WO2015055528A2 - Tunable inductor arrangement, transceiver, method and computer program - Google Patents

Tunable inductor arrangement, transceiver, method and computer program Download PDF

Info

Publication number
WO2015055528A2
WO2015055528A2 PCT/EP2014/071751 EP2014071751W WO2015055528A2 WO 2015055528 A2 WO2015055528 A2 WO 2015055528A2 EP 2014071751 W EP2014071751 W EP 2014071751W WO 2015055528 A2 WO2015055528 A2 WO 2015055528A2
Authority
WO
WIPO (PCT)
Prior art keywords
tunable inductor
winding
inductor arrangement
arrangement
winding part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2014/071751
Other languages
English (en)
French (fr)
Other versions
WO2015055528A3 (en
Inventor
Thomas Mattsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to JP2016524032A priority Critical patent/JP6247387B2/ja
Priority to CN201480057072.8A priority patent/CN105917464B/zh
Priority to US15/029,329 priority patent/US9934898B2/en
Priority to RU2016118649A priority patent/RU2638085C2/ru
Priority to BR112016008388-1A priority patent/BR112016008388B1/pt
Priority to AU2014336353A priority patent/AU2014336353B2/en
Priority to MX2016004732A priority patent/MX352530B/es
Publication of WO2015055528A2 publication Critical patent/WO2015055528A2/en
Publication of WO2015055528A3 publication Critical patent/WO2015055528A3/en
Anticipated expiration legal-status Critical
Priority to US15/911,301 priority patent/US10249426B2/en
Priority to US16/279,566 priority patent/US10916364B2/en
Priority to US17/144,289 priority patent/US11456102B2/en
Priority to US17/897,249 priority patent/US11854728B2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/004Arrangements for interchanging inductances, transformers or coils thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/12Variable inductances or transformers of the signal type discontinuously variable, e.g. tapped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/20Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/12Variable inductances or transformers of the signal type discontinuously variable, e.g. tapped
    • H01F2021/125Printed variable inductor with taps, e.g. for VCO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field

