JP2018116600A - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP2018116600A
JP2018116600A JP2017008224A JP2017008224A JP2018116600A JP 2018116600 A JP2018116600 A JP 2018116600A JP 2017008224 A JP2017008224 A JP 2017008224A JP 2017008224 A JP2017008224 A JP 2017008224A JP 2018116600 A JP2018116600 A JP 2018116600A
Authority
JP
Japan
Prior art keywords
motor
resonance frequency
frequency
inertia
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017008224A
Other languages
Japanese (ja)
Other versions
JP6846213B2 (en
Inventor
井出 勇治
Yuji Ide
勇治 井出
敏雄 平出
Toshio Hiraide
敏雄 平出
通生 北原
Michio Kitahara
通生 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2017008224A priority Critical patent/JP6846213B2/en
Priority to CN201711429557.7A priority patent/CN108336940B/en
Priority to TW107100293A priority patent/TWI783961B/en
Priority to PH12018000005A priority patent/PH12018000005B1/en
Publication of JP2018116600A publication Critical patent/JP2018116600A/en
Application granted granted Critical
Publication of JP6846213B2 publication Critical patent/JP6846213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor control device capable of stably operating a motor with a large inertia ratio even when driving the motor in a two-inertia system.SOLUTION: A motor control device B for controlling a two-inertia system motor 1a includes a speed controller 3 which controls the motor in a direction in which the deviation between a speed command value and a speed feedback value becomes zero. In this motor control device, an inertia ratio compensating filter 5 is provided on an output side of the speed controller 3. The inertia ratio compensating filter gently compensates for a gain with respect to an antiresonant frequency and a resonant frequency, and sets a phase delay in the antiresonant frequency or resonant frequency to a phase margin or lower in relation to at least a set of antiresonance and resonance characteristics of the two-inertia system motor 1a of a control target 1.SELECTED DRAWING: Figure 1

Description

本発明は、モータ制御技術に関する。   The present invention relates to a motor control technique.

工作機械では、ボールねじを用いてモータの回転運動を直線運動に変換し、テーブルを駆動することが行われている。このような動力伝達機構では、ボールねじなどの剛性の低い部分により、2慣性系が構成されている。   In machine tools, a rotary motion of a motor is converted into a linear motion using a ball screw, and a table is driven. In such a power transmission mechanism, a two-inertia system is configured by a portion having low rigidity such as a ball screw.

2慣性系では、例えば図6に示すように100Hz付近の反共振周波数と140Hz付近の共振周波数とがあり、反共振周波数から共振周波数までの位相が180°進んだ特性になる。   In the two inertia system, for example, as shown in FIG. 6, there are an anti-resonance frequency near 100 Hz and a resonance frequency near 140 Hz, and the phase from the anti-resonance frequency to the resonance frequency is advanced by 180 °.

このような2慣性系において、モータ慣性を小さくすると、負荷側慣性とモータ側慣性との比が大きくなる。速度ループを構成した場合のトルク指令から速度までの周波数特性は図7のように、慣性比が小さい場合(図7(a))と比較し、反共振周波数以下のゲインと共振周波数以上のゲインとの差が大きくなる(図7(b))。   In such a two-inertia system, if the motor inertia is reduced, the ratio between the load-side inertia and the motor-side inertia is increased. As shown in FIG. 7, the frequency characteristic from the torque command to the speed when the speed loop is configured is compared with the case where the inertia ratio is small (FIG. 7A), the gain below the anti-resonance frequency and the gain above the resonance frequency. (FIG. 7B).

反共振周波数以下のゲインが同じになるように速度制御ゲインを調整すると、共振周波数以上のゲインが大きくなり、反共振周波数以下の周波数でのゲイン余裕、位相余裕に加えて、共振周波数以上の周波数でのゲイン余裕、位相余裕が確保されないと、制御系が不安定になり、発振してしまう。   When the speed control gain is adjusted so that the gain below the anti-resonance frequency is the same, the gain above the resonance frequency increases, and in addition to the gain margin and phase margin at the frequency below the anti-resonance frequency, the frequency above the resonance frequency. If the gain margin and phase margin are not secured, the control system becomes unstable and oscillates.

このため、従来は、慣性比の大きなモータを駆動する場合に安定性が確保できるよう、速度制御ゲインを下げて使用せざるを得なかった。   For this reason, conventionally, when driving a motor having a large inertia ratio, the speed control gain must be lowered to ensure stability.

しかしながら、速度制御ゲインが低いと加工精度が低下してしまうという問題がある。同じモータトルクであれば、全慣性が小さい方が加減速に要する時間が短くなるため、機械のサイクルタイム短縮のためにはモータ慣性を小さくする必要がある。   However, when the speed control gain is low, there is a problem that the machining accuracy is lowered. If the motor torque is the same, the time required for acceleration / deceleration is shortened when the total inertia is small. Therefore, it is necessary to reduce the motor inertia in order to shorten the cycle time of the machine.

