JP2004018323A - Method for producing composite particle and method for producing high filler paper - Google Patents

Method for producing composite particle and method for producing high filler paper Download PDF

Info

Publication number
JP2004018323A
JP2004018323A JP2002176749A JP2002176749A JP2004018323A JP 2004018323 A JP2004018323 A JP 2004018323A JP 2002176749 A JP2002176749 A JP 2002176749A JP 2002176749 A JP2002176749 A JP 2002176749A JP 2004018323 A JP2004018323 A JP 2004018323A
Authority
JP
Japan
Prior art keywords
filler
paper
pulp
composite particles
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176749A
Other languages
Japanese (ja)
Inventor
Toshiaki Minami
南 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2002176749A priority Critical patent/JP2004018323A/en
Publication of JP2004018323A publication Critical patent/JP2004018323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a bulky composite filler enabling the production of "a light and bulky paper" in which the yield of the filler is improved; inter-fiber bonding is not prevented by composite particles distributed between fibers; bulkiness can be obtained even by a small amount of pulp; and whiteness and opacity can be improved at the same time, and to provide a high filler paper using the same as a filler. <P>SOLUTION: Precipitated calcium carbonate light are coated with a branched amphoteric copolymer polyacrylamide having a molecular weight of 1,500.000-3,500,000 to produce composite particles, which are added to a pulp slurry as fillers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な複合填料の製造方法並びに填料を内添した紙の製造方法に関し、特に嵩高性、白色度、不透明度が高く、填料内添による紙力低下が少なく、填料歩留りが高い複合粒子の製造方法並びにこれを填料とする高填料内添紙の製造方法に関する。
【0002】
【従来の技術】
近年、森林資源保護、省資源問題、ゴミ問題を含む環境負荷軽減の見地から紙の軽量化が必要とされている。紙の軽量化を目指す場合、特に印刷紙、包装紙等の分野では、白色度、不透明度、印刷適性を高めるために、各種の填料を内添して製造している。従来から填料内添による紙の白色度、不透明性の向上方法として、二酸化チタンのような屈折率の大きな填料を内添して散乱効率を上げる方法、並びに白土、タルク、炭酸カルシウム、有機顔料等の屈折率1.5近辺の填料を内添して、パルプ繊維間の密着を抑制し散乱表面積を増加させる方法がとられている。
【0003】
また、これまでは紙の軽量化に対応するために、単に坪量を下げたり、脱墨パルプの比率を上げるなどの方法が行われてきた。しかしながら、この方法では紙が薄くなり、白色度、不透明度が低下して裏抜けなどの印刷適性が悪くなる。不透明度と裏抜けは紙の厚さと密接な関係があり、これまではパルプを余分に使用したり、嵩のでるパルプを使用することによって、嵩高い紙を製造してきた。
【0004】
しかしながら、上記のような粒子径の小さい炭酸カルシウムなどの填料は抄紙時に大部分が白水中に流出し、紙層中への保持が非常に悪いという問題があった。またこのような小さな填料粒子はパルプ繊維間に分布することによって繊維間の結合を阻害し紙力を低下させてしまう欠点がある。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、填料の歩留まりを向上し、かつ繊維間に分布する複合粒子によって繊維間結合が阻害されず、少量のパルプでも嵩を出すことができ、同時に白色度、不透明度を向上できる「軽くて嵩の高い紙」を製造可能とする嵩高複合填料の製造方法およびこれを填料とした高填料内添紙を提供することである。
【0006】
【課題を解決するための手段】
軽質炭酸カルシウムを分子量150〜350万の分岐状両性共重合体ポリアクリルアミドで被覆処理した複合粒子を製造し、パルプスラリーに填料として内添することにより解決される。
【0007】
【発明の実施の形態】
本発明では、軽質炭酸カルシウムを分子量150〜350万の分岐状両性共重合体ポリアクリルアミドで被覆処理するものである。従来のポリアクリルアミド(以下、PAMと記述する)がマンニッヒPAM、ホフマンPAMを中心とするものであり、分子量を100万まで高めるとそれにつれ、粘度が10,000〜60,000(cps)まで増加してしまう。さらに、分子構造が直鎖状のためパルプ繊維への定着点が少なく、パルプ繊維上の水酸基との水素結合も少ないため紙力が低かった。
【0008】
一方、本発明で使用する分岐状両性共重合体PAMは、モノマーとアクリルアミドとを触媒の存在下で重合反応させ同時に架橋反応も行うものである。これにより、架橋型の分岐状両性共重合体PAMが得られ、その特徴として、粘度が低く三次元的分岐構造であるためパルプ繊維への定着点が極めて多くなり、パルプ繊維上の水酸基との水素結合の確立も高くなり紙力が飛躍的に向上する。さらに、分子量150〜350万の分岐状両性共重合体PAMで被覆処理された軽質炭酸カルシウム複合粒子には、填料の表面に分岐状PAMが静電気力で結合しており、PAMのアミド基がパルプ繊維と水素結合するため、複合粒子が媒介となってパルプ繊維同士を結合し、結果として紙力が大幅に向上する。
【0009】
本発明の分岐状両性共重合体PAMの分子量は150〜350万程度のものである。150万未満では、填料歩留まりが低下するとともに、紙力の向上効果が得られにくい。また350万を超えると所望の効果は得られない。
本発明で使用される軽質炭酸カルシウムとしては、製紙用填料であればよく、カルサイトや、アラゴナイトなどの米粒状、紡錘形、針状などが使用されるが、特に、紡錘形の粒子が微凝集したロゼット型炭酸カルシウムが嵩高性発現の観点から最も好ましい。粒径としては、形成される複合凝集体粒子の粒径を鑑み、0.1〜5ミクロンが望ましい。
【0010】
さらに、軽質炭酸カルシウムを分子量150〜350万の分岐状両性共重合体PAMで被覆処理し、複合粒子の平均粒径を3〜60ミクロンの大粒径にすることにより、嵩高性、填料の歩留りを高めることが可能である。粒径コントロールの方法としては、次の方法が挙げられる。すなわち、10〜30%濃度の軽質炭酸カルシウムスラリーに、分子量150〜350万の分岐状両性共重合体PAMの1%溶液を、ゆっくりと攪拌しながら添加し10分間攪拌を行う。この時に添加する分岐状両性共重合体PAMの填料に対する添加率を固形分で0.01〜0.5%に調製すること、及び攪拌速度の調整により、複合粒子の平均粒径を3〜60ミクロン程度にコントロールできる。
【0011】
複合粒子の平均粒径を3ミクロン未満に調製したい場合には、上記方法で調製した平均粒径を3〜60ミクロン程度の複合粒子を湿式粉砕機にかけて粉砕する。湿式粉砕機としては公知のホモミキサー、ホモジナイザー、サンドグラインダー等が挙げられる。
