WO2014123087A1 - Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper - Google Patents

Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper Download PDF

Info

Publication number
WO2014123087A1
WO2014123087A1 PCT/JP2014/052453 JP2014052453W WO2014123087A1 WO 2014123087 A1 WO2014123087 A1 WO 2014123087A1 JP 2014052453 W JP2014052453 W JP 2014052453W WO 2014123087 A1 WO2014123087 A1 WO 2014123087A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
paper
composite filler
monomer
calcium carbonate
Prior art date
Application number
PCT/JP2014/052453
Other languages
French (fr)
Japanese (ja)
Inventor
和寛 久米田
茂樹 信国
義之 三谷
Original Assignee
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星光Pmc株式会社 filed Critical 星光Pmc株式会社
Publication of WO2014123087A1 publication Critical patent/WO2014123087A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates

Definitions

  • the present invention relates to a filler used for papermaking and a filler-added paper. More specifically, the present invention relates to a composite filler prepared by mixing calcium carbonate and an acrylamide copolymer in order to obtain excellent paper strength, and a filler-added paper made by adding the filler to a pulp slurry.
  • Patent Documents 1 to 7 As a method for avoiding such a problem and suppressing a decrease in paper strength, a method of modifying the filler by adding various additives has been proposed (see, for example, Patent Documents 1 to 7).
  • Patent Document 1 discloses a method of treating calcium carbonate with an amphoteric acrylamide copolymer to prevent deterioration of optical properties and paper strength.
  • Patent Document 2 discloses a method in which calcium carbonate is treated with anionic xanthan gum, guar gum or the like to prevent a decrease in paper strength.
  • Patent Document 3 discloses a method in which calcium carbonate is treated with cationized starch or cationized guar gum to prevent the yield of filler and the decrease in paper strength.
  • Patent Document 4 discloses a method of preventing a decrease in opacity and paper strength by treating a filler such as calcium carbonate with an acrylic latex.
  • Patent Document 5 discloses a method of treating a filler such as calcium carbonate with alginic acid to prevent the yield of the filler and the decrease in paper strength.
  • Patent Document 6 discloses a method for efficiently improving paper strength by coating a filler with a composite acrylamide copolymer comprising an anionic polysaccharide and a cationic or amphoteric acrylamide copolymer. Yes.
  • Patent Document 7 discloses a method for producing a composite filler and a filler-added paper having a high bulk, whiteness, opacity, paper strength, and filler yield by treating calcium carbonate with an amphoteric acrylamide copolymer.
  • the composite filler obtained by the above treatment was not uniform and appropriate in agglomerated form, and the behavior after addition to the pulp slurry was not taken into consideration. For this reason, there are many problems such as a case where an appropriate agglomeration form cannot be maintained with respect to the shearing force in the pulp slurry, and a sufficient paper strength cannot be obtained or the paper machine is soiled.
  • the present invention is a method for producing a composite filler for papermaking that can provide a filler-added paper with less deterioration of optical properties and better paper strength than before, and excellent paper strength and optical properties by using such a composite filler. It is an object of the present invention to provide a method for producing a filler-added paper having the following.
  • the present invention relates to the following contents.
  • ⁇ 1> A method for producing a composite filler for papermaking, wherein calcium carbonate is treated so as to satisfy the following condition (3) using an acrylamide copolymer satisfying the following conditions (1) and (2).
  • the acrylamide copolymer is amphoteric, the molar ratio of ionic monomer / nonionic monomer is 5/95 to 40/60, and (number of moles of cationic monomer ⁇ cationic group of cationic monomer) Ratio) / (number of moles of anionic monomer ⁇ number of anionic groups of anionic monomer) is 50/50 to 90/10 (2)
  • the weight average molecular weight of the acrylamide copolymer is 2 million to 7 million (3)
  • the 50% volume average particle diameter of the composite filler is 60 ⁇ m to 300 ⁇ m, and the particles of 5 ⁇ m or less are 1% or less by volume.
  • the pulp slurry containing 30% by weight of the composite filler in the dilution condition in which the filtrate light transmittance of the pulp slurry containing 30% by weight of the untreated filler with respect to the pulp solid becomes 50%.
  • the filtrate light transmittance is 60% or more.
  • the ratio of ⁇ 4> (number of moles of the cationic monomer ⁇ number of cationic groups of the cationic monomer) / (number of moles of the anionic monomer ⁇ number of anionic groups of the anionic monomer) is 50/50.
  • ⁇ 5> The method for producing a composite filler for papermaking according to any one of the above ⁇ 1> to ⁇ 4>, wherein the molecular weight of the acrylamide copolymer is 2.5 million to 5 million in terms of weight average molecular weight by GPC-MALS method .
  • ⁇ 6> The method for producing a composite filler for papermaking according to any one of ⁇ 1> to ⁇ 5>, wherein the 50% volume average particle size of the composite filler is 100 ⁇ m to 200 ⁇ m.
  • the treatment amount of the acrylamide copolymer is any one of the above items ⁇ 1> to ⁇ 6>, which is in the range of 0.1 to 3.0% by weight in terms of solids with respect to the solid weight of the calcium carbonate.
  • the manufacturing method of the composite filler for paper manufacture as described in one.
  • ⁇ 8> A method for producing a filler-added paper, wherein the paper-made composite filler obtained by the production method according to any one of ⁇ 1> to ⁇ 7> is added to a pulp slurry.
  • ⁇ 9> The method for producing a filler-added paper according to ⁇ 8>, wherein the ash content in the filler-added paper is 10% or more.
  • ⁇ 10> The method for producing a filler-added paper according to ⁇ 8>, wherein the ash content in the paper of the filler-added paper is 20% or more and 50% or less.
  • the composite filler obtained according to the present invention is used, it is possible to obtain a filler-added paper that is less deteriorated in optical properties and has better paper strength than the conventional one.
  • the present inventors apply a uniform and appropriate agglomeration treatment to an inorganic filler with an acrylamide copolymer to form a composite filler with very few unagglomerated filler particles, whereby paper is made after mixing into a pulp slurry.
  • the composite filler was successfully redispersed under the conditions where the shearing force was applied until then, and at this time, the composite filler with little release of filler fine particles was successfully obtained. It has been found that a paper made by mixing a composite filler having such a function with a pulp slurry can achieve both high paper strength and optical properties (whiteness and opacity), and has completed the present invention.
  • the use of composite fillers has the effect of increasing the contact area between pulp fibers, which is thought to improve paper strength.
  • the reason why the paper strength and optical characteristics are improved is not clear, but can be considered as follows.
  • the acrylamide copolymer serves as a binder, calcium carbonate is aggregated, and a composite filler having a 50% volume average particle diameter of 60 ⁇ m to 300 ⁇ m is obtained.
  • the binding strength as a binder is such that it is peeled off by the shearing force of the mixer, and can be appropriately redispersed by the share of the papermaking system.
  • the acrylamide copolymer functions as a dispersant or compatibilizer, so that the optical properties are less likely to deteriorate due to the uniform dispersion of the small particle size composite filler during papermaking. It is considered that the paper strength is improved by the strength (elasticity) of the object itself. Thus, it is considered that paper strength and optical characteristics are improved by performing an appropriate aggregation treatment.
  • both heavy calcium carbonate (ground calcium carbonate) and light calcium carbonate (precipitated calcium carbonate) can be used.
  • specific examples of such calcium carbonate include heavy calcium carbonate such as Softon 1000, Softon 1500, Softon 3200 (all manufactured by Shiroishi Calcium Industry), and Tama Pearl TP-121 (Okutama Industry).
  • Examples include light calcium carbonate.
  • fillers such as clay, talc, silica, aluminosilicate, titanium oxide, zinc oxide, white carbon, aluminum hydroxide and zeolite, and organic fillers may be used in combination.
  • the particle diameter before aggregation of calcium carbonate is preferably 10 ⁇ m or less in terms of 50% volume average particle diameter. If it is larger than this, there will be a problem that the filler particles will easily fall off the paper, which may cause trouble.
  • the calcium carbonate slurry may be subjected to a dispersion treatment for the purpose of facilitating transport at a high concentration, but if the effect of the present invention is not impaired, the presence or absence of such treatment on the calcium carbonate prior to the aggregation treatment is determined. It doesn't matter. Further, auxiliary agents such as a sizing agent, a water-resistant agent, a sulfuric acid band, an ultraviolet absorber, an anti-fading agent, and a dye may be added.
  • an acrylamide copolymer satisfying the following conditions (1) and (2) is used so that the calcium carbonate particles can be uniformly and appropriately aggregated.
  • the acrylamide copolymer is amphoteric, the molar ratio of ionic monomer / nonionic monomer is 5/95 to 40/60, and (number of moles of cationic monomer ⁇ cationic group of cationic monomer) Ratio) / (number of moles of anionic monomer ⁇ number of anionic groups of anionic monomer) is 50/50 to 90/10 (2)
  • the weight average molecular weight of the acrylamide copolymer is 2 million to 7 million.
  • nonionic monomer constituting the acrylamide copolymer examples include acrylamide, methacrylamide, dimethylacrylamide, and methylenebisacrylamide, and any of powder and aqueous solution may be used for polymerization.
  • Examples of the ionic monomer constituting the acrylamide copolymer include a cationic monomer and an anionic monomer.
  • Examples of the cationic monomer include a vinyl monomer having a tertiary amino group or a quaternary ammonium salt.
  • vinyl monomers having a tertiary amino group examples include dialkylaminoalkyl (meth) such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylate.
  • dialkylaminoalkyl (meth) such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylate.
  • Inorganic acids such as acrylates, dialkylaminoalkyl (meth) acrylamides such as dimethylaminopropyl (meth) acrylamide and diethylaminopropyl (meth) acrylamide, hydrochlorides of vinyl monomers having the above tertiary amino groups, and sulfates Examples thereof include salts, and organic acid salts such as formate and acetate of vinyl monomers having the above tertiary amino group.
  • examples of the vinyl monomer having a quaternary ammonium salt include vinyl monomers obtained by reacting the above-described vinyl monomer having a tertiary amino group with a quaternizing agent.
  • examples of the quaternizing agent include alkyl halides such as methyl chloride and methyl bromide, aralkyl halides such as benzyl chloride and benzyl bromide, dimethyl sulfate, diethyl sulfate, epichlorohydrin, and 3-chloro-2-hydroxypropyl. Examples thereof include trimethylammonium chloride and glycidyltrialkylammonium chloride.
  • These vinyl monomers having a tertiary amino group or a quaternary ammonium salt may be used alone or in combination of two or more.
  • anionic monomers examples include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated tricarboxylic acids, unsaturated tetracarboxylic acids, unsaturated sulfonic acids, unsaturated phosphonic acids, and salts thereof. It can be used alone or in combination of two or more.
  • examples of the unsaturated monocarboxylic acid and salts thereof include acrylic acid, methacrylic acid, 2-acrylamide-N-glycolic acid, and alkali metals such as sodium and potassium salts, ammonium salts, and the like.
  • unsaturated dicarboxylic acids and salts thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid and alkali metal salts such as sodium and potassium salts thereof, ammonium salts, and the like.
  • unsaturated tricarboxylic acids and their salts include alkalis such as aconitic acid, 3-butene-1,2,3-tricarboxylic acid, 4-pentene-1,2,4-tricarboxylic acid and their sodium and potassium salts Examples thereof include metal salts or ammonium salts.
  • Examples of unsaturated tetracarboxylic acids and their salts include 1-pentene-1,1,4,4-tetracarboxylic acid, 4-pentene-1,2,3,4-tetracarboxylic acid, 3-hexene- Examples thereof include 1,1,6,6-tetracarboxylic acid and alkali metal salts such as sodium and potassium salts thereof or ammonium salts.
  • unsaturated sulfonic acids include vinyl sulfonic acid, styrene sulfonic acid, (meth) allyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and alkali metal salts or ammonium salts thereof such as sodium and potassium. Can be mentioned.
  • unsaturated phosphonic acid examples include vinylphosphonic acid, ⁇ -phenylvinylphosphonic acid and alkali metal salts such as sodium and potassium salts, ammonium salts, and the like.
  • unsaturated monocarboxylic acid and unsaturated dicarboxylic acid specifically acrylic acid, itaconic acid, 2-acrylamide-N-glycolic acid, And its salts are particularly preferred.
  • the ratio of ionic monomer / nonionic monomer needs to be 5/95 to 40/60 (mol%) as the composition of the acrylamide copolymer.
  • the ratio is preferably 10/90 to 25/75.
  • the ratio of (number of moles of cationic monomer ⁇ number of cationic groups of cationic monomer) / (number of moles of anionic monomer ⁇ number of anionic groups of anionic monomer) is 50 / 50 ⁇
  • Those satisfying the condition of 90/10 (mol%) can provide a good effect, more preferably 50/50 to 80/20.
  • Acrylamide copolymer can be obtained by polymerization by a known method.
  • An acrylamide copolymer can also be obtained by dividing the monomer for polymerization or by dropping the monomer for polymerization.
  • the molecular weight of the acrylamide copolymer having a weight average molecular weight in the range of 2 million to 7 million as measured by the GPC-MALS method shows a good effect, and is preferably 2.5 million to 5 million.
  • the effect of improving the paper strength is insufficient
  • over-aggregation of the filler causes deterioration of paper strength, or the viscosity of the aqueous solution becomes high and handling is inconvenient.
  • the symbol “ ⁇ ” indicating a range is merely used for convenience and conciseness, and does not limit the scope of the present invention.
  • the symbol “ ⁇ ” should be considered as specifically disclosing the subrange and individual numerical values within that range.
  • the description of the range of the weight average molecular weight “2 million to 7 million” includes a partial range, specifically, 2.5 million to 3 million, 2.5 million to 4 million, 2.5 million to 5 million, and the range. It should be regarded as disclosing the number of individual members, specifically 2 million, 2.5 million, 3 million, 4 million, 5 million.
  • the weight average molecular weight of the acrylamide copolymer is measured by GPC-MALS method in which a multi-angle light scattering detector is connected to GPC.
  • the measurement conditions are as follows.
  • GPC main unit LC1100 series manufactured by Agilent Technologies Inc.
  • Eluent N / 10 phosphate buffer (pH 3) containing N / 10 sodium nitrate
  • Flow rate 1.0 ml / min
  • Detector 1 Multi-angle light scattering detector DAWN manufactured by Wyatt Technology
  • Detector 2 Suggested refractive index detector RI-101 manufactured by Showa Denko KK
  • polyvinylamine polyethyleneimine, polyallylamine, polydiallylamine, polydiallyldimethylammonium chloride, polyacrylate, polyethylene oxide, polyvinyl alcohol , Polymer compounds such as cationized starch and amphoteric starch can be used in combination.
  • the above acrylamide copolymer is used so as to satisfy the following condition (3).
  • the 50% volume average particle diameter of the composite filler is 60 ⁇ m to 300 ⁇ m, and the particles having a volume ratio of 5 ⁇ m or less are 1% or less in volume ratio, and when the DFR measurement is performed, the untreated filler to the pulp solid
  • the filtrate light transmittance of the pulp slurry containing 30% by weight is 50%
  • the filtrate light transmittance of the pulp slurry containing 30% by weight of the composite filler is 60% or more.
  • the 50% volume average particle diameter of the composite filler measured by the laser diffraction method is in the range of 60 ⁇ m to 300 ⁇ m, a good paper strength improvement effect can be obtained. More preferably, it is 100 ⁇ m to 200 ⁇ m.
  • the thickness is smaller than 60 ⁇ m, a sufficient paper strength improvement effect cannot be obtained.
  • the thickness is larger than 300 ⁇ m, there is a possibility that defects derived from aggregates may occur on the paper surface after paper making. In this case, the opacity is lowered, which is not preferable. There is also a concern that the paper machine is likely to get dirty.
  • particles having a size of 5 ⁇ m or less be 1% or less by volume ratio. This is because if there are many unagglomerated fine particles in the slurry of the composite filler after the filler treatment, a sufficient paper strength improvement effect cannot be obtained.
  • the 50% volume average particle diameter and the volume ratio of particles of 5 ⁇ m or less can be measured using a laser diffraction / scattering particle size distribution measuring machine (Nikkiso Co., Ltd. Microtrac MT3300EXII).
  • the visible light (wavelength: 620 nm) transmittance of the filtrate by DFR of the slurry in which 30% by weight of the composite filler is added to the solid weight of the LBKP pulp is 60% or more
  • the shear in the pulp slurry The stability of the composite filler with respect to force is increased, and good paper strength is obtained.
  • the visible light transmittance is less than 60%, it is determined that the cohesive force is weak or the coagulation is non-uniform, and the coagulation is loosened due to re-dispersion due to the shear and many fine particles are generated.
  • the paper strength is greatly reduced, making it difficult to solve this problem.
  • DFR Drainage Freeness Retention measuring device
  • Mutech Drainage Freeness Retention measuring device
  • the composite filler maintains an appropriate agglomerated form even under a condition where shearing force is applied, which leads to a high yield to the pulp slurry.
  • the optimal particle size range and composition of the acrylamide copolymer can be grasped by observing the filler yield after the shearing force is applied.
  • the mixing method, processing method, or processing conditions are appropriately selected and adjusted so that the obtained composite filler satisfies the above condition (3).
  • the method of mixing the acrylamide copolymer with calcium carbonate is not particularly limited, but can be agglomerated efficiently by mixing by multistage addition or dropwise addition rather than batch mixing. This is preferable in terms of uniform fixing to calcium.
  • a method of mixing a calcium carbonate slurry using water as a solvent and an aqueous solution of an acrylamide copolymer is the simplest.
  • a mixing method a known method capable of uniformly mixing is used. Mixing can be performed in a reaction vessel or tank capable of stirring by a stirrer, an agitator, bubbling or the like. Alternatively, it can be prepared by adding an aqueous solution of an acrylamide copolymer on the transfer line of the calcium carbonate slurry.
  • an in-line mixer may be used. After adding the acrylamide copolymer to the calcium carbonate slurry, if the shear force is too strong, there is a risk that unaggregated particles will increase and sufficient paper strength may not be obtained. It is preferable to perform the adjustment.
  • the treatment amount of the acrylamide copolymer is preferably in the range of 0.1 to 3.0% by weight in terms of solids with respect to the solid weight of calcium carbonate, more preferably 0.5 to 2 in terms of improving paper strength. 0.0% by weight. If the amount is less than 0.1% by weight, the aggregation of the inorganic filler is insufficient and the effect of improving the paper strength is small. If the amount exceeds 3.0% by weight, the effect of improving the paper strength is peaked, and the ion balance is largely biased. There is a possibility that the fine particles of 5 ⁇ m or less increase and the paper strength is lowered.
  • the filler-added paper can be obtained by adding a composite filler to the pulp slurry and making paper. It is preferable to use a composite filler of 10 to 100% by weight in solid conversion with respect to the pulp solid content, and more preferably 20 to 70% by weight.
  • the pulp slurry used in the present invention contains pulp, and has a form in which the pulp is made into a slurry by being dispersed with an aqueous solvent.
  • the pulp slurry may be an acidic pulp slurry using aluminum sulfate, a neutral system using a small amount of aluminum sulfate, or an alkaline pulp slurry using no aluminum sulfate.
  • the above-mentioned pulp may be any commonly used pulp, such as bleached kraft pulp and sulfite pulp, or bleached unbleached chemical pulp, groundwood pulp, mechanical pulp, thermomechanical pulp, or the like. Examples include bleached high-yield pulp, and used paper pulp such as used newspaper, magazine used paper, cardboard used paper, and deinked used paper, and one or more of these can be used. Various additives other than pulp can be used in the pulp slurry as necessary.
  • additives can be added to the pulp slurry.
  • fillers other than the composite filler of the present invention sizing agent, dry paper strength agent, wet paper strength agent, paper thickness improver, yield, drainage improvement An agent etc.
  • the types of sizing agent include rosin sizing agent, AKD sizing agent, ASA sizing agent and the like, and the use of 0.02 to 0.5% is preferable.
  • the dry paper strength agent amphoteric starch, cationized starch, Examples thereof include acrylamide copolymers, Hoffman PAM, anion-mannic PAM, and the like, and the use of 0.05 to 2% is preferable.
  • a known system is used as the yield and drainage improver, and examples thereof include a single polymer, a twins system, a composite system, and a hydrocoal system.
  • Various additives are appropriately selected and used according to the physical properties required for each paper type.
  • the paper may be any of acid papermaking, neutral papermaking, and alkaline papermaking, but neutral papermaking or alkaline papermaking is preferred.
  • Examples of the filler-added paper obtained by the present invention include information paper, printing paper, printing coating base paper, wrapping paper, building material base paper, wallpaper base paper, and the like.
  • the ash content in the filler-added paper is preferably 10% or more, and more preferably 20% or more. If it is less than 10%, the advantage of the effect of the present invention may not be exhibited. As long as the paper strength level has practical strength, there is no particular upper limit, but it is preferable to add about 50%.
  • a monomer mixture consisting of 0.99 g of sodium acid was added, 0.65 g of ammonium persulfate was further added, and when reacted for 2 hours, 51.00 g of water was added, the solid content was 20.2%, and the weight average molecular weight was 3.3 million. Of amphoteric polyacrylamide was obtained.
  • Production Example 2 As shown in Table 1, the same procedure as in Production Example 1 was performed except that the monomer ratio was changed so that the weight average molecular weight of the acrylamide copolymer used for the treatment of calcium carbonate was 6.9 million.
  • Production Example 10 The same procedure as in Production Example 1 was carried out except that the acrylamide copolymer used for the treatment of calcium carbonate was synthesized by substituting a part of dimethylaminoethyl methacrylate with a quaternary compound with benzyl chloride as shown in Table 1. It was.
  • Production Example 11 The same operation as in Production Example 1 was carried out except that the acrylamide copolymer used for the treatment of calcium carbonate was synthesized by substituting a part of dimethylaminoethyl methacrylate with dimethylaminopropylacrylamide as shown in Table 1.
  • AAM Acrylamide IA: Itaconic acid
  • SMAS Sodium methallyl sulfonate
  • DMAA N, N-dimethylacrylamide
  • DMBz Quaternized product of dimethylaminoethyl methacrylate with benzyl chloride
  • DPA Dimethylaminopropylacrylamide
  • AGA 2 -Acrylamide-N-glycolic acid
  • DADMAC diallyldimethylammonium chloride
  • CMC sodium carboxymethylcellulose SAS: sodium allylsulfonate
  • MBAA methylenebisacrylamide DAC: quaternized product of N, N-dimethylaminoethyl acrylate with methyl chloride
  • Example 16 The same method as described above was performed except that the addition amount of the acrylamide copolymer aqueous solution having a concentration of 1% was changed to 5 g.
  • the light transmittance was determined by measuring the visible light transmittance at a wavelength of 620.0 nm using a spectrophotometer (Hitachi ratio beam spectrophotometer U-1000 type). The light transmittance was measured immediately before the turbidity component settled immediately after preparation of the liquid.
  • the obtained paper was conditioned for 24 hours under constant temperature and humidity conditions of a temperature of 23 ° C. and a humidity of 50%, and various measurements were performed.
  • the paper quality was measured by the method described later. Paper strength effect was judged from internal strength, and optical characteristics were judged from opacity.
  • Application Example 13 The same operation as in Application Example 1 was performed except that the composite filler of Example 13 using heavy calcium carbonate (Softon 1500, particle size 3.6 ⁇ m manufactured by Shiroishi Calcium Industry Co., Ltd.) was used.
  • Heavy calcium carbonate Softon 1500, particle size 3.6 ⁇ m manufactured by Shiroishi Calcium Industry Co., Ltd.
  • Application Example 14 The same operation as in Application Example 1 was performed except that the composite filler of Example 14 using heavy calcium carbonate (Softon 1000 manufactured by Shiraishi Calcium Industry Co., Ltd., particle size 5.7 ⁇ m) was used.
  • Heavy calcium carbonate Softon 1000 manufactured by Shiraishi Calcium Industry Co., Ltd., particle size 5.7 ⁇ m
  • Application Example 15 The same operation as in Application Example 1 was performed except that the composite filler of Example 15 using light calcium carbonate (Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd., particle size 2.4 ⁇ m) was used.
  • light calcium carbonate Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd., particle size 2.4 ⁇ m
  • Application Example 16 The same operation as in Application Example 1 was performed except that the composite filler 16 of Example 16 was used and the internal paper strength agent was not added.
  • Application Comparative Example 13 The same operation as in Application Example 1 was performed except that untreated heavy calcium carbonate (Softon 3200 manufactured by Shiroishi Calcium Industry Co., Ltd.) was used as the filler.
  • untreated heavy calcium carbonate Softon 3200 manufactured by Shiroishi Calcium Industry Co., Ltd.
  • Application Comparative Example 14 The same operation as in Application Example 1 was performed except that untreated heavy calcium carbonate (Softon 1500, manufactured by Shiroishi Calcium Industry Co., Ltd.) was used as the filler.
  • untreated heavy calcium carbonate Softon 1500, manufactured by Shiroishi Calcium Industry Co., Ltd.
  • Application Comparative Example 15 The same operation as in Application Example 1 was performed except that untreated heavy calcium carbonate (Softon 1000 manufactured by Shiroishi Calcium Industry Co., Ltd.) was used as the filler.
  • untreated heavy calcium carbonate Softon 1000 manufactured by Shiroishi Calcium Industry Co., Ltd.
  • Application Comparative Example 16 The same operation as in Application Example 1 was performed except that untreated light calcium carbonate (Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd.) was used as the filler.
  • untreated light calcium carbonate Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd.
  • Application Comparative Example 17 The same operation as in Application Example 1 was performed except that untreated light calcium carbonate (Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd.) was used as the filler and the addition rate of the filler was changed to 30%.
  • untreated light calcium carbonate Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd.
  • the paper using the composite filler used in Application Examples 1 to 3 has high paper strength, and the molecular weight of the acrylamide copolymer is appropriate. Otherwise, it can be seen that the particle diameter of the filler after the treatment is out of the proper range, and the effect of improving the paper strength cannot be obtained sufficiently.
  • the paper using the composite filler used in the application examples 1 to 12 has high paper strength.
  • the monomer composition constituting the acrylamide copolymer is not appropriate or the particle size of the filler after treatment is out of the proper range, the light transmittance of the DFR measurement filtrate is less than 60%, and the effect of improving paper strength is achieved. Not enough.
  • a high paper strength can be obtained efficiently even with a high ash content filler paper.
  • the amount of pulp and chemicals can be reduced, and low cost and resource reduction can be achieved.