2慣性系の特性の改善を行った技術例が特許文献1に開示されている。特許文献1では、速度指令値と速度フィードバック値との偏差が零になるようにサーボモータを制御する速度制御器を含むサーボ制御装置において、制御対象の少なくとも一組の反共振、共振特性の逆の特性あるいはこれを近似する特性のフィルタを速度制御器に組み込んでいる。これにより、低域の位相遅れの増加を極力抑えながら、共振ピークのゲインを抑えることにより安定化させて速度制御系の速度制御ゲインを上げることができる。   A technical example in which the characteristics of the two-inertia system are improved is disclosed in Patent Document 1. In Patent Document 1, in a servo control apparatus including a speed controller that controls a servo motor so that a deviation between a speed command value and a speed feedback value becomes zero, at least one set of anti-resonance and reverse of resonance characteristics of a control target. The filter of the characteristic of this or the characteristic which approximates this is incorporated in the speed controller. As a result, the speed control gain of the speed control system can be increased by stabilizing the resonance peak gain while suppressing the increase in the low-frequency phase delay as much as possible.

慣性モーメントの変動に対して、その安定性を確保した技術例が特許文献2に開示されている。特許文献2のモータ制御装置においては、慣性モーメントが最小値から最大値まで変動する機械負荷にモータが結合され、モータを速度指令信号に基づいて駆動制御すると共に速度ループを有する。モータ制御装置は、速度指令信号とモータの速度検出信号との偏差信号に応じてモータを駆動すると共に、偏差信号を比例制御演算と積分制御演算とを行ってモータ駆動指令を生成して出力する速度制御手段と、速度ループに速度制御手段と直列に挿入された補償制御手段とを備えている。該補償制御手段は、慣性モーメントの最小値となる時の速度ループを開放した速度開ループの交差周波数である第1交差周波数と慣性モーメントの最大値となる時の速度開ループの交差周波数である第2交差周波数との間の周波数における速度開ループの位相が−140°以上となるように設定される。補償制御手段は、中間周波数領域で位相が進み、低周波数領域と高周波数領域で位相がほぼゼロとなる位相進み特性を有する位相進みフィルタである。   Patent Document 2 discloses a technical example in which the stability of the moment of inertia is ensured. In the motor control device of Patent Document 2, a motor is coupled to a mechanical load whose inertia moment varies from a minimum value to a maximum value, and the motor is driven and controlled based on a speed command signal and has a speed loop. The motor control device drives the motor in accordance with a deviation signal between the speed command signal and the motor speed detection signal, and generates and outputs a motor drive command by performing a proportional control calculation and an integral control calculation on the deviation signal. Speed control means and compensation control means inserted in series with the speed control means in the speed loop are provided. The compensation control means is the first open frequency that is the cross frequency of the open speed loop that opens the speed loop when the minimum value of the moment of inertia is the cross frequency of the open speed loop that is the maximum value of the moment of inertia. The phase of the speed open loop at a frequency between the second crossing frequency is set to be −140 ° or more. The compensation control means is a phase advance filter having a phase advance characteristic in which the phase advances in the intermediate frequency region and the phase becomes almost zero in the low frequency region and the high frequency region.

特開2000−322105号公報JP 2000-322105 A 特開2005−328607号公報JP-A-2005-328607

特許文献1では、2慣性系で構成される機械系の反共振周波数と共振周波数を相殺するフィルタを制御系に搭載し、これにより特性の改善を行っている。   In Patent Document 1, a filter that cancels the anti-resonance frequency and the resonance frequency of a mechanical system constituted by a two-inertia system is mounted on the control system, thereby improving the characteristics.

しかしながら、特許文献1において用いられている制御対象(2慣性系)の一組の反共振、共振特性の逆の特性のフィルタは、図8(a)に示すように反共振周波数や共振周波数での位相の変化が急峻な特性を有するものであり、反共振周波数から共振周波数までの間の位相遅れは180°になる。   However, a set of anti-resonance and reverse resonance characteristics of the control target (two-inertia system) used in Patent Document 1 has an anti-resonance frequency and a resonance frequency as shown in FIG. The phase change between the anti-resonance frequency and the resonance frequency is 180 °.

2慣性系の特性として反共振周波数から共振周波数までの位相が180°進んでいるため、機械系の反共振周波数や共振周波数と補償フィルタに設定した反共振周波数や共振周波数が完全に一致していれば発振する事なく特性が改善される。しかしながら、補償フィルタに設定した反共振周波数と機械系の反共振周波数に少しでもずれが生ずると、急激で大きな補償フィルタの位相遅れにより発振してしまうという問題がある。   Since the phase from the anti-resonance frequency to the resonance frequency is advanced by 180 ° as a characteristic of the two-inertia system, the anti-resonance frequency and resonance frequency of the mechanical system and the anti-resonance frequency and resonance frequency set in the compensation filter completely match. If so, the characteristics are improved without oscillation. However, if a slight deviation occurs between the anti-resonance frequency set in the compensation filter and the anti-resonance frequency of the mechanical system, there is a problem that oscillation occurs due to a sudden and large phase delay of the compensation filter.

