリマーを得ることが困難である。 The copolymer used in the present invention can be synthesized by various conventionally known methods. For example, the above-mentioned (meth) acrylamide, a polymerization component containing a cationic vinyl monomer and an anionic vinyl monomer and water are charged into a predetermined reaction vessel, a radical polymerization initiator is added, and the mixture is heated with stirring to achieve the desired water solubility. (Meth) acrylamide copolymer can be obtained as an aqueous solution or dispersion. The reaction temperature is usually about 50 to 100 ° C., and the reaction time is about 1 to 5 hours. The monomer can be charged by various conventionally known methods such as simultaneous polymerization and continuous dropping polymerization. As the radical polymerization initiator, a normal radical polymerization initiator such as a persulfate such as potassium persulfate or ammonium persulfate, or a redox polymerization initiator in the form of a combination of these with a reducing agent such as sodium bisulfite is used. it can. In addition, an azo initiator may be used in combination with the radical polymerization initiator. The amount of the radical polymerization initiator used is 0.05 to 2.0% by weight, preferably 0.1 to 0.5% by weight, based on the total weight of the polymerization components. At 0.05% by weight, the polymerization itself does not proceed sufficiently, and when it exceeds 2.0% by weight, it is difficult to obtain a high molecular weight polymer.

こうして得られた(メタ)アクリルアミド系共重合体の重量平均分子量は350万〜800万(ゲルパーメーションクロマトグラフィー法によるポリエチレンオキサイド換算値)である。重量平均分子量が350万未満であると定着率が向上せず、十分な紙力効果が得られない。重量平均分子量が800万を超えるとカチオン性基、アニオン性基がパルプに対して有効に作用せず、定着率が向上しないため、十分な紙力効果が得られない。 The weight average molecular weight of the (meth) acrylamide copolymer thus obtained is 3.5 million to 8 million (converted to polyethylene oxide by gel permeation chromatography). When the weight average molecular weight is less than 3.5 million, the fixing rate is not improved and sufficient paper strength effect cannot be obtained. When the weight average molecular weight exceeds 8 million, the cationic group and the anionic group do not act effectively on the pulp and the fixing rate is not improved, so that a sufficient paper strength effect cannot be obtained.

本発明の紙力剤は、前記(メタ)アクリルアミド系共重合体であるが、(メタ)アクリルアミド系共重合体の濃度を0.2重量%、かつpH7.0(25℃)とした場合におけるPCD電位計(Mutec社製)による測定電位が200mV以下であることを必須とする。前記測定電位は、測定対象とする紙力剤(水溶液または水分散液)を、さらに水で希釈または揮発するなどして紙力剤中の(メタ)アクリルアミド系重合体の濃度を0.2重量%に調整し、酸または塩基成分によりpHを7.0に調整した水溶液をPCD電位計で測定した値であり、実際に使用に供される紙力剤自体の測定値と必ずしも一致しない。前記測定電位が200mVを超えると、抄紙系、すなわち、各種製紙薬品を含むパルプ繊維スラリー全体が陽転(パルプスラリーをゼータ電位計にて測定した電位値が、0mVを超える状態のことを意味する。)し、紙力剤の定着率が向上しにくくなり、十分な紙力効果が得られない。なお、酸または塩基成分としては、特に限定されないが、希硫酸、塩酸などの酸や、水酸化ナトリウム、水酸化カリウムなどが挙げられる。
同様の観点から、紙力剤を固形分重量換算で、パルプ繊維スラリーの固形分重量に対し0.5重量%以上、特に1.0重量%以上の高い添加量で使用する場合には、PCD電位計による測定電位が0mVを超えないものとすることがより好ましい。
The paper strength agent of the present invention is the (meth) acrylamide copolymer, but the concentration of the (meth) acrylamide copolymer is 0.2% by weight and pH 7.0 (25 ° C.). It is essential that the potential measured by a PCD electrometer (manufactured by Mutec) is 200 mV or less. The measurement potential is determined by adjusting the concentration of the (meth) acrylamide polymer in the paper strength agent by further diluting or volatilizing the strength material (aqueous solution or aqueous dispersion) to be measured. %, And an aqueous solution adjusted to pH 7.0 with an acid or base component is a value measured with a PCD electrometer, and does not necessarily match the measured value of the paper strength agent itself actually used. When the measured potential exceeds 200 mV, the papermaking system, that is, the entire pulp fiber slurry containing various papermaking chemicals is positively rotated (meaning that the potential value of the pulp slurry measured with a zeta electrometer exceeds 0 mV. ) And the fixing rate of the paper strength agent is difficult to improve, and a sufficient paper strength effect cannot be obtained. In addition, although it does not specifically limit as an acid or a base component, Acid, such as dilute sulfuric acid and hydrochloric acid, sodium hydroxide, potassium hydroxide, etc. are mentioned.
From the same viewpoint, when the paper strength agent is used at a high addition amount of 0.5% by weight or more, particularly 1.0% by weight or more with respect to the solid content weight of the pulp fiber slurry in terms of solid content weight, PCD More preferably, the potential measured by the electrometer does not exceed 0 mV.