Abstract

A composite filler for paper manufacture is prepared in which calcium carbonate is aggregated using an acrylamide copolymer, the composite filler being appropriately treated so that: prior to mixing with a pulp slurry, the 50%-volume average particle diameter is 60-300 μm, as measured by the laser diffraction method; particles measuring 5 μm or less are 1 % or less in terms of volume ratio; and the visible light transmittance is increased in the DFR filtrate of a slurry obtained by adding the composite filler in an amount of 30 wt%, in terms of solid content, relative to the solid weight of an LBKP pulp. The composite filler is blended with the pulp slurry and is made into paper. The present invention makes it possible to provide a filler for manufacturing paper in which a decrease in paper strength during manufacture of paper having a high ash content is prevented and a deterioration of optical characteristics is impeded, and to provide a filler-containing paper in which said filler is used.

Description

製紙用複合填料の製造方法、および填料内添紙の製造方法Method for producing composite filler for papermaking, and method for producing filler-added paper
 本発明は、製紙に使用する填料および填料内添紙に関する。さらに詳しくは、優れた紙力を得るため炭酸カルシウムとアクリルアミド系共重合物を混合処理して調製した複合填料、および該填料をパルプスラリーに添加して抄造した填料内添紙に関するものである。 The present invention relates to a filler used for papermaking and a filler-added paper. More specifically, the present invention relates to a composite filler prepared by mixing calcium carbonate and an acrylamide copolymer in order to obtain excellent paper strength, and a filler-added paper made by adding the filler to a pulp slurry.
 近年、世界的な紙需要の拡大により、原料となる木材の安定的な供給が一層困難となり、より少ないパルプ量で従来の品質を満たす紙の製造技術が望まれている。パルプの価格は填料よりも高価であることから、パルプを減らし填料の配合率を高めることはコスト削減の対策として製紙産業における重要な課題となっている。しかし、紙中のパルプの量が減り、填料の配合率が高くなるに伴い紙の強度(紙力)の低下が問題となる。紙力を高めるためには澱粉やポリアクリルアミド等の紙力増強剤を内添する手法が広く用いられているが、これらの薬品の添加量を通常よりも多くして紙力を高めようとしても、効果が頭打ちとなるために効率が悪く、コストの点からも実用的ではない。また、紙の地合いを悪化させ、操業の不安定化を引き起こすといった問題が生じる。 In recent years, due to the expansion of global paper demand, it has become more difficult to stably supply wood as a raw material, and a paper manufacturing technology that satisfies the conventional quality with a smaller amount of pulp is desired. Since the price of pulp is more expensive than the filler, reducing the pulp and increasing the blending ratio of the filler is an important issue in the paper industry as a cost reduction measure. However, as the amount of pulp in the paper decreases and the filler content increases, a decrease in paper strength (paper strength) becomes a problem. In order to increase paper strength, a method of internally adding a paper strength enhancer such as starch or polyacrylamide is widely used. However, even if the amount of these chemicals is increased more than usual, the paper strength may be increased. Since the effect reaches its peak, the efficiency is low and it is not practical from the viewpoint of cost. In addition, there is a problem that the paper texture is deteriorated and the operation becomes unstable.
 このような問題を回避し紙力の低下を抑制する方法としては、填料に各種添加剤を加えて改質する方法が提案されている(例えば、特許文献1~7参照)。 As a method for avoiding such a problem and suppressing a decrease in paper strength, a method of modifying the filler by adding various additives has been proposed (see, for example, Patent Documents 1 to 7).
 特許文献1には両性アクリルアミド共重合物で炭酸カルシウムを処理し、光学特性と紙力の低下を防ぐ方法が示されている。 Patent Document 1 discloses a method of treating calcium carbonate with an amphoteric acrylamide copolymer to prevent deterioration of optical properties and paper strength.
 特許文献2にはアニオン性のキサンタンガム、グアーガム等で炭酸カルシウムを処理し、紙力の低下を防ぐ方法が示されている。 Patent Document 2 discloses a method in which calcium carbonate is treated with anionic xanthan gum, guar gum or the like to prevent a decrease in paper strength.
 特許文献3にはカチオン化澱粉、カチオン化グアーガムで炭酸カルシウムを処理し、填料の歩留りと紙力の低下を防ぐ方法が示されている。 Patent Document 3 discloses a method in which calcium carbonate is treated with cationized starch or cationized guar gum to prevent the yield of filler and the decrease in paper strength.
 特許文献4にはアクリル系ラテックスで炭酸カルシウム等の填料を処理し、不透明度と紙力の低下を防ぐ方法が示されている。 Patent Document 4 discloses a method of preventing a decrease in opacity and paper strength by treating a filler such as calcium carbonate with an acrylic latex.
 特許文献5にはアルギン酸類で炭酸カルシウム等の填料を処理し、填料の歩留りと紙力の低下を防ぐ方法が示されている。 Patent Document 5 discloses a method of treating a filler such as calcium carbonate with alginic acid to prevent the yield of the filler and the decrease in paper strength.
 特許文献6にはアニオン性の多糖類とカチオン性或いは両性のアクリルアミド系共重合物とから成る複合化アクリルアミド系共重合体で填料を被覆処理し、効率良く紙力を向上させる方法が示されている。 Patent Document 6 discloses a method for efficiently improving paper strength by coating a filler with a composite acrylamide copolymer comprising an anionic polysaccharide and a cationic or amphoteric acrylamide copolymer. Yes.
 特許文献7には両性アクリルアミド系共重合物で炭酸カルシウムを処理し、嵩、白色度、不透明度、紙力、填料歩留りの高い複合化填料と填料内添紙の製造方法が示されている。 Patent Document 7 discloses a method for producing a composite filler and a filler-added paper having a high bulk, whiteness, opacity, paper strength, and filler yield by treating calcium carbonate with an amphoteric acrylamide copolymer.
特開昭59-26595号公報JP 59-26595 A 特表平09-506397号公報JP-T 09-505063 特開平10-60794号公報Japanese Patent Laid-Open No. 10-60794 特開2004-100119号公報JP 2004-100119 A 特開2011-106075号公報JP 2011-106075 A 特許第4406882号公報Japanese Patent No. 4406882 特開2004-018323号公報JP 2004-018323 A
 しかしながら、上記の処理によって得られる複合填料は凝集形態が均一かつ適度でなく、パルプスラリーへ添加した後の挙動について考慮されていないものだった。そのため、パルプスラリー中におけるせん断力に対して適度な凝集形態を維持出来ず、十分な紙力が得られない場合や抄紙機の汚れを引き起こすなど課題も多かった。 However, the composite filler obtained by the above treatment was not uniform and appropriate in agglomerated form, and the behavior after addition to the pulp slurry was not taken into consideration. For this reason, there are many problems such as a case where an appropriate agglomeration form cannot be maintained with respect to the shearing force in the pulp slurry, and a sufficient paper strength cannot be obtained or the paper machine is soiled.
 このように従来の方法により得られる効果は十分とは言えず、より効果の高い方法が望まれている。 Thus, it cannot be said that the effect obtained by the conventional method is sufficient, and a more effective method is desired.
 本発明は、光学特性の悪化が少なく従来よりも紙力に優れた填料内添紙を得ることが出来る製紙用複合填料の製造方法、および係る複合填料を用いることで優れた紙力と光学特性を有する填料内添紙の製造方法を提供することを課題とする。 The present invention is a method for producing a composite filler for papermaking that can provide a filler-added paper with less deterioration of optical properties and better paper strength than before, and excellent paper strength and optical properties by using such a composite filler. It is an object of the present invention to provide a method for producing a filler-added paper having the following.
 本発明は以下の内容に関する。
<1>下記(1)および(2)の条件を満たすアクリルアミド系共重合物を用いて、下記(3)の条件を満たすように炭酸カルシウムを処理する製紙用複合填料の製造方法。
 (1)アクリルアミド系共重合物が両性であり、イオン性モノマー/非イオン性モノマーのモル比が5/95~40/60、かつ、(カチオン性モノマーのモル数×カチオン性モノマーのカチオン性基の数)/(アニオン性モノマーのモル数×アニオン性モノマーのアニオン性基の数)の比が50/50~90/10
 (2)アクリルアミド系共重合物の重量平均分子量が200万~700万
 (3)複合填料の50%体積平均粒子径が60μm~300μm、かつ、5μm以下の粒子が体積比で1%以下であり、かつ、DFR測定を実施した際、パルプ固形に対して未処理填料を30重量%含むパルプスラリーのろ液光透過率が50%となる希釈条件において、複合填料を30重量%含むパルプスラリーのろ液光透過率が60%以上
<2>上記炭酸カルシウムの凝集前の50%体積平均粒子径は、10μm以下である上記<1>に記載の製紙用複合填料の製造方法。
<3>上記イオン性モノマー/上記非イオン性モノマーの比が10/90~25/75である上記<1>または<2>に記載の製紙用複合填料の製造方法。
<4>(上記カチオン性モノマーのモル数×上記カチオン性モノマーのカチオン性基の数)/(上記アニオン性モノマーのモル数×上記アニオン性モノマーのアニオン性基の数)の比が50/50~80/20である上記<1>~<3>のいずれか1つに記載の製紙用複合填料の製造方法。
<5>アクリルアミド系共重合物の分子量はGPC-MALS法による重量平均分子量で250万~500万である上記<1>~<4>のいずれか1つに記載の製紙用複合填料の製造方法。
<6>上記複合填料の50%体積平均粒子径は100μm~200μmである上記<1>~<5>のいずれか1つに記載の製紙用複合填料の製造方法。
<7>上記アクリルアミド系共重合物の処理量は、上記炭酸カルシウムの固形重量に対して固形換算で0.1~3.0重量%の範囲である上記<1>~<6>のいずれか1つに記載の製紙用複合填料の製造方法。
<8>上記<1>~<7>のいずれか1つに記載の製造方法により得られた製紙用複合填料をパルプスラリーに添加する填料内添紙の製造方法。
<9>上記填料内添紙の紙中灰分率は10%以上である上記<8>に記載の填料内添紙の製造方法。
<10>上記填料内添紙の紙中灰分率は20%以上50%以下である上記<8>に記載の填料内添紙の製造方法。
The present invention relates to the following contents.
<1> A method for producing a composite filler for papermaking, wherein calcium carbonate is treated so as to satisfy the following condition (3) using an acrylamide copolymer satisfying the following conditions (1) and (2).
(1) The acrylamide copolymer is amphoteric, the molar ratio of ionic monomer / nonionic monomer is 5/95 to 40/60, and (number of moles of cationic monomer × cationic group of cationic monomer) Ratio) / (number of moles of anionic monomer × number of anionic groups of anionic monomer) is 50/50 to 90/10
(2) The weight average molecular weight of the acrylamide copolymer is 2 million to 7 million (3) The 50% volume average particle diameter of the composite filler is 60 μm to 300 μm, and the particles of 5 μm or less are 1% or less by volume. And, when the DFR measurement is performed, the pulp slurry containing 30% by weight of the composite filler in the dilution condition in which the filtrate light transmittance of the pulp slurry containing 30% by weight of the untreated filler with respect to the pulp solid becomes 50%. The filtrate light transmittance is 60% or more. <2> The method for producing a composite filler for papermaking according to <1>, wherein the 50% volume average particle diameter before aggregation of the calcium carbonate is 10 μm or less.
<3> The method for producing a composite filler for papermaking according to the above <1> or <2>, wherein the ratio of the ionic monomer / the nonionic monomer is 10/90 to 25/75.
The ratio of <4> (number of moles of the cationic monomer × number of cationic groups of the cationic monomer) / (number of moles of the anionic monomer × number of anionic groups of the anionic monomer) is 50/50. The method for producing a composite filler for papermaking as described in any one of the above items <1> to <3>, which is 80/20.
<5> The method for producing a composite filler for papermaking according to any one of the above <1> to <4>, wherein the molecular weight of the acrylamide copolymer is 2.5 million to 5 million in terms of weight average molecular weight by GPC-MALS method .
<6> The method for producing a composite filler for papermaking according to any one of <1> to <5>, wherein the 50% volume average particle size of the composite filler is 100 μm to 200 μm.
<7> The treatment amount of the acrylamide copolymer is any one of the above items <1> to <6>, which is in the range of 0.1 to 3.0% by weight in terms of solids with respect to the solid weight of the calcium carbonate. The manufacturing method of the composite filler for paper manufacture as described in one.
<8> A method for producing a filler-added paper, wherein the paper-made composite filler obtained by the production method according to any one of <1> to <7> is added to a pulp slurry.
<9> The method for producing a filler-added paper according to <8>, wherein the ash content in the filler-added paper is 10% or more.
<10> The method for producing a filler-added paper according to <8>, wherein the ash content in the paper of the filler-added paper is 20% or more and 50% or less.
 本発明により得られる複合填料を用いた場合、光学特性の悪化が少なく従来よりも紙力に優れた填料内添紙を得ることが出来る。 When the composite filler obtained according to the present invention is used, it is possible to obtain a filler-added paper that is less deteriorated in optical properties and has better paper strength than the conventional one.
 本発明者らは、アクリルアミド系共重合物で無機填料に均一かつ適度な凝集処理を施し、未凝集の填料粒子が極めて少ない複合填料とすることで、パルプスラリーへ混合した後から紙が抄かれるまでの間のせん断力がかかる条件下においては適度に再分散し、その際に填料微粒子の脱離が少ない複合填料を得ることに成功した。このような機能を有する複合填料をパルプスラリーに混合して抄造した紙は、高い紙力と光学特性(白色度や不透明度)を両立できることを見出し、本発明を完成させるに至った。とりわけ紙力が出にくい高灰分の紙において、複合填料の使用によってパルプ繊維間の接触面積を増大させる効果があり、これによって紙力向上が可能になると考えられる。なお、紙力や光学特性が向上する理由は定かではないが以下のように考えることができる。
 アクリルアミド系共重合物がバインダーの役目を果たすことで炭酸カルシウムが凝集し、50%体積平均粒子径が60μm~300μmの複合填料が得られる。バインダーとしての結合力はミキサーのせん断力で剥がれる程度であり、抄紙系のシェアによって適度に再分散することができる。またアクリルアミド系共重合物が分散剤または相溶剤としても機能することで、抄紙の際に小粒径の複合填料が均一に分散されることで光学特性が悪化しにくくなり、さらにアクリルアミド系共重合物自体の強度(弾力性)により紙力が向上すると考えられる。このように適度な凝集処理を行うことで紙力や光学特性が向上するものと考えられる。
The present inventors apply a uniform and appropriate agglomeration treatment to an inorganic filler with an acrylamide copolymer to form a composite filler with very few unagglomerated filler particles, whereby paper is made after mixing into a pulp slurry. The composite filler was successfully redispersed under the conditions where the shearing force was applied until then, and at this time, the composite filler with little release of filler fine particles was successfully obtained. It has been found that a paper made by mixing a composite filler having such a function with a pulp slurry can achieve both high paper strength and optical properties (whiteness and opacity), and has completed the present invention. In particular, in high ash paper, where paper strength is difficult to generate, the use of composite fillers has the effect of increasing the contact area between pulp fibers, which is thought to improve paper strength. The reason why the paper strength and optical characteristics are improved is not clear, but can be considered as follows.
