WO2015053232A1 - Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element - Google Patents

Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element Download PDF

Info

Publication number
WO2015053232A1
WO2015053232A1 PCT/JP2014/076725 JP2014076725W WO2015053232A1 WO 2015053232 A1 WO2015053232 A1 WO 2015053232A1 JP 2014076725 W JP2014076725 W JP 2014076725W WO 2015053232 A1 WO2015053232 A1 WO 2015053232A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
crystal aligning
polymerizable compound
Prior art date
Application number
PCT/JP2014/076725
Other languages
French (fr)
Japanese (ja)
Inventor
亮一 芦澤
耕平 後藤
悟志 南
正人 森内
勇太 川野
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020167011735A priority Critical patent/KR102351459B1/en
Priority to JP2015541573A priority patent/JP6418401B2/en
Priority to CN201480066711.7A priority patent/CN105814478B/en
Publication of WO2015053232A1 publication Critical patent/WO2015053232A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain

Definitions

  • the present invention relates to a liquid crystal alignment agent used when producing a liquid crystal alignment film, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, polyester.
  • the film is rubbed in one direction with a cloth such as a so-called rubbing process, and the alignment is imparted to the liquid crystal alignment film by the rubbing process.
  • a photo-alignment method is known as one of the techniques that do not perform rubbing treatment (see, for example, Patent Document 1).
  • the photo-alignment method irradiates the liquid crystal alignment film with polarized ultraviolet rays to cause a polymer contained in the liquid crystal alignment film to undergo a photoisomerization reaction, a photodimerization reaction, and the like, thereby imparting an alignment ability to the liquid crystal alignment film.
  • the optical alignment method is applied to liquid crystal display elements of IPS (In-Plane Switching) and FFS (Fringe Field Switching) as demands for higher definition and higher quality of liquid crystal display elements increase. (For example, refer to Patent Document 2).
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • the VA (vertical) method is known as another technique that does not perform the rubbing process.
  • the VA method includes an MVA (Multi Vertical Alignment) method in which protrusions for controlling the direction in which the liquid crystal is tilted are formed on the TFT substrate or the color filter substrate, and a direction in which the liquid crystal is tilted by forming an slit in the ITO electrode of the substrate.
  • MVA Multi Vertical Alignment
  • a PVA (Patterned Vertical Alignment) method and a PSA method to be controlled are known.
  • the PSA system is a technology that has attracted attention in recent years.
  • a polymerizable compound that is polymerized by light or heat is added to a liquid crystal, and after the liquid crystal cell is produced, UV is irradiated in a state where the liquid crystal is tilted while applying an electric field. Thereby, the polymerizable compound is polymerized or crosslinked, and the liquid crystal is aligned in the tilt direction.
  • this PSA method it is possible to operate even in a structure in which a slit is formed in one electrode constituting a liquid crystal cell, and a protrusion such as MVA or a slit such as PVA is not provided in the opposite electrode pattern ( For example, see Patent Document 3).
  • the response speed of the liquid crystal display device is increased by adding the polymerizable compound to the liquid crystal alignment film instead of the liquid crystal composition (see, for example, Non-Patent Document 1).
  • the solubility of the polymerizable compound added to the liquid crystal aligning agent is low, and there is a problem in storage stability such that the polymerizable compound is precipitated during storage of the liquid crystal aligning agent.
  • the amount of UV irradiation is increased in order to reduce the unreacted polymerizable compounds, the liquid crystals and members caused by the ultraviolet rays are increased.
  • damage is increased and the reliability of the liquid crystal display element is lowered.
  • the present invention provides a liquid crystal aligning agent having improved solubility of a polymerizable compound and a highly sensitive alignment fixing ability, a liquid crystal alignment film obtained from the liquid crystal aligning agent, and a liquid crystal display element. For the purpose.