Definitions

  • the present invention generally relates to a tunable inductor arrangement, a radio frequency transceiver or receiver with a resonator having such an arrangement, a communication device, a method of tuning the arrangement and a computer program for tuning.
  • LC resonators consume chip space, when implemented on-chip, and are fairly costly when implemented off-chip. It is therefore a desire to provide more flexible resonators.
  • An object of the invention is to at least alleviate the above stated problem.
  • the present invention is based on the understanding that both capacitance and inductance of an LC resonator need to be tuned to achieve the desired flexibility.
  • a tunable inductor arrangement is provided accordingly.
  • the inventor has also realized the demands that the self-resonant frequency need to be set high enough for high-frequency modes, the Q-value has to be high enough, particularly in low-inductance state, not to degrade gain or increase current consumption in a usable implementation, and that the ratio of the inductances need to be high enough to also cover the low bands. This is achieved by a switch arrangement in the tunable inductor arrangement which performs signal routing such that insertion loss is decreased, particularly in unused circuitry.
  • a tunable inductor arrangement arrangable on a chip or substrate, the tunable inductor comprising a first winding part connected at a first end to a first input of the tunable inductor arrangement; a second winding part connected at a first end to a second end of the first winding part; a third winding part connected at a first end to a second input of the tunable inductor arrangement; a fourth winding part connected at a first end end to a second end of the third winding part and at a second end connected towards a second end of the second winding part; and a switch arrangement arranged to tune the tunable inductor arrangement by selectively provide at least: a circuit comprising the first and third winding parts in series between the first and second inputs; and a circuit comprising the first, second, fourth and third winding parts in series between the first and second inputs.
  • the first and third winding parts are arranged on the chip or substrate such that magnetic fields of the first and
  • the fourth winding part may be connected at the second end to the second end of the second winding part.
  • the tunable inductor arrangement may comprise further winding parts connected between the second end of the fourth winding part and the second end of the second winding part.
  • the switch arrangement may comprise a first switch connected between the second end of the first winding part and the second end of the third winding part.
  • the switch arrangement may comprise a first switch connected between the second end of the first winding part and a virtual ground connected to the second end of the second winding part; and a second switch connected between the second end of the third winding part and the virtual ground.
  • the second and fourth winding parts may form a pattern on the chip or substrate having a first part directing the magnetic field in a first direction and a second part directing the magnetic field in a second direction, wherein the second direction is opposite to the first direction.
  • the pattern of the second and fourth winding parts and the pattern of the first and third winding parts may be symmetrically arranged on the chip or substrate.
  • the first and third winding parts may form a pattern encircling the second and fourth winding parts in a plane of the chip or substrate.
  • the pattern of the second and fourth winding parts may be eight-shaped, four- clover-shaped, or 2n-clover-shaped, where n is a positive integer.
  • the virtual ground may be a DC power supply, which at AC, such as radio frequency, acts as a ground for AC signals, or be a ground or DC reference voltage node.
  • a radio frequency transceiver comprising a resonator, wherein the resonator comprises a tunable inductor arrangement according to the first aspect, wherein the tunable inductor arrangement is tunable to enable the resonator to selectably work at one of a plurality of resonating frequencies.
  • a multiband radio frequency receiver comprising a first receiver path arranged to receive a radio signal in a first frequency band; a second receiver path arranged to receive a radio signal in a second frequency band, wherein the first frequency band operates at a higher frequency than the second frequency band, and each of the first and second receiver paths is arranged to selectively operate at a selected frequency band among a plurality of frequency bands; and comprises a resonator comprising a tunable inductor arrangement according to the first aspect, which resonator is arranged to be tuned for the selected frequency band.
  • a communication device comprising a radio frequency transceiver according to the second aspect or a multiband radio frequency receiver according to the third aspect, and a processor arranged to interact with the radio frequency transceiver or the multiband radio frequency receiver, wherein the processor is arranged to control to the switch arrangement to select a tuning mode of the tunable inductor arrangement.
  • a method of a tunable inductor arrangement including winding parts and switches for tuning according to the first aspect.
  • the method comprises determining a tuning setting for the tunable inductor arrangement; assigning switch states for the switch or respective switches for the tuning setting; and controlling the switch or switches according to the assigned switch states.
  • a computer program comprising computer executable instructions which when executed by a programmable controller of a radio frequency transceiver or multiband radio frequency receiver comprising a resonator which comprises a tunable inductor arrangement causes the controller to perform the method of the fifth aspect.