When the acrylamide copolymer serves as a binder, calcium carbonate is aggregated, and a composite filler having a 50% volume average particle diameter of 60 μm to 300 μm is obtained. The binding strength as a binder is such that it is peeled off by the shearing force of the mixer, and can be appropriately redispersed by the share of the papermaking system. In addition, the acrylamide copolymer functions as a dispersant or compatibilizer, so that the optical properties are less likely to deteriorate due to the uniform dispersion of the small particle size composite filler during papermaking. It is considered that the paper strength is improved by the strength (elasticity) of the object itself. Thus, it is considered that paper strength and optical characteristics are improved by performing an appropriate aggregation treatment.
 本発明で使用される炭酸カルシウムとしては、重質炭酸カルシウム(粉砕炭酸カルシウム)、軽質炭酸カルシウム(沈降炭酸カルシウム)のいずれも用いることができる。そのような炭酸カルシウムとしては、具体的には、ソフトン1000、ソフトン1500、ソフトン3200(いずれも白石カルシウム工業製)のような重質炭酸カルシウムや、タマパールTP-121(奥多摩工業製)のような軽質炭酸カルシウムが挙げられる。発明の効果が損なわれない範囲であれば、クレー、タルク、シリカ、アルミノケイ酸塩、酸化チタン、酸化亜鉛、ホワイトカーボン、水酸化アルミ、ゼオライト等の填料や、有機填料を併用しても良い。 As the calcium carbonate used in the present invention, both heavy calcium carbonate (ground calcium carbonate) and light calcium carbonate (precipitated calcium carbonate) can be used. Specific examples of such calcium carbonate include heavy calcium carbonate such as Softon 1000, Softon 1500, Softon 3200 (all manufactured by Shiroishi Calcium Industry), and Tama Pearl TP-121 (Okutama Industry). Examples include light calcium carbonate. As long as the effects of the invention are not impaired, fillers such as clay, talc, silica, aluminosilicate, titanium oxide, zinc oxide, white carbon, aluminum hydroxide and zeolite, and organic fillers may be used in combination.
 炭酸カルシウムの凝集前の粒子径は50%体積平均粒子径で10μm以下のものが好ましい。これより大きいものでは填料の粒子が紙から脱落しやすくなる問題が生じ、トラブルが生じる恐れがある。 The particle diameter before aggregation of calcium carbonate is preferably 10 μm or less in terms of 50% volume average particle diameter. If it is larger than this, there will be a problem that the filler particles will easily fall off the paper, which may cause trouble.
 炭酸カルシウムスラリーは高濃度で移送し易くする目的で分散処理を施す場合があるが、本発明の効果を損なわないものであれば、凝集処理を施す前の炭酸カルシウムに対するこのような処理の有無を問わない。また、サイズ剤、耐水化剤、硫酸バンド、紫外線吸収剤、退色防止剤、染料等の助剤が添加してあっても良い。 The calcium carbonate slurry may be subjected to a dispersion treatment for the purpose of facilitating transport at a high concentration, but if the effect of the present invention is not impaired, the presence or absence of such treatment on the calcium carbonate prior to the aggregation treatment is determined. It doesn't matter. Further, auxiliary agents such as a sizing agent, a water-resistant agent, a sulfuric acid band, an ultraviolet absorber, an anti-fading agent, and a dye may be added.
 複合填料の製造方法においては、炭酸カルシウム粒子を均一かつ適度に凝集させることが出来るよう、下記(1)、(2)の条件を満たすアクリルアミド系共重合物を使用する。
 (1)アクリルアミド系共重合物が両性であり、イオン性モノマー/非イオン性モノマーのモル比が5/95~40/60、かつ、(カチオン性モノマーのモル数×カチオン性モノマーのカチオン性基の数)/(アニオン性モノマーのモル数×アニオン性モノマーのアニオン性基の数)の比が50/50~90/10
 (2)アクリルアミド系共重合物の重量平均分子量が200万~700万
In the method for producing the composite filler, an acrylamide copolymer satisfying the following conditions (1) and (2) is used so that the calcium carbonate particles can be uniformly and appropriately aggregated.
(1) The acrylamide copolymer is amphoteric, the molar ratio of ionic monomer / nonionic monomer is 5/95 to 40/60, and (number of moles of cationic monomer × cationic group of cationic monomer) Ratio) / (number of moles of anionic monomer × number of anionic groups of anionic monomer) is 50/50 to 90/10
(2) The weight average molecular weight of the acrylamide copolymer is 2 million to 7 million.
 アクリルアミド系共重合物を構成する非イオン性モノマーとしては、アクリルアミド、メタクリルアミド、ジメチルアクリルアミド、メチレンビスアクリルアミドが挙げられ、重合に供する際は、粉体、水溶液のいずれでも構わない。 Examples of the nonionic monomer constituting the acrylamide copolymer include acrylamide, methacrylamide, dimethylacrylamide, and methylenebisacrylamide, and any of powder and aqueous solution may be used for polymerization.
 アクリルアミド系共重合物を構成するイオン性モノマーとしては、カチオン性モノマーとアニオン性モノマーが挙げられる。 Examples of the ionic monomer constituting the acrylamide copolymer include a cationic monomer and an anionic monomer.
 カチオン性モノマーとしては3級アミノ基、又は4級アンモニウム塩類を有するビニルモノマーを挙げることができる。 Examples of the cationic monomer include a vinyl monomer having a tertiary amino group or a quaternary ammonium salt.
 3級アミノ基を有するビニルモノマーとしては、例えばジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、及びジエチルアミノプロピル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート類、ジメチルアミノプロピル(メタ)アクリルアミド、及びジエチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミド類、上記の3級アミノ基を有するビニルモノマーの塩酸塩、及び硫酸塩等の無機酸塩類、並びに上記の3級アミノ基を有するビニルモノマーのギ酸塩、及び酢酸塩等の有機酸塩類が挙げられる。 Examples of vinyl monomers having a tertiary amino group include dialkylaminoalkyl (meth) such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylate. Inorganic acids such as acrylates, dialkylaminoalkyl (meth) acrylamides such as dimethylaminopropyl (meth) acrylamide and diethylaminopropyl (meth) acrylamide, hydrochlorides of vinyl monomers having the above tertiary amino groups, and sulfates Examples thereof include salts, and organic acid salts such as formate and acetate of vinyl monomers having the above tertiary amino group.
 また、4級アンモニウム塩類を有するビニルモノマーとしては、上記の3級アミノ基を有するビニルモノマーと4級化剤との反応によって得られるビニルモノマーが挙げられる。上記の4級化剤としては、メチルクロライド、及びメチルブロマイド等のアルキルハライド、ベンジルクロライド、及びベンジルブロマイド等のアラルキルハライド、ジメチル硫酸、ジエチル硫酸、エピクロロヒドリン、3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライド、並びにグリシジルトリアルキルアンモニウムクロライド等が挙げられる。これらの3級アミノ基、又は4級アンモニウム塩類を有するビニルモノマーは1種単独で用いても良いし、2種以上を併用しても良い。 Also, examples of the vinyl monomer having a quaternary ammonium salt include vinyl monomers obtained by reacting the above-described vinyl monomer having a tertiary amino group with a quaternizing agent. Examples of the quaternizing agent include alkyl halides such as methyl chloride and methyl bromide, aralkyl halides such as benzyl chloride and benzyl bromide, dimethyl sulfate, diethyl sulfate, epichlorohydrin, and 3-chloro-2-hydroxypropyl. Examples thereof include trimethylammonium chloride and glycidyltrialkylammonium chloride. These vinyl monomers having a tertiary amino group or a quaternary ammonium salt may be used alone or in combination of two or more.
 アニオン性モノマーとしては、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和トリカルボン酸、不飽和テトラカルボン酸、不飽和スルホン酸、不飽和ホスホン酸およびそれらの塩類等が挙げられ、これらの一種を単独でまたは二種以上を併用して使用することができる。 Examples of the anionic monomers include unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated tricarboxylic acids, unsaturated tetracarboxylic acids, unsaturated sulfonic acids, unsaturated phosphonic acids, and salts thereof. It can be used alone or in combination of two or more.
 これらのうち不飽和モノカルボン酸およびそれらの塩類としては、アクリル酸、メタクリル酸、2-アクリルアミド-N-グリコール酸、およびそれらのナトリウム、カリウム塩等のアルカリ金属類またはアンモニウム塩等が挙げられる。 Among these, examples of the unsaturated monocarboxylic acid and salts thereof include acrylic acid, methacrylic acid, 2-acrylamide-N-glycolic acid, and alkali metals such as sodium and potassium salts, ammonium salts, and the like.
 不飽和ジカルボン酸およびそれらの塩類の例としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸およびそれらのナトリウム、カリウム塩等のアルカリ金属塩類またはアンモニウム塩等が挙げられる。 Examples of unsaturated dicarboxylic acids and salts thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid and alkali metal salts such as sodium and potassium salts thereof, ammonium salts, and the like.
 不飽和トリカルボン酸およびそれらの塩類の例としてはアコニット酸、3-ブテン-1,2,3-トリカルボン酸、4-ペンテン-1,2,4-トリカルボン酸およびそれらのナトリウム、カリウム塩等のアルカリ金属塩類またはアンモニウム塩等が挙げられる。 Examples of unsaturated tricarboxylic acids and their salts include alkalis such as aconitic acid, 3-butene-1,2,3-tricarboxylic acid, 4-pentene-1,2,4-tricarboxylic acid and their sodium and potassium salts Examples thereof include metal salts or ammonium salts.
 不飽和テトラカルボン酸およびそれらの塩類の例としては、1-ペンテン-1,1,4,4-テトラカルボン酸、4-ペンテン-1,2,3,4-テトラカルボン酸、3-ヘキセン-1,1,6,6―テトラカルボン酸およびそれらのナトリウム、カリウム塩等のアルカリ金属塩類又はアンモニウム塩等が挙げられる。 Examples of unsaturated tetracarboxylic acids and their salts include 1-pentene-1,1,4,4-tetracarboxylic acid, 4-pentene-1,2,3,4-tetracarboxylic acid, 3-hexene- Examples thereof include 1,1,6,6-tetracarboxylic acid and alkali metal salts such as sodium and potassium salts thereof or ammonium salts.
 不飽和スルホン酸の例としては、ビニルスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸およびそれらのナトリウム、カリウム等のアルカリ金属塩またはアンモニウム塩等が挙げられる。 Examples of unsaturated sulfonic acids include vinyl sulfonic acid, styrene sulfonic acid, (meth) allyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and alkali metal salts or ammonium salts thereof such as sodium and potassium. Can be mentioned.
 不飽和ホスホン酸の例としては、ビニルホスホン酸、α-フェニルビニルホスホン酸およびそれらのナトリウム、カリウム塩等のアルカリ金属塩類またはアンモニウム塩等が挙げられる。 Examples of the unsaturated phosphonic acid include vinylphosphonic acid, α-phenylvinylphosphonic acid and alkali metal salts such as sodium and potassium salts, ammonium salts, and the like.
 上記のアニオン性ビニルモノマーの中でも紙力増強向上効果及び経済性の点で不飽和モノカルボン酸、不飽和ジカルボン酸、具体的には、アクリル酸、イタコン酸、2-アクリルアミド-N-グリコール酸、およびその塩類が特に好ましい。 Among the above anionic vinyl monomers, unsaturated monocarboxylic acid and unsaturated dicarboxylic acid, specifically acrylic acid, itaconic acid, 2-acrylamide-N-glycolic acid, And its salts are particularly preferred.
 炭酸カルシウムの凝集性、紙力効果の点から、アクリルアミド系共重合物の組成としてはイオン性モノマー/非イオン性モノマーの比が5/95~40/60(mol%)である必要があり、好ましくは10/90~25/75である。また、同様の理由から(カチオン性モノマーのモル数×カチオン性モノマーのカチオン性基の数)/(アニオン性モノマーのモル数×アニオン性モノマーのアニオン性基の数)の比が50/50~90/10(mol%)の条件を満たすものが良好な効果が得られ、より好ましくは50/50~80/20である。 From the viewpoint of the cohesiveness of calcium carbonate and the paper strength effect, the ratio of ionic monomer / nonionic monomer needs to be 5/95 to 40/60 (mol%) as the composition of the acrylamide copolymer. The ratio is preferably 10/90 to 25/75. For the same reason, the ratio of (number of moles of cationic monomer × number of cationic groups of cationic monomer) / (number of moles of anionic monomer × number of anionic groups of anionic monomer) is 50 / 50˜ Those satisfying the condition of 90/10 (mol%) can provide a good effect, more preferably 50/50 to 80/20.
 アクリルアミド系共重合物は、公知の方法で重合することで得ることができる。また、モノマーを分割して重合したり、モノマーを滴下して重合を行うことでもアクリルアミド系共重合物を得ることができる。 Acrylamide copolymer can be obtained by polymerization by a known method. An acrylamide copolymer can also be obtained by dividing the monomer for polymerization or by dropping the monomer for polymerization.
 アクリルアミド系共重合物の分子量はGPC-MALS法による重量平均分子量で200万~700万の範囲にあるものが良好な効果を示し、好ましくは250万~500万である。200万より低い場合には紙力向上の効果が不十分であり、700万より高い場合には填料の過凝集が紙力悪化を引き起こしたり、水溶液の粘度が高くなり取り扱いが不便である。
 なお、本出願全体を通して、範囲を示す記号「~」は、利便性および簡潔性のために用いられるに過ぎず、本発明の範囲を制限するものではない。したがって、記号「~」は、部分的な範囲およびその範囲に属する個々の数値を具体的に開示しているとみなされるべきである。例えば、重量平均分子量の範囲の記載「200万~700万」は、部分的な範囲、具体的には、250万~300万、250万~400万、250万~500万、ならびにその範囲に属する個々の数、具体的には、200万、250万、300万、400万、500万を開示しているとみなされるべきである。
The molecular weight of the acrylamide copolymer having a weight average molecular weight in the range of 2 million to 7 million as measured by the GPC-MALS method shows a good effect, and is preferably 2.5 million to 5 million. When it is lower than 2 million, the effect of improving the paper strength is insufficient, and when it is higher than 7 million, over-aggregation of the filler causes deterioration of paper strength, or the viscosity of the aqueous solution becomes high and handling is inconvenient.
Throughout the present application, the symbol “˜” indicating a range is merely used for convenience and conciseness, and does not limit the scope of the present invention. Accordingly, the symbol “˜” should be considered as specifically disclosing the subrange and individual numerical values within that range. For example, the description of the range of the weight average molecular weight “2 million to 7 million” includes a partial range, specifically, 2.5 million to 3 million, 2.5 million to 4 million, 2.5 million to 5 million, and the range. It should be regarded as disclosing the number of individual members, specifically 2 million, 2.5 million, 3 million, 4 million, 5 million.
 アクリルアミド系共重合物の重量平均分子量の測定はGPCに多角度光散乱検出器を接続したGPC-MALS法により行う。測定条件は以下の通りである。
 GPC本体:アジレント・テクノロジー社製 LC1100シリーズ
 カラム:昭和電工(株)製 SHODEX SB806M HQ
 溶離液:N/10硝酸ナトリウムを含むN/15リン酸緩衝液(pH3)
 流速:1.0ml/分
 検出器1:ワイアットテクノロジー社製多角度光散乱検出器DAWN
 検出器2:昭和電工(株)製示唆屈折率検出器RI-101
The weight average molecular weight of the acrylamide copolymer is measured by GPC-MALS method in which a multi-angle light scattering detector is connected to GPC. The measurement conditions are as follows.
GPC main unit: LC1100 series manufactured by Agilent Technologies Inc. Column: SHODEX SB806M HQ manufactured by Showa Denko KK
Eluent: N / 10 phosphate buffer (pH 3) containing N / 10 sodium nitrate
Flow rate: 1.0 ml / min Detector 1: Multi-angle light scattering detector DAWN manufactured by Wyatt Technology
Detector 2: Suggested refractive index detector RI-101 manufactured by Showa Denko KK
 発明の効果が損なわれない範囲であれば、上記のアクリルアミド系共重合物に加え、ポリビニルアミン、ポリエチレンイミン、ポリアリルアミン、ポリジアリルアミン、ポリジアリルジメチルアンモニウムクロライド、ポリアクリル酸塩、ポリエチレンオキシド、ポリビニルアルコール、カチオン化澱粉、両性澱粉等の高分子化合物を併用することが出来る。 As long as the effects of the invention are not impaired, in addition to the above acrylamide copolymer, polyvinylamine, polyethyleneimine, polyallylamine, polydiallylamine, polydiallyldimethylammonium chloride, polyacrylate, polyethylene oxide, polyvinyl alcohol , Polymer compounds such as cationized starch and amphoteric starch can be used in combination.
