WO2015056291A1 - Control and monitoring signal transmission system - Google Patents

Control and monitoring signal transmission system Download PDF

Info

Publication number
WO2015056291A1
WO2015056291A1 PCT/JP2013/077922 JP2013077922W WO2015056291A1 WO 2015056291 A1 WO2015056291 A1 WO 2015056291A1 JP 2013077922 W JP2013077922 W JP 2013077922W WO 2015056291 A1 WO2015056291 A1 WO 2015056291A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
data
address
slave station
Prior art date
Application number
PCT/JP2013/077922
Other languages
French (fr)
Japanese (ja)
Inventor
錦戸憲治
Original Assignee
株式会社エニイワイヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ filed Critical 株式会社エニイワイヤ
Priority to PCT/JP2013/077922 priority Critical patent/WO2015056291A1/en
Priority to JP2014549229A priority patent/JP5748924B1/en
Publication of WO2015056291A1 publication Critical patent/WO2015056291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/12Arrangements providing for calling or supervisory signals

Definitions

  • the present invention reduces the number of signal lines between a master station connected to a control unit and a plurality of output units and input units, or a plurality of slave stations corresponding to a plurality of controlled devices, and connects them with a common data signal line.
  • the present invention relates to a control / monitor signal transmission system that transmits data by a transmission synchronization method such as synchronization by a transmission clock signal.
  • a parallel signal and a serial signal are used instead of a parallel connection that directly connects a plurality of output units and input units or signal lines extending from a controlled device to the control unit.
  • the master station and the plurality of slave stations having the conversion function are connected to the control unit, the plurality of output units and the input unit, or the plurality of controlled devices, respectively, and common data between the master station and the plurality of slave stations.
  • a method of exchanging data with a serial signal via a signal line is widely adopted.
  • a transmission synchronization method such as synchronization with a transmission clock is widely adopted as a method for transferring data using a serial signal, and studies for applying it to various situations have been made. For example, when bit data and word data are transmitted independently, it is necessary to perform transmission using a plurality of logically different transmission paths (channels), but a plurality of channels are also provided in the transmission synchronization method. Techniques for this are being considered.
  • the first control signal from the control unit to the controlled device is a binary signal having a predetermined pulse width (duty ratio).
  • the control signal is a signal of a predetermined level during a period of a level other than the level of the power supply voltage
  • the first monitoring signal from the input unit to the control unit is the presence or absence of a current signal
  • the second monitoring signal is a frequency signal
  • the limit is to superimpose several kinds of multiplexed signals in one cycle of the transmission clock signal, and the number of channels that can be set is limited.
  • an object of the present invention is to provide a control / monitor signal transmission system capable of setting a desired number of channels in a transmission synchronization method.
  • the master station and a plurality of slave stations are connected by a common data signal line, and the start signal is controlled under the control of the timing signal generated by the timing generator included in the master station.
  • a plurality of transmission data signals starting from the start or end point and having a predetermined time width as one cycle are continuous.
  • a transmission signal is transmitted to the common data signal line, and from the master station every cycle.
  • the transmission data signal is transmitted as a half-duplex transmission in which only one of a control signal that is a transmission transmission signal and a monitoring signal that is a transmission reception signal received by the master station is transmitted.
  • a plurality of transmission data signals are defined as one unit, and any transmission data signal in the unit is assigned to a predetermined channel.
  • the slave station may generate a pseudo clock signal synchronized with the timing signal from the start or end of the start signal, and count a transmission address based on the pseudo clock signal. .
  • the transmission data signal includes a corresponding transmission clock signal, and at least one of the channels is a high-speed transmission channel, and a slave station belonging to the high-speed transmission channel starts from the start or end of the start signal.
  • the transmission address count based on the start address is started, and in one frame period between the start signal and the next start signal, a number smaller than the address count value corresponding to the number of the transmission data signal periods is set to the maximum address count value.
  • the address counter may be provided to exchange data with the master station at a frame period shorter than the one-frame period.
  • At least one of the channels is a high-speed transmission channel
  • a slave station belonging to the high-speed transmission channel is based on a pseudo clock signal synchronized with the timing signal generated by the local station, starting from the start or end of the start signal
  • a counter may be provided to exchange data with the master station at a frame period shorter than the one frame period.
  • the terminal according to the present invention has a predetermined time width that starts from the start or end of the start signal under the control of the timing signal generated by the timing generation means of the master station connected to the master station.
  • an address setting means for setting the logical address of the own station and an absolute address generation table for calculating an absolute address in the transmission signal corresponding to the logical address are provided.
  • the number of the transmission data signals is counted, and the control data extraction process for extracting the control data superimposed on the transmission data signal at the timing coincident with the data of the own station address, and the input unit at the coincidence timing
  • a slave station input / output unit that performs monitoring data transmission processing to superimpose the monitoring data corresponding to the input signal from the transmission signal as a transmission reception signal, or a slave station output unit that performs the control data extraction processing and the monitoring data transmission Either one of the slave station input units for processing is provided.
  • the address setting means sets the logical address with a plurality of the transmission data signals as a unit.
  • the terminal according to the present invention generates a pseudo clock signal synchronized with the timing signal from the start or end of the start signal, and counts transmission addresses based on the pseudo clock signal.
  • the transmission data signal includes a corresponding transmission clock signal
  • the terminal according to the present invention starts counting transmission addresses based on the transmission data signal starting from the start or end of the start signal, and the start signal and An address counter having a smaller number than the address count value corresponding to the number of transmission data signals in one frame period between the next start signals, and a frame period shorter than the one frame period
  • data may be exchanged with the master station.
  • the terminal starts counting transmission addresses based on the pseudo clock signal starting from the start or end of the start signal, and in one frame period between the start signal and the next start signal, An address counter having a maximum address count value smaller than the address count value corresponding to the number of transmission data signals is provided, and data is exchanged with the master station in a frame period shorter than the one frame period. You may do it.
  • a plurality of transmission data signals are defined as one unit, and any transmission data signal in one unit is assigned to a predetermined channel. It is possible to provide channels.
  • the start signal is included in the transmission signal, and the interval between the start signal and the next start signal is defined as one frame period, and for each channel, the slave station repeats the frame period defined for its own channel within the range of one frame period. If the master station and the slave station exchange data of the channel to which the slave station belongs for each unit, high-speed scanning of predetermined data is performed at a frame period shorter than one frame period of the transmission signal. Is possible.
  • the terminal includes address setting means for setting an address with a plurality of transmission data signals as a unit, and an absolute address generation table for calculating an absolute address in the transmission signal corresponding to the logical address.
  • address setting means for setting an address with a plurality of transmission data signals as a unit
  • an absolute address generation table for calculating an absolute address in the transmission signal corresponding to the logical address.
  • the address can be easily set without being aware of the absolute address.
  • the control / monitoring signal transmission system and terminal generate a pseudo clock signal synchronized with a timing signal generated by the timing generating means of the master station at the slave station (own station), and the pseudo clock signal.
  • the transmission address can be counted even if the transmission signal includes only the start signal and the transmission data signal does not include the corresponding transmission clock signal. Therefore, the time width of the transmission data signal of the transmission signal can be shortened and the transmission speed can be increased.
  • 1 is a system configuration diagram showing a schematic configuration of a control / monitor signal transmission system according to the present invention. It is a system configuration
  • the control / monitor signal transmission system includes a single master station 2 connected to a control unit 1 and common data signal lines DP and DN (hereinafter also referred to as transmission lines), First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, and first CH input slave station 7a, second CH connected to the common data signal lines DP and DN It is composed of a plurality of input slave stations 7b and a third CH input slave station 7c.
  • each slave station is shown one by one, but there is no limitation on the type and number of slave stations connected to the common data signal lines DP and DN.
  • First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, first CH input slave station 7a, second CH input slave station 7b, third CH input slave station 7c Performs either or both of signal output processing for the output unit 8 that operates in response to an output instruction of the control unit 1 and input signal processing from the input unit 9 that incorporates input information to the control unit 1. And it is classified into three groups by the transmission data according to the purpose of use. Specifically, the first CH input / output slave station 4a, the first CH output slave station 6a, and the first CH input slave station 7a are connected to the low-speed data transmission group in which low-speed data transmission is performed.
  • the slave station 7b is classified into a high-speed data transmission group in which high-speed data is transmitted, and the third CH output slave station 6c and the third CH input slave station 7c are classified into word data transmission groups in which a plurality of bits of word data are transmitted.
  • the transmission data signals allocated to the low-speed data transmission group, the high-speed data transmission group, and the word data transmission group are referred to as a first channel (first CH), a second channel (second CH), and a third channel (third CH), respectively.
  • first CH first CH
  • second CH second channel
  • third CH third channel
  • the output unit 8 is, for example, an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, or a lamp.
  • the input unit 9 is, for example, a reed switch, a micro switch, a push button switch, a photoelectric switch, various sensors, or the like. It is.
  • the first CH input / output slave station 4a is connected to the controlled device 5 including the output unit 8 and the input unit 9, and the first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c are output.
  • the first CH input slave station 7 a, the second CH input slave station 7 b, and the third CH input slave station 7 c are connected only to the input unit 9.
  • the first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c may include the output unit 8 (output unit integrated slave station 80).
  • 7a, the second CH input slave station 7b, and the third CH input slave station 7c may include the input unit 9 (input unit integrated slave station 90).
  • the control unit 1 is, for example, a programmable controller, a computer, and the like, and includes a first CH output unit 11a, a second CH output unit 11b, a second CH output parallel data 13c, a second CH control parallel data 13b, and a third CH control parallel data 13c.
  • It has a first CH input unit 12a, a second CH input unit 12b, and a third CH input unit 12c that receive the 1CH monitoring parallel data 14a, the second CH monitoring parallel data 14b, and the third CH monitoring parallel data 14c.
  • the first CH output unit 11a, the second CH output unit 11b, the third CH output unit 11c, the first CH input unit 12a, the second CH input unit 12b, and the third CH input unit 12c are connected to the master station 2.
  • the master station 2 includes a first CH output data unit 21a, a second CH output data unit 21b, a third CH output data unit 21c, a timing generation unit 23, a master station output unit 24, a master station input unit 25, A first CH input data unit 26a, a second CH input data unit 26b, and a third CH input data unit 26c are provided.
  • the control signal which is connected to the common data signal lines DP and DN and is a series of pulse signals, is sent to the common data signal lines DP and DN, and the first CH input / output slave station 4a, the first CH input slave station 7a,
  • the first CH monitoring parallel data 14a, the second CH monitoring parallel data 14b, and the third CH monitoring parallel data 14c extracted from the monitoring signals transmitted from the second CH input slave station 7b and the third CH input slave station 7c are used as the first CH of the control unit 1.
  • the data is sent to the input unit 12a, the second CH input unit 12b, and the third CH input unit 12c.
  • the first CH output data unit 21a delivers the first CH control parallel data 13a from the first CH output unit 11a of the control unit 1 to the master station output unit 24 as serial data.
  • the second CH output data unit 21b delivers the second CH control parallel data 13b from the second CH output unit 11b of the control unit 1 to the master station output unit 24 as serial data.
  • the third CH output data unit 21c delivers the third CH control parallel data 13c from the third CH output unit 11c of the control unit 1 to the master station output unit 24 as serial data.
  • the timing generation unit 23 includes an oscillation circuit (OSC) 31 and a timing generation unit 32.
  • the timing generation unit 32 generates a timing clock of the system based on the oscillation circuit (OSC) 31, and generates a master station output unit 24, Delivered to the station input unit 25.
  • OSC oscillation circuit
  • the master station output unit 24 includes control data generation means 33 and a line driver 34. Based on the data received from the first CH output data unit 21a, the second CH output data unit 21b, the third CH output data unit 21c, and the timing clock received from the timing generation unit 23, the control data generation means 33 passes through the line driver 34. The transmission signal is sent to the common data signal lines DP and DN.
  • the transmission signal is composed of a plurality of transmission data signals.
  • the transmission data signal has a potential level area (corresponding to the transmission clock signal corresponding to the transmission data signal of the present invention, +24 V in this embodiment) higher than the threshold Vst (18 V in this embodiment) of the transmission clock signal and the transmission clock. It is composed of a potential level area lower than the signal threshold Vst.
  • a potential level area lower than the threshold Vst of the transmission clock signal corresponds to a control signal or a monitor signal, and a potential level area (+12 V in this embodiment) higher than the threshold Vlt of logic data (6 V in this embodiment). Or a potential level area (0 V in this embodiment) lower than the threshold value Vlt of the logical data.
  • the logical data of the control signal or the logical data of the monitoring signal is represented by whether the potential level in the potential level area lower than the threshold value Vst of the transmission clock signal is higher or lower than the threshold value Vlt.
  • a potential level lower than the threshold Vlt (0 V in this embodiment) represents the logical data “1”
  • a potential level higher than the threshold Vlt (12 V in this embodiment) represents the logical data “0”.
  • the potential level representing each logical data is the value of each data of the first CH control parallel data 13a, the second CH control parallel data 13b, and the third CH control parallel data 13c input from the control unit 1, or the first CH input / output.
  • the transmission signal has a start signal ST at the head having a potential level that is longer than the time width of the transmission data signal and higher than the threshold value Vst of the transmission clock signal.
  • the first CH input / output slave station 4a, the first CH output slave station 6a, the first CH input slave station 7a, the second CH output slave station 6b, the second CH input slave station 7b, the third CH output slave station 6c, and the third CH input slave station In both cases, power is obtained from the external common power supplies VP and VN.
  • the number of transmission data signals constituting one frame period is 768, and the absolute address is 767 because the start address is 0.
  • transmission data signals of 6-interval absolute addresses (# 0, # 6, # 12...) From 0 to 762 and 6-interval absolute addresses (# 1, # 7, # 13%) From 1 to 763 are present.
  • Transmission of 6-interval absolute addresses (# 2, # 8, # 14 %) from 2 to 764 and 6-interval absolute addresses (# 3, # 9, # 15 ...) from 3 to 765 to the first channel
  • the data signal is sent to the second channel at 6-interval absolute addresses from 4 to 766 (# 4, # 10, # 16%) And 6-interval absolute addresses from 5 to 767 (# 5, # 11, # 17).
  • Is assigned to the third channel Is assigned to the third channel.
  • a transmission data signal assigned to the first channel, a transmission data signal assigned to the second channel, and a plurality of transmission data signals assigned to the third channel are consecutive. This is a unit of the present invention.
  • the master station input unit 25 includes monitoring signal detection means 35, first CH monitoring data extraction means 36a, second CH monitoring data extraction means 36b, and third CH monitoring data extraction means 36c.
  • the monitoring signal detection means 35 is transmitted from the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c via the common data signal lines DP and DN. Detect supervisory signals. As described above, the data of the monitoring signal is expressed as logical data at a potential level lower and higher than the threshold value Vlt.
  • the first CH input / output slave station 4a and the first CH A monitoring signal is received from each of the input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c. Then, the monitoring signal detected by the monitoring signal detection means 35 is delivered to the first CH monitoring data extraction means 36a, the second CH monitoring data extraction means 36b, and the third CH monitoring data extraction means 36c.
  • the first CH monitoring data extracting unit 36a extracts the first CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the first CH input data unit 26a as serial input data.
  • the second CH monitoring data extracting means 36b extracts the second CH monitoring data in synchronization with the timing from the timing generating means 32, and sends it to the second CH input data section 26b as serial input data.
  • the third CH monitoring data extracting unit 36c extracts the third CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the third CH input data unit 26c as serial input data.
  • the first CH input data unit 26a converts the serial input data received from the first CH monitoring data extraction unit 36a into parallel data, and sends it to the first CH input unit 12a of the control unit 1 as the first CH monitoring parallel data 14a.
  • the second CH input data unit 26b converts the serial input data received from the second CH monitoring data extracting unit 36b into parallel data, and the second CH input data 12b of the control unit 1 is converted into the second CH monitoring parallel data 14b.
  • the third CH input data unit 26c converts the serial input data received from the third CH monitoring data extracting unit 36c into parallel data, and the third CH input data 12c of the control unit 1 is converted into the third CH monitoring parallel data 14c. To send.
  • the first CH input slave station 7a includes transmission reception means 41, address extraction means 43, first CH monitoring data transmission means 45a, CH number setting means 47, first CH address data storage means 51, first CH final address.
  • An address data storage unit 52 and a first CH slave station input unit 70 a having an input unit 71 are provided.
  • the input slave station 7a of this embodiment includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the first CH slave station input unit 70a. Calculations and storages necessary for the processing are executed using the CPU, RAM, and ROM included in the MCU.
  • the relationship with the ROM is not shown for convenience of explanation.
  • the transmission receiving means 41 receives the transmission data signal transmitted to the common data signal lines DP and DN via the slave station line receiver 62 and delivers it to the address extracting means 43.
  • the CH number setting means 47 designates the number of channels to be used, and the set channel number is delivered to the address extraction means 43.
  • the first CH address data storage means 51 corresponds to the address setting means of the present invention, and designates the logical monitoring address data of the first channel (1M # 0, 1M # 1, etc. shown in FIG. 15) and is set.
  • the data of the logical monitoring address of the first channel is transferred to the address extracting means 43.
  • the logical monitoring address corresponds to the logical address of the present invention, and the logical control address described later also corresponds to the logical address of the present invention.
  • the first CH final address data storage means 52 sets the maximum value of the logical monitoring address data of the first channel.
  • the maximum value of the logical monitoring address data of the set first channel is stored in the address extracting means 43. Delivered.
  • the address extraction means 43 has an absolute address generation table 48 and is based on the data obtained from the CH number setting means 47 at the time of system startup of this embodiment (in this embodiment, the number of channels is 3) as shown in FIG. Addresses are expanded into 6 columns (3 channels and 2 columns for each channel) (S1 shown in FIG. 4). Next, based on the setting data 1M # 127 (maximum value of the logical monitoring address) in the first CH final address data storage unit 52, the logical monitoring addresses are expanded from 1M # 0 to 1M # 127 (S2 in FIG. 4). Then, a predetermined absolute monitoring address corresponding to the data of the logical monitoring address that matches the setting data (data of the logical monitoring address) in the first CH address data storage means 51 is obtained (S3 in FIG. 4).
  • the setting data (logical monitoring address data) of the first CH address data storage means 51 is 1M # 0, 6 intervals from the absolute monitoring addresses # 0, # 6, # 12, # 18 Get the data.
  • Data of a predetermined absolute monitoring address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44.
  • the absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal.
  • the absolute address counter 44 is data of a predetermined absolute monitoring address (# 0, # 6, # 12 in the embodiment shown in FIG. 4) corresponding to the setting data (logical monitoring address data) of the first CH address data storage means 51.
  • Data at intervals of 6 until # 18) is transmitted to the first CH monitoring data transmitting unit 45a each time, and the first CH monitoring data transmitting unit 45a is validated.
  • the data of a predetermined plurality of absolute monitoring addresses corresponding to the logical monitoring address 1M # 0 obtained from the absolute address generation table 48 is first the absolute monitoring address data handed over to the absolute address counter (shown in FIG. 4).
  • the data of the next absolute monitoring address (# 6 in the embodiment shown in FIG. 4) is delivered to the absolute address counter 44 and the subsequent absolute Similarly, the monitoring address data is sequentially delivered.
  • the first monitoring data transmission unit 45a outputs a monitoring signal to the common data signal lines DP and DN via the slave station line driver 72 when it is validated by the address extraction unit 43.