位相が180°遅れると、信号が反転して出てくるため、制御ループを構成した場合は発振してしまう。また、共振周波数においても同様に、補償フィルタに設定した共振周波数と機械系の共振周波数に少しでもずれが生ずると、急激で大きな補償フィルタの位相遅れにより発振してしまうという問題がある。   When the phase is delayed by 180 °, the signal is inverted and output, so that oscillation occurs when the control loop is configured. Similarly, at the resonance frequency, if there is even a slight deviation between the resonance frequency set for the compensation filter and the resonance frequency of the mechanical system, there is a problem that oscillation occurs due to a sudden and large phase delay of the compensation filter.

ボールねじを用いた機械系では、テーブルの位置によりボールねじのねじり剛性が少し変動するため、テーブルの位置によっては反共振周波数や共振周波数が少し変化して発振してしまうと、補償フィルタを入れることができず、速度制御ゲインを上げられないという問題があった。   In a mechanical system using a ball screw, the torsional rigidity of the ball screw varies slightly depending on the position of the table. Therefore, depending on the position of the table, if the anti-resonance frequency or resonance frequency slightly changes and oscillation occurs, a compensation filter is inserted. There is a problem that the speed control gain cannot be increased.

また、例えば図8(b)に示すように、反共振周波数及び共振周波数における位相の遅れを低減したフィルタを挿入しようとした場合、反共振周波数より少し低い周波数での位相遅れにより、閉ループ周波数特性のハンプが増大したり、共振周波数より少し高い周波数での位相遅れにより、位相余裕がなくなり発振してしまうという問題があった。ハンプの増大や発振は、加工精度を低下させるため、抑制する必要がある。   Further, for example, as shown in FIG. 8B, when an attempt is made to insert a filter with reduced antiresonance frequency and phase delay at the resonance frequency, the closed loop frequency characteristic is caused by the phase delay at a frequency slightly lower than the antiresonance frequency. There has been a problem in that the hump increases and the phase lag occurs at a frequency slightly higher than the resonance frequency, so that there is no phase margin and oscillation occurs. The increase in hump and oscillation reduce the processing accuracy, so it is necessary to suppress it.

特許文献2では、位相進みフィルタを用いて機械負荷の慣性モーメントが最大の時の交差周波数付近での位相遅れを小さくし、機械負荷の慣性モーメントが変動しても位相余裕が40°以上となる望ましい制御特性が得られるようにしている。   In Patent Document 2, a phase advance filter is used to reduce the phase delay near the crossing frequency when the moment of inertia of the mechanical load is maximum, and the phase margin becomes 40 ° or more even if the moment of inertia of the mechanical load varies. Desired control characteristics are obtained.

しかしながら、特許文献2は、機械負荷の慣性モーメントが最大の時の交差周波数付近での位相遅れを小さくしているのみで、機械負荷に剛性が低い部分のある2慣性系の特性改善を行ったものではない。   However, Patent Document 2 has improved the characteristics of a two-inertia system in which the mechanical load has a portion with low rigidity only by reducing the phase delay near the crossing frequency when the moment of inertia of the mechanical load is maximum. It is not a thing.

また、特許文献2では、位相進みフィルタとして、低周波数領域の速度制御ゲインを低減する特性のフィルタを用いているため、特許文献2の手法を剛性の低い部分が存在する慣性比の大きな機械に適用して共振周波数付近の位相を進めようとすると、制御帯域の速度制御ゲインが低下し、制御特性が悪化してしまうという問題があった。   Further, in Patent Document 2, since a filter having a characteristic of reducing the speed control gain in the low frequency region is used as the phase advance filter, the method of Patent Document 2 is applied to a machine having a large inertia ratio in which a portion having low rigidity exists. When applied to advance the phase near the resonance frequency, the speed control gain in the control band is lowered, and the control characteristics are deteriorated.

本発明は、2慣性系において、慣性比の大きなモータを駆動する場合において、より安定した動作をさせることを目的とする。   An object of the present invention is to perform a more stable operation when a motor having a large inertia ratio is driven in a two-inertia system.

本発明は、以上のような問題点を解決するためになされたものであり、以下の構成を有する。   The present invention has been made to solve the above problems, and has the following configuration.

1)反共振周波数より少し低い周波数の補償フィルタの位相遅れをなくす、もしくは進めて閉ループ周波数特性のハンプを生じないようにする。   1) Eliminate the phase delay of the compensation filter having a frequency slightly lower than the anti-resonance frequency, or advance it so as not to cause a hump in the closed loop frequency characteristic.

2)同時に共振周波数より少し高い周波数の補償フィルタの位相を進める。これにより、共振周波数での発振が生じないようにすることができる。   2) At the same time, the phase of the compensation filter having a frequency slightly higher than the resonance frequency is advanced. Thereby, it is possible to prevent oscillation at the resonance frequency.

3)さらに、反共振周波数、共振周波数での補償フィルタの位相遅れを位相余裕(40°〜60°)以下にする。   3) Further, the phase delay of the compensation filter at the antiresonance frequency and the resonance frequency is set to a phase margin (40 ° to 60 °) or less.

これにより、機械系の反共振周波数や共振周波数が多少変動しても発振することがない。   As a result, oscillation does not occur even if the anti-resonance frequency or the resonance frequency of the mechanical system slightly varies.