 本発明の複合填料の製造方法においては、填料の均一かつ適度な処理を行うことが必要であり、具体的には、下記(3)の条件を満たすように上記のアクリルアミド系共重合物を用いて炭酸カルシウムを処理する。
 (3)複合填料の50%体積平均粒子径が60μm~300μm、かつ、5μm以下の粒子が体積比で1%以下であり、かつ、DFR測定を実施した際、パルプ固形に対して未処理填料を30重量%含むパルプスラリーのろ液光透過率が50%となる希釈条件において、複合填料を30重量%含むパルプスラリーのろ液光透過率が60%以上
In the method for producing a composite filler of the present invention, it is necessary to perform uniform and appropriate treatment of the filler. Specifically, the above acrylamide copolymer is used so as to satisfy the following condition (3). To treat calcium carbonate.
(3) The 50% volume average particle diameter of the composite filler is 60 μm to 300 μm, and the particles having a volume ratio of 5 μm or less are 1% or less in volume ratio, and when the DFR measurement is performed, the untreated filler to the pulp solid In a dilution condition where the filtrate light transmittance of the pulp slurry containing 30% by weight is 50%, the filtrate light transmittance of the pulp slurry containing 30% by weight of the composite filler is 60% or more.
 レーザー回折法により測定した複合填料の50%体積平均粒子径が60μm~300μmの範囲であると良好な紙力向上効果が得られる。より好ましくは100μm~200μmである。60μmよりも小さい場合、十分な紙力向上効果が得られず、300μmよりも大きい場合、抄紙後の紙表面において凝集物に由来する欠点が生じる恐れがある。この場合不透明度が低下し好ましくない。また、抄紙機が汚れやすくなるといった問題が懸念される。 When the 50% volume average particle diameter of the composite filler measured by the laser diffraction method is in the range of 60 μm to 300 μm, a good paper strength improvement effect can be obtained. More preferably, it is 100 μm to 200 μm. When the thickness is smaller than 60 μm, a sufficient paper strength improvement effect cannot be obtained. When the thickness is larger than 300 μm, there is a possibility that defects derived from aggregates may occur on the paper surface after paper making. In this case, the opacity is lowered, which is not preferable. There is also a concern that the paper machine is likely to get dirty.
 また、複合填料の粒度分布については5μm以下の粒子が体積比で1%以下であることが好ましい。填料処理後の複合填料のスラリー中に未凝集の微粒子が多いと、十分な紙力向上効果を得ることが出来ないからである。 In addition, regarding the particle size distribution of the composite filler, it is preferable that particles having a size of 5 μm or less be 1% or less by volume ratio. This is because if there are many unagglomerated fine particles in the slurry of the composite filler after the filler treatment, a sufficient paper strength improvement effect cannot be obtained.
 50%体積平均粒子径、及び、5μm以下の粒子の体積比は、レーザー回折散乱式粒子径分布測定機(日機装(株)製マイクロトラックMT3300EXII)を用いて測定することができる。 The 50% volume average particle diameter and the volume ratio of particles of 5 μm or less can be measured using a laser diffraction / scattering particle size distribution measuring machine (Nikkiso Co., Ltd. Microtrac MT3300EXII).
 さらに、複合填料をLBKPパルプの固形重量に対して固形分換算で30重量%添加したスラリーのDFRによるろ液の可視光(波長620nm)透過率が60%以上であると、パルプスラリー中におけるせん断力に対する複合填料の安定性が高まり、良好な紙力が得られる。可視光透過率が60%に満たない場合は、凝集力が弱いか、或いは、凝集が不均一であり、シェアによる再分散によって凝集がほぐれ微粒子が多く生じていると判断される。微粒子が多いと紙力が大きく低下するため、本課題を解決することが困難となる。 Furthermore, when the visible light (wavelength: 620 nm) transmittance of the filtrate by DFR of the slurry in which 30% by weight of the composite filler is added to the solid weight of the LBKP pulp is 60% or more, the shear in the pulp slurry The stability of the composite filler with respect to force is increased, and good paper strength is obtained. When the visible light transmittance is less than 60%, it is determined that the cohesive force is weak or the coagulation is non-uniform, and the coagulation is loosened due to re-dispersion due to the shear and many fine particles are generated. When there are many fine particles, the paper strength is greatly reduced, making it difficult to solve this problem.
(DFRの測定方法)
 上述のDFRとは、ミューテック社製Drainage Freeness Retention 測定装置(DFR-05。以下「DFR」と表記)を指す。DFRの特徴として、試料に対しせん断力を与えることが可能であり、実際の抄紙マシンに近い条件で評価を行うことができる。複合填料を加えたパルプスラリーにDFR装置を用いてせん断力を加え、ろ液の光透過率を分光光度計にて測定する。ろ液の光透過率が高い場合、せん断力を加えられた条件でも複合填料が適度な凝集形態を維持していることが推測されるため、パルプスラリーへの高い歩留まりに繋がる。このように、せん断力を加えられた後の填料歩留まりを観察することで最適な粒子径範囲やアクリルアミド系共重合物の組成を把握することが出来る。
(Measurement method of DFR)
The above-mentioned DFR refers to a Drainage Freeness Retention measuring device (DFR-05, hereinafter referred to as “DFR”) manufactured by Mutech. As a feature of DFR, it is possible to apply a shearing force to a sample, and evaluation can be performed under conditions close to those of an actual paper machine. A shear force is applied to the pulp slurry to which the composite filler has been added using a DFR apparatus, and the light transmittance of the filtrate is measured with a spectrophotometer. When the light transmittance of the filtrate is high, it is presumed that the composite filler maintains an appropriate agglomerated form even under a condition where shearing force is applied, which leads to a high yield to the pulp slurry. Thus, the optimal particle size range and composition of the acrylamide copolymer can be grasped by observing the filler yield after the shearing force is applied.
 複合填料の製造においては、得られる複合填料が上記の(3)の条件を満たすように、混合方法や処理方法、あるいは処理条件を適宜選択調整する。 In the production of the composite filler, the mixing method, processing method, or processing conditions are appropriately selected and adjusted so that the obtained composite filler satisfies the above condition (3).
 炭酸カルシウムにアクリルアミド系共重合物を混合する方法としては特に限定されないが、一括で混合するよりも多段階分割添加、または滴下添加によって混合することで効率的に凝集させることができ、また、炭酸カルシウムへの均一な定着を行う点で好ましい。 The method of mixing the acrylamide copolymer with calcium carbonate is not particularly limited, but can be agglomerated efficiently by mixing by multistage addition or dropwise addition rather than batch mixing. This is preferable in terms of uniform fixing to calcium.
 填料の処理方法としては、水を溶媒とした炭酸カルシウムのスラリーとアクリルアミド系共重合物の水溶液を混合する方法が最も簡便である。混合方法については均一に混合出来る公知の方法が用いられる。混合は撹拌機、アジテーター、バブリング等による撹拌が可能な反応容器、タンク内で行うことが出来る。或いは、アクリルアミド系共重合物の水溶液を炭酸カルシウムスラリーの移送ライン上で添加して調製することも可能である。そのような場合は、上記の(3)の条件を満たすよう、均一かつ適度な処理を行うための十分な流量と流路すなわちパルプスラリーと混合されるまでの長さを確保することが好ましく、必要によりインラインミキサーを使用しても良い。炭酸カルシウムのスラリーへアクリルアミド系共重合物を添加した後において、せん断力が強過ぎる場合には未凝集の粒子が増加し十分な紙力が得られない恐れがあるので最適な添加方法、添加位置の調整を行うことが好ましい。 As the filler processing method, a method of mixing a calcium carbonate slurry using water as a solvent and an aqueous solution of an acrylamide copolymer is the simplest. As a mixing method, a known method capable of uniformly mixing is used. Mixing can be performed in a reaction vessel or tank capable of stirring by a stirrer, an agitator, bubbling or the like. Alternatively, it can be prepared by adding an aqueous solution of an acrylamide copolymer on the transfer line of the calcium carbonate slurry. In such a case, it is preferable to ensure a sufficient flow rate and a length until mixing with the flow path, that is, the pulp slurry, for performing a uniform and appropriate treatment so as to satisfy the above condition (3), If necessary, an in-line mixer may be used. After adding the acrylamide copolymer to the calcium carbonate slurry, if the shear force is too strong, there is a risk that unaggregated particles will increase and sufficient paper strength may not be obtained. It is preferable to perform the adjustment.
 アクリルアミド系共重合物の処理量は、炭酸カルシウムの固形重量に対して固形換算で0.1~3.0重量%の範囲が紙力向上効果の点で好ましく、より好ましくは0.5~2.0重量%である。0.1重量%以下では無機填料の凝集が不十分であり紙力向上の効果が小さく、3.0重量%を超える場合では紙力向上の効果が頭打ちとなり、また、イオンバランスの大きな偏りにより5μm以下の微粒子が増え、紙力が低くなる恐れがある。 The treatment amount of the acrylamide copolymer is preferably in the range of 0.1 to 3.0% by weight in terms of solids with respect to the solid weight of calcium carbonate, more preferably 0.5 to 2 in terms of improving paper strength. 0.0% by weight. If the amount is less than 0.1% by weight, the aggregation of the inorganic filler is insufficient and the effect of improving the paper strength is small. If the amount exceeds 3.0% by weight, the effect of improving the paper strength is peaked, and the ion balance is largely biased. There is a possibility that the fine particles of 5 μm or less increase and the paper strength is lowered.
 填料内添紙は、複合填料をパルプスラリーに添加して抄紙することで得られる。パルプ固形分に対し固形換算で10~100重量%の複合填料を使用することが好ましく、さらに好ましくは20~70重量%である。本発明に使用されるパルプスラリーはパルプを含有し上記のパルプが水溶媒で分散されることによりスラリー状になった形態を有する。パルプスラリーは、硫酸アルミニウムを用いる酸性系、硫酸アルミニウムを少量用いる中性系、或いは硫酸アルミニウムを全く用いないアルカリ性系のいずれのパルプスラリーであっても良い。 The filler-added paper can be obtained by adding a composite filler to the pulp slurry and making paper. It is preferable to use a composite filler of 10 to 100% by weight in solid conversion with respect to the pulp solid content, and more preferably 20 to 70% by weight. The pulp slurry used in the present invention contains pulp, and has a form in which the pulp is made into a slurry by being dispersed with an aqueous solvent. The pulp slurry may be an acidic pulp slurry using aluminum sulfate, a neutral system using a small amount of aluminum sulfate, or an alkaline pulp slurry using no aluminum sulfate.
 上述のパルプとしては、通常使用されているパルプであればよく、クラフトパルプ、及びサルファイトパルプ等の晒、又は、未晒化学パルプ、砕木パルプ、機械パルプ、サーモメカニカルパルプ等の晒、又は未晒高収率パルプ、並びに新聞古紙、雑誌古紙、段ボール古紙及び脱墨古紙等の古紙パルプを挙げることが出来、これらの1種類又は2種類以上を使用することが出来る。又、パルプスラリーにはパルプ以外の種々の添加剤を必要に応じて用いることが出来る。 The above-mentioned pulp may be any commonly used pulp, such as bleached kraft pulp and sulfite pulp, or bleached unbleached chemical pulp, groundwood pulp, mechanical pulp, thermomechanical pulp, or the like. Examples include bleached high-yield pulp, and used paper pulp such as used newspaper, magazine used paper, cardboard used paper, and deinked used paper, and one or more of these can be used. Various additives other than pulp can be used in the pulp slurry as necessary.
 パルプスラリーには種々の添加剤を加えることができ、添加剤としては本発明の複合填料以外の填料、サイズ剤、乾燥紙力剤、湿潤紙力剤、紙厚向上剤、歩留り、濾水向上剤等を挙げることが出来る。例えば、サイズ剤の種類としてはロジンサイズ剤、AKDサイズ剤、ASAサイズ剤等があげられ、0.02~0.5%の使用が好ましく、乾燥紙力剤としては両性澱粉、カチオン化澱粉、アクリルアミド系共重合物、ホフマンPAM、アニオン-マンニックPAM等があげられ、0.05~2%の使用が好ましい。歩留まり、濾水向上剤としては公知のシステムが使用され、例えばシングルポリマー、ツインズシステム、コンポジルシステム、ハイドロコールシステムなどがあげられる。各々の紙種に要求される物性に応じて各種の添加剤が適宜に選択され使用される。 Various additives can be added to the pulp slurry. As additives, fillers other than the composite filler of the present invention, sizing agent, dry paper strength agent, wet paper strength agent, paper thickness improver, yield, drainage improvement An agent etc. can be mentioned. For example, the types of sizing agent include rosin sizing agent, AKD sizing agent, ASA sizing agent and the like, and the use of 0.02 to 0.5% is preferable. As the dry paper strength agent, amphoteric starch, cationized starch, Examples thereof include acrylamide copolymers, Hoffman PAM, anion-mannic PAM, and the like, and the use of 0.05 to 2% is preferable. A known system is used as the yield and drainage improver, and examples thereof include a single polymer, a twins system, a composite system, and a hydrocoal system. Various additives are appropriately selected and used according to the physical properties required for each paper type.
 紙としては、酸性抄紙、中性抄紙、アルカリ性抄紙のいずれの抄紙でも良いが、中性抄紙またはアルカリ性抄紙が好ましい。 The paper may be any of acid papermaking, neutral papermaking, and alkaline papermaking, but neutral papermaking or alkaline papermaking is preferred.
 本発明により得られる填料内添紙としては、情報用紙、印刷用紙、印刷用塗工原紙、包装紙、建材用原紙、壁紙原紙等が挙げられる。 Examples of the filler-added paper obtained by the present invention include information paper, printing paper, printing coating base paper, wrapping paper, building material base paper, wallpaper base paper, and the like.
(紙中灰分率)
 填料内添紙の紙中灰分率は10%以上であることが好ましく、さらに好ましくは20%以上である。10%未満では本発明による効果の優位性が発揮されにくくなるおそれがある。紙力レベルが実用強度を有する程度であれば、特に上限はないが、50%程度を目途として添加するのが好ましい。
(Ash content in paper)
The ash content in the filler-added paper is preferably 10% or more, and more preferably 20% or more. If it is less than 10%, the advantage of the effect of the present invention may not be exhibited. As long as the paper strength level has practical strength, there is no particular upper limit, but it is preferable to add about 50%.
 以下に製造例と比較製造例、実施例と比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、説明中のパーセントについては重量%を示す。 Hereinafter, the present invention will be specifically described with reference to production examples and comparative production examples, examples and comparative examples, but the present invention is not limited to the following examples. In addition, the percentage in description shows weight%.
(炭酸カルシウムの処理に使用するアクリルアミド系共重合物の製造例1)
 撹拌機、温度計、還流冷却管、滴下ロート、窒素ガス導入管を付した四つ口フラスコに水400.55g、モノマーとして、50%アクリルアミド水溶液159.93g、ジメチルアミノエチルメタクリレート1.97g、イタコン酸8.13g、N,N-ジメチルアクリルアミド0.50g、メタリルスルホン酸ナトリウム0.99gを仕込んだ。次いで、窒素ガス雰囲気下、60℃に昇温し、重合開始剤として過硫酸アンモニウム0.18gを加え、重合を開始させ反応温度を90℃まで昇温させた。その後、水161.64g、30%硫酸水溶液26.86g、50%アクリルアミド水溶液159.93g、ジメチルアミノエチルメタクリレート25.55g、イタコン酸1.63g、N,N-ジメチルアクリルアミド0.50g、メタリルスルホン酸ナトリウム0.99gから成るモノマー混合液を加え、更に過硫酸アンモニウム0.65gを加え、2時間反応させた時点で、水51.00gを投入し、固形分20.2%、重量平均分子量330万の両性ポリアクリルアミドを得た。
(Production example 1 of acrylamide copolymer used for the treatment of calcium carbonate)