本発明の紙力剤は、目的とする紙の種類や使用するパルプ繊維スラリーの種類に限定せずに、紙の製造に使用することができる。紙の種類としては、ライナー原紙、中芯原紙、紙管原紙、白板紙、クラフト紙、上質紙、新聞紙などが挙げられ、パルプ繊維スラリーとしては、クラフトパルプ、サルファイトパルプ等の晒あるいは未晒化学パルプ、砕木パルプ、機械パルプ、サーモメカニカルパルプ等の晒あるいは未晒高収率のパルプ、新聞古紙、雑誌古紙、ダンボール古紙、脱墨古紙等の古紙パルプなどが挙げられる。 The paper strength agent of this invention can be used for manufacture of paper, without being limited to the kind of target paper and the kind of pulp fiber slurry to be used. Examples of paper types include liner base paper, core base paper, paper tube base paper, white paperboard, kraft paper, high-quality paper, and newsprint. Pulp fiber slurries include kraft pulp, sulfite pulp, etc. Examples include bleached or unbleached high yield pulp such as chemical pulp, groundwood pulp, mechanical pulp, and thermomechanical pulp, waste paper pulp such as newspaper waste paper, magazine waste paper, cardboard waste paper, and deinked waste paper.

本発明の紙力剤の添加量は、抄紙系が陽転しない範囲で、上記紙やパルプ繊維スラリーの種類、抄紙条件によって適宜決定すればよいが、通常は、紙力剤を固形分重量換算で、パルプ繊維スラリーの固形分重量に対し、0.1〜3重量%程度である。 The addition amount of the paper strength agent of the present invention may be appropriately determined depending on the type of paper and pulp fiber slurry and papermaking conditions within the range where the papermaking system does not rotate normally. The solid content of the pulp fiber slurry is about 0.1 to 3% by weight.

さらに、本発明の紙力剤は、公知の紙力剤を使用した場合には紙力増強効果の発現が困難とされる高い電気伝導度を有するパルプスラリーに対しても、顕著な紙力増強効果を有するため、かかる抄紙条件を有する紙の製造において使用することが好ましい。具体的には、電気伝導度が1.5mS/cm以上のパルプ繊維スラリーに添加して抄紙する紙の製造において好適に使用することができる。 Furthermore, the paper strength agent of the present invention has a remarkable strength enhancement even for pulp slurries having high electrical conductivity, which makes it difficult to achieve the strength enhancement effect when a known strength material is used. Since it has an effect, it is preferably used in the production of paper having such papermaking conditions. Specifically, it can be suitably used in the production of paper to be made by adding to a pulp fiber slurry having an electric conductivity of 1.5 mS / cm or more.

例えば、より高い紙力効果が求められる板紙〔マニラボール、白ボール、チップボール、紙管原紙等〕等の製造においては、より高い添加量が必要であるが、高い添加量となるほど、抄紙条件の電気伝導度が上昇する傾向がある。本発明の紙力剤は、そのような条件であっても紙力効果の発現が維持されることから、高い紙力剤の添加量が求められる抄紙条件により適するものである。 For example, in the production of paperboard (manila balls, white balls, chip balls, paper tube base paper, etc.) that requires a higher paper strength effect, a higher addition amount is required, but the higher the addition amount, the more the papermaking conditions There is a tendency for the electrical conductivity of the to increase. The paper strength agent of the present invention is more suitable for papermaking conditions where a high amount of paper strength agent is required because the expression of the paper strength effect is maintained even under such conditions.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はこれら各例に限定されるものではない。尚、各例中、部及び%は特記しない限りすべて重量基準である。各例の物性値は、以下の方法により測定した値である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to these examples. In each example, all parts and% are based on weight unless otherwise specified. The physical property value of each example is a value measured by the following method.

(1)粘度
B型粘度計を用いて、25℃にて測定した。
(2)重量平均分子量
以下の測定条件にて測定した。
GPC本体:東ソー(株)製
カラム:東ソー(株)製ガードカラムPWXL1本およびGMPWXL2本(温度40℃)
溶離液:N/2酢酸緩衝液(N/2酢酸(和光純薬工業(株)製)+N/2酢酸ナトリウム(キシダ化学(株)製)水溶液、pH約4.2)
流速:0.8ml/分
検出器:
LALLS法;東ソー(株)製濃度検出器(RI−8010)および光散乱検出器(LS−8000)(室温)
RALLS法;ビスコテック社製TDA
MODEL301(濃度検出器および90°光散乱検出器および粘度検出器(温度40℃))
(3)PCD電位計による測定電位
PCD電位計PCD02(MUTEC社製)を用いて、(メタ)アクリルアミド系重合体の濃度を0.2重量%に調整し、酸塩基成分によりpHを7.0に調整した水溶液を測定した。
(1) Viscosity The viscosity was measured at 25 ° C. using a B-type viscometer.
(2) Measurement was performed under measurement conditions of a weight average molecular weight or less.
GPC body: Tosoh Co., Ltd. column: Tosoh Co., Ltd. guard column PWXL 1 and GMPWXL 2 (temperature 40 ° C.)
Eluent: N / 2 acetic acid buffer (N / 2 acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) + N / 2 sodium acetate (manufactured by Kishida Chemical Co., Ltd.) aqueous solution, pH about 4.2)
Flow rate: 0.8 ml / min Detector:
LALLS method: Tosoh Corporation concentration detector (RI-8010) and light scattering detector (LS-8000) (room temperature)
RALLS method; TDA manufactured by Biscotech
MODEL301 (concentration detector and 90 ° light scattering detector and viscosity detector (temperature 40 ° C.))
(3) Potential measured by PCD electrometer Using a PCD electrometer PCD02 (manufactured by MUTEC), the concentration of the (meth) acrylamide polymer was adjusted to 0.2% by weight, and the pH was adjusted to 7.0 with the acid-base component. The aqueous solution adjusted to was measured.