また、機械系の反共振周波数でのゲイン低下と共振周波数でのゲイン上昇をある程度補償し、慣性比が大きくても速度制御系の応答を高くできる。   Further, the gain reduction at the anti-resonance frequency and the gain increase at the resonance frequency of the mechanical system are compensated to some extent, and the response of the speed control system can be improved even if the inertia ratio is large.

従って、モータ慣性を小さくする事による加減速時間の短縮や、同じ加減速時間であればモータ出力トルクを低減する事によるモータコストの低減を実現し、機械のサイクルタイムの短縮と高精度化の両立を図れるモータ制御装置を提供することができる。   Therefore, the acceleration / deceleration time can be shortened by reducing the motor inertia, and the motor cost can be reduced by reducing the motor output torque if the acceleration / deceleration time is the same. It is possible to provide a motor control device that can achieve both.

本発明の一観点によれば、2慣性系のモータを制御するモータ制御装置であって、速度指令値と速度フィードバック値との偏差が零になる方向にモータを制御する速度制御器を含むモータ制御装置において、制御対象の前記2慣性系のモータの少なくとも一組の反共振特性と共振特性とに関して、反共振周波数及び共振周波数に対して緩やかにゲインを補償するとともに、反共振周波数、共振周波数での位相遅れを位相余裕(40°〜60°)以下とする慣性比補償フィルタを前記速度制御器の出力側に設けることを特徴とするモータ制御装置が提供される。   According to an aspect of the present invention, a motor control device that controls a two-inertia motor, including a speed controller that controls the motor in a direction in which a deviation between a speed command value and a speed feedback value becomes zero. In the control device, with respect to at least one set of anti-resonance characteristics and resonance characteristics of the two-inertia motor to be controlled, the gain is gently compensated for the anti-resonance frequency and the resonance frequency, and the anti-resonance frequency and the resonance frequency are also compensated. A motor control device is provided in which an inertia ratio compensation filter is provided on the output side of the speed controller so that the phase lag at is less than or equal to the phase margin (40 ° to 60 °).

例えば、機械系の反共振周波数の特性のみを打ち消す双二次フィルタと位相進みフィルタとを組合せて使用することができる。   For example, a biquadratic filter that cancels only the anti-resonance frequency characteristic of the mechanical system and a phase advance filter can be used in combination.

これにより、慣性比の大きなモータを駆動する場合に、安定した動作が可能となる。   As a result, stable operation is possible when a motor having a large inertia ratio is driven.

本発明によれば、慣性比の大きなモータを駆動する場合に、安定した動作が可能となる。   According to the present invention, when a motor having a large inertia ratio is driven, stable operation is possible.

図1(a)は、2慣性系で構成される機械系を加工するモータを制御するシステムの一構成例を示す図であり、図1(b)は、モータ制御装置の慣性比補償フィルタの一構成例を示す機能ブロック図である。FIG. 1A is a diagram showing a configuration example of a system that controls a motor that processes a mechanical system composed of two inertia systems, and FIG. 1B is a diagram illustrating an inertia ratio compensation filter of a motor control device. It is a functional block diagram which shows one structural example. 双二次フィルタの周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of a biquadratic filter. 位相進みフィルタの周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of a phase advance filter. 慣性比補償フィルタの周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of an inertial ratio compensation filter. 本実施の形態による補償フィルタを反共振周波数が100Hz、共振周波数が150Hzの機械系のモータ制御装置に適用(挿入)した場合の効果を示した図であり、図5(a)は補償フィルタなし、図5(b)は補償フィルタありの場合の例を示す図である。FIG. 5A is a diagram showing an effect when the compensation filter according to the present embodiment is applied (inserted) to a mechanical motor control device having an anti-resonance frequency of 100 Hz and a resonance frequency of 150 Hz. FIG. FIG. 5B is a diagram showing an example in the case of having a compensation filter. 2慣性系における速度制御ゲインと位相との周波数依存性を示す図である。It is a figure which shows the frequency dependence of the speed control gain and phase in a 2 inertia system. 2慣性系における速度制御ゲインとの周波数依存性を示す図であり、慣性比が小さい場合(図7(a))と、慣性比が高い場合(図7(b))とを示す図である。It is a figure which shows the frequency dependence with the speed control gain in a 2 inertia system, and is a figure which shows the case where an inertia ratio is small (FIG.7 (a)), and the case where an inertia ratio is high (FIG.7 (b)). . 図8(a)は特許文献1に記載の2慣性係の逆関数の特性を示す図であり、図8(b)は、反共振周波数及び共振周波数における位相の遅れを低減したフィルタを挿入しようとした場合の特性を示す図である。FIG. 8 (a) is a diagram showing the characteristics of the inverse function of the two-inertia relationship described in Patent Document 1, and FIG. 8 (b) is to insert a filter with reduced anti-resonance frequency and phase delay at the resonance frequency. It is a figure which shows the characteristic at the time of setting.

以下に、本発明の一実施の形態によるモータ制御装置について、図面を参照しながら詳細に説明する。   Hereinafter, a motor control device according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1(a)に示すシステムAは、2慣性系で構成される機械系1bを駆動するモータ1aを制御する本発明の実施の形態によるモータ制御装置Bを含む。図1(b)は、モータ制御装置Bのうち慣性比補償フィルタ5の一構成例を示す機能ブロック図である。   A system A shown in FIG. 1A includes a motor control device B according to an embodiment of the present invention that controls a motor 1a that drives a mechanical system 1b constituted by a two-inertia system. FIG. 1B is a functional block diagram illustrating a configuration example of the inertia ratio compensation filter 5 in the motor control device B.