【0012】
本発明では、本発明の効果を損ねない範囲で公知の填料としてクレー、シリカ、タルク、焼成カオリン、水酸化アルミニウムなどの無機填料、あるいは塩化ビニル樹脂、ポリスチレン樹脂、尿素ホルマリン樹脂、メラミン系樹脂、スチレン/ブタジエン系共重合体系樹脂などの合成樹脂から製造される有機填料を併用することもできる。また、必要に応じて、PAM系高分子、ポリビニルアルコール系高分子、カチオン化澱粉、尿素/ホルマリン樹脂、メラミン/ホルマリン樹脂などの紙力増強剤;アクリルアミド/アミノメチルアクリルアミドの共重合物の塩、カチオン化澱粉、ポリエチレンイミン、ポリエチレンオキサイド、アクリルアミド/アクリル酸ナトリウム共重合物などのろ水性あるいは歩留まり向上剤;硫酸アルミニウム(硫酸バンド)、耐水化剤、紫外線防止剤、退色防止剤などの助剤などを含有してもよい。
【0013】
【実施例】
以下、本発明を実施例及び比較例に従って詳細に説明するが、本発明はこれらに限定されるものではない。尚、説明中、パーセントは固形分重量パーセントを示す。
実施例及び比較例で製造した中性上質紙について、嵩高性、白色度、不透明度、裂断長、填料歩留り、灰分、TOPR、AOPRを以下に示す方法にて測定した。
・嵩高性:坪量と紙厚から紙の密度を算出した。密度が低いほど嵩高性は高いことを示す。
・白色度の測定:白色度はJIS P 8123に基づきハンター白色度計で測定した。
・不透明度の測定:不透明度はJIS P 8138に基づき、ハンター反射率計を使用して測定した。
・填料の歩留り:予め作成しておいた、填料を配合していない手抄きシート(ブランク)及び填料を配合した手抄きシートより10×10cmの紙片10枚を切り取り、105℃×3時間乾燥させた後に絶乾重量を秤りとる。次に、この絶乾紙片を電気炉にて575℃×2時間焼くことによりシート中に含まれる灰分を求める。填料歩留り(%)は下記の式より算出した。
填料歩留り=100×(填料入りシート灰分重量/同絶乾重量−ブランク灰分重量/同絶乾重量)/填料配合率
・裂断長:JIS P 8113により次式で求めた。
裂断長=引張強さ/(試験片の幅×試験片の坪量)×1000
・灰分:JIS P 8128に基づき灰化温度は575℃とした。
・TOPR(トータルワンパスリテンション):ダイナミックドレネージジャーテスタ(DDJ)にて測定した総歩留り(%)
・AOPR(アッシュのワンパスリテンション): DDJにて測定した灰分歩留り(%)
【0014】
<複合粒子の合成例1>
軽質炭酸カルシウム(奥多摩工業製 TP−121 平均粒径1ミクロン)の粉体50gを水450gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い10%炭酸カルシウムスラリーを調製した。次にこのスラリー100gをビーカーに入れ、スリーワンモーターで攪拌しながら、分岐状両性共重合体PAM(PS462 荒川化学製 分子量250万)の1%溶液を1.8g添加し、そのまま10分間攪拌を続け、TP121・PS462複合粒子が得られた。粒度分布測定装置マスターサイザーS(マルバーン社製)を使用して、レーザー回折/散乱法により50%体積平均粒子径を測定したところ16.3ミクロンであった。
【0015】
<複合粒子の合成例2>
ロゼット型軽質炭酸カルシウム(ファイザー社製 ファイカーブH 平均粒径3ミクロン 略してFCH)の粉体50gを水450gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い10%炭酸カルシウムスラリーを調製した。次にこのスラリー100gをビーカーに入れ、スリーワンモーターで攪拌しながら、分岐状両性共重合体PAM(PS463 荒川化学製 分子量 300万)の1%溶液を0.9g添加し、そのまま10分間攪拌を続け、FCH・PS463複合粒子が得られた。粒度分布測定装置マスターサイザーS(マルバーン社製)を使用して、レーザー回折/散乱法により50%体積平均粒子径を測定したところ20.8ミクロンであった。
【0016】
[実施例1]
広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 0.50%)に、合成例1の複合凝集体粒子スラリーをパルプ絶乾重量当り20%となるように添加し、3分間攪拌後、硫酸バンドを絶乾重量当り0.5%添加した。さらに、1分間攪拌後、紙力剤として、PS463をパルプの絶乾重量当り0.3%添加攪拌し、pHが8.7になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、丸型手抄き器で目標坪量が64g/m、紙中灰分が13重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0017】
[実施例2]
実施例1において、合成例1の複合凝集体粒子スラリーをパルプ絶乾重量当り40%となるように添加した以外は実施例1と同様にシートサンプルを作製し、このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0018】
[比較例1]
広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 0.50%)に、軽質炭酸カルシウム(奥多摩工業製 TP−121 平均粒径1ミクロン)の10%スラリーをパルプ絶乾重量当り20%となるように添加し、3分間攪拌後、硫酸バンドを絶乾重量当り0.5%添加した。さらに、1分間攪拌後、紙力剤として、PS463をパルプの絶乾重量当り0.3%添加攪拌し、pHが8.7になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、丸型手抄き器で目標坪量が64g/m、紙中灰分が13重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0019】
[比較例2]
比較例1において、軽質炭酸カルシウム(奥多摩工業製 TP−121 平均粒径1ミクロン)スラリーをパルプ絶乾重量当り40%となるように添加した以外は比較例1と同様にシートサンプルを作製し、このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0020】
[実施例3]
広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 0.50%)に、合成例2の複合凝集体粒子スラリーをパルプ絶乾重量当り20%となるように添加し、3分間攪拌後、硫酸バンドを絶乾重量当り0.5%添加した。さらに、1分間攪拌後、紙力剤として、PS463をパルプの絶乾重量当り0.3%添加攪拌し、pHが8.7になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、丸型手抄き器で目標坪量が64g/m、紙中灰分が13重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0021】
[実施例4]
実施例3において、合成例2の複合凝集体粒子スラリーをパルプ絶乾重量当り40%となるように添加した以外は実施例3と同様にシートサンプルを作製し、このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0022】
[比較例3]
広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 0.50%)に、ロゼット型軽質炭酸カルシウム(ファイザー社製 ファイカーブH 平均粒径3ミクロン)の10%スラリーをパルプ絶乾重量当り20%となるように添加し、3分間攪拌後、硫酸バンドを絶乾重量当り0.5%添加した。さらに、1分間攪拌後、紙力剤として、PS463をパルプの絶乾重量当り0.3%添加攪拌し、pHが8.7になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、丸型手抄き器で目標坪量が64g/m、紙中灰分が13重量%となるように抄造しプレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0023】
[比較例4]
比較例3において、ロゼット型軽質炭酸カルシウム(ファイザー社製 ファイカーブH 平均粒径3ミクロン)の10%スラリーをパルプ絶乾重量当り40%となるように添加した以外は比較例3と同様にシートサンプルを作製し、このシートの裂断長、紙中灰分、さらに、調成したパルプスラリーを使用してDDJによる総歩留り(TOPR)、灰分歩留り(AOPR)を測定し表1に示した。
【0024】
【表1】