実施例1
撹拌機、温度計、還流冷却管、窒素ガス導入管および2つの滴下ロートを備えた反応装置に、イオン交換水350部を入れ、窒素ガスを通じて反応系内の酸素を除去した後、90℃まで加熱した。一方の滴下ロートにアクリルアミド322部、イタコン酸19.2部、メタアリルスルホン酸ナトリウム5.4部、75%ジメチルアミノエチルアクリレ−トのベンジルクロライド4級化物水溶液70.6部、メチレンビスアクリルアミド0.76部およびイオン交換水672部を仕込み、硫酸によりpHを3に調整した。また、他方の滴下ロートに過硫酸アンモニウム0.4部とイオン交換水180部を入れた。次に、両方の滴下ロートより系内にモノマーおよび触媒を約3時間かけて滴下した。滴下終了後過硫酸アンモニウム0.4部とイオン交換水10部を入れ1時間保温し、イオン交換水100部を投入し、固形分20.2%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Example 1
In a reactor equipped with a stirrer, a thermometer, a reflux condenser, a nitrogen gas inlet tube and two dropping funnels, 350 parts of ion-exchanged water was added, oxygen in the reaction system was removed through nitrogen gas, and then up to 90 ° C. Heated. In one dropping funnel, 322 parts of acrylamide, 19.2 parts of itaconic acid, 5.4 parts of sodium methallylsulfonate, 70.6 parts of 75% dimethylaminoethyl acrylate benzyl chloride quaternized solution, methylenebisacrylamide 0.76 part and 672 parts of ion-exchanged water were charged, and the pH was adjusted to 3 with sulfuric acid. Moreover, 0.4 part of ammonium persulfate and 180 parts of ion-exchange water were put into the other dropping funnel. Next, a monomer and a catalyst were dropped into the system from both dropping funnels over about 3 hours. After completion of dropping, 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour, 100 parts of ion-exchanged water were added, the solid content was 20.2%, and the viscosity (25 ° C.) was 8,000 mPa · s. A copolymer aqueous solution was obtained. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

実施例2
実施例1と同様の反応装置に、イオン交換水260部を入れ、窒素ガスを通じて反応系内の酸素を除去した後、90℃まで加熱した。一方の滴下ロートにアクリルアミド321部、62.5%硫酸24部、80%アクリル酸水溶液28.1部、メタアリルスルホン酸ナトリウム6.6部、ジメチルアミノプロピルアクリルアミド48.7部、メチレンビスアクリルアミド0.8部およびイオン交換水1250部を仕込み、硫酸によりpHを3に調整した。また、他方の滴下ロートに過硫酸アンモニウム0.4部とイオン交換水180部を入れた。次に、両方の滴下ロートより系内にモノマーおよび触媒を約3時間かけて滴下した。滴下終了後過硫酸アンモニウム0.4部とイオン交換水10部を入れ1時間保温し、イオン交換水170部を投入し、固形分20.4%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Example 2
In a reaction apparatus similar to that in Example 1, 260 parts of ion-exchanged water was added, oxygen in the reaction system was removed through nitrogen gas, and then heated to 90 ° C. In one dropping funnel, 321 parts of acrylamide, 24 parts of 62.5% sulfuric acid, 28.1 parts of 80% aqueous acrylic acid solution, 6.6 parts of sodium methallyl sulfonate, 48.7 parts of dimethylaminopropylacrylamide, and methylenebisacrylamide 0 8 parts and 1250 parts of ion-exchanged water were added, and the pH was adjusted to 3 with sulfuric acid. Moreover, 0.4 part of ammonium persulfate and 180 parts of ion-exchange water were put into the other dropping funnel. Next, a monomer and a catalyst were dropped into the system from both dropping funnels over about 3 hours. After completion of dropping, 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour, 170 parts of ion-exchanged water were added, and the solid content was 20.4% and the viscosity (25 ° C.) was 8,000 mPa · s. A copolymer aqueous solution was obtained. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

実施例3
実施例1と同様の反応装置に、イオン交換水304部を入れ、窒素ガスを通じて反応系内の酸素を除去した後、90℃まで加熱した。一方の滴下ロートにアクリルアミド336部、62.5%硫酸20部、80%アクリル酸水溶液18.9部、メタアリルスルホン酸ナトリウム6.6部、ジメチルアミノプロピルアクリルアミド41.0部、メチレンビスアクリルアミド0.8部およびイオン交換水909部を仕込み、硫酸によりpHを3に調整した。また、他方の滴下ロートに過硫酸アンモニウム0.4部とイオン交換水180部を入れた。次に、両方の滴下ロートより系内にモノマーおよび触媒を約3時間かけて滴下した。滴下終了後過硫酸アンモニウム0.4部とイオン交換水10部を入れ1時間保温し、イオン交換水185部を投入し、固形分20.5%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Example 3
In a reaction apparatus similar to that in Example 1, 304 parts of ion-exchanged water was added, oxygen in the reaction system was removed through nitrogen gas, and then heated to 90 ° C. In one dropping funnel, 336 parts of acrylamide, 20 parts of 62.5% sulfuric acid, 18.9 parts of an 80% aqueous acrylic acid solution, 6.6 parts of sodium methallylsulfonate, 41.0 parts of dimethylaminopropylacrylamide, and methylenebisacrylamide 0 8 parts and 909 parts of ion-exchanged water were added, and the pH was adjusted to 3 with sulfuric acid. Moreover, 0.4 part of ammonium persulfate and 180 parts of ion-exchange water were put into the other dropping funnel. Next, a monomer and a catalyst were dropped into the system from both dropping funnels over about 3 hours. After completion of dropping, 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour, 185 parts of ion-exchanged water were added, and the solid content was 20.5% and the viscosity (25 ° C.) was 8,000 mPa · s. A copolymer aqueous solution was obtained. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