図1(a)に示すように、モータ制御装置Bにおいては、速度指令と速度フィードバックとを速度制御器3に通す。速度制御器3の出力は慣性比補償フィルタ5を介して、トルク制御部7にトルク指令として出力される。トルク制御部7から出力された制御指令によりモータ1aが駆動される。モータ1aの回転位置はエンコーダ11によりエンコードされ、速度演算器(s)15により速度を算出して,速度フィードバックとして速度制御器3に戻る。   As shown in FIG. 1A, in the motor control device B, the speed command and the speed feedback are passed through the speed controller 3. The output of the speed controller 3 is output as a torque command to the torque control unit 7 via the inertia ratio compensation filter 5. The motor 1a is driven by the control command output from the torque control unit 7. The rotational position of the motor 1a is encoded by the encoder 11, the speed is calculated by the speed calculator (s) 15, and the speed feedback is returned to the speed controller 3.

本実施の形態においては、慣性比補償フィルタ5は、図1(b)に示すように、機械系1bの反共振周波数の特性のみを打ち消す双二次フィルタ5−1と位相進みフィルタ5−2とを組合せて構成することができる。   In the present embodiment, as shown in FIG. 1B, the inertia ratio compensation filter 5 includes a biquadratic filter 5-1 that cancels only the anti-resonance frequency characteristic of the mechanical system 1b and a phase advance filter 5-2. Can be combined.

例えば、慣性比補償フィルタ5の伝達関数Gは、以下の伝達関数とすることができる。   For example, the transfer function G of the inertia ratio compensation filter 5 can be the following transfer function.

G=G×G
=(s+2ζωs+ω )/(s+2ζLωs+ω )・ω /ω
2={(1+sT)/(1+sT)}
G = G 1 × G 2
G 1 = (s 2 + 2ζ H ω H s + ω H 2) / (s 2 + 2ζ L ω L s + ω L 2) · ω L 2 / ω H 2
G 2 = {(1 + sT 1 ) / (1 + sT 2 )} 2

ここで、Gは双二次フィルタである。sはラプラス演算子、ω、ωは固有角周波数、ζ、ζは減衰係数であり、ωを機械系の反共振周波数に、ωを機械系の共振周波数に、ζ=0.5として機械系の共振周波数でのゲイン低減をなくし、ζ=0.1〜0.01程度として機械系の反共振周波数でのゲイン低下をある程度補償する。 Here, G 1 is a biquadratic filter. s is a Laplace operator, ω L and ω H are natural angular frequencies, ζ L and ζ H are damping coefficients, ω L is an anti-resonance frequency of the mechanical system, ω H is a resonant frequency of the mechanical system, and ζ H = 0.5 is used to eliminate the gain reduction at the resonance frequency of the mechanical system, and ζ L = about 0.1 to 0.01 compensates for the gain reduction at the anti-resonance frequency of the mechanical system to some extent.

また、Gは位相進みフィルタである。(1/T)<(1/T)であり、TとTの比は高周波数領域におけるゲイン上昇が、双二次フィルタの高周波数領域におけるゲイン低下と同程度になるようにする。反共振周波数、共振周波数での慣性比補償フィルタの位相遅れを位相余裕以下とする。位相余裕は、例えば、40°〜60°である。 Also, G 2 is a phase lead filter. (1 / T 1 ) <(1 / T 2 ), and the ratio of T 1 and T 2 is such that the gain increase in the high frequency region is the same as the gain decrease in the high frequency region of the biquadratic filter. To do. The phase delay of the inertia ratio compensation filter at the antiresonance frequency and the resonance frequency is set to be equal to or less than the phase margin. The phase margin is, for example, 40 ° to 60 °.

これにより、慣性比補償フィルタ5の反共振周波数より少し低い周波数での位相遅れをなくすか、もしくは、少し進める。また、反共振周波数、共振周波数での位相遅れを90°以下にする。さらに、共振周波数より少し高い周波数での位相を進める。   Thereby, the phase delay at a frequency slightly lower than the anti-resonance frequency of the inertia ratio compensation filter 5 is eliminated or slightly advanced. Further, the phase delay at the antiresonance frequency and the resonance frequency is set to 90 ° or less. Further, the phase at a frequency slightly higher than the resonance frequency is advanced.

図2、図3、図4は、それぞれ、上記のように設定した双二次フィルタ(伝達関数G)、位相進みフィルタ(伝達関数G)、慣性比補償フィルタ(伝達関数G)のそれぞれの周波数特性の一例を示す図である。 2, 3, and 4 respectively show a biquadratic filter (transfer function G 1 ), a phase advance filter (transfer function G 2 ), and an inertia ratio compensation filter (transfer function G) set as described above. It is a figure which shows an example of the frequency characteristic.