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel, nitrogen gas inlet tube, 40.55 g of water, 159.93 g of 50% acrylamide aqueous solution, 1.97 g of dimethylaminoethyl methacrylate, monomer, itacone 8.13 g of acid, 0.50 g of N, N-dimethylacrylamide and 0.99 g of sodium methallylsulfonate were charged. Next, the temperature was raised to 60 ° C. in a nitrogen gas atmosphere, 0.18 g of ammonium persulfate was added as a polymerization initiator, polymerization was started, and the reaction temperature was raised to 90 ° C. Thereafter, 161.64 g of water, 26.86 g of 30% aqueous sulfuric acid solution, 159.93 g of 50% aqueous acrylamide solution, 25.55 g of dimethylaminoethyl methacrylate, 1.63 g of itaconic acid, 0.50 g of N, N-dimethylacrylamide, and methallylsulfone. A monomer mixture consisting of 0.99 g of sodium acid was added, 0.65 g of ammonium persulfate was further added, and when reacted for 2 hours, 51.00 g of water was added, the solid content was 20.2%, and the weight average molecular weight was 3.3 million. Of amphoteric polyacrylamide was obtained.
(製造例2)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表1に示す様に重量平均分子量が690万となるようにモノマーの比率を変えた以外は製造例1と同様の操作を行った。
(Production Example 2)
As shown in Table 1, the same procedure as in Production Example 1 was performed except that the monomer ratio was changed so that the weight average molecular weight of the acrylamide copolymer used for the treatment of calcium carbonate was 6.9 million.
(製造例3)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表1に示す様に重量平均分子量が210万となるようにモノマーの比率を変えた以外は製造例1と同様の操作を行った。
(Production Example 3)
As shown in Table 1, the same procedure as in Production Example 1 was performed except that the monomer ratio was changed so that the weight average molecular weight of the acrylamide copolymer used for the treatment of calcium carbonate was 2.1 million.
(製造例4~9)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表1に示す様にモノマーの比率を変えた以外は製造例1と同様の操作を行った。
(Production Examples 4 to 9)
The same operation as in Production Example 1 was carried out except that the ratio of the monomer of the acrylamide copolymer used for the treatment of calcium carbonate was changed as shown in Table 1.
(製造例10)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表1に示す様にジメチルアミノエチルメタクリレートの一部を塩化ベンジルによる4級化合物に置換して合成した以外は製造例1と同様の操作を行った。
(Production Example 10)
The same procedure as in Production Example 1 was carried out except that the acrylamide copolymer used for the treatment of calcium carbonate was synthesized by substituting a part of dimethylaminoethyl methacrylate with a quaternary compound with benzyl chloride as shown in Table 1. It was.
(製造例11)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表1に示す様にジメチルアミノエチルメタクリレートの一部をジメチルアミノプロピルアクリルアミドに置換して合成した以外は製造例1と同様の操作を行った。
(Production Example 11)
The same operation as in Production Example 1 was carried out except that the acrylamide copolymer used for the treatment of calcium carbonate was synthesized by substituting a part of dimethylaminoethyl methacrylate with dimethylaminopropylacrylamide as shown in Table 1.
(製造例12)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表1に示す様にイタコン酸の一部を2-アクリルアミド-N-グリコール酸に置換して合成した以外は実施例1と同様の操作を行った。
(Production Example 12)
The same procedure as in Example 1 was performed except that the acrylamide copolymer used for the treatment of calcium carbonate was synthesized by substituting a part of itaconic acid with 2-acrylamide-N-glycolic acid as shown in Table 1. It was.
(比較製造例13)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表2に示す様に重量平均分子量が900万となるようにモノマーの比率を変えた以外は製造例1と同様の操作を行った。
(Comparative Production Example 13)
As shown in Table 2, the same procedure as in Production Example 1 was performed except that the monomer ratio was changed so that the weight average molecular weight of the acrylamide copolymer used for the treatment of calcium carbonate was 9 million.
(比較製造例14)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表2に示す様に重量平均分子量が140万となるようにモノマーの比率を変えた以外は製造例1と同様の操作を行った。
(Comparative Production Example 14)
As shown in Table 2, the same procedure as in Production Example 1 was performed except that the monomer ratio was changed so that the weight average molecular weight of the acrylamide copolymer used for the treatment of calcium carbonate was 1,400,000.
(比較製造例15~18)
 炭酸カルシウムの処理に使用するアクリルアミド系共重合物を表2に示す様にモノマーの比率を変えた以外は製造例1と同様の操作を行った。
(Comparative Production Examples 15 to 18)
The same operation as in Production Example 1 was carried out except that the monomer ratio was changed as shown in Table 2 for the acrylamide copolymer used for the treatment of calcium carbonate.
(比較製造例19)
 撹拌機、温度計、還流冷却管、及び窒素ガス導入管を付した四つ口フラスコに水281.1g、50%アクリルアミド水溶液113.72g、65%ジアリルジメチルアンモニウムクロリド水溶液49.75gを仕込み、30%硫酸水溶液でpH3.0に調整した。次いで、窒素ガス雰囲気下、60℃に昇温し、重合開始剤として過硫酸アンモニウム1.07gを加え、90℃に昇温し、保温した。重合開始から1時間後、2時間後に、過硫酸アンモニウム0.18gを追添加し、反応開始後5時間後に重合を止め、冷却した。
(Comparative Production Example 19)
A four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube was charged with 281.1 g of water, 113.72 g of 50% aqueous acrylamide solution, and 49.75 g of 65% diallyldimethylammonium chloride aqueous solution, 30 The pH was adjusted to 3.0 with a 1% aqueous sulfuric acid solution. Next, the temperature was raised to 60 ° C. in a nitrogen gas atmosphere, 1.07 g of ammonium persulfate was added as a polymerization initiator, the temperature was raised to 90 ° C., and the temperature was kept. After 1 hour and 2 hours from the start of polymerization, 0.18 g of ammonium persulfate was additionally added, and after 5 hours from the start of the reaction, the polymerization was stopped and cooled.
(比較製造例20)
 比較製造例19における合成方法を基に表2の組成(AAm/IA)のアクリルアミド系共重合物を得た。
(Comparative Production Example 20)
Based on the synthesis method in Comparative Production Example 19, an acrylamide copolymer having the composition (AAm / IA) shown in Table 2 was obtained.
(比較製造例21)
 カチオン置換度(DS)が0.03のカチオン化澱粉を濃度3%でクッキングし、濃度1.5%に希釈後、炭酸カルシウムの処理に供した。
(Comparative Production Example 21)
A cationized starch having a degree of cation substitution (DS) of 0.03 was cooked at a concentration of 3%, diluted to a concentration of 1.5%, and then subjected to calcium carbonate treatment.
(比較製造例22)
 カルボキシメチルセルロースナトリウム(ダイセル化学工業株式会社製1250)の濃度1.5%水溶液10gと比較製造例19における合成方法を基に得られた表2の組成(AAm/DPA/DMBz/IA/SAS/MBAA)のアクリルアミド系共重合物の濃度1.5%水溶液90gを混合、撹拌して、カルボキシメチルセルロースナトリウムとアクリルアミド系共重合物の混合水溶液100gを得た。
(Comparative Production Example 22)
Composition of Table 2 (AAm / DPA / DMBz / IA / SAS / MBAA) obtained based on 10 g of 1.5% aqueous solution of sodium carboxymethylcellulose (Daicel Chemical Industries, Ltd. 1250) and the synthesis method in Comparative Production Example 19 90 g of a 1.5% aqueous solution of acrylamide copolymer was mixed and stirred to obtain 100 g of a mixed aqueous solution of sodium carboxymethylcellulose and an acrylamide copolymer.
(比較製造例23)
 比較製造例19における合成方法を基に表2の組成(AAm/DAC)のアクリルアミド系共重合物を得た。
(Comparative Production Example 23)
Based on the synthesis method in Comparative Production Example 19, an acrylamide copolymer having the composition (AAm / DAC) shown in Table 2 was obtained.
(比較製造例24)
 撹拌機、温度計、還流冷却管、及び窒素ガス導入管を付した四つ口フラスコに、水140g、2-スルホエチルメタクリレートナトリウム塩6.2g、アクリル酸nブチル100g、スチレン100g、アクリル酸6g、過硫酸アンモニウム1.03gの混合モノマー液の内17.7gを仕込み、水150gを加え撹拌を開始した。次いで、窒素ガス雰囲気下、60℃に昇温し、重合開始剤として10%過硫酸アンモニウム1.0gを加え、80℃に昇温した。残りの混合モノマー液335.5gを2時間かけて滴下し、滴下終了から1時間後に、10%過硫酸アンモニウム1.0gを追添加した。さらに2時間熟成した後重合を止め、冷却後アンモニア水でpHを7.0に調整した。
(Comparative Production Example 24)
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube, 140 g of water, 6.2 g of 2-sulfoethyl methacrylate sodium salt, 100 g of nbutyl acrylate, 100 g of styrene, 6 g of acrylic acid Then, 17.7 g of a mixed monomer solution of 1.03 g of ammonium persulfate was charged, and 150 g of water was added to start stirring. Next, the temperature was raised to 60 ° C. in a nitrogen gas atmosphere, 1.0 g of 10% ammonium persulfate was added as a polymerization initiator, and the temperature was raised to 80 ° C. The remaining 335.5 g of the mixed monomer solution was added dropwise over 2 hours, and 1 hour after the completion of the addition, 1.0 g of 10% ammonium persulfate was additionally added. After further aging for 2 hours, the polymerization was stopped, and after cooling, the pH was adjusted to 7.0 with aqueous ammonia.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、表2における略号は以下の通りである。
 AAM:アクリルアミド
 IA:イタコン酸
 SMAS:メタリルスルホン酸ナトリウム
 DMAA:N,N-ジメチルアクリルアミド
 DM:ジメチルアミノエチルメタクリレート
 DMBz:ジメチルアミノエチルメタクリレートの塩化ベンジルによる4級化物
 DPA:ジメチルアミノプロピルアクリルアミド
 AGA:2-アクリルアミド-N-グリコール酸
 DADMAC:ジアリルジメチルアンモニウムクロライド
 CMC:カルボキシメチルセルロースナトリウム
 SAS:アリルスルホン酸ナトリウム
 MBAA:メチレンビスアクリルアミド
 DAC:N,N-ジメチルアミノエチルアクリレートの塩化メチルによる4級化物
 ST:スチレン
 BA:nブチルアクリレート
 AA:アクリル酸
Abbreviations in Table 1 and Table 2 are as follows.
AAM: Acrylamide IA: Itaconic acid SMAS: Sodium methallyl sulfonate DMAA: N, N-dimethylacrylamide DM: Dimethylaminoethyl methacrylate DMBz: Quaternized product of dimethylaminoethyl methacrylate with benzyl chloride DPA: Dimethylaminopropylacrylamide AGA: 2 -Acrylamide-N-glycolic acid DADMAC: diallyldimethylammonium chloride CMC: sodium carboxymethylcellulose SAS: sodium allylsulfonate MBAA: methylenebisacrylamide DAC: quaternized product of N, N-dimethylaminoethyl acrylate with methyl chloride ST: styrene BA : N-butyl acrylate AA: Acrylic acid
(填料スラリーの調製)
 炭酸カルシウム100gを水900gに加え、ホモミキサーにより2000rpmで1分間分散処理を行い、濃度10%の填料スラリーを調製した。
(Preparation of filler slurry)
100 g of calcium carbonate was added to 900 g of water, and a dispersion treatment was performed at 2000 rpm for 1 minute using a homomixer to prepare a filler slurry having a concentration of 10%.
(複合填料の調製)
(実施例1~15、比較例1~12)
 濃度10%の炭酸カルシウムスラリー100gを300mLのビーカーに量り取り、プロペラ形撹拌翼を取り付けた撹拌機により回転数300rpmで撹拌しながら、上記の製造例、または比較製造例で示したアクリルアミド系共重合物の濃度1%水溶液10gを1分間かけて添加した。添加終了から3分間撹拌し複合填料のスラリーを得た。調製直後に平均粒子径、5μm以下体積比を測定した。
(Preparation of composite filler)
(Examples 1 to 15, Comparative Examples 1 to 12)
Acrylamide copolymer shown in the above production example or comparative production example while weighing 100 g of 10% calcium carbonate slurry in a 300 mL beaker and stirring at 300 rpm with a stirrer equipped with a propeller-type stirring blade. 10 g of a 1% aqueous solution of the product was added over 1 minute. After completion of the addition, the mixture was stirred for 3 minutes to obtain a composite filler slurry. Immediately after the preparation, the average particle size and the volume ratio of 5 μm or less were measured.
(実施例16)
 濃度1%のアクリルアミド系共重合物水溶液の添加量を5gに変更した以外は、上記と同様の方法を行った。
(Example 16)
The same method as described above was performed except that the addition amount of the acrylamide copolymer aqueous solution having a concentration of 1% was changed to 5 g.
(DFRの測定方法)
〈DFR測定用パルプスラリーの調製方法〉
 測定にはナイアガラビーターにより叩解したカナディアン・スタンダード・フリーネス(CSF)400mL、電導度100(mS/m)、pH7.5に調整したLBKPパルプのスラリー(濃度0.8%)を用いた。調製にはすべて清水を使用し、パルプスラリーの温度は40℃に調整した。
(Measurement method of DFR)
<Method for preparing pulp slurry for DFR measurement>
For measurement, 400 mL of Canadian Standard Freeness (CSF) beaten by a Niagara beater, LBKP pulp slurry (concentration 0.8%) adjusted to conductivity 100 (mS / m) and pH 7.5 was used. All the preparations used fresh water, and the temperature of the pulp slurry was adjusted to 40 ° C.
〈DFRを使用したろ液の作製〉
 パルプスラリー中におけるせん断力に対する複合填料の安定性の評価には、ミューテック社製Drainage Freeness Retention 測定装置(DFR-05)を用いた。ろ液の作製にはRetentionモードを使用した。
<Preparation of filtrate using DFR>
A mutex Drainage Freeness Retention measuring device (DFR-05) was used to evaluate the stability of the composite filler against the shearing force in the pulp slurry. Retention mode was used for the preparation of the filtrate.
〈未処理の炭酸カルシウムを用いたDFRのろ液の光透過率〉
 パルプスラリー1kgをDFR装置にセットし、未処理の炭酸カルシウム(濃度10%)をパルプ固形に対して固形換算で30%加え、回転数600rpmで10秒間撹拌した後、さらに回転数1000rpmで10秒間、800rpmで10秒間撹拌した後、ろ水を開始し、150メッシュのワイヤーを通過した初めのろ液100mLを採取した。ろ液の採取直後にイオン交換水で希釈し、光透過率が50%となる希釈倍率を求めた。光透過率は分光光度計(日立製レシオビーム分光光度計U-1000型)にて波長620.0nmにおける可視光の透過率を測定した。光透過率は液の調製直後に濁度成分が沈降する前に速やかに測定した。
<Light transmittance of DFR filtrate using untreated calcium carbonate>
1 kg of pulp slurry is set in a DFR apparatus, 30% of untreated calcium carbonate (concentration 10%) is added in solid conversion to the pulp solid, stirred for 10 seconds at 600 rpm, and further 10 seconds at 1000 rpm. After stirring at 800 rpm for 10 seconds, filtration was started and 100 mL of the first filtrate that passed through a 150 mesh wire was collected. Immediately after collecting the filtrate, it was diluted with ion-exchanged water, and the dilution factor at which the light transmittance was 50% was determined. The light transmittance was determined by measuring the visible light transmittance at a wavelength of 620.0 nm using a spectrophotometer (Hitachi ratio beam spectrophotometer U-1000 type). The light transmittance was measured immediately before the turbidity component settled immediately after preparation of the liquid.
〈光透過率が50%となる希釈倍率の算出方法〉
 未処理の炭酸カルシウムを使用したDFR条件で得られたろ液を原液、ならびに10、20、30、50、100倍で希釈した液を測定し、光透過率が50%となる希釈倍率を見積もった。炭酸カルシウムにソフトン3200(白石カルシウム工業製)を用いた比較例13において、光透過率が50%となる希釈倍率は15倍であったので、同じ炭酸カルシウムを用いた実施例1~12、16、および比較例1~12は同様に希釈倍率を15倍とした。以下、実施例13~15も同様に比較例14~16を用いて希釈倍率を求めた。