実施例4
実施例1と同様の反応装置に、アクリルアミド316部、62.5%硫酸23部、ジメチルアミノエチルメタクリレ−ト47.3部、イタコン酸29.4部、メタアリルスルホン酸ナトリウム6.4部、メチレンビスアクリルアミド0.77部及びイオン交換水1260部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水340部を投入し、固形分20.3%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Example 4
In the same reactor as in Example 1, 316 parts of acrylamide, 23 parts of 62.5% sulfuric acid, 47.3 parts of dimethylaminoethyl methacrylate, 29.4 parts of itaconic acid, 6.4 parts of sodium methallylsulfonate Then, 0.77 part of methylenebisacrylamide and 1260 parts of ion-exchanged water were charged, and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 340 parts of ion-exchanged water was added to obtain a copolymer aqueous solution having a solid content of 20.3% and a viscosity (25 ° C.) of 8,000 mPa · s. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

実施例5
実施例1と同様の反応装置に、イオン交換水330部を入れ、窒素ガスを通じて反応系内の酸素を除去した後、90℃まで加熱した。一方の滴下ロートにアクリルアミド335部、62.5%硫酸16部、80%アクリル酸水溶液28.6部、メタアリルスルホン酸ナトリウム8.4部、ジメチルアミノエチルメタクリレ−ト33部、メチレンビスアクリルアミド0.82部およびイオン交換水580部を仕込み、硫酸によりpHを3に調整した。また、他方の滴下ロートに過硫酸アンモニウム0.4部とイオン交換水180部を入れた。次に、両方の滴下ロートより系内にモノマーおよび触媒を約3時間かけて滴下した。滴下終了後過硫酸アンモニウム0.4部とイオン交換水10部を入れ1時間保温し、イオン交換水100部を投入し、固形分25.3%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Example 5
In a reaction apparatus similar to that in Example 1, 330 parts of ion exchange water was added, oxygen in the reaction system was removed through nitrogen gas, and then heated to 90 ° C. In one dropping funnel, 335 parts of acrylamide, 16 parts of 62.5% sulfuric acid, 28.6 parts of 80% aqueous acrylic acid, 8.4 parts of sodium methallylsulfonate, 33 parts of dimethylaminoethyl methacrylate, methylenebisacrylamide 0.82 part and 580 parts of ion-exchanged water were charged, and the pH was adjusted to 3 with sulfuric acid. Moreover, 0.4 part of ammonium persulfate and 180 parts of ion-exchange water were put into the other dropping funnel. Next, a monomer and a catalyst were dropped into the system from both dropping funnels over about 3 hours. After completion of dropping, 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour, 100 parts of ion-exchanged water were added, and the solid content was 25.3% and the viscosity (25 ° C.) was 8,000 mPa · s. A copolymer aqueous solution was obtained. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

実施例6
実施例1と同様の反応装置に、アクリルアミド342部、62.5%硫酸16部、ジメチルアミノプロピルアクリルアミド32.5部、イタコン酸20.3部、メタアリルスルホン酸ナトリウム4.1部、メチレンビスアクリルアミド0.8部及びイオン交換水1760部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水470部を投入し、固形分15.3%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Example 6
In the same reactor as in Example 1, 342 parts of acrylamide, 16 parts of 62.5% sulfuric acid, 32.5 parts of dimethylaminopropylacrylamide, 20.3 parts of itaconic acid, 4.1 parts of sodium methallylsulfonate, methylenebis 0.8 parts of acrylamide and 1760 parts of ion-exchanged water were charged, and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 470 parts of ion exchange water was added to obtain a copolymer aqueous solution having a solid content of 15.3% and a viscosity (25 ° C.) of 8,000 mPa · s. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

実施例7
実施例1と同様の反応装置に、アクリルアミド340部、62.5%硫酸16部、ジメチルアミノエチルメタクリレ−ト32.6部、イタコン酸20.3部、メタアリルスルホン酸ナトリウム6.6部、メチレンビスアクリルアミド0.8部、硫酸アンモニウム200部及びイオン交換水1260部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水110部を投入し、固形分30.4%、粘度(25℃)が1,000mPa・sの共重合体分散液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体分散液の性状値を表1に示す。
Example 7
In the same reactor as in Example 1, 340 parts of acrylamide, 16 parts of 62.5% sulfuric acid, 32.6 parts of dimethylaminoethyl methacrylate, 20.3 parts of itaconic acid, 6.6 parts of sodium methallylsulfonate Then, 0.8 part of methylenebisacrylamide, 200 parts of ammonium sulfate and 1260 parts of ion-exchanged water were charged, and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 110 parts of ion-exchanged water was added to obtain a copolymer dispersion having a solid content of 30.4% and a viscosity (25 ° C.) of 1,000 mPa · s. Table 1 shows the monomer components and ratios used in this example and the property values of the obtained copolymer dispersion.