  • the input unit 71 delivers the monitoring data to the first monitoring data transmission unit 45a based on the input data from the input unit 9.
  • the first CH output slave station 6a includes a transmission receiving means 41, an address extracting means 43, a first CH control data extracting means 46a, a CH number setting means 47, a first CH address data storage means 51, and a first CH final data.
  • a first CH slave station output unit 60 a having address data storage means 52 and output means 61 is provided.
  • the first CH output slave station 6a also includes an MCU that is a microcomputer control unit as an internal circuit. This MCU functions as the first CH slave station output unit 60a. The calculations and storages required for the processing are executed using the CPU, RAM, and ROM included in the MCU.
  • the CPU, RAM, and processing in each processing of each of the above-described means constituting the first CH slave station output unit 60a constituting the first CH slave station output unit 60a.
  • the relationship with the ROM is not shown for convenience of explanation.
  • FIG. 5 the same reference numerals are given to substantially the same parts as those of the first CH input slave station 7a, and the description thereof will be simplified or omitted.
  • the address extracting means 43 of the first CH output slave station 6a also has an absolute address generation table 48, which is based on data obtained from the CH number setting means 47 at the time of system activation in this embodiment (in this embodiment, the number of channels is 3).
  • the absolute addresses are expanded into 6 columns (2 channels for each channel with 3 channels) (S1 shown in FIG. 6).
  • the logical control addresses are expanded from 1C # 0 to 1C # 127 (S2 in FIG. 6).
  • a predetermined absolute control address corresponding to the logical control address data matching the setting data (logical control address data) in the first CH address data storage means 51 is obtained (S3 in FIG. 6).
  • the setting data (logical control address data) of the first CH address data storage means 51 is 1C # 0, there are 6 intervals from absolute control addresses # 1, # 7, # 13, # 19. Get the data.
  • Data of a predetermined absolute control address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44.
  • the absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal.
  • the absolute address counter 44 is data of a predetermined absolute monitoring address corresponding to the setting data (logical control address data) of the first CH address data storage means 51 (# 1, # 7, # 13 in the embodiment shown in FIG. 6).
  • the transmission reception signal of that cycle is delivered to the first CH control data extraction means 46a.
  • the data of a plurality of predetermined absolute control addresses corresponding to 1C # 0 obtained in the absolute address generation table 48 are first absolute control address data handed over to the absolute address counter (in the embodiment shown in FIG. 6).
  • the data of the next absolute monitoring address (# 7 in the embodiment shown in FIG. 6) is transferred to the absolute address counter 44, and the subsequent absolute monitoring address Data is also delivered sequentially.
  • the first CH control data extraction means 46a extracts control data from the transmission reception signal delivered from the address extraction means 43. Then, the data is delivered to the output means 61 as the first CH control data.
  • the output unit 61 converts the first CH control data delivered from the first CH control data extraction unit 46a into parallel data, outputs the parallel data to the output unit 8, and causes the output unit 8 to perform a predetermined operation.
  • Both the output unit 8 and the input unit 9 having a corresponding relationship are connected to the first CH input / output slave station 4a.
  • the first CH input / output slave station 4a also includes an MCU that is a microcomputer control unit as an internal circuit. It functions as the station input / output unit 40a. Similar to the MCU of the first CH slave station output unit 60a and the MCU of the first CH slave station input unit 70a, the computation and storage required in the processing of the first CH input / output slave station 4a are performed by the CPU and RAM of this MCU. And is executed using a ROM.
  • the first CH slave station input / output unit 40a has a configuration in which both the first CH slave station output unit 60a and the first CH slave station input unit 70a are combined, and each component includes the first CH slave station output unit 60a or the first CH slave unit. Since it is the same as the component of the station input part 70a, description is abbreviate
  • the second CH input slave station 7b shown in FIG. 7 includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU serves as the second CH slave station input unit 70b. It is supposed to function. As with the MCU of the first CH slave station input unit 70a, the calculations and storages required for the processing of the second CH input slave station 7b are executed using the CPU, RAM and ROM included in this MCU. It has become.
  • the functional configuration of the second CH slave station input unit 70b includes the first CH address data storage unit 51 and the first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG. These are replaced with the second CH address data storage means 53 and the second CH final address data storage means 54, respectively, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 6, the same reference numerals are given to substantially the same parts as the first CH slave station input unit 70a shown in FIG. 3, and the description thereof is simplified or omitted.
  • the second CH monitoring data transmission unit 45b has the same function as the first CH monitoring data transmission unit 45a, and therefore has the same reference numeral, but the name is different for convenience of explanation of the drawing.
  • the second CH address data storage means 53 corresponds to the address setting means of the present invention, and designates the second channel logical monitoring address (2M # 0, 2M # 1, 2M # 2, or 2M # 3).
  • the set data of the logical monitoring address of the second channel is delivered to the address extracting means 43.
  • 2M # 3 is set as the maximum value of the logical monitoring address of the second channel.
  • the address extraction means 43 of the second CH slave station input unit 70b also has an absolute address generation table 48, and is based on data obtained from the CH number setting means 47 at the time of system activation of the present invention (in this embodiment, the number of channels is 3). As shown in FIG. 8, absolute addresses are developed in 6 columns (3 channels and 2 channels in each channel) (S1 shown in FIG. 8). Next, based on the setting data 2M # 3 (maximum value of the logical monitoring address) in the second CH final address data storage means 54, the logical monitoring addresses 2M # 0 to 2M # 3 are repeatedly expanded (S2 in FIG. 8). ). Then, a predetermined absolute monitoring address corresponding to the data of the logical monitoring address that matches the setting data (data of the logical monitoring address) in the second CH address data storage means 53 is obtained (S3 in FIG. 8).
  • the setting data (logical monitoring address data) in the second CH address data storage means 53 is 2M # 0, absolute monitoring addresses # 2, # 26, # 50, etc., # 2 to # 764 Each predetermined data of 24 intervals is obtained.
  • Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44.
  • the absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal.
  • the absolute address counter 44 is a predetermined absolute address data (# 2, # 26, # 50, etc. in the embodiment shown in FIG. 8) corresponding to the setting data (logical monitoring address data) of the second CH address data storage means 53.
  • the transmission transmission signal of that cycle is handed over to the second CH monitoring data transmission means 45b at a timing that coincides with the predetermined data of 24 intervals from # 2 to # 764, and the second CH monitoring data transmission means 45b is made effective.
  • the data of a predetermined plurality of absolute addresses corresponding to 2M # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 2 in the embodiment shown in FIG. 8). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 26 in the embodiment shown in FIG. 8) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
  • the second CH output slave station 6b also includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU functions as the second CH slave station output unit 60b. It has become. As with the MCU of the first CH slave station output unit 60a, the calculations and storages required for the processing of the second CH output slave station 6b are executed using the CPU, RAM, and ROM included in this MCU. It has become.
  • the functional configuration of the second CH slave station output unit 60b is the same as that of the first CH address data storage unit 51 of the first CH slave station output unit 60a shown in FIG.
  • the 1CH final address data storage means 52 is replaced with the second CH final address data storage means 54, and the rest is the same as the first CH slave station output unit 60a. Therefore, in FIG. 9, the same reference numerals are given to substantially the same parts as those of the first CH output slave station 6a, and the description thereof will be simplified or omitted.
  • the address extraction means 43 of the second CH slave station output unit 60b also has an absolute address generation table 48, which is based on data obtained from the CH number setting means 47 when the system of the present invention is started (in this embodiment, the number of channels is 3).
  • the absolute addresses are expanded into 6 columns (3 channels and 2 columns for each channel) (S1 shown in FIG. 10).
  • the logical control addresses from 2C # 0 to 2C # 3 are repeatedly expanded based on the setting data 2C # 3 (the maximum value of the logical monitoring address) in the second CH final address data storage means 54 (S2 in FIG. 10).
  • a predetermined absolute address corresponding to the logical control address data matching the setting data (logical control address data) in the second CH address data storage means 53 is obtained (S3 in FIG. 10).
  • the setting data (logical control address data) of the second CH address data storage means 53 is 2C # 0, absolute control addresses # 3, # 27, # 51, etc., # 3 to # 765
  • Each predetermined data of 24 intervals is obtained.
  • Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44.
  • the absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal.
  • the absolute address counter 44 is a predetermined absolute address data (# 3, # 27, # 51, etc. in the embodiment shown in FIG. 10) corresponding to the setting data (logical control address data) of the second CH address data storage means 53.
  • a transmission reception signal of that cycle is delivered to the second CH control data extraction means 46b at a timing that coincides with (predetermined data of 24 intervals from # 3 to # 765).
  • the data of a predetermined plurality of absolute addresses corresponding to 2C # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 3 in the embodiment shown in FIG. 10). Is the output timing coincident with the data of the absolute address counter 44, the data of the next absolute address (# 27 in the embodiment shown in FIG. 10) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
  • the third CH input slave station 7c shown in FIG. 11 includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU serves as the third CH slave station input unit 70c. It is supposed to function. Similar to the MCU of the first CH slave station input unit 70a, the computation and storage necessary for the processing of the third CH input slave station 7c are executed using the CPU, RAM, and ROM provided in this MCU. It has become.
  • the functional configuration of the third CH slave station input unit 70c shown in FIG. 11 also includes the first CH address data storage unit 51 and the first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG.
  • the third CH address data storage means 55 and the third CH final address data storage means 56 are replaced, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 11, parts that are substantially the same as those of the first CH slave station input unit 70a are denoted by the same reference numerals, and description thereof is simplified or omitted.
  • the third CH monitoring data transmission unit 45c has the same function as the first CH monitoring data transmission unit 45a, so that the reference numerals are the same, but the names are different for convenience of explanation of the drawing.
  • the third CH address data storage means 55 corresponds to the address setting means of the present invention, and designates the third channel logical monitoring address (3M # 0, 3M # 1, etc. shown in FIG. 12).
  • the data of the logical monitoring address of the three channels is delivered to the address extracting means 43.
  • the third channel is for transmitting 8 words with one frame period of the transmission signal as one period Twc.
  • the third CH address data storage means 55 is set with the logical monitoring address at the head of the word to be exchanged, 3M # 0, 3M # 16, and the like.
  • the third CH final address data storage means 56 sets the maximum value of the data of the third channel logical monitoring address.
  • the maximum value of the set third channel logical monitoring address data is stored in the address extracting means 43. Delivered.
  • the address extracting unit 43 of the third CH slave station input unit 70c also has an absolute address generation table 48, and is based on data obtained from the CH number setting unit 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 12, the data of the absolute address is expanded into 6 columns (3 channels and 2 channels for each channel) (S1 shown in FIG. 12). Next, based on the setting data 3M # 127 (the maximum value of the logical monitoring address) in the third CH final address data storage unit 56, the logical monitoring addresses are expanded from 3M # 0 to 3M # 127 (S2 in FIG. 12). Then, a predetermined absolute monitoring address corresponding to the logical monitoring address that matches the setting data (logical control address data) in the third CH address data storage means 55 is obtained (S3 in FIG. 12).
  • the setting data (data of the logical monitoring address) in the third CH address data storage means 55 is 3M # 0, absolute addresses # 4, # 10, etc., at intervals of 6 from # 4 to # 766. Get the data.
  • Data of a predetermined absolute monitoring address obtained in the absolute address generation table 48 is delivered to the absolute address counter 44.
  • the absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal, and outputs predetermined absolute monitoring address data (corresponding to the setting data in the third CH address data storage means 55).
  • predetermined absolute monitoring address data corresponding to the setting data in the third CH address data storage means 55.
  • the transmission transmission signal of that cycle is handed over to the third CH monitoring data transmission means 45c each time at a timing that coincides with data of 6 intervals from # 4 to # 766), and the third CH monitoring data transmission means Enable 45c.
  • the data of a plurality of predetermined absolute monitoring addresses corresponding to 3M # 0 obtained in the absolute address generation table 48 is first the absolute monitoring address data handed over to the absolute address counter (in the embodiment shown in FIG. 12).
  • # 4 coincides with the data of the absolute address counter 44
  • the data of the next absolute address (# 10 in the embodiment shown in FIG. 12) is transferred to the absolute address counter 44, and the data of the subsequent absolute monitoring address Are also delivered sequentially.
  • the third CH output slave station 6c includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the third CH slave station output unit 60c. It has become. As with the MCU of the first CH slave station output unit 60a, the calculations and storages required for the processing of the third CH output slave station 6c are executed using the CPU, RAM and ROM included in this MCU. It has become.
  • the functional configuration of the third CH slave station output unit 60c is such that the first CH address data storage unit 51 of the first CH slave station output unit 60a shown in FIG.
  • the final address data storage means 52 is replaced with the third CH final address data storage means 56, and the rest is the same as the first CH slave station output unit 60a. Therefore, in FIG. 13, the same reference numerals are given to substantially the same parts as those of the first CH output slave station 6a, and the description thereof will be simplified or omitted.
  • the address extraction means 43 of the third CH output slave station 6c also has an absolute address generation table 48, and is based on the data obtained from the CH number setting means 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 14, the data of the absolute address is expanded into 6 columns (3 channels and 2 columns for each channel) (S1 shown in FIG. 14). Next, based on the setting data 3C # 127 (maximum value of the logical control address) in the third CH final address data storage means 56, the logical control addresses are expanded from 3C # 0 to 3C # 127 (S2 in FIG. 14). Then, a predetermined absolute control address corresponding to the logical control address that matches the setting data (logical control address data) in the third CH address data storage means 55 is obtained (S3 in FIG. 14).
  • the setting data (logical control address data) of the third CH address data storage means 55 is 3C # 0, absolute addresses # 5, # 11, etc. Get the data.
  • Data of a predetermined absolute control address obtained in the absolute address generation table 48 is delivered to the absolute address counter 44.
  • the absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal, and outputs predetermined absolute control address data (corresponding to setting data in the third CH address data storage means 55).
  • the transmission reception signal of that cycle is delivered to the third CH control data extraction means 46c each time at a timing that coincides with data of 6 intervals from # 5 to # 767.
  • the data of a predetermined plurality of absolute control addresses corresponding to 3C # 0 obtained in the absolute address generation table 48 are first absolute control address data delivered to the absolute address counter (in the embodiment shown in FIG. 14).
  • the data of the next absolute address (# 11 in the embodiment shown in FIG. 14) is transferred to the absolute address counter 44, and the data of the subsequent absolute control address Are also delivered sequentially.
  • the first and second transmission data signals of one unit starting from the end of the start signal are the first channel, the third and the fourth are the second channel, The fifth and sixth channels are allocated to the third channel.
  • the first CH logical monitoring addresses 1M # 0 to 1M # 127, or the first CH logical control address 1C are assigned to one unit (hereinafter referred to as one unit of the first CH) of the transmission data signal allocated to the first channel. # 0 to 1C # 127 are assigned.
  • the second CH logical monitoring addresses 2M # 0, 2M # 1, 2M # 2 and 2M # 3 are assigned to one unit (hereinafter referred to as a second CH unit) of the transmission data signal allocated to the second channel.
  • the second CH logical monitoring addresses 2C # 0, 2C # 1, 2C # 2 and 2C # 3 are allocated. Furthermore, the third CH logical monitoring addresses 3M # 0 to 3M # 127, or the third CH logical control address are assigned to one unit (hereinafter referred to as a third CH unit) of the transmission data signal allocated to the third channel. 3M # 0 to 3M # 127 are assigned as word addresses.
  • any of the first CH logical monitoring addresses 1M # 0 to 1M # 127 is assigned to the first CH input / output slave station 4a belonging to the first channel, and the first CH logical control addresses 1C # 0 to 1C # are assigned to the first CH output slave station 6a.
  • the first transmission data signal of the first CH unit assigned the first CH logical monitoring address assigned to the own station is transmitted, and the second transmission data of the first CH unit assigned the first CH logical control address. Receive a signal.
  • the first CH control data is data received by the slave station from the master station at the first CH input / output slave station 4a or the first CH output slave station 6a
  • the first CH monitoring data is the first CH input / output slave station 4a.
  • any of the second CH logical control addresses 2C # 0, 2C # 1, 2C # 2, and 2C # 3 is assigned to the second CH output slave station 6b belonging to the second channel, and the second CH input slave station 7b Any one of the second CH logical monitoring addresses 2M # 0, 2M # 1, 2M # 2, and 2M # 3 is assigned.
  • the first transmission data signal of the second CH unit assigned the second CH logical monitoring address assigned to the own station is transmitted, and the second transmission data of the second CH unit assigned the second CH logical control address.
  • the logical frame period Thc of the second channel is repeated 32 times within one frame period Tc (period from the start signal to the next start signal) of the transmission data signal.
  • the logical frame period of the first channel is equal to one frame period Tc of the transmission data signal. Accordingly, the transmission response speed of the second channel is 32 times the transmission response speed of the first channel.
  • the start address of the word data (3C # 0, 3C # 16, etc.) among the third CH logical control addresses 3C # 0 to 3C # 127 is given to the third CH output slave station 6c belonging to the third channel, and the third CH input
  • the start address (3M # 0, 3M # 16, etc.) of the word data among the third CH logical monitoring addresses 3M # 0 to 3M # 127 is assigned to the slave station 7c. Then, the first transmission data signal of the third CH unit assigned with the third CH logical address assigned to the own station is transmitted, and the second transmission data signal of the third CH unit assigned with the third CH logical control address. Receive.
  • the order of transmission data signals of one unit starting from the end of the start signal assigned to each channel is in a predetermined arbitrary order (for example, the third and third channels in the first and second, (4th, 1st channel, 5th and 6th, 2nd channel) may be allocated.
  • the start of transmission address counting may start from the start of a start signal.
  • the threshold Vst of the transmission clock signal in the first half of one cycle (this implementation)
  • the logical data of the control signal or the logical data of the monitoring signal is expressed by the pulse width length lower than the threshold Vlt (6V in this embodiment). It may be a thing.
  • the length of the pulse width of the potential level lower than the threshold value Vlt is (1/4) t0
  • the logical data “1”, (1/2) t0 Represents logical data “0”.
  • the pulse width representing each logical data is the value of each data of the first CH control parallel data 13a, the second CH control parallel data 13b, and the third CH control parallel data 13c input from the control unit 1, or the first CH input / output.
  • the pulse width representing each logical data is the value of each data of the first CH control parallel data 13a, the second CH control parallel data 13b, and the third CH control parallel data 13c input from the control unit 1, or the first CH input / output.
  • the pulse width representing each logical data is the value of each data of the first CH control parallel data 13a, the second CH control parallel data 13b, and the third CH control parallel data 13c input from the control unit 1, or the first CH input / output.
  • the one-cycle potential level of the transmission data signal may represent the logical data of the control signal or the logical data of the monitoring signal.
  • one cycle of the ground level (OV) transmission data signal represents the logical data “1”
  • one cycle of the 12 V transmission data signal represents the logical data “0”.
  • the slave station can count and synchronize the number of transmission data signals. Can not. Therefore, as shown in FIGS. 22 and 23, the slave station is provided with a pseudo timing generation unit 42 and is synchronized with a pseudo timing signal generated internally from the end of the start signal included in the transmission signal. To do. 22 and FIG.
  • the pseudo timing generation unit 42 includes an oscillation circuit (OSC) (not shown) and timing generation means.
  • the pseudo timing generation unit 42 is based on the internal OSC starting from the end of the start signal included in the transmission signal. Then, a pseudo timing signal synchronized with the timing clock generated by the timing generator 23 of the master station 2 is generated and delivered to the absolute address counter 44.
  • the timing at which the pulse signal rises or falls in the pseudo timing signal coincides with the potential change in one cycle of the transmission data signal synchronized with the timing clock generated by the master station 2. Therefore, the slave station can grasp the address of the transmission data signal without counting the number of transmission data signals by counting the rise or fall of the pulse of the pseudo timing signal.
  • one cycle of the transmission data signal may be a time required for the transmission / reception of the signal, and the return to zero as shown in FIG. 19 and FIG.
  • the transmission speed can be increased compared to the case of using the transmission signal of the system.
  • the transmission rate of the transmission signal shown in FIG. 21 is twice as long as one cycle of the transmission data signal is half the length of one cycle of the transmission data signal of the transmission signal shown in FIGS. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Small-Scale Networks (AREA)