<Calculation method of the dilution ratio at which the light transmittance is 50%>
The filtrate obtained under DFR conditions using untreated calcium carbonate was measured as a stock solution, and solutions diluted by 10, 20, 30, 50, and 100 times, and the dilution rate at which the light transmittance was 50% was estimated. . In Comparative Example 13 in which Softon 3200 (manufactured by Shiroishi Calcium Industry) was used as the calcium carbonate, the dilution factor at which the light transmittance was 50% was 15 times, so Examples 1 to 12, 16 using the same calcium carbonate were used. In Comparative Examples 1 to 12, the dilution rate was set to 15 times. Hereinafter, in Examples 13 to 15, the dilution ratio was similarly determined using Comparative Examples 14 to 16.
〈複合填料を用いたDFRのろ液の光透過率〉
 パルプスラリー1kgをDFR装置にセットし、実施例1に示す複合填料1(濃度10%)をパルプ固形に対して固形換算で30%加え、回転数600rpmで10秒間撹拌した後、さらに回転数1000rpmで10秒間、800rpmで10秒間撹拌した後、ろ水を開始し、150メッシュのワイヤーを通過した初めのろ液100mLを採取した。ろ液の採取直後に上記で求めた希釈倍率(未処理の炭酸カルシウムを使用したDFRのろ液において光透過率が50%となる希釈倍率)でイオン交換水により希釈し、光透過率を測定した。
(実施例2~16、比較例1~16)
<Light transmittance of DFR filtrate using composite filler>
1 kg of pulp slurry was set in a DFR apparatus, 30% of the composite filler 1 shown in Example 1 (concentration 10%) was added to the pulp solid in solid conversion, stirred for 10 seconds at 600 rpm, and further 1000 rpm. After stirring at 800 rpm for 10 seconds, filtration was started and 100 mL of the first filtrate that passed through a 150 mesh wire was collected. Immediately after collecting the filtrate, dilute with ion-exchanged water at the dilution factor obtained above (dilution factor at which light transmittance is 50% in DFR filtrate using untreated calcium carbonate) and measure the light transmittance. did.
(Examples 2 to 16, Comparative Examples 1 to 16)
 表1、2の製造例、比較製造例に示すアクリルアミド系共重合物、またはカチオン化澱粉等を用いて種々の填料の処理を行い、複合填料を調製した。複合填料の物性値(50%体積平均粒子径、5μm以下体積比、DFRろ液光透過率)を表3、表4に示す。 Various fillers were treated using the acrylamide copolymer or the cationized starch shown in the production examples in Tables 1 and 2 and the comparative production examples to prepare composite fillers. Tables 3 and 4 show physical property values (50% volume average particle diameter, 5 μm or less volume ratio, DFR filtrate light transmittance) of the composite filler.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(応用実施例1)
(填料内添紙の作製方法)
 カナディアン・スタンダード・フリーネス(CSF)400mL、電導度100(mS/m)、pH7.5に調整した濃度2.4%のLBKPパルプのスラリーを撹拌し、カチオン化澱粉(日本NSC株式会社製CATO304)をパルプ固形分に対して固形換算で1.0%、内添紙力剤(星光PMC株式会社製 DS4412)をパルプ固形分に対して固形換算で0.2%、アルキルケテンダイマー系サイズ剤(星光PMC株式会社社製 AD1604)をパルプ固形分に対して固形換算で0.1%を順次添加した。
 更に1分間撹拌した後、pH7.5、電導度100(mS/m)に調整した水で、パルプ濃度を0.8%に希釈した後、実施例1に示す複合填料1(濃度10%)をパルプ固形分に対して固形換算で40%となる様に添加した。
カチオン性歩留剤(星光PMC株式会社製RD7142)をパルプ固形分に対して固形換算で0.015%を添加し、1分間撹拌した後、ノーブルアンドウッド製シートマシンにて抄紙し、湿紙を得た。
 この湿紙をプレス脱水後、ドラムドライヤーにて100℃で100秒間乾燥し、坪量80g/mの紙を得た。
 得られた紙を温度23℃、湿度50%の恒温恒湿条件下で24時間調湿した後、各種測定を行った。紙質測定は後述の方法により実施した。紙力効果は内部強度、光学特性は不透明度から判断した。
(Application Example 1)
(Method for producing filler-added paper)
Canadian Standard Freeness (CSF) 400 mL, conductivity 100 (mS / m), and a slurry of 2.4% LBKP pulp adjusted to pH 7.5 was stirred, and cationized starch (CATO304 manufactured by NSC Japan) 1.0% in terms of solids with respect to pulp solids, 0.2% in terms of solids with respect to pulp solids (DS4412 manufactured by Seiko PMC Co., Ltd.), alkyl ketene dimer sizing agent ( Seiko PMC Co., Ltd. AD1604) was sequentially added at 0.1% in terms of solids to the pulp solids.
After further stirring for 1 minute, the pulp concentration was diluted to 0.8% with water adjusted to pH 7.5 and conductivity 100 (mS / m), and then composite filler 1 shown in Example 1 (concentration 10%). Was added so that it might become 40% in solid conversion with respect to pulp solid content.
Add a cationic retention agent (RD7142 from Seiko PMC Co., Ltd.) to pulp solids in an amount of 0.015% in terms of solids, stir for 1 minute, and then make paper with a noble and wood sheet machine, wet paper Got.
The wet paper was press-dehydrated and dried at 100 ° C. for 100 seconds with a drum dryer to obtain paper having a basis weight of 80 g / m 2 .
The obtained paper was conditioned for 24 hours under constant temperature and humidity conditions of a temperature of 23 ° C. and a humidity of 50%, and various measurements were performed. The paper quality was measured by the method described later. Paper strength effect was judged from internal strength, and optical characteristics were judged from opacity.
(物性測定方法)
 坪量:JIS P8124に準拠した。
 紙中灰分率:JIS P8251 灰分試験方法 (525℃燃焼法)に準拠した。
 不透明度:JIS P8149 不透明度試験方法に準拠した。
 内部強度:JAPAN TAPPI 紙パルプ試験方法 No.18-2
 紙及び板紙:内部結合強さ試験方法 第2部 インターナルボンドテスタ法に準拠した。
(Physical property measurement method)
Basis weight: Conforms to JIS P8124.
Ash content in paper: Conforms to JIS P8251 Ash test method (525 ° C combustion method).
Opacity: Conforms to JIS P8149 opacity test method.
Internal strength: JAPAN TAPPI Paper Pulp Test Method No.18-2
Paper and paperboard: Internal bond strength test method Part 2 Conforms to internal bond tester method.
(応用実施例2~12)
 填料を表4の実施例2~12の複合填料に変更した以外は応用実施例1と同様の操作を行った。
(Application Examples 2 to 12)
The same operation as in Application Example 1 was performed except that the filler was changed to the composite fillers of Examples 2 to 12 in Table 4.
(応用実施例13)
 重質炭酸カルシウム(白石カルシウム工業株式会社製ソフトン1500、粒子径3.6μm)を用いた実施例13の複合填料に変更した以外は応用実施例1と同様の操作を行った。
(Application Example 13)
The same operation as in Application Example 1 was performed except that the composite filler of Example 13 using heavy calcium carbonate (Softon 1500, particle size 3.6 μm manufactured by Shiroishi Calcium Industry Co., Ltd.) was used.
(応用実施例14)
 重質炭酸カルシウム(白石カルシウム工業株式会社製ソフトン1000、粒子径5.7μm)を用いた実施例14の複合填料に変更した以外は応用実施例1と同様の操作を行った。
(Application Example 14)
The same operation as in Application Example 1 was performed except that the composite filler of Example 14 using heavy calcium carbonate (Softon 1000 manufactured by Shiraishi Calcium Industry Co., Ltd., particle size 5.7 μm) was used.
(応用実施例15)
 軽質炭酸カルシウム(奥多摩工業株式会社製タマパールTP-121、粒子径2.4μm)を用いた実施例15の複合填料に変更した以外は応用実施例1と同様の操作を行った。
(Application Example 15)
The same operation as in Application Example 1 was performed except that the composite filler of Example 15 using light calcium carbonate (Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd., particle size 2.4 μm) was used.
(応用実施例16)
 実施例16の複合填料16を使用し、かつ、内添紙力剤を無添加にした以外は、応用実施例1と同様の操作を行った。
(Application Example 16)
The same operation as in Application Example 1 was performed except that the composite filler 16 of Example 16 was used and the internal paper strength agent was not added.
(応用比較例1~12)
 填料を表4の比較例1~12の複合填料に変更した以外は応用実施例1と同様の操作を行った。
(Application Comparative Examples 1 to 12)
The same operation as in Application Example 1 was performed except that the filler was changed to the composite fillers of Comparative Examples 1 to 12 in Table 4.
(応用比較例13)
 填料として未処理の重質炭酸カルシウム(白石カルシウム工業株式会社製ソフトン3200)に変更した以外は応用実施例1と同様の操作を行った。
(Application Comparative Example 13)
The same operation as in Application Example 1 was performed except that untreated heavy calcium carbonate (Softon 3200 manufactured by Shiroishi Calcium Industry Co., Ltd.) was used as the filler.
(応用比較例14)
 填料として未処理の重質炭酸カルシウム(白石カルシウム工業株式会社製ソフトン1500)に変更した以外は応用実施例1と同様の操作を行った。
(Application Comparative Example 14)
The same operation as in Application Example 1 was performed except that untreated heavy calcium carbonate (Softon 1500, manufactured by Shiroishi Calcium Industry Co., Ltd.) was used as the filler.
(応用比較例15)
 填料として未処理の重質炭酸カルシウム(白石カルシウム工業株式会社製ソフトン1000)に変更した以外は応用実施例1と同様の操作を行った。
(Application Comparative Example 15)
The same operation as in Application Example 1 was performed except that untreated heavy calcium carbonate (Softon 1000 manufactured by Shiroishi Calcium Industry Co., Ltd.) was used as the filler.
(応用比較例16)
 填料として未処理の軽質炭酸カルシウム(奥多摩工業株式会社製タマパールTP-121)に変更した以外は応用実施例1と同様の操作を行った。
(Application Comparative Example 16)
The same operation as in Application Example 1 was performed except that untreated light calcium carbonate (Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd.) was used as the filler.
(応用比較例17)
 填料として未処理の軽質炭酸カルシウム(奥多摩工業株式会社製タマパールTP-121)に変更し、かつ、填料の添加率を30%に変更した以外は応用実施例1と同様の操作を行った。
(Application Comparative Example 17)
The same operation as in Application Example 1 was performed except that untreated light calcium carbonate (Tama Pearl TP-121 manufactured by Okutama Kogyo Co., Ltd.) was used as the filler and the addition rate of the filler was changed to 30%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5、および表6より、応用実施例1~12と応用比較例13、または応用実施例13と応用比較例14、または応用実施例14と応用比較例15、または応用実施例15と応用比較例16の結果から、本発明の複合填料を使用した紙は、未処理の填料を使用した紙と比較していずれも紙力が高いことが分かる。 From Tables 5 and 6, the application examples 1 to 12 and the application comparison example 13, or the application example 13 and the application comparison example 14, or the application example 14 and the application comparison example 15, or the application example 15 and the application comparison. From the results of Example 16, it can be seen that the paper using the composite filler of the present invention has higher paper strength than the paper using the untreated filler.
 応用実施例1~3と応用比較例1~2の結果から、応用実施例1~3で使用される複合填料を使用した紙はいずれも紙力が高く、アクリルアミド系共重合物の分子量が適切でない場合、処理後填料の粒子径が適正範囲から外れ、紙力の向上効果が十分に得られないことが分かる。 From the results of Application Examples 1 to 3 and Application Comparison Examples 1 and 2, the paper using the composite filler used in Application Examples 1 to 3 has high paper strength, and the molecular weight of the acrylamide copolymer is appropriate. Otherwise, it can be seen that the particle diameter of the filler after the treatment is out of the proper range, and the effect of improving the paper strength cannot be obtained sufficiently.
 応用実施例1~12と応用比較例3~8の結果から、応用実施例1~12で使用される複合填料を使用した紙はいずれも紙力が高いことが分かる。アクリルアミド系共重合物を構成するモノマー組成が適切ではない、または処理後填料の粒子径が適正範囲から外れた場合、DFR測定ろ液の光透過率が60%未満となり、紙力の向上効果が十分に得られない。 From the results of the application examples 1 to 12 and the application comparison examples 3 to 8, it can be seen that the paper using the composite filler used in the application examples 1 to 12 has high paper strength. When the monomer composition constituting the acrylamide copolymer is not appropriate or the particle size of the filler after treatment is out of the proper range, the light transmittance of the DFR measurement filtrate is less than 60%, and the effect of improving paper strength is achieved. Not enough.
 応用実施例1~12と応用比較例9~12の結果から、応用実施例1~12で使用される複合填料を使用した紙はいずれも紙力が高いことが分かる。公知の方法(従来技術)である応用比較例9~12は填料の粒子径が十分ではない、または、填料の5μ以下の体積比が1%より大きい、または、DFRのろ液光透過率が60%未満であるため紙力の向上効果が十分に得られない。 From the results of the application examples 1 to 12 and the application comparison examples 9 to 12, it can be seen that the paper using the composite filler used in the application examples 1 to 12 has high paper strength. In Comparative Examples 9 to 12, which are known methods (prior art), the particle size of the filler is not sufficient, or the volume ratio of the filler of 5 μ or less is greater than 1%, or the filtrate light transmittance of DFR is greater than 1%. Since it is less than 60%, the effect of improving paper strength cannot be obtained sufficiently.
 応用実施例15と応用比較例16の結果から、複合填料を使用することで紙力が向上することが分かる。ここで、複合填料を使用した際、紙中灰分が低下し不透明度が悪化するケースがみられるが、紙中灰分の低い未処理填料と比較(応用比較例17)すると高いレベルにあることから、填料の増量によって改善が可能であることが分かる。 From the results of Application Example 15 and Application Comparison Example 16, it can be seen that the paper strength is improved by using the composite filler. Here, when composite filler is used, there are cases where the ash content in paper decreases and the opacity deteriorates, but it is at a high level when compared with an untreated filler with low ash content in paper (Application Comparative Example 17). It can be seen that improvement is possible by increasing the amount of filler.
 応用実施例16と応用比較例13の結果から、同一量のアクリルアミド系共重合物を使用する場合、パルプに内添するよりも炭酸カルシウムを処理し複合填料にすることで紙力向上効果が優れることが分かる。 From the results of Application Example 16 and Application Comparative Example 13, when the same amount of acrylamide copolymer is used, the effect of improving paper strength is excellent by treating calcium carbonate to make a composite filler rather than adding it internally to the pulp. I understand that.
 以上のことから、本発明による複合填料を用いた場合、従来よりも優れた紙力、光学特性を持った填料内添紙を得ることが出来る。 From the above, when the composite filler according to the present invention is used, it is possible to obtain a filler-added paper having paper strength and optical characteristics superior to those of the prior art.
 本発明により高灰分の填料内添紙においても高い紙力を効率良く得ることが出来る。パルプ配合量、薬品配合量を少なくすることが出来、低コストかつ少資源化を達成する事が出来る。 According to the present invention, a high paper strength can be obtained efficiently even with a high ash content filler paper. The amount of pulp and chemicals can be reduced, and low cost and resource reduction can be achieved.