  • An advantage is achieved for embodiments when Q- value increases with frequency, with a layout that provides higher Q-value in low inductance state than in high inductance state, and absolute resonator bandwidth becomes more constant over frequency.
  • An advantage according to embodiments is that a tunable resonator allows a more flexible configuration of a multi-band receiver/transmitter/transceiver. For example, different receiver paths no longer need to be dedicated to either low band or high band, but can be allocated depending on current reception situation.
  • Fig 1 schematically illustrates a tunable inductor arrangement according to an embodiment.
  • Fig 2 schematically illustrates a tunable inductor arrangement according to an embodiment.
  • Fig. 3 illustrates a layout of windings of a tunable inductor arrangement together with a schematic indication on the switch arrangement according to
  • Fig. 4 illustrates a detail of a layout of windings of a tunable inductor arrangement according to an embodiment.
  • Fig. 5 schematically illustrates a radio front end where the tunable inductor arrangements according to embodiments are applicable.
  • Fig. 6 is a block diagram schematically illustrating a communication device according to an embodiment.
  • Fig. 7 is a flow chart schematically illustrating a method of a tunable inductor arrangement according to an embodiment.
  • Fig. 8 schematically illustrates a computer program and a processor for implementing the method.
  • Fig 1 schematically illustrates a tunable inductor arrangement according to an embodiment.
  • the inductor arrangement is preferably arranged on a chip or substrate, as will be demonstrated below.
  • the inductor arrangement comprises a first winding part Wl connected at one end to a first input INP of the tunable inductor arrangement, a second winding part W2 connected at one end to the other end of the first winding part Wl , a third winding part W3 connected at one end to a second input INN of the tunable inductor arrangement, and a fourth winding part W4 connected at one end to the other end of the third winding part W3 and at another end connected to the other end of the second winding part W2.
  • the tunable inductor arrangement further comprises a switch arrangement arranged to tune the tunable inductor arrangement by selectively provide either the series connection or a circuit comprising the first and third winding parts Wl, W3 in series between the first and second inputs INP, INN.
  • the winding parts are arranged on a chip or substrate, i.e. essentially in one plane, but the windings may be formed in two or more metal layers, wherein the windings can be stacked on the chip or substrate or arranged side-by-side in a metal layer, or a combination thereof.
  • the arrangement comprises a switch S12 connected between the other end of the first winding part Wl and the other end of the third winding part W3.
  • the switch S12 When the switch S12 is open, the series connection of the winding parts Wl, W2, W4, W3 is operable, while when the switch S12 is closed, the circuit comprising the first and third winding parts Wl , W3 in series is operable between the first and second inputs INP, INN.
  • the switch S12 When in the state where only the first and third winding parts Wl, W3 are operable, it is desirable that the inoperable second and fourth windings W2, W4 do not influence, e.g. to keep insertion loss low.
  • the first and third winding parts are arranged on the chip or substrate such that magnetic fields of the first and third windings are essentially common, and the second and fourth winding parts are arranged to cancel electromagnetic coupling with the first and third winding parts.
  • This can be arranged by a winding structure that cancels magnetic coupling between the first/third and the second/fourth windings, as will be demonstrated by example with reference to Fig. 3 below.
  • the principle can be accomplished by the second and fourth winding parts form a pattern on the chip or substrate having a first part directing the magnetic field in a first direction and a second part directing the magnetic field in a second direction, wherein the second direction is opposite to the first direction. The magnetic coupling is thereby cancelled.
  • the centre tap is connected to the supply node in the low-impedance mode, and when the switch S12 is closed there are paths from the first and third windings parts Wl, W3 to the centre tap node via the short-circuited second and fourth winding parts W2, W4.
  • the impedance or resistance is reasonably increased, but is providing a working solution for many applications.
  • Fig 2 schematically illustrates a tunable inductor arrangement according to an embodiment.
  • the inductor arrangement is preferably arranged on a chip or substrate, as will be demonstrated below.
  • the inductor arrangement comprises a first winding part Wl connected at one end to a first input INP of the tunable inductor arrangement, a second winding part W2 connected at one end to the other end of the first winding part Wl, a third winding part W3 connected at one end to a second input INN of the tunable inductor arrangement, and a fourth winding part W4 connected at one end to the other end of the third winding part W3 and at another end connected to the other end of the second winding part W2.
  • the tunable inductor arrangement further comprises a switch arrangement arranged to tune the tunable inductor arrangement by selectively provide either the series connection or a circuit comprising the first and third winding parts Wl, W3 in series between the first and second inputs INP, INN.
  • the winding parts are arranged on a chip or substrate, i.e.
  • the switch arrangement comprises a first switch SI connected between the other end of the first winding part Wl and the AC ground, i.e. to the centre tap.
  • a second switch S2 is connected between the centre tap and the other end of the third winding part W3.
  • the dual switch arrangement provides a lower impedance path to the centre tap compared to the embodiment demonstrated with reference to Fig. 1, but may be to a cost of higher parasitic capacitances.
  • the first and third winding parts are arranged on the chip or substrate such that magnetic fields of the first and third windings are essentially common, and the second and fourth winding parts are arranged to cancel electromagnetic coupling with the first and third winding parts.
  • This can be arranged by a winding structure that cancels magnetic coupling between the first/third and the second/fourth windings, as will be demonstrated by example with reference to Fig. 3 below.
  • the principle can be accomplished by the second and fourth winding parts form a pattern on the chip or substrate having a first part directing the magnetic field in a first direction and a second part directing the magnetic field in a second direction, wherein the second direction is opposite to the first direction.
  • the magnetic coupling is thereby cancelled.
  • Fig. 3 illustrates an example of layout of windings of a tunable inductor arrangement together with a schematic indication on the switch arrangement according to embodiments, where the respective switch arrangements demonstrated with reference to Figs 1 and 2 are schematically illustrated in Fig. 3.
  • the first and third winding parts form a pattern encircling the second winding in a plane of the chip or substrate.
  • the pattern of the second and fourth winding parts and the pattern of the first and third winding parts are symmetrically arranged on the chip or substrate, as emphasized by symmetry lines provided in Fig. 3.
  • the pattern of the second and fourth winding parts is eight-shaped in Fig.
  • Fig. 4 illustrates a detail of an example of layout of windings of a tunable inductor arrangement according to an embodiment.
  • Crossings of conductive lanes forming the windings can thus be achieved.
  • Two or more of the winding parts can be arranged in a plurality of conductive layers on the chip or substrate.
  • the lanes are provided side by side on the substrate and the crossings using layered conductors.
  • the lanes can also use layered conductors and be placed on top of each other, or a combination of be provided in different layers and side by side.
  • the shape of the windings have also been illustrated as octagons, but other shapes are as feasible, such as circular, square, or other n-sided shape, where n is 3 or higher, or combinations thereof, which form windings enclosing a magnetic field which is the purpose of the windings to form an inductance.
  • the inductance can be adapted for differential purposes or single-ended purposes in conventional way.
  • Further winding parts can be connected between the second and fourth winding parts W2, W4, which can be included in forming a circuit of the tunable inductor arrangement.
  • Such further winding parts are preferably also arranged on the chip or substrate such that magnetic fields for cancelling electro-magnetic coupling with the first to fourth winding parts W1-W4 similar to the relation between the second and fourth winding parts W2, W4 to the first and third winding parts Wl , W3.
  • This can be enabled by applying further metal layers for implementing the winding parts on the chip or substrate, and further switches of the switch arrangement for selectively provide circuits including a desired amount of winding parts.
  • Fig. 5 schematically illustrates a radio front end where the tunable inductor arrangements according to embodiments are applicable.
  • a radio front end circuit used for example in a 3 GPP LTE radio, a multitude of bands may be used.
  • versatility is a key to a feasible front end solution.
  • the front end should be usable for other radio access technologies as well, such as GSM, UMTS, WLAN, GNSS, etc., the demands on versatility further increases.
  • the received signal can thus be in a multitude of frequencies and having wide or narrow bandwidth, and for example a band selection filter, or other circuit that need a resonator, may need to be configurable for this depending on current operating mode.
  • Variable capacitance in such band selection filters normally do a lot, e.g. by using capacitor banks where capacitance can be switched in on demand, but by using a tunable inductor as demonstrated above, versatility can be improved, as well as performance of for example the band selection filters.
  • the demands on versatility can be met. Flexible band combinations are thereby enabled.
  • An example where the front end arrangement as demonstrated above can be used is a multiband radio frequency receiver 500.
  • the receiver 500 comprises a first receiver path arranged to receive a radio signal in a first frequency band and a second receiver path arranged to receive a radio signal in a second frequency band, wherein the first frequency band operates at a higher frequency than the second frequency band, i.e. a high-low band arrangement where both the high and the low bands can be received simultaneously.
  • Each of the first and second receiver paths can be arranged to selectively operate at a selected frequency band among a plurality of frequency bands, e.g. the first high-band path can select to operate in one of 1800 MHz, 1900 MHz, 2100 MHz and 2700 MHz frequency bands while the second low-band path can select to operate in one of 750 MHz, 850 MHz, 900 MHz and 1500 MHz frequency bands simultaneously.
  • Each receiver path comprises a resonator comprising a tunable inductor arrangement 502, 504 as demonstrated above, wherein the resonators are arranged to be tuned for the selected frequency band in respective receiver path. It is to be noted that both receiver paths are tunable to all frequency bands by the approach of the tunable inductor arrangement, wherein great flexibility is achieved since there is no dedicated path for the higher or lower bands. Arrangements with more than two such receiver paths are also possible. Flexible frequency band combinations are thus enabled, which for example is advantageous in carrier aggregation solutions.
  • resonators are illustrated for tuning LNA outputs as an example.
  • the resonator with tunable inductor arrangement can of course be used for other purposes as well, such as for filters, impedance matching, etc.
  • Fig. 6 is a block diagram schematically illustrating communication device 600 according to an embodiment.
  • the communication device comprises a receiver or transceiver 602, which can be connected to an antenna 604, and other circuits 606 such as a processor arranged interact with the receiver or transceiver 602, input and output interfaces of the communication device 600, etc.
  • the receiver or transceiver 602 comprises a resonator 610, wherein the resonator comprises a tunable inductor arrangement according to any one of embodiments demonstrated above, wherein the tunable inductor arrangement is tunable to enable the resonator 610 to work at a plurality of resonating frequencies.
  • the receiver or transceiver can also comprise a controller 608 which can be arranged to control the tuning of the resonator 610, i.e. also the tunable inductor arrangement.
  • the receiver 602 can for example be the multiband radio frequency receiver 500 demonstrated with reference to Fig. 5.
  • Fig. 7 is a flow chart schematically illustrating a method of a tunable inductor arrangement according to an embodiment.
  • the method comprises determining 701 a tuning setting for the tunable inductor arrangement. This can be made by receiving frequency allocation from a remote entity or from an entity within a communication apparatus having the tunable inductor arrangement. Based on for example the frequency allocation information switch states are assigned 702 for the switch S12 or respective switches S 1 , S2 for the tuning setting, and controlling 703 the switches according to the assigned switch states. Upon a new allocation, the procedure can be repeated.
  • the method according to the present invention is suitable for implementation with aid of processing means, such as computers and/or processors, especially for the case where a digital controller controls the transceiver. Therefore, there is provided computer programs, comprising instructions arranged to cause the processing means, processor, or computer to perform the steps of any of the methods according to any of the embodiments described with reference to Fig. 7.
  • the computer programs preferably comprises program code which is stored on a computer readable medium 800, as illustrated in Fig. 8, which can be loaded and executed by a processing means, processor, or computer 802 to cause it to perform the methods, respectively, according to embodiments of the present invention, preferably as any of the embodiments described with reference to Fig. 7.
  • the computer 802 and computer program product 800 can be arranged to execute the program code sequentially where actions of the any of the methods are performed stepwise.
  • the processing means, processor, or computer 802 is preferably what normally is referred to as an embedded system.
  • the depicted computer readable medium 800 and computer 802 in Fig. 8 should be construed to be for illustrative purposes only to provide understanding of the principle, and not to be construed as any direct illustration of the elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)
  • Near-Field Transmission Systems (AREA)
PCT/EP2014/071751 2013-10-16 2014-10-10 Tunable inductor arrangement, transceiver, method and computer program Ceased WO2015055528A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2016524032A JP6247387B2 (ja) 2013-10-16 2014-10-10 チューニング可能なインダクタ構成、送受信機、方法及びコンピュータプログラム
CN201480057072.8A CN105917464B (zh) 2013-10-16 2014-10-10 可调谐电感器布置、收发机、方法及计算机程序
US15/029,329 US9934898B2 (en) 2013-10-16 2014-10-10 Tunable inductor arrangement, transceiver, method and computer program
RU2016118649A RU2638085C2 (ru) 2013-10-16 2014-10-10 Перестраиваемое индукторное устройство, приемопередатчик и способ
BR112016008388-1A BR112016008388B1 (pt) 2013-10-16 2014-10-10 Arranjo de indutor sintonizável, transceptor de radiofrequência, receptor de radiofrequência de multi faixas, dispositivo de comunicação, e, método para sintonia de um arranjo de indutor sintonizável
AU2014336353A AU2014336353B2 (en) 2013-10-16 2014-10-10 Tunable inductor arrangement, transceiver, method and computer program
MX2016004732A MX352530B (es) 2013-10-16 2014-10-10 Disposición de inductor sintonizable, transceptor, método y programa de computadora.
US15/911,301 US10249426B2 (en) 2013-10-16 2018-03-05 Tunable inductor arrangement, transceiver, method and computer program
US16/279,566 US10916364B2 (en) 2013-10-16 2019-02-19 Tunable inductor arrangement, transceiver, method and computer program
US17/144,289 US11456102B2 (en) 2013-10-16 2021-01-08 Tunable inductor arrangement, transceiver, method and computer program
US17/897,249 US11854728B2 (en) 2013-10-16 2022-08-29 Tunable inductor arrangement, transceiver, method and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13188915.6A EP2863429B1 (en) 2013-10-16 2013-10-16 Tunable inductor arrangement, transceiver, method and computer program
EP13188915.6 2013-10-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/029,329 A-371-Of-International US9934898B2 (en) 2013-10-16 2014-10-10 Tunable inductor arrangement, transceiver, method and computer program
US15/911,301 Continuation US10249426B2 (en) 2013-10-16 2018-03-05 Tunable inductor arrangement, transceiver, method and computer program

Publications (2)

Publication Number Publication Date
WO2015055528A2 true WO2015055528A2 (en) 2015-04-23
WO2015055528A3 WO2015055528A3 (en) 2015-06-18

Family

ID=49356320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071751 Ceased WO2015055528A2 (en) 2013-10-16 2014-10-10 Tunable inductor arrangement, transceiver, method and computer program

Country Status (12)

Country Link
US (5) US9934898B2 (enExample)
EP (2) EP3223309B1 (enExample)
JP (1) JP6247387B2 (enExample)
CN (1) CN105917464B (enExample)
AU (1) AU2014336353B2 (enExample)
BR (1) BR112016008388B1 (enExample)
DK (1) DK2863429T3 (enExample)
ES (1) ES2638962T3 (enExample)
IN (1) IN201637012335A (enExample)
MX (1) MX352530B (enExample)
RU (1) RU2638085C2 (enExample)
WO (1) WO2015055528A2 (enExample)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2637119T3 (es) 2013-10-16 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Disposición, transceptor, procedimiento y programa informático de inductor sintonizable
ES2638962T3 (es) 2013-10-16 2017-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Disposición de inductores sintonizables, transceptor, método y programa informático
US9543068B2 (en) * 2014-06-17 2017-01-10 Qualcomm Technologies International, Ltd. Inductor structure and application thereof
GB201705913D0 (en) 2017-04-12 2017-05-24 Novelda As Filter
TWI664649B (zh) * 2017-07-31 2019-07-01 瑞昱半導體股份有限公司 電感裝置
US10381981B2 (en) 2017-09-15 2019-08-13 Qualcomm Incorporated Degeneration for a wideband voltage-controlled oscillator
US10447204B2 (en) * 2017-09-15 2019-10-15 Qualcomm Incorporated Switchable inductor network for wideband circuits
CN109801769B (zh) * 2017-11-16 2021-06-11 世界先进积体电路股份有限公司 电感结构
TWI643217B (zh) * 2018-01-15 2018-12-01 瑞昱半導體股份有限公司 八字形電感性線圈裝置
US11070087B2 (en) * 2018-01-27 2021-07-20 Apple Inc. Wireless power system with in-band communication
WO2019190553A1 (en) * 2018-03-30 2019-10-03 Intel Corporation Oscillator frequency range extension using switched inductor
TWI666662B (zh) * 2018-06-20 2019-07-21 瑞昱半導體股份有限公司 可變電感裝置
US10637528B2 (en) * 2018-07-23 2020-04-28 Audiowise Technology Inc. Inductor circuit and wireless communication devices
US11159145B2 (en) * 2018-08-14 2021-10-26 Newport Fab, Llc Radio frequency (RF) filtering using phase-change material (PCM) RF switches
DE102019102654A1 (de) * 2019-02-04 2020-08-06 Industrieanlagen-Betriebsgesellschaft Mbh Sekundärspulentopologie
TWI674595B (zh) * 2019-04-25 2019-10-11 瑞昱半導體股份有限公司 積體變壓器
CN112117101B (zh) * 2019-06-19 2022-11-22 瑞昱半导体股份有限公司 电感装置
TWI692780B (zh) 2019-09-25 2020-05-01 瑞昱半導體股份有限公司 電感裝置
TWI692783B (zh) * 2019-09-25 2020-05-01 瑞昱半導體股份有限公司 電感裝置
WO2021102812A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 电感器、振荡器及终端设备
CN113936894B (zh) * 2020-06-29 2024-09-06 瑞昱半导体股份有限公司 电感装置
TWI748846B (zh) 2021-01-15 2021-12-01 瑞昱半導體股份有限公司 電感裝置
CN114783721B (zh) * 2021-01-22 2025-01-17 瑞昱半导体股份有限公司 电感装置
CN112928208B (zh) * 2021-01-22 2024-05-28 上海华虹宏力半导体制造有限公司 一种非对称的电压偏置效应的高压高阻值多晶硅电阻模型
KR102397695B1 (ko) * 2021-03-12 2022-05-13 강원대학교산학협력단 스위칭 가능한 차동 인덕터 및 이의 동작 방법 및 이를 포함하는 장치들
CN115172022A (zh) * 2021-04-06 2022-10-11 华为技术有限公司 一种电感器件以及以太网口电路
CN113517869A (zh) * 2021-06-24 2021-10-19 成都爱旗科技有限公司 一种低噪声放大器、信号收发设备及信号收发方法
CN115691944A (zh) * 2021-07-26 2023-02-03 瑞昱半导体股份有限公司 电感装置
US11669135B2 (en) * 2021-08-16 2023-06-06 DXCorr Design Inc. Inter-chip input-output (IO) for voltage-stacked near threshold computing (NTC) chips
US11671068B1 (en) * 2022-02-23 2023-06-06 Realtek Semiconductor Corp. Integrated LC tank with third order harmonic trap
EP4475433A4 (en) * 2022-03-07 2025-05-14 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE COMPRISING A POWER AMPLIFIER FOR RF SIGNAL
US20240321936A1 (en) * 2023-03-23 2024-09-26 Qualcomm Incorporated Integrated device comprising an inductor and a patterned shield structure

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8602033A (nl) 1986-08-08 1988-03-01 Nedap Nv Precisie richtfunctie bij herkensysteem.
DE3817726A1 (de) 1988-05-25 1989-11-30 Siemens Ag Vorrichtung zur raeumlichen ultraschall-ortung von konkrementen
US5351688A (en) 1993-08-16 1994-10-04 Univ. Of Ne Board Of Regents NMR quadrature detection solenoidal coils
US6549071B1 (en) 2000-09-12 2003-04-15 Silicon Laboratories, Inc. Power amplifier circuitry and method using an inductance coupled to power amplifier switching devices
GB0126219D0 (en) 2001-11-01 2002-01-02 Koninkl Philips Electronics Nv Tunable filter
US7005930B1 (en) 2001-11-14 2006-02-28 Berkana Wireless, Inc. Synchronously coupled oscillator
DE10162263A1 (de) * 2001-12-18 2003-07-10 Infineon Technologies Ag Induktives Bauteil
US6621365B1 (en) 2002-04-03 2003-09-16 Nokia Corporation Method and apparatus providing a dual mode VCO for an adaptive receiver
US7151430B2 (en) 2004-03-03 2006-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Method of and inductor layout for reduced VCO coupling
US6982887B2 (en) 2004-04-26 2006-01-03 Astec International Limited DC-DC converter with coupled-inductors current-doubler
US7432794B2 (en) 2004-08-16 2008-10-07 Telefonaktiebolaget L M Ericsson (Publ) Variable integrated inductor
TW200633362A (en) 2004-11-15 2006-09-16 Koninkl Philips Electronics Nv Variable inductance circuitry for frequency control of a voltage controlled oscillator
FI20055402A0 (fi) * 2005-07-11 2005-07-11 Nokia Corp Induktorilaite monikaistaista radiotaajuista toimintaa varten
US8219060B2 (en) 2006-07-28 2012-07-10 Qualcomm Incorporated Dual inductor circuit for multi-band wireless communication device
US7688158B2 (en) 2007-09-28 2010-03-30 Intel Corporation Digitally tuned, integrated baluns with enhanced linearity for multi-band radio applications
US7649407B2 (en) 2007-09-28 2010-01-19 Intel Corporation Digitally tuned, integrated RF filters with enhanced linearity for multi-band radio applications
US7808310B2 (en) 2007-11-28 2010-10-05 Infineon Technologies, Ag Differential band-pass filter having symmetrically interwoven inductors
WO2009081342A1 (en) 2007-12-21 2009-07-02 Nxp B.V. Low magnetic field inductor
US8237531B2 (en) 2007-12-31 2012-08-07 Globalfoundries Singapore Pte. Ltd. Tunable high quality factor inductor
US8067995B2 (en) 2008-03-28 2011-11-29 Panasonic Corporation Voltage controlled oscillator, and PLL circuit and wireless communication device each using the same
EP2266121B1 (en) 2008-04-10 2015-06-10 Nxp B.V. 8-shaped inductor
JP2009260080A (ja) 2008-04-17 2009-11-05 Fujitsu Ltd インダクタ装置
US7953462B2 (en) 2008-08-04 2011-05-31 Vartanian Harry Apparatus and method for providing an adaptively responsive flexible display device
US7821372B2 (en) 2008-12-31 2010-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. On-chip transformer BALUN structures
EP2273613A1 (en) 2009-07-07 2011-01-12 Nxp B.V. Magnetic shield layout, semiconductor device and application
US8842410B2 (en) 2009-08-31 2014-09-23 Qualcomm Incorporated Switchable inductor network
JP5446671B2 (ja) * 2009-09-29 2014-03-19 ソニー株式会社 無線伝送システム及び無線通信方法
RU92273U1 (ru) 2009-10-27 2010-03-10 ОАО Российский институт мощного радиостроения Радиопередающее устройство
WO2011073853A1 (en) 2009-12-17 2011-06-23 Stmicroelectronics S.R.L. Circuit arrangement of a voltage controlled oscillator
EP2337150B1 (en) 2009-12-18 2012-12-05 Laird Technologies AB An antenna arrangement and a portable radio communication device comprising such an antenna arrangement
US20120244802A1 (en) * 2011-03-24 2012-09-27 Lei Feng On chip inductor
US20120286889A1 (en) * 2011-05-10 2012-11-15 Samsung Electro-Mechanics Company Systems and Methods for Wideband CMOS Voltage-Controlled Oscillators Using Reconfigurable Inductor Arrays
US9002309B2 (en) * 2011-05-27 2015-04-07 Qualcomm Incorporated Tunable multi-band receiver
US8699974B2 (en) 2011-08-24 2014-04-15 Aviacomm Inc. Wideband transmitter front-end
US8742859B2 (en) 2011-12-06 2014-06-03 Qualcomm Incorporated Tunable inductor circuit
US8639286B2 (en) 2011-12-23 2014-01-28 Broadcom Corporation RF transmitter having broadband impedance matching for multi-band application support
EP2648193B1 (en) 2012-04-03 2015-07-29 Telefonaktiebolaget L M Ericsson (publ) An inductor layout, and a voltage-controlled oscillator (VCO) system
US20140028521A1 (en) * 2012-07-27 2014-01-30 Rf Micro Devices, Inc. Tuner topology for wide bandwidth
US9058130B2 (en) * 2013-02-05 2015-06-16 International Business Machines Corporation Tunable sector buffer for wide bandwidth resonant global clock distribution
US9276547B2 (en) * 2013-06-28 2016-03-01 Peregrine Semiconductor Corporation Systems and methods of stacking LC tanks for wide tuning range and high voltage swing
ES2637119T3 (es) 2013-10-16 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Disposición, transceptor, procedimiento y programa informático de inductor sintonizable
ES2638962T3 (es) * 2013-10-16 2017-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Disposición de inductores sintonizables, transceptor, método y programa informático

Also Published As

Publication number Publication date
US9934898B2 (en) 2018-04-03
BR112016008388B1 (pt) 2022-08-02
US20190180904A1 (en) 2019-06-13
US20160225509A1 (en) 2016-08-04
US20180261369A1 (en) 2018-09-13
JP6247387B2 (ja) 2017-12-13
IN201637012335A (enExample) 2016-08-26
BR112016008388A2 (enExample) 2017-08-01
DK2863429T3 (en) 2017-09-04
US20210134507A1 (en) 2021-05-06
US10916364B2 (en) 2021-02-09
CN105917464A (zh) 2016-08-31
EP2863429A1 (en) 2015-04-22
EP3223309B1 (en) 2020-07-08
WO2015055528A3 (en) 2015-06-18
ES2638962T3 (es) 2017-10-24
MX352530B (es) 2017-11-29
US11456102B2 (en) 2022-09-27
EP3223309A1 (en) 2017-09-27
US10249426B2 (en) 2019-04-02
JP2017501560A (ja) 2017-01-12
AU2014336353A1 (en) 2016-04-28
RU2638085C2 (ru) 2017-12-11
AU2014336353B2 (en) 2017-12-07
CN105917464B (zh) 2018-11-30
MX2016004732A (es) 2016-07-18
RU2016118649A (ru) 2017-11-20
EP2863429B1 (en) 2017-06-14
US20220415554A1 (en) 2022-12-29
US11854728B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
US11854728B2 (en) Tunable inductor arrangement, transceiver, method and computer program
US11923119B2 (en) Tunable inductor arrangement, transceiver, method, and computer program
ES2644019T3 (es) Malla hecha de anillos de alambre y método para hacer malla hecha de anillos de alambre
BR122020020407B1 (pt) Chip tendo um arranjo de indutor sintonizável, transceptor de radiofrequência, receptor de radiofrequência em multi faixas, e, dispositivo de comunicação

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783617

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/004732

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15029329

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016524032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016008388

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014336353

Country of ref document: AU

Date of ref document: 20141010

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016118649

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14783617

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112016008388

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160414