Abstract

[Problem] To provide a control and monitoring signal transmission system which allows configuring a desired number of channels in a transmission synchronization scheme. [Solution] In this control and monitoring signal transmission system, a parent station and multiple child stations are connected by a common data signal line, and under the control of a timing signal generated by a timing generation means of the parent station, a transmission signal is transmitted to the common data signal line, said transmission signal comprising multiple transmission data signals which start from the starting point of the beginning or ending of a start signal and have a prescribed time width per period. For each period, the transmission data signals are transmitted as half-duplex transmissions that comprise either a control signal, which is a transmission signal from the parent station, or a monitoring signal, which is a transmission signal received signal which is received by the parent station. Then, taking a prescribed plural number of consecutive periods of the transmission signal as a single unit, arbitrary transmission data signals in that unit are allocated to prescribed channels.

Description

制御・監視信号伝送システムControl and monitoring signal transmission system
 本発明は、制御部に接続された親局と複数の出力部および入力部、或いは複数の被制御装置に対応する複数の子局との間の信号線を省配線化し共通データ信号線で接続し、伝送クロック信号で同期させるなどの伝送同期方式によりデータの伝送を行う制御・監視信号伝送システムに関する。 The present invention reduces the number of signal lines between a master station connected to a control unit and a plurality of output units and input units, or a plurality of slave stations corresponding to a plurality of controlled devices, and connects them with a common data signal line. In addition, the present invention relates to a control / monitor signal transmission system that transmits data by a transmission synchronization method such as synchronization by a transmission clock signal.
 制御部と、複数の出力部と入力部、或いは複数の被制御装置を備える制御システムにおいて、配線の数を減らす、所謂省配線化が広く実施されている。そして、その省配線化の一般的な手法として、複数の出力部と入力部、或いは被制御装置から延出される信号線の各々を制御部に直接繋ぐパラレル接続に代えて、パラレル信号とシリアル信号の変換機能を備えた親局と複数の子局を、制御部と複数の出力部と入力部、或いは複数の被制御装置にそれぞれ接続し、親局と複数の子局との間で共通データ信号線を介してシリアル信号によりデータ授受を行う方式が広く採用されている。 In a control system including a control unit, a plurality of output units and input units, or a plurality of controlled devices, so-called wiring saving, which reduces the number of wirings, is widely implemented. As a general technique for reducing the wiring, a parallel signal and a serial signal are used instead of a parallel connection that directly connects a plurality of output units and input units or signal lines extending from a controlled device to the control unit. The master station and the plurality of slave stations having the conversion function are connected to the control unit, the plurality of output units and the input unit, or the plurality of controlled devices, respectively, and common data between the master station and the plurality of slave stations. A method of exchanging data with a serial signal via a signal line is widely adopted.
 また、シリアル信号によりデータ授受を行う方法として、伝送クロックで同期させるなどの伝送同期方式が広く採用され、様々な状況に適用するための検討がなされている。例えば、ビットデータとワードデータをそれぞれ独立的に伝送する場合には、論理的に異なる伝送路(チャネル)を複数使用して伝送する必要があるが、伝送同期方式においても、複数のチャネルを設けるための手法が検討されている。 Also, a transmission synchronization method such as synchronization with a transmission clock is widely adopted as a method for transferring data using a serial signal, and studies for applying it to various situations have been made. For example, when bit data and word data are transmitted independently, it is necessary to perform transmission using a plurality of logically different transmission paths (channels), but a plurality of channels are also provided in the transmission synchronization method. Techniques for this are being considered.
 例えば、特開2002-271878号公報に開示されている制御・監視信号伝送システムでは、制御部から被制御装置への第1制御信号を所定のパルス幅(デューティ比)の2値信号とし、第2制御信号を電源電圧のレベル以外のレベルの期間における所定のレベルの信号として、また、入力部から制御部への第1監視信号を電流信号の有無とし、第2監視信号を周波数信号とすることにより、伝送同期方式において2チャネルを設けることができる。 For example, in the control / monitor signal transmission system disclosed in Japanese Patent Application Laid-Open No. 2002-271878, the first control signal from the control unit to the controlled device is a binary signal having a predetermined pulse width (duty ratio). 2 The control signal is a signal of a predetermined level during a period of a level other than the level of the power supply voltage, the first monitoring signal from the input unit to the control unit is the presence or absence of a current signal, and the second monitoring signal is a frequency signal Thus, two channels can be provided in the transmission synchronization method.
特開2002-271878号公報JP 2002-271878 A
 しかしながら、上記制御・監視信号伝送システムをはじめとする従来技術では、伝送クロック信号の1周期に数種類程度の多重信号を重畳することが限度であり、設定できるチャネル数に限りがあった。 However, in the prior art including the control / monitor signal transmission system described above, the limit is to superimpose several kinds of multiplexed signals in one cycle of the transmission clock signal, and the number of channels that can be set is limited.
 そこで、本発明は、伝送同期方式において、所望の数のチャネルを設定することができる制御・監視信号伝送システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a control / monitor signal transmission system capable of setting a desired number of channels in a transmission synchronization method.
 本発明に係る制御・監視信号伝送システムでは、親局と複数の子局が共通データ信号線で接続され、前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、スタート信号の開始または終了の起点から開始される、所定の時間幅を1周期とする伝送データ信号が複数連なる、伝送信号が、前記共通データ信号線に伝送され、前記1周期毎に、前記親局からの伝送送信信号である制御信号、または、前記親局が受ける伝送受信信号である監視信号のいずれか一方のみが伝送される半二重伝送として前記伝送データ信号が伝送される。そして、前記伝送データ信号の複数を一単位とし、前記一単位の中の任意の前記伝送データ信号を所定のチャネルに割り当てる。 In the control / monitoring signal transmission system according to the present invention, the master station and a plurality of slave stations are connected by a common data signal line, and the start signal is controlled under the control of the timing signal generated by the timing generator included in the master station. A plurality of transmission data signals starting from the start or end point and having a predetermined time width as one cycle are continuous. A transmission signal is transmitted to the common data signal line, and from the master station every cycle. The transmission data signal is transmitted as a half-duplex transmission in which only one of a control signal that is a transmission transmission signal and a monitoring signal that is a transmission reception signal received by the master station is transmitted. A plurality of transmission data signals are defined as one unit, and any transmission data signal in the unit is assigned to a predetermined channel.
 前記子局は、前記スタート信号の開始または終了を起点として、前記タイミング信号に同期する疑似クロック信号を自局で生成し、前記疑似クロック信号に基づいて伝送アドレスをカウントするものであってもよい。 The slave station may generate a pseudo clock signal synchronized with the timing signal from the start or end of the start signal, and count a transmission address based on the pseudo clock signal. .
 前記伝送データ信号は対応する伝送クロック信号を含み、前記チャネルの少なくとも一つを高速伝送チャネルとし、前記高速伝送チャネルに属する子局は、前記スタート信号の開始または終了を起点として、前記伝送データ信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号周期の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行うものであってもよい。 The transmission data signal includes a corresponding transmission clock signal, and at least one of the channels is a high-speed transmission channel, and a slave station belonging to the high-speed transmission channel starts from the start or end of the start signal. The transmission address count based on the start address is started, and in one frame period between the start signal and the next start signal, a number smaller than the address count value corresponding to the number of the transmission data signal periods is set to the maximum address count value. The address counter may be provided to exchange data with the master station at a frame period shorter than the one-frame period.
 前記チャネルの少なくとも一つを高速伝送チャネルとし、前記高速伝送チャネルに属する子局は、前記スタート信号の開始または終了を起点として、自局で生成する前記タイミング信号に同期する疑似クロック信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号周期の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行うものであってもよい。 At least one of the channels is a high-speed transmission channel, and a slave station belonging to the high-speed transmission channel is based on a pseudo clock signal synchronized with the timing signal generated by the local station, starting from the start or end of the start signal An address that starts counting transmission addresses and sets a smaller number than the address count value corresponding to the number of transmission data signal periods in one frame period between the start signal and the next start signal as the maximum address count value. A counter may be provided to exchange data with the master station at a frame period shorter than the one frame period.
 本発明に係るターミナルは、親局が接続され、前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、スタート信号の開始または終了の起点から開始される、所定の時間幅を1周期とする伝送データ信号が複数連なり、前記1周期毎に、前記親局からの伝送送信信号である制御信号、または、前記親局が受ける伝送受信信号である監視信号のいずれか一方のみが伝送される半二重伝送として前記伝送データ信号が伝送される共通データ信号線に接続される。また、自局の論理アドレスを設定するアドレス設定手段と、前記論理アドレスに対応する前記伝送信号における絶対アドレスを算出する絶対アドレス生成テーブルを備える。更に、前記伝送データ信号の数をカウントし、前記自局アドレスのデータと一致するタイミングで、前記伝送データ信号に重畳された制御データを抽出する制御データ抽出処理と、前記一致するタイミングで入力部からの入力信号に応じた監視データを伝送受信信号として前記伝送信号に重畳する監視データ送信処理を行う子局入出力部、あるいは、前記制御データ抽出処理を行う子局出力部と前記監視データ送信処理を行う子局入力部のいずれか一方を備える。そして、前記アドレス設定手段は、前記伝送データ信号の複数を一単位として前記論理アドレスを設定する。 The terminal according to the present invention has a predetermined time width that starts from the start or end of the start signal under the control of the timing signal generated by the timing generation means of the master station connected to the master station. There are a plurality of transmission data signals in one cycle, and only one of a control signal that is a transmission transmission signal from the master station or a monitoring signal that is a transmission reception signal received by the master station is provided for each cycle. It is connected to a common data signal line through which the transmission data signal is transmitted as a half-duplex transmission. Further, an address setting means for setting the logical address of the own station and an absolute address generation table for calculating an absolute address in the transmission signal corresponding to the logical address are provided. Further, the number of the transmission data signals is counted, and the control data extraction process for extracting the control data superimposed on the transmission data signal at the timing coincident with the data of the own station address, and the input unit at the coincidence timing A slave station input / output unit that performs monitoring data transmission processing to superimpose the monitoring data corresponding to the input signal from the transmission signal as a transmission reception signal, or a slave station output unit that performs the control data extraction processing and the monitoring data transmission Either one of the slave station input units for processing is provided. The address setting means sets the logical address with a plurality of the transmission data signals as a unit.
 本発明に係るターミナルは、前記スタート信号の開始または終了を起点として、前記タイミング信号に同期する疑似クロック信号を自局で生成し、前記疑似クロック信号に基づいて伝送アドレスをカウントする The terminal according to the present invention generates a pseudo clock signal synchronized with the timing signal from the start or end of the start signal, and counts transmission addresses based on the pseudo clock signal.
 前記伝送データ信号は対応する伝送クロック信号を含み、本発明に係るターミナルは、前記スタート信号の開始または終了を起点として、前記伝送データ信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行うものであってもよい。 The transmission data signal includes a corresponding transmission clock signal, and the terminal according to the present invention starts counting transmission addresses based on the transmission data signal starting from the start or end of the start signal, and the start signal and An address counter having a smaller number than the address count value corresponding to the number of transmission data signals in one frame period between the next start signals, and a frame period shorter than the one frame period Thus, data may be exchanged with the master station.
 本発明に係るターミナルは、前記スタート信号の開始または終了を起点として、前記疑似クロック信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行うものであってもよい。 The terminal according to the present invention starts counting transmission addresses based on the pseudo clock signal starting from the start or end of the start signal, and in one frame period between the start signal and the next start signal, An address counter having a maximum address count value smaller than the address count value corresponding to the number of transmission data signals is provided, and data is exchanged with the master station in a frame period shorter than the one frame period. You may do it.
 本発明に係る制御・監視信号伝送システムでは、伝送データ信号の複数が一単位とされ、一単位の中の任意の伝送データ信号が所定のチャネルに割り当てられるため、伝送同期方式において、所望の数のチャネルを設けることが可能となる。 In the control / monitor signal transmission system according to the present invention, a plurality of transmission data signals are defined as one unit, and any transmission data signal in one unit is assigned to a predetermined channel. It is possible to provide channels.
 また、伝送信号にスタート信号を含め、そのスタート信号と次のスタート信号の間を1フレーム周期として、チャネル毎に、1フレーム周期の範囲内で子局が自チャネルに定義されたフレーム周期を繰り返し、親局と子局は、一単位毎に、当該子局が属するチャネルのデータの授受を行うこととすれば、伝送信号の1フレーム周期よりも短いフレーム周期で所定のデータを高速スキャンすることが可能となる。 In addition, the start signal is included in the transmission signal, and the interval between the start signal and the next start signal is defined as one frame period, and for each channel, the slave station repeats the frame period defined for its own channel within the range of one frame period. If the master station and the slave station exchange data of the channel to which the slave station belongs for each unit, high-speed scanning of predetermined data is performed at a frame period shorter than one frame period of the transmission signal. Is possible.
 本発明に係るターミナルは、伝送データ信号の複数を一単位としてアドレスを設定するアドレス設定手段と、論理アドレスに対応する伝送信号における絶対アドレスを算出する絶対アドレス生成テーブルを備えるため、本発明に係る制御・監視信号伝送システムにおいて、絶対アドレスを意識することなく容易にアドレス設定することができる。 The terminal according to the present invention includes address setting means for setting an address with a plurality of transmission data signals as a unit, and an absolute address generation table for calculating an absolute address in the transmission signal corresponding to the logical address. In the control / monitor signal transmission system, the address can be easily set without being aware of the absolute address.
 また、本発明に係る制御・監視信号伝送システムおよびターミナルは、親局が有するタイミング発生手段で生成されるタイミング信号に同期する疑似クロック信号を子局(自局)で生成し、その疑似クロック信号に基づいて伝送アドレスをカウントするものとすれば、伝送信号がスタート信号のみを含み、伝送データ信号が、対応する伝送クロック信号を含まないものであっても、伝送アドレスをカウントすることができる。従って伝送信号の伝送データ信号の時間幅を短くし、伝送速度を上げることができる。 The control / monitoring signal transmission system and terminal according to the present invention generate a pseudo clock signal synchronized with a timing signal generated by the timing generating means of the master station at the slave station (own station), and the pseudo clock signal. The transmission address can be counted even if the transmission signal includes only the start signal and the transmission data signal does not include the corresponding transmission clock signal. Therefore, the time width of the transmission data signal of the transmission signal can be shortened and the transmission speed can be increased.
本発明に係る制御・監視信号伝送システムの概略構成を示すシステム構成図である。1 is a system configuration diagram showing a schematic configuration of a control / monitor signal transmission system according to the present invention. 親局のシステム構成図である。It is a system configuration | structure figure of a master station. 第1チャネルに属する入力子局における子局入力部のブロック図である。It is a block diagram of a slave station input unit in an input slave station belonging to the first channel. 第1チャネルに属する入力子局の絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of the input slave station which belongs to the 1st channel. 第1チャネルに属する出力子局における子局出力部のブロック図である。It is a block diagram of a slave station output unit in an output slave station belonging to the first channel. 第1チャネルに属する出力子局の絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of the output slave station which belongs to the 1st channel. 第2チャネルに属する入力子局における子局入力部のブロック図である。It is a block diagram of a slave station input unit in an input slave station belonging to the second channel. 第2チャネルに属する入力子局の絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of the input slave station which belongs to the 2nd channel. 第2チャネルに属する出力子局における子局出力部のブロック図である。It is a block diagram of a slave station output unit in an output slave station belonging to the second channel. 第2チャネルに属する出力子局の絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of the output slave station which belongs to the 2nd channel. 第3チャネルに属する入力子局における子局入力部のブロック図である。It is a block diagram of a slave station input unit in an input slave station belonging to the third channel. 第3チャネルに属する入力子局の絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of the input slave station which belongs to the 3rd channel. 第3チャネルに属する出力子局における子局出力部のブロック図である。It is a block diagram of a slave station output unit in an output slave station belonging to the third channel. 第3チャネルに属する出力子局の絶対アドレス生成テーブルを示す図である。It is a figure which shows the absolute address generation table of the output slave station which belongs to the 3rd channel. 親局と子局との間で授受される伝送信号と伝送信号から抽出される第1チャネルデータの模式図である。It is a schematic diagram of the 1st channel data extracted from the transmission signal transmitted / received between a main | base station and a sub_station | mobile_unit, and a transmission signal. 親局と子局との間で授受される伝送信号と伝送信号から抽出される第2チャネルデータの模式図である。It is a schematic diagram of the 2nd channel data extracted from the transmission signal transmitted / received between a main | base station and a sub_station | mobile_unit, and a transmission signal. 親局と子局との間で授受される伝送信号と伝送信号から抽出される第3チャネルデータの模式図である。It is a schematic diagram of the 3rd channel data extracted from the transmission signal transmitted / received between a main | base station and a sub_station | mobile_unit, and a transmission signal. 各チャネルのフレーム周期を示す伝送信号の模式図である。It is a schematic diagram of the transmission signal which shows the frame period of each channel. 伝送信号のタイムチャートである。It is a time chart of a transmission signal. 伝送信号の他の実施形態のタイムチャートである。It is a time chart of other embodiments of a transmission signal. 伝送信号の更に他の実施形態のタイムチャートである。It is a time chart of further another embodiment of a transmission signal. 他の実施形態の入力子局における子局入力部のブロック図である。It is a block diagram of the slave station input part in the input slave station of other embodiment. 他の実施形態の出力子局における子局出力部のブロック図である。It is a block diagram of the slave station output part in the output slave station of other embodiment.
 図1~19を参照しながら、本発明に係る制御・監視信号伝送システムの実施例を説明する。
 図1に示すように、この制御・監視信号伝送システムは、制御部1および共通データ信号線DP、DN(以下、伝送ラインということがある)に接続された単一の親局2と、前記共通データ信号線DP、DNに接続された第1CH入出力子局4a、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6c、および第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cの複数で構成される。なお、図1においては、図示の便宜上、各々の子局が一つずつ示されているが、共通データ信号線DP、DNに接続される子局の種類や数に制限は無い。
An embodiment of a control / monitor signal transmission system according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, the control / monitor signal transmission system includes a single master station 2 connected to a control unit 1 and common data signal lines DP and DN (hereinafter also referred to as transmission lines), First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, and first CH input slave station 7a, second CH connected to the common data signal lines DP and DN It is composed of a plurality of input slave stations 7b and a third CH input slave station 7c. In FIG. 1, for convenience of illustration, each slave station is shown one by one, but there is no limitation on the type and number of slave stations connected to the common data signal lines DP and DN.
 第1CH入出力子局4a、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6c、および第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cは、制御部1の出力指示に応じて動作する出力部8に対する信号出力処理と、制御部1への入力情報を取り入れる入力部9からの入力信号処理のいずれかまたは双方を行うものである。そして、使用目的に応じた伝送データにより3つの群に分類されている。具体的には、第1CH入出力子局4a、第1CH出力子局6a、および第1CH入力子局7aが低速データの伝送を行う低速データ伝送群に、第2CH出力子局6bおよび第2CH入力子局7bが高速データの伝送を行う高速データ伝送群に、第3CH出力子局6cおよび第3CH入力子局7cが複数ビットのワードデータの伝送を行うワードデータ伝送群に分類されている。なお、低速データ伝送群、高速データ伝送群、ワードデータ伝送群に割り当てられる伝送データ信号を、それぞれ第1チャネル(第1CH)、第2チャネル(第2CH)、第3チャネル(第3CH)と称するものとし、以下、これらの群に対応する部分には、それぞれ「第1CH」「第2CH」「第3CH」の表記を付すものとする。 First CH I / O slave station 4a, first CH output slave station 6a, second CH output slave station 6b, third CH output slave station 6c, first CH input slave station 7a, second CH input slave station 7b, third CH input slave station 7c Performs either or both of signal output processing for the output unit 8 that operates in response to an output instruction of the control unit 1 and input signal processing from the input unit 9 that incorporates input information to the control unit 1. And it is classified into three groups by the transmission data according to the purpose of use. Specifically, the first CH input / output slave station 4a, the first CH output slave station 6a, and the first CH input slave station 7a are connected to the low-speed data transmission group in which low-speed data transmission is performed. The slave station 7b is classified into a high-speed data transmission group in which high-speed data is transmitted, and the third CH output slave station 6c and the third CH input slave station 7c are classified into word data transmission groups in which a plurality of bits of word data are transmitted. The transmission data signals allocated to the low-speed data transmission group, the high-speed data transmission group, and the word data transmission group are referred to as a first channel (first CH), a second channel (second CH), and a third channel (third CH), respectively. In the following description, the parts corresponding to these groups are denoted by “first CH”, “second CH”, and “third CH”, respectively.