  • the present inventor has a polymerizable unsaturated bond group, a functional group capable of hydrogen bonding, and at least one aromatic ring in the vicinity of the functional group, and the functional group is hydrogenated between molecules.
  • the present inventors have found that a liquid crystal aligning agent containing a polymerizable compound that forms a mesogen structure by forming a bond is extremely effective for achieving the above object, and has completed the present invention.
  • the gist of the present invention is as follows.
  • a liquid crystal aligning agent comprising a ring, wherein the functional group forms a mesogen structure by forming a hydrogen bond between molecules.
  • liquid crystal aligning agent according to the above (1) or (2), wherein the polymerizable compound is at least one selected from the following formulas [1-1] to [1-4] .
  • T is an ether, ester, amide bond
  • S is an alkylene group having 2 to 11 carbon atoms
  • R is a hydrogen atom or a methyl group
  • n 1 or 2
  • liquid crystal aligning agent according to any one of the above (1) to (4), wherein the polymer has a group for vertically aligning liquid crystals in a side chain.
  • a liquid crystal display device comprising the liquid crystal alignment film according to (11).
  • a liquid crystal display device comprising the liquid crystal alignment film according to (13).
  • the solubility of the polymerizable compound is improved, and a liquid crystal aligning agent having a highly sensitive alignment fixing ability, A liquid crystal alignment film and a liquid crystal display element obtained from the liquid crystal aligning agent are realized.
  • the liquid crystal aligning agent of this invention contains a polymeric compound.
  • the polymerizable compound has a polymerizable unsaturated bond group, a hydrogen bonding functional group, and at least one aromatic ring in the vicinity of the functional group, and the hydrogen bonding functional group forms a hydrogen bond between molecules. This forms a mesogenic structure.
  • the polymerizable unsaturated bond group refers to an ethylenically unsaturated double bond group that contributes to photopolymerization or photocrosslinking reaction by stimulation with heat, ultraviolet rays or the like.
  • Specific examples include radical polymerizable groups such as vinyl group, (meth) acryloyl group and isopropenyl group, allyl group, styryl group, and ⁇ -methylene- ⁇ -butyllactone group.
  • the hydrogen bond according to the present invention is a solvent for a liquid crystal aligning agent because of a bias of electrons caused by a difference in electronegativity between a hydrogen atom in a functional group and an atom having high electronegativity adjacent to the hydrogen atom.
  • the functional group capable of hydrogen bonding refers to a group that forms hydrogen bonds between molecules in a liquid crystal alignment film or in a solvent of a liquid crystal alignment agent.
  • Such a functional group capable of hydrogen bonding mainly forms a dimer between molecules in a liquid crystal alignment film or a solvent of a liquid crystal alignment agent. Since such a polymerizable compound has a highly polar group such as a carboxyl group and a hydroxyl group, the solubility is very high as compared with a normal polymerizable compound. For this reason, the solubility of the polymerizable compound in the solvent is improved, and precipitation of the polymerizable compound hardly occurs even when the liquid crystal aligning agent is stored (for example, frozen storage).
  • the functional group capable of hydrogen bonding forms a mesogenic structure by forming a hydrogen bond between molecules.
  • the mesogenic structure means a rigid structure for exhibiting liquid crystallinity.
  • the functional group capable of hydrogen bonding is not particularly limited, and examples thereof include a carboxyl group, a hydroxyl group, a urea group, an amide group, and an imide group. Among these, a carboxyl group is preferable in view of easy formation of a dimer.
  • the mesogenic structure is formed together with the functional group by being positioned in the vicinity of the functional group to be hydrogen bonded. Since these mesogenic structures have pseudo-huge mesogenic structures, conjugation is widened, and absorption is performed up to the ultraviolet region (for example, up to 365 nm) on the long wavelength side. For this reason, the sensitivity becomes high even for ultraviolet irradiation with a long wavelength, and the alignment can be fixed even with ultraviolet irradiation with weak energy.