図4に示すように、慣性比補償フィルタ(伝達関数G)は、例えば、機械系の反共振周波数の10%低い周波数以下で位相が進み、また、双二次フィルタのゲイン特性は、図6に示すような従来のものと比べて、ゲインの周波数依存がゆるやかになっている(図4の1))。加えて、反共振周波数、共振周波数での位相遅れは40°弱である(図4の2))。さらに、共振周波数より1.5〜5倍高い周波数での位相を進めている(図4の3))。   As shown in FIG. 4, the inertia ratio compensation filter (transfer function G) advances in phase at, for example, a frequency that is 10% lower than the anti-resonance frequency of the mechanical system, and the gain characteristic of the biquadratic filter is as shown in FIG. The frequency dependence of the gain is gradual compared with the conventional one as shown in (1) in FIG. In addition, the anti-resonance frequency and the phase delay at the resonance frequency are less than 40 ° (2 in FIG. 4)). Further, the phase is advanced at a frequency 1.5 to 5 times higher than the resonance frequency (3 in FIG. 4).

これらの特徴を有する本実施の形態による伝達関数Gをもつ慣性比補償フィルタにより、モータの慣性比が大きくなり、高周波数域の速度制御ゲインが高くなっても、その部分の位相を進ませることにより、共振周波数より高い周波数での共振を抑制して安定化する。また、反共振周波数、共振周波数での慣性比補償フィルタの位相遅れを位相余裕(40°〜60°)以下と小さくしているため、機械系の反共振周波数や共振周波数が5%程度変動しても発振することはない。   With the inertia ratio compensation filter having the transfer function G according to the present embodiment having these characteristics, even if the inertia ratio of the motor is increased and the speed control gain in the high frequency range is increased, the phase of that portion is advanced. Thus, the resonance at a frequency higher than the resonance frequency is suppressed and stabilized. In addition, since the phase lag of the inertia ratio compensation filter at the anti-resonance frequency and the resonance frequency is reduced to a phase margin (40 ° to 60 °) or less, the anti-resonance frequency and the resonance frequency of the mechanical system fluctuate by about 5%. However, it does not oscillate.

図5(a)、図5(b)は、本実施の形態による慣性比補償フィルタを反共振周波数が100Hz、共振周波数が150Hzの機械系のモータ制御装置に適用(挿入)した場合の効果を示した図である。図5(a)に示すように、慣性比補償フィルタが無い場合は、機械系のモータ制御装置における例えば55Hz付近のハンプ21が大きく、また、400Hzにおける共振23が見られる。このような状態でモータを動作させると、その動作が安定しない。図5(b)に示すように、図4のようなゲイン特性と位相特性を有する慣性比補償フィルタを挿入すると、55Hzのハンプ21aが小さくなる方向に抑制されるとともに、400Hzの共振23aも抑制され、制御帯域のカットオフ周波数を高くすることができる。   5 (a) and 5 (b) show the effect when the inertia ratio compensation filter according to the present embodiment is applied (inserted) to a mechanical motor control device having an anti-resonance frequency of 100 Hz and a resonance frequency of 150 Hz. FIG. As shown in FIG. 5A, when the inertia ratio compensation filter is not provided, the hump 21 near 55 Hz, for example, in the mechanical motor control device is large, and the resonance 23 at 400 Hz is observed. If the motor is operated in such a state, the operation is not stable. As shown in FIG. 5B, when the inertia ratio compensation filter having the gain characteristic and the phase characteristic as shown in FIG. 4 is inserted, the 55 Hz hump 21a is suppressed in a decreasing direction, and the 400 Hz resonance 23a is also suppressed. Thus, the cut-off frequency of the control band can be increased.

以上のように、本実施の形態では、機械系の反共振周波数の特性のみを打ち消す双二次フィルタと位相進みフィルタとを組合せて慣性比補償フィルタを構成して使用することにより、以下の効果が得られる。   As described above, in the present embodiment, the following effects can be obtained by configuring and using the inertia ratio compensation filter by combining the biquadratic filter that cancels only the anti-resonance frequency characteristic of the mechanical system and the phase advance filter. Is obtained.

慣性比の大きなモータを駆動する場合に、反共振周波数より少し低い周波数の補償フィルタの位相遅れをなくす、もしくは進めて、閉ループ周波数特性のハンプを生じないようにし、同時に共振周波数より少し高い周波数の補償フィルタの位相を進めることにより、共振周波数での発振が生じないようにする。   When driving a motor with a large inertia ratio, eliminate or advance the phase delay of the compensation filter with a frequency slightly lower than the anti-resonance frequency so as not to cause a hump in the closed loop frequency characteristic, and at the same time, with a frequency slightly higher than the resonance frequency. Advancing the phase of the compensation filter prevents oscillation at the resonant frequency.

さらに、反共振周波数、共振周波数での補償フィルタの位相遅れを位相余裕(40°〜60°)以下にして、機械系の反共振周波数や共振周波数が多少変動しても発振することがなく、機械系の反共振周波数での速度制御ゲイン低下と共振周波数での速度制御ゲイン上昇をある程度補償し、慣性比が大きくても速度制御系の応答を高くすることができる。   Furthermore, the phase delay of the compensation filter at the anti-resonance frequency and the resonance frequency is set to be less than the phase margin (40 ° to 60 °), and no oscillation occurs even if the anti-resonance frequency or the resonance frequency of the mechanical system slightly varies. The speed control gain decrease at the anti-resonance frequency of the mechanical system and the speed control gain increase at the resonance frequency are compensated to some extent, and the response of the speed control system can be increased even if the inertia ratio is large.