 出力部8は、例えば、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ、ランプ等であり、入力部9は、例えば、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、各種センサ等である。第1CH入出力子局4aは、出力部8と入力部9で構成される被制御装置5に接続され、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6cは出力部8のみに接続され、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cは入力部9にのみ接続されている。また、第1CH出力子局6a、第2CH出力子局6b、第3CH出力子局6cは出力部8を内包するもの(出力部一体型子局80)であってもよく、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cは入力部9を内包するもの(入力部一体型子局90)であってもよい。 The output unit 8 is, for example, an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, or a lamp. The input unit 9 is, for example, a reed switch, a micro switch, a push button switch, a photoelectric switch, various sensors, or the like. It is. The first CH input / output slave station 4a is connected to the controlled device 5 including the output unit 8 and the input unit 9, and the first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c are output. The first CH input slave station 7 a, the second CH input slave station 7 b, and the third CH input slave station 7 c are connected only to the input unit 9. The first CH output slave station 6a, the second CH output slave station 6b, and the third CH output slave station 6c may include the output unit 8 (output unit integrated slave station 80). 7a, the second CH input slave station 7b, and the third CH input slave station 7c may include the input unit 9 (input unit integrated slave station 90).
 制御部1は、例えばプログラマブルコントローラ、コンピュータ等であり、第1CH制御並列データ13a、第2CH制御並列データ13b、第3CH制御並列データ13cを送出する第1CH出力ユニット11a、第2CH出力ユニット11b、第3CH出力ユニット11cと、第1CH入出力子局4aおよび第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cからの監視信号から抽出される監視データに基づき得られた第1CH監視並列データ14a、第2CH監視並列データ14b、第3CH監視並列データ14cを受け取る第1CH入力ユニット12a、第2CH入力ユニット12b、第3CH入力ユニット12cを有する。そして、これら第1CH出力ユニット11a、第2CH出力ユニット11b、第3CH出力ユニット11c、第1CH入力ユニット12a、第2CH入力ユニット12b、第3CH入力ユニット12cが親局2に接続されている。 The control unit 1 is, for example, a programmable controller, a computer, and the like, and includes a first CH output unit 11a, a second CH output unit 11b, a second CH output parallel data 13c, a second CH control parallel data 13b, and a third CH control parallel data 13c. The 3CH output unit 11c, the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the first data obtained based on the monitoring data extracted from the monitoring signals from the third CH input slave station 7c. It has a first CH input unit 12a, a second CH input unit 12b, and a third CH input unit 12c that receive the 1CH monitoring parallel data 14a, the second CH monitoring parallel data 14b, and the third CH monitoring parallel data 14c. The first CH output unit 11a, the second CH output unit 11b, the third CH output unit 11c, the first CH input unit 12a, the second CH input unit 12b, and the third CH input unit 12c are connected to the master station 2.
 親局2は、図2に示すように、第1CH出力データ部21a、第2CH出力データ部21b、第3CH出力データ部21c、タイミング発生部23、親局出力部24、親局入力部25、第1CH入力データ部26a、第2CH入力データ部26b、第3CH入力データ部26cを備える。そして、共通データ信号線DP、DNに接続され、一連のパルス状信号である制御信号を共通データ信号線DP、DNに送出するとともに、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cから送出された監視信号から抽出された第1CH監視並列データ14a、第2CH監視並列データ14b、第3CH監視並列データ14cを制御部1の第1CH入力ユニット12a、第2CH入力ユニット12b、第3CH入力ユニット12cへ送出する。 As shown in FIG. 2, the master station 2 includes a first CH output data unit 21a, a second CH output data unit 21b, a third CH output data unit 21c, a timing generation unit 23, a master station output unit 24, a master station input unit 25, A first CH input data unit 26a, a second CH input data unit 26b, and a third CH input data unit 26c are provided. The control signal, which is connected to the common data signal lines DP and DN and is a series of pulse signals, is sent to the common data signal lines DP and DN, and the first CH input / output slave station 4a, the first CH input slave station 7a, The first CH monitoring parallel data 14a, the second CH monitoring parallel data 14b, and the third CH monitoring parallel data 14c extracted from the monitoring signals transmitted from the second CH input slave station 7b and the third CH input slave station 7c are used as the first CH of the control unit 1. The data is sent to the input unit 12a, the second CH input unit 12b, and the third CH input unit 12c.
 第1CH出力データ部21aは、制御部1の第1CH出力ユニット11aからの第1CH制御並列データ13aをシリアルデータとして親局出力部24へ引き渡す。第2CH出力データ部21bは、制御部1の第2CH出力ユニット11bからの第2CH制御並列データ13bをシリアルデータとして親局出力部24へ引き渡す。第3CH出力データ部21cは、制御部1の第3CH出力ユニット11cからの第3CH制御並列データ13cをシリアルデータとして親局出力部24へ引き渡す。 The first CH output data unit 21a delivers the first CH control parallel data 13a from the first CH output unit 11a of the control unit 1 to the master station output unit 24 as serial data. The second CH output data unit 21b delivers the second CH control parallel data 13b from the second CH output unit 11b of the control unit 1 to the master station output unit 24 as serial data. The third CH output data unit 21c delivers the third CH control parallel data 13c from the third CH output unit 11c of the control unit 1 to the master station output unit 24 as serial data.
 タイミング発生部23は、発振回路(OSC)31とタイミング発生手段32からなり、発振回路(OSC)31を基にタイミング発生手段32が、このシステムのタイミングクロックを生成し親局出力部24、親局入力部25に引き渡す。 The timing generation unit 23 includes an oscillation circuit (OSC) 31 and a timing generation unit 32. The timing generation unit 32 generates a timing clock of the system based on the oscillation circuit (OSC) 31, and generates a master station output unit 24, Delivered to the station input unit 25.
 親局出力部24は、制御データ発生手段33とラインドライバ34からなる。制御データ発生手段33が、第1CH出力データ部21a、第2CH出力データ部21b、第3CH出力データ部21cから受けたデータと、タイミング発生部23から受けたタイミングクロックに基づき、ラインドライバ34を介して共通データ信号線DP、DNに伝送信号を送出する。 The master station output unit 24 includes control data generation means 33 and a line driver 34. Based on the data received from the first CH output data unit 21a, the second CH output data unit 21b, the third CH output data unit 21c, and the timing clock received from the timing generation unit 23, the control data generation means 33 passes through the line driver 34. The transmission signal is sent to the common data signal lines DP and DN.
 伝送信号は、伝送データ信号が複数連なって構成される。伝送データ信号は、伝送クロック信号の閾値Vst(この実施例では18V)より高い電位レベルエリア(本発明の、伝送データ信号に対応する伝送クロック信号に相当し、この実施例では+24V)と伝送クロック信号の閾値Vstよりも低い電位レベルエリアで構成される。また、伝送クロック信号の閾値Vstよりも低い電位レベルエリアは、制御信号または監視信号に相当し、論理データの閾値Vlt(この実施例では6V)よりも高い電位レベルエリア(この実施例では+12V)、または、論理データの閾値Vltよりも低い電位レベルエリア(この実施例では0V)のいずれかで構成される。そして、伝送クロック信号の閾値Vstよりも低い電位レベルエリアの電位レベルが前記閾値Vltよりも高いか低いかで制御信号の論理データ、または、監視信号の論理データを表すものとなっている。この実施例では、閾値Vltよりも低い電位レベル(この実施例では0V)が論理データ“1”、閾値Vltよりも高い電位レベル(この実施例では12V)が論理データ“0”を表す。ただし、各論理データを表す電位レベルは、制御部1から入力される第1CH制御並列データ13a、第2CH制御並列データ13b、第3CH制御並列データ13cの各データの値、または、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、および第3CH入力子局7cから送出される各監視信号のデータに応じたものであれば、その大きさに制限はなく適宜に決めればよい。更に、伝送信号は、伝送データ信号の時間幅より長く、伝送クロック信号の閾値Vstより高い電位レベルのスタート信号STを先頭に有している。 The transmission signal is composed of a plurality of transmission data signals. The transmission data signal has a potential level area (corresponding to the transmission clock signal corresponding to the transmission data signal of the present invention, +24 V in this embodiment) higher than the threshold Vst (18 V in this embodiment) of the transmission clock signal and the transmission clock. It is composed of a potential level area lower than the signal threshold Vst. A potential level area lower than the threshold Vst of the transmission clock signal corresponds to a control signal or a monitor signal, and a potential level area (+12 V in this embodiment) higher than the threshold Vlt of logic data (6 V in this embodiment). Or a potential level area (0 V in this embodiment) lower than the threshold value Vlt of the logical data. The logical data of the control signal or the logical data of the monitoring signal is represented by whether the potential level in the potential level area lower than the threshold value Vst of the transmission clock signal is higher or lower than the threshold value Vlt. In this embodiment, a potential level lower than the threshold Vlt (0 V in this embodiment) represents the logical data “1”, and a potential level higher than the threshold Vlt (12 V in this embodiment) represents the logical data “0”. However, the potential level representing each logical data is the value of each data of the first CH control parallel data 13a, the second CH control parallel data 13b, and the third CH control parallel data 13c input from the control unit 1, or the first CH input / output. As long as it corresponds to the data of each monitoring signal transmitted from the slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c, there is no limitation on the size thereof. You can decide. Furthermore, the transmission signal has a start signal ST at the head having a potential level that is longer than the time width of the transmission data signal and higher than the threshold value Vst of the transmission clock signal.
 なお、第1CH入出力子局4a、第1CH出力子局6a、第1CH入力子局7a、第2CH出力子局6b、第2CH入力子局7b、第3CH出力子局6c、第3CH入力子局7cは、いずれも、外部の共通電源VP、VNから電源を得るものとなっている。 The first CH input / output slave station 4a, the first CH output slave station 6a, the first CH input slave station 7a, the second CH output slave station 6b, the second CH input slave station 7b, the third CH output slave station 6c, and the third CH input slave station In both cases, power is obtained from the external common power supplies VP and VN.
 図18に示すように、1フレーム周期を構成する伝送データ信号の数は768であり、絶対アドレスは、開始アドレスが0であることから最終アドレスが767とされている。また、0から762までの6間隔の絶対アドレス(#0、#6、#12…)と1から763までの6間隔の絶対アドレス(#1、#7、#13…)の伝送データ信号が第1チャネルに、2から764までの6間隔の絶対アドレス(#2、#8、#14…)と3から765までの6間隔の絶対アドレス(#3、#9、#15…)の伝送データ信号が第2チャネルに、4から766までの6間隔の絶対アドレス(#4、#10、#16…)と5から767までの6間隔の絶対アドレス(#5、#11、#17…)の伝送データ信号が第3チャネルに、割り当てられている。そして、第1チャネルに割り当てられた伝送データ信号、第2チャネルに割り当てられた伝送データ信号、および第3チャネルに割り当てられた伝送データ信号の連続する複数(この実施例では6伝送データ信号)が本発明の一単位とされている。 As shown in FIG. 18, the number of transmission data signals constituting one frame period is 768, and the absolute address is 767 because the start address is 0. Also, transmission data signals of 6-interval absolute addresses (# 0, # 6, # 12...) From 0 to 762 and 6-interval absolute addresses (# 1, # 7, # 13...) From 1 to 763 are present. Transmission of 6-interval absolute addresses (# 2, # 8, # 14 ...) from 2 to 764 and 6-interval absolute addresses (# 3, # 9, # 15 ...) from 3 to 765 to the first channel The data signal is sent to the second channel at 6-interval absolute addresses from 4 to 766 (# 4, # 10, # 16...) And 6-interval absolute addresses from 5 to 767 (# 5, # 11, # 17...). ) Is assigned to the third channel. A transmission data signal assigned to the first channel, a transmission data signal assigned to the second channel, and a plurality of transmission data signals assigned to the third channel (six transmission data signals in this embodiment) are consecutive. This is a unit of the present invention.
 親局入力部25は監視信号検出手段35、第1CH監視データ抽出手段36a、第2CH監視データ抽出手段36b、および第3CH監視データ抽出手段36cで構成される。監視信号検出手段35は、共通データ信号線DP、DNを経由して第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cから送出された監視信号を検出する。監視信号のデータは、既述のように論理データとして閾値Vltよりも低い電位レベルと高い電位レベルで表されており、スタート信号STが送信された後、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、第3CH入力子局7cの各々から監視信号を受け取るものとなっている。そして、監視信号検出手段35で検出された監視信号は、第1CH監視データ抽出手段36a、第2CH監視データ抽出手段36b、および第3CH監視データ抽出手段36cに引き渡される。 The master station input unit 25 includes monitoring signal detection means 35, first CH monitoring data extraction means 36a, second CH monitoring data extraction means 36b, and third CH monitoring data extraction means 36c. The monitoring signal detection means 35 is transmitted from the first CH input / output slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c via the common data signal lines DP and DN. Detect supervisory signals. As described above, the data of the monitoring signal is expressed as logical data at a potential level lower and higher than the threshold value Vlt. After the start signal ST is transmitted, the first CH input / output slave station 4a and the first CH A monitoring signal is received from each of the input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c. Then, the monitoring signal detected by the monitoring signal detection means 35 is delivered to the first CH monitoring data extraction means 36a, the second CH monitoring data extraction means 36b, and the third CH monitoring data extraction means 36c.
 第1CH監視データ抽出手段36aは、タイミング発生手段32からのタイミングに同期して、第1CH監視データを抽出し、直列の入力データとして第1CH入力データ部26aに送出する。 The first CH monitoring data extracting unit 36a extracts the first CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the first CH input data unit 26a as serial input data.
 第2CH監視データ抽出手段36bは、タイミング発生手段32からのタイミングに同期して、第2CH監視データを抽出し、直列の入力データとして第2CH入力データ部26bに送出する。 The second CH monitoring data extracting means 36b extracts the second CH monitoring data in synchronization with the timing from the timing generating means 32, and sends it to the second CH input data section 26b as serial input data.
 第3CH監視データ抽出手段36cは、タイミング発生手段32からのタイミングに同期して、第3CH監視データを抽出し、直列の入力データとして第3CH入力データ部26cに送出する。 The third CH monitoring data extracting unit 36c extracts the third CH monitoring data in synchronization with the timing from the timing generating unit 32, and sends it to the third CH input data unit 26c as serial input data.
 第1CH入力データ部26aは、第1CH監視データ抽出手段36aから受け取った直列の入力データを並列(パラレル)データに変換し、第1CH監視並列データ14aとして制御部1の第1CH入力ユニット12aへ送出する。また、第2CH入力データ部26bは、第2CH監視データ抽出手段36bから受け取った直列の入力データを並列(パラレル)データに変換し、第2CH監視並列データ14bとして制御部1の第2CH入力ユニット12bへ送出する。更に、第3CH入力データ部26cは、第3CH監視データ抽出手段36cから受け取った直列の入力データを並列(パラレル)データに変換し、第3CH監視並列データ14cとして制御部1の第3CH入力ユニット12cへ送出する。 The first CH input data unit 26a converts the serial input data received from the first CH monitoring data extraction unit 36a into parallel data, and sends it to the first CH input unit 12a of the control unit 1 as the first CH monitoring parallel data 14a. To do. Further, the second CH input data unit 26b converts the serial input data received from the second CH monitoring data extracting unit 36b into parallel data, and the second CH input data 12b of the control unit 1 is converted into the second CH monitoring parallel data 14b. To send. Further, the third CH input data unit 26c converts the serial input data received from the third CH monitoring data extracting unit 36c into parallel data, and the third CH input data 12c of the control unit 1 is converted into the third CH monitoring parallel data 14c. To send.
 第1CH入力子局7aは、図3に示すように、伝送受信手段41、アドレス抽出手段43、第1CH監視データ送信手段45a、CH数設定手段47、第1CHアドレスデータ記憶手段51、第1CH最終アドレスデータ記憶手段52、および入力手段71を有する第1CH子局入力部70aを備える。なお、この実施例の入力子局7aは、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第1CH子局入力部70aとして機能するものとなっている。処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、第1CH子局入力部70aを構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。 As shown in FIG. 3, the first CH input slave station 7a includes transmission reception means 41, address extraction means 43, first CH monitoring data transmission means 45a, CH number setting means 47, first CH address data storage means 51, first CH final address. An address data storage unit 52 and a first CH slave station input unit 70 a having an input unit 71 are provided. The input slave station 7a of this embodiment includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the first CH slave station input unit 70a. Calculations and storages necessary for the processing are executed using the CPU, RAM, and ROM included in the MCU. The CPU, RAM, and processing in each processing of each of the above-described units constituting the first CH slave station input unit 70a. The relationship with the ROM is not shown for convenience of explanation.
 伝送受信手段41は、共通データ信号線DP、DNに伝送される伝送データ信号を、子局ラインレシーバ62を介して受け、これをアドレス抽出手段43に引き渡す。 The transmission receiving means 41 receives the transmission data signal transmitted to the common data signal lines DP and DN via the slave station line receiver 62 and delivers it to the address extracting means 43.
 CH数設定手段47は、使用するチャネルの数を指定するもので、設定されたチャネル数はアドレス抽出手段43に引き渡される。 The CH number setting means 47 designates the number of channels to be used, and the set channel number is delivered to the address extraction means 43.
 第1CHアドレスデータ記憶手段51は、本発明のアドレス設定手段に相当し、第1チャネルの論理監視アドレスのデータ(図15に示す1M#0、1M#1など)を指定するもので、設定された第1チャネルの論理監視アドレスのデータは、アドレス抽出手段43に引き渡される。なお、論理監視アドレスは、本発明の論理アドレスに相当し、後述の論理制御アドレスも、本発明の論理アドレスに相当する。 The first CH address data storage means 51 corresponds to the address setting means of the present invention, and designates the logical monitoring address data of the first channel ( 1M # 0, 1M # 1, etc. shown in FIG. 15) and is set. The data of the logical monitoring address of the first channel is transferred to the address extracting means 43. The logical monitoring address corresponds to the logical address of the present invention, and the logical control address described later also corresponds to the logical address of the present invention.
 第1CH最終アドレスデータ記憶手段52は、第1チャネルの論理監視アドレスのデータの最大値を設定するもので、設定された第1チャネルの論理監視アドレスのデータの最大値は、アドレス抽出手段43に引き渡される。 The first CH final address data storage means 52 sets the maximum value of the logical monitoring address data of the first channel. The maximum value of the logical monitoring address data of the set first channel is stored in the address extracting means 43. Delivered.
 アドレス抽出手段43は、絶対アドレス生成テーブル48を有し、本実施例のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図4に示すように絶対アドレスが6列(チャネル数3で各チャネル2列)に展開される(図4に示すS1)。次に、第1CH最終アドレスデータ記憶手段52の設定データ1M#127(論理監視アドレスの最大値)に基づき、論理監視アドレスが1M#0から1M#127まで展開される(図4のS2)。そして、第1CHアドレスデータ記憶手段51の設定データ(論理監視アドレスのデータ)に一致する論理監視アドレスのデータに対応する所定の絶対監視アドレスを得る(図4のS3)。 The address extraction means 43 has an absolute address generation table 48 and is based on the data obtained from the CH number setting means 47 at the time of system startup of this embodiment (in this embodiment, the number of channels is 3) as shown in FIG. Addresses are expanded into 6 columns (3 channels and 2 columns for each channel) (S1 shown in FIG. 4). Next, based on the setting data 1M # 127 (maximum value of the logical monitoring address) in the first CH final address data storage unit 52, the logical monitoring addresses are expanded from 1M # 0 to 1M # 127 (S2 in FIG. 4). Then, a predetermined absolute monitoring address corresponding to the data of the logical monitoring address that matches the setting data (data of the logical monitoring address) in the first CH address data storage means 51 is obtained (S3 in FIG. 4).
 例えば、図4に示す実施例では、第1CHアドレスデータ記憶手段51の設定データ(論理監視アドレスのデータ)が1M#0なので絶対監視アドレス#0、#6、#12、#18までの6間隔のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対監視アドレスのデータは、絶対アドレスカウンタ44に順次に引き渡される。絶対アドレスカウンタ44は伝送信号の始まりを示すスタート信号STの終了を起点として伝送データ信号の数をカウントする。そして、絶対アドレスカウンタ44は第1CHアドレスデータ記憶手段51の設定データ(論理監視アドレスのデータ)に対応する所定の絶対監視アドレスのデータ(図4に示す実施例では#0、#6、#12、#18までの6間隔のデータ)と一致するタイミングで、その都度、その周期の伝送送信信号を第1CH監視データ送信手段45aに引き渡し、第1CH監視データ送信手段45aを有効にする。なお、絶対アドレス生成テーブル48で得られた論理監視アドレス1M#0に対応する所定の複数の絶対監視アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対監視アドレスのデータ(図4に示す実施例では#0)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対監視アドレスのデータ(図4に示す実施例では#6)が絶対アドレスカウンタ44に引き渡され、以降の絶対監視アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 4, since the setting data (logical monitoring address data) of the first CH address data storage means 51 is 1M # 0, 6 intervals from the absolute monitoring addresses # 0, # 6, # 12, # 18 Get the data. Data of a predetermined absolute monitoring address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44. The absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal. The absolute address counter 44 is data of a predetermined absolute monitoring address (# 0, # 6, # 12 in the embodiment shown in FIG. 4) corresponding to the setting data (logical monitoring address data) of the first CH address data storage means 51. , Data at intervals of 6 until # 18) is transmitted to the first CH monitoring data transmitting unit 45a each time, and the first CH monitoring data transmitting unit 45a is validated. Note that the data of a predetermined plurality of absolute monitoring addresses corresponding to the logical monitoring address 1M # 0 obtained from the absolute address generation table 48 is first the absolute monitoring address data handed over to the absolute address counter (shown in FIG. 4). In the embodiment, at the output timing when # 0) coincides with the data of the absolute address counter 44, the data of the next absolute monitoring address (# 6 in the embodiment shown in FIG. 4) is delivered to the absolute address counter 44 and the subsequent absolute Similarly, the monitoring address data is sequentially delivered.