比較例1
実施例1と同様の反応装置に、アクリルアミド342部、62.5%硫酸16.5部、ジメチルアミノエチルメタクリレ−ト33.7部、80%アクリル酸水溶液29部、メタアリルスルホン酸ナトリウム0.9部及びイオン交換水1260部を仕込み、窒素ガスを通じて反応系の酸素を除去した。過硫酸アンモニウム0.4部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水320部を投入し、固形分20.2%、粘度(25℃)が10,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Comparative Example 1
In the same reactor as in Example 1, 342 parts of acrylamide, 16.5 parts of 62.5% sulfuric acid, 33.7 parts of dimethylaminoethyl methacrylate, 29 parts of 80% aqueous acrylic acid solution, 0 sodium methallylsulfonate 9 parts and 1260 parts of ion-exchanged water were added, and oxygen in the reaction system was removed through nitrogen gas. 0.4 parts of ammonium persulfate and 10 parts of ion exchange water were added. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 320 parts of ion exchange water was added to obtain a copolymer aqueous solution having a solid content of 20.2% and a viscosity (25 ° C.) of 10,000 mPa · s. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

比較例2
実施例1と同様の反応装置に、アクリルアミド345部、62.5%硫酸16部、ジメチルアミノプロピルアクリルアミド32.7部、イタコン酸20.4部、メタアリルスルホン酸ナトリウム1.7部及びイオン交換水1260部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水310部を投入し、固形分20.3%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例1で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Comparative Example 2
In the same reactor as in Example 1, 345 parts of acrylamide, 16 parts of 62.5% sulfuric acid, 32.7 parts of dimethylaminopropylacrylamide, 20.4 parts of itaconic acid, 1.7 parts of sodium methallylsulfonate and ion exchange 1260 parts of water was charged and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After the completion of the polymerization, 310 parts of ion exchange water was added to obtain a copolymer aqueous solution having a solid content of 20.3% and a viscosity (25 ° C.) of 8,000 mPa · s. Table 1 shows the monomer components and ratios used in Example 1 and the property values of the resulting aqueous copolymer solution.

比較例3
実施例1と同様の反応装置に、アクリルアミド329部、62.5%硫酸48.1部、ジメチルアミノエチルメタクリレ−ト48.1部、イタコン酸16.6部、メタアリルスルホン酸ナトリウム5.7部、メチレンビスアクリルアミド0.79部及びイオン交換水1212部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水365部を投入し、固形分20.4%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例1で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Comparative Example 3
In the same reactor as in Example 1, 329 parts of acrylamide, 48.1 parts of 62.5% sulfuric acid, 48.1 parts of dimethylaminoethyl methacrylate, 16.6 parts of itaconic acid, sodium methallylsulfonate, 5. 7 parts, 0.79 part of methylenebisacrylamide and 1212 parts of ion-exchanged water were charged, and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate, 10 parts of ion-exchanged water and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 365 parts of ion exchange water was added to obtain a copolymer aqueous solution having a solid content of 20.4% and a viscosity (25 ° C.) of 8,000 mPa · s. Table 1 shows the monomer components and ratios used in Example 1 and the property values of the resulting aqueous copolymer solution.

比較例4
実施例1と同様の反応装置に、アクリルアミド332部、62.5%硫酸23.6部、ジメチルアミノエチルメタクリレ−ト48.3部、イタコン酸13.3部、メタアリルスルホン酸ナトリウム5.7部、メチレンビスアクリルアミド0.79部及びイオン交換水1260部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水340部を投入し、固形分20.3%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Comparative Example 4
In the same reaction apparatus as in Example 1, 332 parts of acrylamide, 23.6 parts of 62.5% sulfuric acid, 48.3 parts of dimethylaminoethyl methacrylate, 13.3 parts of itaconic acid, sodium methallylsulfonate, 5. 7 parts, 0.79 part of methylenebisacrylamide and 1260 parts of ion-exchanged water were charged, and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate, 10 parts of ion-exchanged water and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 340 parts of ion-exchanged water was added to obtain a copolymer aqueous solution having a solid content of 20.3% and a viscosity (25 ° C.) of 8,000 mPa · s. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