Figure 2004018323
【0025】
表1に示すように、実施例1及び実施例2の軽質炭酸カルシウムを分子量250万の分岐状両性共重合体PAMであるPS462で被覆処理したTP121・PS462複合粒子では、裂断長が3.20、2.35であり、比較例1及び比較例2のTP121粒子の裂断長2.70、1.94に比較して、18.5〜21.1%紙力が大幅に向上した。一方、実施例3及び実施例4のロゼット型軽質炭酸カルシウムを分子量300万の分岐状両性共重合体PAMであるPS463で被覆処理したFCH・PS463複合粒子では、裂断長が3.00、2.50であり、比較例1及び比較例2のFCH粒子の裂断長2.70、2.00に比較して、11.1〜25.0%紙力が大幅に向上した。紙力が向上したことにより、裂断長を2.70Kmに維持したまま、紙中填料を13%から18%まで5%の填料増加が可能であり高填料化が可能となった。また、DDJによる灰分歩留り及び総歩留りも、TP121・PS462複合粒子及びFCH・PS463複合粒子では10%前後高かった。
【0026】
そこで、白色度、不透明度、密度、DDJにて測定した灰分歩留り(AOPR)、総歩留り(TOPR)の値について、裂断長2.70Km一定で、TP121・PS462複合粒子とTP121、及びFCH・PS463複合粒子とFCHを比較し、その結果を表2に示した。
【0027】
【表2】
Figure 2004018323
【0028】
その結果、裂断長が2.70Kmでは、TP121・PS462複合粒子はTP121に比較して、白色度は1.7ポイント向上し、不透明度は1ポイント向上し、密度は0.03ポイント低下し嵩高性が5.2ポイント向上した。さらに、FCH・PS463複合粒子はFCHに比較して、白色度は1ポイント向上し、不透明度は1.5ポイント向上し、密度は0.06ポイント低下し嵩高性が10.7ポイント向上した。
【0029】
【発明の効果】
軽質炭酸カルシウムを分子量150〜350万の分岐状両性共重合体PAMで被覆処理した複合粒子を製造し、紙に内添することにより以下の特性を備えた高填料内添紙が得られた。
1)軽くて厚い嵩高性の高い紙が得られる
2)白色度、不透明度などの光学特性が優れている
3)嵩高でありながら紙力(裂断長、引裂強度)が優れている
4)填料の歩留りが高い
5)高填料紙が得られパルプ資源の削減となる[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a novel composite filler and a method for producing a paper to which a filler is internally added, and particularly to a composite having high bulkiness, whiteness and opacity, a small decrease in paper strength due to the internal addition of the filler, and a high filler yield. The present invention relates to a method for producing particles and a method for producing a high-filled internal paper using the same as a filler.
[0002]
[Prior art]
In recent years, paper has been required to be lighter from the viewpoint of protection of forest resources, resource saving, and reduction of environmental load including garbage. When aiming to reduce the weight of paper, particularly in the fields of printing paper, wrapping paper, etc., various fillers are added internally in order to increase whiteness, opacity and printability. Conventionally, as a method for improving the whiteness and opacity of paper by adding a filler, a method of increasing the scattering efficiency by internally adding a filler having a large refractive index such as titanium dioxide, and clay, talc, calcium carbonate, an organic pigment, etc. A method of increasing the scattering surface area by suppressing the adhesion between pulp fibers by internally adding a filler having a refractive index of around 1.5 is used.
[0003]
Until now, in order to cope with the reduction in weight of paper, methods such as simply decreasing the basis weight or increasing the ratio of deinked pulp have been used. However, in this method, the paper becomes thin, the whiteness and opacity are reduced, and the printability such as strikethrough is deteriorated. Opacity and strike-through are closely related to the thickness of the paper. Until now, bulky paper has been produced by using extra pulp or using bulky pulp.
[0004]
However, the filler such as calcium carbonate having a small particle diameter as described above has a problem that most of the filler flows out into white water at the time of papermaking, and the retention in the paper layer is very poor. Further, such small filler particles are disadvantageously distributed between pulp fibers, thereby inhibiting the bonding between the fibers and reducing the paper strength.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to improve the yield of the filler, to prevent the inter-fiber bonds from being hindered by the composite particles distributed between the fibers, to allow a small amount of pulp to be made bulky, and at the same time to improve the whiteness and imperfection. An object of the present invention is to provide a method for producing a bulky composite filler capable of producing “light and bulky paper” capable of improving transparency, and a high-filled internal paper using the same as a filler.
[0006]
[Means for Solving the Problems]
This problem can be solved by producing composite particles obtained by coating light calcium carbonate with a branched amphoteric copolymer polyacrylamide having a molecular weight of 1.5 to 3.5 million, and internally adding it to a pulp slurry as a filler.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, light calcium carbonate is coated with a branched amphoteric copolymer polyacrylamide having a molecular weight of 1.5 to 3.5 million. Conventional polyacrylamide (hereinafter referred to as PAM) is mainly composed of Mannich PAM and Hoffman PAM. As the molecular weight increases to 1,000,000, the viscosity increases to 10,000 to 60,000 (cps). Resulting in. Further, since the molecular structure is linear, the fixing point to the pulp fiber is small, and the hydrogen bond with the hydroxyl group on the pulp fiber is small, so that the paper strength is low.
[0008]
On the other hand, the branched amphoteric copolymer PAM used in the present invention is obtained by polymerizing a monomer and acrylamide in the presence of a catalyst and simultaneously performing a crosslinking reaction. As a result, a cross-linked branched amphoteric copolymer PAM is obtained, and as a feature thereof, the viscosity is low and a three-dimensional branched structure is used, so that the number of fixing points to the pulp fiber becomes extremely large, and the hydroxyl group on the pulp fiber becomes The establishment of hydrogen bonds is also increased, and the paper strength is dramatically improved. Further, to the calcium carbonate composite particles coated with the branched amphoteric copolymer PAM having a molecular weight of 1.5 to 3.5 million, the branched PAM is electrostatically bound to the surface of the filler, and the amide group of the PAM is pulp-free. Due to hydrogen bonding with the fibers, the composite particles serve as a medium to bond the pulp fibers together, and as a result, the paper strength is greatly improved.
[0009]
The molecular weight of the branched amphoteric copolymer PAM of the present invention is about 1.5 to 3.5 million. If it is less than 1.5 million, the yield of the filler decreases and the effect of improving the paper strength is hardly obtained. If it exceeds 3.5 million, desired effects cannot be obtained.
As the light calcium carbonate used in the present invention, any filler may be used as long as it is a papermaking filler, and calcite, rice grains such as aragonite, spindle-shaped, needle-shaped, and the like are used. In particular, spindle-shaped particles are finely aggregated. Rosette-type calcium carbonate is most preferred from the viewpoint of expressing bulkiness. The particle size is preferably 0.1 to 5 microns in view of the particle size of the formed composite aggregate particles.
[0010]