 第一監視データ送信手段45aは、アドレス抽出手段43により有効とされた場合に、子局ラインドライバ72を介して共通データ信号線DP、DNに監視信号を出力する。 The first monitoring data transmission unit 45a outputs a monitoring signal to the common data signal lines DP and DN via the slave station line driver 72 when it is validated by the address extraction unit 43.
 入力手段71は、入力部9からの入力データに基づき、監視データを第一監視データ送信手段45aに引き渡す。 The input unit 71 delivers the monitoring data to the first monitoring data transmission unit 45a based on the input data from the input unit 9.
 第1CH出力子局6aは、図5に示すように、伝送受信手段41、アドレス抽出手段43、第1CH制御データ抽出手段46a、CH数設定手段47、第1CHアドレスデータ記憶手段51、第1CH最終アドレスデータ記憶手段52、および出力手段61を有する第1CH子局出力部60aを備える。第1CH出力子局6aも、第1CH入力子局7aと同様に内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えている。そして、このMCUが第1CH子局出力部60aとして機能するものとなっている。処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、第1CH子局出力部60aを構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、図5において、第1CH入力子局7aと実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。 As shown in FIG. 5, the first CH output slave station 6a includes a transmission receiving means 41, an address extracting means 43, a first CH control data extracting means 46a, a CH number setting means 47, a first CH address data storage means 51, and a first CH final data. A first CH slave station output unit 60 a having address data storage means 52 and output means 61 is provided. Similarly to the first CH input slave station 7a, the first CH output slave station 6a also includes an MCU that is a microcomputer control unit as an internal circuit. This MCU functions as the first CH slave station output unit 60a. The calculations and storages required for the processing are executed using the CPU, RAM, and ROM included in the MCU. The CPU, RAM, and processing in each processing of each of the above-described means constituting the first CH slave station output unit 60a. The relationship with the ROM is not shown for convenience of explanation. In FIG. 5, the same reference numerals are given to substantially the same parts as those of the first CH input slave station 7a, and the description thereof will be simplified or omitted.
 第1CH出力子局6aのアドレス抽出手段43も、絶対アドレス生成テーブル48を有し、本実施例のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図6に示すように絶対アドレスが6列(チャネル数3で各チャネル2列)に展開される(図6に示すS1)。次に、第1CH最終アドレスデータ記憶手段52の設定データ1C#127(論理制御アドレスの最大値)に基づき、論理制御アドレスが1C#0から1C#127まで展開される(図6のS2)。そして、第1CHアドレスデータ記憶手段51の設定データ(論理制御アドレスのデータ)に一致する論理制御アドレスのデータに対応する所定の絶対制御アドレスを得る(図6のS3)。 The address extracting means 43 of the first CH output slave station 6a also has an absolute address generation table 48, which is based on data obtained from the CH number setting means 47 at the time of system activation in this embodiment (in this embodiment, the number of channels is 3). As shown in FIG. 6, the absolute addresses are expanded into 6 columns (2 channels for each channel with 3 channels) (S1 shown in FIG. 6). Next, based on the setting data 1C # 127 (the maximum value of the logical control address) in the first CH final address data storage means 52, the logical control addresses are expanded from 1C # 0 to 1C # 127 (S2 in FIG. 6). Then, a predetermined absolute control address corresponding to the logical control address data matching the setting data (logical control address data) in the first CH address data storage means 51 is obtained (S3 in FIG. 6).
 例えば、図6に示す実施例では、第1CHアドレスデータ記憶手段51の設定データ(論理制御アドレスのデータ)が1C#0なので絶対制御アドレス#1、#7、#13、#19までの6間隔のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対制御アドレスのデータは、絶対アドレスカウンタ44に順次に引き渡される。絶対アドレスカウンタ44は伝送信号の始まりを示すスタート信号STの終了を起点として伝送データ信号の数をカウントする。そして、絶対アドレスカウンタ44は第1CHアドレスデータ記憶手段51の設定データ(論理制御アドレスのデータ)に対応する所定の絶対監視アドレスのデータ(図6に示す実施例では#1、#7、#13、#19までの6間隔のデータ)と一致するタイミングで、その都度、その周期の伝送受信信号を第1CH制御データ抽出手段46aに引き渡す。なお、絶対アドレス生成テーブル48で得られた1C#0に対応する所定の複数の絶対制御アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対制御アドレスのデータ(図6に示す実施例では#1)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対監視アドレスのデータ(図6に示す実施例では#7)が絶対アドレスカウンタ44に引き渡され、以降の絶対監視アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 6, since the setting data (logical control address data) of the first CH address data storage means 51 is 1C # 0, there are 6 intervals from absolute control addresses # 1, # 7, # 13, # 19. Get the data. Data of a predetermined absolute control address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44. The absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal. The absolute address counter 44 is data of a predetermined absolute monitoring address corresponding to the setting data (logical control address data) of the first CH address data storage means 51 (# 1, # 7, # 13 in the embodiment shown in FIG. 6). , # 19 at the same time), each time, the transmission reception signal of that cycle is delivered to the first CH control data extraction means 46a. Note that the data of a plurality of predetermined absolute control addresses corresponding to 1C # 0 obtained in the absolute address generation table 48 are first absolute control address data handed over to the absolute address counter (in the embodiment shown in FIG. 6). At the output timing when # 1) coincides with the data of the absolute address counter 44, the data of the next absolute monitoring address (# 7 in the embodiment shown in FIG. 6) is transferred to the absolute address counter 44, and the subsequent absolute monitoring address Data is also delivered sequentially.
 第1CH制御データ抽出手段46aは、アドレス抽出手段43から引き渡された伝送受信信号から制御データを抽出する。そして、そのデータを第1CH制御データとして出力手段61に引き渡す。 The first CH control data extraction means 46a extracts control data from the transmission reception signal delivered from the address extraction means 43. Then, the data is delivered to the output means 61 as the first CH control data.
 出力手段61は、第1CH制御データ抽出手段46aから引き渡された第1CH制御データをパラレルデータに変換し、出力部8に出力し、出力部8に所定の動作をさせる。 The output unit 61 converts the first CH control data delivered from the first CH control data extraction unit 46a into parallel data, outputs the parallel data to the output unit 8, and causes the output unit 8 to perform a predetermined operation.
 第1CH入出力子局4aには、対応関係にある出力部8と入力部9の双方が接続されている。そして、第1CH入出力子局4aも、第1CH出力子局6aおよび第1CH入力子局7aと同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第1CH子局入出力部40aとして機能するものとなっている。そして、第1CH子局出力部60aのMCUおよび第1CH子局入力部70aのMCUと同様に、第1CH入出力子局4aの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。第1CH子局入出力部40aは、第1CH子局出力部60aと第1CH子局入力部70aの双方をあわせた構成であり、各構成要素は、第1CH子局出力部60aまたは第1CH子局入力部70aの構成要素と同じであるため、説明を省略する。 Both the output unit 8 and the input unit 9 having a corresponding relationship are connected to the first CH input / output slave station 4a. Similarly to the first CH output slave station 6a and the first CH input slave station 7a, the first CH input / output slave station 4a also includes an MCU that is a microcomputer control unit as an internal circuit. It functions as the station input / output unit 40a. Similar to the MCU of the first CH slave station output unit 60a and the MCU of the first CH slave station input unit 70a, the computation and storage required in the processing of the first CH input / output slave station 4a are performed by the CPU and RAM of this MCU. And is executed using a ROM. The first CH slave station input / output unit 40a has a configuration in which both the first CH slave station output unit 60a and the first CH slave station input unit 70a are combined, and each component includes the first CH slave station output unit 60a or the first CH slave unit. Since it is the same as the component of the station input part 70a, description is abbreviate | omitted.
 図7に示す第2CH入力子局7bも、第1CH入力子局7aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第2CH子局入力部70bとして機能するものとなっている。そして、第1CH子局入力部70aのMCUと同様に、第2CH入力子局7bの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first CH input slave station 7a, the second CH input slave station 7b shown in FIG. 7 includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU serves as the second CH slave station input unit 70b. It is supposed to function. As with the MCU of the first CH slave station input unit 70a, the calculations and storages required for the processing of the second CH input slave station 7b are executed using the CPU, RAM and ROM included in this MCU. It has become.
 図7に示すように、第2CH子局入力部70bの機能構成は、図3に示す第1CH子局入力部70aの第1CHアドレスデータ記憶手段51、および、第1CH最終アドレスデータ記憶手段52を、それぞれ、第2CHアドレスデータ記憶手段53、および、第2CH最終アドレスデータ記憶手段54に置き換えたものであり、その他は第1CH子局入力部70aと同じである。そこで、図6において、図3に示す第1CH子局入力部70aと実質的に同じ部位には同符号を付し、その説明を簡略化または省略する。なお、第2CH監視データ送信手段45bは、第1CH監視データ送信手段45aと同じ機能であるため符号は同一とするが、図の説明の便宜上、名称は異なるものとする。 As shown in FIG. 7, the functional configuration of the second CH slave station input unit 70b includes the first CH address data storage unit 51 and the first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG. These are replaced with the second CH address data storage means 53 and the second CH final address data storage means 54, respectively, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 6, the same reference numerals are given to substantially the same parts as the first CH slave station input unit 70a shown in FIG. 3, and the description thereof is simplified or omitted. The second CH monitoring data transmission unit 45b has the same function as the first CH monitoring data transmission unit 45a, and therefore has the same reference numeral, but the name is different for convenience of explanation of the drawing.
 第2CHアドレスデータ記憶手段53は、本発明のアドレス設定手段に相当し、第2チャネルの論理監視アドレス(2M#0、2M#1、2M#2、2M#3のいずれか)を指定するもので、設定された第2チャネルの論理監視アドレスのデータは、アドレス抽出手段43に引き渡される。 The second CH address data storage means 53 corresponds to the address setting means of the present invention, and designates the second channel logical monitoring address ( 2M # 0, 2M # 1, 2M # 2, or 2M # 3). Thus, the set data of the logical monitoring address of the second channel is delivered to the address extracting means 43.
 第2CH最終アドレスデータ記憶手段54には、第2チャネルの論理監視アドレスの最大値として2M#3が設定されている。 In the second CH final address data storage means 54, 2M # 3 is set as the maximum value of the logical monitoring address of the second channel.
 第2CH子局入力部70bのアドレス抽出手段43も、絶対アドレス生成テーブル48を有し、本発明のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図8に示すように絶対アドレスが6列(チャネル数3で各チャネル2列)に展開される(図8に示すS1)。次に、第2CH最終アドレスデータ記憶手段54の設定データ2M#3(論理監視アドレスの最大値)に基づき、論理監視アドレスが2M#0から2M#3までが繰り返し展開される(図8のS2)。そして、第2CHアドレスデータ記憶手段53の設定データ(論理監視アドレスのデータ)に一致する論理監視アドレスのデータに対応する所定の絶対監視アドレスを得る(図8のS3)。 The address extraction means 43 of the second CH slave station input unit 70b also has an absolute address generation table 48, and is based on data obtained from the CH number setting means 47 at the time of system activation of the present invention (in this embodiment, the number of channels is 3). As shown in FIG. 8, absolute addresses are developed in 6 columns (3 channels and 2 channels in each channel) (S1 shown in FIG. 8). Next, based on the setting data 2M # 3 (maximum value of the logical monitoring address) in the second CH final address data storage means 54, the logical monitoring addresses 2M # 0 to 2M # 3 are repeatedly expanded (S2 in FIG. 8). ). Then, a predetermined absolute monitoring address corresponding to the data of the logical monitoring address that matches the setting data (data of the logical monitoring address) in the second CH address data storage means 53 is obtained (S3 in FIG. 8).
 例えば、図8に示す実施例では、第2CHアドレスデータ記憶手段53の設定データ(論理監視アドレスのデータ)が2M#0なので絶対監視アドレス#2、#26、#50など、#2から#764まで24間隔の所定の各データを得る。絶対アドレス生成テーブル48で得られた所定の絶対アドレスのデータは、絶対アドレスカウンタ44に順次に引き渡される。絶対アドレスカウンタ44は伝送信号の始まりを示すスタート信号STの終了を起点として伝送データ信号の数をカウントする。そして、絶対アドレスカウンタ44は第2CHアドレスデータ記憶手段53の設定データ(論理監視アドレスのデータ)に対応する所定の絶対アドレスデータ(図8に示す実施例では#2、#26、#50など、#2から#764まで24間隔の所定の各データ)と一致するタイミングで、その都度、その周期の伝送送信信号を第2CH監視データ送信手段45bに引き渡し、第2CH監視データ送信手段45bを有効にする。なお、絶対アドレス生成テーブル48で得られた2M#0に対応する所定の複数絶対アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対アドレスのデータ(図8に示す実施例では#2)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図8に示す実施例では#26)が絶対アドレスカウンタ44に引き渡され、以降の絶対アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 8, since the setting data (logical monitoring address data) in the second CH address data storage means 53 is 2M # 0, absolute monitoring addresses # 2, # 26, # 50, etc., # 2 to # 764 Each predetermined data of 24 intervals is obtained. Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44. The absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal. The absolute address counter 44 is a predetermined absolute address data (# 2, # 26, # 50, etc. in the embodiment shown in FIG. 8) corresponding to the setting data (logical monitoring address data) of the second CH address data storage means 53. Each time, the transmission transmission signal of that cycle is handed over to the second CH monitoring data transmission means 45b at a timing that coincides with the predetermined data of 24 intervals from # 2 to # 764, and the second CH monitoring data transmission means 45b is made effective. To do. The data of a predetermined plurality of absolute addresses corresponding to 2M # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 2 in the embodiment shown in FIG. 8). Is the output timing that coincides with the data of the absolute address counter 44, the data of the next absolute address (# 26 in the embodiment shown in FIG. 8) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
 なお、第2CH最終アドレスデータ記憶手段54で設定される論理アドレスのデータが小さいほど、伝送応答は速いものとなる。 Note that the smaller the logical address data set in the second CH final address data storage means 54, the faster the transmission response.
 第2CH出力子局6bも、第1出力子局6aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第2CH子局出力部60bとして機能するものとなっている。そして、第1CH子局出力部60aのMCUと同様に、第2CH出力子局6bの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first output slave station 6a, the second CH output slave station 6b also includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU functions as the second CH slave station output unit 60b. It has become. As with the MCU of the first CH slave station output unit 60a, the calculations and storages required for the processing of the second CH output slave station 6b are executed using the CPU, RAM, and ROM included in this MCU. It has become.
 図9に示すように、第2CH子局出力部60bの機能構成は、図5に示す第1CH子局出力部60aの第1CHアドレスデータ記憶手段51を、第2CHアドレスデータ記憶手段53に、第1CH最終アドレスデータ記憶手段52を、第2CH最終アドレスデータ記憶手段54に置き換えたものであり、その他は第1CH子局出力部60aと同じである。従って、図9において、第1CH出力子局6aと実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。 As shown in FIG. 9, the functional configuration of the second CH slave station output unit 60b is the same as that of the first CH address data storage unit 51 of the first CH slave station output unit 60a shown in FIG. The 1CH final address data storage means 52 is replaced with the second CH final address data storage means 54, and the rest is the same as the first CH slave station output unit 60a. Therefore, in FIG. 9, the same reference numerals are given to substantially the same parts as those of the first CH output slave station 6a, and the description thereof will be simplified or omitted.
 第2CH子局出力部60bのアドレス抽出手段43も、絶対アドレス生成テーブル48を有し、本発明のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図10に示すように絶対アドレスが6列(チャネル数3で各チャネル2列)に展開される(図10に示すS1)。次に、第2CH最終アドレスデータ記憶手段54の設定データ2C#3(論理監視アドレスの最大値)に基づき、論理制御アドレスが2C#0から2C#3までが繰り返し展開される(図10のS2)。そして、第2CHアドレスデータ記憶手段53の設定データ(論理制御アドレスのデータ)に一致する論理制御アドレスのデータに対応する所定の絶対アドレスを得る(図10のS3)。 The address extraction means 43 of the second CH slave station output unit 60b also has an absolute address generation table 48, which is based on data obtained from the CH number setting means 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 10, the absolute addresses are expanded into 6 columns (3 channels and 2 columns for each channel) (S1 shown in FIG. 10). Next, the logical control addresses from 2C # 0 to 2C # 3 are repeatedly expanded based on the setting data 2C # 3 (the maximum value of the logical monitoring address) in the second CH final address data storage means 54 (S2 in FIG. 10). ). Then, a predetermined absolute address corresponding to the logical control address data matching the setting data (logical control address data) in the second CH address data storage means 53 is obtained (S3 in FIG. 10).
 例えば、図10に示す実施例では、第2CHアドレスデータ記憶手段53の設定データ(論理制御アドレスのデータ)が2C#0なので絶対制御アドレス#3、#27、#51など、#3から#765まで24間隔の所定の各データを得る。絶対アドレス生成テーブル48で得られた所定の絶対アドレスのデータは、絶対アドレスカウンタ44に順次に引き渡される。絶対アドレスカウンタ44は伝送信号の始まりを示すスタート信号STの終了を起点として伝送データ信号の数をカウントする。そして、絶対アドレスカウンタ44は第2CHアドレスデータ記憶手段53の設定データ(論理制御アドレスのデータ)に対応する所定の絶対アドレスデータ(図10に示す実施例では#3、#27、#51など、#3から#765まで24間隔の所定のデータ)と一致するタイミングで、その都度、その周期の伝送受信信号を第2CH制御データ抽出手段46bに引き渡す。なお、絶対アドレス生成テーブル48で得られた2C#0に対応する所定の複数絶対アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対アドレスのデータ(図10に示す実施例では#3)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図10に示す実施例では#27)が絶対アドレスカウンタ44に引き渡され、以降の絶対アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 10, since the setting data (logical control address data) of the second CH address data storage means 53 is 2C # 0, absolute control addresses # 3, # 27, # 51, etc., # 3 to # 765 Each predetermined data of 24 intervals is obtained. Data of a predetermined absolute address obtained in the absolute address generation table 48 is sequentially delivered to the absolute address counter 44. The absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal. The absolute address counter 44 is a predetermined absolute address data (# 3, # 27, # 51, etc. in the embodiment shown in FIG. 10) corresponding to the setting data (logical control address data) of the second CH address data storage means 53. Each time, a transmission reception signal of that cycle is delivered to the second CH control data extraction means 46b at a timing that coincides with (predetermined data of 24 intervals from # 3 to # 765). The data of a predetermined plurality of absolute addresses corresponding to 2C # 0 obtained in the absolute address generation table 48 is first the absolute address data handed over to the absolute address counter (# 3 in the embodiment shown in FIG. 10). Is the output timing coincident with the data of the absolute address counter 44, the data of the next absolute address (# 27 in the embodiment shown in FIG. 10) is delivered to the absolute address counter 44, and the subsequent absolute address data is also sequentially sequentially. Delivered.
 図11に示す第3CH入力子局7cも、第1CH入力子局7aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第3CH子局入力部70cとして機能するものとなっている。そして、第1CH子局入力部70aのMCUと同様に、第3CH入力子局7cの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first CH input slave station 7a, the third CH input slave station 7c shown in FIG. 11 includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU serves as the third CH slave station input unit 70c. It is supposed to function. Similar to the MCU of the first CH slave station input unit 70a, the computation and storage necessary for the processing of the third CH input slave station 7c are executed using the CPU, RAM, and ROM provided in this MCU. It has become.
 図11に示す第3CH子局入力部70cの機能構成も、図3に示す第1CH子局入力部70aの、第1CHアドレスデータ記憶手段51、および、第1CH最終アドレスデータ記憶手段52を、それぞれ、第3CHアドレスデータ記憶手段55、および、第3CH最終アドレスデータ記憶手段56に置き換えたものであり、その他は第1CH子局入力部70aと同じである。そこで、図11において、第1CH子局入力部70aと実質的に同じ部位には同符号を付し、その説明を簡略化または省略する。なお、第3CH監視データ送信手段45cも、第1CH監視データ送信手段45aと同じ機能であるため符号は同一とするが、図の説明の便宜上、名称は異なるものとする。 The functional configuration of the third CH slave station input unit 70c shown in FIG. 11 also includes the first CH address data storage unit 51 and the first CH final address data storage unit 52 of the first CH slave station input unit 70a shown in FIG. The third CH address data storage means 55 and the third CH final address data storage means 56 are replaced, and the others are the same as the first CH slave station input unit 70a. Therefore, in FIG. 11, parts that are substantially the same as those of the first CH slave station input unit 70a are denoted by the same reference numerals, and description thereof is simplified or omitted. Note that the third CH monitoring data transmission unit 45c has the same function as the first CH monitoring data transmission unit 45a, so that the reference numerals are the same, but the names are different for convenience of explanation of the drawing.
 第3CHアドレスデータ記憶手段55は、本発明のアドレス設定手段に相当し、第3チャネルの論理監視アドレス(図12に示す3M#0、3M#1など)を指定するもので、設定された第3チャネルの論理監視アドレスのデータは、アドレス抽出手段43に引き渡される。第3チャネルは、図17、図18に示すように、伝送信号の1フレーム周期を1周期Twcとして8ワードを伝送するためのものとなっている。そして、第3CHアドレスデータ記憶手段55には、授受するワードの先頭の論理監視アドレス、3M#0、3M#16などが設定される。 The third CH address data storage means 55 corresponds to the address setting means of the present invention, and designates the third channel logical monitoring address ( 3M # 0, 3M # 1, etc. shown in FIG. 12). The data of the logical monitoring address of the three channels is delivered to the address extracting means 43. As shown in FIGS. 17 and 18, the third channel is for transmitting 8 words with one frame period of the transmission signal as one period Twc. The third CH address data storage means 55 is set with the logical monitoring address at the head of the word to be exchanged, 3M # 0, 3M # 16, and the like.
 第3CH最終アドレスデータ記憶手段56は、第3チャネルの論理監視アドレスのデータの最大値を設定するもので、設定された第3チャネルの論理監視アドレスのデータの最大値は、アドレス抽出手段43に引き渡される。 The third CH final address data storage means 56 sets the maximum value of the data of the third channel logical monitoring address. The maximum value of the set third channel logical monitoring address data is stored in the address extracting means 43. Delivered.