Claims (10)

  1.  下記(1)および(2)の条件を満たすアクリルアミド系共重合物を用いて、
     下記(3)の条件を満たすように炭酸カルシウムを処理することを特徴とする製紙用複合填料の製造方法。
     (1)アクリルアミド系共重合物が両性であり、イオン性モノマー/非イオン性モノマーのモル比が5/95~40/60、かつ、(カチオン性モノマーのモル数×カチオン性モノマーのカチオン性基の数)/(アニオン性モノマーのモル数×アニオン性モノマーのアニオン性基の数)の比が50/50~90/10
     (2)アクリルアミド系共重合物の重量平均分子量が200万~700万
     (3)複合填料の50%体積平均粒子径が60μm~300μm、かつ、5μm以下の粒子が体積比で1%以下であり、かつ、DFR測定を実施した際、パルプ固形に対して未処理填料を30重量%含むパルプスラリーのろ液光透過率が50%となる希釈条件において、複合填料を30重量%含むパルプスラリーのろ液光透過率が60%以上
    Using an acrylamide copolymer satisfying the following conditions (1) and (2),
    The manufacturing method of the composite filler for paper manufacture characterized by processing calcium carbonate so that the conditions of following (3) may be satisfy | filled.
    (1) The acrylamide copolymer is amphoteric, the molar ratio of ionic monomer / nonionic monomer is 5/95 to 40/60, and (number of moles of cationic monomer × cationic group of cationic monomer) Ratio) / (number of moles of anionic monomer × number of anionic groups of anionic monomer) is 50/50 to 90/10
    (2) The weight average molecular weight of the acrylamide copolymer is 2 million to 7 million (3) The 50% volume average particle diameter of the composite filler is 60 μm to 300 μm, and the particles of 5 μm or less are 1% or less by volume. And, when the DFR measurement is performed, the pulp slurry containing 30% by weight of the composite filler in the dilution condition in which the filtrate light transmittance of the pulp slurry containing 30% by weight of the untreated filler with respect to the pulp solid becomes 50%. Filtrate light transmittance of 60% or more
  2.  前記炭酸カルシウムの凝集前の50%体積平均粒子径は、10μm以下であることを特徴とする請求項1に記載の製紙用複合填料の製造方法。 The method for producing a composite filler for papermaking according to claim 1, wherein the 50% volume average particle diameter before aggregation of the calcium carbonate is 10 µm or less.
  3.  前記イオン性モノマー/前記非イオン性モノマーの比が10/90~25/75であることを特徴とする請求項1または2に記載の製紙用複合填料の製造方法。 The method for producing a composite filler for papermaking according to claim 1 or 2, wherein the ratio of the ionic monomer / the nonionic monomer is 10/90 to 25/75.
  4.  (前記カチオン性モノマーのモル数×前記カチオン性モノマーのカチオン性基の数)/(前記アニオン性モノマーのモル数×前記アニオン性モノマーのアニオン性基の数)の比が50/50~80/20であることを特徴とする請求項1~3のいずれか1項に記載の製紙用複合填料の製造方法。 The ratio of (number of moles of the cationic monomer × number of cationic groups of the cationic monomer) / (number of moles of the anionic monomer × number of anionic groups of the anionic monomer) is 50/50 to 80 / The method for producing a composite filler for papermaking according to any one of claims 1 to 3, wherein the number is 20.
  5.  アクリルアミド系共重合物の分子量はGPC-MALS法による重量平均分子量で250万~500万であることを特徴とする請求項1~4のいずれか1項に記載の製紙用複合填料の製造方法。 The method for producing a composite filler for papermaking according to any one of claims 1 to 4, wherein the molecular weight of the acrylamide copolymer is 2.5 million to 5 million in terms of weight average molecular weight by GPC-MALS method.
  6.  前記複合填料の50%体積平均粒子径は100μm~200μmであることを特徴とする請求項1~5のいずれか1項に記載の製紙用複合填料の製造方法。 The method for producing a composite filler for papermaking according to any one of claims 1 to 5, wherein the composite filler has a 50% volume average particle size of 100 µm to 200 µm.
  7.  前記アクリルアミド系共重合物の処理量は、前記炭酸カルシウムの固形重量に対して固形換算で0.1~3.0重量%の範囲であることを特徴とする請求項1~6のいずれか1項に記載の製紙用複合填料の製造方法。 7. The processing amount of the acrylamide copolymer is in a range of 0.1 to 3.0% by weight in terms of solid with respect to the solid weight of the calcium carbonate. The manufacturing method of the composite filler for paper manufacture as described in a term.
  8.  請求項1~7のいずれか1項に記載の製造方法により得られた製紙用複合填料をパルプスラリーに添加することを特徴とする填料内添紙の製造方法。 A method for producing a filler-added paper, wherein the paper-made composite filler obtained by the production method according to any one of claims 1 to 7 is added to a pulp slurry.
  9.  前記填料内添紙の紙中灰分率は10%以上であることを特徴とする請求項8に記載の填料内添紙の製造方法。 The method for producing a filler-added paper according to claim 8, wherein the ash content in the paper of the filler-added paper is 10% or more.
  10.  前記填料内添紙の紙中灰分率は20%以上50%以下であることを特徴とする請求項8に記載の填料内添紙の製造方法。 The method for producing a filler-added paper according to claim 8, wherein the ash content in the paper of the filler-added paper is 20% or more and 50% or less.
PCT/JP2014/052453 2013-02-05 2014-02-03 Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper WO2014123087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-020104 2013-02-05
JP2013020104A JP2016102265A (en) 2013-02-05 2013-02-05 Method for producing composite filler for paper making, and method for producing filler-internally added paper