Further, light calcium carbonate is coated with a branched amphoteric copolymer PAM having a molecular weight of 1.5 to 3.5 million to increase the average particle size of the composite particles to a large particle size of 3 to 60 microns, so that the bulkiness and the yield of the filler are increased. It is possible to increase. The following methods are mentioned as a method of controlling the particle size. That is, a 1% solution of a branched amphoteric copolymer PAM having a molecular weight of 1.5 to 3.5 million is added to a light calcium carbonate slurry having a concentration of 10 to 30% while stirring slowly, followed by stirring for 10 minutes. The average particle size of the composite particles is adjusted to 3 to 60 by adjusting the addition rate of the branched amphoteric copolymer PAM to be added to the filler at this time to 0.01 to 0.5% in solid content and adjusting the stirring speed. It can be controlled to about a micron.
[0011]
When it is desired to adjust the average particle size of the composite particles to less than 3 microns, the composite particles having an average particle size of about 3 to 60 microns prepared by the above method are pulverized by a wet pulverizer. Examples of the wet pulverizer include a known homomixer, homogenizer, and sand grinder.
[0012]
In the present invention, clay, silica, talc, calcined kaolin, inorganic fillers such as aluminum hydroxide, or vinyl chloride resin, polystyrene resin, urea formalin resin, melamine-based resin, as well-known fillers as long as the effects of the present invention are not impaired, An organic filler produced from a synthetic resin such as a styrene / butadiene copolymer resin can also be used in combination. If necessary, a PAM-based polymer, a polyvinyl alcohol-based polymer, a cationized starch, a paper strength enhancer such as a urea / formalin resin, a melamine / formalin resin; a salt of a copolymer of acrylamide / aminomethylacrylamide; Drainage or retention improvers such as cationized starch, polyethyleneimine, polyethylene oxide, acrylamide / sodium acrylate copolymer; assistants such as aluminum sulfate (sulfate band), water resistant agent, ultraviolet ray inhibitor, anti-fading agent, etc. May be contained.
[0013]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the description, the percentage indicates a solid content weight percentage.
With respect to the neutral high-quality papers manufactured in Examples and Comparative Examples, the bulkiness, whiteness, opacity, tear length, filler retention, ash, TOPR, and AOPR were measured by the following methods.
Bulkiness: The density of the paper was calculated from the basis weight and the paper thickness. The lower the density, the higher the bulkiness.
-Measurement of whiteness: Whiteness was measured by a Hunter whiteness meter based on JIS P 8123.
Opacity measurement: Opacity was measured using a Hunter reflectometer based on JIS P 8138.
Filler Yield: Cut out 10 pieces of 10 × 10 cm pieces of paper from a hand-made sheet (blank) without filler and a hand-made sheet with filler, which have been prepared in advance, and 105 ° C. × 3 hours After drying, weigh the absolute dry weight. Next, the ash contained in the sheet is obtained by baking this absolutely dried paper piece in an electric furnace at 575 ° C. for 2 hours. Filler yield (%) was calculated from the following equation.
Filler yield = 100 × (weight of sheet-filled ash / filled dry weight−blank ash weight / detachable dry weight) / filler blending ratio / break length: It was determined by JIS P 8113 by the following formula.
Breaking length = tensile strength / (width of test piece × basis weight of test piece) × 1000
Ash content: The ash temperature was 575 ° C. based on JIS P 8128.
-TOPR (total one-pass retention): Total yield (%) measured by a dynamic drainage jar tester (DDJ)
AOPR (ash one-pass retention): Ash yield measured by DDJ (%)
[0014]
<Synthesis example 1 of composite particles>
50 g of a powder of light calcium carbonate (TP-121 manufactured by Okutama Kogyo Kogyo Co., Ltd., average particle size: 1 micron) was added to 450 g of water, and subjected to a dispersion treatment at 3000 rpm for 20 minutes using a homomixer to perform a 10% calcium carbonate slurry. Was prepared. Next, 100 g of this slurry was placed in a beaker, and 1.8 g of a 1% solution of a branched amphoteric copolymer PAM (PS462, Arakawa Chemical Co., Ltd., molecular weight 2.5 million) was added while stirring with a three-one motor, and stirring was continued for 10 minutes. And TP121 / PS462 composite particles were obtained. The 50% volume average particle diameter was measured by a laser diffraction / scattering method using a particle size distribution analyzer Mastersizer S (manufactured by Malvern), and was 16.3 microns.
[0015]
<Synthesis example 2 of composite particles>
50 g of powder of a rosette-type light calcium carbonate (Phi curve H, manufactured by Pfizer Inc., average particle size of 3 microns, FCH for short) is added to 450 g of water, and subjected to a dispersion treatment at 3000 rpm for 20 minutes using a homomixer. A 10% calcium carbonate slurry was prepared. Next, 100 g of this slurry was placed in a beaker, and 0.9 g of a 1% solution of a branched amphoteric copolymer PAM (PS463, Arakawa Chemical Co., Ltd., molecular weight 3,000,000) was added while stirring with a three-one motor, and stirring was continued for 10 minutes. And FCH / PS463 composite particles were obtained. Using a particle size distribution analyzer Mastersizer S (manufactured by Malvern), the 50% volume average particle diameter was measured by a laser diffraction / scattering method and found to be 20.8 microns.
[0016]
[Example 1]
To a slurry (concentration: 0.50%) of bleached hardwood pulp (LBKP CSF407 ml), the composite aggregate particle slurry of Synthesis Example 1 was added so as to be 20% based on the absolute dry weight of the pulp. After stirring for 3 minutes, the sulfate band was removed. 0.5% was added per absolute dry weight. Further, after stirring for 1 minute, PS463 was added as a paper strengthening agent at 0.3% based on the absolute dry weight of the pulp and stirred, and a small amount of a sulfuric acid band was added so that the pH became 8.7. Using the prepared pulp slurry, papermaking was performed using a round hand-making machine so that the target basis weight was 64 g / m 2 and the ash content in paper was 13% by weight. C. for 1 hour) to prepare a sheet sample. The tear length of the sheet, the ash content in the paper, and the total yield (TOPR) and ash yield (AOPR) by DDJ using the prepared pulp slurry were measured and are shown in Table 1.
[0017]
[Example 2]
A sheet sample was prepared in the same manner as in Example 1 except that the composite aggregate particle slurry of Synthesis Example 1 was added so as to be 40% based on the absolute dry weight of the pulp. Using the medium ash content and the prepared pulp slurry, the total yield (TOPR) and the ash yield (AOPR) were measured by DDJ, and are shown in Table 1.
[0018]
[Comparative Example 1]