従って、モータ慣性を小さくすることによる加減速時間の短縮や、同じ加減速時間であればモータ出力トルクを低減することによるモータコストの低減を実現し、機械のサイクルタイムの短縮と高精度化の両立を図れるモータ制御装置を提供することができる。   Therefore, the acceleration / deceleration time can be shortened by reducing the motor inertia, and the motor cost can be reduced by reducing the motor output torque if the acceleration / deceleration time is the same. It is possible to provide a motor control device that can achieve both.

上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In the above-described embodiment, the configuration and the like illustrated in the accompanying drawings are not limited to these, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。   Each component of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention.

本発明は、モータ制御装置に利用可能である。   The present invention is applicable to a motor control device.

A…システム、B…モータ制御装置、1a…モータ、1b…機械系、3…速度制御器、5…慣性比補償フィルタ、5−1…双二次フィルタ、5−2…位相進みフィルタ、7…トルク制御部、15…速度演算器(s)。 A ... system, B ... motor control device, 1a ... motor, 1b ... mechanical system, 3 ... speed controller, 5 ... inertia ratio compensation filter, 5-1 ... biquadratic filter, 5-2 ... phase advance filter, 7 ... torque control unit, 15 ... speed calculator (s).

Claims (6)

2慣性系のモータを制御するモータ制御装置であって、速度指令値と速度フィードバック値との偏差が零になる方向にモータを制御する速度制御器を含むモータ制御装置において、
制御対象の前記2慣性系のモータの少なくとも一組の反共振特性と共振特性とに関して、反共振周波数及び共振周波数に対して緩やかにゲインを補償するとともに、反共振周波数、共振周波数での位相遅れを位相余裕以下とする慣性比補償フィルタを前記速度制御器の出力側に設けることを特徴とするモータ制御装置。
A motor control device that controls a motor of two inertia systems, including a speed controller that controls the motor in a direction in which a deviation between a speed command value and a speed feedback value becomes zero.
With respect to at least one set of anti-resonance characteristics and resonance characteristics of the two-inertia motor to be controlled, the gain is gently compensated for the anti-resonance frequency and the resonance frequency, and the phase lag at the anti-resonance frequency and the resonance frequency. An inertia ratio compensation filter is provided on the output side of the speed controller.
前記慣性比補償フィルタは、
双二次フィルタと位相進みフィルタとを含むことを特徴とする請求項1に記載のモータ制御装置。
The inertia ratio compensation filter is:
The motor control device according to claim 1, comprising a biquadratic filter and a phase advance filter.
前記双二次フィルタは、
制御対象の前記2慣性系のモータの少なくとも一組の反共振特性と共振特性とに関して、反共振周波数及び共振周波数に対して緩やかにゲインを補償することを特徴とする請求項2に記載のモータ制御装置。
The biquadratic filter is
3. The motor according to claim 2, wherein the gain is gently compensated for the anti-resonance frequency and the resonance frequency with respect to at least one set of the anti-resonance characteristic and the resonance characteristic of the two-inertia system motor to be controlled. Control device.
前記位相余裕は、40°〜60°である請求項2又は3に記載のモータ制御装置。   The motor control device according to claim 2, wherein the phase margin is 40 ° to 60 °. 前記位相進みフィルタは、
さらに、共振周波数より1.5〜5倍高い周波数における位相を進めていることを特徴とする請求項4に記載のモータ制御装置。
The phase advance filter is
5. The motor control device according to claim 4, wherein the phase is advanced at a frequency 1.5 to 5 times higher than the resonance frequency.
前記位相進みフィルタは、
反共振周波数より少し低い周波数の補償フィルタの位相遅れをなくす、もしくは進めて閉ループ周波数特性のハンプを生じないようにするとともに、共振周波数より少し高い周波数の補償フィルタの位相を進めることを特徴とする請求項4に記載のモータ制御装置。
The phase advance filter is
The phase delay of the compensation filter having a frequency slightly lower than the anti-resonance frequency is eliminated or advanced so as not to cause a hump in the closed loop frequency characteristic, and the phase of the compensation filter having a frequency slightly higher than the resonance frequency is advanced. The motor control device according to claim 4.
JP2017008224A 2017-01-20 2017-01-20 Motor control device Active JP6846213B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017008224A JP6846213B2 (en) 2017-01-20 2017-01-20 Motor control device
CN201711429557.7A CN108336940B (en) 2017-01-20 2017-12-26 Motor control device
TW107100293A TWI783961B (en) 2017-01-20 2018-01-04 Motor control apparatus
PH12018000005A PH12018000005B1 (en) 2017-01-20 2018-01-05 Motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008224A JP6846213B2 (en) 2017-01-20 2017-01-20 Motor control device

Publications (2)

Publication Number Publication Date
JP2018116600A true JP2018116600A (en) 2018-07-26
JP6846213B2 JP6846213B2 (en) 2021-03-24

Family

ID=62923445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008224A Active JP6846213B2 (en) 2017-01-20 2017-01-20 Motor control device

Country Status (4)

Country Link
JP (1) JP6846213B2 (en)
CN (1) CN108336940B (en)
PH (1) PH12018000005B1 (en)
TW (1) TWI783961B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268419B2 (en) * 2019-03-15 2023-05-08 オムロン株式会社 Parameter setting support device, parameter setting support method and parameter setting support program
TWI747126B (en) * 2020-01-03 2021-11-21 國立勤益科技大學 Electrical skateboard management system
TWI717231B (en) * 2020-03-13 2021-01-21 賴炎生 Apparatus of servo motor drives and its current control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177512A (en) * 1990-11-09 1992-06-24 Matsushita Electric Ind Co Ltd Speed controller
JPH05207769A (en) * 1992-01-23 1993-08-13 Fanuc Ltd Servo control method
JPH1078801A (en) * 1996-06-26 1998-03-24 United Technol Corp <Utc> Control system using non-linear notch filter
JP2009537926A (en) * 2006-05-19 2009-10-29 シーメンス エナジー アンド オートメーション インコーポレイテッド Automated tuning of closed-loop control
WO2016067741A1 (en) * 2014-10-29 2016-05-06 三菱電機株式会社 Servo control device and servo control method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196775A (en) * 1991-02-20 1993-03-23 Honeywell Inc. Switched reluctance motor position by resonant signal injection
DE10394087T5 (en) * 2003-12-25 2005-12-22 Mitsubishi Denki K.K. Motor controller
CN100424981C (en) * 2004-03-26 2008-10-08 株式会社安川电机 Motor controller
JP4016966B2 (en) * 2004-04-13 2007-12-05 東海ゴム工業株式会社 Driving method of active vibration isolator
WO2007129627A1 (en) * 2006-05-08 2007-11-15 Shinko Electric Co., Ltd. Damper for automobiles for reducing vibration of automobile body
CN103190074B (en) * 2010-11-05 2015-09-16 三菱电机株式会社 Controller for motor
US9075400B2 (en) * 2010-12-20 2015-07-07 Mitsubishi Electric Corporation Motor control device
JP5411331B1 (en) * 2012-08-21 2014-02-12 山洋電気株式会社 Motor control device
JP6106582B2 (en) * 2013-12-09 2017-04-05 山洋電気株式会社 Motor control device
WO2015111298A1 (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Motor control device
CN104135021B (en) * 2014-07-25 2016-09-21 国家电网公司 A kind of off-network type energy accumulation current converter voltage optimization control method based on complex controll
CN104808673B (en) * 2015-02-12 2017-12-22 武汉顶翔智控科技有限公司 A kind of quadrotor Height Estimation method based on Kalman filtering
CN104993766B (en) * 2015-08-05 2017-06-30 南京埃斯顿自动控制技术有限公司 A kind of two quality system resonance suppressing methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177512A (en) * 1990-11-09 1992-06-24 Matsushita Electric Ind Co Ltd Speed controller
JPH05207769A (en) * 1992-01-23 1993-08-13 Fanuc Ltd Servo control method
JPH1078801A (en) * 1996-06-26 1998-03-24 United Technol Corp <Utc> Control system using non-linear notch filter
JP2009537926A (en) * 2006-05-19 2009-10-29 シーメンス エナジー アンド オートメーション インコーポレイテッド Automated tuning of closed-loop control
WO2016067741A1 (en) * 2014-10-29 2016-05-06 三菱電機株式会社 Servo control device and servo control method

Also Published As

Publication number Publication date
CN108336940B (en) 2023-02-17
CN108336940A (en) 2018-07-27
PH12018000005A1 (en) 2018-08-20
PH12018000005B1 (en) 2018-08-20
TWI783961B (en) 2022-11-21
JP6846213B2 (en) 2021-03-24
TW201841085A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP6883736B2 (en) Motor control device
US8040098B2 (en) Position controller
JP4992323B2 (en) Servo motor control device
US9798295B2 (en) Motor controller having a function of suppressing vibrations
JP3900219B2 (en) Electric motor speed control device and gain setting method for the same
TWI461877B (en) Servo control device
JP6846213B2 (en) Motor control device
JP4992909B2 (en) Servo control device and control method thereof
JP2009303432A (en) Position controller using motor
JP2017175890A (en) Motor control apparatus having vibration control function
JP2010088290A (en) Method and apparatus for controlling inertia system
US9257932B2 (en) Control device for servomotor
JPH04255007A (en) Damping control system
JP5052987B2 (en) Position or speed control device
JP5499865B2 (en) Generation method of speed command profile for articulated robot
US11719306B2 (en) Damping device
JP2019009858A (en) Motor control device
WO2016152074A1 (en) Motor drive device
JP2010055470A (en) Machine controller
KR100794893B1 (en) Motor control apparatus
JPWO2018061096A1 (en) Actuator positioning control device with wave gear device by H∞ control
JP2003189656A (en) Position controller
CN117795841A (en) Control device for rotating electrical machine with built-in magnetic gear
CN116941177A (en) Motor control device
JPH04317578A (en) Speed controller for motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6846213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250