WO2015055072A1 - 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法 - Google Patents

活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法 Download PDF

Info

Publication number
WO2015055072A1
WO2015055072A1 PCT/CN2014/087046 CN2014087046W WO2015055072A1 WO 2015055072 A1 WO2015055072 A1 WO 2015055072A1 CN 2014087046 W CN2014087046 W CN 2014087046W WO 2015055072 A1 WO2015055072 A1 WO 2015055072A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
carbon dioxide
methane
acetate
oil reservoir
Prior art date
Application number
PCT/CN2014/087046
Other languages
English (en)
French (fr)
Inventor
牟伯中
刘金峰
杨世忠
王立影
孙晓博
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2015055072A1 publication Critical patent/WO2015055072A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to the technical field of reservoir microbial development and utilization, and particularly relates to a technical method for converting CO 2 to methane by using a reservoir microorganism.
  • the reservoir is a basic gathering of several hundred meters to several kilometers underground, with crude oil having the same pressure system in a single trap.
  • the microorganisms in this environment are characterized by many species, many types of metabolism, interrelated, and relatively stable structure. For a particular reservoir, the microorganisms formed a relatively stable community after a long period of evolution.
  • methane-producing bacteria and methane biosynthesis in water-driven reservoirs has become a universally accepted fact.
  • Methanobacterium thermaggregans which has been isolated from undeveloped reservoirs, has the same thermophilic and salt-tolerant properties as the isolated reservoir environment, indicating that methanogens are typical indigenous bacteria in the reservoir.
  • the analysis determines that at least one of the following species of Syntrophomonadaceae or Thermotogaceae exists in the target reservoir fluid, and at least one of the following bacteria is present: Methanobacterium, Methanothermobacter, Methanolinea, Methanospirillum, Methanoculleus;
  • the present invention utilizes the original microorganisms in the reservoir to reduce CO 2 to CH 4 , which is a complex biological reaction process involving multiple organisms, which requires a plurality of microorganisms to work together, and is most likely in the downstream reaction process.
  • the reaction pathway is that acetic acid is oxidized by acetic acid oxidizing bacteria to produce H 2 , and the hydrogen trophic methanogenic bacteria reproduces methane by using H 2 and CO 2 , and the chain reaction is equivalent to the food chain structure of the microorganism.
  • the study found that the limiting step of the chain reaction is mainly the oxidative hydrogen production process of Syntrophus.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法,该方法包括如下步骤:(1)分析确定目标油藏流体中至少存在互营单胞菌或热袍菌中的一种菌,同时存在下列菌中的至少一种:甲烷杆菌,嗜热甲烷杆菌,甲烷绳菌,甲烷螺菌,甲烷囊菌;(2)向油藏中注入乙酸或乙酸盐,使油藏水中乙酸或乙酸盐浓度为5.0~10.0mM;(3)收获甲烷。该方法可以大大提高二氧化碳还原型产甲烷速率,具有经济、简便可行等优点。