A 10% slurry of light calcium carbonate (TP-121, manufactured by Okutama Kogyo Kogyo Co., Ltd., average particle size: 1 micron) was added to a slurry of bleached hardwood pulp (407 ml of LBKP CSF) at a concentration of 0.50% so that the weight of the pulp was 20% per absolute dry weight. After adding and stirring for 3 minutes, a sulfate band was added at 0.5% based on the absolute dry weight. Further, after stirring for 1 minute, PS463 was added as a paper strengthening agent at 0.3% based on the absolute dry weight of the pulp and stirred, and a small amount of a sulfuric acid band was added so that the pH became 8.7. Using the prepared pulp slurry, papermaking was performed using a round hand-making machine so that the target basis weight was 64 g / m 2 and the ash content in paper was 13% by weight. C. for 1 hour) to prepare a sheet sample. The tear length of the sheet, the ash content in the paper, and the total yield (TOPR) and ash yield (AOPR) by DDJ using the prepared pulp slurry were measured and are shown in Table 1.
[0019]
[Comparative Example 2]
In Comparative Example 1, a sheet sample was prepared in the same manner as in Comparative Example 1 except that a slurry of light calcium carbonate (TP-121 manufactured by Okutama Kogyo Kogyo Co., Ltd., average particle size: 1 micron) was added so as to be 40% based on the absolute dry weight of the pulp. The tear length of the sheet, the ash content in the paper, and the total yield (TOPR) and ash yield (AOPR) by DDJ using the prepared pulp slurry were measured and are shown in Table 1.
[0020]
[Example 3]
To the slurry (concentration 0.50%) of bleached hardwood pulp (LBKP CSF 407 ml), the composite aggregate particle slurry of Synthesis Example 2 was added so as to be 20% based on the absolute dry weight of the pulp. After stirring for 3 minutes, the sulfate band was removed. 0.5% was added per absolute dry weight. Further, after stirring for 1 minute, PS463 was added as a paper strengthening agent at 0.3% based on the absolute dry weight of the pulp and stirred, and a small amount of a sulfuric acid band was added so that the pH became 8.7. Using the prepared pulp slurry, papermaking was performed using a round hand-making machine so that the target basis weight was 64 g / m 2 and the ash content in paper was 13% by weight. C. for 1 hour) to prepare a sheet sample. The tear length of the sheet, the ash content in the paper, and the total yield (TOPR) and ash yield (AOPR) by DDJ using the prepared pulp slurry were measured and are shown in Table 1.
[0021]
[Example 4]
A sheet sample was prepared in the same manner as in Example 3 except that the composite aggregate particle slurry of Synthesis Example 2 was added so as to be 40% based on the absolute dry weight of the pulp. Using the medium ash content and the prepared pulp slurry, the total yield (TOPR) and the ash yield (AOPR) were measured by DDJ, and are shown in Table 1.
[0022]
[Comparative Example 3]
A 10% slurry of rosette-type light calcium carbonate (Pfizer Co., Inc., average particle size of 3 microns) is added to a slurry of bleached hardwood pulp (407ml of LBKP CSF) (concentration: 0.50%) at a pulp absolute dry weight of 20%. After stirring for 3 minutes, a sulfuric acid band was added at 0.5% per absolute dry weight. Further, after stirring for 1 minute, PS463 was added as a paper strengthening agent at 0.3% based on the absolute dry weight of the pulp and stirred, and a small amount of a sulfuric acid band was added so that the pH became 8.7. Using the prepared pulp slurry, papermaking was performed using a round-shaped hand-making machine so that the target basis weight was 64 g / m 2 and the ash content in paper was 13% by weight. (1 hour) to produce a sheet sample. The tear length of the sheet, the ash content in the paper, and the total yield (TOPR) and ash yield (AOPR) by DDJ using the prepared pulp slurry were measured and are shown in Table 1.
[0023]
[Comparative Example 4]
In Comparative Example 3, a sheet was prepared in the same manner as in Comparative Example 3 except that a 10% slurry of rosette-type light calcium carbonate (Phiber H, manufactured by Pfizer Co., Ltd., having an average particle size of 3 microns) was added so as to be 40% based on the absolute dry weight of the pulp. A sample was prepared, and the tear length of the sheet, the ash content in the paper, and the total yield (TOPR) and the ash yield (AOPR) by DDJ were measured using the prepared pulp slurry.
[0024]
[Table 1]
Figure 2004018323
[0025]
As shown in Table 1, in the TP121 / PS462 composite particles obtained by coating the light calcium carbonate of Examples 1 and 2 with PS462, a branched amphoteric copolymer PAM having a molecular weight of 2.5 million, the breaking length was 3. 20, 2.35, and the paper strength was significantly improved by 18.5 to 21.1% compared to the breaking lengths of 2.70 and 1.94 of the TP121 particles of Comparative Example 1 and Comparative Example 2. On the other hand, in the FCH / PS463 composite particles obtained by coating the rosette-type light calcium carbonate of Examples 3 and 4 with PS463, a branched amphoteric copolymer PAM having a molecular weight of 3,000,000, the breaking length is 3.00, .50, and the paper strength was significantly improved by 11.1 to 25.0% compared to the breaking lengths of 2.70 and 2.00 of the FCH particles of Comparative Example 1 and Comparative Example 2. By improving the paper strength, the filler in the paper can be increased by 5% from 13% to 18% while maintaining the breaking length at 2.70 km, and the filler can be increased. The ash yield and the total yield by DDJ were also higher by about 10% for the TP121 / PS462 composite particles and the FCH / PS463 composite particles.
[0026]
Accordingly, the TP121 / PS462 composite particles and TP121, and FCH • were measured for the values of whiteness, opacity, density, ash retention (AOPR) and total retention (TOPR) measured by DDJ, with a constant breaking length of 2.70 km. The PS463 composite particles were compared with FCH, and the results are shown in Table 2.
[0027]
[Table 2]
Figure 2004018323
[0028]
As a result, when the breaking length is 2.70 km, the whiteness of the TP121 / PS462 composite particles is improved by 1.7 points, the opacity is improved by 1 point, and the density is reduced by 0.03 points as compared with TP121. The bulkiness was improved by 5.2 points. Further, the FCH / PS463 composite particles had an improvement in whiteness by 1 point, an increase in opacity by 1.5 points, a decrease in density by 0.06 points, and an increase in bulkiness by 10.7 points compared to FCH.
[0029]
【The invention's effect】
Composite particles obtained by coating light calcium carbonate with a branched amphoteric copolymer PAM having a molecular weight of 1.5 to 3.5 million were produced and internally added to paper to obtain a high-filled internal paper having the following characteristics.
1) Light and thick paper with high bulkiness can be obtained 2) Excellent optical properties such as whiteness and opacity 3) Excellent paper strength (tear length, tear strength) while being bulky 4) High filler yield 5) High filler paper is obtained and pulp resources are reduced

Claims (4)

軽質炭酸カルシウムを分子量150〜350万の分岐状両性共重合体ポリアクリルアミドで被覆処理した複合粒子の製造方法。A method for producing composite particles obtained by coating light calcium carbonate with a branched amphoteric copolymer polyacrylamide having a molecular weight of 1.5 to 3.5 million. 軽質炭酸カルシウムが紡錘形の粒子が凝集したロゼット型炭酸カルシウムである請求項1記載の複合粒子の製造方法。The method for producing composite particles according to claim 1, wherein the light calcium carbonate is rosette-type calcium carbonate in which spindle-shaped particles are aggregated. レーザー回折/散乱法による50%体積平均粒子径が3〜60ミクロンである請求項1または請求項2に記載の複合粒子の製造方法。The method for producing composite particles according to claim 1 or 2, wherein a 50% volume average particle diameter by a laser diffraction / scattering method is 3 to 60 microns. パルプスラリーに填料を添加して抄造することによる填料内添紙の製造方法において、填料が請求項1〜3に記載のいずれか一つの複合粒子を含有することを特徴とする高填料内添紙の製造方法。A method for producing a filler-filled paper by adding a filler to a pulp slurry to form a paper, wherein the filler contains any one of the composite particles according to any one of claims 1 to 3. Manufacturing method.
JP2002176749A 2002-06-18 2002-06-18 Method for producing composite particle and method for producing high filler paper Pending JP2004018323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176749A JP2004018323A (en) 2002-06-18 2002-06-18 Method for producing composite particle and method for producing high filler paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176749A JP2004018323A (en) 2002-06-18 2002-06-18 Method for producing composite particle and method for producing high filler paper

Publications (1)

Publication Number Publication Date
JP2004018323A true JP2004018323A (en) 2004-01-22

Family

ID=31174971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176749A Pending JP2004018323A (en) 2002-06-18 2002-06-18 Method for producing composite particle and method for producing high filler paper

Country Status (1)

Country Link
JP (1) JP2004018323A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194651A (en) * 2004-01-05 2005-07-21 Kurita Water Ind Ltd Method for producing paper and paperboard
JP2006214028A (en) * 2005-02-03 2006-08-17 Nippon Paper Industries Co Ltd Method for producing neutral paper for printing newspaper
JP2006214018A (en) * 2005-02-02 2006-08-17 Nippon Paper Industries Co Ltd Low density paper
WO2006100996A1 (en) * 2005-03-18 2006-09-28 Harima Chemicals, Inc. Filled paper and process for producing the same
JP2006265753A (en) * 2005-03-23 2006-10-05 Nippon Paper Industries Co Ltd Bulky high-quality printing paper
JP2007023428A (en) * 2005-07-15 2007-02-01 Nippon Paper Industries Co Ltd Coated paper for printing
JP2007023426A (en) * 2005-07-15 2007-02-01 Nippon Paper Industries Co Ltd Clear coated printing paper
WO2007086497A1 (en) * 2006-01-26 2007-08-02 Nippon Paper Industries Co., Ltd. Paper containing preaggregated filler and process for producing the same
JP2007231426A (en) * 2006-02-27 2007-09-13 Nippon Paper Industries Co Ltd Printing paper for clear coating
JP2007239150A (en) * 2006-03-10 2007-09-20 Nippon Paper Industries Co Ltd Coated paper for printing
JP2007254946A (en) * 2006-02-27 2007-10-04 Nippon Paper Industries Co Ltd Neutral newsprint paper for offset printing
JP2008524452A (en) * 2004-12-17 2008-07-10 ビーエーエスエフ ソシエタス・ヨーロピア Paper with high filler content and high dry strength
WO2014123087A1 (en) * 2013-02-05 2014-08-14 星光Pmc株式会社 Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper
CN104343044A (en) * 2013-08-07 2015-02-11 金东纸业(江苏)股份有限公司 Filler processing technology and papermaking technology

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194651A (en) * 2004-01-05 2005-07-21 Kurita Water Ind Ltd Method for producing paper and paperboard
JP2008524452A (en) * 2004-12-17 2008-07-10 ビーエーエスエフ ソシエタス・ヨーロピア Paper with high filler content and high dry strength
US8778139B2 (en) 2004-12-17 2014-07-15 Basf Aktiengesellschaft Papers with a high filler material content and high dry strength
JP2006214018A (en) * 2005-02-02 2006-08-17 Nippon Paper Industries Co Ltd Low density paper
JP2006214028A (en) * 2005-02-03 2006-08-17 Nippon Paper Industries Co Ltd Method for producing neutral paper for printing newspaper
WO2006100996A1 (en) * 2005-03-18 2006-09-28 Harima Chemicals, Inc. Filled paper and process for producing the same
US8414739B2 (en) 2005-03-18 2013-04-09 Harima Chemicals, Inc. Filled paper and method of manufacturing the same
AU2006225770B2 (en) * 2005-03-18 2010-03-04 Harima Chemicals, Inc. Filled paper and process for producing the same
JP2006265753A (en) * 2005-03-23 2006-10-05 Nippon Paper Industries Co Ltd Bulky high-quality printing paper
JP4690084B2 (en) * 2005-03-23 2011-06-01 日本製紙株式会社 Bulky high-quality printing paper
JP2007023428A (en) * 2005-07-15 2007-02-01 Nippon Paper Industries Co Ltd Coated paper for printing
JP2007023426A (en) * 2005-07-15 2007-02-01 Nippon Paper Industries Co Ltd Clear coated printing paper
KR101014056B1 (en) 2006-01-26 2011-02-14 하리마 카세이 가부시키가이샤 Paper containing preaggregated filler and process for producing the same
WO2007086497A1 (en) * 2006-01-26 2007-08-02 Nippon Paper Industries Co., Ltd. Paper containing preaggregated filler and process for producing the same
JP2007254946A (en) * 2006-02-27 2007-10-04 Nippon Paper Industries Co Ltd Neutral newsprint paper for offset printing
JP4652251B2 (en) * 2006-02-27 2011-03-16 日本製紙株式会社 Clear coated printing paper
JP2007231426A (en) * 2006-02-27 2007-09-13 Nippon Paper Industries Co Ltd Printing paper for clear coating
JP2007239150A (en) * 2006-03-10 2007-09-20 Nippon Paper Industries Co Ltd Coated paper for printing
WO2014123087A1 (en) * 2013-02-05 2014-08-14 星光Pmc株式会社 Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper
CN104343044A (en) * 2013-08-07 2015-02-11 金东纸业(江苏)股份有限公司 Filler processing technology and papermaking technology

Similar Documents

Publication Publication Date Title
KR101301861B1 (en) Polymer-pigment hybrids for use in papermaking
US8017101B2 (en) Precipitated calcium carbonate, method for producing the same and filler for loading paper using the same
JP2004018323A (en) Method for producing composite particle and method for producing high filler paper
EP2804976B1 (en) Method for producing paper, board or the like and agglomerate
JP3898007B2 (en) Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles
JP2004018336A (en) Method of manufacturing titanium oxide composite particle and method of manufacturing paper with filler added therein
US8333871B2 (en) Paper manufacturing using agglomerated hollow particle latex
CA2934998C (en) Filler aggregate composition and its production
JP2008248398A (en) Method for producing paper, and paper
WO2014123087A1 (en) Method for manufacturing composite filler for manufacturing paper, and method for manufacturing filler-containing paper
JP2011106075A (en) Method for pretreating filler and paper containing pretreated filler
JP2004100119A (en) Method for producing filler-containing paper by using coagulated filler particle
JP4903493B2 (en) Method for producing composite particles
JPH04281094A (en) Production of paper
JP5702590B2 (en) Composite particles, composite particle internal paper and coated paper
JP6457228B2 (en) Complex pigment
JP5276910B2 (en) Highly opaque coated paper
JPH09209297A (en) Mat and light weight coated paper and its production
JP6189026B2 (en) Printing paper
Barzan et al. Study of using water softening process byproduct, calcium carbonate on fine paper production
JP6200245B2 (en) Coated paper for web offset printing
JPH0921092A (en) Printing paper and its production
JP2012117177A (en) Newsprint paper
JP2000355897A (en) Coated paper for printing and coating composition for coated paper
FI126155B (en) Procedure for the manufacture of paper, paperboard or the like