比較例5
実施例1と同様の反応装置に、アクリルアミド310部、75%ジメチルアミノエチルアクリレ−トの4級化物水溶液102.3部、イタコン酸6.2部、メタアリルスルホン酸ナトリウム6.0部及びイオン交換水1250部を仕込み、窒素ガスを通じて反応系の酸素を除去した。系内を55℃にし攪拌下に重合開始剤として過硫酸アンモニウム0.4部とイオン交換水10部とイオン交換水10部を投入した。90℃まで昇温した後30分保温し、過硫酸アンモニウム0.4部とイオン交換水10部を投入して1時間保温した。重合終了後、イオン交換水270部を投入し、固形分20.3%、粘度(25℃)が8,000mPa・sの共重合体水溶液を得た。本実施例で用いたモノマー成分と比率、及び得られた共重合体水溶液の性状値を表1に示す。
Comparative Example 5
In the same reactor as in Example 1, 310 parts of acrylamide, 102.3 parts of a quaternized 75% dimethylaminoethyl acrylate solution, 6.2 parts of itaconic acid, 6.0 parts of sodium methallylsulfonate, and 1250 parts of ion-exchanged water was charged, and oxygen in the reaction system was removed through nitrogen gas. The system was brought to 55 ° C., and 0.4 parts of ammonium persulfate, 10 parts of ion-exchanged water and 10 parts of ion-exchanged water were added as a polymerization initiator with stirring. After raising the temperature to 90 ° C., the temperature was kept for 30 minutes, and 0.4 part of ammonium persulfate and 10 parts of ion-exchanged water were added and kept for 1 hour. After completion of the polymerization, 270 parts of ion-exchanged water was added to obtain a copolymer aqueous solution having a solid content of 20.3% and a viscosity (25 ° C.) of 8,000 mPa · s. Table 1 shows the monomer components and ratios used in this example and the property values of the resulting aqueous copolymer solution.

Figure 2013234390
Figure 2013234390

また、実施例中の略語の名称を以下に示す。
AM:アクリルアミド
DM:ジメチルアミノエチルメタクリレート
DMAPAA:ジメチルアミノプロピルアクリルアミド
DMAEA−BQ:ジメチルアミノエチルアクリレートのベンジルクロライド4級化物
AA:アクリル酸
IA:イタコン酸
SMAS:メタアリルスルホン酸ナトリウム
MBAA:メチレンビスアクリルアミド
Moreover, the name of the abbreviation in an Example is shown below.
AM: Acrylamide DM: Dimethylaminoethyl methacrylate DMAPAA: Dimethylaminopropylacrylamide DMAEA-BQ: Benzyl chloride quaternized product of dimethylaminoethyl acrylate AA: Acrylic acid
IA: Itaconic acid SMAS: Sodium methallyl sulfonate MBAA: Methylenebisacrylamide

[紙力剤の性能評価1]
段ボ−ル古紙をナイアガラ式ビーターにて叩解し、カナディアン・スタンダ−ド・フリ−ネス(C.S.F)350mlに調整した紙料に芒硝を添加して電気伝導度を2.0mS/cmとした。硫酸バンドを1.0%添加した後、各実施例および比較例で得られた重合体水溶液を紙力剤として対パルプ繊維スラリー固形分重量に対し、それぞれ表2に示す添加量(0.6%または1.6)添加した。各パルプ繊維スラリーのpHは6.5であった。当該スラリーのゼータ電位を測定した後、当該スラリーをタッピ・シートマシンにて脱水し、5kg/cm で2分間プレスして、坪量150g/m となるよう抄紙した。次いで回転型乾燥機で105℃において4分間乾燥し、23℃、50%R.H.の条件下に24時間調湿したのち、圧縮強度、内部強度、定着率を測定した。それらの結果を表2に示す。なお、電気伝導度、圧縮強度、内部強度、定着率は、以下の方法で測定した。
[Performance evaluation 1 of paper strength agent]
Corrugated cardboard paper is beaten with a Niagara-type beater, and sodium nitrate is added to the stock adjusted to 350 ml of Canadian Standard Freeness (CSF), and the electrical conductivity is 2.0 mS / cm. After 1.0% of the sulfuric acid band was added, the addition amount shown in Table 2 (0.6% relative to the pulp fiber slurry solids weight) was used as a paper strength agent with the aqueous polymer solution obtained in each Example and Comparative Example. % Or 1.6) was added. The pH of each pulp fiber slurry was 6.5. After measuring the zeta potential of the slurry, the slurry was dehydrated with a tapi sheet machine and pressed at 5 kg / cm 2 for 2 minutes to make a paper to a basis weight of 150 g / m 2 . Subsequently, it dried for 4 minutes at 105 degreeC with a rotary dryer, and 23 degreeC and 50% R. H. After adjusting the humidity for 24 hours, the compression strength, internal strength, and fixing rate were measured. The results are shown in Table 2. The electrical conductivity, compressive strength, internal strength, and fixing rate were measured by the following methods.

(1)電気伝導度
pH/COND METER D−54((株)堀場製作所製)を用いて測定した。
(2)ゼータ電位
ゼータ電位計LAZER ZEE METER MODEL501(PEN KEM Inc.社製)を用いて、薬品添加後のパルプ繊維スラリーを80メッシュワイヤーにて濾過したろ液を測定した。
(3)圧縮強度
JIS P 8126に準拠して測定し、比圧縮強度(N・m/g)で示した。
(4)内部強度
J Tappi No.18−2に準拠して測定した。
(5)定着率
窒素分析装置(三菱化学(株)製)を用いて、得られた紙の窒素含有量を測定した後、下記の計算式から算出した。
定着率(%)=(紙力剤を添加して得られた紙の窒素含有量−紙力剤無添加で得られた紙の窒素含有量)÷(使用した紙力剤の理論窒素含有量)×100
(1) Electrical conductivity Measured using pH / COND METER D-54 (manufactured by Horiba, Ltd.).
(2) Zeta potential Zeta electrometer LAZER ZEE METER MODEL501 (manufactured by PEN KEM Inc.) was used to measure the filtrate obtained by filtering the pulp fiber slurry after chemical addition with 80 mesh wire.
(3) Compressive strength Measured according to JIS P 8126, and indicated as specific compressive strength (N · m 2 / g).
(4) Internal strength J Tappi No. It measured based on 18-2.
(5) Fixing rate
The nitrogen content of the obtained paper was measured using a nitrogen analyzer (manufactured by Mitsubishi Chemical Corporation) and then calculated from the following formula.
Fixing rate (%) = (nitrogen content of paper obtained by adding a paper strength agent−nitrogen content of paper obtained without addition of a paper strength agent) ÷ (theoretical nitrogen content of the paper strength agent used) ) × 100

