WO2016067741A1 - Servo control device and servo control method - Google Patents

Servo control device and servo control method Download PDF

Info

Publication number
WO2016067741A1
WO2016067741A1 PCT/JP2015/074693 JP2015074693W WO2016067741A1 WO 2016067741 A1 WO2016067741 A1 WO 2016067741A1 JP 2015074693 W JP2015074693 W JP 2015074693W WO 2016067741 A1 WO2016067741 A1 WO 2016067741A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
gain
control
filter
servo control
Prior art date
Application number
PCT/JP2015/074693
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 金武
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015562986A priority Critical patent/JPWO2016067741A1/en
Publication of WO2016067741A1 publication Critical patent/WO2016067741A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/10Track finding or aligning by moving the head ; Provisions for maintaining alignment of the head relative to the track during transducing operation, i.e. track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following

Definitions

  • the present invention relates to a servo control device having a drive mechanism control unit that controls a drive mechanism that drives a controlled object, and a servo control method.
  • a control system including a drive mechanism control unit that controls a drive mechanism that drives a control target based on a signal indicating the position of the control target
  • feedback control that causes the position of the control target to follow a target position is used.
  • Such feedback control requires high-precision control of the position of the controlled object and stable control (control stability) so that the drive mechanism does not oscillate.
  • control stability control stability
  • the gain margin becomes small and the stability of control is impaired.
  • a phase delay occurs due to a calculation delay of a control filter included in a control system using a high frequency band as a control band. Further, when the drive mechanism has a resonance point (resonance frequency), a phase delay occurs at the resonance frequency. Thus, generally, in feedback control, the accuracy of control and the stability of control are in a trade-off relationship. Therefore, generally, in order to improve the stability of control, a low frequency band is used as a control band.
  • Patent Document 1 proposes a positioning control device in which a filter having an anti-resonance point near the resonance frequency of the drive mechanism and having a resonance point near the anti-resonance frequency is added. Thereby, the resonance point in the open loop characteristic is moved to the high frequency side, and the control band is increased without impairing the stability of the control.
  • Patent Document 2 proposes a control circuit that includes a notch filter that attenuates the amplitude of a specific frequency component and adjusts the frequency at which the gain (gain) of the notch filter is minimized to the resonance frequency of the drive mechanism. . Thereby, only a component near the resonance frequency in the open loop characteristic is greatly attenuated to ensure a large gain margin.
  • JP 2001-195850 A (Claim 2, paragraph 0015, FIGS. 2 to 4) Japanese Patent Laid-Open No. 9-44863 (paragraphs 0012 and 0022, FIG. 1, FIG. 5 and FIG. 7)
  • the resonance frequency of the drive mechanism varies for each drive mechanism. Further, the resonance frequency of the drive mechanism varies depending on the temperature of the drive mechanism.
  • a state in which the resonance frequency of the drive mechanism matches the frequency of the resonance point of the added filter may occur due to variations in the resonance frequency of each drive mechanism. When such a state occurs, there is a problem that the amplitude at the resonance point in the open loop characteristic is further increased, the gain margin is decreased, and the stability of the control is impaired.
  • the present invention has been made to solve the above-described problems of the prior art, and in the present invention, a gain increasing filter for locally increasing an amplitude gain at a specific frequency in an open loop characteristic is added. By doing so, the phase delay is improved in the high frequency band, so that the high frequency band can be used as the control band used for servo control. For this reason, an object is to realize highly accurate control.
  • a servo control device is a servo control device that controls a drive mechanism that drives a control target, and a signal detection unit that generates a control target position signal that is a signal indicating the position of the control target that is movably supported. And a central control unit that generates a control signal for controlling the drive mechanism based on the control target position signal generated by the signal detection unit, and the central control unit includes the signal detection unit And an open loop characteristic of the open loop including the drive mechanism, including a gain increasing filter having a gain frequency characteristic for locally increasing an amplitude gain at a predetermined specific frequency.
  • the servo control method is a servo control method for controlling a drive mechanism that drives a control object, and drives the control object that is movably supported based on a control signal supplied from a central control unit.
  • An open loop characteristic of an open loop including a step, a step of generating a control target position signal that is a signal indicating the position of the control target by a signal detection unit, and the central control unit includes the drive mechanism and the signal detection unit
  • the control signal is obtained from the control target position signal generated by the signal detector using a gain increasing filter having a gain frequency characteristic that locally increases the gain of the amplitude at a predetermined specific frequency. And generating.
  • the present invention can provide a servo control device and a servo control method capable of using a higher frequency band than the conventional control band while ensuring the stability of control.
  • FIG. 3 is a block diagram illustrating components of a main part of the servo control device according to the first embodiment.
  • FIG. 6 is a block diagram showing other components of the main part of the servo control device according to the first embodiment. It is a figure which shows an example of the transfer function of the gain increase filter of the servo control apparatus which concerns on Embodiment 1.
  • FIG. (A) And (b) is a figure which shows the frequency characteristic of the gain increase filter of the servo control apparatus which concerns on Embodiment 1.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a digital filter as a gain increasing filter of the servo control device according to the first embodiment. It is a block diagram which shows roughly the structure of the optical disk apparatus which is a servo control apparatus concerning Embodiment 2 of this invention. It is a block diagram which shows roughly the structure of the magnetic disc apparatus which is a servo control apparatus concerning Embodiment 3 of this invention. It is a block diagram which shows roughly the structure of the motor control apparatus which is a servo control apparatus which concerns on Embodiment 4 of this invention.
  • a frequency that suppresses an increase in gain near the resonance frequency can be selected as the specific frequency of the gain increase filter. For this reason, control stability can be maintained even when the drive mechanism has a resonance point and there is a variation in resonance frequency for each drive mechanism.
  • FIG. 1 is a block diagram schematically showing a configuration of a servo control device 10 according to the first embodiment of the present invention.
  • the servo control device 10 is a device that can perform the servo control method according to the first embodiment.
  • the servo control device 10 includes a signal detection unit 50 and a central control unit 60.
  • the servo control device 10 can include a sample SA, a control target 20, a drive mechanism 30, or a drive mechanism control unit 40.
  • the signal detection unit 50 generates a control target position signal SIG0 that is a signal indicating the position of the control target 20 that is movably supported.
  • the central control unit 60 generates a control signal SIG2 for controlling the drive mechanism 30 that drives the control target 20, based on the control target position signal SIG0 generated by the signal detection unit 50.
  • the central control unit 60 is a gain increase having a gain frequency characteristic for locally increasing the gain of the amplitude at a predetermined specific frequency in the open loop characteristics of the open loop including the signal detection unit 50 and the drive mechanism 30.
  • a filter (62 shown in FIGS. 3 and 4 described later) is included.
  • the drive mechanism control unit 40 controls the drive mechanism 30 that drives the control target 20 that is movably supported based on the control signal SIG ⁇ b> 2 supplied from the central control unit 60.
  • the central control unit 60 gains a gain increase filter (62 shown in FIGS. 3 and 4 described later) having a gain frequency characteristic that locally increases the gain of the amplitude at a specific frequency. ) Is used.
  • the control object 20 is arranged at a position facing the sample SA, for example.
  • the control target 20 is, for example, a device or a member for scanning the sample SA in three dimensions, and is supported by the main body of the servo control device 10 so as to be movable.
  • “scanning” refers to detecting the state of a desired position (detected position SA0) of the sample SA while moving or detecting information recorded at this position.
  • the sample SA has, for example, a thin plate shape.
  • “three-dimensional” can be expressed in the x-axis direction and the y-axis direction (that is, the xy orthogonal coordinate system) parallel to the detection surface (the lower surface of the sample SA in FIG. 1) including the detection position of the sample SA.
  • xy plane and a z-axis direction perpendicular to the surface to be detected of the sample SA (that is, a direction orthogonal to the xy plane that can be expressed in the xy orthogonal coordinate system).
  • the optical pickup irradiates the sample SA with a light beam, receives reflected light (optical signal) from the sample SA, and receives the reflected light received.
  • the electric signal (detection signal) corresponding to the signal is generated, and the generated electric signal is supplied to the signal detection unit 50. Details in the case where the control target 20 is an objective lens of an optical pickup will be described in the second embodiment.
  • the drive mechanism 30 is, for example, a resonance type actuator that realizes highly efficient operation by being driven at a resonance point (resonance frequency) of the drive mechanism 30.
  • the drive mechanism 30 moves the control object 20 that scans the sample SA in three dimensions according to the relative positional relationship between the sample SA and the control object 20.
  • the drive mechanism 30 may be an actuator having a configuration having no resonance point.
  • the drive mechanism control unit 40 gives a command signal corresponding to the control signal SIG ⁇ b> 2 given from the central control unit 60 to the drive mechanism 30 to control the operation of the drive mechanism 30.
  • the drive mechanism control unit 40 may be a part of the central control unit 60.
  • the central control unit 60 generates a control signal SIG2 for controlling the drive mechanism 30 based on the control target position signal SIG0 given from the signal detection unit 50.
  • the central control unit 60 outputs a control signal SIG2 to the drive mechanism control unit 40.
  • the signal detection unit 50 receives the electrical signal (detection signal) output from the control target 20, and gives a control target position signal SIG0, which is a signal indicating the position of the control target 20, to the central control unit 60.
  • the control target position signal SIG0 is a signal indicating the relative positional relationship between the sample SA and the control target 20, for example.
  • the configuration of the servo control device 10 is not limited to the example of FIG. This will be described later with reference to FIG. Moreover, in FIG. 1, the example of control in case the controlled object 20 is displaced to the x-axis direction, the y-axis direction, and the z-axis direction is shown. However, the servo control device 10 to which the present invention is applied is not limited to such a form. The present invention is also applicable, for example, when a certain axis is used as a reference axis and the control object 20 is displaced in a direction (a certain angle direction) that forms a predetermined angle with respect to the reference axis.
  • FIG. 2 is a block diagram schematically showing another configuration of the servo control device according to the first embodiment of the present invention.
  • the servo control device 11 is a device that can perform the servo control method according to the first embodiment.
  • FIG. 2 is different from FIG. 1 in that the controlled object 20, the drive mechanism 30, and the drive mechanism control unit 40 are not included in the servo control device 11. That is, the servo control device 11 according to the first embodiment may include the signal detection unit 50 and the central control unit 60. In FIG. 2, the sample SA is not included in the servo control device 11, but may be included.
  • control target 20 (lens) and the drive mechanism 30 (voice coil motor) cannot operate independently, like an optical pickup. Therefore, for example, the control target 20, the drive mechanism 30, the drive mechanism control unit 40, and the sample SA (optical disk) are included in the servo control device 10.
  • the configuration example of the servo control device 10 shown in FIG. 2 shows a case where the drive mechanism 30 is a motor or the like, for example.
  • the motor can be driven by open loop control, it is omitted from the components of the servo control device 10 in FIG.
  • control object 20 the drive mechanism 30, the drive mechanism control unit 40, the signal detection unit 50, the central control unit 60, and the sample SA in FIG. 2 are the same as those shown in FIG.
  • FIG. 3 is a block diagram showing components of a main part of the servo control device 10 according to the first embodiment. That is, FIG. 2 is a block diagram showing components of a main part of the servo control device 10 in FIG. As shown in FIG. 3, the central control unit 60 includes, for example, a control filter 61 and a gain increase filter 62. Further, in FIG. 3, the configuration corresponding to the drive mechanism 30 and the drive mechanism control unit 40 in FIG. 1 is shown by one block (30, 40).
  • the signal detection unit 50 supplies the control filter 61 with a control target position signal SIG0 indicating the position of the control target 20.
  • the control filter 61 includes a filter for realizing feedback control as a constituent element.
  • the control filter 61 includes, for example, a PID (Proportional Integral Derivative) control filter.
  • the control filter 61 In the servo control device 10 according to the first embodiment, the control filter 61 generates the control signal SIG1 from the control target position signal SIG0. Then, the control filter 61 supplies the control signal SIG1 to the gain increase filter 62.
  • the gain increase filter 62 is a filter that locally increases an amplitude gain (dB) at a specific frequency.
  • the gain increasing filter 62 has a function of locally increasing the amplitude at a specific frequency with respect to the input control signal SIG1. That is, the gain increase filter 62 generates the control signal SIG2 in which the amplitude of the input control signal SIG1 is locally increased.
  • the gain increasing filter 62 outputs this control signal SIG2.
  • the drive mechanism 30 is controlled by the drive mechanism control unit 40.
  • the drive mechanism 30 drives the controlled object 20 in accordance with the control signal SIG2 output from the gain increasing filter 62.
  • the control object 20 outputs a signal indicating the position of the control object 20, for example.
  • the signal detection unit 50 receives a difference signal (deviation) between the signal indicating the position of the control target output from the control target 20 and the target position signal of the control target 20.
  • the signal detection unit 50 generates a control target position signal SIG0 corresponding to the difference signal.
  • the signal detection unit 50 may perform the following processing.
  • the signal detection unit 50 receives a signal indicating the position of the control target 20 output from the control target 20 and a target position signal of the control target 20.
  • the signal detection unit 50 calculates these difference signals (deviations).
  • the signal detection unit 50 generates a control target position signal SIG0 corresponding to the calculated difference signal.
  • the central control unit 60 performs feedback control for causing the control target 20 to follow the target position based on the control target position signal SIG0.
  • the gain increase filter 62 is inserted between the control filter 61 and the control target 20. In other words, the gain increasing filter 62 is arranged at the subsequent stage of the control filter 61. However, the gain increasing filter 62 may be inserted between the signal detection unit 50 and the control filter 61. In other words, the gain increasing filter 62 may be disposed in front of the control filter 61.
  • the gain increasing filter 62 may include an analog filter using a resistor, a capacitor, a coil, an operational amplifier, or the like as a constituent element. Further, the gain increasing filter 62 may include a digital filter such as a general-purpose microcomputer or DSP (Digital Signal Processing) as a constituent element.
  • a digital filter such as a general-purpose microcomputer or DSP (Digital Signal Processing) as a constituent element.
  • FIG. 4 is a block diagram showing the main components of the servo control device 11 according to the first embodiment, which is different from FIG. That is, FIG. 3 is a block diagram showing components of a main part of the servo control device 11 in FIG. 4 is different from FIG. 3 in that the control target 20, the drive mechanism 30, and the drive mechanism control unit 40 are not included in the servo control device 11. That is, the servo control device 11 according to the first embodiment may include the signal detection unit 50 and the central control unit 60.
  • FIG. 4 The components in FIG. 4 are the same as those shown in FIG. 4.
  • FIG. 5 is a diagram illustrating an example in which a peaking filter that is an analog filter is employed as the gain increasing filter 62 of the servo control device 10 and the servo control device 11 according to the first embodiment.
  • FIG. 5 shows an example of a transfer function of a peaking filter as the gain increasing filter 62.
  • the gain increasing filter 62 is a filter other than the peaking filter as long as the gain (gain) of the amplitude in the specific frequency range is locally large and the gain of the amplitude in the specific frequency range can be locally increased. It may be.
  • the peaking filter as the gain increasing filter 62 can include a common biquadratic filter as a constituent element.
  • the “biquadratic filter” is a filter whose denominator and numerator of the transfer function are both quadratic, and the transfer function is described by the following equation (1), for example.
  • s is a complex variable.
  • ⁇ 0 represents the peak frequency PKf 0 [Hz] expressed in radians [rad / sec].
  • the peak frequency PKf 0 [Hz] is a frequency at which the gain of the amplitude of the gain increasing filter 62 is maximized.
  • a 0 is a constant that determines the gain of the amplitude of the gain increasing filter 62.
  • Q 0 is a constant that determines the peak width of the signal output from the gain increasing filter 62.
  • FIGS. 6A and 6B are diagrams showing gain frequency characteristics and phase frequency characteristics of the gain increasing filter 62 according to the first embodiment.
  • the gain increasing filter 62 shown in FIGS. 6A and 6B is a peaking filter having a transfer characteristic indicated by the transfer function shown in Expression (1).
  • FIG. 6A shows the characteristic (gain frequency characteristic) of the gain [dB] of the amplitude with respect to the frequency [Hz].
  • FIG. 6B shows the characteristic (phase frequency characteristic) of the phase [degree] with respect to the frequency [Hz].
  • ⁇ 0 indicating the peak frequency PKf 0 [Hz] in radians [rad / sec]
  • a constant A 0 and a constant Q 0 are set to the following values: is doing.
  • the horizontal axis represents the frequency [Hz] of the signal output from the gain increasing filter 62
  • the vertical axis represents the gain [dB] of the amplitude of the peaking filter as the gain increasing filter 62.
  • the horizontal axis indicates the frequency [Hz] of the signal output from the peaking filter as the gain increase filter 62
  • the vertical axis indicates the phase of the signal output from the peaking filter as the gain increase filter 62. Degree].
  • the amplitude gain is calculated by the following equation (2).
  • Gain of amplitude [dB] 20 ⁇ log 10 X
  • X is a real value.
  • X (output amplitude) / (input amplitude). That is, the amplitude gain [dB] in FIG. 6A is a value obtained by converting the real value X to a decibel value.
  • Gain increase filter 62 shown in FIG. 6 (a) it is desirable to have a peak frequency PKF 0.
  • the peak frequency PKf 0 is a frequency at which the gain of the amplitude becomes maximum (maximum) in the gain frequency characteristic.
  • the gain-increasing filter 62 shown in FIG. 6 (a) having a peak frequency PKF 0 (i.e., PKF 0 in FIG. 6 (a)) to gradually gain distribution gain of the amplitude decreases with increasing distance from.
  • the gain increasing filter 62 has a phase frequency characteristic having a frequency domain FD 1 for advancing the phase in a frequency range below a specific frequency and a frequency domain FD 2 for delaying the phase in a frequency range exceeding the specific frequency. Can do.
  • the phase advances at a frequency lower than the peak frequency PKf 0 that is a specific frequency (the phase is larger than 0 degree). Further, the peaking filter as a gain-increasing filter 62, (less the phase of 0 degree) phase is delayed at frequencies above the peak frequency PKF 0 a specific frequency.
  • FIGS. 7A and 7B are diagrams showing the open loop characteristics of the servo control device 10 and the servo control device 11 according to the first embodiment.
  • the horizontal axis indicates the frequency [Hz] of the signal output from the gain increase filter 62
  • the vertical axis indicates the gain [dB] of the amplitude of the gain increase filter 62.
  • the horizontal axis indicates the frequency [Hz] of the signal output from the gain increase filter 62
  • the vertical axis indicates the phase [degree] of the signal output from the gain increase filter 62.
  • the horizontal and vertical axes in FIGS. 7A and 7B are the same as those described in FIGS. 6A and 6B, respectively.
  • a gain frequency characteristic curve 70a indicates an amplitude gain [dB] as an open loop characteristic of the comparative example.
  • a phase frequency characteristic curve 71a indicates the phase [degree] as the open loop characteristic of the comparative example.
  • the open loop characteristic of the comparative example does not include a gain increase filter (gain increase filter 62 shown in FIG. 2).
  • the open loop of the comparative example includes the signal detection unit 50, the control filter 61, and the drive mechanism 30 of FIGS. 3 and 4, and does not include the gain increase filter 62. That is, here, the comparative example refers to general feedback control in which the control target 20 is controlled by the control filter 61.
  • the open loop of the comparative example is represented by, for example, the product of the transfer function of the signal detection unit 50, the transfer function of the control filter 61, and the transfer function of the drive mechanism 30 shown in FIGS.
  • the control filter 61 includes a phase compensation filter as a component for realizing feedback control.
  • the control filter 61 has a phase compensation function in order to perform feedback control.
  • the gain frequency characteristic curve 70a and the phase frequency characteristic curve 71a are indicated by broken lines, respectively.
  • a gain frequency characteristic curve 70b shows the gain [dB] of the amplitude as the open loop characteristic in the first embodiment.
  • a phase frequency characteristic curve 71b indicates the phase [degree] as the open loop characteristic in the first embodiment.
  • the open loop characteristic in the first embodiment includes a gain increasing filter. This gain increasing filter is the gain increasing filter 62 shown in FIGS. 3 and 4, and has the characteristics shown in FIGS. 6 (a) and 6 (b).
  • the open loop of the first embodiment includes a signal detection unit 50, a central control unit 60, and a drive mechanism 30.
  • the gain frequency characteristic curve 70b and the phase frequency characteristic curve 71b are each indicated by a solid line.
  • GAf 0 [Hz] indicates a frequency at which the amplitude gain is 0 [dB] in the comparative example and the first embodiment.
  • THf 0 [Hz] indicates a frequency at which the phase is ⁇ 180 [degrees] in the comparative example.
  • THf 1 [Hz] indicates a frequency at which the phase is ⁇ 180 [degrees] in the first embodiment.
  • REf 0 [Hz] indicates the resonance frequency (resonance point) of the drive mechanism 30 in the comparative example and the first embodiment.
  • the peak is set so as to satisfy both the following first condition and second condition. It is desirable to determine the frequency PKf 0 [Hz]. That is, the phase near the frequency GAf 0 [Hz] at which the amplitude gain becomes 0 [dB] can be advanced by the first condition and the second condition.
  • the first condition is a condition that the peak frequency PKf 0 is equal to or higher than the frequency GAf 0 [Hz].
  • the frequency GAf 0 [Hz] is a frequency at which the amplitude gain is 0 [dB].
  • a broken line in FIG. 7A indicates a position where the gain is 0 [dB].
  • the second condition is a condition that the peak frequency PKf 0 is equal to or higher than the frequency THf 0 [Hz].
  • the frequency THf 0 [Hz] is a frequency at which the phase of the broken line in FIG. 7B is ⁇ 180 [degrees].
  • the frequency THf 0 [Hz] is a frequency at which the phase is ⁇ 180 [degrees].
  • the frequency THf 1 [Hz] indicates a position where the phase is ⁇ 180 [degrees].
  • the third condition is a condition that the peak frequency PKf 0 is a frequency greater than the resonance frequency REf 0 [Hz].
  • the drive mechanism 30 has a resonance point.
  • the resonance frequency REf 0 [Hz] is the frequency at the resonance point of the drive mechanism 30.
  • the first condition and the second condition may be satisfied.
  • the frequency GAf 0 4.1 ⁇ 10 3 [Hz].
  • the frequency GAf 0 is a frequency at which the amplitude gain is 0 [dB].
  • the frequency THf 0 1.0 ⁇ 10 4 [Hz].
  • the frequency THf 0 is a frequency at which the phase is ⁇ 180 [degrees] in the comparative example.
  • the resonance frequency REf 0 2.0 ⁇ 10 4 [Hz].
  • the resonance frequency REf 0 is the resonance frequency of the drive mechanism 30.
  • the peak frequency PKf 0 1.2 ⁇ 10 5 [Hz]. The first condition, the second condition, and the third condition are all satisfied.
  • the gain increase filter 62 can reduce the change in amplitude at the resonance point (resonance frequency REf 0 ).
  • the gain of the amplitude at the resonance point is not changed by the gain increasing filter 62.
  • the gain increase filter 62 can increase the phase advance amount of the frequency GAf 0 [Hz].
  • the frequency GAf 0 [Hz] is a frequency at which the amplitude gain becomes 0 [dB].
  • the region 72 is a region in which the phase delay is improved by the gain increasing filter 62.
  • the region 72 is the frequency region from the frequency GAF 0 to frequency THf 1.
  • FIG. 8 is a block diagram illustrating an example of a calculation block when the digital filter is a constituent element in the gain increasing filter 62 of the servo control device 10 according to the first embodiment.
  • 80a, 80b, 80c, 80d, 80e, and 80f are multipliers each having a predetermined multiplication coefficient. That is, the gain increasing filter 62 shown in FIG. 6 includes multipliers 80a, 80b, 80c, 80d, 80e, and 80f.
  • Reference numerals 80g and 80h denote delay elements (z ⁇ 1 ) as delay elements of one sample time. That is, the gain increasing filter 62 shown in FIG. 6 includes delay devices 80g and 80h.
  • the delay units 80g and 80h include, for example, a shift register as a constituent element.
  • 80i, 80j, 80k, and 80l are calculation blocks that function as adders. That is, the gain increasing filter 62 shown in FIG. 6 includes adders 80i, 80j, 80k, and 80l.
  • control filter 61 and the gain increasing filter 62 the characteristics of an arbitrary biquadratic filter can be realized by using a digital filter as a constituent element. As a result, a filter having the same gain frequency characteristic and phase frequency characteristic as the gain increasing filter 62 shown in FIGS. 6A and 6B can be realized.
  • the gain increase filter 62 is added to improve the phase delay and secure the gain margin. , Control stability can be maintained.
  • the gain increasing filter 62 locally increases the gain of the amplitude at a specific frequency in the open loop characteristic.
  • the specific frequency is, for example, the peak frequency PKf 0 [Hz] in FIGS. 6A and 6B.
  • the improvement of the phase delay is, for example, an improvement of the phase delay in the region 72 in FIG.
  • the phase delay is improved in a high frequency band.
  • a high frequency band can be used as a control band used for servo control.
  • the high frequency band is a region that is larger than the frequency THf 0 [Hz] and lower than the frequency THf 1 [Hz], for example, as a region 72 in FIG. 7B.
  • the low frequency band is, for example, a region below the frequency THf 0 [Hz] in FIG.
  • the frequency THf 1 [Hz] is a frequency at which the phase delay becomes ⁇ 180 [degrees] in the servo control device 10 and the servo control device 11 according to the first embodiment. At frequencies below the frequency THf 1 [Hz], the phase delay is smaller than ⁇ 180 [degrees].
  • a frequency that does not increase or decrease the gain at the resonance frequency can be selected as the specific frequency. That is, the servo control device 10, the servo control device 11, and the servo control method can suppress fluctuations in gain at the resonance frequency.
  • the specific frequency is, for example, the peak frequency PKf 0 [Hz] in FIGS. 6A and 6B.
  • the resonance frequency is, for example, the resonance frequency REf 0 [Hz] in FIG.
  • Embodiment 2 FIG. In the first embodiment, the general servo control device 10 and the servo control device 11 have been described.
  • the servo control device 90 according to the second embodiment is an optical disc device in which the control target 20 is an objective lens of an optical pickup.
  • FIG. 9 is a block diagram schematically showing the configuration of an optical disc apparatus that is the servo control apparatus 90 according to the second embodiment.
  • the servo control device 90 includes a spindle motor 91, a spindle control unit 92, a thread motor 93, a thread control unit 94, a laser control unit 95, and an optical pickup. 100, an actuator control unit 110, a signal detection unit 120, and a central control unit 130.
  • the spindle motor 91 rotates the optical disc OD.
  • the actuator control unit 110 corresponds to the drive mechanism control unit 40 shown in the first embodiment.
  • Optical disc OD includes a read-only disc, a write once disc, and a rewritable disc.
  • a read-only disc can only be played.
  • the write-once disc can be played back and additionally recorded, and cannot be rewritten.
  • the rewritable disc can be reproduced, additionally recorded, and rewritten.
  • the optical disc OD is, for example, a BD (Blu-ray Disc) (registered trademark), a DVD (Digital Versatile Disc), a CD (Compact Disc), or the like.
  • the optical disc OD corresponds to the sample SA shown in the first embodiment.
  • the spindle motor 91 rotates optical disc OD.
  • the rotation method of the spindle motor 91 includes a CAV (Constant Angular Velocity) method with a constant angular velocity or a CLV (Constant Linear Velocity) method with a constant linear velocity.
  • the spindle controller 92 controls the spindle motor 91.
  • the thread motor 93 moves the optical pickup 100 in the tracking direction of the optical disc OD.
  • the tracking direction is the radial direction of the optical disc OD. In FIG. 9, the tracking direction is the x-axis direction.
  • the thread control unit 94 controls the thread motor 93.
  • the laser control unit 95 controls the laser light source 102.
  • the optical pickup 100 includes a laser light source 102, a beam splitter 103, an objective lens 104, a light detection unit 105, a lens unit 101, an elastic support member, and an actuator 106.
  • the beam splitter 103 reflects the laser light from the laser light source 102.
  • the objective lens 104 focuses the laser beam reflected by the beam splitter 103 on the information recording surface of the optical disc OD.
  • the objective lens 104 corresponds to the control target 20 shown in the first embodiment.
  • the light detection unit 105 includes a light receiving element that receives reflected light reflected by the optical disc OD and transmitted through the objective lens 104 and the beam splitter 103 and converts it into an electrical signal.
  • the lens unit 101 is a unit including these components 102 to 105.
  • the elastic support member 107 supports the objective lens 104 in the lens unit 101 so as to be movable.
  • the actuator 106 is a drive mechanism that moves the objective lens 104 in the tracking direction and the focusing direction (z-axis direction) against the elastic force of the elastic support member 107.
  • the actuator 106 corresponds to the drive mechanism 30 shown in the first embodiment.
  • the actuator control unit 110 as a drive mechanism control unit controls the actuator 106 in response to a command signal from the central control unit 130.
  • the actuator control unit 110 corresponds to the drive mechanism control unit 40 shown in the first embodiment.
  • the central control unit 130 corresponds to the central control unit 60 shown in the first embodiment.
  • the actuator control unit 110 may be a part of the central control unit 130.
  • the signal detection unit 120 inputs an electrical signal from the light detection unit 105. That is, the signal detection unit 120 receives an electrical signal from the light detection unit 105. Then, the signal detection unit 120 outputs the generated signal.
  • the signal detection unit 120 corresponds to the signal detection unit 50 shown in the first embodiment.
  • the signal generated by the signal detection unit 120 is an objective lens position signal, a focus error signal, a tracking error signal, or the like.
  • the objective lens position signal is a signal indicating the position of the objective lens 104.
  • the focus error signal is a control signal for the objective lens 104 to focus the laser beam on the information recording surface of the optical disc OD.
  • the tracking error signal is a control signal for the objective lens 104 to follow a track on the information recording surface of the optical disc OD.
  • the direction F is the focusing direction.
  • the direction T is the tracking direction.
  • the direction T is the radial direction of the optical disc.
  • a known method such as an astigmatism method can be used.
  • a method for generating the tracking error signal for example, a known method such as a push-pull method, a DPP (Differential Push-Pull) method, or a DPD (Differential Phase Detection) method can be used.
  • the central control unit 130 issues a command for controlling the actuator 106 to the actuator control unit 110.
  • the central control unit 130 includes the control filter 61 and the gain increase filter 62 described in FIG.
  • control filter 61 includes a filter for realizing feedback control as a constituent element, similar to that shown in the first embodiment.
  • the control filter 61 includes, for example, a PID control filter as a constituent element.
  • the gain increasing filter 62 is, for example, a peaking filter, similar to the one shown in the first embodiment.
  • the peak frequency PKf 0 [Hz] which is the frequency at which the gain of the gain increase filter 62 is maximized, is the same as that in the first embodiment in FIGS. 6 (a), 6 (b), 7 (a), and 7 This is the same as described with reference to (b).
  • the objective lens position signal among the signals output from the signal detection unit 120 is used. Further, when the objective lens 104 is to be recorded and reproduced by following the target track on the information recording surface of the optical disc OD, the focus error signal and the tracking error signal among the signals output from the signal detection unit 120 are used. Use.
  • the configuration of the servo control device 90 according to the second embodiment is not limited to the configuration in FIG.
  • the servo control device 90 and the servo control method according to the second embodiment as in the case of the first embodiment, by including the gain increasing filter, the amplitude at the resonance point of the actuator can be increased.
  • the change can be made smaller than before, and the amount of phase advance at a frequency where the gain of the amplitude of the open loop characteristic becomes 0 [dB] can be made larger than before.
  • the servo control apparatus 90 and the servo control method can make a control band higher than before.
  • the servo control device 90 and the servo control method can realize high-precision control by ensuring the control stability and increasing the control band as compared with the prior art.
  • Embodiment 3 FIG.
  • the case where the control target 20 is an objective lens of an optical pickup has been described.
  • the case where the control target 20 is a magnetic head of a magnetic disk device will be described.
  • the magnetic disk device according to the third embodiment is an example of a servo control device that performs servo control, and is, for example, a hard disk device (HDD).
  • HDD hard disk device
  • FIG. 10 is a block diagram schematically showing a configuration of a magnetic disk device which is the servo control device 140 according to the third embodiment.
  • the servo control device 140 includes a magnetic disk MD, a control target 150, an actuator 160, an actuator control unit 170, a signal detection unit 180, and a central control unit 190.
  • the control target 150 is a magnetic head of the magnetic disk device.
  • the control target (magnetic head) 150 corresponds to the control target 20 of the first embodiment.
  • the actuator 160 is a drive mechanism for the magnetic head.
  • the actuator 160 corresponds to the drive mechanism 30 of the first embodiment.
  • the actuator control unit 170 is a drive mechanism control unit.
  • the actuator controller 170 corresponds to the drive mechanism controller 40 of the first embodiment.
  • the actuator control unit 170 may be a part of the central control unit 190.
  • the servo control device 140 includes a spindle motor 141 and a spindle motor control unit 142.
  • the spindle motor 141 rotates the magnetic disk MD as a sample.
  • the magnetic disk MD corresponds to the sample SA of the first embodiment.
  • the spindle motor control unit 142 controls the spindle motor 141.
  • the controlled object 150 includes a magnetization pattern detection unit.
  • the actuator 160 includes an arm that supports the magnetization pattern detection unit.
  • the actuator control unit 170 includes an arm control unit that moves the arm.
  • the signal detection unit 180 generates a magnetic head position signal indicating the position of the control target 150 as a magnetic head. Then, the signal detection unit 180 outputs the generated signal.
  • the signal detection unit 180 corresponds to the signal detection unit 50 of the first embodiment.
  • the central control unit 190 gives a control signal SIG2 for controlling the actuator 160 to the actuator control unit 170. Further, the central control unit 190 includes the control filter 61 and the gain increase filter 62 described in FIG.
  • control filter 61 includes a filter for realizing feedback control as a constituent element, similar to that shown in the first embodiment.
  • the control filter 61 includes, for example, a PID control filter as a constituent element.
  • the gain increasing filter 62 is a peaking filter, similar to that shown in the first embodiment.
  • the peak frequency PKf 0 [Hz] which is the frequency at which the gain of the gain increase filter 62 is maximized, is the same as that in the first embodiment in FIGS. 6 (a), 6 (b), 7 (a), and 7 It is set so as to satisfy the same condition as described with reference to (b).
  • the configuration of the servo control device 140 according to Embodiment 3 is not limited to the configuration of FIG.
  • the servo control device 140 and the servo control method according to the third embodiment as in the case of the first embodiment, by including the gain increasing filter, the amplitude at the resonance point of the actuator can be increased.
  • the change can be made smaller than before, and the amount of phase advance at a frequency where the gain of the amplitude of the open loop characteristic becomes 0 [dB] can be made larger than before.
  • the servo control device 140 and the servo control method can make the control band higher than before.
  • the servo control device 140 and the servo control method can realize highly accurate control by making the control band higher than the conventional one while ensuring the stability of the control.
  • Embodiment 4 FIG.
  • the fourth embodiment a case where the control target 20 is a mirror and the drive mechanism 30 is a motor will be described. That is, the fourth embodiment is an example of a servo control device that controls the mirror position by a motor so that the mirror has a desired angle.
  • FIG. 11 is a block diagram schematically showing a configuration of a motor control device that is the servo control device 200 according to the fourth embodiment.
  • the servo control device 200 includes a signal detection unit 240 and a central control unit 250.
  • FIG. 11 shows the control object 210, the actuator 220, and the actuator control unit 230.
  • the control object 210 is a mirror.
  • the control target 210 corresponds to the control target 20 of the first embodiment.
  • the actuator 220 is a motor.
  • the actuator (motor) 220 corresponds to the drive mechanism 30 of the first embodiment.
  • Actuator control unit 230 controls actuator 220 in accordance with a command signal from central control unit 250.
  • the actuator control unit 230 corresponds to the drive mechanism control unit 40 of the first embodiment.
  • the actuator control unit 230 may be a part of the central control unit 250.
  • the signal detection unit 240 generates a mirror angle detection signal indicating the angle of the control object 210 as a mirror. And the signal detection part 240 outputs the produced
  • the signal detection unit 240 corresponds to the signal detection unit 50 of the first embodiment.
  • the central control unit 250 gives a control signal SIG2 for controlling the actuator 220 to the actuator control unit 230.
  • the central control unit 250 includes the control filter 61 and the gain increase filter 62 described in FIG.
  • the central control unit 250 corresponds to the central control unit 60 of the first embodiment.
  • control filter (61 in FIG. 4) includes a filter for realizing feedback control as a constituent element, similar to that shown in the first embodiment.
  • the control filter 61 includes, for example, a PID control filter as a constituent element.
  • the gain increasing filter (62 in FIG. 4) is a peaking filter, similar to that shown in the first embodiment.
  • the peak frequency PKf 0 [Hz] which is the frequency at which the gain of the gain increasing filter 62 is maximized, is the same as that in the first embodiment shown in FIGS. 6 (a), 6 (b), 7 (a), and 7 It is set so as to satisfy the same condition as described with reference to (b).
  • the configuration of the servo control device 200 according to the fourth embodiment is not limited to the configuration of FIG.
  • the control object 210 may be a table that moves in accordance with the rotation of a motor (actuator 220) instead of a mirror.
  • the signal detection unit 240 generates a position detection signal indicating the position of the control target 210 as a table.
  • the control object 210 is a driven body that moves according to the rotation of the motor (actuator 220). That is, the driven body (control target) 210 that moves according to the rotation of the motor 220 corresponds to the control target 20 of the first embodiment.
  • the servo control device 200 and the servo control method according to the fourth embodiment as in the case of the first embodiment, by including the gain increase filter, the amplitude at the resonance point of the actuator can be increased.
  • the change can be made smaller than before, and the amount of phase advance at a frequency where the gain of the amplitude of the open loop characteristic becomes 0 [dB] can be made larger than before.
  • the servo control apparatus 200 and the servo control method can make a control band higher than before.
  • the servo control device 200 and the servo control method can realize high-precision control by ensuring a stable control and increasing the control band as compared with the prior art.
  • the servo control devices and servo control methods according to the first to fourth embodiments described above may be realized only by hardware resources such as electronic circuits, or may be realized by cooperation of hardware resources and software. May be.
  • the servo control device and the servo control method are realized, for example, by a computer program being executed by a computer. More specifically, it is realized by reading a computer program recorded on a recording medium such as a ROM (Read Only Memory) into a main storage device and executing it by a central processing unit (CPU). .
  • the computer program may be provided by being recorded on a computer-readable recording medium such as an optical disk, or may be provided via a communication line such as the Internet.
  • the servo control device and the servo control method according to the present invention are an optical disk device and a magnetic disk as long as the device controls a position of a control target (particularly a relative position between a sample and a control target) using a drive mechanism.
  • Various devices other than the device and the motor control device for example, a production facility such as a robot having a control object that performs precise position control by an actuator, or an automobile, a ship having a control object that performs precise position control by an actuator,
  • the present invention can be applied to various apparatuses such as transportation equipment such as aircraft.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Provided are a servo control device and method that can ensure control stability while allowing use of a high frequency bandwidth as a control bandwidth. In the present invention, servo control devices (10, 11) can implement the servo control method, and are each provided with: a signal detection unit (50) that generates a control target position signal indicating the position of a movably supported control target (20); and a central control unit (60) that generates, on the basis of a control target position signal SIG0 generated by the signal detection unit (50), a control signal SIG2 for controlling a drive mechanism (30) that drives the control target. The central control unit (60) includes a gain increase filter (62) that has a gain frequency characteristic which locally increases the amplitude gain at a predetermined specific frequency, for an open loop characteristic of an open loop that includes the signal detection unit (50) and the drive mechanism (30).

Description

サーボ制御装置及びサーボ制御方法Servo control device and servo control method
 本発明は、制御対象を駆動する駆動機構を制御する駆動機構制御部を有するサーボ制御装置、及びサーボ制御方法に関するものである。 The present invention relates to a servo control device having a drive mechanism control unit that controls a drive mechanism that drives a controlled object, and a servo control method.
 一般に、制御対象の位置を示す信号に基づいて、この制御対象を駆動する駆動機構を制御する駆動機構制御部を含む制御系においては、制御対象の位置を目標位置に追従させるフィードバック制御が用いられる。このようなフィードバック制御では、制御対象の位置の高精度な制御と、駆動機構が発振を起こさないための安定な制御(制御の安定性)とが要求される。一般に、高精度な制御を実現するためには、制御系が使用する周波数帯域である制御帯域として高い周波数帯域を使用する必要がある。しかし、制御帯域として高い周波数帯域を使用する制御系では、ゲイン余裕が小さくなり、制御の安定性が損なわれる。これは、制御帯域として高い周波数帯域を使用する制御系に含まれる制御フィルタの演算遅れ等により位相遅れが発生するためである。また、駆動機構が共振点(共振周波数)を有する場合には、共振周波数で位相遅れが発生する。このように、一般に、フィードバック制御において、制御の精度と制御の安定性とはトレードオフの関係にある。よって、一般に、制御の安定性を高めるためには、制御帯域として低い周波数帯域を使用していた。 In general, in a control system including a drive mechanism control unit that controls a drive mechanism that drives a control target based on a signal indicating the position of the control target, feedback control that causes the position of the control target to follow a target position is used. . Such feedback control requires high-precision control of the position of the controlled object and stable control (control stability) so that the drive mechanism does not oscillate. Generally, in order to realize highly accurate control, it is necessary to use a high frequency band as a control band that is a frequency band used by the control system. However, in a control system that uses a high frequency band as a control band, the gain margin becomes small and the stability of control is impaired. This is because a phase delay occurs due to a calculation delay of a control filter included in a control system using a high frequency band as a control band. Further, when the drive mechanism has a resonance point (resonance frequency), a phase delay occurs at the resonance frequency. Thus, generally, in feedback control, the accuracy of control and the stability of control are in a trade-off relationship. Therefore, generally, in order to improve the stability of control, a low frequency band is used as a control band.
 この対策として、特許文献1では、駆動機構の共振周波数付近に反共振点を持ち、反共振周波数付近に共振点を持つフィルタを追加した位置決め制御装置が提案されている。これにより、開ループ特性における共振点を高域側に移動させ、制御の安定性を損なわずに制御帯域を高くしている。 As a countermeasure, Patent Document 1 proposes a positioning control device in which a filter having an anti-resonance point near the resonance frequency of the drive mechanism and having a resonance point near the anti-resonance frequency is added. Thereby, the resonance point in the open loop characteristic is moved to the high frequency side, and the control band is increased without impairing the stability of the control.
 また、特許文献2では、特定の周波数成分の振幅を減衰させるノッチフィルタを備え、このノッチフィルタのゲイン(利得)が極小となる周波数を、駆動機構の共振周波数に合わせる制御回路が提案されている。これにより、開ループ特性における共振周波数付近の成分だけを大きく減衰させて、大きなゲイン余裕を確保している。 Further, Patent Document 2 proposes a control circuit that includes a notch filter that attenuates the amplitude of a specific frequency component and adjusts the frequency at which the gain (gain) of the notch filter is minimized to the resonance frequency of the drive mechanism. . Thereby, only a component near the resonance frequency in the open loop characteristic is greatly attenuated to ensure a large gain margin.
特開2001-195850号公報(請求項2、段落0015、図2から図4)JP 2001-195850 A (Claim 2, paragraph 0015, FIGS. 2 to 4) 特開平9-44863号公報(段落0012及び0022、図1、図5及び図7)Japanese Patent Laid-Open No. 9-44863 (paragraphs 0012 and 0022, FIG. 1, FIG. 5 and FIG. 7)
 しかし、駆動機構の共振周波数は、個々の駆動機構ごとにばらつきがある。また、駆動機構の共振周波数は、駆動機構の温度によってもばらつきが発生する。特許文献1の制御装置においては、駆動機構ごとの共振周波数のばらつきにより、駆動機構の共振周波数が、追加されたフィルタの共振点の周波数と一致する状態が発生し得る。このような状態が発生した場合には、開ループ特性における共振点での振幅が更に大きくなり、ゲイン余裕が小さくなり、制御の安定性が損なわれる問題がある。 However, the resonance frequency of the drive mechanism varies for each drive mechanism. Further, the resonance frequency of the drive mechanism varies depending on the temperature of the drive mechanism. In the control device of Patent Literature 1, a state in which the resonance frequency of the drive mechanism matches the frequency of the resonance point of the added filter may occur due to variations in the resonance frequency of each drive mechanism. When such a state occurs, there is a problem that the amplitude at the resonance point in the open loop characteristic is further increased, the gain margin is decreased, and the stability of the control is impaired.
 また、特許文献2の制御回路においては、ノッチフィルタのゲインが極小となる周波数以下で位相遅れが発生するため、開ループ特性における位相遅れが増加し、制御の安定性が損なわれる問題がある。 Also, in the control circuit of Patent Document 2, a phase lag occurs below the frequency at which the gain of the notch filter is minimized, so there is a problem that the phase lag in the open loop characteristic increases and the control stability is impaired.
 そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、本発明においては、開ループ特性における特定の周波数での振幅の利得を局所的に増加させる利得増加フィルタを追加することで、高い周波数帯域において位相遅れが改善されるので、サーボ制御に用いられる制御帯域として高い周波数帯域を使用可能であり、このため、高精度な制御を実現することを目的とする。 Therefore, the present invention has been made to solve the above-described problems of the prior art, and in the present invention, a gain increasing filter for locally increasing an amplitude gain at a specific frequency in an open loop characteristic is added. By doing so, the phase delay is improved in the high frequency band, so that the high frequency band can be used as the control band used for servo control. For this reason, an object is to realize highly accurate control.
 本発明に係るサーボ制御装置は、制御対象を駆動する駆動機構を制御するサーボ制御装置であって、可動支持された前記制御対象の位置を示す信号である制御対象位置信号を生成する信号検出部と、前記信号検出部で生成された前記制御対象位置信号に基づいて、前記駆動機構を制御するための制御信号を生成する中央制御部と、を備え、前記中央制御部は、前記信号検出部と前記駆動機構とを含む開ループの開ループ特性において、予め決められた特定の周波数での振幅の利得を局所的に増加させる利得周波数特性を持つ利得増加フィルタを含むことを特徴とする。 A servo control device according to the present invention is a servo control device that controls a drive mechanism that drives a control target, and a signal detection unit that generates a control target position signal that is a signal indicating the position of the control target that is movably supported. And a central control unit that generates a control signal for controlling the drive mechanism based on the control target position signal generated by the signal detection unit, and the central control unit includes the signal detection unit And an open loop characteristic of the open loop including the drive mechanism, including a gain increasing filter having a gain frequency characteristic for locally increasing an amplitude gain at a predetermined specific frequency.
 また、本発明に係るサーボ制御方法は、制御対象を駆動する駆動機構を制御するサーボ制御方法であって、中央制御部から供給された制御信号に基づいて、可動支持された制御対象を駆動するステップと、前記制御対象の位置を示す信号である制御対象位置信号を信号検出部で生成するステップと、前記中央制御部が、前記駆動機構と前記信号検出部とを含む開ループの開ループ特性において、予め決められた特定の周波数での振幅の利得を局所的に増加させる利得周波数特性を持つ利得増加フィルタを用いて、前記信号検出部で生成された前記制御対象位置信号から前記制御信号を生成するステップと、を有することを特徴とする。 The servo control method according to the present invention is a servo control method for controlling a drive mechanism that drives a control object, and drives the control object that is movably supported based on a control signal supplied from a central control unit. An open loop characteristic of an open loop including a step, a step of generating a control target position signal that is a signal indicating the position of the control target by a signal detection unit, and the central control unit includes the drive mechanism and the signal detection unit In the above, the control signal is obtained from the control target position signal generated by the signal detector using a gain increasing filter having a gain frequency characteristic that locally increases the gain of the amplitude at a predetermined specific frequency. And generating.
 本発明は、制御の安定性を確保しつつ、制御帯域として従来よりも高い周波数帯域を使用可能とすることができるサーボ制御装置及びサーボ制御方法を提供することができる。 The present invention can provide a servo control device and a servo control method capable of using a higher frequency band than the conventional control band while ensuring the stability of control.
本発明の実施の形態1に係るサーボ制御装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the servo control apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るサーボ制御装置の他の構成を概略的に示すブロック図である。It is a block diagram which shows schematically the other structure of the servo control apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係るサーボ制御装置の要部の構成要素を示すブロック図である。FIG. 3 is a block diagram illustrating components of a main part of the servo control device according to the first embodiment. 実施の形態1に係るサーボ制御装置の要部の他の構成要素を示すブロック図である。FIG. 6 is a block diagram showing other components of the main part of the servo control device according to the first embodiment. 実施の形態1に係るサーボ制御装置の利得増加フィルタの伝達関数の一例を示す図である。It is a figure which shows an example of the transfer function of the gain increase filter of the servo control apparatus which concerns on Embodiment 1. FIG. (a)及び(b)は、実施の形態1に係るサーボ制御装置の利得増加フィルタの周波数特性を示す図である。(A) And (b) is a figure which shows the frequency characteristic of the gain increase filter of the servo control apparatus which concerns on Embodiment 1. FIG. (a)及び(b)は、実施の形態1に係るサーボ制御装置の開ループ特性を示す図である。(A) And (b) is a figure which shows the open loop characteristic of the servo control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るサーボ制御装置の利得増加フィルタとしてのデジタルフィルタの構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a configuration of a digital filter as a gain increasing filter of the servo control device according to the first embodiment. 本発明の実施の形態2に係るサーボ制御装置である光ディスク装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the optical disk apparatus which is a servo control apparatus concerning Embodiment 2 of this invention. 本発明の実施の形態3に係るサーボ制御装置である磁気ディスク装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the magnetic disc apparatus which is a servo control apparatus concerning Embodiment 3 of this invention. 本発明の実施の形態4に係るサーボ制御装置であるモータ制御装置の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the motor control apparatus which is a servo control apparatus which concerns on Embodiment 4 of this invention.
 本発明においては、開ループ特性における特定の周波数での振幅の利得を局所的に増加させる利得増加フィルタを追加することで、位相遅れを改善し、ゲイン余裕を確保し、制御の安定性を維持することができる。 In the present invention, by adding a gain increasing filter that locally increases the gain of the amplitude at a specific frequency in the open loop characteristic, the phase delay is improved, the gain margin is secured, and the control stability is maintained. can do.
 また、本発明においては、利得増加フィルタの特定の周波数として、共振周波数付近における利得の増加を抑制する周波数を選択することができる。このため、駆動機構が共振点を有し、駆動機構ごとに共振周波数のばらつきがある場合でも、制御の安定性を維持することができる。 Further, in the present invention, a frequency that suppresses an increase in gain near the resonance frequency can be selected as the specific frequency of the gain increase filter. For this reason, control stability can be maintained even when the drive mechanism has a resonance point and there is a variation in resonance frequency for each drive mechanism.
実施の形態1.
 図1は、本発明の実施の形態1に係るサーボ制御装置10の構成を概略的に示すブロック図である。サーボ制御装置10は、実施の形態1に係るサーボ制御方法を実施することができる装置である。
Embodiment 1 FIG.
FIG. 1 is a block diagram schematically showing a configuration of a servo control device 10 according to the first embodiment of the present invention. The servo control device 10 is a device that can perform the servo control method according to the first embodiment.
 図1に示されるように、実施の形態1に係るサーボ制御装置10は、信号検出部50及び中央制御部60を備える。また、サーボ制御装置10は、試料SA、制御対象20、駆動機構30又は駆動機構制御部40を備えることができる。 As shown in FIG. 1, the servo control device 10 according to the first embodiment includes a signal detection unit 50 and a central control unit 60. The servo control device 10 can include a sample SA, a control target 20, a drive mechanism 30, or a drive mechanism control unit 40.
 信号検出部50は、可動支持された制御対象20の位置を示す信号である制御対象位置信号SIG0を生成する。中央制御部60は、信号検出部50で生成された制御対象位置信号SIG0に基づいて、制御対象20を駆動する駆動機構30を制御するための制御信号SIG2を生成する。 The signal detection unit 50 generates a control target position signal SIG0 that is a signal indicating the position of the control target 20 that is movably supported. The central control unit 60 generates a control signal SIG2 for controlling the drive mechanism 30 that drives the control target 20, based on the control target position signal SIG0 generated by the signal detection unit 50.
 中央制御部60は、信号検出部50と駆動機構30とを含む開ループの開ループ特性において、予め決められた特定の周波数での振幅の利得を局所的に増加させる利得周波数特性を持つ利得増加フィルタ(後述の図3及び図4に示される62)を含む。 The central control unit 60 is a gain increase having a gain frequency characteristic for locally increasing the gain of the amplitude at a predetermined specific frequency in the open loop characteristics of the open loop including the signal detection unit 50 and the drive mechanism 30. A filter (62 shown in FIGS. 3 and 4 described later) is included.
 また、実施の形態1に係るサーボ制御方法は、駆動機構制御部40が、中央制御部60から供給された制御信号SIG2に基づいて、可動支持された制御対象20を駆動する駆動機構30を制御するステップと、信号検出部50が、制御対象20の位置を示す信号である制御対象位置信号SIG0を生成するステップと、中央制御部60が、信号検出部50と駆動機構30とを含む開ループの開ループ特性において、信号検出部50で生成された制御対象位置信号SIG0から駆動機構30を制御するための制御信号SIG2を生成するステップとを含む。前記制御信号SIG2を生成するステップにおいて、中央制御部60は、特定の周波数での振幅の利得を局所的に増加させる利得周波数特性を持つ利得増加フィルタ(後述の図3及び図4に示される62)を用いる。 Further, in the servo control method according to the first embodiment, the drive mechanism control unit 40 controls the drive mechanism 30 that drives the control target 20 that is movably supported based on the control signal SIG <b> 2 supplied from the central control unit 60. An open loop in which the signal detection unit 50 includes a control target position signal SIG0 that is a signal indicating the position of the control target 20, and the central control unit 60 includes the signal detection unit 50 and the drive mechanism 30. And generating a control signal SIG2 for controlling the drive mechanism 30 from the control target position signal SIG0 generated by the signal detector 50. In the step of generating the control signal SIG2, the central control unit 60 gains a gain increase filter (62 shown in FIGS. 3 and 4 described later) having a gain frequency characteristic that locally increases the gain of the amplitude at a specific frequency. ) Is used.
 制御対象20は、例えば、試料SAに向かい合う位置に配置される。制御対象20は、例えば、試料SA上を3次元で走査するための装置又は部材であり、サーボ制御装置10の本体に移動可能に支持されている。ここで、「走査」とは、移動しながら試料SAの所望の位置(被検出位置SA0)の状態を検出又はこの位置に記録されている情報を検出することを言う。試料SAは、例えば、薄板状の形状を持つ。また、「3次元」とは、試料SAの被検出位置を含む被検出面(図1における試料SAの下面)に平行なx軸方向及びy軸方向(すなわち、xy直交座標系で表現可能なxy平面)と、試料SAの被検出面に垂直なz軸方向(すなわち、xy直交座標系で表現可能なxy平面に直交する方向)とからなる。 The control object 20 is arranged at a position facing the sample SA, for example. The control target 20 is, for example, a device or a member for scanning the sample SA in three dimensions, and is supported by the main body of the servo control device 10 so as to be movable. Here, “scanning” refers to detecting the state of a desired position (detected position SA0) of the sample SA while moving or detecting information recorded at this position. The sample SA has, for example, a thin plate shape. In addition, “three-dimensional” can be expressed in the x-axis direction and the y-axis direction (that is, the xy orthogonal coordinate system) parallel to the detection surface (the lower surface of the sample SA in FIG. 1) including the detection position of the sample SA. xy plane) and a z-axis direction perpendicular to the surface to be detected of the sample SA (that is, a direction orthogonal to the xy plane that can be expressed in the xy orthogonal coordinate system).
 制御対象20が光ピックアップの対物レンズである場合には、光ピックアップは、試料SAに光ビームを照射し、この光ビームの試料SAからの反射光(光信号)を受光し、受光した反射光に応じた電気信号(検出信号)を生成し、生成された電気信号を信号検出部50に供給する。なお、制御対象20が光ピックアップの対物レンズである場合の詳細は、実施の形態2において説明される。 When the control target 20 is an objective lens of an optical pickup, the optical pickup irradiates the sample SA with a light beam, receives reflected light (optical signal) from the sample SA, and receives the reflected light received. The electric signal (detection signal) corresponding to the signal is generated, and the generated electric signal is supplied to the signal detection unit 50. Details in the case where the control target 20 is an objective lens of an optical pickup will be described in the second embodiment.
 駆動機構30は、例えば、駆動機構30の共振点(共振周波数)で駆動することにより高効率な動作を実現する共振型アクチュエータである。駆動機構30は、試料SAを3次元で走査する制御対象20を、試料SAと制御対象20との間の相対的位置関係に応じて移動させる。ただし、駆動機構30は、共振点を持たない構成のアクチュエータであってもよい。 The drive mechanism 30 is, for example, a resonance type actuator that realizes highly efficient operation by being driven at a resonance point (resonance frequency) of the drive mechanism 30. The drive mechanism 30 moves the control object 20 that scans the sample SA in three dimensions according to the relative positional relationship between the sample SA and the control object 20. However, the drive mechanism 30 may be an actuator having a configuration having no resonance point.
 駆動機構制御部40は、中央制御部60から与えられる制御信号SIG2に応じた指令信号を駆動機構30に与えて、駆動機構30の動作を制御する。駆動機構制御部40は、中央制御部60の一部であってもよい。 The drive mechanism control unit 40 gives a command signal corresponding to the control signal SIG <b> 2 given from the central control unit 60 to the drive mechanism 30 to control the operation of the drive mechanism 30. The drive mechanism control unit 40 may be a part of the central control unit 60.
 中央制御部60は、信号検出部50から与えられた制御対象位置信号SIG0に基づいて駆動機構30を制御するための制御信号SIG2を生成する。中央制御部60は、駆動機構制御部40に対し、制御信号SIG2を出力する。 The central control unit 60 generates a control signal SIG2 for controlling the drive mechanism 30 based on the control target position signal SIG0 given from the signal detection unit 50. The central control unit 60 outputs a control signal SIG2 to the drive mechanism control unit 40.
 信号検出部50は、制御対象20から出力された前記電気信号(検出信号)を受け取り、制御対象20の位置を示す信号である制御対象位置信号SIG0を中央制御部60に与える。制御対象位置信号SIG0は、例えば、試料SAと制御対象20との間の相対的位置関係を示す信号である。 The signal detection unit 50 receives the electrical signal (detection signal) output from the control target 20, and gives a control target position signal SIG0, which is a signal indicating the position of the control target 20, to the central control unit 60. The control target position signal SIG0 is a signal indicating the relative positional relationship between the sample SA and the control target 20, for example.
 サーボ制御装置10の構成は、図1の例に限定されない。これは、後に図2を用いて説明する。また、図1においては、x軸方向とy軸方向とz軸方向とに制御対象20が変位する場合の制御例を示した。しかし、本発明が適用されるサーボ制御装置10は、このような形態に限定されない。本発明は、例えば、ある軸を基準軸とし、この基準軸に対し予め決められた角度を成す方向(ある角度方向)に制御対象20が変位する場合にも適用可能である。 The configuration of the servo control device 10 is not limited to the example of FIG. This will be described later with reference to FIG. Moreover, in FIG. 1, the example of control in case the controlled object 20 is displaced to the x-axis direction, the y-axis direction, and the z-axis direction is shown. However, the servo control device 10 to which the present invention is applied is not limited to such a form. The present invention is also applicable, for example, when a certain axis is used as a reference axis and the control object 20 is displaced in a direction (a certain angle direction) that forms a predetermined angle with respect to the reference axis.
 図2は、本発明の実施の形態1に係るサーボ制御装置の他の構成を概略的に示すブロック図である。サーボ制御装置11は、実施の形態1に係るサーボ制御方法を実施することができる装置である。 FIG. 2 is a block diagram schematically showing another configuration of the servo control device according to the first embodiment of the present invention. The servo control device 11 is a device that can perform the servo control method according to the first embodiment.
 図2は、制御対象20と、駆動機構30と、駆動機構制御部40とが、サーボ制御装置11に含まれない点で、図1とは異なる。すなわち、実施の形態1に係るサーボ制御装置11は、信号検出部50、中央制御部60を備える場合もある。図2において、試料SAはサーボ制御装置11に含まれていないが、含んでもよい。 FIG. 2 is different from FIG. 1 in that the controlled object 20, the drive mechanism 30, and the drive mechanism control unit 40 are not included in the servo control device 11. That is, the servo control device 11 according to the first embodiment may include the signal detection unit 50 and the central control unit 60. In FIG. 2, the sample SA is not included in the servo control device 11, but may be included.
 図1に示すサーボ制御装置10の構成例は、光ピックアップのように、制御対象20(レンズ)及び駆動機構30(ボイスコイルモータ)が単体で動作できない構成を示している。そのため、例えば、制御対象20、駆動機構30、駆動機構制御部40及び試料SA(光ディスク)を、サーボ制御装置10に含めている。 1 shows a configuration in which the control target 20 (lens) and the drive mechanism 30 (voice coil motor) cannot operate independently, like an optical pickup. Therefore, for example, the control target 20, the drive mechanism 30, the drive mechanism control unit 40, and the sample SA (optical disk) are included in the servo control device 10.
 一方、図2に示すサーボ制御装置10の構成例は、例えば、駆動機構30がモータ等の場合を示している。例えば、モータは、オープンループ制御でも駆動することができるため、図2では、サーボ制御装置10の構成要素から外している。 On the other hand, the configuration example of the servo control device 10 shown in FIG. 2 shows a case where the drive mechanism 30 is a motor or the like, for example. For example, since the motor can be driven by open loop control, it is omitted from the components of the servo control device 10 in FIG.
 図2における制御対象20、駆動機構30、駆動機構制御部40、信号検出部50、中央制御部60、及び試料SAは、図1で示すものと同様のため、説明を省略する。 The control object 20, the drive mechanism 30, the drive mechanism control unit 40, the signal detection unit 50, the central control unit 60, and the sample SA in FIG. 2 are the same as those shown in FIG.
 図3は、実施の形態1に係るサーボ制御装置10の要部の構成要素を示すブロック図である。すなわち、図1におけるサーボ制御装置10の要部の構成要素を示すブロック図である。図3に示されるように、中央制御部60は、例えば、制御フィルタ61と、利得増加フィルタ62とを備える。また、図3において、図1における駆動機構30及び駆動機構制御部40に対応する構成を1つのブロック(30,40)で示している。 FIG. 3 is a block diagram showing components of a main part of the servo control device 10 according to the first embodiment. That is, FIG. 2 is a block diagram showing components of a main part of the servo control device 10 in FIG. As shown in FIG. 3, the central control unit 60 includes, for example, a control filter 61 and a gain increase filter 62. Further, in FIG. 3, the configuration corresponding to the drive mechanism 30 and the drive mechanism control unit 40 in FIG. 1 is shown by one block (30, 40).
 図3に示されるサーボ制御装置10において、信号検出部50は、制御対象20の位置を示す制御対象位置信号SIG0を制御フィルタ61に供給する。 3, the signal detection unit 50 supplies the control filter 61 with a control target position signal SIG0 indicating the position of the control target 20.
 制御フィルタ61は、フィードバック制御を実現するためのフィルタを構成要素として備えている。制御フィルタ61は、例えば、PID(Proportional Integral Derivative)制御フィルタを備えている。 The control filter 61 includes a filter for realizing feedback control as a constituent element. The control filter 61 includes, for example, a PID (Proportional Integral Derivative) control filter.
 実施の形態1に係るサーボ制御装置10において、制御フィルタ61は、制御対象位置信号SIG0から制御信号SIG1を生成する。そして、制御フィルタ61は、制御信号SIG1を利得増加フィルタ62に供給する。 In the servo control device 10 according to the first embodiment, the control filter 61 generates the control signal SIG1 from the control target position signal SIG0. Then, the control filter 61 supplies the control signal SIG1 to the gain increase filter 62.
 利得増加フィルタ62は、特定の周波数での振幅の利得(ゲイン)[dB]を局所的に増加しているフィルタである。利得増加フィルタ62は、入力される制御信号SIG1に対し、特定の周波数での振幅を局所的に増加させる機能を持つ。すなわち、利得増加フィルタ62は、入力された制御信号SIG1の振幅を局所的に大きくした制御信号SIG2を生成する。そして、利得増加フィルタ62は、この制御信号SIG2を出力する。 The gain increase filter 62 is a filter that locally increases an amplitude gain (dB) at a specific frequency. The gain increasing filter 62 has a function of locally increasing the amplitude at a specific frequency with respect to the input control signal SIG1. That is, the gain increase filter 62 generates the control signal SIG2 in which the amplitude of the input control signal SIG1 is locally increased. The gain increasing filter 62 outputs this control signal SIG2.
 駆動機構30は、駆動機構制御部40によって制御される。駆動機構30は、利得増加フィルタ62から出力された制御信号SIG2に従い、制御対象20を駆動する。 The drive mechanism 30 is controlled by the drive mechanism control unit 40. The drive mechanism 30 drives the controlled object 20 in accordance with the control signal SIG2 output from the gain increasing filter 62.
 制御対象20は、例えば、制御対象20の位置を示す信号を出力する。信号検出部50は、制御対象20から出力された制御対象の位置を示す信号と制御対象20の目標位置信号との差分信号(偏差)を受け取る。信号検出部50は、この差分信号に応じた制御対象位置信号SIG0を生成する。 The control object 20 outputs a signal indicating the position of the control object 20, for example. The signal detection unit 50 receives a difference signal (deviation) between the signal indicating the position of the control target output from the control target 20 and the target position signal of the control target 20. The signal detection unit 50 generates a control target position signal SIG0 corresponding to the difference signal.
 なお、信号検出部50は、次に示す処理を行っても良い。信号検出部50は、制御対象20から出力された制御対象20の位置を示す信号と制御対象20の目標位置信号とを受け取る。信号検出部50は、これらの差分信号(偏差)を算出する。信号検出部50は、この算出された差分信号に応じた制御対象位置信号SIG0を生成する。 Note that the signal detection unit 50 may perform the following processing. The signal detection unit 50 receives a signal indicating the position of the control target 20 output from the control target 20 and a target position signal of the control target 20. The signal detection unit 50 calculates these difference signals (deviations). The signal detection unit 50 generates a control target position signal SIG0 corresponding to the calculated difference signal.
 中央制御部60は、制御対象位置信号SIG0に基づいて、制御対象20を目標位置に追従させるフィードバック制御を行う。 The central control unit 60 performs feedback control for causing the control target 20 to follow the target position based on the control target position signal SIG0.
 図3の例では、利得増加フィルタ62は、制御フィルタ61と制御対象20との間に挿入されている。すなわち、利得増加フィルタ62は、制御フィルタ61の後段に配置されている。しかし、利得増加フィルタ62は、信号検出部50と制御フィルタ61との間に挿入されてもよい。すなわち、利得増加フィルタ62は、制御フィルタ61の前段に配置されてもよい。 3, the gain increase filter 62 is inserted between the control filter 61 and the control target 20. In other words, the gain increasing filter 62 is arranged at the subsequent stage of the control filter 61. However, the gain increasing filter 62 may be inserted between the signal detection unit 50 and the control filter 61. In other words, the gain increasing filter 62 may be disposed in front of the control filter 61.
 利得増加フィルタ62は、抵抗、コンデンサ、コイル又はオペアンプ等を用いたアナログフィルタを構成要素として備えてもよい。また、利得増加フィルタ62は、汎用マイコン又はDSP(Digital Signal Processing)等によるデジタルフィルタを構成要素として備えてもよい。 The gain increasing filter 62 may include an analog filter using a resistor, a capacitor, a coil, an operational amplifier, or the like as a constituent element. Further, the gain increasing filter 62 may include a digital filter such as a general-purpose microcomputer or DSP (Digital Signal Processing) as a constituent element.
 図4は、図3とは別の、実施の形態1に係るサーボ制御装置11の要部の構成要素を示すブロック図である。すなわち、図2におけるサーボ制御装置11の要部の構成要素を示すブロック図である。図4は、制御対象20と、駆動機構30と、駆動機構制御部40とが、サーボ制御装置11に含まれない点で、図3とは異なる。すなわち、実施の形態1に係るサーボ制御装置11は、信号検出部50、中央制御部60を備える場合もである。 FIG. 4 is a block diagram showing the main components of the servo control device 11 according to the first embodiment, which is different from FIG. That is, FIG. 3 is a block diagram showing components of a main part of the servo control device 11 in FIG. 4 is different from FIG. 3 in that the control target 20, the drive mechanism 30, and the drive mechanism control unit 40 are not included in the servo control device 11. That is, the servo control device 11 according to the first embodiment may include the signal detection unit 50 and the central control unit 60.
 図4における構成要素は、図3で示すものと同様のため、説明を省略する。 The components in FIG. 4 are the same as those shown in FIG.
 アナログフィルタを構成要素とした利得増加フィルタ62の例について説明する。図5は、実施の形態1に係るサーボ制御装置10及びサーボ制御装置11の利得増加フィルタ62として、アナログフィルタであるピーキングフィルタを採用した例を示す図である。 An example of the gain increase filter 62 including an analog filter as a component will be described. FIG. 5 is a diagram illustrating an example in which a peaking filter that is an analog filter is employed as the gain increasing filter 62 of the servo control device 10 and the servo control device 11 according to the first embodiment.
 図5には、利得増加フィルタ62としてのピーキングフィルタの伝達関数の一例が示されている。利得増加フィルタ62は、特定の周波数範囲の振幅の利得(ゲイン)が局所的に大きく、特定の周波数範囲の振幅の利得を局所的に増加させることができるフィルタであれば、ピーキングフィルタ以外のものであってもよい。 FIG. 5 shows an example of a transfer function of a peaking filter as the gain increasing filter 62. The gain increasing filter 62 is a filter other than the peaking filter as long as the gain (gain) of the amplitude in the specific frequency range is locally large and the gain of the amplitude in the specific frequency range can be locally increased. It may be.
 利得増加フィルタ62としてのピーキングフィルタは、一般的な双2次フィルタ(Biquadratic Filter)を構成要素とすることができる。「双2次フィルタ」とは、伝達関数の分母及び分子がともに2次のフィルタであり、その伝達関数は、例えば、次式(1)で記述される。 The peaking filter as the gain increasing filter 62 can include a common biquadratic filter as a constituent element. The “biquadratic filter” is a filter whose denominator and numerator of the transfer function are both quadratic, and the transfer function is described by the following equation (1), for example.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、sは複素変数である。ωはピーク周波数PKf[Hz]をラジアン単位[rad/sec]で表現したものである。ピーク周波数PKf[Hz]は、利得増加フィルタ62の振幅の利得が最大となる周波数である。Aは利得増加フィルタ62の振幅の利得を決める定数である。Qは利得増加フィルタ62から出力される信号のピークの幅を決める定数である。 Here, s is a complex variable. ω 0 represents the peak frequency PKf 0 [Hz] expressed in radians [rad / sec]. The peak frequency PKf 0 [Hz] is a frequency at which the gain of the amplitude of the gain increasing filter 62 is maximized. A 0 is a constant that determines the gain of the amplitude of the gain increasing filter 62. Q 0 is a constant that determines the peak width of the signal output from the gain increasing filter 62.
 図6(a)及び図6(b)は、実施の形態1に係る利得増加フィルタ62の利得周波数特性及び位相周波数特性を示す図である。図6(a)及び図6(b)に示された利得増加フィルタ62は、式(1)で示される伝達関数が示す伝達特性を持つピーキングフィルタである。 6 (a) and 6 (b) are diagrams showing gain frequency characteristics and phase frequency characteristics of the gain increasing filter 62 according to the first embodiment. The gain increasing filter 62 shown in FIGS. 6A and 6B is a peaking filter having a transfer characteristic indicated by the transfer function shown in Expression (1).
 図6(a)は、周波数[Hz]に対する振幅の利得[dB]の特性(利得周波数特性)を示している。図6(b)は、周波数[Hz]に対する位相[度]の特性(位相周波数特性)を示している。 FIG. 6A shows the characteristic (gain frequency characteristic) of the gain [dB] of the amplitude with respect to the frequency [Hz]. FIG. 6B shows the characteristic (phase frequency characteristic) of the phase [degree] with respect to the frequency [Hz].
 図6(a)及び図6(b)において、ピーク周波数PKf[Hz]をラジアン単位[rad/sec]で示すωと、定数Aと、定数Qとを、以下の値に設定している。
 ω=753982.24[rad/sec]
 (すなわち、PKf=1.2×10[Hz])
 A=2.5
 Q=1.413
6A and 6B, ω 0 indicating the peak frequency PKf 0 [Hz] in radians [rad / sec], a constant A 0, and a constant Q 0 are set to the following values: is doing.
ω 0 = 753982.24 [rad / sec]
(That is, PKf 0 = 1.2 × 10 5 [Hz])
A 0 = 2.5
Q 0 = 1.413
 図6(a)において、横軸は利得増加フィルタ62から出力される信号の周波数[Hz]を示し、縦軸は利得増加フィルタ62としてのピーキングフィルタの振幅の利得[dB]を示す。図6(b)において、横軸は利得増加フィルタ62としてのピーキングフィルタから出力される信号の周波数[Hz]を示し、縦軸は利得増加フィルタ62としてのピーキングフィルタから出力される信号の位相[度]を示す。 6A, the horizontal axis represents the frequency [Hz] of the signal output from the gain increasing filter 62, and the vertical axis represents the gain [dB] of the amplitude of the peaking filter as the gain increasing filter 62. 6B, the horizontal axis indicates the frequency [Hz] of the signal output from the peaking filter as the gain increase filter 62, and the vertical axis indicates the phase of the signal output from the peaking filter as the gain increase filter 62. Degree].
 図6(a)において、振幅の利得は、次式(2)で算出される。
 振幅の利得[dB]=20・log10X       式(2)
In FIG. 6A, the amplitude gain is calculated by the following equation (2).
Gain of amplitude [dB] = 20 · log 10 X Formula (2)
 ここで、Xは実数値である。例えば、X=(出力振幅)/(入力振幅)とする。すなわち、図6(a)における振幅の利得[dB]は、実数値Xをデシベル値に換算した値である。図6(a)に示される利得増加フィルタ62は、ピーク周波数PKfを持つことが望ましい。ピーク周波数PKfは、利得周波数特性において振幅の利得が最大(極大)となる周波数である。また、図6(a)に示される利得増加フィルタ62は、ピーク周波数PKf(すなわち、図6(a)においてPKf)から離れるほど徐々に振幅の利得が低下する利得分布を持つ。 Here, X is a real value. For example, X = (output amplitude) / (input amplitude). That is, the amplitude gain [dB] in FIG. 6A is a value obtained by converting the real value X to a decibel value. Gain increase filter 62 shown in FIG. 6 (a), it is desirable to have a peak frequency PKF 0. The peak frequency PKf 0 is a frequency at which the gain of the amplitude becomes maximum (maximum) in the gain frequency characteristic. Further, the gain-increasing filter 62 shown in FIG. 6 (a), having a peak frequency PKF 0 (i.e., PKF 0 in FIG. 6 (a)) to gradually gain distribution gain of the amplitude decreases with increasing distance from.
 また、利得増加フィルタ62は、特定の周波数未満の周波数範囲において位相を進める周波数領域FDを有し、特定の周波数を超える周波数範囲において位相を遅らせる周波数領域FDを有する位相周波数特性を持つことができる。 Further, the gain increasing filter 62 has a phase frequency characteristic having a frequency domain FD 1 for advancing the phase in a frequency range below a specific frequency and a frequency domain FD 2 for delaying the phase in a frequency range exceeding the specific frequency. Can do.
 図6(b)から理解できるように、利得増加フィルタ62としてのピーキングフィルタでは、特定の周波数であるピーク周波数PKf未満の周波数で位相が進む(位相が0度より大きい)。また、利得増加フィルタ62としてのピーキングフィルタでは、特定の周波数であるピーク周波数PKfを超える周波数では位相が遅れる(位相が0度より小さい)。 As can be understood from FIG. 6B, in the peaking filter as the gain increasing filter 62, the phase advances at a frequency lower than the peak frequency PKf 0 that is a specific frequency (the phase is larger than 0 degree). Further, the peaking filter as a gain-increasing filter 62, (less the phase of 0 degree) phase is delayed at frequencies above the peak frequency PKF 0 a specific frequency.
 なお、利得増加フィルタ62としてのピーキングフィルタにおけるピーク周波数PKfの決定方法は、図7(a)及び図7(b)を用いて説明する。 A method for determining the peak frequency PKf 0 in the peaking filter as the gain increasing filter 62 will be described with reference to FIGS. 7 (a) and 7 (b).
 図7(a)及び図7(b)は、実施の形態1に係るサーボ制御装置10及びサーボ制御装置11の開ループ特性を示す図である。図7(a)において、横軸は利得増加フィルタ62から出力される信号の周波数[Hz]を示し、縦軸は利得増加フィルタ62の振幅の利得[dB]を示す。図7(b)において、横軸は利得増加フィルタ62から出力される信号の周波数[Hz]を示し、縦軸は利得増加フィルタ62から出力される信号の位相[度]を示す。図7(a)及び図7(b)における横軸と縦軸は、それぞれ図6(a)及び図6(b)において説明したものと同じである。 FIGS. 7A and 7B are diagrams showing the open loop characteristics of the servo control device 10 and the servo control device 11 according to the first embodiment. In FIG. 7A, the horizontal axis indicates the frequency [Hz] of the signal output from the gain increase filter 62, and the vertical axis indicates the gain [dB] of the amplitude of the gain increase filter 62. In FIG. 7B, the horizontal axis indicates the frequency [Hz] of the signal output from the gain increase filter 62, and the vertical axis indicates the phase [degree] of the signal output from the gain increase filter 62. The horizontal and vertical axes in FIGS. 7A and 7B are the same as those described in FIGS. 6A and 6B, respectively.
 図7(a)において、利得周波数特性曲線70aは、比較例の開ループ特性としての振幅の利得[dB]を示している。図7(b)において、位相周波数特性曲線71aは、比較例の開ループ特性としての位相[度]を示している。 7A, a gain frequency characteristic curve 70a indicates an amplitude gain [dB] as an open loop characteristic of the comparative example. In FIG. 7B, a phase frequency characteristic curve 71a indicates the phase [degree] as the open loop characteristic of the comparative example.
 比較例の開ループ特性は、利得増加フィルタ(図2に示される利得増加フィルタ62)を含んでいない。比較例の開ループは、図3及び図4の信号検出部50と制御フィルタ61と駆動機構30とを含み、利得増加フィルタ62を含まない。つまり、ここで比較例とは、制御対象20を制御フィルタ61で制御する、一般的なフィードバック制御を指す。比較例の開ループは、例えば、図3及び図4に示す信号検出部50の伝達関数と制御フィルタ61の伝達関数と駆動機構30の伝達関数との積で表わされる。 The open loop characteristic of the comparative example does not include a gain increase filter (gain increase filter 62 shown in FIG. 2). The open loop of the comparative example includes the signal detection unit 50, the control filter 61, and the drive mechanism 30 of FIGS. 3 and 4, and does not include the gain increase filter 62. That is, here, the comparative example refers to general feedback control in which the control target 20 is controlled by the control filter 61. The open loop of the comparative example is represented by, for example, the product of the transfer function of the signal detection unit 50, the transfer function of the control filter 61, and the transfer function of the drive mechanism 30 shown in FIGS.
 制御フィルタ61は、フィードバック制御を実現するための位相補償フィルタを構成要素として備えている。制御フィルタ61は、フィードバック制御を行うために、位相補償の機能を備えている。 The control filter 61 includes a phase compensation filter as a component for realizing feedback control. The control filter 61 has a phase compensation function in order to perform feedback control.
 利得周波数特性曲線70a及び位相周波数特性曲線71aは、それぞれ破線で示されている。 The gain frequency characteristic curve 70a and the phase frequency characteristic curve 71a are indicated by broken lines, respectively.
 図7(a)において、利得周波数特性曲線70bは、実施の形態1における開ループ特性としての振幅の利得[dB]を示している。図7(b)において、位相周波数特性曲線71bは、実施の形態1における開ループ特性としての位相[度]を示している。実施の形態1における開ループ特性は、利得増加フィルタを含む。この利得増加フィルタは、図3及び図4に示される利得増加フィルタ62であって、図6(a)及び図6(b)に示される特性を持つ。実施の形態1の開ループは、信号検出部50と中央制御部60と駆動機構30とを含む。利得周波数特性曲線70b及び位相周波数特性曲線71bは、それぞれ実線で示されている。 7A, a gain frequency characteristic curve 70b shows the gain [dB] of the amplitude as the open loop characteristic in the first embodiment. In FIG. 7B, a phase frequency characteristic curve 71b indicates the phase [degree] as the open loop characteristic in the first embodiment. The open loop characteristic in the first embodiment includes a gain increasing filter. This gain increasing filter is the gain increasing filter 62 shown in FIGS. 3 and 4, and has the characteristics shown in FIGS. 6 (a) and 6 (b). The open loop of the first embodiment includes a signal detection unit 50, a central control unit 60, and a drive mechanism 30. The gain frequency characteristic curve 70b and the phase frequency characteristic curve 71b are each indicated by a solid line.
 また、図7(a)及び図7(b)において、GAf[Hz]は、比較例及び実施の形態1において、振幅の利得が0[dB]となる周波数を示す。THf[Hz]は、比較例において、位相が-180[度]となる周波数を示す。THf[Hz]は、実施の形態1において、位相が-180[度]となる周波数を示す。REf[Hz]は、比較例及び実施の形態1において、駆動機構30の共振周波数(共振点)を示す。 7A and 7B, GAf 0 [Hz] indicates a frequency at which the amplitude gain is 0 [dB] in the comparative example and the first embodiment. THf 0 [Hz] indicates a frequency at which the phase is −180 [degrees] in the comparative example. THf 1 [Hz] indicates a frequency at which the phase is −180 [degrees] in the first embodiment. REf 0 [Hz] indicates the resonance frequency (resonance point) of the drive mechanism 30 in the comparative example and the first embodiment.
 ここで、図6(a)及び図6(b)のピーク周波数PKf[Hz]の決定方法について説明する。 Here, a method of determining the peak frequency PKf 0 [Hz] in FIGS. 6A and 6B will be described.
 図7(b)において、比較例の位相周波数特性曲線71aを実施の形態1の位相周波数特性曲線71bに変えるためには、以下の第1条件と第2条件との両方を満たすように、ピーク周波数PKf[Hz]を決定することが望ましい。すなわち、第1条件及び第2条件により、振幅の利得が0[dB]となる周波数GAf[Hz]近傍の位相を進ませることができる。
 第1条件: PKf≧GAf
 第2条件: PKf≧THf
In FIG. 7B, in order to change the phase frequency characteristic curve 71a of the comparative example to the phase frequency characteristic curve 71b of the first embodiment, the peak is set so as to satisfy both the following first condition and second condition. It is desirable to determine the frequency PKf 0 [Hz]. That is, the phase near the frequency GAf 0 [Hz] at which the amplitude gain becomes 0 [dB] can be advanced by the first condition and the second condition.
First condition: PKf 0 ≧ GAf 0
Second condition: PKf 0 ≧ THf 0
 第1条件は、ピーク周波数PKfが、周波数GAf[Hz]以上であるという条件である。信号検出部50と駆動機構30とを含む開ループの開ループ特性において、周波数GAf[Hz]は、振幅の利得が0[dB]となる周波数である。図7(a)中の破線は、利得が0[dB]となる位置を示している。 The first condition is a condition that the peak frequency PKf 0 is equal to or higher than the frequency GAf 0 [Hz]. In the open loop characteristics of the open loop including the signal detection unit 50 and the drive mechanism 30, the frequency GAf 0 [Hz] is a frequency at which the amplitude gain is 0 [dB]. A broken line in FIG. 7A indicates a position where the gain is 0 [dB].
 第2条件は、ピーク周波数PKfが、周波数THf[Hz]以上であるという条件である。信号検出部50と駆動機構30とを含む開ループの開ループ特性において、周波数THf[Hz]は、図7(b)中の破線の位相が-180[度]となる周波数である。 The second condition is a condition that the peak frequency PKf 0 is equal to or higher than the frequency THf 0 [Hz]. In the open loop characteristics of the open loop including the signal detection unit 50 and the drive mechanism 30, the frequency THf 0 [Hz] is a frequency at which the phase of the broken line in FIG. 7B is −180 [degrees].
 比較例(図7(b)中の破線)において、周波数THf[Hz]は、位相が-180[度]となる周波数である。また、信号検出部50と駆動機構30とを含む開ループの開ループ特性(実施の形態1)において、周波数THf[Hz]は、位相が-180[度]となる位置を示している。 In the comparative example (broken line in FIG. 7B), the frequency THf 0 [Hz] is a frequency at which the phase is −180 [degrees]. In the open loop characteristics (Embodiment 1) of the open loop including the signal detection unit 50 and the drive mechanism 30, the frequency THf 1 [Hz] indicates a position where the phase is −180 [degrees].
 駆動機構30が共振点を有する場合には、共振周波数REf[Hz]での振幅の利得を増加させるとゲイン余裕が小さくなる。このため、以下の第3条件を満たすように、ピーク周波数PKf[Hz]を決定することが望ましい。
 第3条件: PKf>REf
When the drive mechanism 30 has a resonance point, the gain margin decreases when the gain of the amplitude at the resonance frequency REf 0 [Hz] is increased. For this reason, it is desirable to determine the peak frequency PKf 0 [Hz] so as to satisfy the following third condition.
Third condition: PKf 0 > REf 0
 第3条件は、ピーク周波数PKfが、共振周波数REf[Hz]より大きい周波数であるという条件である。駆動機構30は、共振点を有している。共振周波数REf[Hz]は、駆動機構30の共振点の周波数である。 The third condition is a condition that the peak frequency PKf 0 is a frequency greater than the resonance frequency REf 0 [Hz]. The drive mechanism 30 has a resonance point. The resonance frequency REf 0 [Hz] is the frequency at the resonance point of the drive mechanism 30.
 なお、駆動機構30が共振点を有さない場合には、第1条件と第2条件とを満足すればよい。 Note that when the drive mechanism 30 does not have a resonance point, the first condition and the second condition may be satisfied.
 図6(a)、図6(b)、図7(a)及び図7(b)の場合では、次に示す条件を満たしている。周波数GAf=4.1×10[Hz]である。周波数GAfは、振幅の利得が0[dB]となる周波数である。周波数THf=1.0×10[Hz]である。周波数THfは、比較例において、位相が-180[度]となる周波数である。共振周波数REf=2.0×10[Hz]である。共振周波数REfは、駆動機構30の共振周波数である。ピーク周波数PKf=1.2×10[Hz]である。そして、第1条件、第2条件、及び第3条件を全て満足している。 In the case of FIGS. 6A, 6B, 7A, and 7B, the following conditions are satisfied. The frequency GAf 0 = 4.1 × 10 3 [Hz]. The frequency GAf 0 is a frequency at which the amplitude gain is 0 [dB]. The frequency THf 0 = 1.0 × 10 4 [Hz]. The frequency THf 0 is a frequency at which the phase is −180 [degrees] in the comparative example. The resonance frequency REf 0 = 2.0 × 10 4 [Hz]. The resonance frequency REf 0 is the resonance frequency of the drive mechanism 30. The peak frequency PKf 0 = 1.2 × 10 5 [Hz]. The first condition, the second condition, and the third condition are all satisfied.
 これにより、図7(a)に示されるように、利得増加フィルタ62によって、共振点(共振周波数REf)における振幅の変化を小さくすることが可能である。例えば、図7(a)では、利得増加フィルタ62によって、共振点における振幅の利得は変化していない。 As a result, as shown in FIG. 7A, the gain increase filter 62 can reduce the change in amplitude at the resonance point (resonance frequency REf 0 ). For example, in FIG. 7A, the gain of the amplitude at the resonance point is not changed by the gain increasing filter 62.
 また、図7(b)に示されるように、利得増加フィルタ62によって、周波数GAf[Hz]の位相の進み量を大きくすることが可能である。周波数GAf[Hz]は、振幅の利得が0[dB]となる周波数である。例えば、領域72は、利得増加フィルタ62によって、位相遅れが改善された領域である。図7(b)で、領域72は、周波数GAfから周波数THfまでの周波数領域である。 Further, as shown in FIG. 7B, the gain increase filter 62 can increase the phase advance amount of the frequency GAf 0 [Hz]. The frequency GAf 0 [Hz] is a frequency at which the amplitude gain becomes 0 [dB]. For example, the region 72 is a region in which the phase delay is improved by the gain increasing filter 62. In FIG. 7 (b), the region 72 is the frequency region from the frequency GAF 0 to frequency THf 1.
 次に、デジタルフィルタを構成要素とした利得増加フィルタ62の例について説明する。 Next, an example of the gain increasing filter 62 including a digital filter as a component will be described.
 図8は、実施の形態1に係るサーボ制御装置10の利得増加フィルタ62で、デジタルフィルタを構成要素とした場合の演算ブロックの一例を示すブロック図である。 FIG. 8 is a block diagram illustrating an example of a calculation block when the digital filter is a constituent element in the gain increasing filter 62 of the servo control device 10 according to the first embodiment.
 図8において、80a、80b、80c、80d、80e及び80fは、各々が所定の乗算係数を持つ乗算器である。つまり、図6に示す利得増加フィルタ62は、乗算器80a,80b,80c,80d,80e,80fを備える。 In FIG. 8, 80a, 80b, 80c, 80d, 80e, and 80f are multipliers each having a predetermined multiplication coefficient. That is, the gain increasing filter 62 shown in FIG. 6 includes multipliers 80a, 80b, 80c, 80d, 80e, and 80f.
 また、80g及び80hは、1サンプル時間の遅延要素としての遅延器(z-1)である。つまり、図6に示す利得増加フィルタ62は、遅延器80g,80hを備える。遅延器80g,80hは、例えば、シフトレジスタを構成要素としている。 Reference numerals 80g and 80h denote delay elements (z −1 ) as delay elements of one sample time. That is, the gain increasing filter 62 shown in FIG. 6 includes delay devices 80g and 80h. The delay units 80g and 80h include, for example, a shift register as a constituent element.
 80i、80j、80k及び80lは、加算器として機能する演算ブロックである。つまり、図6に示す利得増加フィルタ62は、加算器80i,80j,80k,80lを備える。 80i, 80j, 80k, and 80l are calculation blocks that function as adders. That is, the gain increasing filter 62 shown in FIG. 6 includes adders 80i, 80j, 80k, and 80l.
 制御フィルタ61及び利得増加フィルタ62において、デジタルフィルタを構成要素とすることで、任意の双2次フィルタの特性を実現できる。これにより、図6(a)及び図6(b)で示した利得増加フィルタ62と同様の利得周波数特性及び位相周波数特性を持つフィルタを実現することができる。 In the control filter 61 and the gain increasing filter 62, the characteristics of an arbitrary biquadratic filter can be realized by using a digital filter as a constituent element. As a result, a filter having the same gain frequency characteristic and phase frequency characteristic as the gain increasing filter 62 shown in FIGS. 6A and 6B can be realized.
 以上に説明したように、実施の形態1に係るサーボ制御装置10、サーボ制御装置11及びサーボ制御方法においては、利得増加フィルタ62を追加することで、位相遅れを改善し、ゲイン余裕を確保し、制御の安定性を維持することができる。利得増加フィルタ62は、開ループ特性における特定の周波数での振幅の利得を局所的に増加させる。ここで、特定の周波数は、例えば、図6(a)及び図6(b)におけるピーク周波数PKf[Hz]である。また、位相遅れの改善は、例えば、図7(b)における領域72における位相遅れの改善である。 As described above, in the servo control device 10, the servo control device 11, and the servo control method according to the first embodiment, the gain increase filter 62 is added to improve the phase delay and secure the gain margin. , Control stability can be maintained. The gain increasing filter 62 locally increases the gain of the amplitude at a specific frequency in the open loop characteristic. Here, the specific frequency is, for example, the peak frequency PKf 0 [Hz] in FIGS. 6A and 6B. Further, the improvement of the phase delay is, for example, an improvement of the phase delay in the region 72 in FIG.
 また、実施の形態1に係るサーボ制御装置10、サーボ制御装置11及びサーボ制御方法においては、高い周波数帯域において位相遅れが改善される。このため、サーボ制御に用いられる制御帯域として高い周波数帯域を使用できる。ここで、高い周波数帯域は、例えば、図7(b)における領域72のように、周波数THf[Hz]より大きく、周波数THf[Hz]以下の領域である。このため、制御帯域として低い周波数帯域を使用していた比較例の場合よりも、高精度な制御を実現することができる。ここで、低い周波数帯域は、例えば、図7(b)における周波数THf[Hz]以下の領域である。 Further, in the servo control device 10, the servo control device 11, and the servo control method according to the first embodiment, the phase delay is improved in a high frequency band. For this reason, a high frequency band can be used as a control band used for servo control. Here, the high frequency band is a region that is larger than the frequency THf 0 [Hz] and lower than the frequency THf 1 [Hz], for example, as a region 72 in FIG. 7B. For this reason, more accurate control can be realized than in the case of the comparative example in which a low frequency band is used as the control band. Here, the low frequency band is, for example, a region below the frequency THf 0 [Hz] in FIG.
 ここで、周波数THf[Hz]は、実施の形態1に係るサーボ制御装置10及びサーボ制御装置11において、位相遅れが-180[度]となる周波数である。周波数THf[Hz]以下の周波数では、位相遅れが-180[度]より小さい。 Here, the frequency THf 1 [Hz] is a frequency at which the phase delay becomes −180 [degrees] in the servo control device 10 and the servo control device 11 according to the first embodiment. At frequencies below the frequency THf 1 [Hz], the phase delay is smaller than −180 [degrees].
 さらに、実施の形態1に係るサーボ制御装置10、サーボ制御装置11及びサーボ制御方法においては、特定の周波数として共振周波数における利得を増減させない周波数を選択することができる。つまり、サーボ制御装置10、サーボ制御装置11及びサーボ制御方法は、共振周波数における利得の変動を抑えることができる。ここで、特定の周波数は、例えば、図6(a)及び図6(b)におけるピーク周波数PKf[Hz]である。また、共振周波数は、例えば、図7(a)における共振周波数REf[Hz]である。 Furthermore, in the servo control device 10, the servo control device 11, and the servo control method according to the first embodiment, a frequency that does not increase or decrease the gain at the resonance frequency can be selected as the specific frequency. That is, the servo control device 10, the servo control device 11, and the servo control method can suppress fluctuations in gain at the resonance frequency. Here, the specific frequency is, for example, the peak frequency PKf 0 [Hz] in FIGS. 6A and 6B. The resonance frequency is, for example, the resonance frequency REf 0 [Hz] in FIG.
 このため、駆動機構30が共振点を有する場合であって、製品ばらつきのように、駆動機構30ごとに共振周波数REf[Hz]のばらつきがあったとしても、制御の安定性を維持することができる。 For this reason, even when the drive mechanism 30 has a resonance point, even when there is a variation in the resonance frequency REf 0 [Hz] for each drive mechanism 30 as in the product variation, the stability of the control is maintained. Can do.
実施の形態2.
 実施の形態1においては、一般的なサーボ制御装置10及びサーボ制御装置11について説明した。実施の形態2に係るサーボ制御装置90は、制御対象20を光ピックアップの対物レンズとする、光ディスク装置である。
Embodiment 2. FIG.
In the first embodiment, the general servo control device 10 and the servo control device 11 have been described. The servo control device 90 according to the second embodiment is an optical disc device in which the control target 20 is an objective lens of an optical pickup.
 図9は、実施の形態2に係るサーボ制御装置90である光ディスク装置の構成を概略的に示すブロック図である。 FIG. 9 is a block diagram schematically showing the configuration of an optical disc apparatus that is the servo control apparatus 90 according to the second embodiment.
 図9に示されるように、実施の形態2に係るサーボ制御装置90は、スピンドルモータ91と、スピンドル制御部92と、スレッドモータ93と、スレッド制御部94と、レーザ制御部95と、光ピックアップ100と、アクチュエータ制御部110と、信号検出部120と、中央制御部130とを備える。スピンドルモータ91は、光ディスクODを回転させる。アクチュエータ制御部110は、実施の形態1で示した駆動機構制御部40に相当する。 As shown in FIG. 9, the servo control device 90 according to the second embodiment includes a spindle motor 91, a spindle control unit 92, a thread motor 93, a thread control unit 94, a laser control unit 95, and an optical pickup. 100, an actuator control unit 110, a signal detection unit 120, and a central control unit 130. The spindle motor 91 rotates the optical disc OD. The actuator control unit 110 corresponds to the drive mechanism control unit 40 shown in the first embodiment.
 光ディスクODは、再生専用型ディスク、追記型ディスク及び書き換え型ディスクを含む。再生専用型ディスクは、再生のみを行うことができる。追記型ディスクは、再生と追加記録とを行うことができて、書き換えを行うことができない。書き換え型ディスクは、再生、追加記録及び書き換えを行うことができる。また、光ディスクODは、例えば、BD(Blu-ray Disc)(登録商標)、DVD(Digital Versatile Disc)、CD(Compact Disc)等である。光ディスクODは、実施の形態1に示す試料SAに相当する。 Optical disc OD includes a read-only disc, a write once disc, and a rewritable disc. A read-only disc can only be played. The write-once disc can be played back and additionally recorded, and cannot be rewritten. The rewritable disc can be reproduced, additionally recorded, and rewritten. The optical disc OD is, for example, a BD (Blu-ray Disc) (registered trademark), a DVD (Digital Versatile Disc), a CD (Compact Disc), or the like. The optical disc OD corresponds to the sample SA shown in the first embodiment.
 スピンドルモータ91は、光ディスクODを回転させる。スピンドルモータ91の回転方式には、角速度一定のCAV(Constant Angular Velocity)方式又は線速度一定のCLV(Constant Linear Velocity)方式等の方式がある。スピンドル制御部92は、スピンドルモータ91を制御する。 Spindle motor 91 rotates optical disc OD. The rotation method of the spindle motor 91 includes a CAV (Constant Angular Velocity) method with a constant angular velocity or a CLV (Constant Linear Velocity) method with a constant linear velocity. The spindle controller 92 controls the spindle motor 91.
 スレッドモータ93は、光ピックアップ100を光ディスクODのトラッキング方向に移動させる。トラッキング方向は、光ディスクODの半径方向である。また、図9において、トラッキング方向は、x軸方向である。 The thread motor 93 moves the optical pickup 100 in the tracking direction of the optical disc OD. The tracking direction is the radial direction of the optical disc OD. In FIG. 9, the tracking direction is the x-axis direction.
 スレッド制御部94は、スレッドモータ93を制御する。 The thread control unit 94 controls the thread motor 93.
 レーザ制御部95は、レーザ光源102を制御する。 The laser control unit 95 controls the laser light source 102.
 光ピックアップ100は、レーザ光源102と、ビームスプリッタ103と、対物レンズ104と、光検出部105と、レンズユニット101と、弾性支持部材と、アクチュエータ106とを備える。ビームスプリッタ103は、このレーザ光源102からのレーザ光を反射させる。対物レンズ104は、このビームスプリッタ103で反射したレーザ光を光ディスクODの情報記録面上に集光させる。対物レンズ104は、実施の形態1に示す制御対象20に相当する。光検出部105は、光ディスクODで反射し、対物レンズ104及びビームスプリッタ103を透過した反射光を受光して電気信号に変換する受光素子を含む。レンズユニット101は、これらの構成要素102~105を備えるユニットである。弾性支持部材107は、レンズユニット101内に対物レンズ104を移動可能に支持する。アクチュエータ106は、この弾性支持部材107の弾性力に抗して、対物レンズ104をトラッキング方向及びフォーカシング方向(z軸方向)に移動させる駆動機構である。アクチュエータ106は、実施の形態1に示す駆動機構30に相当する。 The optical pickup 100 includes a laser light source 102, a beam splitter 103, an objective lens 104, a light detection unit 105, a lens unit 101, an elastic support member, and an actuator 106. The beam splitter 103 reflects the laser light from the laser light source 102. The objective lens 104 focuses the laser beam reflected by the beam splitter 103 on the information recording surface of the optical disc OD. The objective lens 104 corresponds to the control target 20 shown in the first embodiment. The light detection unit 105 includes a light receiving element that receives reflected light reflected by the optical disc OD and transmitted through the objective lens 104 and the beam splitter 103 and converts it into an electrical signal. The lens unit 101 is a unit including these components 102 to 105. The elastic support member 107 supports the objective lens 104 in the lens unit 101 so as to be movable. The actuator 106 is a drive mechanism that moves the objective lens 104 in the tracking direction and the focusing direction (z-axis direction) against the elastic force of the elastic support member 107. The actuator 106 corresponds to the drive mechanism 30 shown in the first embodiment.
 駆動機構制御部としてのアクチュエータ制御部110は、中央制御部130からの指令信号に応じて、アクチュエータ106を制御する。アクチュエータ制御部110は、実施の形態1に示す駆動機構制御部40に相当する。中央制御部130は、実施の形態1に示す中央制御部60に相当する。アクチュエータ制御部110は、中央制御部130の一部であってもよい。 The actuator control unit 110 as a drive mechanism control unit controls the actuator 106 in response to a command signal from the central control unit 130. The actuator control unit 110 corresponds to the drive mechanism control unit 40 shown in the first embodiment. The central control unit 130 corresponds to the central control unit 60 shown in the first embodiment. The actuator control unit 110 may be a part of the central control unit 130.
 信号検出部120は、光検出部105からの電気信号を入力する。つまり、信号検出部120は、光検出部105からの電気信号を受け取る。そして、信号検出部120は、生成された信号を出力する。信号検出部120は、実施の形態1に示す信号検出部50に相当する。 The signal detection unit 120 inputs an electrical signal from the light detection unit 105. That is, the signal detection unit 120 receives an electrical signal from the light detection unit 105. Then, the signal detection unit 120 outputs the generated signal. The signal detection unit 120 corresponds to the signal detection unit 50 shown in the first embodiment.
 信号検出部120で生成される信号は、対物レンズ位置信号、フォーカスエラー信号又はトラッキングエラー信号等である。対物レンズ位置信号は、対物レンズ104の位置を示す信号である。フォーカスエラー信号は、対物レンズ104が光ディスクODの情報記録面にレーザ光の焦点を合わせるための制御信号である。トラッキングエラー信号は、対物レンズ104が光ディスクODの情報記録面上のトラックに追従するための制御信号である。 The signal generated by the signal detection unit 120 is an objective lens position signal, a focus error signal, a tracking error signal, or the like. The objective lens position signal is a signal indicating the position of the objective lens 104. The focus error signal is a control signal for the objective lens 104 to focus the laser beam on the information recording surface of the optical disc OD. The tracking error signal is a control signal for the objective lens 104 to follow a track on the information recording surface of the optical disc OD.
 図9において、方向Fは、フォーカシング方向である。方向Tはトラッキング方向である。方向Tは、光ディスクの半径方向である。 In FIG. 9, the direction F is the focusing direction. The direction T is the tracking direction. The direction T is the radial direction of the optical disc.
 フォーカスエラー信号の生成方式としては、例えば、非点収差法等の公知の方法を用いることができる。また、トラッキングエラー信号の生成方式としては、例えば、プッシュプル法、DPP(Differential Push-Pull)法又はDPD(Differential Phase Detection)法等の公知の方法を用いることができる。 As a method for generating the focus error signal, for example, a known method such as an astigmatism method can be used. As a method for generating the tracking error signal, for example, a known method such as a push-pull method, a DPP (Differential Push-Pull) method, or a DPD (Differential Phase Detection) method can be used.
 中央制御部130は、アクチュエータ制御部110に対し、アクチュエータ106を制御するための指令を出す。また、中央制御部130は、図3において説明された制御フィルタ61と、利得増加フィルタ62とを含む。 The central control unit 130 issues a command for controlling the actuator 106 to the actuator control unit 110. The central control unit 130 includes the control filter 61 and the gain increase filter 62 described in FIG.
 実施の形態2において、制御フィルタ61は、実施の形態1で示したものと同様に、フィードバック制御を実現するためのフィルタを構成要素としている。制御フィルタ61は、例えば、PID制御フィルタを構成要素としている。 In the second embodiment, the control filter 61 includes a filter for realizing feedback control as a constituent element, similar to that shown in the first embodiment. The control filter 61 includes, for example, a PID control filter as a constituent element.
 実施の形態2において、利得増加フィルタ62は、実施の形態1で示したものと同様に、例えば、ピーキングフィルタである。利得増加フィルタ62の振幅の利得が最大となる周波数であるピーク周波数PKf[Hz]は、実施の形態1において、図6(a)及び図6(b)並びに図7(a)及び図7(b)を用いて説明したものと同様である。 In the second embodiment, the gain increasing filter 62 is, for example, a peaking filter, similar to the one shown in the first embodiment. The peak frequency PKf 0 [Hz], which is the frequency at which the gain of the gain increase filter 62 is maximized, is the same as that in the first embodiment in FIGS. 6 (a), 6 (b), 7 (a), and 7 This is the same as described with reference to (b).
 なお、対物レンズ104を目標の位置に追従させたい場合には、信号検出部120から出力される信号のうち、対物レンズ位置信号を用いる。また、対物レンズ104を光ディスクODの情報記録面上の目標トラックに追従させて記録及び再生を行いたい場合には、信号検出部120から出力される信号のうち、フォーカスエラー信号及びトラッキングエラー信号を用いる。 Note that, when it is desired to cause the objective lens 104 to follow the target position, the objective lens position signal among the signals output from the signal detection unit 120 is used. Further, when the objective lens 104 is to be recorded and reproduced by following the target track on the information recording surface of the optical disc OD, the focus error signal and the tracking error signal among the signals output from the signal detection unit 120 are used. Use.
 なお、実施の形態2に係るサーボ制御装置90の構成は、図9の構成に限定されない。 The configuration of the servo control device 90 according to the second embodiment is not limited to the configuration in FIG.
 以上に説明したように、実施の形態2に係るサーボ制御装置90及びサーボ制御方法によれば、実施の形態1の場合と同様に、利得増加フィルタを含むことで、アクチュエータの共振点における振幅の変化を従来よりも小さくし、開ループ特性の振幅の利得が0[dB]となる周波数における位相の進み量を従来よりも大きくすることができる。このため、サーボ制御装置90及びサーボ制御方法は、制御帯域を従来よりも高くすることができる。これにより、サーボ制御装置90及びサーボ制御方法は、制御の安定性を確保しつつ、制御帯域を従来よりも高くすることで高精度な制御を実現することができる。 As described above, according to the servo control device 90 and the servo control method according to the second embodiment, as in the case of the first embodiment, by including the gain increasing filter, the amplitude at the resonance point of the actuator can be increased. The change can be made smaller than before, and the amount of phase advance at a frequency where the gain of the amplitude of the open loop characteristic becomes 0 [dB] can be made larger than before. For this reason, the servo control apparatus 90 and the servo control method can make a control band higher than before. As a result, the servo control device 90 and the servo control method can realize high-precision control by ensuring the control stability and increasing the control band as compared with the prior art.
実施の形態3.
 実施の形態2においては、制御対象20が光ピックアップの対物レンズである場合を説明したが、実施の形態3においては、制御対象20が磁気ディスク装置の磁気ヘッドである場合を説明する。実施の形態3における磁気ディスク装置は、サーボ制御を行うサーボ制御装置の一例であり、例えば、ハードディスク装置(HDD)である。
Embodiment 3 FIG.
In the second embodiment, the case where the control target 20 is an objective lens of an optical pickup has been described. In the third embodiment, the case where the control target 20 is a magnetic head of a magnetic disk device will be described. The magnetic disk device according to the third embodiment is an example of a servo control device that performs servo control, and is, for example, a hard disk device (HDD).
 図10は、実施の形態3に係るサーボ制御装置140である磁気ディスク装置の構成を概略的に示すブロック図である。 FIG. 10 is a block diagram schematically showing a configuration of a magnetic disk device which is the servo control device 140 according to the third embodiment.
 図10に示されるように、実施の形態3に係るサーボ制御装置140は、磁気ディスクMDと、制御対象150と、アクチュエータ160と、アクチュエータ制御部170と、信号検出部180と、中央制御部190とを備える。制御対象150は、磁気ディスク装置の磁気ヘッドである。制御対象(磁気ヘッド)150は、実施の形態1の制御対象20に相当する。アクチュエータ160は、磁気ヘッドの駆動機構である。アクチュエータ160は、実施の形態1の駆動機構30に相当する。アクチュエータ制御部170は、駆動機構制御部である。アクチュエータ制御部170は、実施の形態1の駆動機構制御部40に相当する。アクチュエータ制御部170は、中央制御部190の一部であってもよい。 As shown in FIG. 10, the servo control device 140 according to the third embodiment includes a magnetic disk MD, a control target 150, an actuator 160, an actuator control unit 170, a signal detection unit 180, and a central control unit 190. With. The control target 150 is a magnetic head of the magnetic disk device. The control target (magnetic head) 150 corresponds to the control target 20 of the first embodiment. The actuator 160 is a drive mechanism for the magnetic head. The actuator 160 corresponds to the drive mechanism 30 of the first embodiment. The actuator control unit 170 is a drive mechanism control unit. The actuator controller 170 corresponds to the drive mechanism controller 40 of the first embodiment. The actuator control unit 170 may be a part of the central control unit 190.
 また、サーボ制御装置140は、スピンドルモータ141と、スピンドルモータ制御部142とを備える。スピンドルモータ141は、試料としての磁気ディスクMDを回転させる。磁気ディスクMDは、実施の形態1の試料SAに相当する。スピンドルモータ制御部142は、スピンドルモータ141を制御する。 Also, the servo control device 140 includes a spindle motor 141 and a spindle motor control unit 142. The spindle motor 141 rotates the magnetic disk MD as a sample. The magnetic disk MD corresponds to the sample SA of the first embodiment. The spindle motor control unit 142 controls the spindle motor 141.
 実施の形態3において、制御対象150は、磁化パターン検出部を含む。アクチュエータ160は、磁化パターン検出部を支持するアームを備える。アクチュエータ制御部170は、アームを移動させるアーム制御部を備える。 In Embodiment 3, the controlled object 150 includes a magnetization pattern detection unit. The actuator 160 includes an arm that supports the magnetization pattern detection unit. The actuator control unit 170 includes an arm control unit that moves the arm.
 信号検出部180は、磁気ヘッドとしての制御対象150の位置を示す磁気ヘッド位置信号を生成する。そして、信号検出部180は、生成された信号を出力する。信号検出部180は、実施の形態1の信号検出部50に相当する。 The signal detection unit 180 generates a magnetic head position signal indicating the position of the control target 150 as a magnetic head. Then, the signal detection unit 180 outputs the generated signal. The signal detection unit 180 corresponds to the signal detection unit 50 of the first embodiment.
 中央制御部190は、アクチュエータ制御部170に対し、アクチュエータ160を制御するための制御信号SIG2を与える。また、中央制御部190は、図3において説明された制御フィルタ61と、利得増加フィルタ62とを備える。 The central control unit 190 gives a control signal SIG2 for controlling the actuator 160 to the actuator control unit 170. Further, the central control unit 190 includes the control filter 61 and the gain increase filter 62 described in FIG.
 実施の形態3において、制御フィルタ61は、実施の形態1で示したものと同様に、フィードバック制御を実現するためのフィルタを構成要素としている。制御フィルタ61は、例えば、PID制御フィルタを構成要素としている。 In the third embodiment, the control filter 61 includes a filter for realizing feedback control as a constituent element, similar to that shown in the first embodiment. The control filter 61 includes, for example, a PID control filter as a constituent element.
 実施の形態3において、利得増加フィルタ62は、実施の形態1で示したものと同様に、ピーキングフィルタである。利得増加フィルタ62の振幅の利得が最大となる周波数であるピーク周波数PKf[Hz]は、実施の形態1において、図6(a)及び図6(b)並びに図7(a)及び図7(b)を用いて説明したものと同様の条件を満たすように設定される。 In the third embodiment, the gain increasing filter 62 is a peaking filter, similar to that shown in the first embodiment. The peak frequency PKf 0 [Hz], which is the frequency at which the gain of the gain increase filter 62 is maximized, is the same as that in the first embodiment in FIGS. 6 (a), 6 (b), 7 (a), and 7 It is set so as to satisfy the same condition as described with reference to (b).
 なお、実施の形態3に係るサーボ制御装置140の構成は、図10の構成に限定されない。 Note that the configuration of the servo control device 140 according to Embodiment 3 is not limited to the configuration of FIG.
 以上に説明したように、実施の形態3に係るサーボ制御装置140及びサーボ制御方法によれば、実施の形態1の場合と同様に、利得増加フィルタを含むことで、アクチュエータの共振点における振幅の変化を従来よりも小さくし、開ループ特性の振幅の利得が0[dB]となる周波数における位相の進み量を従来よりも大きくすることができる。このため、サーボ制御装置140及びサーボ制御方法は、制御帯域を従来よりも高くすることができる。これにより、サーボ制御装置140及びサーボ制御方法は、制御の安定性を確保しつつ、制御帯域を従来よりも高くすることで高精度な制御を実現することができる。 As described above, according to the servo control device 140 and the servo control method according to the third embodiment, as in the case of the first embodiment, by including the gain increasing filter, the amplitude at the resonance point of the actuator can be increased. The change can be made smaller than before, and the amount of phase advance at a frequency where the gain of the amplitude of the open loop characteristic becomes 0 [dB] can be made larger than before. For this reason, the servo control device 140 and the servo control method can make the control band higher than before. Thereby, the servo control device 140 and the servo control method can realize highly accurate control by making the control band higher than the conventional one while ensuring the stability of the control.
実施の形態4.
 実施の形態4においては、制御対象20がミラー、駆動機構30がモータである場合を説明する。すなわち、実施の形態4は、ミラーが所望の角度となるよう、モータによるミラー位置の制御を行うサーボ制御装置の一例である。
Embodiment 4 FIG.
In the fourth embodiment, a case where the control target 20 is a mirror and the drive mechanism 30 is a motor will be described. That is, the fourth embodiment is an example of a servo control device that controls the mirror position by a motor so that the mirror has a desired angle.
 図11は、実施の形態4に係るサーボ制御装置200であるモータ制御装置の構成を概略的に示すブロック図である。 FIG. 11 is a block diagram schematically showing a configuration of a motor control device that is the servo control device 200 according to the fourth embodiment.
 図11に示されるように、実施の形態4に係るサーボ制御装置200は、信号検出部240と、中央制御部250とを備える。なお、図11には、制御対象210と、アクチュエータ220と、アクチュエータ制御部230とが示されている。 As shown in FIG. 11, the servo control device 200 according to the fourth embodiment includes a signal detection unit 240 and a central control unit 250. FIG. 11 shows the control object 210, the actuator 220, and the actuator control unit 230.
 制御対象210は、ミラーである。制御対象210は、実施の形態1の制御対象20に相当する。アクチュエータ220は、モータである。アクチュエータ(モータ)220は、実施の形態1の駆動機構30に相当する。 The control object 210 is a mirror. The control target 210 corresponds to the control target 20 of the first embodiment. The actuator 220 is a motor. The actuator (motor) 220 corresponds to the drive mechanism 30 of the first embodiment.
 アクチュエータ制御部230は、中央制御部250からの指令信号に応じて、アクチュエータ220を制御する。アクチュエータ制御部230は、実施の形態1の駆動機構制御部40に相当する。アクチュエータ制御部230は、中央制御部250の一部であってもよい。 Actuator control unit 230 controls actuator 220 in accordance with a command signal from central control unit 250. The actuator control unit 230 corresponds to the drive mechanism control unit 40 of the first embodiment. The actuator control unit 230 may be a part of the central control unit 250.
 信号検出部240は、ミラーとしての制御対象210の角度を示すミラー角度検出信号を生成する。そして、信号検出部240は、生成された信号を出力する。信号検出部240は、実施の形態1の信号検出部50に相当する。 The signal detection unit 240 generates a mirror angle detection signal indicating the angle of the control object 210 as a mirror. And the signal detection part 240 outputs the produced | generated signal. The signal detection unit 240 corresponds to the signal detection unit 50 of the first embodiment.
 中央制御部250は、アクチュエータ制御部230に対し、アクチュエータ220を制御するための制御信号SIG2を与える。また、中央制御部250は、図4において説明された制御フィルタ61と、利得増加フィルタ62とを備える。中央制御部250は、実施の形態1の中央制御部60に相当する。 The central control unit 250 gives a control signal SIG2 for controlling the actuator 220 to the actuator control unit 230. The central control unit 250 includes the control filter 61 and the gain increase filter 62 described in FIG. The central control unit 250 corresponds to the central control unit 60 of the first embodiment.
 実施の形態4において、制御フィルタ(図4における61)は、実施の形態1で示したものと同様に、フィードバック制御を実現するためのフィルタを構成要素としている。
制御フィルタ61は、例えば、PID制御フィルタを構成要素としている。
In the fourth embodiment, the control filter (61 in FIG. 4) includes a filter for realizing feedback control as a constituent element, similar to that shown in the first embodiment.
The control filter 61 includes, for example, a PID control filter as a constituent element.
 実施の形態4において、利得増加フィルタ(図4における62)は、実施の形態1で示したものと同様に、ピーキングフィルタである。利得増加フィルタ62の振幅の利得が最大となる周波数であるピーク周波数PKf[Hz]は、実施の形態1において、図6(a)、図6(b)、図7(a)及び図7(b)を用いて説明したものと同様の条件を満たすように設定される。 In the fourth embodiment, the gain increasing filter (62 in FIG. 4) is a peaking filter, similar to that shown in the first embodiment. The peak frequency PKf 0 [Hz], which is the frequency at which the gain of the gain increasing filter 62 is maximized, is the same as that in the first embodiment shown in FIGS. 6 (a), 6 (b), 7 (a), and 7 It is set so as to satisfy the same condition as described with reference to (b).
 なお、実施の形態4に係るサーボ制御装置200の構成は、図11の構成に限定されない。例えば、制御対象210として、ミラーの代わりに、モータ(アクチュエータ220)の回転に応じて動くテーブル等でもよい。この場合には、信号検出部240は、テーブルとしての制御対象210の位置を示す位置検出信号を生成する。一般的に、制御対象210は、モータ(アクチュエータ220)の回転に応じて動く被駆動体である。つまり、モータ220の回転に応じて動く被駆動体(制御対象)210は、実施の形態1の制御対象20に相当する。 Note that the configuration of the servo control device 200 according to the fourth embodiment is not limited to the configuration of FIG. For example, the control object 210 may be a table that moves in accordance with the rotation of a motor (actuator 220) instead of a mirror. In this case, the signal detection unit 240 generates a position detection signal indicating the position of the control target 210 as a table. In general, the control object 210 is a driven body that moves according to the rotation of the motor (actuator 220). That is, the driven body (control target) 210 that moves according to the rotation of the motor 220 corresponds to the control target 20 of the first embodiment.
 以上に説明したように、実施の形態4に係るサーボ制御装置200及びサーボ制御方法によれば、実施の形態1の場合と同様に、利得増加フィルタを含むことで、アクチュエータの共振点における振幅の変化を従来よりも小さくし、開ループ特性の振幅の利得が0[dB]となる周波数における位相の進み量を従来よりも大きくすることができる。このため、サーボ制御装置200及びサーボ制御方法は、制御帯域を従来よりも高くすることができる。これにより、サーボ制御装置200及びサーボ制御方法は、制御の安定性を確保しつつ、制御帯域を従来よりも高くすることで高精度な制御を実現することができる。 As described above, according to the servo control device 200 and the servo control method according to the fourth embodiment, as in the case of the first embodiment, by including the gain increase filter, the amplitude at the resonance point of the actuator can be increased. The change can be made smaller than before, and the amount of phase advance at a frequency where the gain of the amplitude of the open loop characteristic becomes 0 [dB] can be made larger than before. For this reason, the servo control apparatus 200 and the servo control method can make a control band higher than before. As a result, the servo control device 200 and the servo control method can realize high-precision control by ensuring a stable control and increasing the control band as compared with the prior art.
変形例.
 以上で説明した実施の形態1から4に係るサーボ制御装置及びサーボ制御方法は、電子回路等のハードウェア資源のみにより実現されてもよいし、又は、ハードウェア資源とソフトウェアとの協働により実現されてもよい。ハードウェア資源とソフトウェアとの協働により実現される場合には、サーボ制御装置及びサーボ制御方法は、例えば、コンピュータプログラムがコンピュータにより実行されることによって実現される。より具体的には、ROM(Read Only Memory)等の記録媒体に記録されたコンピュータプログラムが主記憶装置に読み出されて中央制御装置(CPU:Central Processing Unit)により実行されることによって実現される。コンピュータプログラムは、光ディスク等のコンピュータ読み取り可能な記録媒体に記録されて提供されてもよいし、インターネット等の通信回線を介して提供されてもよい。
Modified example.
The servo control devices and servo control methods according to the first to fourth embodiments described above may be realized only by hardware resources such as electronic circuits, or may be realized by cooperation of hardware resources and software. May be. When realized by cooperation of hardware resources and software, the servo control device and the servo control method are realized, for example, by a computer program being executed by a computer. More specifically, it is realized by reading a computer program recorded on a recording medium such as a ROM (Read Only Memory) into a main storage device and executing it by a central processing unit (CPU). . The computer program may be provided by being recorded on a computer-readable recording medium such as an optical disk, or may be provided via a communication line such as the Internet.
 なお、本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の態様で実施することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist of the present invention.
 本発明に係るサーボ制御装置及びサーボ制御方法は、駆動機構を用いて制御対象の位置(特に、試料と制御対象との間の相対的位置)を制御する装置であれば、光ディスク装置、磁気ディスク装置、及びモータ制御装置以外の各種の装置、例えば、アクチュエータによる精密な位置制御を行う制御対象を有するロボット等の生産設備、又は、アクチュエータによる精密な位置制御を行う制御対象を有する自動車、船舶、航空機等の輸送機器のような各種の装置、に適用可能である。 The servo control device and the servo control method according to the present invention are an optical disk device and a magnetic disk as long as the device controls a position of a control target (particularly a relative position between a sample and a control target) using a drive mechanism. Various devices other than the device and the motor control device, for example, a production facility such as a robot having a control object that performs precise position control by an actuator, or an automobile, a ship having a control object that performs precise position control by an actuator, The present invention can be applied to various apparatuses such as transportation equipment such as aircraft.
 10 サーボ制御装置、 11 サーボ制御装置、 20 制御対象、 30 駆動機構、 40 駆動機構制御部、 50 信号検出部、 60 中央制御部、 61 制御フィルタ、 62 利得増加フィルタ、 70a 比較例における利得周波数特性曲線、 70b 利得周波数特性曲線、 71a 比較例における位相周波数特性曲線、 71b 位相周波数特性曲線、 80a~80f 乗算器、 80g,80h 遅延器(シフトレジスタ)、 80i~80l 加算器、 90 サーボ制御装置、 91 スピンドルモータ、 92 スピンドル制御部、 93 スレッドモータ、 94 スレッド制御部、 95 レーザ制御部、 100 光ピックアップ、 101 レンズユニット、 102 レーザ光源、 103 ビームスプリッタ、 104 対物レンズ、 105 光検出部、 106 アクチュエータ、 107 弾性支持部材、 110 アクチュエータ制御部、 120 信号検出部、 130 中央制御部、 140 サーボ制御装置、 141 スピンドルモータ、 142 スピンドルモータ制御部、 150 制御対象、 160 アクチュエータ、 170 アクチュエータ制御部、 180 信号検出部、 190 中央制御部、 200 サーボ制御装置、 210 制御対象、 220 アクチュエータ、 230 アクチュエータ制御部、 240 信号検出部、 250 中央制御部、 SA 試料、 OD 光ディスク、 MD 磁気ディスク、 FD 位相を進める周波数領域、 FD 位相を遅らせる周波数領域、 F,T 方向。
 
DESCRIPTION OF SYMBOLS 10 Servo control apparatus, 11 Servo control apparatus, 20 Control object, 30 Drive mechanism, 40 Drive mechanism control part, 50 Signal detection part, 60 Central control part, 61 Control filter, 62 Gain increase filter, 70a Gain frequency characteristic in comparative example Curve, 70b gain frequency characteristic curve, 71a phase frequency characteristic curve in comparative example, 71b phase frequency characteristic curve, 80a to 80f multiplier, 80g, 80h delay device (shift register), 80i to 80l adder, 90 servo control device, 91 Spindle motor, 92 Spindle controller, 93 Thread motor, 94 Thread controller, 95 Laser controller, 100 Optical pickup, 101 Lens unit, 102 Laser light source, 103 Beam splitter, 104 Objective lens, 105 Light detector, 106 107, elastic support member, 110 actuator control unit, 120 signal detection unit, 130 central control unit, 140 servo control device, 141 spindle motor, 142 spindle motor control unit, 150 controlled object, 160 actuator, 170 actuator control unit, 180 Signal detection unit, 190 central control unit, 200 servo control device, 210 control target, 220 actuator, 230 actuator control unit, 240 signal detection unit, 250 central control unit, SA sample, OD optical disc, MD magnetic disc, FD 1 phase Advancing frequency domain, FD 2 delaying frequency domain, F, T direction.

Claims (10)

  1.  制御対象を駆動する駆動機構を制御するサーボ制御装置であって、
     可動支持された前記制御対象の位置を示す信号である制御対象位置信号を生成する信号検出部と、
     前記信号検出部で生成された前記制御対象位置信号に基づいて、前記駆動機構を制御するための制御信号を生成する中央制御部と、
     を備え、
     前記中央制御部は、前記信号検出部と前記駆動機構とを含む開ループの開ループ特性において、予め決められた特定の周波数での振幅の利得を局所的に増加させる利得周波数特性を持つ利得増加フィルタを含む
     ことを特徴とするサーボ制御装置。
    A servo control device for controlling a drive mechanism for driving a controlled object,
    A signal detection unit that generates a control target position signal that is a signal indicating the position of the control target that is movably supported;
    A central control unit that generates a control signal for controlling the drive mechanism based on the control target position signal generated by the signal detection unit;
    With
    The central control unit is a gain increase having a gain frequency characteristic that locally increases an amplitude gain at a predetermined specific frequency in an open loop characteristic of the open loop including the signal detection unit and the driving mechanism. A servo control device comprising a filter.
  2.  前記利得増加フィルタは、前記利得周波数特性において振幅の利得が最大となる周波数であるピーク周波数を持つことを特徴とする請求項1に記載のサーボ制御装置。 2. The servo control device according to claim 1, wherein the gain increasing filter has a peak frequency which is a frequency at which the gain of the amplitude is maximum in the gain frequency characteristic.
  3.  前記ピーク周波数は、前記開ループ特性における振幅の利得が0[dB]となる周波数以上であり、および、前記中央制御部が前記利得増加フィルタを含まない場合の開ループ特性における位相が-180[度]となる周波数以上であることを特徴とする請求項2に記載のサーボ制御装置。 The peak frequency is equal to or higher than a frequency at which an amplitude gain in the open loop characteristic becomes 0 [dB], and a phase in the open loop characteristic when the central control unit does not include the gain increasing filter is −180 [ The servo control device according to claim 2, wherein the servo control device has a frequency equal to or higher than a degree.
  4.  前記駆動機構が共振点を有し、
     前記ピーク周波数は、前記共振点の周波数である共振周波数より大きい
     ことを特徴とする請求項2又は3に記載のサーボ制御装置。
    The drive mechanism has a resonance point;
    The servo control device according to claim 2, wherein the peak frequency is higher than a resonance frequency that is a frequency of the resonance point.
  5.  前記利得増加フィルタは、前記特定の周波数未満の周波数範囲において位相を進める周波数領域を有し、前記特定の周波数を超える周波数範囲において位相を遅らせる周波数領域を有する位相周波数特性を持つことを特徴とする請求項1から4のいずれか1項に記載のサーボ制御装置。 The gain increasing filter has a phase frequency characteristic having a frequency region that advances a phase in a frequency range less than the specific frequency, and a frequency region that delays a phase in a frequency range exceeding the specific frequency. The servo control device according to any one of claims 1 to 4.
  6.  前記利得増加フィルタは、双2次フィルタを含むことを特徴とする請求項1から5のいずれか1項に記載のサーボ制御装置。 The servo control device according to any one of claims 1 to 5, wherein the gain increasing filter includes a biquadratic filter.
  7.  前記制御対象は、光ディスク上を走査する光ピックアップに備えられた対物レンズであり、前記駆動機構は、前記対物レンズを駆動するアクチュエータである、または、
     前記制御対象は、磁気ディスク上を走査する磁気ヘッドであり、前記駆動機構は、前記磁気ヘッドを駆動するアクチュエータである、または、
     前記駆動機構は、モータであり、前記制御対象は、前記モータの回転に応じて動く被駆動体である
     ことを特徴とする請求項1から6のいずれか1項に記載のサーボ制御装置。
    The control target is an objective lens provided in an optical pickup that scans on an optical disc, and the drive mechanism is an actuator that drives the objective lens, or
    The control target is a magnetic head that scans on a magnetic disk, and the drive mechanism is an actuator that drives the magnetic head, or
    The servo control device according to claim 1, wherein the drive mechanism is a motor, and the control target is a driven body that moves according to the rotation of the motor.
  8.  制御対象を駆動する駆動機構を制御するサーボ制御方法であって、
     中央制御部から供給された制御信号に基づいて、可動支持された制御対象を駆動するステップと、
     前記制御対象の位置を示す信号である制御対象位置信号を信号検出部で生成するステップと、
     前記中央制御部が、前記駆動機構と前記信号検出部とを含む開ループの開ループ特性において、予め決められた特定の周波数での振幅の利得を局所的に増加させる利得周波数特性を持つ利得増加フィルタを用いて、前記信号検出部で生成された前記制御対象位置信号から前記制御信号を生成するステップと、
     を有することを特徴とするサーボ制御方法。
    A servo control method for controlling a drive mechanism that drives a controlled object,
    Based on the control signal supplied from the central control unit, driving the control object that is supported in a movable manner;
    Generating a control target position signal, which is a signal indicating the position of the control target, in a signal detection unit;
    In the open loop characteristic of the open loop including the drive mechanism and the signal detection unit, the central control unit gain gain having a gain frequency characteristic that locally increases the gain of the amplitude at a predetermined frequency. Generating the control signal from the control target position signal generated by the signal detection unit using a filter;
    A servo control method characterized by comprising:
  9.  前記利得増加フィルタは、前記利得周波数特性において振幅の利得が最大となる周波数であるピーク周波数を持つことを特徴とする請求項8に記載のサーボ制御方法。 9. The servo control method according to claim 8, wherein the gain increasing filter has a peak frequency which is a frequency at which an amplitude gain is maximum in the gain frequency characteristic.
  10.  前記ピーク周波数は、前記開ループ特性における振幅の利得が0[dB]となる周波数以上であり、および、前記信号検出部の伝達関数と前記中央制御部が備える位相補償フィルタとしての制御フィルタの伝達関数と前記駆動機構の伝達関数との積で表わされる開ループ特性における位相が-180[度]となる周波数以上であることを特徴とする請求項9に記載のサーボ制御方法。
     
    The peak frequency is equal to or higher than the frequency at which the gain of the amplitude in the open loop characteristic becomes 0 [dB], and the transfer function of the signal detection unit and the transfer of the control filter as the phase compensation filter provided in the central control unit 10. The servo control method according to claim 9, wherein a phase in an open loop characteristic expressed by a product of a function and a transfer function of the driving mechanism is equal to or higher than a frequency at which -180 [degrees] is obtained.
PCT/JP2015/074693 2014-10-29 2015-08-31 Servo control device and servo control method WO2016067741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562986A JPWO2016067741A1 (en) 2014-10-29 2015-08-31 Servo control device and servo control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220447 2014-10-29
JP2014-220447 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067741A1 true WO2016067741A1 (en) 2016-05-06

Family

ID=55857087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074693 WO2016067741A1 (en) 2014-10-29 2015-08-31 Servo control device and servo control method

Country Status (2)

Country Link
JP (1) JPWO2016067741A1 (en)
WO (1) WO2016067741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116600A (en) * 2017-01-20 2018-07-26 山洋電気株式会社 Motor control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944863A (en) * 1995-08-02 1997-02-14 Olympus Optical Co Ltd Control circuit for optical disk device
JP2001195850A (en) * 2000-01-12 2001-07-19 Hitachi Ltd Positioning controller
JP2002182703A (en) * 2000-12-11 2002-06-26 Nec Corp Positioning device and positioning method
JP2007004910A (en) * 2005-06-24 2007-01-11 Hitachi Global Storage Technologies Netherlands Bv Magnetic disk device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944863A (en) * 1995-08-02 1997-02-14 Olympus Optical Co Ltd Control circuit for optical disk device
JP2001195850A (en) * 2000-01-12 2001-07-19 Hitachi Ltd Positioning controller
JP2002182703A (en) * 2000-12-11 2002-06-26 Nec Corp Positioning device and positioning method
JP2007004910A (en) * 2005-06-24 2007-01-11 Hitachi Global Storage Technologies Netherlands Bv Magnetic disk device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116600A (en) * 2017-01-20 2018-07-26 山洋電気株式会社 Motor control device
TWI783961B (en) * 2017-01-20 2022-11-21 日商山洋電氣股份有限公司 Motor control apparatus

Also Published As

Publication number Publication date
JPWO2016067741A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016067741A1 (en) Servo control device and servo control method
JPH0877589A (en) Optical disk device
EP1615209B1 (en) Optical disk apparatus
JPH08249678A (en) Optical data-recording/reproducing apparatus
US5283774A (en) Optical disk storage having focus servocontrol system in accordance with astigmatism method
JP4508052B2 (en) Servo control device, control parameter determination method, and control parameter determination program
JP4247679B2 (en) Servo control device and control method
JP2003006884A (en) Control system and method of long seek in optical disc drive
JPH0714195A (en) Track following device for optical disk device
JP2007188322A (en) Pid controller and method for setting control elements of its pid control system
US20080130435A1 (en) Disc Drive Apparatus With Non-Linear Observer
JP4483796B2 (en) Optical disc apparatus and focus control method thereof
JP2780445B2 (en) Focus control device
JP2006344311A (en) Device and method for servo control, and optical disk recording/reproducing device
JP2003084807A (en) Discrete processing method of continuous-time system transfer function, and compensator and feedback control system using its system, program and method
JP2009099237A (en) Disk device and tracking servo device
JP2003168223A (en) Optical disk drive and servo circuit
JP2661027B2 (en) Feed servo system in optical pickup
KR100532494B1 (en) Optical disk device and gain control method used therefor
JP2000268373A (en) Drive controller for pickup head
US8391111B2 (en) Optical pickup control circuit and optical disc drive device
JP2013182652A (en) Digital circuit and optical disk device
KR20010091071A (en) An apparatus and method for controlling the focusing servo in an optical disk driver
JP4968753B2 (en) Information recording / reproducing apparatus and method
JP2011170932A (en) Optical disk device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562986

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853684

Country of ref document: EP

Kind code of ref document: A1