Description

活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法 技术领域
本发明涉及油藏微生物开发及利用技术领域,具体涉及利用油藏微生物转化CO2产甲烷的技术方法。
背景技术
油藏是位于地下几百米至数千米、原油在单一圈闭中具有同一压力系统的基本聚集。这种环境中孕育的微生物具有物种多、代谢类型多、互相关联、结构相对稳定等特点。对于特定油藏,经长时间的演化适应,其中的微生物形成了较为稳定的群落。目前,水驱油藏中存在着甲烷生成菌和甲烷生物合成已成为普遍接受的事实。从未开发油藏分离到的产甲烷菌Methanobacterium thermaggregans具有的嗜热和耐盐等特性与所分离的油藏环境具有很好的一致性,说明产甲烷菌是油藏中典型的土著菌。
研究证实,CO2地质埋存是减少CO2排放的有效途径。CO2埋存对环境产生的影响小、成本较低,与国际、国内相关政策、法规具有一致性。研究和实践证明,油气藏,特别是濒临枯竭的油气藏是CO2地质埋存最有利的场所。
研究证实,油藏中具有将CO2转化为甲烷的潜力。油藏发育着多种多样的微生物并形成了相对稳定的微生物群落。油田地层水中一般可分离出不同生理群的微生物如好氧的化能异养菌(如烃氧化菌)和厌氧的发酵菌、硫酸盐还原菌、硝酸盐还原菌和产甲烷菌等。本实验室用克隆文库法分析了中国陆上高温(75℃)水驱油藏产出水样中微生物的群落结构,发现高温油藏中存在丰富的微生物,主要为厚壁菌门(Firmicutes)、热袍菌门(Thermotogae)的细菌,氢营养型(Methanomicrobiales,Methanococcale,Methanobacteriales)和乙酸营养型产甲烷菌(Methanosarcinales)等古菌。油藏中发现的产甲烷菌主要包括甲烷杆菌和甲烷八叠球菌,甲烷杆菌中典型菌为布氏甲烷杆菌(M.bryantii)和甲酸甲烷杆菌(M.formicicum),两者均能利用CO2/H2产甲烷。
油藏中微生物活性低,自然状态下CO2生物转化为甲烷的速率较低。由 于油藏中营养物质匮乏,微生物数量一般较低。Knapp等对Oklahoma州Payne县SEVVSU油田单元油藏中的微生物进行了研究,发现其中产甲烷菌数量仅为2~46个细胞/ml。同样,在Romashkino油田302单元地层中发酵菌浓度约为102~104个细胞/ml,甲烷生成菌浓度约为1~102个细胞/ml。Romashkino油田甲烷主要由重碳酸盐产生,速率为0.0126~0.2786ml CH4·L-1·天-1。西伯利亚Mamontovskoe高温油田在注水井井底区域,甲烷通过HCO3 -和乙酸盐合成,速率为0.0327~5.3130ml CH4·L-1·天-1;在与生产井相连的区域,甲烷主要通过乙酸盐合成,速率为0.0041~0.1291ml CH4·L-1·天-1。由上可见,无论地下油藏条件还是实验室条件,油藏中微生物均具有将CO2生物转化为甲烷的能力,但由于自然条件下油藏微生物浓度低、代谢活性低,CO2生物转化的速率很低,不能满足实际需求。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可以大大提高二氧化碳还原型产甲烷速率、经济简便可行的活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法。
本发明的目的可以通过以下技术方案来实现:一种活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法,其特征在于,该方法包括如下步骤:
(1)分析确定目标油藏流体中至少存在互营单胞菌(Syntrophomonadaceae)或热袍菌(Thermotogaceae)中的一种菌,同时存在下列菌中的至少一种:甲烷杆菌(Methanobacterium),嗜热甲烷杆菌(Methanothermobacter),甲烷绳菌(Methanolinea),甲烷螺菌(Methanospirillum),甲烷囊菌(Methanoculleus);
(2)向油藏中注入乙酸或乙酸盐,使油藏水中乙酸或乙酸盐浓度为5.0~10.0mM;
(3)收获甲烷。
步骤(2)所述的乙酸盐浓度较佳为6.8mM,所述的乙酸盐包括但不限于乙酸盐钠、乙酸钾。
步骤(3)所述的收获甲烷由注入井收获或从采油井收获。
步骤(1)分析确定目标油藏流体中互营单胞菌(Syntrophomonadaceae) 或热袍菌(Thermotogaceae)、甲烷杆菌(Methanobacterium),嗜热甲烷杆菌(Methanothermobacter),甲烷绳菌(Methanolinea),甲烷螺菌(Methanospirillum),甲烷囊菌(Methanoculleus),可采用文献[International Biodeterioration&Biodegradation]2011年第65期444-450页报道的16S rDNA方法进行分析鉴定。
与现有技术相比,本发明利用油藏中的本源微生物将CO2还原成CH4是多生物参与的复杂生物反应过程,需要多种微生物共同作用才能完成,在下游反应过程中,最可能的反应途径是乙酸被乙酸氧化菌类氧化产生H2,氢营养型的产甲烷菌再利用H2和CO2产生甲烷,此种链式反应情况相当于微生物的食物链结构。研究发现,该链式反应的限制性步骤主要是共生菌(Syntrophus)氧化产氢过程。本发明通过注入短链有机酸盐,刺激互营单胞菌(Syntrophomonadaceae)或/和热袍菌(Thermotogaceae)生长代谢,进而激活下游二氧化碳还原型产甲烷菌,由此提高了还原CO2产甲烷的速率。本发明可以大大提高二氧化碳还原型产甲烷速率,具有经济、简便可行等优点。
附图说明
图1为乙酸钠对产甲烷上游细菌菌群的影响;
图2为乙酸钠对产甲烷菌组成的影响。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
分析大庆油田某区块产出液中含有互营单胞菌(Syntrophomonadaceae)和热袍菌(Thermotogaceae)以及嗜热甲烷杆菌(Methanothermobacter),以该产出液配制2个培养体系(体系组成见表1~3),55℃下培养180天,体系都没有检测到CH4,表明体系中产甲烷菌活性很低。然后,其中一个体系保持不变,另外一个体系加入0.41g(5mM)乙酸钠,培养12天,在两体系中均检测到了CH4,培养120天后两体系中CH4含量分别为18.3mmol/L(添加乙酸钠)和2.7mmol/L(未添加乙酸钠)。2个体系群落分析见图1和图2。由图1可见,互营单胞菌(Syntrophomonadaceae)丰度由20%(未添加乙酸 钠体系)提高到57%(添加乙酸钠体系)。由图2可见,产甲烷菌Methanothermobacter丰度由52%(未添加乙酸钠体系)提高到98%(添加乙酸钠体系)。表明加入乙酸钠后参与CO2转化产CH4过程或与之密切相关的微生物被激活了或丰度增大了,菌群向有利于还原CO2产甲烷方向演变,同时甲烷产率提高近7倍。
实施例2
分析华北油田某区块产出液中含有9.5%互营单胞菌(Syntrophomonadaceae)及18.3%甲烷杆菌(Methanobacterium)和10.8%甲烷绳菌(Methanolinea),以该产出液配制2个培养体系(体系组成见表1~3),38℃下培养100天,两个体系都没有检测到CH4,表明体系中产甲烷菌活性很低。然后保持一个体系不变,在另一个体系中加入0.56g(6.8mM)乙酸钠,继续培养33天后在两体系中检测到了CH4,培养75天后两体系中CH4含量分别为4.7mmol/L(未添加乙酸钠)和22.4mmol/L(添加乙酸钠)。体系中互营单胞菌(Syntrophomonadaceae)丰度由20%(未添加乙酸钠体系)提高到57%(添加乙酸钠体系),甲烷杆菌(Methanobacterium)和甲烷绳菌(Methanolinea)分别由未添加乙酸钠体系的18.3%和10.8%提高至添加乙酸钠体系的33.7%和12.2%。
实施例3
分析新疆油田某区块产出液中含有15.7%的互营单胞菌(Syntrophomonadaceae)和9.6%的热袍菌(Thermotogaceae)以及23.2%的嗜热甲烷杆菌(Methanobacterium)和13.7%的甲烷囊菌(Methanoculleus),以该产出液配制2个培养体系(体系组成见表1~3),21℃下培养64天,两个体系都没有检测到CH4,表明体系中产甲烷菌活性很低。然后保持一个体系不变,在另一个体系中加入0.98g(10mM)乙酸钾,继续培养23天,在两体系中均检测到了CH4,培养143天后两体系中CH4含量分别为3.2mmol/L(未添加乙酸钾体系)和37.2mmol/L(添加乙酸钾体系)。体系中互营单胞菌(Syntrophomonadaceae)丰度由15.7%(未添加乙酸钾体系)提高到37.6%(添加乙酸钾体系),热袍菌(Thermotogaceae)分别为9.6%(未添加乙酸钾体系)和10.2%(添加乙酸钾体系)。嗜热甲烷杆菌(Methanobacterium)由23.2%(未添加乙酸钾体系)提高至45.0%(添加乙酸钾体系),甲烷囊菌(Methanoculleus) 由13.7%(未添加乙酸钾体系)提高至28.6%(添加乙酸钾体系)。
表1 培养体系组成
Figure PCTCN2014087046-appb-000001
表2 维生素
Figure PCTCN2014087046-appb-000002
表3 微量元素
Figure PCTCN2014087046-appb-000003

Claims (4)

  1. 一种活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法,其特征在于,该方法包括如下步骤:
    (1)分析确定目标油藏流体中至少存在互营单胞菌(Syntrophomonadaceae)或热袍菌(Thermotogaceae)中的一种菌,同时存在下列菌中的至少一种:甲烷杆菌(Methanobacterium),嗜热甲烷杆菌(Methanothermobacter),甲烷绳菌(Methanolinea),甲烷螺菌(Methanospirillum),甲烷囊菌(Methanoculleus);
    (2)向油藏中注入乙酸或乙酸盐,使油藏水中乙酸或乙酸盐浓度为5.0~10.0mM;
    (3)收获甲烷。
  2. 根据权利要求1所述的活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法,其特征在于,步骤(2)所述的乙酸盐浓度为6.8mM,所述的乙酸盐包括但不限于乙酸盐钠、乙酸钾。
  3. 根据权利要求1所述的活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法,其特征在于,步骤(3)所述的收获甲烷由注入井收获或从采油井收获。
  4. 根据权利要求1所述的活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法,其特征在于,步骤(1)分析确定目标油藏流体中互营单胞菌(Syntrophomonadaceae)或热袍菌(Thermotogaceae)、甲烷杆菌(Methanobacterium),嗜热甲烷杆菌(Methanothermobacter),甲烷绳菌(Methanolinea),甲烷螺菌(Methanospirillum),甲烷囊菌(Methanoculleus),采用文献[International Biodeterioration&Biodegradation]2011年第65期444-450页报道的16S rDNA方法进行分析鉴定。
PCT/CN2014/087046 2013-10-14 2014-09-22 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法 WO2015055072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310479743.7A CN103670347B (zh) 2013-10-14 2013-10-14 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法
CN201310479743.7 2013-10-14

Publications (1)

Publication Number Publication Date
WO2015055072A1 true WO2015055072A1 (zh) 2015-04-23

Family

ID=50309037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087046 WO2015055072A1 (zh) 2013-10-14 2014-09-22 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法

Country Status (2)

Country Link
CN (1) CN103670347B (zh)
WO (1) WO2015055072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929420A (zh) * 2017-04-12 2017-07-07 临沂大学 一种降解石油烃的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013939A (zh) * 2016-07-07 2016-10-12 四川大学 地下城市
CN106544369B (zh) * 2016-10-11 2020-03-17 华东理工大学 促进油藏微生物转化co2产甲烷的方法
CN108424947A (zh) * 2018-03-15 2018-08-21 华东理工大学 一种利用微生物还原co2同时产甲烷和乙酸的方法
CN110317835A (zh) * 2018-03-30 2019-10-11 中国石油化工股份有限公司 一种强化产甲烷菌转化co2合成甲烷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113784A1 (en) * 2004-05-12 2005-12-01 Luca Technologies, Llc Generation of hydrogen from hydrocarbon-bearing materials
CN1988971A (zh) * 2004-05-28 2007-06-27 纽卡斯尔大学 刺激从地层石油产生氢的方法
CN1988970A (zh) * 2004-05-28 2007-06-27 纽卡斯尔大学 刺激从地层石油产生甲烷的方法
CN101818634A (zh) * 2010-04-23 2010-09-01 中国石油化工股份有限公司 一种采油用微生物群落调控方法
CN102329768A (zh) * 2011-09-19 2012-01-25 华东理工大学 用于油藏残余油气化开采的菌群构建方法
CN102900407A (zh) * 2012-10-10 2013-01-30 中国石油化工股份有限公司 一种利用co2驱后油藏残余co2转化甲烷的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543535B2 (en) * 2000-03-15 2003-04-08 Exxonmobil Upstream Research Company Process for stimulating microbial activity in a hydrocarbon-bearing, subterranean formation
RU2488636C2 (ru) * 2008-05-12 2013-07-27 Синтетик Дженомикс, Инк. Способы стимуляции биогенного продуцирования метана в углеводородсодержащих пластах
NZ603129A (en) * 2010-04-21 2014-05-30 Ciris Energy Inc Solubilization of carbonaceous materials and conversion to hydrocarbons and other useful products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113784A1 (en) * 2004-05-12 2005-12-01 Luca Technologies, Llc Generation of hydrogen from hydrocarbon-bearing materials
CN1988971A (zh) * 2004-05-28 2007-06-27 纽卡斯尔大学 刺激从地层石油产生氢的方法
CN1988970A (zh) * 2004-05-28 2007-06-27 纽卡斯尔大学 刺激从地层石油产生甲烷的方法
CN101818634A (zh) * 2010-04-23 2010-09-01 中国石油化工股份有限公司 一种采油用微生物群落调控方法
CN102329768A (zh) * 2011-09-19 2012-01-25 华东理工大学 用于油藏残余油气化开采的菌群构建方法
CN102900407A (zh) * 2012-10-10 2013-01-30 中国石油化工股份有限公司 一种利用co2驱后油藏残余co2转化甲烷的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929420A (zh) * 2017-04-12 2017-07-07 临沂大学 一种降解石油烃的方法

Also Published As

Publication number Publication date
CN103670347A (zh) 2014-03-26
CN103670347B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Nakasaki et al. Characterizing the microbial community involved in anaerobic digestion of lipid-rich wastewater to produce methane gas
Suksong et al. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion
Dong et al. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation
Gurung et al. Evaluation of marine biomass as a source of methane in batch tests: a lab-scale study
Luo et al. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process
Zhang et al. Degradation and transformation of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) during two-stage anaerobic digestion with waste sludge
Kumar et al. Hydrogen fermentation of different galactose–glucose compositions during various hydraulic retention times (HRTs)
Mottet et al. Anaerobic digestion of marine microalgae in different salinity levels
Khadem et al. Effect of humic acids on the activity of pure and mixed methanogenic cultures
Menon et al. Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids
Shen et al. Simultaneous carbon dioxide reduction and enhancement of methane production in biogas via anaerobic digestion of cornstalk in continuous stirred-tank reactors: The influences of biochar, environmental parameters, and microorganisms
WO2015055072A1 (zh) 活化油藏中产甲烷菌转化二氧化碳生产甲烷的方法
Juang et al. Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process
Liu et al. Effects of adding osmoprotectant on anaerobic digestion of kitchen waste with high level of salinity
Wang et al. Establishing practical strategies to run high loading corn stover anaerobic digestion: Methane production performance and microbial responses
Wu et al. Effects of potassium, magnesium, zinc, and manganese addition on the anaerobic digestion of de-oiled grease trap waste
Kumar et al. Biogenic H2 production from mixed microalgae biomass: impact of pH control and methanogenic inhibitor (BESA) addition
Zou et al. Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures
CN107387044A (zh) 一种利用煤层本源真菌提高生物煤层气产量的方法
Xiaolong et al. Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge
Zhang et al. Enhancing methane production from algae anaerobic digestion using diatomite
CN103060245B (zh) 一种利用煤层有机杂质制取生物煤层气的复合微生物菌剂及其应用
Zhu et al. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia
Xu et al. Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion
Wanqin et al. Effects of Fe2+ on the anaerobic digestion of chicken manure: a batch study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853818

Country of ref document: EP

Kind code of ref document: A1