Publications (1)

Publication Number Publication Date
WO2014123087A1 true WO2014123087A1 (en) 2014-08-14

Family

ID=51236866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052453 WO2014123087A1 (en) 2013-02-05 2014-02-03 Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper

Country Status (3)

Country Link
JP (1) JP2016102265A (en)
CN (1) CN103966895A (en)
WO (1) WO2014123087A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066363A (en) * 2015-10-02 2017-04-06 三菱レイヨン株式会社 Aggregate for dispersing resin and resin composition, and manufacturing method therefor
US10669672B2 (en) 2015-09-30 2020-06-02 Ecolab Usa Inc. Compositions and methods for treating filler in papermaking

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696406A (en) 2014-11-26 2016-06-22 埃科莱布美国股份有限公司 Papermaking method for increasing ash content of paper product and paper product
PT3121205T (en) * 2014-12-08 2023-02-01 Harima Chemicals Inc Acrylamide polymer, paper strength enhancing agent, and paper
CN109518521A (en) * 2018-12-25 2019-03-26 昆山裕锦环保包装有限公司 It is a kind of for packaging products of paper mould scrap-falling-proof processing slurry in auxiliary agent
WO2024058028A1 (en) * 2022-09-16 2024-03-21 荒川化学工業株式会社 Paper strengthening agent and paper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018323A (en) * 2002-06-18 2004-01-22 Nippon Paper Industries Co Ltd Method for producing composite particle and method for producing high filler paper
JP2004100119A (en) * 2002-09-13 2004-04-02 Nippon Paper Industries Co Ltd Method for producing filler-containing paper by using coagulated filler particle
JP2005194651A (en) * 2004-01-05 2005-07-21 Kurita Water Ind Ltd Method for producing paper and paperboard

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018323A (en) * 2002-06-18 2004-01-22 Nippon Paper Industries Co Ltd Method for producing composite particle and method for producing high filler paper
JP2004100119A (en) * 2002-09-13 2004-04-02 Nippon Paper Industries Co Ltd Method for producing filler-containing paper by using coagulated filler particle
JP2005194651A (en) * 2004-01-05 2005-07-21 Kurita Water Ind Ltd Method for producing paper and paperboard

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669672B2 (en) 2015-09-30 2020-06-02 Ecolab Usa Inc. Compositions and methods for treating filler in papermaking
JP2017066363A (en) * 2015-10-02 2017-04-06 三菱レイヨン株式会社 Aggregate for dispersing resin and resin composition, and manufacturing method therefor

Also Published As

Publication number Publication date
CN103966895A (en) 2014-08-06
JP2016102265A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2014123087A1 (en) Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper
JP4406882B2 (en) Filler-attached paper and method for producing the same
JP5618213B2 (en) Polyacrylamide internal paper strength agent and paper manufacturing method
JP6509217B2 (en) Use of nanocrystalline cellulose and polymer grafted nanocrystalline cellulose to increase the yield of the papermaking process
JP2016166444A (en) Paper making method of paper and paper board
US20150197892A1 (en) Filler suspension and its use in the manufacture of paper
JP2017527708A (en) Sizing composition, method for using the same, and method for producing paper or paperboard
JP5640458B2 (en) Method for producing paper-making paper strength enhancer
JP2017186725A (en) Paper durability promoter for high ash content paper, manufacturing method of high ash content paper and high ash content paper
US20150197890A1 (en) Filler suspension and its use in the manufacture of paper
JP2015533953A (en) Filler suspension and its use in the manufacture of paper
CN110318292B (en) Surface paper strength enhancer, coating liquid, and method for producing paper
JPS6215391A (en) Papermaking method
JP2001279595A (en) Paper making method
JP7156354B2 (en) Method for producing high filler content paper
CA2664490A1 (en) Siliceous composition and its use in papermaking
CN113574224B (en) Paper strength enhancer
JP3494260B2 (en) How to make paper or paperboard
JP2001020198A (en) Papermaking additive
JP6189026B2 (en) Printing paper
WO2016147469A1 (en) Agent for diminishing paper dust, method for diminishing paper dust, and process for producing paper
JP5910994B2 (en) Paper strength agent and paper manufacturing method using the same
JP2002004192A (en) Method for papermaking
JPS6312795A (en) Paper strength enhancer
WO2001051707A1 (en) The use of inorganic sols in the papermaking process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP