WO2015056470A1 - Actuator drive control device, actuator drive control method, and vibration suppression control device - Google Patents

Actuator drive control device, actuator drive control method, and vibration suppression control device Download PDF

Info

Publication number
WO2015056470A1
WO2015056470A1 PCT/JP2014/067903 JP2014067903W WO2015056470A1 WO 2015056470 A1 WO2015056470 A1 WO 2015056470A1 JP 2014067903 W JP2014067903 W JP 2014067903W WO 2015056470 A1 WO2015056470 A1 WO 2015056470A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
actuator
signal
control
control target
Prior art date
Application number
PCT/JP2014/067903
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 金武
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015056470A1 publication Critical patent/WO2015056470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59694System adaptation for working during or after external perturbation, e.g. in the presence of a mechanical oscillation caused by a shock
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0946Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for operation during external perturbations not related to the carrier or servo beam, e.g. vibration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/08Track changing or selecting during transducing operation
    • G11B21/081Access to indexed tracks or parts of continuous track
    • G11B21/083Access to indexed tracks or parts of continuous track on discs
    • G11B21/085Access to indexed tracks or parts of continuous track on discs with track following of accessed part
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/54Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head into or out of its operative position or across tracks
    • G11B5/55Track change, selection or acquisition by displacement of the head
    • G11B5/5521Track change, selection or acquisition by displacement of the head across disk tracks
    • G11B5/5582Track change, selection or acquisition by displacement of the head across disk tracks system adaptation for working during or after external perturbation, e.g. in the presence of a mechanical oscillation caused by a shock
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59605Circuits
    • G11B5/59622Gain control; Filters

Definitions

  • the present invention relates to an actuator drive control device and an actuator drive control method for driving an actuator that controls the position of a control target, and a vibration suppression control device including the actuator drive control device.
  • the actuator when driving an actuator that controls the position of a controlled object (for example, when driving a drive unit that displaces a mover as a controlled object), high-precision control of the position of the controlled object is required.
  • the actuator is a resonance type actuator that realizes highly efficient operation by driving at the resonance frequency
  • the control target is also compared to the control object due to the external vibration due to the resonance of the actuator caused by the external vibration. Large vibrations may occur.
  • the vibration caused by the external vibration can be reduced to some extent by acquiring a signal indicating the position of the control target and performing feedback control, for example, PID (Proportional Integral Derivative) control based on this signal.
  • PID Proportional Integral Derivative
  • FIG. 11 is a block diagram schematically showing the configuration of a conventional actuator drive control device.
  • the control target position signal detector 3 supplies a control target position signal indicating the position of the control target 2 to the control filter 4.
  • the control filter 4 is configured by a filter for realizing feedback control and performs, for example, PID control.
  • the drive amplifier 5 amplifies the signal output from the control filter 4.
  • the actuator 1 is driven according to the signal amplified by the drive amplifier 5 to control the position of the control target 2.
  • the target value of feedback is zero, that is, the state where the controlled object 2 is stationary is targeted.
  • Patent Document 1 describes the following technology.
  • an objective lens in an optical pickup of an optical disc apparatus is controlled, a decentering amount x [m] of the optical disc is detected in the tracking off state, and a lens error signal (appears in one rotation period of the optical disc in the tracking on state)
  • the actual displacement amount of the objective lens corresponding to the level of the lens error signal is acquired, and the vibration of the controlled object is reduced using this displacement amount.
  • Patent Document 2 describes the following technology.
  • the objective lens in the optical pickup of the optical disc apparatus is controlled, the objective lens driving means is driven using a triangular wave having a preset amplitude, and the amplitude of the lens error signal at that time is a preset amplitude.
  • the control gain (control gain of vibration suppression control) in the means for generating a drive signal for driving the objective lens driving means is adjusted so as to be a value.
  • Patent Document 2 when external vibration is transmitted to the optical disc apparatus, vibration due to the external vibration is transmitted to the control target, and not only the driving component of the objective lens that is a triangular wave but also the objective due to the external vibration is included in the lens error signal. The vibration component of the lens is also added. For this reason, the amplitude value of the lens error signal becomes inaccurate, and there is a problem that the control gain in the means for generating the drive signal for driving the objective lens drive means cannot be adjusted accurately.
  • the present invention has been made to solve the above-described problems of the prior art, and an actuator drive control device and an actuator drive capable of controlling the position of a controlled object with high accuracy even when external vibration exists. It is an object to provide a control method and a vibration suppression control device including the actuator drive control device.
  • An actuator drive control device is an actuator drive control device that drives an actuator that displaces a control object that is movably supported.
  • the actuator drive control device detects a signal that indicates the position of the control target and corresponds to the detected signal.
  • a signal detection unit that generates a position signal to be controlled, an actuator drive unit that supplies a drive signal to the actuator and drives the actuator with a periodic signal, and a central control unit that controls the actuator drive unit.
  • the central control unit acquires a first component of the control target position signal by measuring a voltage value for at least one cycle of the control target position signal in a state where the actuator is not driven, and the actuator The voltage value of the control target position signal is measured while being driven by the predetermined periodic signal.
  • a control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit is adjusted based on a result of comparison between the amplitude value of the third component and a predetermined target amplitude value.
  • the actuator drive control method includes a signal detection unit that detects a signal indicating the position of the control target that is movably supported, and generates a control target position signal corresponding to the detected signal, and the control
  • An actuator drive control method in an actuator drive control apparatus comprising: an actuator drive unit that supplies a drive signal to an actuator that displaces an object and drives the actuator with a periodic signal; and a central control unit that controls the actuator drive unit.
  • a step of acquiring a first component of the control target position signal by measuring a voltage value for at least one period of the control target position signal without driving the actuator; The electric power of the control target position signal is driven with the periodic signal.
  • the vibration suppression control device detects a control object that is movably supported, an actuator that displaces the control object, and a signal indicating a position of the control object, and a control corresponding to the detected signal.
  • a signal detection unit that generates a target position signal, an actuator drive unit that supplies a drive signal to the actuator and drives the actuator with a periodic signal, and a central control unit that controls the actuator drive unit,
  • the central control unit acquires a first component of the control target position signal by measuring a voltage value for at least one cycle of the control target position signal in a state where the actuator is not driven.
  • the control target A second component of the position signal is obtained, and the third component of the control target position signal is obtained by subtracting the first component from the second component, and the amplitude value of the third component
  • a control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit is adjusted based on the result of comparison with the predetermined target amplitude value.
  • the first component (vibration component) is acquired from the control target position signal detected by measuring the voltage value for one cycle of the control target position signal without driving the actuator
  • a second component (a component obtained by adding a vibration component to the drive component) detected by measuring the voltage value of the control target position signal while being driven with the determined periodic signal is obtained from the second component.
  • a third component (a driving component resulting from actuator driving) is obtained by subtracting the first component, and based on the comparison result between the amplitude value of the third component and a predetermined target amplitude value, The control gain for adjusting the magnitude of the actuator drive signal is adjusted.
  • the first component of the control target position signal is excluded, and the actuator driving unit supplies the third component resulting from the driving of the actuator driven by the predetermined periodic signal.
  • the control gain for adjusting the magnitude of the drive signal to be adjusted can be adjusted. Therefore, according to the present invention, the actuator can control the position of the controlled object with high accuracy even when external vibration exists.
  • FIG. 1 is a block diagram schematically showing a configuration of an actuator drive control device according to Embodiment 1.
  • FIG. (A) And (b) is a figure which shows notionally the operation
  • FIG. 3 is a flowchart showing an operation (actuator drive control method) of the actuator drive control device according to the first embodiment.
  • (A) to (c) are the first component of the control target position signal in a state where the actuator is not driven in the actuator drive control device according to the first embodiment, in the state where the actuator is driven with a predetermined periodic signal.
  • FIG. 6 is a block diagram schematically showing a configuration of an actuator drive control device according to a second embodiment.
  • A) And (b) is a figure which shows notionally the operation
  • FIG. 10 is a flowchart showing an operation (actuator drive control method) of the actuator drive control device according to the second embodiment. It is a block diagram which shows roughly the structure of the magnetic disc apparatus which is a vibration suppression control apparatus concerning Embodiment 3 of this invention. It is a block diagram which shows schematically the structure of the conventional actuator drive control apparatus.
  • FIG. 1 is a block diagram schematically showing a configuration of a vibration suppression control device 10 according to Embodiment 1 of the present invention.
  • the vibration suppression control apparatus 10 according to the first embodiment includes a control object 20 disposed at a position facing the sample SA, and an actuator (driving means) 30 that controls the position of the control object 20. And an actuator drive control device (drive control means) 70 for driving the actuator 30.
  • the controlled object 20 is movably supported by the main body of the vibration suppression control device 10.
  • the actuator 30 is, for example, a resonance type actuator that realizes a highly efficient operation by being driven at a resonance frequency.
  • the actuator 30 adjusts the relative positional relationship between the sample SA and the control target 20 by displacing the control target 20 that is movably supported.
  • the actuator drive control device 70 includes a signal detection unit 40, an actuator drive unit 50, and a central control unit 60.
  • the central control unit 60 in FIG. 1 has a storage unit 61 that stores information. However, the storage unit 61 may be provided outside the central control unit 60.
  • the actuator drive control device 70 is a device that can implement the actuator drive control method according to the first embodiment.
  • the controlled object 20 is a device or member for scanning the sample SA in three dimensions, and is movably supported by the vibration suppression control device 10.
  • scanning refers to detecting the state of a desired position (detected position) of the sample SA while moving (displaced) or detecting information recorded at this position.
  • the sample SA has, for example, a thin plate shape.
  • the three-dimensional refers to an x-axis direction and a y-axis direction (that is, an xy plane that can be expressed in an xy orthogonal coordinate system) parallel to the detection surface (the lower surface of the sample SA in FIG.
  • control target 20 is an objective lens of an optical pickup (optical head)
  • the optical pickup irradiates the sample SA with a light beam, receives the reflected light (optical signal) from the sample SA, An electrical signal corresponding to the received reflected light is generated, and the generated electrical signal is supplied to the signal detection unit 40. Details of the case where the control target 20 is an optical pickup will be described in the second embodiment.
  • the actuator 30 changes the position of the control target 20 that scans the sample SA in three dimensions in accordance with the relative positional relationship between the sample SA and the control target 20.
  • the signal detection unit 40 receives an electrical signal output from the control target 20, and uses this electrical signal to detect a detection signal (including a control target position signal) indicating a relative positional relationship between the sample SA and the control target 20. ) Is generated.
  • the actuator driving unit 50 drives the actuator 30 by giving a command (driving signal) corresponding to the control signal from the central control unit 60 to the actuator 30.
  • the central control unit 60 outputs a control signal for driving the actuator 30 to the actuator driving unit 50.
  • the central control unit 60 processes the detection signal output from the signal detection unit 40 to perform calculation and measurement of the signal amplitude value.
  • the signal detection unit 40, the actuator driving unit 50, and the central control unit 60 constitute the actuator driving control device 70 according to the first embodiment.
  • the configuration of the vibration suppression control device 10 is not limited to the example of FIG. Further, the configuration of the actuator drive control device 70 is not limited to the example of FIG.
  • the central control unit 60 measures the voltage value for at least one cycle of the control target position signal generated by the signal detection unit 40 without driving the actuator 30.
  • the first component (vibration component) Ex is acquired from the control target position signal.
  • the first component Ex is a component of the control target position signal generated due to external vibration.
  • the central control unit 60 measures the voltage value of the control target position signal generated by the signal detection unit 40 in a state where the actuator 30 is driven with a predetermined periodic signal, thereby generating the second control target position signal. Get the ingredients.
  • the second component is a component (Dr + Ex) obtained by adding the first component Ex to the component (drive component) Dr of the control target position signal generated due to the actuator driving by the periodic signal.
  • the central controller 60 obtains a third component (driving component) Dr by subtracting the first component Ex from the second component (Dr + Ex).
  • the third component Dr is a component of the control target position signal generated due to the actuator driving by the periodic signal in the control target position signal.
  • the central control unit 60 adjusts the magnitude of the drive signal supplied by the actuator drive unit 50 based on the comparison result between the amplitude value of the drive component (third component) Dr and a predetermined target amplitude value. Adjust the control gain.
  • the control gain is a gain in a unit that generates a drive signal for driving the actuator 30 that controls the position of the control target.
  • FIG. 2 is a block diagram schematically showing the configuration of the actuator drive control device 70 according to the first embodiment.
  • the signal detection unit 40 of the actuator drive control device 70 according to the first embodiment includes a control target position signal generation unit 41.
  • the actuator driver 50 includes a drive signal generator 51, a switch 52, and a drive amplifier 53.
  • the central control unit 60 includes a storage unit 61, a frequency selection unit 62, and a frequency extraction unit 63.
  • the control target position signal generation unit 41 receives an electrical signal from the control target 20 and generates a control target position signal indicating the position of the control target 20.
  • the central control unit 60 receives the control target position signal generated by the control target position signal generation unit 41, and performs calculation and measurement of the signal amplitude value using the control target position signal.
  • the drive signal generation unit 51 generates a drive signal for driving the actuator 30.
  • This signal is a periodic signal.
  • the periodic signal is a single frequency signal such as a sine wave or a cosine wave, but is not limited thereto.
  • the switch 52 switches the drive signal D supplied to the drive amplifier 53 to either a signal with an amplitude value “zero” (contact 52A) or the drive signal D (contact 52B) generated by the drive signal generator 51. It is a drive signal switching part.
  • a signal having an amplitude value Vpp of “zero” and a potential of 0 [V] is supplied to the contact 52A.
  • the switch 52 is controlled by the control signal A1 from the central control unit 60, and when the signal having the amplitude value “zero” is supplied to the drive amplifier 53, the contact 52A is selected or the drive signal from the drive signal generation unit 51 is selected. When supplying D to the drive amplifier 53, the contact 52B is selected.
  • the switch 52 is a changeover switch that selects either the contact 52A or the contact 52B, but the switch 52 may be an on / off switch having only one contact 52B.
  • the switch 52 selects the contact 52A.
  • the drive signal D supplied to the drive amplifier 53 is a signal having an amplitude value Vpp “zero”.
  • the total component of the drive component (third component) Dr of the control target position signal due to the actuator drive by the drive signal D and the vibration component (first component) Ex of the control target position signal due to the external signal When acquiring the second component (Dr + Ex), the switch 52 selects the contact 52B.
  • the drive signal D supplied to the drive amplifier 53 is the drive signal D generated by the drive signal generator 51.
  • the drive amplifier 53 amplifies the voltage value of the drive signal D input via the switch 52.
  • the drive amplifier 53 increases the dynamic range of the drive signal D by amplifying the voltage value of the drive signal D from the drive signal generation unit 51.
  • the configuration of the actuator drive control device 70 according to Embodiment 1 is not limited to the configuration of FIG.
  • FIGS. 3A and 3B are diagrams conceptually showing the operation (actuator drive control method) of the actuator drive control device 70 according to the first embodiment.
  • the control target 20, the actuator 30, the control target position signal generation unit 41, and the drive amplifier 53 are respectively the control target 20, the actuator 30, and the control target position signal of FIG. 1 and FIG. This corresponds to the generation unit 41 and the drive amplifier 53.
  • the control target position signal generation unit 41 detects resonance of the control target 20, that is, vibration of the control target due to external vibration (natural vibration) and outputs it as a control target position signal.
  • the central control unit 60 acquires a signal for at least one cycle of the vibration component (first component) Ex.
  • This signal acquisition is performed, for example, by dividing one cycle into 24 and acquiring voltage values of 24 signals at each division point.
  • the signal acquisition method is not limited to this.
  • the signal to be acquired is not limited to one cycle as long as the signal for at least one cycle of the vibration component (first component) Ex can be acquired, and the upper limit value and the lower limit value of the amplitude value can be acquired.
  • a signal for a period exceeding one period of the amplitude value may be acquired, and the upper limit value and the lower limit value may be calculated from the acquired amplitude value.
  • These voltage values are stored in, for example, the storage unit 61 in the central control unit 60.
  • the periodic signal is supplied to the drive amplifier 53 as a drive signal.
  • the control target position signal output from the control target position signal generation unit 41 is a component obtained by adding (totaling) the vibration component (first component) Ex and the drive component Dr resulting from the actuator driving by the drive signal D. (Second component) (Dr + Ex). Therefore, the vibration caused by actuator driving is subtracted from the voltage value of the vibration component (first component) Ex of the control target position signal caused by external vibration from the voltage value of the second component (Dr + Ex). Only the driving component (third component) Dr, which is a component, can be acquired.
  • the central control unit 60 acquires the amplitude value of the drive component (third component) Dr and compares it with a predetermined target amplitude value.
  • the central control unit 60 adjusts the gain of the drive amplifier 53 (control gain for vibration suppression control) so that the value of the drive component (third component) Dr approaches the target amplitude value.
  • the gain characteristics are the characteristics of the actuator 1 (specifically, the detection sensitivity, that is, the amount of movement of the control target per unit voltage), the control target position signal detection. It is influenced by three factors: the detection gain of the unit 3 and the amplification factor of the drive amplifier 5.
  • the three gain characteristics that cause variations are made constant. That is, in the first embodiment, the gain characteristic of the entire system of the vibration suppression control in the example shown in FIG. 11 can be made constant.
  • the target amplitude value of the drive component Dr in FIGS. 3A and 3B is determined based on the sensitivity of the actuator at the same frequency as the frequency of the drive signal D.
  • This sensitivity is a reference value designed in advance.
  • the performance of vibration suppression control can be made as designed.
  • the detection gain (voltage value with respect to the movement amount (displacement amount) of the unit length) of the control target position signal generation unit 41 is 1000 [V / m]
  • the amplification factor of the drive amplifier is 5
  • the design value of (the amount of movement of the control target per unit voltage) is 0.002 [m / V] at a certain frequency.
  • the voltage value (peak voltage width) at the above frequency of the drive signal D is 0.02 [Vp-p].
  • the drive signal is a periodic signal
  • the control target vibrates at an indefinite frequency (that is, a non-constant frequency).
  • the drive component includes various frequency components, and a desired amplitude value cannot be acquired.
  • the drive signal D is a periodic signal
  • the control target vibrates at a specific frequency (that is, a constant frequency).
  • a desired amplitude value can be acquired by extracting the same frequency component as the frequency of the drive signal D.
  • FIG. 4 is a flowchart showing an example of the operation (actuator drive control method) of the actuator drive control device 70 according to the first embodiment.
  • the switch 52 selects the contact 52A and outputs a signal with an amplitude value of “zero”.
  • the state is switched to a state where the drive amplifier 53 is supplied (step S1). That is, the actuator drive unit 50 of the actuator drive control device 70 switches the state of the switch 52 and shifts to a state of outputting a signal having an amplitude value “zero” and a DC component zero.
  • the central control unit 60 acquires the voltage value of the vibration component (first component) Ex shown in FIG. 3A for one cycle, and stores the acquired voltage value in the storage unit 61 (step S2). ).
  • the switch 52 selects the contact 52B and switches to a state where the drive signal D is supplied to the drive amplifier 53 (step S3). That is, the actuator drive unit 50 of the actuator drive control device 70 switches the state of the switch 52 and shifts to the drive signal control state in which the drive signal D amplified by the drive amplifier 53 can be output.
  • the actuator drive unit 50 applies the drive signal D generated by the drive signal generation unit 51 to the actuator 30 (step S4).
  • step S5 the central control unit 60 waits for a predetermined time (step S5). This is because a certain amount of time is required until the controlled object is driven at a predetermined frequency after the drive signal D is applied in step S4.
  • the length of the wait time is not particularly limited.
  • the central control unit 60 acquires a vibration component (second component) (Dr + Ex) from the control target position signal (step S6).
  • the central controller 60 subtracts the voltage value of the vibration component (first component) Ex acquired in step S2 from the voltage value of the second component (Dr + Ex) (step S7).
  • the drive signal is a single frequency signal such as a sine wave or a cosine wave, it is only necessary to subtract the voltage value of the vibration component (first component) Ex, but the drive signal D has a plurality of frequencies. If it is a signal having, the frequency selecting unit 62 selects one frequency from a plurality of frequencies, and the frequency component selected by the frequency selecting unit 62 from the subtracted signal (the driving component Dr shown in FIG. 3B).
  • Step S6 includes a process in which the frequency extraction unit 63 extracts the frequency component selected by the frequency selection unit 62 from the drive component Dr.
  • the extraction method includes a method using a BPF (Band-Pass Filter) having a specific frequency as a cutoff frequency.
  • BPF Band-Pass Filter
  • the method of extracting a specific frequency component is not limited to this method.
  • the central control unit 60 acquires the subtracted signal, that is, the amplitude value of the vibration component (third component) Dr of the control target position signal resulting from the actuator drive, and stores it in the storage unit 61 (step S7). ).
  • the switch 52 selects the contact 52A and switches to a state in which a signal having an amplitude value “zero” is supplied to the drive amplifier 53 (step S8). That is, the actuator drive unit 50 of the actuator drive control device 70 switches the state of the switch 52 and shifts to a state of outputting a signal having an amplitude value “zero”.
  • the central controller 60 multiplies the gain of the drive amplifier 53 (control gain for vibration suppression control) by K (step S10).
  • step S8 the operation in which the switch 52 selects the contact 52A in step S8 may be performed at any timing as long as it is after the amplitude value of the subtracted signal in step S7.
  • the actuator drive control method by the actuator drive control device 70 according to the first embodiment (and the actuator drive control device 130 according to the second embodiment to be described later) is shown in the flowchart of FIG. 4 (and FIG. 9 described later). It is not limited to the procedure.
  • FIGS. 5A to 5C show the vibration component (first component) Ex and the drive component (third component) Dr when a drive signal is applied in the actuator drive control method according to the first embodiment. It is a figure which shows a waveform.
  • FIG. 5A shows the waveform of the vibration component (first component) Ex when the external vibration is an 80 Hz sine wave
  • FIG. 5C shows the case where the drive signal D is a 200 Hz sine wave
  • 5B shows a waveform of the driving component (third component) Dr
  • FIG. 5B shows a combined waveform (second component) of the driving component Dr and the vibration component Ex.
  • a waveform signal (second component) obtained by adding the vibration component Ex and the drive component Dr is output.
  • the vibration component of the control target position signal when the drive signal D is not output As described above, according to the actuator drive control device 70, the actuator drive control method, and the vibration suppression control device 80 according to the first embodiment, the vibration component of the control target position signal when the drive signal D is not output.
  • (First component) The voltage value of Ex is acquired for at least one period, and the vibration component (first component) Ex is obtained from the second component (Dr + Ex) of the control target position signal when the drive signal D is applied. Since the third component Dr is obtained by subtraction and the control gain of the vibration suppression control is adjusted based on the acquired amplitude value of the third component Dr, the control gain can be adjusted with high accuracy.
  • FIG. 1 a general actuator drive control device 70 has been described.
  • an actuator drive control device 130 of an optical disk device in which an object to be controlled is an objective lens in an optical pickup will be described. .
  • FIG. 6 is a block diagram schematically showing the configuration of the vibration suppression control device 80 according to the second embodiment.
  • the vibration suppression control device 80 according to the second embodiment includes an optical disc OD, a spindle motor 81, a spindle driving unit 82, a thread motor 83, a thread driving unit 84, and a laser driving unit. 85, an optical pickup 90, a signal detection unit 100, an actuator driving unit 110, and a central control unit 120.
  • the optical disc OD is a read-only disc that can only be played back, a write-once disc that can be played back and additionally recorded and cannot be rewritten, and a rewrite that can be played back, additionally recorded and rewritten. Includes mold discs.
  • the optical disc OD is, for example, a BD (Blu-ray Disc), a DVD (Digital Versatile Disc), a CD (Compact Disc), or the like.
  • the spindle motor 81 rotates optical disc OD.
  • the rotation method of the spindle motor 81 includes a CAV (Constant Angular Velocity) method with a constant angular velocity and a CLV (Constant Linear Velocity) method with a constant linear velocity.
  • the spindle driving unit 82 drives the spindle motor 81.
  • the sled motor 83 moves the optical pickup 90 in the tracking direction (radial direction, X-axis direction) of the optical disc OD.
  • the thread driving unit 84 drives the thread motor 83.
  • the laser driving unit 85 drives the laser light source 92.
  • the optical pickup 90 includes a laser light source 92, a beam splitter 93 that reflects the laser light from the laser light source 92, and an objective lens 94 that condenses the laser light reflected by the beam splitter 93 on the information recording surface of the optical disc OD.
  • a light detection unit 95 having a light receiving element that receives the reflected light reflected by the optical disk OD and transmitted through the objective lens 94 and the beam splitter 93 and converts it into an electrical signal, and a lens unit that houses these configurations 92 to 95 91, an elastic support member that movably supports the objective lens 94 in the lens unit 91, and the objective lens 94 is moved in the tracking direction and the focusing direction (Z-axis direction) against the elastic force of the elastic support member.
  • an actuator 96 is provided to move the tracking direction and the focusing direction (Z-axis direction) against the elastic force of the elastic support member.
  • the signal detection unit 100 inputs the electrical signal from the light detection unit 95 and outputs the generated signal.
  • the actuator driving unit 110 drives the actuator 96 in response to a command from the central control unit 120.
  • the central control unit 120 issues a command for driving the actuator 96 to the actuator driving unit 110.
  • the signal output from the signal detection unit 100 is processed to perform calculation and measurement of the signal amplitude value.
  • the signal detection unit 100, the actuator drive unit 110, and the central control unit 120 are actuator drive control devices according to the second embodiment of the present invention (that is, devices that can implement the actuator drive control method according to the second embodiment). 130 is configured.
  • the actuator drive control device 130 is not limited to the example of FIG.
  • FIG. 7 is a block diagram schematically showing a configuration of an actuator drive control device 130 according to the second embodiment (that is, a device capable of performing the actuator drive control method according to the second embodiment).
  • the actuator drive control device 130 according to the second embodiment includes a signal detection unit 100, an actuator drive unit 110, and a central control unit 120.
  • the signal detection unit 100 includes a lens error signal generation unit 101 and an optical disk rotation angle detection unit 102.
  • the actuator driver 110 includes a drive signal generator 111, a switch 112, and a drive amplifier 113.
  • the lens error signal generation unit 101 inputs an electric signal from the objective lens 94 and generates a signal for detecting the position. This signal is input to the central control unit 120, where calculation and signal amplitude value measurement are performed.
  • the central control unit 120 includes a storage unit 121, a frequency selection unit 122, and a frequency extraction unit 123.
  • the storage unit 121 may be provided outside the central control unit 120.
  • the optical disk rotation angle detection unit 102 detects the rotation angle of the spindle motor 81.
  • the drive signal generation unit 111 generates a signal for driving the actuator 96.
  • This signal may be a single frequency, such as a sine wave or a cosine wave, but is not limited thereto.
  • the signal for driving the actuator 96 is a periodic signal. The reason for this is the same as that described in the first embodiment with reference to FIGS. 3 (a) and 3 (b).
  • the switch 112 is a drive that switches the drive signal D supplied to the drive amplifier 113 to either an amplitude value “zero” signal (contact 112A) or the drive signal D (contact 112B) generated by the drive signal generator 111. It is a signal switching part.
  • the switch 112 selects the contact 112A when supplying a signal with an amplitude value of “zero” to the drive amplifier 113, or the contact 112B when supplying the drive signal D from the drive signal generation unit 111 to the drive amplifier 113. select.
  • the switching timing of the switch 112 is the same as that described with reference to FIG. 2 in the first embodiment.
  • the drive amplifier 113 amplifies the voltage value of the signal input via the switch 112.
  • the drive amplifier 113 increases the dynamic range by amplifying the voltage value of the signal from the drive signal generation unit 111.
  • the configuration of the actuator drive control device 130 according to Embodiment 2 is not limited to the configuration of FIG.
  • FIGS. 8A and 8B are diagrams conceptually showing the operation (actuator drive control method) of the actuator drive control device 130 according to the second embodiment.
  • the objective lens 94, the actuator 96, the lens error signal generation unit 101, and the drive amplifier 113 are respectively the objective lens 94, the actuator 96, and the lens error signal generation unit 101 shown in FIGS. , Corresponding to the drive amplifier 113.
  • the actuator drive control method shown in FIGS. 8A and 8B is the same as that described in the first embodiment with reference to FIGS. 3A and 3B. However, the acquisition method of the vibration component (first component) Ex2 in FIG. 8A and the subtraction method of the vibration component (first component) Ex2 in FIG. ) Is different.
  • the voltage value of the vibration component (first component) Ex2 in FIG. 8A is acquired in correspondence with a plurality of rotation angles detected by the optical disc rotation angle detection unit 102 in FIG. That is, the voltage value of the vibration component (first component) Ex2 at each optical disk rotation angle is acquired. Further, in the subtraction of the vibration component (first component) Ex2 in FIG. 8B, the current optical disk rotation angle is detected, and the voltage value of the corresponding vibration component (first component) Ex2 is converted into a lens error signal. The first component Ex2 is subtracted from the voltage value (second component Dr2 + Ex2 which is the total value of the drive component Dr2 and the vibration component Ex2).
  • a known method such as a push-pull method, a DPP (Differential Push-Pull) method, or a DPD (Differential Phase Detection) method can be used.
  • the objective lens 94 is lens-shifted by a driving voltage applied to the actuator 96.
  • the relationship between the driving voltage and the lens shift amount (the amount of movement of the objective lens) is linear if the lens shift amount is within a certain range (linear region), but is non-linear in the region exceeding the certain range (nonlinear region). Become.
  • a drive voltage is applied to the actuator 96 in the non-linear region, the relationship between the drive voltage to be applied and the amplitude value of the drive component Dr in the vibration becomes nonlinear, so the amplitude value of the drive component Dr in the vibration is This is incorrect information that does not correspond to the drive signal. Therefore, when acquiring the control gain, it is desirable to apply the drive voltage in the linear region of the lens shift amount.
  • FIG. 9 is a flowchart showing an example of an actuator drive control method by the actuator drive control device 130 according to the second embodiment. Steps S11 to S20 in FIG. 9 are the same as steps S1 to S10 in FIG. 4, but steps S12 and S16 in FIG. 9 are different from steps S2 and S6 shown in FIG.
  • step S12 in the step (step S12) of acquiring the vibration component (first component) Ex2 of the lens error signal, which is a control target position signal, for one cycle, the optical disc is rotated in FIG. A voltage value is acquired in association with a plurality of rotation angles detected by the angle detection unit 102.
  • step S16 the current optical disk rotation angle is detected, The voltage value of the corresponding vibration component (first component) Ex2 is subtracted from the voltage value (second component) of the lens error signal.
  • points other than those described above are the same as in the first embodiment.
  • the vibration component of the control target position signal when the drive signal D is not output As described above, according to the actuator drive control device 130, the actuator drive control method, and the vibration suppression control device 80 according to the second embodiment, the vibration component of the control target position signal when the drive signal D is not output.
  • the voltage value of Ex2 is acquired for at least one period, and the vibration component (first component) Ex2 is obtained from the second component (Dr2 + Ex2) of the control target position signal when the drive signal D is applied.
  • Subtract using the same optical disk rotation angle value
  • obtain the amplitude value (second component) Dr2 of the position signal to be controlled obtained by subtraction and adjust the control gain of vibration suppression control based on the obtained amplitude value Therefore, the control gain can be adjusted with high accuracy.
  • Embodiment 3 FIG.
  • the case where the control target is the objective lens in the optical pickup has been described.
  • the case where the control target is the magnetic head of the magnetic disk device will be described.
  • the magnetic disk device in the third embodiment is an example of a vibration suppression control device that performs vibration suppression control, and is, for example, a hard disk device (HDD).
  • HDD hard disk device
  • FIG. 10 is a block diagram schematically showing the configuration of a magnetic disk device that is the vibration suppression control device 310 according to the third embodiment of the present invention.
  • the vibration suppression control device 310 according to the third embodiment includes a control object 320 disposed at a position facing a magnetic disk as the sample SA, and an actuator (drive) that controls the position of the control object 320. Means) 330 and an actuator drive control device (drive control means) 370 for driving the actuator 330.
  • the actuator drive control device 370 includes a signal detection unit 340, an actuator drive unit 350, and a central control unit 360.
  • the central control unit 360 in FIG. 10 includes a storage unit 361 that stores information. However, the storage unit 361 may be provided outside the central control unit 360.
  • the central control unit 360 may have the same configuration as that of the frequency selection unit 62 and the frequency extraction unit 63, similarly to the central control unit 60 shown in FIG.
  • the actuator drive control device 370 is a device that can implement the actuator drive control method according to the third embodiment.
  • the control target 320 has a magnetization pattern detection unit.
  • the actuator 330 and the actuator driving unit 350 include an arm that supports the magnetization pattern detection unit, and an arm driving unit that moves the arm.
  • the vibration suppression control device 310 includes a spindle motor 381 that rotates a magnetic disk as the sample SA, and a spindle driving unit 382 that drives the spindle motor 381.
  • the signal detection unit 340 includes a magnetic head position signal generation unit 341 and a magnetic disk rotation angle detection unit 342.
  • the magnetic head position signal generation unit 341 and the magnetic disk rotation angle detection unit 342 have functions corresponding to the lens error signal generation unit 101 and the optical disk rotation angle detection unit 102 in FIG. 7, respectively.
  • the actuator driving unit 350 includes a driving signal generation unit, a switch, and a driving amplifier.
  • the drive signal generation unit, the switch, and the drive amplifier of the actuator drive unit 350 have configurations and functions corresponding to the drive signal generation unit 111, the switch 112, and the drive amplifier 113 in FIG.
  • the actuator drive control method in the third embodiment has the same steps as those described in the second embodiment with reference to FIGS. 8 (a) and (b).
  • the lens error signal generation unit 101 in FIGS. 8A and 8B is a magnetic head position signal generation unit 341 in the third embodiment, and the objective lens in FIGS. 8A and 8B is implemented.
  • a magnetic head is obtained.
  • the flowchart showing the actuator drive control method by the actuator drive control device 370 in the third embodiment is the same as that described with reference to FIG. 9 in the second embodiment.
  • the step of subtracting the vibration component Ex2 from the lens error signal in step S16 is a step of subtracting the vibration component from the magnetic head position signal.
  • points other than the above are the same as in the second embodiment.
  • the actuator drive control device 370 the actuator drive control method, and the vibration suppression control device 310 according to the third embodiment, among the control target position signals when the drive signal D is not output.
  • the voltage value of the vibration component (first component) is acquired for at least one period, and the vibration component (first component) is subtracted from the control target position signal (second component) when the drive signal is applied (the same) Since the amplitude value (second component) of the signal obtained by subtraction is acquired and the control gain of vibration suppression control is adjusted based on the acquired amplitude value, the control gain is accurate. Can be adjusted well.
  • the actuator drive control apparatus and the actuator drive control method according to the first to third embodiments described above may be realized only by hardware resources such as an electronic circuit, or the cooperation between hardware resources and software. May be realized.
  • the actuator drive control device and the actuator drive control method are realized by, for example, a computer program being executed by a computer, and more specifically, a ROM. It is realized by reading a computer program recorded on a recording medium such as (Read Only Memory) into a main storage device and executing it by a central processing unit (CPU).
  • the computer program may be provided by being recorded on a computer-readable recording medium such as an optical disk, or may be provided via a communication line such as the Internet.
  • the actuator drive control device, the actuator drive control method, and the vibration suppression control device according to the present invention are devices that control the position of a control target (particularly, the relative position between the sample and the control target) using an actuator.
  • various devices other than the optical disk device and the magnetic disk device for example, a production facility such as a robot having a control object that performs precise position control by an actuator, or an automobile having a control object that performs precise position control by an actuator,
  • the present invention can be applied to various devices such as transportation equipment such as ships and airplanes.
  • Vibration suppression control device 20 control target, 30 actuator, 40 signal detection unit, 41 control target position signal generation unit, 50 actuator drive unit, 51 drive signal generation unit, 52 switch, 53 drive amplifier, 60 center Control unit, 70, 130, 370 Actuator drive control device, 81 spindle motor, 82 spindle drive unit, 83 thread motor, 84 thread drive unit, 85 laser drive unit, 90 optical pickup, 91 lens unit, 92 laser light source, 93 beam Splitter, 94 objective lens, 95 light detector, 96 actuator, 100 signal detector, 101 lens error signal generator, 102 optical disk rotation angle detector, 110 Actuator Drive Unit, 111 Drive Signal Generation Unit, 112 Switch, 113 Drive Amplifier, 120 Central Control Unit, 320 Control Target (Magnetic Head), 330 Actuator, 340 Signal Detection Unit, 350 Actuator Drive Unit, 360 Central Control Unit, SA Sample, OD optical disc.

Abstract

Provided are an actuator drive control device (70) and an actuator drive control method that make it possible to control the position of a control target with high precision even when there is external vibration, and in which: a first component (a vibration component) (Ex) of a control target position signal is acquired by measuring the voltage value of one period of the control target position signal in a state in which an actuator (30) is not driven; a second component (a drive component (Dr) + the vibration component (Ex)) is acquired by measuring the voltage value of the control target position signal in a state in which the actuator (30) is driven by a predetermined periodic signal; a third component (the drive component) (Dr) is obtained by subtracting the first component from the second component; and control gain for adjusting the size of the drive signal of the actuator is adjusted on the basis of the result of comparing the amplitude value of the third component and a predetermined target amplitude value.

Description

アクチュエータ駆動制御装置、アクチュエータ駆動制御方法、及び振動抑制制御装置Actuator drive control device, actuator drive control method, and vibration suppression control device
 本発明は、制御対象の位置を制御するアクチュエータを駆動するアクチュエータ駆動制御装置及びアクチュエータ駆動制御方法、並びに、前記アクチュエータ駆動制御装置を含む振動抑制制御装置に関するものである。 The present invention relates to an actuator drive control device and an actuator drive control method for driving an actuator that controls the position of a control target, and a vibration suppression control device including the actuator drive control device.
 一般に、制御対象の位置を制御するアクチュエータを駆動する際(例えば、制御対象としての可動子を変位させる駆動手段を駆動する際)には、制御対象の位置の高精度な制御が要求される。しかし、アクチュエータが共振周波数で駆動することにより高効率な動作を実現する共振型アクチュエータである場合には、外部振動に起因して発生するアクチュエータの共振によって、制御対象にも外部振動に起因する比較的大きな振動が発生することがある。外部振動に起因する振動は、制御対象の位置を示す信号を取得し、この信号に基づいてフィードバック制御、例えば、PID(Proportional Integral Derivative)制御を行うことによって、ある程度低減可能である。 Generally, when driving an actuator that controls the position of a controlled object (for example, when driving a drive unit that displaces a mover as a controlled object), high-precision control of the position of the controlled object is required. However, if the actuator is a resonance type actuator that realizes highly efficient operation by driving at the resonance frequency, the control target is also compared to the control object due to the external vibration due to the resonance of the actuator caused by the external vibration. Large vibrations may occur. The vibration caused by the external vibration can be reduced to some extent by acquiring a signal indicating the position of the control target and performing feedback control, for example, PID (Proportional Integral Derivative) control based on this signal.
 図11は、従来のアクチュエータ駆動制御装置の構成を概略的に示すブロック図である。このアクチュエータ駆動制御装置において、制御対象位置信号検出部3は、制御対象2の位置を示す制御対象位置信号を制御フィルタ4に供給する。制御フィルタ4は、フィードバック制御を実現するためのフィルタで構成されており、例えば、PID制御を行う。駆動アンプ5は、制御フィルタ4から出力された信号を増幅する。アクチュエータ1は、駆動アンプ5で増幅された信号にしたがって駆動して、制御対象2の位置を制御する。このアクチュエータ駆動制御装置において、フィードバックの目標値はゼロ、すなわち、制御対象2が静止した状態を目標としている。 FIG. 11 is a block diagram schematically showing the configuration of a conventional actuator drive control device. In this actuator drive control device, the control target position signal detector 3 supplies a control target position signal indicating the position of the control target 2 to the control filter 4. The control filter 4 is configured by a filter for realizing feedback control and performs, for example, PID control. The drive amplifier 5 amplifies the signal output from the control filter 4. The actuator 1 is driven according to the signal amplified by the drive amplifier 5 to control the position of the control target 2. In this actuator drive control device, the target value of feedback is zero, that is, the state where the controlled object 2 is stationary is targeted.
 また、特許文献1には、以下の技術が記載されている。この技術では、光ディスク装置の光ピックアップ内の対物レンズを制御対象とし、トラッキングオフ状態で光ディスクの偏芯量x[m]を検出し、トラッキングオン状態で光ディスクの1回転周期に現れるレンズエラー信号(対物レンズの位置を示す信号)の振幅値(ピーク電圧幅)Vp-p[V]を測定し、得られたレンズエラー信号の検出感度Ers[V/m]=Vp-p[V]/x[m]に基づいて、レンズエラー信号のレベルに対応する、実際の対物レンズの変位量を取得し、この変位量を用いて、制御対象の振動を低減する。 Patent Document 1 describes the following technology. In this technique, an objective lens in an optical pickup of an optical disc apparatus is controlled, a decentering amount x [m] of the optical disc is detected in the tracking off state, and a lens error signal (appears in one rotation period of the optical disc in the tracking on state ( The amplitude value (peak voltage width) Vp−p [V] of the signal indicating the position of the objective lens is measured, and the detection sensitivity Ers [V / m] = Vp−p [V] / x of the obtained lens error signal Based on [m], the actual displacement amount of the objective lens corresponding to the level of the lens error signal is acquired, and the vibration of the controlled object is reduced using this displacement amount.
 また、特許文献2には、以下の技術が記載されている。この技術では、光ディスク装置の光ピックアップ内の対物レンズを制御対象とし、予め設定された振幅の三角波を用いて対物レンズ駆動手段を駆動し、そのときのレンズエラー信号の振幅が予め設定された振幅値となるように対物レンズ駆動手段を駆動するための駆動信号を生成する手段における制御ゲイン(振動抑制制御の制御ゲイン)を調整する。 Patent Document 2 describes the following technology. In this technique, the objective lens in the optical pickup of the optical disc apparatus is controlled, the objective lens driving means is driven using a triangular wave having a preset amplitude, and the amplitude of the lens error signal at that time is a preset amplitude. The control gain (control gain of vibration suppression control) in the means for generating a drive signal for driving the objective lens driving means is adjusted so as to be a value.
特開2000-11404号公報JP 2000-11404 A 特開平8-36765号公報JP-A-8-36765
 しかし、上記従来技術において光ディスク装置に外部振動が伝わると、外部振動に起因する振動が制御対象に伝わり、制御対象が振動する。特許文献1において制御対象である対物レンズが振動すると、検出される光ディスクの偏芯量に、外部振動に起因する対物レンズの振動成分が加算される。このため、光ディスクの偏芯量を正確に検出できない問題がある。 However, when external vibration is transmitted to the optical disc apparatus in the above-described prior art, vibration due to the external vibration is transmitted to the controlled object, and the controlled object is vibrated. When the objective lens to be controlled in Patent Document 1 vibrates, the vibration component of the objective lens caused by external vibration is added to the detected eccentricity of the optical disk. For this reason, there is a problem that the eccentricity of the optical disk cannot be accurately detected.
 また、特許文献2において光ディスク装置に外部振動が伝わると、外部振動に起因する振動が制御対象に伝わり、レンズエラー信号に、三角波である対物レンズの駆動成分だけでなく、外部振動に起因する対物レンズの振動成分も加算される。このため、レンズエラー信号の振幅値が不正確になり、対物レンズ駆動手段を駆動するための駆動信号を生成する手段における制御ゲインを正確に調整することができない問題がある。 Also, in Patent Document 2, when external vibration is transmitted to the optical disc apparatus, vibration due to the external vibration is transmitted to the control target, and not only the driving component of the objective lens that is a triangular wave but also the objective due to the external vibration is included in the lens error signal. The vibration component of the lens is also added. For this reason, the amplitude value of the lens error signal becomes inaccurate, and there is a problem that the control gain in the means for generating the drive signal for driving the objective lens drive means cannot be adjusted accurately.
 そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、外部振動が存在しても、制御対象の位置を高精度に制御することができるアクチュエータ駆動制御装置及びアクチュエータ駆動制御方法、並びに、前記アクチュエータ駆動制御装置を含む振動抑制制御装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems of the prior art, and an actuator drive control device and an actuator drive capable of controlling the position of a controlled object with high accuracy even when external vibration exists. It is an object to provide a control method and a vibration suppression control device including the actuator drive control device.
 本発明に係るアクチュエータ駆動制御装置は、可動支持された制御対象を変位させるアクチュエータを駆動するアクチュエータ駆動制御装置であって、前記制御対象の位置を示す信号を検出し、前記検出された信号に対応する制御対象位置信号を生成する信号検出部と、前記アクチュエータに駆動信号を供給して、前記アクチュエータを周期信号で駆動するアクチュエータ駆動部と、前記アクチュエータ駆動部を制御する中央制御部と、を有し、前記中央制御部は、前記アクチュエータを駆動しない状態で前記制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、前記制御対象位置信号の第1の成分を取得し、前記アクチュエータを予め決められた前記周期信号で駆動した状態で前記制御対象位置信号の電圧値を計測することによって、前記制御対象位置信号の第2の成分を取得し、前記第2の成分から前記第1の成分を減算することによって、前記制御対象位置信号の第3の成分を取得し、前記第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、前記アクチュエータ駆動部が供給する前記駆動信号の大きさを調整するための制御ゲインを調整することを特徴とする。 An actuator drive control device according to the present invention is an actuator drive control device that drives an actuator that displaces a control object that is movably supported. The actuator drive control device detects a signal that indicates the position of the control target and corresponds to the detected signal. A signal detection unit that generates a position signal to be controlled, an actuator drive unit that supplies a drive signal to the actuator and drives the actuator with a periodic signal, and a central control unit that controls the actuator drive unit. The central control unit acquires a first component of the control target position signal by measuring a voltage value for at least one cycle of the control target position signal in a state where the actuator is not driven, and the actuator The voltage value of the control target position signal is measured while being driven by the predetermined periodic signal. Obtaining a second component of the control target position signal, subtracting the first component from the second component to obtain a third component of the control target position signal, A control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit is adjusted based on a result of comparison between the amplitude value of the third component and a predetermined target amplitude value. And
 また、本発明に係るアクチュエータ駆動制御方法は、可動支持された前記制御対象の位置を示す信号を検出し、前記検出された信号に対応する制御対象位置信号を生成する信号検出部と、前記制御対象を変位させるアクチュエータに駆動信号を供給して、前記アクチュエータを周期信号で駆動するアクチュエータ駆動部と、前記アクチュエータ駆動部を制御する中央制御部とを有するアクチュエータ駆動制御装置における、アクチュエータ駆動制御方法であって、前記アクチュエータを駆動しない状態で前記制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、前記制御対象位置信号の第1の成分を取得するステップと、前記アクチュエータを予め決められた前記周期信号で駆動した状態で前記制御対象位置信号の電圧値を計測することによって、前記制御対象位置信号の第2の成分を取得するステップと、前記第2の成分から前記第1の成分を減算することによって、前記制御対象位置信号の第3の成分を取得するステップと、前記第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、前記アクチュエータ駆動部が供給する前記駆動信号の大きさを調整するための制御ゲインを調整するステップとを有することを特徴とする。 The actuator drive control method according to the present invention includes a signal detection unit that detects a signal indicating the position of the control target that is movably supported, and generates a control target position signal corresponding to the detected signal, and the control An actuator drive control method in an actuator drive control apparatus, comprising: an actuator drive unit that supplies a drive signal to an actuator that displaces an object and drives the actuator with a periodic signal; and a central control unit that controls the actuator drive unit. A step of acquiring a first component of the control target position signal by measuring a voltage value for at least one period of the control target position signal without driving the actuator; The electric power of the control target position signal is driven with the periodic signal. Obtaining a second component of the control target position signal by measuring a value; and subtracting the first component from the second component to obtain a third component of the control target position signal And a control for adjusting the magnitude of the drive signal supplied by the actuator driver based on the result of comparison between the amplitude value of the third component and a predetermined target amplitude value Adjusting the gain.
 また、本発明に係る振動抑制制御装置は、可動支持された制御対象と、前記制御対象を変位させるアクチュエータと、前記制御対象の位置を示す信号を検出し、前記検出された信号に対応する制御対象位置信号を生成する信号検出部と、前記アクチュエータに駆動信号を供給して、前記アクチュエータを周期信号で駆動するアクチュエータ駆動部と、前記アクチュエータ駆動部を制御する中央制御部と、を有し、前記中央制御部は、前記アクチュエータを駆動しない状態で前記制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、前記制御対象位置信号の第1の成分を取得し、前記アクチュエータを予め決められた前記周期信号で駆動した状態で前記制御対象位置信号の電圧値を計測することによって、前記制御対象位置信号の第2の成分を取得し、前記第2の成分から前記第1の成分を減算することによって、前記制御対象位置信号の第3の成分を取得し、前記第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、前記アクチュエータ駆動部が供給する前記駆動信号の大きさを調整するための制御ゲインを調整することを特徴とする。 Further, the vibration suppression control device according to the present invention detects a control object that is movably supported, an actuator that displaces the control object, and a signal indicating a position of the control object, and a control corresponding to the detected signal. A signal detection unit that generates a target position signal, an actuator drive unit that supplies a drive signal to the actuator and drives the actuator with a periodic signal, and a central control unit that controls the actuator drive unit, The central control unit acquires a first component of the control target position signal by measuring a voltage value for at least one cycle of the control target position signal in a state where the actuator is not driven. By measuring the voltage value of the control target position signal in the state driven by the determined periodic signal, the control target A second component of the position signal is obtained, and the third component of the control target position signal is obtained by subtracting the first component from the second component, and the amplitude value of the third component And a control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit is adjusted based on the result of comparison with the predetermined target amplitude value.
 本発明においては、アクチュエータを駆動しない状態で制御対象位置信号の1周期分の電圧値を計測することによって検出される制御対象位置信号から第1の成分(振動成分)を取得し、アクチュエータを予め決められた周期信号で駆動した状態で制御対象位置信号の電圧値を計測することによって検出される第2の成分(駆動成分に振動成分が加算された成分)を取得し、第2の成分から第1の成分を減算することによって第3の成分(アクチュエータ駆動に起因する駆動成分)を取得し、第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、アクチュエータの駆動信号の大きさを調整するための制御ゲインを調整する。このように、本発明においては、制御対象位置信号の第1の成分を除外し、予め決められた周期信号で駆動したアクチュエータの駆動に起因する第3の成分に基づいて、アクチュエータ駆動部が供給する駆動信号の大きさを調整するための制御ゲインを調整することができる。よって、本発明によれば、アクチュエータは、外部振動が存在している場合であっても、制御対象の位置を高精度に制御することができる。 In the present invention, the first component (vibration component) is acquired from the control target position signal detected by measuring the voltage value for one cycle of the control target position signal without driving the actuator, A second component (a component obtained by adding a vibration component to the drive component) detected by measuring the voltage value of the control target position signal while being driven with the determined periodic signal is obtained from the second component. A third component (a driving component resulting from actuator driving) is obtained by subtracting the first component, and based on the comparison result between the amplitude value of the third component and a predetermined target amplitude value, The control gain for adjusting the magnitude of the actuator drive signal is adjusted. Thus, in the present invention, the first component of the control target position signal is excluded, and the actuator driving unit supplies the third component resulting from the driving of the actuator driven by the predetermined periodic signal. The control gain for adjusting the magnitude of the drive signal to be adjusted can be adjusted. Therefore, according to the present invention, the actuator can control the position of the controlled object with high accuracy even when external vibration exists.
本発明の実施の形態1に係る振動抑制制御装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the vibration suppression control apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係るアクチュエータ駆動制御装置の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of an actuator drive control device according to Embodiment 1. FIG. (a)及び(b)は、実施の形態1に係るアクチュエータ駆動制御装置の動作(アクチュエータ駆動制御方法)を概念的に示す図である。(A) And (b) is a figure which shows notionally the operation | movement (actuator drive control method) of the actuator drive control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るアクチュエータ駆動制御装置の動作(アクチュエータ駆動制御方法)を示すフローチャートである。3 is a flowchart showing an operation (actuator drive control method) of the actuator drive control device according to the first embodiment. (a)から(c)は、実施の形態1に係るアクチュエータ駆動制御装置における、アクチュエータを駆動しない状態における制御対象位置信号の第1の成分、アクチュエータを予め決められた周期信号で駆動した状態における制御対象位置信号の第2の成分、及び第2の成分から第1の成分を減算することで得られた第3の成分の波形の一例を示す図である。(A) to (c) are the first component of the control target position signal in a state where the actuator is not driven in the actuator drive control device according to the first embodiment, in the state where the actuator is driven with a predetermined periodic signal. It is a figure which shows an example of the waveform of the 3rd component obtained by subtracting the 1st component from the 2nd component of a control object position signal, and a 2nd component. 本発明の実施の形態2に係る振動抑制制御装置である光ディスク装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the optical disk apparatus which is a vibration suppression control apparatus concerning Embodiment 2 of this invention. 実施の形態2に係るアクチュエータ駆動制御装置の構成を概略的に示すブロック図である。FIG. 6 is a block diagram schematically showing a configuration of an actuator drive control device according to a second embodiment. (a)及び(b)は、実施の形態2に係るアクチュエータ駆動制御装置の動作(アクチュエータ駆動制御方法)を概念的に示す図である。(A) And (b) is a figure which shows notionally the operation | movement (actuator drive control method) of the actuator drive control apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係るアクチュエータ駆動制御装置の動作(アクチュエータ駆動制御方法)を示すフローチャートである。10 is a flowchart showing an operation (actuator drive control method) of the actuator drive control device according to the second embodiment. 本発明の実施の形態3に係る振動抑制制御装置である磁気ディスク装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the magnetic disc apparatus which is a vibration suppression control apparatus concerning Embodiment 3 of this invention. 従来のアクチュエータ駆動制御装置の構成を概略的に示すブロック図である。It is a block diagram which shows schematically the structure of the conventional actuator drive control apparatus.
実施の形態1.
 図1は、本発明の実施の形態1に係る振動抑制制御装置10の構成を概略的に示すブロック図である。図1に示されるように、実施の形態1に係る振動抑制制御装置10は、試料SAに向かい合う位置に配置された制御対象20と、制御対象20の位置を制御するアクチュエータ(駆動手段)30と、アクチュエータ30を駆動するアクチュエータ駆動制御装置(駆動制御手段)70とを有する。制御対象20は振動抑制制御装置10の本体に移動可能に支持されている。アクチュエータ30は、例えば、共振周波数で駆動することにより高効率な動作を実現する共振型アクチュエータである。アクチュエータ30は、可動支持された制御対象20を変位させることによって、試料SAと制御対象20との相対的位置関係を調整する。アクチュエータ駆動制御装置70は、信号検出部40と、アクチュエータ駆動部50と、中央制御部60とを有する。図1における中央制御部60は情報を記憶する記憶部61を有する。ただし、記憶部61は、中央制御部60の外部に設けられてもよい。アクチュエータ駆動制御装置70は、実施の形態1に係るアクチュエータ駆動制御方法を実施することができる装置である。
Embodiment 1 FIG.
FIG. 1 is a block diagram schematically showing a configuration of a vibration suppression control device 10 according to Embodiment 1 of the present invention. As shown in FIG. 1, the vibration suppression control apparatus 10 according to the first embodiment includes a control object 20 disposed at a position facing the sample SA, and an actuator (driving means) 30 that controls the position of the control object 20. And an actuator drive control device (drive control means) 70 for driving the actuator 30. The controlled object 20 is movably supported by the main body of the vibration suppression control device 10. The actuator 30 is, for example, a resonance type actuator that realizes a highly efficient operation by being driven at a resonance frequency. The actuator 30 adjusts the relative positional relationship between the sample SA and the control target 20 by displacing the control target 20 that is movably supported. The actuator drive control device 70 includes a signal detection unit 40, an actuator drive unit 50, and a central control unit 60. The central control unit 60 in FIG. 1 has a storage unit 61 that stores information. However, the storage unit 61 may be provided outside the central control unit 60. The actuator drive control device 70 is a device that can implement the actuator drive control method according to the first embodiment.
 制御対象20は、試料SA上を3次元で走査するための装置又は部材であり、振動抑制制御装置10に可動支持されている。ここで、走査とは、移動(変位)しながら試料SAの所望の位置(被検出位置)の状態を検出又はこの位置に記録されている情報を検出することを言う。試料SAは、例えば、薄板状の形状を持つ。また、3次元とは、試料SAの被検出位置を含む被検出面(図1における試料SAの下面)に平行なx軸方向及びy軸方向(すなわち、xy直交座標系で表現可能なxy平面)と、試料SAの被検出面に垂直なz軸方向(すなわち、xy直交座標系で表現可能なxy平面に直交する方向)とからなる。制御対象20が光ピックアップ(光ヘッド)の対物レンズである場合には、光ピックアップは、試料SAに光ビームを照射し、この光ビームの試料SAからの反射光(光信号)を受光し、受光した反射光に応じた電気信号を生成し、生成された電気信号を信号検出部40に供給する。なお、制御対象20が光ピックアップである場合の詳細は、実施の形態2において説明される。 The controlled object 20 is a device or member for scanning the sample SA in three dimensions, and is movably supported by the vibration suppression control device 10. Here, scanning refers to detecting the state of a desired position (detected position) of the sample SA while moving (displaced) or detecting information recorded at this position. The sample SA has, for example, a thin plate shape. In addition, the three-dimensional refers to an x-axis direction and a y-axis direction (that is, an xy plane that can be expressed in an xy orthogonal coordinate system) parallel to the detection surface (the lower surface of the sample SA in FIG. 1) including the detection position of the sample SA ) And a z-axis direction perpendicular to the detection surface of the sample SA (that is, a direction orthogonal to the xy plane that can be expressed in the xy orthogonal coordinate system). When the control target 20 is an objective lens of an optical pickup (optical head), the optical pickup irradiates the sample SA with a light beam, receives the reflected light (optical signal) from the sample SA, An electrical signal corresponding to the received reflected light is generated, and the generated electrical signal is supplied to the signal detection unit 40. Details of the case where the control target 20 is an optical pickup will be described in the second embodiment.
 アクチュエータ30は、試料SA上を3次元で走査する制御対象20の位置を、試料SAと制御対象20との間の相対的位置関係に応じて変化させる。 The actuator 30 changes the position of the control target 20 that scans the sample SA in three dimensions in accordance with the relative positional relationship between the sample SA and the control target 20.
 信号検出部40は、制御対象20から出力された電気信号を受け取り、この電気信号を用いて、試料SAと制御対象20との間の相対的位置関係を示す検出信号(制御対象位置信号を含む)を生成する。アクチュエータ駆動部50は、中央制御部60からの制御信号に応じた指令(駆動信号)をアクチュエータ30に与えて、アクチュエータ30を駆動する。中央制御部60は、アクチュエータ駆動部50に対し、アクチュエータ30を駆動するための制御信号を出力する。中央制御部60は、信号検出部40から出力された検出信号を処理して、演算及び信号振幅値の計測を行う。信号検出部40、アクチュエータ駆動部50、及び中央制御部60は、実施の形態1に係るアクチュエータ駆動制御装置70を構成する。なお、振動抑制制御装置10の構成は、図1の例に限定されない。また、アクチュエータ駆動制御装置70の構成は、図1の例に限定されない。 The signal detection unit 40 receives an electrical signal output from the control target 20, and uses this electrical signal to detect a detection signal (including a control target position signal) indicating a relative positional relationship between the sample SA and the control target 20. ) Is generated. The actuator driving unit 50 drives the actuator 30 by giving a command (driving signal) corresponding to the control signal from the central control unit 60 to the actuator 30. The central control unit 60 outputs a control signal for driving the actuator 30 to the actuator driving unit 50. The central control unit 60 processes the detection signal output from the signal detection unit 40 to perform calculation and measurement of the signal amplitude value. The signal detection unit 40, the actuator driving unit 50, and the central control unit 60 constitute the actuator driving control device 70 according to the first embodiment. The configuration of the vibration suppression control device 10 is not limited to the example of FIG. Further, the configuration of the actuator drive control device 70 is not limited to the example of FIG.
 実施の形態1に係るアクチュエータ駆動制御装置70においては、中央制御部60は、アクチュエータ30を駆動しない状態で、信号検出部40が生成する制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、制御対象位置信号から第1の成分(振動成分)Exを取得する。第1の成分Exは、外部振動に起因して発生する制御対象位置信号の成分である。また、中央制御部60は、アクチュエータ30を予め決められた周期信号で駆動した状態で、信号検出部40が生成する制御対象位置信号の電圧値を計測することによって、制御対象位置信号の第2の成分を取得する。第2の成分は、周期信号によるアクチュエータ駆動に起因して発生した制御対象位置信号の成分(駆動成分)Drに、第1の成分Exが加算された成分(Dr+Ex)である。中央制御部60は、第2の成分(Dr+Ex)から第1の成分Exを減算することによって、第3の成分(駆動成分)Drを取得する。第3の成分Drは、制御対象位置信号の内の周期信号によるアクチュエータ駆動に起因して発生した制御対象位置信号の成分である。中央制御部60は、駆動成分(第3の成分)Drの振幅値と予め決められた目標振幅値との比較の結果に基づいて、アクチュエータ駆動部50が供給する駆動信号の大きさを調整するための制御ゲインを調整する。制御ゲインは、制御対象の位置を制御するアクチュエータ30を駆動するための駆動信号を生成する手段におけるゲインである。 In the actuator drive control device 70 according to the first embodiment, the central control unit 60 measures the voltage value for at least one cycle of the control target position signal generated by the signal detection unit 40 without driving the actuator 30. Thus, the first component (vibration component) Ex is acquired from the control target position signal. The first component Ex is a component of the control target position signal generated due to external vibration. In addition, the central control unit 60 measures the voltage value of the control target position signal generated by the signal detection unit 40 in a state where the actuator 30 is driven with a predetermined periodic signal, thereby generating the second control target position signal. Get the ingredients. The second component is a component (Dr + Ex) obtained by adding the first component Ex to the component (drive component) Dr of the control target position signal generated due to the actuator driving by the periodic signal. The central controller 60 obtains a third component (driving component) Dr by subtracting the first component Ex from the second component (Dr + Ex). The third component Dr is a component of the control target position signal generated due to the actuator driving by the periodic signal in the control target position signal. The central control unit 60 adjusts the magnitude of the drive signal supplied by the actuator drive unit 50 based on the comparison result between the amplitude value of the drive component (third component) Dr and a predetermined target amplitude value. Adjust the control gain. The control gain is a gain in a unit that generates a drive signal for driving the actuator 30 that controls the position of the control target.
 図2は、実施の形態1に係るアクチュエータ駆動制御装置70の構成を概略的に示すブロック図である。図2に示されるように、実施の形態1に係るアクチュエータ駆動制御装置70の信号検出部40は、制御対象位置信号生成部41を有する。また、アクチュエータ駆動部50は、駆動信号生成部51と、スイッチ52と、駆動アンプ53とを有する。中央制御部60は、記憶部61と、周波数選定部62と、周波数抽出部63とを有する。 FIG. 2 is a block diagram schematically showing the configuration of the actuator drive control device 70 according to the first embodiment. As shown in FIG. 2, the signal detection unit 40 of the actuator drive control device 70 according to the first embodiment includes a control target position signal generation unit 41. The actuator driver 50 includes a drive signal generator 51, a switch 52, and a drive amplifier 53. The central control unit 60 includes a storage unit 61, a frequency selection unit 62, and a frequency extraction unit 63.
 制御対象位置信号生成部41は、制御対象20からの電気信号を受け取り、制御対象20の位置を示す制御対象位置信号を生成する。中央制御部60は、制御対象位置信号生成部41で生成された制御対象位置信号を受け取り、この制御対象位置信号を用いて、演算及び信号振幅値の計測を行う。 The control target position signal generation unit 41 receives an electrical signal from the control target 20 and generates a control target position signal indicating the position of the control target 20. The central control unit 60 receives the control target position signal generated by the control target position signal generation unit 41, and performs calculation and measurement of the signal amplitude value using the control target position signal.
 駆動信号生成部51は、アクチュエータ30を駆動するための駆動信号を生成する。この信号は、周期信号である。この周期信号は、例えば、sin波又はcos波のような単一周波数の信号であるが、これらに限定されない。 The drive signal generation unit 51 generates a drive signal for driving the actuator 30. This signal is a periodic signal. The periodic signal is a single frequency signal such as a sine wave or a cosine wave, but is not limited thereto.
 スイッチ52は、駆動アンプ53に供給する駆動信号Dを、振幅値“ゼロ”の信号(接点52A)、又は、駆動信号生成部51で生成された駆動信号D(接点52B)のいずれかに切り替える駆動信号切り替え部である。実施の形態1において、接点52Aには、振幅値Vppが“ゼロ”、且つ、電位0[V]の信号が供給される。言い換えれば、接点52Aには、Vpp=0、且つ、直流成分がゼロの信号が供給される。例えば、接点52Aには、何も信号が入力されない。スイッチ52は、中央制御部60からの制御信号A1によって制御され、振幅値“ゼロ”の信号を駆動アンプ53に供給するときには、接点52Aを選択し、又は、駆動信号生成部51からの駆動信号Dを駆動アンプ53に供給するときには、接点52Bを選択する。なお、図2において、スイッチ52は、接点52A又は接点52Bのいずれか一方を選択する切換えスイッチであるが、スイッチ52は、1つの接点52Bのみを有するオンオフ式のスイッチであってもよい。 The switch 52 switches the drive signal D supplied to the drive amplifier 53 to either a signal with an amplitude value “zero” (contact 52A) or the drive signal D (contact 52B) generated by the drive signal generator 51. It is a drive signal switching part. In the first embodiment, a signal having an amplitude value Vpp of “zero” and a potential of 0 [V] is supplied to the contact 52A. In other words, a signal with Vpp = 0 and zero DC component is supplied to the contact 52A. For example, no signal is input to the contact 52A. The switch 52 is controlled by the control signal A1 from the central control unit 60, and when the signal having the amplitude value “zero” is supplied to the drive amplifier 53, the contact 52A is selected or the drive signal from the drive signal generation unit 51 is selected. When supplying D to the drive amplifier 53, the contact 52B is selected. In FIG. 2, the switch 52 is a changeover switch that selects either the contact 52A or the contact 52B, but the switch 52 may be an on / off switch having only one contact 52B.
 次に、スイッチ52の切り替えタイミングについて説明する。外部振動に起因する制御対象位置信号の振動成分(第1の成分)Exを取得するときには、スイッチ52は、接点52Aを選択する。このとき、駆動アンプ53に供給される駆動信号Dは、振幅値Vpp“ゼロ”の信号である。一方、駆動信号Dによるアクチュエータ駆動に起因する制御対象位置信号の駆動成分(第3の成分)Drと外部信号に起因する制御対象位置信号の振動成分(第1の成分)Exの合計の成分(第2の成分)(Dr+Ex)を取得するときには、スイッチ52は、接点52Bを選択する。このとき、駆動アンプ53に供給される駆動信号Dは、駆動信号生成部51で生成された駆動信号Dである。 Next, the switching timing of the switch 52 will be described. When acquiring the vibration component (first component) Ex of the control target position signal due to external vibration, the switch 52 selects the contact 52A. At this time, the drive signal D supplied to the drive amplifier 53 is a signal having an amplitude value Vpp “zero”. On the other hand, the total component of the drive component (third component) Dr of the control target position signal due to the actuator drive by the drive signal D and the vibration component (first component) Ex of the control target position signal due to the external signal ( When acquiring the second component (Dr + Ex), the switch 52 selects the contact 52B. At this time, the drive signal D supplied to the drive amplifier 53 is the drive signal D generated by the drive signal generator 51.
 駆動アンプ53は、スイッチ52を介して入力された駆動信号Dの電圧値を増幅する。駆動アンプ53は、駆動信号生成部51からの駆動信号Dの電圧値を増幅することによって、駆動信号Dのダイナミックレンジを増加させる。なお、実施の形態1に係るアクチュエータ駆動制御装置70の構成は、図2の構成に限定されない。 The drive amplifier 53 amplifies the voltage value of the drive signal D input via the switch 52. The drive amplifier 53 increases the dynamic range of the drive signal D by amplifying the voltage value of the drive signal D from the drive signal generation unit 51. The configuration of the actuator drive control device 70 according to Embodiment 1 is not limited to the configuration of FIG.
 図3(a)及び(b)は、実施の形態1に係るアクチュエータ駆動制御装置70の動作(アクチュエータ駆動制御方法)を概念的に示す図である。図3(a)及び(b)において、制御対象20、アクチュエータ30、制御対象位置信号生成部41、及び駆動アンプ53は、それぞれ図1及び図2の制御対象20、アクチュエータ30、制御対象位置信号生成部41、及び駆動アンプ53に対応している。 FIGS. 3A and 3B are diagrams conceptually showing the operation (actuator drive control method) of the actuator drive control device 70 according to the first embodiment. 3A and 3B, the control target 20, the actuator 30, the control target position signal generation unit 41, and the drive amplifier 53 are respectively the control target 20, the actuator 30, and the control target position signal of FIG. 1 and FIG. This corresponds to the generation unit 41 and the drive amplifier 53.
 図3(a)において、制御対象位置信号生成部41は、制御対象20の共振、すなわち、外部振動に起因する制御対象の振動(固有振動)を検出し、制御対象位置信号として出力する。このとき、中央制御部60は、振動成分(第1の成分)Exの少なくとも1周期分の信号を取得する。この信号の取得は、例えば、1周期を24分割し、各分割点における24個の信号の電圧値を取得することによって行われる。ただし、信号の取得の方法は、これに限定されない。取得する信号は、少なくとも振動成分(第1の成分)Exの1周期分の信号を取得できればよく、振幅値の上限値と下限値を取得できる期間であれば1周期に限らない。例えば、振幅値の1周期を超える周期分の信号を取得して、取得した振幅値から上限値及び下限値を算出してもよい。これらの電圧値を、例えば、中央制御部60内の記憶部61に格納される。 3A, the control target position signal generation unit 41 detects resonance of the control target 20, that is, vibration of the control target due to external vibration (natural vibration) and outputs it as a control target position signal. At this time, the central control unit 60 acquires a signal for at least one cycle of the vibration component (first component) Ex. This signal acquisition is performed, for example, by dividing one cycle into 24 and acquiring voltage values of 24 signals at each division point. However, the signal acquisition method is not limited to this. The signal to be acquired is not limited to one cycle as long as the signal for at least one cycle of the vibration component (first component) Ex can be acquired, and the upper limit value and the lower limit value of the amplitude value can be acquired. For example, a signal for a period exceeding one period of the amplitude value may be acquired, and the upper limit value and the lower limit value may be calculated from the acquired amplitude value. These voltage values are stored in, for example, the storage unit 61 in the central control unit 60.
 次に、周期信号を駆動信号として駆動アンプ53に供給する。これにより、制御対象位置信号生成部41から出力される制御対象位置信号は、振動成分(第1の成分)Exと、駆動信号Dによるアクチュエータ駆動に起因する駆動成分Drを加算(合計)した成分(第2の成分)(Dr+Ex)となる。そこで、第2の成分(Dr+Ex)の電圧値から、外部振動に起因する制御対象位置信号の振動成分(第1の成分)Exの信号の電圧値を減算することで、アクチュエータ駆動に起因する振動成分である駆動成分(第3の成分)Drのみを取得することができる。中央制御部60は、駆動成分(第3の成分)Drの振幅値を取得し、予め決められた目標振幅値と比較する。中央制御部60は、駆動成分(第3の成分)Drの値が、目標振幅値に近づくように、駆動アンプ53のゲイン(振動抑制制御の制御ゲイン)を調整する。 Next, the periodic signal is supplied to the drive amplifier 53 as a drive signal. As a result, the control target position signal output from the control target position signal generation unit 41 is a component obtained by adding (totaling) the vibration component (first component) Ex and the drive component Dr resulting from the actuator driving by the drive signal D. (Second component) (Dr + Ex). Therefore, the vibration caused by actuator driving is subtracted from the voltage value of the vibration component (first component) Ex of the control target position signal caused by external vibration from the voltage value of the second component (Dr + Ex). Only the driving component (third component) Dr, which is a component, can be acquired. The central control unit 60 acquires the amplitude value of the drive component (third component) Dr and compares it with a predetermined target amplitude value. The central control unit 60 adjusts the gain of the drive amplifier 53 (control gain for vibration suppression control) so that the value of the drive component (third component) Dr approaches the target amplitude value.
 図11に示す、比較例としての振動抑制制御装置においては、ゲイン特性は、アクチュエータ1の特性(具体的には検出感度、すなわち、単位電圧当たりの制御対象の移動量)、制御対象位置信号検出部3の検出ゲイン、及び駆動アンプ5の増幅率の3つの要因によって影響を受ける。これに対し、実施の形態1においては、図3(a)及び(b)に示すように、アクチュエータ駆動制御方法において、ばらつきが発生する上記3つのゲイン特性を一定にする。すなわち、実施の形態1においては、図11に示す例における振動抑制制御のシステム全体のゲイン特性を一定にすることができる。 In the vibration suppression control apparatus as a comparative example shown in FIG. 11, the gain characteristics are the characteristics of the actuator 1 (specifically, the detection sensitivity, that is, the amount of movement of the control target per unit voltage), the control target position signal detection. It is influenced by three factors: the detection gain of the unit 3 and the amplification factor of the drive amplifier 5. On the other hand, in the first embodiment, as shown in FIGS. 3A and 3B, in the actuator drive control method, the three gain characteristics that cause variations are made constant. That is, in the first embodiment, the gain characteristic of the entire system of the vibration suppression control in the example shown in FIG. 11 can be made constant.
 図3(a)及び(b)における駆動成分Drの目標振幅値は、駆動信号Dの周波数と同じ周波数におけるアクチュエータの感度を基に決定するが、この感度は予め設計した基準値とする。これにより、振動抑制制御の性能を設計通りにすることができる。例えば、制御対象位置信号生成部41の検出ゲイン(単位長さの移動量(変位量)に対する電圧値)が1000[V/m]、駆動アンプの増幅率が5、アクチュエータの基準となる検出感度(単位電圧当たりの制御対象の移動量)の設計値が、ある周波数において0.002[m/V]とする。駆動信号Dの上記周波数での電圧値(ピーク電圧幅)が0.02[Vp-p]であるとする。このとき、駆動成分(第3の成分)Drの上記周波数における目標振幅値(目標ピーク電圧幅)は、
0.2[Vp-p]
=0.02[Vp-p]×5×0.002[m/V]×1000[V/m]
である。
The target amplitude value of the drive component Dr in FIGS. 3A and 3B is determined based on the sensitivity of the actuator at the same frequency as the frequency of the drive signal D. This sensitivity is a reference value designed in advance. Thereby, the performance of vibration suppression control can be made as designed. For example, the detection gain (voltage value with respect to the movement amount (displacement amount) of the unit length) of the control target position signal generation unit 41 is 1000 [V / m], the amplification factor of the drive amplifier is 5, and the detection sensitivity that is the reference of the actuator The design value of (the amount of movement of the control target per unit voltage) is 0.002 [m / V] at a certain frequency. It is assumed that the voltage value (peak voltage width) at the above frequency of the drive signal D is 0.02 [Vp-p]. At this time, the target amplitude value (target peak voltage width) at the frequency of the drive component (third component) Dr is
0.2 [Vp-p]
= 0.02 [Vp-p] x 5 x 0.002 [m / V] x 1000 [V / m]
It is.
 また、駆動信号が周期信号である理由を以下に述べる。駆動信号Dが周期信号でない場合、駆動信号Dを印加すると、制御対象は不定の周波数(すなわち、一定ではない周波数)で振動する。周期信号でない駆動成分(Drに対応する成分)の振幅値を取得する際、駆動成分(Drに対応する成分)は種々の周波数成分を含むことになり、所望の振幅値を取得することができない。一方、駆動信号Dが周期信号である場合、駆動信号Dを印加すると、制御対象は特定の周波数(すなわち、一定の周波数)で振動する。周期信号である駆動成分(第3の成分)Drの振幅値を取得する際、駆動信号Dの周波数と同じ周波数成分を抽出することにより、所望の振幅値を取得することができる。 The reason why the drive signal is a periodic signal will be described below. When the drive signal D is not a periodic signal, when the drive signal D is applied, the control target vibrates at an indefinite frequency (that is, a non-constant frequency). When acquiring the amplitude value of a drive component (component corresponding to Dr) that is not a periodic signal, the drive component (component corresponding to Dr) includes various frequency components, and a desired amplitude value cannot be acquired. . On the other hand, when the drive signal D is a periodic signal, when the drive signal D is applied, the control target vibrates at a specific frequency (that is, a constant frequency). When acquiring the amplitude value of the drive component (third component) Dr which is a periodic signal, a desired amplitude value can be acquired by extracting the same frequency component as the frequency of the drive signal D.
 図4は、実施の形態1に係るアクチュエータ駆動制御装置70の動作(アクチュエータ駆動制御方法)の一例を示すフローチャートである。図4に示されるように、実施の形態1に係るアクチュエータ駆動制御装置70においては、アクチュエータ駆動制御が開始されると、スイッチ52は、接点52Aを選択して、振幅値“ゼロ”の信号を駆動アンプ53に供給する状態に切り替える(工程S1)。すなわち、アクチュエータ駆動制御装置70のアクチュエータ駆動部50は、スイッチ52の状態を切り替えて、振幅値“ゼロ”且つ直流成分ゼロの信号を出力する状態に移行する。 FIG. 4 is a flowchart showing an example of the operation (actuator drive control method) of the actuator drive control device 70 according to the first embodiment. As shown in FIG. 4, in the actuator drive control device 70 according to the first embodiment, when actuator drive control is started, the switch 52 selects the contact 52A and outputs a signal with an amplitude value of “zero”. The state is switched to a state where the drive amplifier 53 is supplied (step S1). That is, the actuator drive unit 50 of the actuator drive control device 70 switches the state of the switch 52 and shifts to a state of outputting a signal having an amplitude value “zero” and a DC component zero.
 次に、中央制御部60は、図3(a)に示される振動成分(第1の成分)Exの電圧値を1周期分取得し、取得した電圧値を記憶部61に格納する(工程S2)。 Next, the central control unit 60 acquires the voltage value of the vibration component (first component) Ex shown in FIG. 3A for one cycle, and stores the acquired voltage value in the storage unit 61 (step S2). ).
 次に、スイッチ52は、接点52Bを選択して、駆動信号Dを駆動アンプ53に供給する状態に切り替える(工程S3)。すなわち、アクチュエータ駆動制御装置70のアクチュエータ駆動部50は、スイッチ52の状態を切り替えて、駆動アンプ53で増幅された駆動信号Dを出力することができる駆動信号制御状態に移行する。 Next, the switch 52 selects the contact 52B and switches to a state where the drive signal D is supplied to the drive amplifier 53 (step S3). That is, the actuator drive unit 50 of the actuator drive control device 70 switches the state of the switch 52 and shifts to the drive signal control state in which the drive signal D amplified by the drive amplifier 53 can be output.
 次に、アクチュエータ駆動部50は、駆動信号生成部51で生成された駆動信号Dをアクチュエータ30に印加する(工程S4)。 Next, the actuator drive unit 50 applies the drive signal D generated by the drive signal generation unit 51 to the actuator 30 (step S4).
 次に、中央制御部60は、所定時間だけウェイトを行う(工程S5)。これは、工程S4にて駆動信号Dを印加してから制御対象が所定の周波数で駆動するまでに、ある程度時間を要するためである。ウェイト時間の長さは、特に限定されない。 Next, the central control unit 60 waits for a predetermined time (step S5). This is because a certain amount of time is required until the controlled object is driven at a predetermined frequency after the drive signal D is applied in step S4. The length of the wait time is not particularly limited.
 次に、中央制御部60は、制御対象位置信号から振動成分(第2の成分)(Dr+Ex)を取得する(工程S6)。次に、中央制御部60は、第2の成分(Dr+Ex)の電圧値から、工程S2で取得した振動成分(第1の成分)Exの電圧値を減算する(工程S7)。ただし、駆動信号がsin波やcos波のような単一周波数の信号であれば、振動成分(第1の成分)Exの電圧値を減算するだけでよいが、駆動信号Dが複数の周波数を持つ信号であれば、周波数選定部62が、複数の周波数から1つの周波数を選定し、減算した信号(図3(b)に示される駆動成分Dr)から、周波数選定部62で選定した周波数成分を抽出する必要がある。工程S6は、周波数抽出部63が、駆動成分Drから周波数選定部62で選定した周波数成分を抽出する処理を含む。なお、駆動信号Dが複数の周波数を持たない場合には、周波数選定部62及び周波数抽出部63を備える必要はない。抽出する方法は、特定の周波数をカットオフ周波数とするBPF(Band-Pass Filter)を用いる方法等がある。ただし、特定の周波数成分を抽出する方法は、この方法に限定されない。 Next, the central control unit 60 acquires a vibration component (second component) (Dr + Ex) from the control target position signal (step S6). Next, the central controller 60 subtracts the voltage value of the vibration component (first component) Ex acquired in step S2 from the voltage value of the second component (Dr + Ex) (step S7). However, if the drive signal is a single frequency signal such as a sine wave or a cosine wave, it is only necessary to subtract the voltage value of the vibration component (first component) Ex, but the drive signal D has a plurality of frequencies. If it is a signal having, the frequency selecting unit 62 selects one frequency from a plurality of frequencies, and the frequency component selected by the frequency selecting unit 62 from the subtracted signal (the driving component Dr shown in FIG. 3B). Need to be extracted. Step S6 includes a process in which the frequency extraction unit 63 extracts the frequency component selected by the frequency selection unit 62 from the drive component Dr. When the drive signal D does not have a plurality of frequencies, it is not necessary to provide the frequency selection unit 62 and the frequency extraction unit 63. The extraction method includes a method using a BPF (Band-Pass Filter) having a specific frequency as a cutoff frequency. However, the method of extracting a specific frequency component is not limited to this method.
 中央制御部60は、前記減算した信号、すなわち、アクチュエータ駆動に起因する制御対象位置信号の振動成分(第3の成分)Drの振幅値を取得し、これを記憶部61に格納する(工程S7)。 The central control unit 60 acquires the subtracted signal, that is, the amplitude value of the vibration component (third component) Dr of the control target position signal resulting from the actuator drive, and stores it in the storage unit 61 (step S7). ).
 次に、スイッチ52は、接点52Aを選択して振幅値“ゼロ”の信号を駆動アンプ53に供給する状態に切り替える(工程S8)。すなわち、アクチュエータ駆動制御装置70のアクチュエータ駆動部50は、スイッチ52の状態を切り替えて、振幅値“ゼロ”の信号を出力する状態に移行する。 Next, the switch 52 selects the contact 52A and switches to a state in which a signal having an amplitude value “zero” is supplied to the drive amplifier 53 (step S8). That is, the actuator drive unit 50 of the actuator drive control device 70 switches the state of the switch 52 and shifts to a state of outputting a signal having an amplitude value “zero”.
 次に、中央制御部60は、予め決められた目標振幅値を、工程S7にて取得した第3の成分Drの振幅値で除算し、この除算によって得られた値Kを格納する(工程S9)。すなわち、値Kは、次式で算出される。
K=(目標振幅値)/(取得したDrの振幅値)
Next, the central controller 60 divides the predetermined target amplitude value by the amplitude value of the third component Dr acquired in step S7, and stores the value K obtained by this division (step S9). ). That is, the value K is calculated by the following equation.
K = (Target amplitude value) / (Amplitude value of acquired Dr)
 次に、中央制御部60は、駆動アンプ53のゲイン(振動抑制制御の制御ゲイン)をK倍する(工程S10)。 Next, the central controller 60 multiplies the gain of the drive amplifier 53 (control gain for vibration suppression control) by K (step S10).
 なお、工程S8にてスイッチ52が接点52Aを選択する動作は、工程S7における減算した信号の振幅値取得よりも後であれば、どのタイミングで行ってもよい。また、実施の形態1に係るアクチュエータ駆動制御装置70(及び、後述する実施の形態2に係るアクチュエータ駆動制御装置130)によるアクチュエータ駆動制御方法は、図4(及び、後述する図9)のフローチャートの手順に限定されない。 Note that the operation in which the switch 52 selects the contact 52A in step S8 may be performed at any timing as long as it is after the amplitude value of the subtracted signal in step S7. The actuator drive control method by the actuator drive control device 70 according to the first embodiment (and the actuator drive control device 130 according to the second embodiment to be described later) is shown in the flowchart of FIG. 4 (and FIG. 9 described later). It is not limited to the procedure.
 図5(a)から(c)は、実施の形態1に係るアクチュエータ駆動制御方法において、駆動信号を印加した場合の振動成分(第1の成分)Exと駆動成分(第3の成分)Drの波形を示す図である。図5(a)は、外部振動を80Hzのsin波とした場合の振動成分(第1の成分)Exの波形を示し、図5(c)は、駆動信号Dを200Hzのsin波とした場合の駆動成分(第3の成分)Drの波形を示し、図5(b)は、駆動成分Drと振動成分Exの合成波形(第2の成分)を示す。駆動信号Dを印加すると、図5(b)に示されるように、振動成分Exと駆動成分Drが加算された波形の信号(第2の成分)が出力される。加算された信号の振幅値を取得すると、振動成分(第1の成分)Exである80Hzの信号も含まれるため、所望の振幅値が取得できない。図5(b)に示される波形(第2の成分)から、図5(a)に示される振動成分(第1の成分)Exの波形を減算することで、図5(c)に示される駆動成分(第3の成分)Drが残り、所望の200Hzの信号振幅値を取得することができる。 FIGS. 5A to 5C show the vibration component (first component) Ex and the drive component (third component) Dr when a drive signal is applied in the actuator drive control method according to the first embodiment. It is a figure which shows a waveform. FIG. 5A shows the waveform of the vibration component (first component) Ex when the external vibration is an 80 Hz sine wave, and FIG. 5C shows the case where the drive signal D is a 200 Hz sine wave. 5B shows a waveform of the driving component (third component) Dr, and FIG. 5B shows a combined waveform (second component) of the driving component Dr and the vibration component Ex. When the drive signal D is applied, as shown in FIG. 5B, a waveform signal (second component) obtained by adding the vibration component Ex and the drive component Dr is output. When the amplitude value of the added signal is acquired, a signal of 80 Hz that is the vibration component (first component) Ex is also included, and thus a desired amplitude value cannot be acquired. 5C is obtained by subtracting the waveform of the vibration component (first component) Ex shown in FIG. 5A from the waveform shown in FIG. 5B (second component). The drive component (third component) Dr remains, and a desired signal amplitude value of 200 Hz can be acquired.
 以上に説明したように、実施の形態1に係るアクチュエータ駆動制御装置70及びアクチュエータ駆動制御方法、並びに、振動抑制制御装置80によれば、駆動信号Dを出力しないときの制御対象位置信号の振動成分(第1の成分)Exの電圧値を少なくとも1周期分取得し、駆動信号Dを印加したときの制御対象位置信号の第2の成分(Dr+Ex)から、振動成分(第1の成分)Exを減算して第3の成分Drを取得し、取得した第3の成分Drの振幅値を基に振動抑制制御の制御ゲインを調整するので、制御ゲインを精度よく調整することができる。 As described above, according to the actuator drive control device 70, the actuator drive control method, and the vibration suppression control device 80 according to the first embodiment, the vibration component of the control target position signal when the drive signal D is not output. (First component) The voltage value of Ex is acquired for at least one period, and the vibration component (first component) Ex is obtained from the second component (Dr + Ex) of the control target position signal when the drive signal D is applied. Since the third component Dr is obtained by subtraction and the control gain of the vibration suppression control is adjusted based on the acquired amplitude value of the third component Dr, the control gain can be adjusted with high accuracy.
実施の形態2.
 実施の形態1においては、一般的なアクチュエータ駆動制御装置70について説明したが、実施の形態2においては、制御対象を光ピックアップ内の対物レンズとする、光ディスク装置のアクチュエータ駆動制御装置130について説明する。
Embodiment 2. FIG.
In the first embodiment, a general actuator drive control device 70 has been described. In the second embodiment, an actuator drive control device 130 of an optical disk device in which an object to be controlled is an objective lens in an optical pickup will be described. .
 図6は、実施の形態2に係る振動抑制制御装置80の構成を概略的に示すブロック図である。図6に示されるように、実施の形態2に係る振動抑制制御装置80は、光ディスクODと、スピンドルモータ81と、スピンドル駆動部82と、スレッドモータ83と、スレッド駆動部84と、レーザ駆動部85と、光ピックアップ90と、信号検出部100と、アクチュエータ駆動部110と、中央制御部120とを有する。 FIG. 6 is a block diagram schematically showing the configuration of the vibration suppression control device 80 according to the second embodiment. As shown in FIG. 6, the vibration suppression control device 80 according to the second embodiment includes an optical disc OD, a spindle motor 81, a spindle driving unit 82, a thread motor 83, a thread driving unit 84, and a laser driving unit. 85, an optical pickup 90, a signal detection unit 100, an actuator driving unit 110, and a central control unit 120.
 光ディスクODは、再生のみを行うことができる再生専用型ディスク、再生と追加記録とを行うことができ、書き換えを行うことができない追記型ディスク、及び再生、追加記録及び書き換えを行うことができる書き換え型ディスクを含む。また、光ディスクODは、例えば、BD(Blu-ray Disc)、DVD(Digital Versatile Disc)、CD(Compact Disc)などである。 The optical disc OD is a read-only disc that can only be played back, a write-once disc that can be played back and additionally recorded and cannot be rewritten, and a rewrite that can be played back, additionally recorded and rewritten. Includes mold discs. The optical disc OD is, for example, a BD (Blu-ray Disc), a DVD (Digital Versatile Disc), a CD (Compact Disc), or the like.
 スピンドルモータ81は、光ディスクODを回転させる。スピンドルモータ81の回転方式には、角速度一定のCAV(Constant Angular Velocity)方式と、線速度一定のCLV(Constant Linear Velocity)方式等がある。スピンドル駆動部82は、スピンドルモータ81を駆動する。スレッドモータ83は、光ピックアップ90を光ディスクODのトラッキング方向(半径方向、X軸方向)に移動させる。スレッド駆動部84は、スレッドモータ83を駆動する。レーザ駆動部85は、レーザ光源92を駆動する。 Spindle motor 81 rotates optical disc OD. The rotation method of the spindle motor 81 includes a CAV (Constant Angular Velocity) method with a constant angular velocity and a CLV (Constant Linear Velocity) method with a constant linear velocity. The spindle driving unit 82 drives the spindle motor 81. The sled motor 83 moves the optical pickup 90 in the tracking direction (radial direction, X-axis direction) of the optical disc OD. The thread driving unit 84 drives the thread motor 83. The laser driving unit 85 drives the laser light source 92.
 光ピックアップ90は、レーザ光源92と、このレーザ光源92からのレーザ光を反射させるビームスプリッタ93と、このビームスプリッタ93で反射したレーザ光を光ディスクODの情報記録面上に集光させる対物レンズ94と、光ディスクODで反射し、対物レンズ94及びビームスプリッタ93を透過した反射光を受光して電気信号に変換する受光素子を有する光検出部95と、これらの構成92~95を収容するレンズユニット91と、レンズユニット91内に対物レンズ94を移動可能に支持する弾性支持部材と、この弾性支持部材の弾性力に抗して対物レンズ94をトラッキング方向及びフォーカシング方向(Z軸方向)に移動させるアクチュエータ96とを有する。 The optical pickup 90 includes a laser light source 92, a beam splitter 93 that reflects the laser light from the laser light source 92, and an objective lens 94 that condenses the laser light reflected by the beam splitter 93 on the information recording surface of the optical disc OD. A light detection unit 95 having a light receiving element that receives the reflected light reflected by the optical disk OD and transmitted through the objective lens 94 and the beam splitter 93 and converts it into an electrical signal, and a lens unit that houses these configurations 92 to 95 91, an elastic support member that movably supports the objective lens 94 in the lens unit 91, and the objective lens 94 is moved in the tracking direction and the focusing direction (Z-axis direction) against the elastic force of the elastic support member. And an actuator 96.
 信号検出部100は、光検出部95からの電気信号を入力し、生成された信号を出力する。アクチュエータ駆動部110は、中央制御部120からの指令に応じて、アクチュエータ96を駆動する。中央制御部120は、アクチュエータ駆動部110に対し、アクチュエータ96を駆動するための指令を出す。また、信号検出部100から出力された信号を処理し、演算や信号振幅値の計測を行う。 The signal detection unit 100 inputs the electrical signal from the light detection unit 95 and outputs the generated signal. The actuator driving unit 110 drives the actuator 96 in response to a command from the central control unit 120. The central control unit 120 issues a command for driving the actuator 96 to the actuator driving unit 110. Further, the signal output from the signal detection unit 100 is processed to perform calculation and measurement of the signal amplitude value.
 信号検出部100、アクチュエータ駆動部110、中央制御部120は、本発明の実施の形態2に係るアクチュエータ駆動制御装置(すなわち、実施の形態2に係るアクチュエータ駆動制御方法を実施することができる装置)130を構成する。なお、アクチュエータ駆動制御装置130は、図6の例に限定されない。 The signal detection unit 100, the actuator drive unit 110, and the central control unit 120 are actuator drive control devices according to the second embodiment of the present invention (that is, devices that can implement the actuator drive control method according to the second embodiment). 130 is configured. The actuator drive control device 130 is not limited to the example of FIG.
 図7は、実施の形態2に係るアクチュエータ駆動制御装置(すなわち、実施の形態2に係るアクチュエータ駆動制御方法を実施することができる装置)130の構成を概略的に示すブロック図である。図7に示されるように、実施の形態2に係るアクチュエータ駆動制御装置130は、信号検出部100と、アクチュエータ駆動部110と、中央制御部120とを有する。 FIG. 7 is a block diagram schematically showing a configuration of an actuator drive control device 130 according to the second embodiment (that is, a device capable of performing the actuator drive control method according to the second embodiment). As shown in FIG. 7, the actuator drive control device 130 according to the second embodiment includes a signal detection unit 100, an actuator drive unit 110, and a central control unit 120.
 信号検出部100は、レンズエラー信号生成部101と、光ディスク回転角検出部102とを有する。また、アクチュエータ駆動部110は、駆動信号生成部111と、スイッチ112と、駆動アンプ113とを有する。 The signal detection unit 100 includes a lens error signal generation unit 101 and an optical disk rotation angle detection unit 102. The actuator driver 110 includes a drive signal generator 111, a switch 112, and a drive amplifier 113.
 レンズエラー信号生成部101は、対物レンズ94からの電気信号を入力し、その位置を検出するための信号を生成する。この信号は、中央制御部120に入力され、演算や信号振幅値の計測が行われる。中央制御部120は、記憶部121と、周波数選定部122と、周波数抽出部123とを有する。記憶部121は、中央制御部120の外部に備えられてもよい。 The lens error signal generation unit 101 inputs an electric signal from the objective lens 94 and generates a signal for detecting the position. This signal is input to the central control unit 120, where calculation and signal amplitude value measurement are performed. The central control unit 120 includes a storage unit 121, a frequency selection unit 122, and a frequency extraction unit 123. The storage unit 121 may be provided outside the central control unit 120.
 光ディスク回転角検出部102は、スピンドルモータ81の回転角を検出する。 The optical disk rotation angle detection unit 102 detects the rotation angle of the spindle motor 81.
 駆動信号生成部111は、アクチュエータ96を駆動するための信号を生成する。この信号は、sin波やcos波のような単一周波数が挙げられるが、これらに限定されない。ただし、アクチュエータ96を駆動するための信号は、周期信号である。この理由は、実施の形態1において、図3(a)及び(b)を用いて説明した理由と同じである。 The drive signal generation unit 111 generates a signal for driving the actuator 96. This signal may be a single frequency, such as a sine wave or a cosine wave, but is not limited thereto. However, the signal for driving the actuator 96 is a periodic signal. The reason for this is the same as that described in the first embodiment with reference to FIGS. 3 (a) and 3 (b).
 スイッチ112は、駆動アンプ113に供給する駆動信号Dを、振幅値“ゼロ”の信号(接点112A)、又は駆動信号生成部111で生成された駆動信号D(接点112B)のいずれかに切り替える駆動信号切り替え部である。スイッチ112は、振幅値“ゼロ”の信号を駆動アンプ113に供給するときには、接点112Aを選択し、又は、駆動信号生成部111からの駆動信号Dを駆動アンプ113に供給するときには、接点112Bを選択する。スイッチ112の切り替えタイミングは、実施の形態1において、図2を用いて説明したタイミングと同じである。 The switch 112 is a drive that switches the drive signal D supplied to the drive amplifier 113 to either an amplitude value “zero” signal (contact 112A) or the drive signal D (contact 112B) generated by the drive signal generator 111. It is a signal switching part. The switch 112 selects the contact 112A when supplying a signal with an amplitude value of “zero” to the drive amplifier 113, or the contact 112B when supplying the drive signal D from the drive signal generation unit 111 to the drive amplifier 113. select. The switching timing of the switch 112 is the same as that described with reference to FIG. 2 in the first embodiment.
 駆動アンプ113は、スイッチ112を介して入力された信号の電圧値を増幅する。駆動アンプ113は、駆動信号生成部111からの信号の電圧値を増幅させることによって、ダイナミックレンジを増加させる。 The drive amplifier 113 amplifies the voltage value of the signal input via the switch 112. The drive amplifier 113 increases the dynamic range by amplifying the voltage value of the signal from the drive signal generation unit 111.
 なお、実施の形態2に係るアクチュエータ駆動制御装置130の構成は、図7の構成に限定されない。 Note that the configuration of the actuator drive control device 130 according to Embodiment 2 is not limited to the configuration of FIG.
 図8(a)及び(b)は、実施の形態2に係るアクチュエータ駆動制御装置130の動作(アクチュエータ駆動制御方法)を概念的に示す図である。図8(a)及び(b)において、対物レンズ94、アクチュエータ96、レンズエラー信号生成部101、駆動アンプ113は、それぞれ図6及び図7の対物レンズ94、アクチュエータ96、レンズエラー信号生成部101、駆動アンプ113に対応する。図8(a)及び(b)のアクチュエータ駆動制御方法は、実施の形態1において、図3(a)及び(b)を用いて説明したものと同様である。ただし、図8(a)における振動成分(第1の成分)Ex2の取得方法、及び図8(b)における振動成分(第1の成分)Ex2の減算方法が、図3(a)及び(b)の場合とは異なる。具体的には、図8(a)における振動成分(第1の成分)Ex2の電圧値を、図7における光ディスク回転角検出部102で検出される複数の回転角と対応させて取得する。すなわち、各々の光ディスク回転角における振動成分(第1の成分)Ex2の電圧値を取得する。また、図8(b)における振動成分(第1の成分)Ex2の減算では、現在の光ディスク回転角を検出し、それに対応する振動成分(第1の成分)Ex2の電圧値を、レンズエラー信号の電圧値(駆動成分Dr2と振動成分Ex2の合計値である第2の成分Dr2+Ex2)から第1の成分Ex2を減算する。なお、レンズエラー信号の生成方法としては、例えば、プッシュプル法、DPP(Differential Push-Pull)法又はDPD(Differential Phase Detection)法等の公知の方法を用いることができる。 FIGS. 8A and 8B are diagrams conceptually showing the operation (actuator drive control method) of the actuator drive control device 130 according to the second embodiment. 8A and 8B, the objective lens 94, the actuator 96, the lens error signal generation unit 101, and the drive amplifier 113 are respectively the objective lens 94, the actuator 96, and the lens error signal generation unit 101 shown in FIGS. , Corresponding to the drive amplifier 113. The actuator drive control method shown in FIGS. 8A and 8B is the same as that described in the first embodiment with reference to FIGS. 3A and 3B. However, the acquisition method of the vibration component (first component) Ex2 in FIG. 8A and the subtraction method of the vibration component (first component) Ex2 in FIG. ) Is different. Specifically, the voltage value of the vibration component (first component) Ex2 in FIG. 8A is acquired in correspondence with a plurality of rotation angles detected by the optical disc rotation angle detection unit 102 in FIG. That is, the voltage value of the vibration component (first component) Ex2 at each optical disk rotation angle is acquired. Further, in the subtraction of the vibration component (first component) Ex2 in FIG. 8B, the current optical disk rotation angle is detected, and the voltage value of the corresponding vibration component (first component) Ex2 is converted into a lens error signal. The first component Ex2 is subtracted from the voltage value (second component Dr2 + Ex2 which is the total value of the drive component Dr2 and the vibration component Ex2). As a method for generating a lens error signal, a known method such as a push-pull method, a DPP (Differential Push-Pull) method, or a DPD (Differential Phase Detection) method can be used.
 対物レンズ94は、アクチュエータ96に印加する駆動電圧によってレンズシフトする。駆動電圧とレンズシフト量(対物レンズの移動量)との関係は、レンズシフト量がある範囲(線形領域)内であれば線形となるが、前記ある範囲を超える領域(非線形領域)では非線形となる。非線形領域で、アクチュエータ96に駆動電圧を印加すると、印加する駆動電圧と、振動の内の駆動成分Drの振幅値との関係が非線形となるため、振動の内の駆動成分Drの振幅値が、駆動信号に対応しない誤った情報となる。よって、制御ゲインの取得の際には、レンズシフト量の線形領域で、駆動電圧を印加することが望ましい。 The objective lens 94 is lens-shifted by a driving voltage applied to the actuator 96. The relationship between the driving voltage and the lens shift amount (the amount of movement of the objective lens) is linear if the lens shift amount is within a certain range (linear region), but is non-linear in the region exceeding the certain range (nonlinear region). Become. When a drive voltage is applied to the actuator 96 in the non-linear region, the relationship between the drive voltage to be applied and the amplitude value of the drive component Dr in the vibration becomes nonlinear, so the amplitude value of the drive component Dr in the vibration is This is incorrect information that does not correspond to the drive signal. Therefore, when acquiring the control gain, it is desirable to apply the drive voltage in the linear region of the lens shift amount.
 図9は、実施の形態2に係るアクチュエータ駆動制御装置130によるアクチュエータ駆動制御方法の一例を示すフローチャートである。図9における工程S11からS20は、図4における工程S1からS10と同様であるが、図9の工程S12及び工程S16が図4に示される工程S2及び工程S6と異なる。 FIG. 9 is a flowchart showing an example of an actuator drive control method by the actuator drive control device 130 according to the second embodiment. Steps S11 to S20 in FIG. 9 are the same as steps S1 to S10 in FIG. 4, but steps S12 and S16 in FIG. 9 are different from steps S2 and S6 shown in FIG.
 実施の形態2においては、制御対象位置信号であるレンズエラー信号の振動成分(第1の成分)Ex2を1周期分取得する工程(工程S12)では、光ディスクを回転させながら、図7における光ディスク回転角検出部102で検出される複数の回転角と対応させて、電圧値を取得する。また、レンズエラー信号から取得された振動成分(第2の成分)(Dr2+Ex2)から振動成分(第1の成分)Ex2を減算する工程(工程S16)では、現在の光ディスク回転角を検出し、それに対応する振動成分(第1の成分)Ex2の電圧値をレンズエラー信号の電圧値(第2の成分)から減算する。実施の形態2において、上記以外の点は、実施の形態1の場合と同様である。 In the second embodiment, in the step (step S12) of acquiring the vibration component (first component) Ex2 of the lens error signal, which is a control target position signal, for one cycle, the optical disc is rotated in FIG. A voltage value is acquired in association with a plurality of rotation angles detected by the angle detection unit 102. In the step of subtracting the vibration component (first component) Ex2 from the vibration component (second component) (Dr2 + Ex2) acquired from the lens error signal (step S16), the current optical disk rotation angle is detected, The voltage value of the corresponding vibration component (first component) Ex2 is subtracted from the voltage value (second component) of the lens error signal. In the second embodiment, points other than those described above are the same as in the first embodiment.
 以上に説明したように、実施の形態2に係るアクチュエータ駆動制御装置130及びアクチュエータ駆動制御方法、並びに、振動抑制制御装置80によれば、駆動信号Dを出力しないときの制御対象位置信号の振動成分(第1の成分)Ex2の電圧値を少なくとも1周期分取得し、駆動信号Dを印加したときの制御対象位置信号の第2の成分(Dr2+Ex2)から、振動成分(第1の成分)Ex2を減算(同じ光ディスク回転角の値を用いる)、減算によって得られた制御対象位置信号の振幅値(第2の成分)Dr2を取得し、取得した振幅値を基に振動抑制制御の制御ゲインを調整するので、制御ゲインを精度よく調整することができる。 As described above, according to the actuator drive control device 130, the actuator drive control method, and the vibration suppression control device 80 according to the second embodiment, the vibration component of the control target position signal when the drive signal D is not output. (First component) The voltage value of Ex2 is acquired for at least one period, and the vibration component (first component) Ex2 is obtained from the second component (Dr2 + Ex2) of the control target position signal when the drive signal D is applied. Subtract (using the same optical disk rotation angle value), obtain the amplitude value (second component) Dr2 of the position signal to be controlled obtained by subtraction, and adjust the control gain of vibration suppression control based on the obtained amplitude value Therefore, the control gain can be adjusted with high accuracy.
実施の形態3.
 上記実施の形態1及び2においては、制御対象が光ピックアップ内の対物レンズである場合を説明したが、実施の形態3においては、制御対象が磁気ディスク装置の磁気ヘッドである場合を説明する。実施の形態3における磁気ディスク装置は、振動抑制制御を行う振動抑制制御装置の一例であり、例えば、ハードディスク装置(HDD)である。
Embodiment 3 FIG.
In the first and second embodiments, the case where the control target is the objective lens in the optical pickup has been described. In the third embodiment, the case where the control target is the magnetic head of the magnetic disk device will be described. The magnetic disk device in the third embodiment is an example of a vibration suppression control device that performs vibration suppression control, and is, for example, a hard disk device (HDD).
 図10は、本発明の実施の形態3に係る振動抑制制御装置310である磁気ディスク装置の構成を概略的に示すブロック図である。図10に示されるように、実施の形態3に係る振動抑制制御装置310は、試料SAとしての磁気ディスクに向き合う位置に配置された制御対象320と、制御対象320の位置を制御するアクチュエータ(駆動手段)330と、アクチュエータ330を駆動するアクチュエータ駆動制御装置(駆動制御手段)370とを有する。アクチュエータ駆動制御装置370は、信号検出部340と、アクチュエータ駆動部350と、中央制御部360とを有する。図10における中央制御部360は情報を記憶する記憶部361を有する。ただし、記憶部361は、中央制御部360の外部に設けられてもよい。また、中央制御部360は、図2に示される中央制御部60と同様に、周波数選定部62及び周波数抽出部63と同様の構成を備えてもよい。また、アクチュエータ駆動制御装置370は、実施の形態3に係るアクチュエータ駆動制御方法を実施することができる装置である。 FIG. 10 is a block diagram schematically showing the configuration of a magnetic disk device that is the vibration suppression control device 310 according to the third embodiment of the present invention. As shown in FIG. 10, the vibration suppression control device 310 according to the third embodiment includes a control object 320 disposed at a position facing a magnetic disk as the sample SA, and an actuator (drive) that controls the position of the control object 320. Means) 330 and an actuator drive control device (drive control means) 370 for driving the actuator 330. The actuator drive control device 370 includes a signal detection unit 340, an actuator drive unit 350, and a central control unit 360. The central control unit 360 in FIG. 10 includes a storage unit 361 that stores information. However, the storage unit 361 may be provided outside the central control unit 360. Further, the central control unit 360 may have the same configuration as that of the frequency selection unit 62 and the frequency extraction unit 63, similarly to the central control unit 60 shown in FIG. The actuator drive control device 370 is a device that can implement the actuator drive control method according to the third embodiment.
 実施の形態3において、制御対象320は、磁化パターン検出部を有する。アクチュエータ330及びアクチュエータ駆動部350は、磁化パターン検出部を支持するアームと、アームを移動させるアーム駆動部とを有する。また、振動抑制制御装置310は、試料SAとしての磁気ディスクを回転させるスピンドルモータ381と、スピンドルモータ381を駆動するスピンドル駆動部382とを有する。 In the third embodiment, the control target 320 has a magnetization pattern detection unit. The actuator 330 and the actuator driving unit 350 include an arm that supports the magnetization pattern detection unit, and an arm driving unit that moves the arm. In addition, the vibration suppression control device 310 includes a spindle motor 381 that rotates a magnetic disk as the sample SA, and a spindle driving unit 382 that drives the spindle motor 381.
 信号検出部340は、磁気ヘッド位置信号生成部341と、磁気ディスク回転角検出部342とを有する。磁気ヘッド位置信号生成部341と、磁気ディスク回転角検出部342とは、それぞれ、図7におけるレンズエラー信号生成部101と、光ディスク回転角検出部102とに相当する機能を持つ。また、アクチュエータ駆動部350は、駆動信号生成部と、スイッチと、駆動アンプとを有する。アクチュエータ駆動部350の駆動信号生成部と、スイッチと、駆動アンプとは、それぞれ、図7における駆動信号生成部111と、スイッチ112と、駆動アンプ113とに相当する構成及び機能を有する。 The signal detection unit 340 includes a magnetic head position signal generation unit 341 and a magnetic disk rotation angle detection unit 342. The magnetic head position signal generation unit 341 and the magnetic disk rotation angle detection unit 342 have functions corresponding to the lens error signal generation unit 101 and the optical disk rotation angle detection unit 102 in FIG. 7, respectively. The actuator driving unit 350 includes a driving signal generation unit, a switch, and a driving amplifier. The drive signal generation unit, the switch, and the drive amplifier of the actuator drive unit 350 have configurations and functions corresponding to the drive signal generation unit 111, the switch 112, and the drive amplifier 113 in FIG.
 また、実施の形態3におけるアクチュエータ駆動制御方法は、実施の形態2において図8(a)及び(b)を用いて説明したものと同様の工程を有する。ただし、図8(a)及び(b)におけるレンズエラー信号生成部101は、実施の形態3においては磁気ヘッド位置信号生成部341となり、図8(a)及び(b)における対物レンズは、実施の形態3においては磁気ヘッドとなる。 Also, the actuator drive control method in the third embodiment has the same steps as those described in the second embodiment with reference to FIGS. 8 (a) and (b). However, the lens error signal generation unit 101 in FIGS. 8A and 8B is a magnetic head position signal generation unit 341 in the third embodiment, and the objective lens in FIGS. 8A and 8B is implemented. In the third embodiment, a magnetic head is obtained.
 さらに、実施の形態3におけるアクチュエータ駆動制御装置370によるアクチュエータ駆動制御方法を示すフローチャートは、実施の形態2において図9を用いて説明したものと同様である。ただし、工程S16のレンズエラー信号から振動成分Ex2を減算する工程は、磁気ヘッド位置信号から振動成分を減算する工程となる。実施の形態3において、上記以外の点は、実施の形態2の場合と同様である。 Furthermore, the flowchart showing the actuator drive control method by the actuator drive control device 370 in the third embodiment is the same as that described with reference to FIG. 9 in the second embodiment. However, the step of subtracting the vibration component Ex2 from the lens error signal in step S16 is a step of subtracting the vibration component from the magnetic head position signal. In the third embodiment, points other than the above are the same as in the second embodiment.
 以上に説明したように、実施の形態3に係るアクチュエータ駆動制御装置370及びアクチュエータ駆動制御方法、並びに、振動抑制制御装置310によれば、駆動信号Dを出力しないときの制御対象位置信号の内の振動成分(第1の成分)の電圧値を少なくとも1周期分取得し、駆動信号を印加したときの制御対象位置信号(第2の成分)から、振動成分(第1の成分)を減算(同じ光ディスク回転角の値を用いる)、減算によって得られた信号の振幅値(第2の成分)を取得し、取得した振幅値を基に振動抑制制御の制御ゲインを調整するので、制御ゲインを精度よく調整することができる。 As described above, according to the actuator drive control device 370, the actuator drive control method, and the vibration suppression control device 310 according to the third embodiment, among the control target position signals when the drive signal D is not output. The voltage value of the vibration component (first component) is acquired for at least one period, and the vibration component (first component) is subtracted from the control target position signal (second component) when the drive signal is applied (the same) Since the amplitude value (second component) of the signal obtained by subtraction is acquired and the control gain of vibration suppression control is adjusted based on the acquired amplitude value, the control gain is accurate. Can be adjusted well.
変形例.
 以上で説明した実施の形態1から3に係るアクチュエータ駆動制御装置及びアクチュエータ駆動制御方法は、電子回路などのハードウェア資源のみにより実現されてもよいし、又は、ハードウェア資源とソフトウェアとの協働により実現されてもよい。ハードウェア資源とソフトウェアとの協働により実現される場合には、アクチュエータ駆動制御装置及びアクチュエータ駆動制御方法は、例えば、コンピュータプログラムがコンピュータにより実行されることによって実現され、より具体的には、ROM(Read Only Memory)等の記録媒体に記録されたコンピュータプログラムが主記憶装置に読み出されて中央処理装置(CPU:Central Processing Unit)により実行されることによって実現される。コンピュータプログラムは、光ディスク等のコンピュータ読み取り可能な記録媒体に記録されて提供されてもよいし、インターネット等の通信回線を介して提供されてもよい。
Modified example.
The actuator drive control apparatus and the actuator drive control method according to the first to third embodiments described above may be realized only by hardware resources such as an electronic circuit, or the cooperation between hardware resources and software. May be realized. When realized by the cooperation of hardware resources and software, the actuator drive control device and the actuator drive control method are realized by, for example, a computer program being executed by a computer, and more specifically, a ROM. It is realized by reading a computer program recorded on a recording medium such as (Read Only Memory) into a main storage device and executing it by a central processing unit (CPU). The computer program may be provided by being recorded on a computer-readable recording medium such as an optical disk, or may be provided via a communication line such as the Internet.
 なお、本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の態様で実施することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist of the present invention.
 本発明に係るアクチュエータ駆動制御装置、アクチュエータ駆動制御方法、及び振動抑制制御装置は、アクチュエータを用いて制御対象の位置(特に、試料と制御対象との間の相対的位置)を制御する装置であれば、光ディスク装置及び磁気ディスク装置以外の各種の装置、例えば、アクチュエータによる精密な位置制御を行う制御対象を有するロボットなどの生産設備、又は、アクチュエータによる精密な位置制御を行う制御対象を有する自動車、船舶、航空機などの輸送機器のような各種の装置、に適用可能である。 The actuator drive control device, the actuator drive control method, and the vibration suppression control device according to the present invention are devices that control the position of a control target (particularly, the relative position between the sample and the control target) using an actuator. For example, various devices other than the optical disk device and the magnetic disk device, for example, a production facility such as a robot having a control object that performs precise position control by an actuator, or an automobile having a control object that performs precise position control by an actuator, The present invention can be applied to various devices such as transportation equipment such as ships and airplanes.
 10,80,310 振動抑制制御装置、 20 制御対象、 30 アクチュエータ、 40 信号検出部、 41 制御対象位置信号生成部、 50 アクチュエータ駆動部、 51 駆動信号生成部、 52 スイッチ、 53 駆動アンプ、 60 中央制御部、 70,130,370 アクチュエータ駆動制御装置、 81 スピンドルモータ、 82 スピンドル駆動部、 83 スレッドモータ、 84 スレッド駆動部、 85 レーザ駆動部、 90 光ピックアップ、 91 レンズユニット、 92 レーザ光源、 93 ビームスプリッタ、 94 対物レンズ、 95 光検出部、 96 アクチュエータ、 100 信号検出部、 101 レンズエラー信号生成部、 102 光ディスク回転角検出部、 110 アクチュエータ駆動部、 111 駆動信号生成部、 112 スイッチ、 113 駆動アンプ、 120 中央制御部、 320 制御対象(磁気ヘッド)、 330 アクチュエータ、 340 信号検出部、 350 アクチュエータ駆動部、 360 中央制御部、 SA 試料、 OD 光ディスク。 10, 80, 310 Vibration suppression control device, 20 control target, 30 actuator, 40 signal detection unit, 41 control target position signal generation unit, 50 actuator drive unit, 51 drive signal generation unit, 52 switch, 53 drive amplifier, 60 center Control unit, 70, 130, 370 Actuator drive control device, 81 spindle motor, 82 spindle drive unit, 83 thread motor, 84 thread drive unit, 85 laser drive unit, 90 optical pickup, 91 lens unit, 92 laser light source, 93 beam Splitter, 94 objective lens, 95 light detector, 96 actuator, 100 signal detector, 101 lens error signal generator, 102 optical disk rotation angle detector, 110 Actuator Drive Unit, 111 Drive Signal Generation Unit, 112 Switch, 113 Drive Amplifier, 120 Central Control Unit, 320 Control Target (Magnetic Head), 330 Actuator, 340 Signal Detection Unit, 350 Actuator Drive Unit, 360 Central Control Unit, SA Sample, OD optical disc.

Claims (21)

  1.  可動支持された制御対象を変位させるアクチュエータを駆動するアクチュエータ駆動制御装置であって、
     前記制御対象の位置を示す信号を検出し、前記検出された信号に対応する制御対象位置信号を生成する信号検出部と、
     前記アクチュエータに駆動信号を供給して、前記アクチュエータを周期信号で駆動するアクチュエータ駆動部と、
     前記アクチュエータ駆動部を制御する中央制御部と、
     を有し、
     前記中央制御部は、
     前記アクチュエータを駆動しない状態で前記制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、前記制御対象位置信号の第1の成分を取得し、
     前記アクチュエータを予め決められた前記周期信号で駆動した状態で前記制御対象位置信号の電圧値を計測することによって、前記制御対象位置信号の第2の成分を取得し、
     前記第2の成分から前記第1の成分を減算することによって、前記制御対象位置信号の第3の成分を取得し、
     前記第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、前記アクチュエータ駆動部が供給する前記駆動信号の大きさを調整するための制御ゲインを調整する
     ことを特徴とするアクチュエータ駆動制御装置。
    An actuator drive control device for driving an actuator for displacing a movable supported control object,
    A signal detection unit that detects a signal indicating the position of the control target and generates a control target position signal corresponding to the detected signal;
    An actuator driving unit for supplying a driving signal to the actuator and driving the actuator with a periodic signal;
    A central control unit for controlling the actuator driving unit;
    Have
    The central control unit
    By measuring a voltage value for at least one cycle of the control target position signal without driving the actuator, a first component of the control target position signal is obtained,
    By measuring the voltage value of the control target position signal in a state where the actuator is driven by the predetermined periodic signal, a second component of the control target position signal is obtained,
    Subtracting the first component from the second component to obtain a third component of the control target position signal;
    Adjusting a control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit based on a result of comparison between the amplitude value of the third component and a predetermined target amplitude value. An actuator drive control device.
  2.  前記中央制御部は、
     前記周期信号として、予め決められた複数の周波数から選択された周波数の信号を選定する周波数選定部と、
     前記信号検出部で検出される制御対象位置信号から、前記周波数選定部で選定され周波数の信号と同じ周波数成分の信号を抽出する信号抽出部と、
     を有し、
     前記第1の成分の取得及び前記第2の成分の取得は、前記抽出された前記制御対象位置信号に基づいて行われる
     ことを特徴とする請求項1に記載のアクチュエータ駆動制御装置。
    The central control unit
    A frequency selection unit that selects a signal having a frequency selected from a plurality of predetermined frequencies as the periodic signal;
    A signal extraction unit for extracting a signal having the same frequency component as the frequency signal selected by the frequency selection unit from the control target position signal detected by the signal detection unit;
    Have
    The actuator drive control device according to claim 1, wherein the acquisition of the first component and the acquisition of the second component are performed based on the extracted control target position signal.
  3.  前記目標振幅値は、前記周波数選定部で選定した周波数における前記アクチュエータの感度である、単位電圧当たりの制御対象の移動量を基に決定され、
     前記アクチュエータの感度は、予め決められた基準値である
     ことを特徴とする請求項2に記載のアクチュエータ駆動制御装置。
    The target amplitude value is determined based on the amount of movement of the control target per unit voltage, which is the sensitivity of the actuator at the frequency selected by the frequency selection unit,
    The actuator drive control device according to claim 2, wherein the sensitivity of the actuator is a predetermined reference value.
  4.  前記制御対象は、光ディスク上を走査する光ピックアップに備えられた対物レンズであり、
     前記アクチュエータは、前記対物レンズを移動させる対物レンズアクチュエータである
     ことを特徴とする請求項1から3のいずれか1項に記載のアクチュエータ駆動制御装置。
    The control target is an objective lens provided in an optical pickup that scans on an optical disc,
    The actuator drive control device according to any one of claims 1 to 3, wherein the actuator is an objective lens actuator that moves the objective lens.
  5.  前記信号検出部は、前記光ディスクの回転角を検出する回転角検出部を有し、
     複数の前記回転角に対応する前記制御対象位置信号の内の前記第1の成分の電圧値を取得し、
     現在の前記回転角に対応する前記制御対象位置信号の内の前記第2の成分の電圧値を取得し、前記第2の成分の電圧値から前記第1の成分の電圧値を減算することで、前記制御対象の駆動成分である前記第3の成分を取得する
     ことを特徴とする請求項4に記載のアクチュエータ駆動制御装置。
    The signal detection unit includes a rotation angle detection unit that detects a rotation angle of the optical disc,
    Obtaining a voltage value of the first component of the control target position signal corresponding to a plurality of the rotation angles;
    By acquiring the voltage value of the second component in the control target position signal corresponding to the current rotation angle, and subtracting the voltage value of the first component from the voltage value of the second component. The actuator drive control device according to claim 4, wherein the third component that is the drive component to be controlled is acquired.
  6.  前記中央制御部は、前記周期信号の電圧値と前記制御対象のシフト量の関係が線形となる範囲内で、前記周期信号の電圧値を決定することを特徴とする請求項5に記載のアクチュエータ駆動制御装置。 The actuator according to claim 5, wherein the central control unit determines the voltage value of the periodic signal within a range in which a relationship between the voltage value of the periodic signal and the shift amount of the control target is linear. Drive control device.
  7.  前記制御対象は、磁気ディスク上を走査する磁気ヘッドであり、
     前記アクチュエータは、前記磁気ヘッドを移動可能に支持する磁気ヘッド駆動装置である
     ことを特徴とする請求項1から3のいずれか1項に記載のアクチュエータ駆動制御装置。
    The control target is a magnetic head that scans on a magnetic disk,
    4. The actuator drive control device according to claim 1, wherein the actuator is a magnetic head drive device that movably supports the magnetic head. 5.
  8.  可動支持された前記制御対象の位置を示す信号を検出し、前記検出された信号に対応する制御対象位置信号を生成する信号検出部と、前記制御対象を変位させるアクチュエータに駆動信号を供給して、前記アクチュエータを周期信号で駆動するアクチュエータ駆動部と、前記アクチュエータ駆動部を制御する中央制御部とを有するアクチュエータ駆動制御装置における、アクチュエータ駆動制御方法であって、
     前記アクチュエータを駆動しない状態で前記制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、前記制御対象位置信号の第1の成分を取得するステップと、
     前記アクチュエータを予め決められた前記周期信号で駆動した状態で前記制御対象位置信号の電圧値を計測することによって、前記制御対象位置信号の第2の成分を取得するステップと、
     前記第2の成分から前記第1の成分を減算することによって、前記制御対象位置信号の第3の成分を取得するステップと、
     前記第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、前記アクチュエータ駆動部が供給する前記駆動信号の大きさを調整するための制御ゲインを調整するステップと
     を有することを特徴とするアクチュエータ駆動制御方法。
    A drive signal is supplied to a signal detector that detects a signal indicating the position of the control object that is movably supported, generates a control object position signal corresponding to the detected signal, and an actuator that displaces the control object. An actuator drive control method in an actuator drive control device having an actuator drive unit that drives the actuator with a periodic signal and a central control unit that controls the actuator drive unit,
    Obtaining a first component of the control target position signal by measuring a voltage value for at least one cycle of the control target position signal without driving the actuator; and
    Obtaining a second component of the control target position signal by measuring a voltage value of the control target position signal in a state in which the actuator is driven by the predetermined periodic signal;
    Obtaining a third component of the control target position signal by subtracting the first component from the second component;
    Adjusting a control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit based on a result of comparison between the amplitude value of the third component and a predetermined target amplitude value; An actuator drive control method characterized by comprising:
  9.  前記中央制御部は、
     前記周期信号として、予め決められた複数の周波数から選択された周波数の信号を選定し、
     前記信号検出部で検出される制御対象位置信号から、前記選定された周波数の信号と同じ周波数成分の信号を抽出し、
     前記第1の成分の取得及び前記第2の成分の取得は、前記抽出された前記制御対象位置信号に基づいて行われる
     ことを特徴とする請求項8に記載のアクチュエータ駆動制御方法。
    The central control unit
    As the periodic signal, a signal having a frequency selected from a plurality of predetermined frequencies is selected,
    From the control target position signal detected by the signal detector, extract a signal having the same frequency component as the signal of the selected frequency,
    The actuator drive control method according to claim 8, wherein the acquisition of the first component and the acquisition of the second component are performed based on the extracted control target position signal.
  10.  前記目標振幅値は、前記選定された周波数における前記アクチュエータの感度である、単位電圧当たりの制御対象の移動量を基に決定され、
     前記アクチュエータの感度は、予め決められた基準値である
     ことを特徴とする請求項9に記載のアクチュエータ駆動制御方法。
    The target amplitude value is determined based on the amount of movement of the control target per unit voltage, which is the sensitivity of the actuator at the selected frequency,
    The actuator drive control method according to claim 9, wherein the sensitivity of the actuator is a predetermined reference value.
  11.  前記制御対象は、光ディスク上を走査する光ピックアップに備えられた対物レンズであり、
     前記アクチュエータは、前記対物レンズを移動させる対物レンズアクチュエータである
     ことを特徴とする請求項8から10のいずれか1項に記載のアクチュエータ駆動制御方法。
    The control target is an objective lens provided in an optical pickup that scans on an optical disc,
    The actuator drive control method according to any one of claims 8 to 10, wherein the actuator is an objective lens actuator that moves the objective lens.
  12.  前記信号検出部は、前記光ディスクの回転角を検出する回転角検出部を有し、
     複数の前記回転角に対応する前記制御対象位置信号の内の前記第1の成分の電圧値を取得し、
     現在の前記回転角に対応する前記制御対象位置信号の内の前記第2の成分の電圧値を取得し、前記第2の成分の電圧値から前記第1の成分の電圧値を減算することで、前記制御対象の駆動成分である前記第3の成分を取得する
     ことを特徴とする請求項11に記載のアクチュエータ駆動制御方法。
    The signal detection unit includes a rotation angle detection unit that detects a rotation angle of the optical disc,
    Obtaining a voltage value of the first component of the control target position signal corresponding to a plurality of the rotation angles;
    By acquiring the voltage value of the second component in the control target position signal corresponding to the current rotation angle, and subtracting the voltage value of the first component from the voltage value of the second component. The actuator drive control method according to claim 11, wherein the third component that is the drive component to be controlled is acquired.
  13.  前記中央制御部は、前記周期信号の電圧値と前記制御対象のシフト量の関係が線形となる範囲内で、前記周期信号の電圧値を決定することを特徴とする請求項12に記載のアクチュエータ駆動制御方法。 The actuator according to claim 12, wherein the central control unit determines the voltage value of the periodic signal within a range in which a relationship between the voltage value of the periodic signal and the shift amount of the control target is linear. Drive control method.
  14.  前記制御対象は、磁気ディスク上を走査する磁気ヘッドであり、
     前記アクチュエータは、前記磁気ヘッドを移動可能に支持する磁気ヘッド駆動装置である
     ことを特徴とする請求項9から11のいずれか1項に記載のアクチュエータ駆動制御方法。
    The control target is a magnetic head that scans on a magnetic disk,
    The actuator driving control method according to any one of claims 9 to 11, wherein the actuator is a magnetic head driving device that movably supports the magnetic head.
  15.  可動支持された制御対象と、
     前記制御対象を変位させるアクチュエータと、
     前記制御対象の位置を示す信号を検出し、前記検出された信号に対応する制御対象位置信号を生成する信号検出部と、
     前記アクチュエータに駆動信号を供給して、前記アクチュエータを周期信号で駆動するアクチュエータ駆動部と、
     前記アクチュエータ駆動部を制御する中央制御部と、
     を有し、
     前記中央制御部は、
     前記アクチュエータを駆動しない状態で前記制御対象位置信号の少なくとも1周期分の電圧値を計測することによって、前記制御対象位置信号の第1の成分を取得し、
     前記アクチュエータを予め決められた前記周期信号で駆動した状態で前記制御対象位置信号の電圧値を計測することによって、前記制御対象位置信号の第2の成分を取得し、
     前記第2の成分から前記第1の成分を減算することによって、前記制御対象位置信号の第3の成分を取得し、
     前記第3の成分の振幅値と予め決められた目標振幅値との比較の結果に基づいて、前記アクチュエータ駆動部が供給する前記駆動信号の大きさを調整するための制御ゲインを調整する
     ことを特徴とする振動抑制制御装置。
    A control object that is movably supported;
    An actuator for displacing the controlled object;
    A signal detection unit that detects a signal indicating the position of the control target and generates a control target position signal corresponding to the detected signal;
    An actuator driving unit for supplying a driving signal to the actuator and driving the actuator with a periodic signal;
    A central control unit for controlling the actuator driving unit;
    Have
    The central control unit
    By measuring a voltage value for at least one cycle of the control target position signal without driving the actuator, a first component of the control target position signal is obtained,
    By measuring the voltage value of the control target position signal in a state where the actuator is driven by the predetermined periodic signal, a second component of the control target position signal is obtained,
    Subtracting the first component from the second component to obtain a third component of the control target position signal;
    Adjusting a control gain for adjusting the magnitude of the drive signal supplied by the actuator drive unit based on a result of comparison between the amplitude value of the third component and a predetermined target amplitude value. A vibration suppression control device.
  16.  前記中央制御部は、
     前記周期信号として、予め決められた複数の周波数から選択された周波数の信号を選定する周波数選定部と、
     前記信号検出部で検出される制御対象位置信号から、前記周波数選定部で選定され周波数の信号と同じ周波数成分の信号を抽出する信号抽出部と、
     を有し、
     前記第1の成分の取得及び前記第2の成分の取得は、前記抽出された前記制御対象位置信号に基づいて行われる
     ことを特徴とする請求項15に記載の振動抑制制御装置。
    The central control unit
    A frequency selection unit that selects a signal having a frequency selected from a plurality of predetermined frequencies as the periodic signal;
    A signal extraction unit for extracting a signal having the same frequency component as the frequency signal selected by the frequency selection unit from the control target position signal detected by the signal detection unit;
    Have
    The vibration suppression control device according to claim 15, wherein the acquisition of the first component and the acquisition of the second component are performed based on the extracted control target position signal.
  17.  前記目標振幅値は、前記周波数選定部で選定した周波数における前記アクチュエータの感度である、単位電圧当たりの制御対象の移動量を基に決定され、
     前記アクチュエータの感度は、予め決められた基準値である
     ことを特徴とする請求項16に記載の振動抑制制御装置。
    The target amplitude value is determined based on the amount of movement of the control target per unit voltage, which is the sensitivity of the actuator at the frequency selected by the frequency selection unit,
    The vibration suppression control apparatus according to claim 16, wherein the sensitivity of the actuator is a predetermined reference value.
  18.  前記制御対象は、光ディスク上を走査する光ピックアップに備えられた対物レンズであり、
     前記アクチュエータは、前記対物レンズを移動させる対物レンズアクチュエータである
     ことを特徴とする請求項15から17のいずれか1項に記載の振動抑制制御装置。
    The control target is an objective lens provided in an optical pickup that scans on an optical disc,
    The vibration suppression control device according to any one of claims 15 to 17, wherein the actuator is an objective lens actuator that moves the objective lens.
  19.  前記信号検出部は、前記光ディスクの回転角を検出する回転角検出部を有し、
     複数の前記回転角に対応する前記制御対象位置信号の内の前記第1の成分の電圧値を取得し、
     現在の前記回転角に対応する前記制御対象位置信号の内の前記第2の成分の電圧値を取得し、前記第2の成分の電圧値から前記第1の成分の電圧値を減算することで、前記制御対象の駆動成分である前記第3の成分を取得する
     ことを特徴とする請求項18に記載の振動抑制制御装置。
    The signal detection unit includes a rotation angle detection unit that detects a rotation angle of the optical disc,
    Obtaining a voltage value of the first component of the control target position signal corresponding to a plurality of the rotation angles;
    By acquiring the voltage value of the second component in the control target position signal corresponding to the current rotation angle, and subtracting the voltage value of the first component from the voltage value of the second component. The vibration suppression control device according to claim 18, wherein the third component that is the drive component to be controlled is acquired.
  20.  前記中央制御部は、前記周期信号の電圧値と前記制御対象のシフト量の関係が線形となる範囲内で、前記周期信号の電圧値を決定することを特徴とする請求項19に記載の振動抑制制御装置。 The vibration according to claim 19, wherein the central control unit determines the voltage value of the periodic signal within a range in which a relationship between the voltage value of the periodic signal and the shift amount of the control target is linear. Suppression control device.
  21.  前記制御対象は、磁気ディスク上を走査する磁気ヘッドであり、
     前記アクチュエータは、前記磁気ヘッドを移動可能に支持する磁気ヘッド駆動装置である
     ことを特徴とする請求項15から17のいずれか1項に記載の振動抑制制御装置。
    The control target is a magnetic head that scans on a magnetic disk,
    The vibration suppression control device according to any one of claims 15 to 17, wherein the actuator is a magnetic head driving device that movably supports the magnetic head.
PCT/JP2014/067903 2013-10-17 2014-07-04 Actuator drive control device, actuator drive control method, and vibration suppression control device WO2015056470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-216187 2013-10-17
JP2013216187A JP2016212929A (en) 2013-10-17 2013-10-17 Actuator drive control device, actuator drive control method and oscillation suppression control device

Publications (1)

Publication Number Publication Date
WO2015056470A1 true WO2015056470A1 (en) 2015-04-23

Family

ID=52827923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067903 WO2015056470A1 (en) 2013-10-17 2014-07-04 Actuator drive control device, actuator drive control method, and vibration suppression control device

Country Status (2)

Country Link
JP (1) JP2016212929A (en)
WO (1) WO2015056470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180299689A1 (en) * 2017-04-13 2018-10-18 Asahi Kasei Microdevices Corporation Driving control apparatus, device, optical module and driving control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105440A (en) * 1985-11-01 1987-05-15 Olympus Optical Co Ltd Oscillation type stage device
JPH05126517A (en) * 1991-11-05 1993-05-21 Canon Inc Scanning mechanism and scanning-type microscope using it and recording reproduction device using it
JPH09131331A (en) * 1995-11-09 1997-05-20 Noryoku Kaihatsu Kenkyusho:Kk Brain wave analysis and display device
JPH09258768A (en) * 1996-03-25 1997-10-03 Mitsubishi Electric Corp Under-noise voice recognizing device and under-noise voice recognizing method
JPH09288830A (en) * 1996-04-22 1997-11-04 Fujitsu Ltd Optical storage device
JPH11213585A (en) * 1998-01-26 1999-08-06 Hitachi Ltd Magnetic disk device and analyzer therefor
JP2000057598A (en) * 1998-08-07 2000-02-25 Sony Corp Biaxial actuator and optical device using the same
JP2006146981A (en) * 2004-11-16 2006-06-08 Sony Corp Optical pickup and optical disk device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105440A (en) * 1985-11-01 1987-05-15 Olympus Optical Co Ltd Oscillation type stage device
JPH05126517A (en) * 1991-11-05 1993-05-21 Canon Inc Scanning mechanism and scanning-type microscope using it and recording reproduction device using it
JPH09131331A (en) * 1995-11-09 1997-05-20 Noryoku Kaihatsu Kenkyusho:Kk Brain wave analysis and display device
JPH09258768A (en) * 1996-03-25 1997-10-03 Mitsubishi Electric Corp Under-noise voice recognizing device and under-noise voice recognizing method
JPH09288830A (en) * 1996-04-22 1997-11-04 Fujitsu Ltd Optical storage device
JPH11213585A (en) * 1998-01-26 1999-08-06 Hitachi Ltd Magnetic disk device and analyzer therefor
JP2000057598A (en) * 1998-08-07 2000-02-25 Sony Corp Biaxial actuator and optical device using the same
JP2006146981A (en) * 2004-11-16 2006-06-08 Sony Corp Optical pickup and optical disk device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180299689A1 (en) * 2017-04-13 2018-10-18 Asahi Kasei Microdevices Corporation Driving control apparatus, device, optical module and driving control method
US11036058B2 (en) * 2017-04-13 2021-06-15 Asahi Kasei Microdevices Corporation Driving control apparatus, device, optical module and driving control method
US11719954B2 (en) 2017-04-13 2023-08-08 Asahi Kasei Microdevices Corporation Driving control apparatus, device, optical module and driving control method

Also Published As

Publication number Publication date
JP2016212929A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP5747129B2 (en) Stage device and sample observation device
JP2003123294A (en) Apparatus and method for determining disc type
WO2015056470A1 (en) Actuator drive control device, actuator drive control method, and vibration suppression control device
JP5314884B2 (en) Optical disk drive device
JP5762657B2 (en) TRACKING CONTROL DEVICE, TRACKING CONTROL METHOD, AND OPTICAL DISK DEVICE
WO2016067741A1 (en) Servo control device and servo control method
JP4133714B2 (en) Track jump control device and track jump control method
WO2017183575A1 (en) Optical pickup control device and optical pickup control method
JP4191628B2 (en) Optical disk inspection device
US20040208094A1 (en) Exposure apparatus for optical disc
JP4496536B2 (en) Recording / reproducing apparatus for optical recording medium
JP4114627B2 (en) Optical disk device
JP2006344311A (en) Device and method for servo control, and optical disk recording/reproducing device
JP2008108389A (en) Optical disc drive and focus control method
JP3933390B2 (en) Optical disc apparatus and focus movement method
JP2010108563A (en) Controller of lens actuator for optical pickup, and optical disc device equipped with the same
JP4968753B2 (en) Information recording / reproducing apparatus and method
JP2008034050A (en) Recording and reproducing device, measuring method of self-excited vibration, and control program for measuring self-excited vibration
JP2003030875A (en) Optical disk unit
JP5494265B2 (en) Optical pickup control circuit and optical disk drive device
JP2006294153A (en) Focus servo system and focus servo method
JP2004094983A (en) Inspection device of optical disk
JP2007018650A (en) Optical disk drive and method for controlling optical disk drive
JP2008193859A (en) Dc motor controller
JP2010135018A (en) Optical disk device, track position error detecting method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14854180

Country of ref document: EP

Kind code of ref document: A1