  • aromatic ring examples include hydrocarbon aromatic rings such as benzene ring, naphthalene ring and anthracene ring, and heteroaromatic rings such as pyridine ring, pyrazine ring and pyrrole ring.
  • the number of aromatic rings is not particularly limited and is preferably 1 to 4. These aromatic rings may have a substituent.
  • Examples of the polymerizable compound described above include polymerizable compounds having a carboxyl group and represented by the above formulas [1-1] to [1-4] and the above formulas [2-1] to [2-6]. Is mentioned. Since the difference in electronegativity between the hydrogen atom of the carboxyl group and the oxygen atom adjacent to this hydrogen atom is large, by using these polymerizable compounds, a dimer is formed through a stronger hydrogen bond between molecules. Is formed. Since the molecule of such a polymerizable compound is very small, each molecule of the dimer is also very small. Thereby, the solubility of the polymerizable compound in the solvent is further improved, and the sensitivity of the liquid crystal alignment film to light is further increased.
  • the polymerizable compounds represented by the above formulas [1-1] to [1-4] and the above formulas [2-1] to [2-6] have a mesogenic structure in the vicinity of the carboxyl group together with the carboxyl group. Having two or more aromatic rings. Thereby, the sensitivity with respect to the light of a liquid crystal aligning film becomes still higher, and alignment fixing ability improves more.
  • addition ratio of the polymerizable compound added to the liquid crystal aligning agent may be, for example, 0.1 to 30 (mass)% of the polymerizable compound with respect to the liquid crystal aligning agent.
  • a liquid crystal aligning agent is used in order to produce a liquid crystal aligning film, and contains the said polymeric compound, a polymer, and a solvent.
  • the liquid crystal aligning agent of the present invention is 1) a vertical alignment type produced by irradiating ultraviolet rays while applying a voltage to a liquid crystal cell, that is, a liquid crystal display element of a vertical electric field driving type, or 2) polarized ultraviolet rays ( After passing through the step of irradiating polarized ultraviolet rays, a liquid crystal cell is produced, and the liquid crystal cell is produced by irradiating the ultraviolet rays with an IPS method (In-Plane Switching) or FFS method (Fringe Field Switching). It is used for a liquid crystal display element of a system, that is, a horizontal electric field drive system.
  • a liquid crystal aligning agent used in a vertical alignment type liquid crystal display element contains a polymer having a side chain having a group for vertically aligning a liquid crystal as a polymer. Further, these polymers may have a photoreactive group or a photoradical generating group in the side chain. When a polymer having such a photoreactive group or photoradical generating group in the side chain is used, photopolymerization or photocrosslinking reaction due to ultraviolet irradiation is more likely to occur, and the alignment and fixing ability is improved.
  • the liquid crystal aligning agent when used in a horizontal alignment type liquid crystal display element may have a photoreactive group as a polymer.
  • a photoreactive group By having a photoreactive group, a photoreaction such as a photoisomerization reaction caused by irradiation with polarized ultraviolet rays occurs, and the liquid crystal alignment film is imparted with a horizontal alignment ability even without a rubbing treatment (so-called photoalignment).
  • photoalignment a group for vertically aligning the liquid crystal, a photopolymerizable group, and a photoreactive group will be described.
  • the polymer contained in the liquid crystal aligning agent has a group for vertically aligning the liquid crystal in the side chain.
  • the group for aligning the liquid crystal vertically is a group having the ability to align liquid crystal molecules vertically with respect to the substrate, and the structure is not particularly limited as long as it has this ability.
  • Examples of the group for vertically aligning the liquid crystal include a linear alkyl group, a linear fluoroalkyl group, a cyclic group having an alkyl group or a fluoroalkyl group at the terminal, and a steroid group. Specific examples include groups represented by the following formula [5].
  • R 1 represents an alkylene group having 2 to 6, preferably 2 to 4 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms. (—C—C—O—) is represented. Among these, from the viewpoint of easy synthesis, —O—, —COO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms is preferable.
  • R 2 , R 3 and R 4 each independently represent a phenylene group or a cycloalkylene group. The combination of a, b, c, R 2 , R 3 and R 4 shown in Table 1 is preferable from the viewpoint of ease of synthesis and ability to orient the liquid crystal vertically.
  • R 5 represents a hydrogen atom, an alkyl group having 2 to 24 carbon atoms, preferably 5 to 8 carbon atoms or a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or a macrocyclic group composed of these.
  • the structure of R 5 is preferably a hydrogen atom, an alkyl group having 2 to 14 carbon atoms, or a fluorine-containing alkyl group having 2 to 14 carbon atoms, and more It preferably represents a hydrogen atom, an alkyl group having 2 to 12 carbon atoms, preferably 2 to 10 carbon atoms, or a fluorine-containing alkyl group.
  • R 5 is preferably an alkyl group or a fluorine-containing alkyl group having 12 to 22 carbon atoms, preferably 12 to 20 carbon atoms, an aromatic ring, an aliphatic ring, a hetero ring.
  • the side chain of the group that orients the liquid crystal vertically may be directly bonded to the main chain of the polymer, or may be bonded through an appropriate bonding group.
  • the method for introducing the group for vertically aligning the liquid crystal into the side chain is not particularly limited.
  • the amount of the group that vertically aligns the liquid crystal is preferably within a range in which the alignment can be fixed, and other characteristics are not affected in order to further improve the sensitivity to light and the alignment fixing ability. In the range, as much as possible is preferable.
  • the polymer contained in the liquid crystal aligning agent of the present invention may further have a photopolymerizable group in the side chain.
  • the photopolymerizable group is a group that undergoes a polymerization reaction by light such as ultraviolet rays, for example, a group that is polymerized by light such as ultraviolet rays (hereinafter also referred to as a photopolymerizable group) or a photocrosslinkable group (hereinafter also referred to as a photocrosslinkable group).
  • at least one selected from the photopolymerizable groups represented by the above formulas [3-1] to [3-7] is preferably used.
  • a liquid crystal aligning film obtained using a liquid crystal aligning agent containing such a polymer contains a photopolymerizable group.
  • a liquid crystal display element containing a photopolymerizable group in the liquid crystal alignment film is irradiated with light such as ultraviolet rays, the photopolymerizable group located on the surface where the liquid crystal alignment film and the liquid crystal are in contact with each other, or the polymerizable property of the above-described polymerizable compound
  • the unsaturated bonding group causes photopolymerization or photocrosslinking reaction, and the alignment of the liquid crystal positioned on the surface of the liquid crystal alignment film is more efficiently fixed.
  • the photopolymerizable group introduced into the side chain of the polymer is a methacryl group, an acrylic group, a vinyl group, an allyl group, a styryl group, or an ⁇ -methylene- ⁇ -butyrolactone group.
  • a side chain containing at least one selected from is preferred.
  • Such a photopolymerizable side chain may be directly bonded to the main chain of the polymer, or may be bonded through an appropriate bonding group.
  • the method for introducing the photopolymerizable side chain is not particularly limited.
  • Examples of the photopolymerizable side chain include those represented by the following formula [6].
  • R 6 represents a single bond or —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N ( CH 3 ) —, —CON (CH 3 ) —, —N (CH 3 ) CO—
  • R 7 is a single bond, unsubstituted or substituted with a fluorine atom, having 1 to 20 represents an alkylene group, and —CH 2 — in the alkylene group may be optionally replaced by —CF 2 — or —CH ⁇ CH—, and when any of the following groups is not adjacent to each other: These groups may be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocycle, and a divalent heterocycle.
  • R 8 represents a methacryl group, an acryl group, a
  • R 6 in the above formula [6] can be formed by a general organic synthetic method, but from the viewpoint of ease of synthesis, —CH 2 —, —O—, —COO—, —NHCO —, —NH— and —CH 2 O— are preferred.
  • divalent carbocycle or divalent heterocycle carbocycle or heterocycle for replacing any —CH 2 — in R 7 include the following structures, but are not limited thereto. Is not to be done.
  • R 8 is preferably a methacryl group, an acryl group, a vinyl group or an ⁇ -methylene- ⁇ -butyrolactone group from the viewpoint of photopolymerization.
  • the abundance of the photopolymerizable side chain is preferably within a range where the alignment can be fixed by reacting with irradiation of light such as ultraviolet rays to form a covalent bond, and the sensitivity to light and the alignment fixing ability are further improved. In order to achieve this, as much as possible is preferable as long as other characteristics are not affected.
  • the polymer containing the liquid crystal aligning agent is a photoreaction that exhibits liquid crystal alignment ability by using polarized ultraviolet rays. It is preferable that a sex group is introduced.
  • Photoreaction includes photodimerization and photoisomerization.
  • photoreactive group those having an unsaturated bond, particularly a double bond, are preferable, and examples thereof include an acrylic group, a vinyl group, a methacryl group, an anthracenyl group, a calconyl group, a coumarin group, a stilbene group, a maleimide group, and a cinnamoyl group. It is done.
  • examples of the structure in which the photodimerization reaction proceeds include structures represented by the above formulas [4-1] to [4-3].
  • examples of the structure in which the photoisomerization reaction proceeds include structures represented by the above formulas [4-4] and [4-5].
  • the photoreactive group having a structure selected from the above formulas [4-1] to [4-5] refers to any number of H from the structures of the formulas [4-1] to [4-5].
  • Such a photoreactive group may be introduced into the main chain of the polymer or may be introduced into the side chain.
  • the method for introducing the photoreactive group is not particularly limited.
  • the polymer may have a group that vertically aligns the liquid crystal together with the photoreactive group.
  • the abundance of the photoreactive group is preferably within a range where the photoreaction can be caused and the orientation can be fixed. In order to further improve the sensitivity to light and the ability to fix the orientation, other properties are affected. As much as possible is preferable as long as it does not come out.
  • polysiloxane and poly (meth) acrylate are preferably used in addition to a polyimide precursor and a polyimide obtained by imidizing it.
  • the polyimide precursor refers to polyamic acid (also referred to as polyamic acid) or polyamic acid ester.
  • these different polymers may be simultaneously contained in the liquid crystal aligning agent, and the content ratio thereof is variously selected according to the characteristics of the liquid crystal display element.
  • the total amount of the polymer contained in the liquid crystal aligning agent is preferably 0.1 to 20 (mass)%.
  • the polyimide precursor, polyimide, polymer such as polysiloxane and poly (meth) acrylate contained in the liquid crystal aligning agent of the present invention needs to be soluble in the solvent contained in the liquid crystal aligning agent.
  • Each polymer will be described below.
  • a polyimide precursor has a repeating unit (structural unit) represented, for example by following formula [7].
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
  • X 2 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include the following formulas [X-1] to [X-43]. From the viewpoint of liquid crystal orientation, X 2 is preferably [X-1] to [X-10], [X-26] to [X-28], or [X-31] to [X-37].
  • R 2 , R 3 , R 4 , and R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. , An alkenyl group, or a phenyl group.
  • R 2 , R 3 , R 4 and R 5 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably At least one selected from the group consisting of structures represented by [X1-1] to [X1-2].
  • X 2 When the liquid crystal aligning agent of the present invention is used in a liquid crystal display device produced by irradiating polarized ultraviolet rays, preferred structures of X 2 include [X1-1], [X1-2], [X-2] , [X-3], [X-5], [X-6], [X-7], [X-8], [X-9], [X-10], and [X1-1] ], [X1-2] and [X-6] are particularly preferred.
  • Y 2 is a divalent organic group, the structure thereof is not particularly limited. Specific examples of Y 2 include the following formulas [Y-1] to [Y-73].
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention has a diamine component (for example, a diamine having a side chain for vertically aligning a liquid crystal described later, a diamine having a photopolymerizable side chain, or a photoreactive group.
  • a diamine such as a diamine
  • a tetracarboxylic dianhydride component for example, tetracarboxylic dianhydride, tetracarboxylic diester dichloride, tetracarboxylic diester, etc. described later.
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • a polyamic acid is obtained by reaction of a diamine component and tetracarboxylic dianhydride.
  • the polyamic acid ester can be obtained by reacting the diamine component and tetracarboxylic acid diester dichloride in the presence of a base, or reacting the diamine component and tetracarboxylic acid diester in the presence of a suitable condensing agent or base.
  • Polyimide can be obtained by dehydrating and ring-closing this polyamic acid or by heating and ring-closing the polyamic acid ester. Any of such polyamic acid, polyamic acid ester, and polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
  • Examples of the diamine having a side chain for vertically aligning the liquid crystal include a long chain alkyl group, a group having a ring structure or a branched structure in the middle of the long chain alkyl group, a hydrocarbon group such as a steroid group, and the hydrogen of these groups.
  • a diamine having a group in which a part or all of the atoms are replaced with fluorine atoms as a side chain for example, a diamine having a side chain represented by the above formula [5] can be mentioned.
  • diamines having a hydrocarbon group having 8 to 30 carbon atoms, in which hydrogen atoms may be substituted with fluorine and diamines represented by the following formulas [8] to [11] are exemplified.
  • the present invention is not limited to this.
  • a 10 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • a 11 represents a single bond or a phenylene group
  • a 10 represents the same structure as the side chain for vertically aligning the liquid crystal represented by the above formula [5]
  • a 10 ′ represents the above formula [5]. (This represents a divalent group having a structure in which one element such as hydrogen is removed from the same structure as the side chain for vertically aligning the liquid crystal.)
  • a 14 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 15 is a 1,4-cyclohexylene group, or 1,4- A phenylene group
  • a 16 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 15 )
  • a 17 is an oxygen atom or —COO — * ( However, bond marked with "*” is (CH 2) binds to a 2.) is.
  • a 1 is 0, or an integer 1
  • a 2 is an integer from 2 to 10
  • a 3 is 0 or an integer of 1.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [8] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • a 1 is an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group.
  • a 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • 3 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • a 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or —CH 2 —
  • a 5 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • a 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O—, or —NH—
  • a 7 represents fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy Group or hydroxyl group.
  • a 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .
  • a 9 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .
  • diamine represented by the formula [9] include diamines represented by the following formulas [A-25] to [A-30], but are not limited thereto.
  • a 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—
  • a 13 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • diamine represented by the formula [10] include diamines represented by the following formulas [A-31] to [A-32], but are not limited thereto.
  • the above-mentioned diamines can be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is used.
  • the photopolymerizable side chain may be introduce
  • the diamine having a photopolymerizable side chain includes at least one selected from a methacryl group, an acryl group, a vinyl group, an allyl group, a styryl group, and an ⁇ -methylene- ⁇ -butyrolactone group, and includes, for example, the above formula [6]
  • the bonding position of the two amino groups (—NH 2 ) in the formula [12] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • diamine having a photopolymerizable side chain containing at least one selected from a methacryl group, an acryl group, a vinyl group, an allyl group, a styryl group, and an ⁇ -methylene- ⁇ -butyrolactone group are as follows. However, it is not limited to this.
  • R 6 represents a group selected from —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—.
  • R 7 represents An alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are a fluorine atom or .
  • R 7 is in the if any of the following groups not adjacent to each other, -CH 2 - may be replaced by these groups; -O- , —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—, R 8 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, R 9 represents a single bond, R 9 represents a cinnamoyl group, R 10 represents a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic ring or a heterocyclic ring, One or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocyclic ring may be replaced with a fluorine atom or an organic group, and R 10 may be any of the following groups adjacent to each other:
  • X is a single bond, or a bonding group selected from —O—, —COO—, —NHCO—, —NH—, Y is a single bond, unsubstituted or substituted with a fluorine atom, Represents 20 alkylene groups.
  • the diamine having a photopolymerizable side chain containing at least one selected from the methacryl group, acryl group, vinyl group, allyl group, styryl group and ⁇ -methylene- ⁇ -butyrolactone group is a liquid crystal alignment film.
  • sensitivity to light, pretilt angle, voltage holding characteristics, accumulated charge characteristics, liquid crystal display response speed, etc. You can also.
  • such a diamine having a photopolymerizable side chain containing at least one selected from a methacryl group, an acrylic group, a vinyl group, an allyl group, a styryl group, and an ⁇ -methylene- ⁇ -butyrolactone group is a polyamic acid. It is preferable to use an amount that is 10 to 70 mol% of the total amount of diamine components used in the synthesis, more preferably 20 to 60 mol%, and particularly preferably 30 to 50 mol%.
  • a photoreactive group is introduced into the diamine component that is a raw material for the polyimide precursor contained in the liquid crystal aligning agent. It is preferable.
  • the structure of the above formulas [4-1] to [4-5] is contained in the main chain or side chain.
  • a method using tetracarboxylic dianhydride or diamine it is preferable to use a diamine containing the structure of the above formulas [4-1] to [4-5] in the side chain from the viewpoint of ease of synthesis.
  • the side chain of diamine is a structure branched from a structure connecting two amino groups of diamine. Specific examples of such diamines include, but are not limited to, compounds represented by the following formula.
  • X is a single bond or a linking group selected from —O—, —COO—, —NHCO—, —NH—, Y is a single bond, or carbon that is unsubstituted or substituted by a fluorine atom.
  • R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms which is unsubstituted or substituted by a fluorine atom, or an alkyl ether group.
  • X is a single bond or a linking group selected from —O—, —COO—, —NHCO—, —NH—, Y is a single bond, or carbon that is unsubstituted or substituted by a fluorine atom.
  • R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms which is unsubstituted or substituted by a fluorine atom, or an alkyl ether group.
  • tetracarboxylic dianhydride In order to obtain the polyamic acid which is a polyimide precursor contained in the liquid crystal aligning agent of this invention, the tetracarboxylic dianhydride made to react with a diamine component is not specifically limited. Specific examples are given below.
  • Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. Since it can reduce, it is preferable.
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
  • Tetracarboxylic dianhydride can be used singly or in combination of two or more according to properties such as liquid crystal orientation, sensitivity to light, pretilt angle, voltage holding characteristics, accumulated charge, etc. when a liquid crystal alignment film is formed. .
  • the tetracarboxylic acid dialkyl ester that is reacted with the diamine component in order to obtain a polyamic acid ester that is a polyimide precursor contained in the liquid crystal aligning agent of the present invention is not particularly limited. Specific examples are given below.
  • aliphatic tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy- , 2,3,4-Tetrahydro-1-na
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl
  • the polysiloxane can be obtained by reacting an alkoxysilane component in an organic solvent (for example, polycondensation reaction).
  • the alkoxysilane component refers to an alkoxysilane having 1 to 4 alkoxy groups in the molecule.
  • polysiloxane can be obtained by reacting an alkoxysilane component represented by the following formula [14].
  • R 11 represents a monovalent organic group
  • R 12 is alkyl having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 12 is a methyl group or an ethyl group.
  • alkoxysilane having a side chain to align the liquid crystal vertically, Equation [14] in the alkyl group for R 11 is a long chain, groups having a middle ring structure or branched structure of the long-chain alkyl group, such as a steroid group
  • Examples include hydrocarbon silanes and alkoxysilanes having groups in which some or all of the hydrogen atoms in these groups are replaced by fluorine atoms as side chains, such as diamines having side chains represented by the above formula [5]. it can.