 第3CH子局入力部70cのアドレス抽出手段43も、絶対アドレス生成テーブル48を有し、本発明のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図12に示すように絶対アドレスのデータが6列(チャネル数3で各チャネル2列)に展開される(図12に示すS1)。次に、第3CH最終アドレスデータ記憶手段56の設定データ3M#127(論理監視アドレスの最大値)に基づき、論理監視アドレスが3M#0から3M#127まで展開される(図12のS2)。そして、第3CHアドレスデータ記憶手段55の設定データ(論理制御アドレスのデータ)に一致する論理監視アドレスに対応する所定の絶対監視アドレスを得る(図12のS3)。 The address extracting unit 43 of the third CH slave station input unit 70c also has an absolute address generation table 48, and is based on data obtained from the CH number setting unit 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 12, the data of the absolute address is expanded into 6 columns (3 channels and 2 channels for each channel) (S1 shown in FIG. 12). Next, based on the setting data 3M # 127 (the maximum value of the logical monitoring address) in the third CH final address data storage unit 56, the logical monitoring addresses are expanded from 3M # 0 to 3M # 127 (S2 in FIG. 12). Then, a predetermined absolute monitoring address corresponding to the logical monitoring address that matches the setting data (logical control address data) in the third CH address data storage means 55 is obtained (S3 in FIG. 12).
 例えば、図12に示す実施例では、第3CHアドレスデータ記憶手段55の設定データ(論理監視アドレスのデータ)が3M#0なので絶対アドレス#4、#10など、#4から#766まで6間隔のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対監視アドレスのデータは、絶対アドレスカウンタ44に引き渡される。絶対アドレスカウンタ44は、伝送信号の始まりを示すスタート信号STの終了を起点として伝送データ信号の数をカウントし、第3CH用アドレスデータ記憶手段55の設定データに対応する所定の絶対監視アドレスデータ(図12に示す実施例では#4から#766まで6間隔のデータ)と一致するタイミングで、その都度、その周期の伝送送信信号を第3CH監視データ送信手段45cに引き渡し、第3CH監視データ送信手段45cを有効にする。なお、絶対アドレス生成テーブル48で得られた3M#0に対応する所定の複数の絶対監視アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対監視アドレスのデータ(図12に示す実施例では#4)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図12に示す実施例では#10)が絶対アドレスカウンタ44に引き渡され、以降の絶対監視アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 12, since the setting data (data of the logical monitoring address) in the third CH address data storage means 55 is 3M # 0, absolute addresses # 4, # 10, etc., at intervals of 6 from # 4 to # 766. Get the data. Data of a predetermined absolute monitoring address obtained in the absolute address generation table 48 is delivered to the absolute address counter 44. The absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal, and outputs predetermined absolute monitoring address data (corresponding to the setting data in the third CH address data storage means 55). In the embodiment shown in FIG. 12, the transmission transmission signal of that cycle is handed over to the third CH monitoring data transmission means 45c each time at a timing that coincides with data of 6 intervals from # 4 to # 766), and the third CH monitoring data transmission means Enable 45c. Note that the data of a plurality of predetermined absolute monitoring addresses corresponding to 3M # 0 obtained in the absolute address generation table 48 is first the absolute monitoring address data handed over to the absolute address counter (in the embodiment shown in FIG. 12). At the output timing when # 4) coincides with the data of the absolute address counter 44, the data of the next absolute address (# 10 in the embodiment shown in FIG. 12) is transferred to the absolute address counter 44, and the data of the subsequent absolute monitoring address Are also delivered sequentially.
 第3CH出力子局6cも、第1出力子局6aと同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが第3CH子局出力部60cとして機能するものとなっている。そして、第1CH子局出力部60aのMCUと同様に、第3CH出力子局6cの処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。 Similarly to the first output slave station 6a, the third CH output slave station 6c includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the third CH slave station output unit 60c. It has become. As with the MCU of the first CH slave station output unit 60a, the calculations and storages required for the processing of the third CH output slave station 6c are executed using the CPU, RAM and ROM included in this MCU. It has become.
 図13に示すように、第3CH子局出力部60cの機能構成は、図5に示す第1CH子局出力部60aの第1CHアドレスデータ記憶手段51を第3CHアドレスデータ記憶手段55に、第1CH最終アドレスデータ記憶手段52を第3CH最終アドレスデータ記憶手段56に置き換えたものであり、その他は第1CH子局出力部60aと同じである。従って、図13において、第1CH出力子局6aと実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。 As shown in FIG. 13, the functional configuration of the third CH slave station output unit 60c is such that the first CH address data storage unit 51 of the first CH slave station output unit 60a shown in FIG. The final address data storage means 52 is replaced with the third CH final address data storage means 56, and the rest is the same as the first CH slave station output unit 60a. Therefore, in FIG. 13, the same reference numerals are given to substantially the same parts as those of the first CH output slave station 6a, and the description thereof will be simplified or omitted.
 第3CH出力子局6cのアドレス抽出手段43も、絶対アドレス生成テーブル48を有し、本発明のシステム起動時にCH数設定手段47から得たデータ(この実施例では、チャネル数3)に基づき図14に示すように絶対アドレスのデータが6列(チャネル数3で各チャネル2列)に展開される(図14に示すS1)。次に、第3CH最終アドレスデータ記憶手段56の設定データ3C#127(論理制御アドレスの最大値)に基づき、論理制御アドレスが3C#0から3C#127まで展開される(図14のS2)。そして、第3CHアドレスデータ記憶手段55の設定データ(論理制御アドレスのデータ)に一致する論理制御アドレスに対応する所定の絶対制御アドレスを得る(図14のS3)。 The address extraction means 43 of the third CH output slave station 6c also has an absolute address generation table 48, and is based on the data obtained from the CH number setting means 47 when the system of the present invention is started (in this embodiment, the number of channels is 3). As shown in FIG. 14, the data of the absolute address is expanded into 6 columns (3 channels and 2 columns for each channel) (S1 shown in FIG. 14). Next, based on the setting data 3C # 127 (maximum value of the logical control address) in the third CH final address data storage means 56, the logical control addresses are expanded from 3C # 0 to 3C # 127 (S2 in FIG. 14). Then, a predetermined absolute control address corresponding to the logical control address that matches the setting data (logical control address data) in the third CH address data storage means 55 is obtained (S3 in FIG. 14).
 例えば、図14に示す実施例では、第3CHアドレスデータ記憶手段55の設定データ(論理制御アドレスのデータ)が3C#0なので絶対アドレス#5、#11など、#5から#767まで6間隔のデータを得る。絶対アドレス生成テーブル48で得られた所定の絶対制御アドレスのデータは、絶対アドレスカウンタ44に引き渡される。絶対アドレスカウンタ44は、伝送信号の始まりを示すスタート信号STの終了を起点として伝送データ信号の数をカウントし、第3CH用アドレスデータ記憶手段55の設定データに対応する所定の絶対制御アドレスデータ(図14に示す実施例では#5から#767まで6間隔のデータ)と一致するタイミングで、その都度、その周期の伝送受信信号を第3CH制御データ抽出手段46cに引き渡す。なお、絶対アドレス生成テーブル48で得られた3C#0に対応する所定の複数の絶対制御アドレスのデータは、まず最初に絶対アドレスカウンタに引き渡される絶対制御アドレスのデータ(図14に示す実施例では#5)が絶対アドレスカウンタ44のデータと一致する出力タイミングで、次の絶対アドレスのデータ(図14に示す実施例では#11)が絶対アドレスカウンタ44に引き渡され、以降の絶対制御アドレスのデータも同様に順次引き渡される。 For example, in the embodiment shown in FIG. 14, since the setting data (logical control address data) of the third CH address data storage means 55 is 3C # 0, absolute addresses # 5, # 11, etc. Get the data. Data of a predetermined absolute control address obtained in the absolute address generation table 48 is delivered to the absolute address counter 44. The absolute address counter 44 counts the number of transmission data signals starting from the end of the start signal ST indicating the start of the transmission signal, and outputs predetermined absolute control address data (corresponding to setting data in the third CH address data storage means 55). In the embodiment shown in FIG. 14, the transmission reception signal of that cycle is delivered to the third CH control data extraction means 46c each time at a timing that coincides with data of 6 intervals from # 5 to # 767. Note that the data of a predetermined plurality of absolute control addresses corresponding to 3C # 0 obtained in the absolute address generation table 48 are first absolute control address data delivered to the absolute address counter (in the embodiment shown in FIG. 14). At the output timing when # 5) coincides with the data of the absolute address counter 44, the data of the next absolute address (# 11 in the embodiment shown in FIG. 14) is transferred to the absolute address counter 44, and the data of the subsequent absolute control address Are also delivered sequentially.
 この制御・監視信号伝送システムでは、スタート信号の終了を起点とした一単位の伝送データ信号の第一番目と第二番目が第1チャネルに、第三番目と第四番目が第2チャネルに、第五番目と第六番目が第3チャネル割り振られている。また、第1チャネルに割り振られた伝送データ信号が先頭となる一単位(以下、第1CH一単位とする)に、第1CH論理監視アドレス1M#0から1M#127、または第1CH論理制御アドレス1C#0から1C#127が割り当てられる。更に、第2チャネルに割り振られた伝送データ信号が先頭となる一単位(以下、第2CH一単位とする)に、第2CH論理監視アドレス2M#0、2M#1,2M#2および2M#3、または第2CH論理監視アドレス2C#0、2C#1,2C#2および2C#3が割り当てられる。更にまた、第3チャネルに割り振られた伝送データ信号が先頭となる一単位(以下、第3CH一単位とする)に、第3CH論理監視アドレス3M#0から3M#127、または第3CH論理制御アドレス3M#0から3M#127が、ワードアドレスとして割り当てられる。 In this control / monitor signal transmission system, the first and second transmission data signals of one unit starting from the end of the start signal are the first channel, the third and the fourth are the second channel, The fifth and sixth channels are allocated to the third channel. In addition, the first CH logical monitoring addresses 1M # 0 to 1M # 127, or the first CH logical control address 1C are assigned to one unit (hereinafter referred to as one unit of the first CH) of the transmission data signal allocated to the first channel. # 0 to 1C # 127 are assigned. Furthermore, the second CH logical monitoring addresses 2M # 0, 2M # 1, 2M # 2 and 2M # 3 are assigned to one unit (hereinafter referred to as a second CH unit) of the transmission data signal allocated to the second channel. Or the second CH logical monitoring addresses 2C # 0, 2C # 1, 2C # 2 and 2C # 3 are allocated. Furthermore, the third CH logical monitoring addresses 3M # 0 to 3M # 127, or the third CH logical control address are assigned to one unit (hereinafter referred to as a third CH unit) of the transmission data signal allocated to the third channel. 3M # 0 to 3M # 127 are assigned as word addresses.
 第1チャネルに属する第1CH入出力子局4aには第1CH論理監視アドレス1M#0から1M#127のいずれかが、第1CH出力子局6aには第1CH論理制御アドレス1C#0から1C#127のいずれかが、第1CH入力子局7aには、第1CH入出力子局4aには第1CH論理監視アドレス1M#0から1M#127のいずれかと、第1CH論理制御アドレス1C#0から1C#127のいずれかが付与される。そして、自局に付与された第1CH論理監視アドレスが割り振られた第1CH一単位の最初の伝送データ信号を送信し、第1CH論理制御アドレスが割り振られた第1CH一単位の二番目の伝送データ信号を受信する。なお、図15において、第1CH制御データは第1CH入出力子局4aまたは第1CH出力子局6aが親局から子局が受けるデータであり、第1CH監視データは、第1CH入出力子局4aまたは第1CH入力子局7aから親局が受けるデータである。 Any of the first CH logical monitoring addresses 1M # 0 to 1M # 127 is assigned to the first CH input / output slave station 4a belonging to the first channel, and the first CH logical control addresses 1C # 0 to 1C # are assigned to the first CH output slave station 6a. One of the first CH input slave station 7a, one of the first CH logical monitoring addresses 1M # 0 to 1M # 127, and the first CH logical control address 1C # 0 to 1C. Any of # 127 is given. Then, the first transmission data signal of the first CH unit assigned the first CH logical monitoring address assigned to the own station is transmitted, and the second transmission data of the first CH unit assigned the first CH logical control address. Receive a signal. In FIG. 15, the first CH control data is data received by the slave station from the master station at the first CH input / output slave station 4a or the first CH output slave station 6a, and the first CH monitoring data is the first CH input / output slave station 4a. Or the data received by the master station from the first CH input slave station 7a.
 第2チャネルに属する第2CH出力子局6bには、第2CH論理制御アドレス2C#0,2C#1、2C#2、2C#3のいずれかが付与され、第2CH入力子局7bには、第2CH論理監視アドレス2M#0,2M#1、2M#2、2M#3のいずれかが付与される。そして、自局に付与された第2CH論理監視アドレスが割り振られた第2CH一単位の最初の伝送データ信号を送信し、第2CH論理制御アドレスが割り振られた第2CH一単位の二番目の伝送データ信号を受信する。なお、第2チャネルの論理的なフレーム周期Thcは、伝送データ信号の1フレーム周期Tc(スタート信号から次のスタート信号までの周期)の中で32回繰り返される。これに対し、第1チャネルの論理的なフレーム周期は伝送データ信号の1フレーム周期Tcと等しくなっている。従って、第2チャネルの伝送応答速度は第1チャネルの伝送応答速度の32倍となる。 Any of the second CH logical control addresses 2C # 0, 2C # 1, 2C # 2, and 2C # 3 is assigned to the second CH output slave station 6b belonging to the second channel, and the second CH input slave station 7b Any one of the second CH logical monitoring addresses 2M # 0, 2M # 1, 2M # 2, and 2M # 3 is assigned. Then, the first transmission data signal of the second CH unit assigned the second CH logical monitoring address assigned to the own station is transmitted, and the second transmission data of the second CH unit assigned the second CH logical control address. Receive a signal. The logical frame period Thc of the second channel is repeated 32 times within one frame period Tc (period from the start signal to the next start signal) of the transmission data signal. On the other hand, the logical frame period of the first channel is equal to one frame period Tc of the transmission data signal. Accordingly, the transmission response speed of the second channel is 32 times the transmission response speed of the first channel.
 第3チャネルに属する第3CH出力子局6cには、第3CH論理制御アドレス3C#0から3C#127のうちワードデータの先頭アドレス(3C#0、3C#16など)が付与され、第3CH入力子局7cには、第3CH論理監視アドレス3M#0から3M#127のうちワードデータの先頭アドレス(3M#0、3M#16など)が付与される。そして、自局に付与された第3CH論理アドレスが割り振られた第3CH一単位の最初の伝送データ信号を送信し、第3CH論理制御アドレスが割り振られた第3CH一単位の二番目の伝送データ信号を受信する。 The start address of the word data ( 3C # 0, 3C # 16, etc.) among the third CH logical control addresses 3C # 0 to 3C # 127 is given to the third CH output slave station 6c belonging to the third channel, and the third CH input The start address ( 3M # 0, 3M # 16, etc.) of the word data among the third CH logical monitoring addresses 3M # 0 to 3M # 127 is assigned to the slave station 7c. Then, the first transmission data signal of the third CH unit assigned with the third CH logical address assigned to the own station is transmitted, and the second transmission data signal of the third CH unit assigned with the third CH logical control address. Receive.
 なお、各チャネルに割り当てられるスタート信号の終了を起点とした一単位の伝送データ信号の順番は、所定の任意の順番に(例えば、第一番目と第二番目に第3チャネル、第三番目と第四番目に第1チャネル、第五番目と第六番目に第2チャネル)割り振られても良い。 Note that the order of transmission data signals of one unit starting from the end of the start signal assigned to each channel is in a predetermined arbitrary order (for example, the third and third channels in the first and second, (4th, 1st channel, 5th and 6th, 2nd channel) may be allocated.
 また、伝送アドレスのカウントの開始は、スタート信号の開始を起点としてもよい。 In addition, the start of transmission address counting may start from the start of a start signal.
 伝送データ信号による論理データ表現に制限は無く、使用状況に応じて適宜の表現手法を採用すればよい、例えば、図20に示すように、1周期の前半の伝送クロック信号の閾値Vst(この実施例では18V)よりも低い電位レベルエリアにおいて、閾値Vlt(この実施例では6V)よりも低い電位レベルのパルス幅の長さにて、制御信号の論理データ、または、監視信号の論理データを表すものとしてもよい。この実施例では、伝送データ信号の1周期をt0とした時、閾値Vltよりも低い電位レベルのパルス幅の長さが(1/4)t0で論理データ“1”、(1/2)t0で論理データ“0”を表す。ただし、各論理データを表すパルス幅は、制御部1から入力される第1CH制御並列データ13a、第2CH制御並列データ13b、第3CH制御並列データ13cの各データの値、または、第1CH入出力子局4a、第1CH入力子局7a、第2CH入力子局7b、および第3CH入力子局7cから送出される各監視信号のデータに応じたものであれば、その長さに制限はなく適宜に決めればよい。 There is no limitation on the logical data expression by the transmission data signal, and an appropriate expression method may be adopted according to the use situation. For example, as shown in FIG. 20, the threshold Vst of the transmission clock signal in the first half of one cycle (this implementation) In the potential level area lower than 18V in the example, the logical data of the control signal or the logical data of the monitoring signal is expressed by the pulse width length lower than the threshold Vlt (6V in this embodiment). It may be a thing. In this embodiment, when one period of the transmission data signal is t0, the length of the pulse width of the potential level lower than the threshold value Vlt is (1/4) t0, and the logical data “1”, (1/2) t0. Represents logical data “0”. However, the pulse width representing each logical data is the value of each data of the first CH control parallel data 13a, the second CH control parallel data 13b, and the third CH control parallel data 13c input from the control unit 1, or the first CH input / output. As long as it corresponds to the data of each monitoring signal transmitted from the slave station 4a, the first CH input slave station 7a, the second CH input slave station 7b, and the third CH input slave station 7c, there is no limitation on the length thereof. You can decide.
 また、図21に示すように、伝送データ信号の1周期の電位レベルが制御信号の論理データ、または、監視信号の論理データを表すものとしてもよい。この実施例では、グランドレベル(OV)の伝送データ信号の1周期が論理データ“1”、12Vの伝送データ信号の1周期が論理データ“0”を表すものとなっている。ただし、この場合、伝送データ信号の1周期の中には電位の変化(立上りまたは立下り)の現れないものも存在するため、子局では、伝送データ信号の数をカウントして同期することができない。そのため、子局では、図22、図23に示すように、疑似タイミング発生部42を備え、伝送信号に含まれるスタート信号の終了を起点として、内部で発生させる疑似タイミング信号により同期をとるものとする。なお、図22、図23は、いずれも、第1CHに属する子局(第1CH入力子局7e、第1CH出力子局6e)であるが、第2CH、第3CHに属する子局も同様である。また、図22において、第1CH子局出力部60eの構成で、図5に示す第1CH子局出力部60aと実質的に同じものには同符号を付し、その説明を省略するものとする。図23に示す第1CH子局出力部70eも同様に、図3に示す第1CH子局出力部70aと実質的に同じものには同符号を付し、その説明を省略するものとする。 Further, as shown in FIG. 21, the one-cycle potential level of the transmission data signal may represent the logical data of the control signal or the logical data of the monitoring signal. In this embodiment, one cycle of the ground level (OV) transmission data signal represents the logical data “1”, and one cycle of the 12 V transmission data signal represents the logical data “0”. However, in this case, there is a transmission data signal in which one cycle of potential (rising or falling) does not appear, so the slave station can count and synchronize the number of transmission data signals. Can not. Therefore, as shown in FIGS. 22 and 23, the slave station is provided with a pseudo timing generation unit 42 and is synchronized with a pseudo timing signal generated internally from the end of the start signal included in the transmission signal. To do. 22 and FIG. 23 are slave stations belonging to the first CH (first CH input slave station 7e, first CH output slave station 6e), but the same applies to the slave stations belonging to the second CH and third CH. . Further, in FIG. 22, in the configuration of the first CH slave station output unit 60e, substantially the same components as those in the first CH slave station output unit 60a shown in FIG. . Similarly, in the first CH slave station output unit 70e shown in FIG. 23, substantially the same parts as those of the first CH slave station output unit 70a shown in FIG.
 疑似タイミング発生部42は、親局2のタイミング発生部23と同様、図示しない発振回路(OSC)とタイミング発生手段からなり、伝送信号に含まれるスタート信号の終了を起点として、内部のOSCを基に、親局2のタイミング発生部23で生成されるタイミングクロックと同期する擬似タイミング信号を生成し、絶対アドレスカウンタ44に引き渡す。擬似タイミング信号においてパルス信号が立上るまたは立下がるタイミングは、親局2で生成されるタイミングクロックに同期している伝送データ信号の1周期の中の電位の変化と一致する。従って、子局は、擬似タイミング信号のパルスの立上りまたは立下りをカウントすることにより、伝送データ信号の数をカウントすることなく、伝送データ信号のアドレスを把握することができる。 Similar to the timing generation unit 23 of the master station 2, the pseudo timing generation unit 42 includes an oscillation circuit (OSC) (not shown) and timing generation means. The pseudo timing generation unit 42 is based on the internal OSC starting from the end of the start signal included in the transmission signal. Then, a pseudo timing signal synchronized with the timing clock generated by the timing generator 23 of the master station 2 is generated and delivered to the absolute address counter 44. The timing at which the pulse signal rises or falls in the pseudo timing signal coincides with the potential change in one cycle of the transmission data signal synchronized with the timing clock generated by the master station 2. Therefore, the slave station can grasp the address of the transmission data signal without counting the number of transmission data signals by counting the rise or fall of the pulse of the pseudo timing signal.
 図21に示すようにNon Return to Zero方式の伝送信号を使用する場合、伝送データ信号の1周期は信号の授受に必要な時間とすればよく、図19、図20に示すようなReturn to Zero方式の伝送信号を使用する場合よりも伝送速度を高速にできる。例えば、図21に示す伝送信号は、その伝送データ信号の1周期が、図19、図20に示す伝送信号の伝送データ信号の1周期の半分の長さとなるため、伝送速度は2倍となる。 As shown in FIG. 21, when a non-return to zero transmission signal is used, one cycle of the transmission data signal may be a time required for the transmission / reception of the signal, and the return to zero as shown in FIG. 19 and FIG. The transmission speed can be increased compared to the case of using the transmission signal of the system. For example, the transmission rate of the transmission signal shown in FIG. 21 is twice as long as one cycle of the transmission data signal is half the length of one cycle of the transmission data signal of the transmission signal shown in FIGS. .
1  制御部
2  親局
4a 第1CH入出力子局
5  被制御装置
6a、6e 第1CH出力子局
6b 第2CH出力子局
6c 第3CH出力子局
7a、7e 第1CH入力子局
7b 第2CH入力子局
7c 第3CH入力子局
8  出力部
9  入力部
11a 第1CH出力ユニット
11b 第2CH出力ユニット
11c 第3CH出力ユニット
12a 第1CH入力ユニット
12b 第2CH入力ユニット
12c 第3CH入力ユニット
13a 第1CH制御並列データ
13b 第2CH制御並列データ
13c 第3CH制御並列データ
14a 第1CH監視並列データ
14b 第2CH監視並列データ
14c 第3CH監視並列データ
21a 第1CH出力データ部
21b 第2CH出力データ部
21c 第3CH出力データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26a 第1CH入力データ部
26b 第2CH入力データ部
26c 第3CH入力データ部
31 OSC(発振回路)
32 タイミング発生手段
33 制御データ発生手段
34 ラインドライバ
35 監視信号検出手段
36a 第1CH監視データ抽出手段
36b 第2CH監視データ抽出手段
36c 第3CH監視データ抽出手段
40a 第1CH子局入出力部
41 伝送受信手段
42 疑似タイミング発生部
43 アドレス抽出手段
44 絶対アドレスカウンタ
45a 第1CH監視データ送信手段
45b 第2CH監視データ送信手段
45c 第3CH監視データ送信手段
46a 第1CH制御データ抽出手段
46b 第2CH制御データ抽出手段
46c 第3CH制御データ抽出手段
47 CH数設定手段
48 絶対アドレス生成テーブル
51 第1CHアドレスデータ記憶手段
52 第1CH最終アドレスデータ記憶手段
53 第2CHアドレスデータ記憶手段
54 第2CH最終アドレスデータ記憶手段
55 第3CHアドレスデータ記憶手段
56 第3CH最終アドレスデータ記憶手段
60a、60e 第1CH子局出力部
60b 第2CH子局出力部
60c 第3CH子局出力部
61 出力手段
62 子局ラインレシーバ
70a、70e 第1CH子局入力部
70b 第2CH子局入力部
70c 第3CH子局入力部
71 入力手段
72 子局ラインドライバ
80 出力部一体型子局
90 入力部一体型子局
 