Figure 2013234390
Figure 2013234390

表2より、本発明の紙力剤は、重量平均分子量またはPCD電位計による測定電位(表中PCD測定電位)のいずれかが本願発明の範囲外となる紙力剤に対して、紙に高い強度を与えることが明らかといえる。 From Table 2, the paper strength agent of the present invention is higher in paper than the strength of the paper strength agent in which either the weight average molecular weight or the measured potential by the PCD electrometer (PCD measured potential in the table) falls outside the scope of the present invention It is clear that it gives strength.

[紙力剤の性能評価2]
つぎに、実施例5と比較例1の紙力剤を用い、それぞれ紙力剤について添加率を変更すること以外は、[紙力剤の性能評価1]と同様にして抄紙を行い、[紙力剤の性能評価1]と同様にして得られた紙の圧縮強度と内部強度を測定した。結果を表3に示す。また、図1および2に、圧縮強度および内部強度それぞれについての結果を示す。
なお、実施例5と比較例1の紙力剤は、各共重合体組成に共通のものが多く、重量平均分子量が異なるもの(それぞれ600万と150万)として選択した。
[Performance evaluation 2 of paper strength agent]
Next, papermaking was performed in the same manner as [Performance Evaluation 1 of Paper Strength Agent] except that the addition rate of the paper strength agent was changed using the paper strength agents of Example 5 and Comparative Example 1, respectively. The compressive strength and internal strength of the paper obtained in the same manner as in the performance evaluation 1 of the strength agent were measured. The results are shown in Table 3. 1 and 2 show the results for the compressive strength and the internal strength, respectively.
In addition, the paper strength agents of Example 5 and Comparative Example 1 were selected as those having many common copolymer compositions and different weight average molecular weights (6 million and 1.5 million, respectively).

Figure 2013234390
Figure 2013234390

表3、図1および2から明らかなように、本発明の紙力剤は、紙力剤添加率が0.5%未満の低い場合にも、紙に十分な圧縮強度および内部強度(紙力性能)を付与するが、添加率に応じて紙力性能の向上が図れ、特に、高い添加率において顕著な紙力性能を発揮するものといえる。 As is clear from Table 3 and FIGS. 1 and 2, the paper strength agent of the present invention has sufficient compressive strength and internal strength (paper strength) even when the strength of the paper strength agent is less than 0.5%. Performance), the paper strength performance can be improved according to the addition rate, and it can be said that the paper strength performance is remarkable especially at a high addition rate.

Claims (6)

(メタ)アクリルアミド、カチオン性ビニルモノマー、アニオン性ビニルモノマーおよび連鎖移動性モノマーを含む重合成分を共重合して得られる重量平均分子量350万〜800万の(メタ)アクリルアミド系共重合体を含有する紙力剤であって、前記(メタ)アクリルアミド系共重合体の濃度を0.2重量%、かつpH7.0(25℃)とした場合におけるPCD電位計による測定電位が200mV以下であることを特徴とする紙力剤。 Contains a (meth) acrylamide copolymer having a weight average molecular weight of 3.5 million to 8 million obtained by copolymerizing polymerization components including (meth) acrylamide, cationic vinyl monomer, anionic vinyl monomer and chain transfer monomer It is a paper strength agent, and the potential measured by a PCD electrometer when the concentration of the (meth) acrylamide copolymer is 0.2 wt% and pH 7.0 (25 ° C.) is 200 mV or less. Characteristic paper strength agent. (メタ)アクリルアミド系共重合体の重合成分として、さらに、架橋性モノマーを含有する請求項1に記載の紙力剤。 The paper strength agent according to claim 1, further comprising a crosslinkable monomer as a polymerization component of the (meth) acrylamide copolymer. (メタ)アクリルアミド系共重合体の重合成分の比率が、(メタ)アクリルアミド57〜97.8モル%、カチオン性ビニルモノマー1〜20モル%およびアニオン性ビニルモノマー1〜20モル%、連鎖移動性モノマー0.2〜2モル%、架橋性モノマー0〜1モル%である請求項1または2記載の紙力剤。 The proportion of the polymerization component of the (meth) acrylamide copolymer is 57 to 97.8 mol% of (meth) acrylamide, 1 to 20 mol% of the cationic vinyl monomer and 1 to 20 mol% of the anionic vinyl monomer, chain transferability. The paper strength agent according to claim 1 or 2, wherein the monomer is 0.2 to 2 mol% and the crosslinkable monomer is 0 to 1 mol%. 電気伝導度が1.5mS/cm以上のパルプ繊維スラリーに、請求項1〜3のいずれかに記載の紙力剤を添加して抄紙することを特徴とする紙の製造方法。 A paper manufacturing method comprising adding a paper strength agent according to any one of claims 1 to 3 to a pulp fiber slurry having an electric conductivity of 1.5 mS / cm or more to make paper. 紙力剤の添加量が、固形分重量換算で、パルプ繊維スラリーの固形分重量に対し、0.5重量%以上である請求項4記載の紙の製造方法。 The method for producing paper according to claim 4, wherein the addition amount of the paper strength agent is 0.5% by weight or more based on the solid content weight of the pulp fiber slurry in terms of solid content weight. 請求項5における紙力剤の前記PCD電位計による測定電位が0mV以下であり、その添加量がパルプ繊維スラリーの固形分重量に対し、1.0重量%以上である請求項5記載の紙の製造方法。
6. The paper strength agent according to claim 5, wherein a potential measured by the PCD electrometer of the paper strength agent is 0 mV or less, and an addition amount thereof is 1.0% by weight or more based on a solid content weight of the pulp fiber slurry. Production method.
JP2012105325A 2012-05-02 2012-05-02 Paper strength agent and paper manufacturing method using the same Active JP5910994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105325A JP5910994B2 (en) 2012-05-02 2012-05-02 Paper strength agent and paper manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105325A JP5910994B2 (en) 2012-05-02 2012-05-02 Paper strength agent and paper manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2013234390A true JP2013234390A (en) 2013-11-21
JP5910994B2 JP5910994B2 (en) 2016-04-27