1 Control Unit 2 Master Station 4a First CH I / O Slave Station 5 Controlled Devices 6a, 6e First CH Output Slave Station 6b Second CH Output Slave Station 6c Third CH Output Slave Station 7a, 7e First CH Input Slave Station 7b Second CH Input Slave Station 7c Third CH input slave station 8 Output unit 9 Input unit 11a First CH output unit 11b Second CH output unit 11c Third CH output unit 12a First CH input unit 12b Second CH input unit 12c Third CH input unit 13a First CH control parallel data 13b Second channel control parallel data 13c Third channel control parallel data 14a First channel monitoring parallel data 14b Second channel monitoring parallel data 14c Third channel monitoring parallel data 21a First channel output data unit 21b Second channel output data unit 21c Third channel output data unit 23 Timing generation Part 24 Master station output part 25 Part 26a first 1CH input data section 26b first 2CH input data section 26c first 3CH input data unit 31 OSC (oscillation circuit)
32 Timing generating means 33 Control data generating means 34 Line driver 35 Monitoring signal detecting means 36a First CH monitoring data extracting means 36b Second CH monitoring data extracting means 36c Third CH monitoring data extracting means 40a First CH slave station input / output unit 41 Transmission receiving means 42 pseudo timing generating unit 43 address extracting means 44 absolute address counter 45a first CH monitoring data transmitting means 45b second CH monitoring data transmitting means 45c third CH monitoring data transmitting means 46a first CH control data extracting means 46b second CH control data extracting means 46c second 3CH control data extraction means 47 CH number setting means 48 Absolute address generation table 51 First CH address data storage means 52 First CH final address data storage means 53 Second CH address data storage means 54 Second CH final address Less data storage means 55 Third CH address data storage means 56 Third CH final address data storage means 60a, 60e First CH slave station output section 60b Second CH slave station output section 60c Third CH slave station output section 61 Output means 62 Slave station line receiver 70a, 70e First CH slave station input section 70b Second CH slave station input section 70c Third CH slave station input section 71 Input means 72 Slave station line driver 80 Output section integrated slave station 90 Input section integrated slave station