Family

ID=49760724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105325A Active JP5910994B2 (en) 2012-05-02 2012-05-02 Paper strength agent and paper manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP5910994B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867715A (en) * 1993-12-24 1996-03-12 Mitsui Toatsu Chem Inc Acrylamide polymer and its use
JPH08269891A (en) * 1995-02-01 1996-10-15 Arakawa Chem Ind Co Ltd Additive for producing paper
JP2003073991A (en) * 2001-08-29 2003-03-12 Mitsui Chemicals Inc Method for making paper and paper produced by the method
JP2006138029A (en) * 2004-11-11 2006-06-01 Harima Chem Inc Wet method for making paper
JP2006348421A (en) * 2005-06-16 2006-12-28 Harima Chem Inc Additive for papermaking and paper containing the additive
JP2010196192A (en) * 2009-02-25 2010-09-09 Arakawa Chem Ind Co Ltd Paper strengthening agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867715A (en) * 1993-12-24 1996-03-12 Mitsui Toatsu Chem Inc Acrylamide polymer and its use
JPH08269891A (en) * 1995-02-01 1996-10-15 Arakawa Chem Ind Co Ltd Additive for producing paper
JP2003073991A (en) * 2001-08-29 2003-03-12 Mitsui Chemicals Inc Method for making paper and paper produced by the method
JP2006138029A (en) * 2004-11-11 2006-06-01 Harima Chem Inc Wet method for making paper
JP2006348421A (en) * 2005-06-16 2006-12-28 Harima Chem Inc Additive for papermaking and paper containing the additive
JP2010196192A (en) * 2009-02-25 2010-09-09 Arakawa Chem Ind Co Ltd Paper strengthening agent

Also Published As

Publication number Publication date
JP5910994B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP6354417B2 (en) Paper strength enhancer, paper obtained thereby, and method for producing paper
JP5618213B2 (en) Polyacrylamide internal paper strength agent and paper manufacturing method
JP6509217B2 (en) Use of nanocrystalline cellulose and polymer grafted nanocrystalline cellulose to increase the yield of the papermaking process
JP6943047B2 (en) A method for producing a paper strength enhancer and a method for producing paper
JP6331216B2 (en) Paper strength enhancer, method for producing paper strength enhancer, paper
JP6897227B2 (en) Paper strength enhancer, paper manufacturing method, and paper
WO2014123087A1 (en) Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper
JP5640458B2 (en) Method for producing paper-making paper strength enhancer
US9303359B2 (en) Method for manufacturing paper using a cationic polymer obtained by hofmann degradation
JP6907626B2 (en) Dispersion liquid for paper chemicals, manufacturing method of dispersion liquid for paper chemicals, paper strength enhancer containing dispersion liquid for paper chemicals, drainage improver for papermaking and yield improver for papermaking
CN104420396A (en) Paper strengthening agent and papermaking method using same
JP6238986B2 (en) Paper, paperboard and cardboard manufacturing method
JP2010196192A (en) Paper strengthening agent
JP4238945B2 (en) Paper additive and paper manufacturing method
JP2020147888A (en) Dispersion for paper manufacturing agent, paper strengthening agent including the dispersion for paper manufacturing agent, freeness improver, and yield improver
WO2017110868A1 (en) Polyacrylamide-based papermaking additive, method for producing same, and method for producing paper
JP5910994B2 (en) Paper strength agent and paper manufacturing method using the same
JP5924594B2 (en) Paperboard manufacturing method
JP5609253B2 (en) Paperboard manufacturing method
CN105237648B (en) A kind of glyoxal cross-linked polymer is modified high amylopectin starch and its preparation method and application
JP6323760B2 (en) Bonding paper paper strength agent
JPH08226092A (en) Production of paper
JP7036073B2 (en) Surface paper strength enhancer, coating liquid, paper manufacturing method
JPS62104998A (en) Papermaking additive
JP2005344083A (en) New graft polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5910994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160320

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250