Claims (8)

  1.  親局と複数の子局が共通データ信号線で接続され、
     前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、スタート信号の開始または終了の起点から開始される、所定の時間幅を1周期とする伝送データ信号が複数連なる伝送信号が前記共通データ信号線に伝送され、
     前記1周期毎に、前記親局からの伝送送信信号である制御信号、または、前記親局が受ける伝送受信信号である監視信号のいずれか一方のみが伝送される半二重伝送として前記伝送データ信号が伝送され、
     前記伝送データ信号の複数を一単位とし、前記一単位の中の任意の前記伝送データ信号を所定のチャネルに割り当てることを特徴とする制御・監視信号伝送システム。
     
    The master station and multiple slave stations are connected by a common data signal line.
    Under the control of the timing signal generated by the timing generating means possessed by the master station, a transmission signal consisting of a plurality of transmission data signals starting from the start or end of the start signal and having a predetermined time width as one cycle is provided. Transmitted to the common data signal line,
    In each cycle, the transmission data is transmitted as half-duplex transmission in which only one of a control signal that is a transmission transmission signal from the master station and a monitoring signal that is a transmission reception signal received by the master station is transmitted. Signal is transmitted,
    A control / monitoring signal transmission system characterized in that a plurality of the transmission data signals are defined as one unit, and an arbitrary transmission data signal in the unit is allocated to a predetermined channel.
  2.  前記子局は、前記スタート信号の開始または終了を起点として、前記タイミング信号に同期する疑似クロック信号を自局で生成し、前記疑似クロック信号に基づいて伝送アドレスをカウントする請求項1に記載の制御・監視信号伝送システム。 2. The slave station according to claim 1, wherein the slave station generates a pseudo clock signal synchronized with the timing signal from the start or end of the start signal, and counts transmission addresses based on the pseudo clock signal. Control and monitoring signal transmission system.
  3.  前記伝送データ信号は対応する伝送クロック信号を含み、前記チャネルの少なくとも一つを高速伝送チャネルとし、前記高速伝送チャネルに属する子局は、前記スタート信号の開始または終了を起点として、前記伝送データ信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行う請求項1に記載の制御・監視信号伝送システム。 The transmission data signal includes a corresponding transmission clock signal, and at least one of the channels is a high-speed transmission channel, and a slave station belonging to the high-speed transmission channel starts from the start or end of the start signal. The transmission address count based on the start address is started, and in one frame period between the start signal and the next start signal, a number smaller than the address count value corresponding to the number of transmission data signals is set as the maximum address count value. The control / monitoring signal transmission system according to claim 1, further comprising: an address counter that transmits and receives data to and from the master station in a frame period shorter than the one frame period.
  4.  前記チャネルの少なくとも一つを高速伝送チャネルとし、前記高速伝送チャネルに属する子局は、前記スタート信号の開始または終了を起点として、前記疑似クロック信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行う請求項2に記載の制御・監視信号伝送システム。 At least one of the channels is a high-speed transmission channel, and a slave station belonging to the high-speed transmission channel starts counting transmission addresses based on the pseudo clock signal, starting from the start or end of the start signal, and the start An address counter having a smaller number than the address count value corresponding to the number of transmission data signals in one frame period between the signal and the next start signal is provided, and is shorter than the one frame period. The control / monitor signal transmission system according to claim 2, wherein data is exchanged with the master station in a frame cycle.
  5.  親局が接続され、前記親局が有するタイミング発生手段で生成されるタイミング信号の制御下で、スタート信号の開始または終了の起点から開始される、所定の時間幅を1周期とする伝送データ信号が複数連なり、前記1周期毎に、前記親局からの伝送送信信号である制御信号、または、前記親局が受ける伝送受信信号である監視信号のいずれか一方のみが伝送される半二重伝送として前記伝送データ信号が伝送される共通データ信号線に接続され、
     自局の論理アドレスを設定するアドレス設定手段と、
     前記論理アドレスに対応する前記伝送信号における絶対アドレスを算出する絶対アドレス生成テーブルと、
     前記伝送データ信号の数をカウントし、前記自局アドレスのデータと一致するタイミングで、前記伝送データ信号に重畳された制御データを抽出する制御データ抽出処理と、前記一致するタイミングで入力部からの入力信号に応じた監視データを伝送受信信号として前記伝送信号に重畳する監視データ送信処理を行う子局入出力部、あるいは、前記制御データ抽出処理を行う子局出力部と前記監視データ送信処理を行う子局入力部のいずれか一方を備え、
     前記アドレス設定手段は、前記伝送データ信号の複数を一単位として前記論理アドレスを設定することを特徴とするターミナル。
    A transmission data signal having a predetermined time width as one cycle, which is started from the start or end of the start signal under the control of the timing signal generated by the timing generation means of the parent station connected to the parent station A half-duplex transmission in which only one of a control signal that is a transmission transmission signal from the master station and a monitoring signal that is a transmission reception signal received by the master station is transmitted in each cycle. Connected to a common data signal line through which the transmission data signal is transmitted,
    Address setting means for setting the logical address of the own station;
    An absolute address generation table for calculating an absolute address in the transmission signal corresponding to the logical address;
    The number of the transmission data signals is counted, and the control data extraction process for extracting the control data superimposed on the transmission data signal at the timing that coincides with the data of the local station address; A slave station input / output unit that performs monitoring data transmission processing that superimposes monitoring data corresponding to an input signal as a transmission reception signal on the transmission signal, or a slave station output unit that performs control data extraction processing and the monitoring data transmission processing One of the slave station input parts to perform
    The terminal according to claim 1, wherein the address setting means sets the logical address using a plurality of transmission data signals as a unit.
  6.  前記スタート信号の開始または終了を起点として、前記タイミング信号に同期する疑似クロック信号を自局で生成し、前記疑似クロック信号に基づいて伝送アドレスをカウントする請求項5に記載のターミナル。 6. The terminal according to claim 5, wherein a pseudo clock signal synchronized with the timing signal is generated at a start point from the start or end of the start signal, and a transmission address is counted based on the pseudo clock signal.
  7.  前記伝送データ信号は対応する伝送クロック信号を含み、前記スタート信号の開始または終了を起点として、前記伝送データ信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行う請求項5に記載のターミナル。 The transmission data signal includes a corresponding transmission clock signal, and starts counting transmission addresses based on the transmission data signal starting from the start or end of the start signal, and between the start signal and the next start signal An address counter having a maximum address count value that is smaller than an address count value corresponding to the number of transmission data signals in one frame period, and a frame period shorter than the one frame period, The terminal according to claim 5, wherein data is exchanged between the terminals.
  8.  前記スタート信号の開始または終了を起点として、前記疑似クロック信号に基づいた伝送アドレスのカウントを開始し、前記スタート信号と次のスタート信号の間の1フレーム周期において、前記伝送データ信号の数に相当するアドレスカウント値より、小さい数を、最大アドレスカウント値とするアドレスカウンタを備え、前記1フレーム周期よりも短いフレーム周期で、前記親局との間でデータの授受を行う請求項6に記載のターミナル。
     
    Starting from the start or end of the start signal, transmission address counting based on the pseudo clock signal is started, and corresponds to the number of transmission data signals in one frame period between the start signal and the next start signal. An address counter having a smaller number than the address count value to be used as a maximum address count value is provided, and data is exchanged with the master station in a frame period shorter than the one frame period. Terminal.
PCT/JP2013/077922 2013-10-15 2013-10-15 Control and monitoring signal transmission system WO2015056291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/077922 WO2015056291A1 (en) 2013-10-15 2013-10-15 Control and monitoring signal transmission system
JP2014549229A JP5748924B1 (en) 2013-10-15 2013-10-15 Control and monitoring signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077922 WO2015056291A1 (en) 2013-10-15 2013-10-15 Control and monitoring signal transmission system

Publications (1)

Publication Number Publication Date
WO2015056291A1 true WO2015056291A1 (en) 2015-04-23

Family

ID=52827765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077922 WO2015056291A1 (en) 2013-10-15 2013-10-15 Control and monitoring signal transmission system

Country Status (2)

Country Link
JP (1) JP5748924B1 (en)
WO (1) WO2015056291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264201A1 (en) * 2021-06-14 2022-12-22 株式会社エニイワイヤ Control/monitor signal transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053481A (en) * 1991-06-25 1993-01-08 Toyota Central Res & Dev Lab Inc Serial multiplex communication system
JP2012195850A (en) * 2011-03-17 2012-10-11 Canon Inc Communication system and method for controlling the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053481A (en) * 1991-06-25 1993-01-08 Toyota Central Res & Dev Lab Inc Serial multiplex communication system
JP2012195850A (en) * 2011-03-17 2012-10-11 Canon Inc Communication system and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264201A1 (en) * 2021-06-14 2022-12-22 株式会社エニイワイヤ Control/monitor signal transmission system

Also Published As

Publication number Publication date
JPWO2015056291A1 (en) 2017-03-09
JP5748924B1 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
KR101205744B1 (en) Serial-peripheral interface with reduced number of connection lines
CN106411443B (en) Method, vehicle netbios and the vehicle of message transmissions
CN111030909B (en) Method for time synchronization among CAN bus multi-master device communication
KR20100083766A (en) Serial data communication system and serial data communication method
JP2002016621A (en) Control/supervisory signal transmitting system
JP2011010117A (en) Pwm semiconductor power converter system and pwm semiconductor power converter
JPWO2014147705A1 (en) Control and monitoring signal transmission system
EP3231670B1 (en) Electronic control device
WO2001069861A3 (en) Efficient time-division multiplexed addressing protocol
JP5748924B1 (en) Control and monitoring signal transmission system
JP2002152864A (en) Control/supervisory signal transmission system
WO2020228433A1 (en) Synchronization method and device
JP5208327B1 (en) Transmission line address duplication detection method and slave station terminal used for the method
JP5744341B1 (en) Control and monitoring signal transmission system
CN102394655A (en) Manchester code converting method on MIC bus
JP2002252606A (en) Synchronization correction circuit
US8918130B2 (en) Method for transmitting a communication signal
WO2014167709A1 (en) Control/monitor signal transmission system
KR20200049577A (en) Method and apparatus for allocating priority transmission opportunities in a vehicle network
JP6655768B2 (en) Control / monitoring signal transmission system
CN110576884B (en) Vehicle RS485 cascade communication method for rail transit
CN113672540B (en) Two-bus system
JP5072813B2 (en) Output terminal and control / monitor signal transmission system
JP4832612B2 (en) Signal transmission method in control / monitor signal transmission system
KR20200049576A (en) Method and apparatus for allocating transmission opportunities in a vehicle network

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014549229

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895735

Country of ref document: EP

Kind code of ref document: A1