  • a diamine having a hydrocarbon group having 8 to 30 carbon atoms in which a hydrogen atom may be substituted with fluorine, or an alkoxysilane represented by the following formula [15] can be given.
  • the present invention is not limited to this.
  • R 9 is a single bond or — (CH 2 ) n. O— (n is an alkyl group having 0 to 5 carbon atoms), R 12 represents an alkyl having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.)
  • alkoxysilane having a vertical alignment side chain structure represented by the formula [14] include the formulas [14-1] to [14-13], but are not limited thereto. is not.
  • R 12 in the formula [14-1] - [14-13] is the same as R 12 in the formula [14]
  • R 9 is the same as R 9 in the formula [15].
  • R 13 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 14 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
  • R 15 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • the alkoxysilane represented by the formula [14] is soluble in a solvent when used as a siloxane polymer (polysiloxane), liquid crystal alignment when used as a liquid crystal alignment film, sensitivity to light, pretilt angle, voltage holding characteristics, One type or a mixture of two or more types can also be used depending on characteristics such as accumulated charge and the response speed of liquid crystal when a liquid crystal display element is used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
  • the alkoxysilane represented by the formula [14] can be produced by a known method as described in, for example, JP-A-61-286393.
  • alkoxysilane having a photopolymerizable side chain ⁇ Alkoxysilane having a photopolymerizable side chain> Moreover, as an alkoxysilane component used for obtaining polysiloxane, for example, an alkoxysilane having a photopolymerizable group represented by the following formula [16] can also be used.
  • R 21 is an alkyl group in which a hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group.
  • the number of substituted hydrogen atoms is one or more, preferably one.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10.
  • R 22 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
  • alkoxysilane represented by Formula [16] is not limited to these.
  • alkoxysilane component used for obtaining polysiloxane for example, an alkoxysilane represented by the following formula [17] can also be used.
  • R 23 of the alkoxysilane represented by the formula [17] may be a hydrogen atom, or the hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group.
  • R 24 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and n2 represents an integer of 0 to 3, preferably 0 to 2.
  • alkoxysilane represented by the formula [17] are listed below, but are not limited thereto.
  • 3- (2-aminoethylaminopropyl) trimethoxysilane 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, dieth
  • the alkoxysilane in which n2 is 0 is tetraalkoxysilane.
  • Tetraalkoxysilane is preferable for obtaining a polysiloxane because it easily undergoes a polycondensation reaction with the alkoxysilane represented by the above formulas [14] to [16].
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • the method for obtaining the polysiloxane contained in the liquid crystal aligning agent is not particularly limited.
  • the alkoxysilane component containing the alkoxysilane represented by the above formulas [14] to [17] is reacted in an organic solvent (for example, (Polycondensation reaction).
  • organic solvent for example, (Polycondensation reaction).
  • polysiloxane is obtained as a solution in which such an alkoxysilane component is polycondensed and uniformly dissolved in an organic solvent.
  • the mixing ratio of the alkoxysilane in the alkoxysilane component containing the alkoxysilane such as the above formulas [14] to [17] is not particularly limited.
  • Examples of the method of polycondensing alkoxysilane to obtain polysiloxane include a method of hydrolyzing and condensing alkoxysilane in an organic solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • the polysiloxane described above has a group for vertically aligning liquid crystals in the side chain and further has a photopolymerizable group in the side chain. May be.
  • a liquid crystal aligning agent is used for the liquid crystal display element of a horizontal alignment system, you may have a photoreactive group.
  • the alkoxysilane component which is a monomer has a group or photopolymerizable group for vertically aligning the liquid crystal introduced in the side chain and a photoreactive group introduced in the main chain or side chain.
  • Such a polysiloxane having a group for vertically aligning a liquid crystal, a photopolymerizable group or a photoreactive group is useful as a polymer for obtaining a liquid crystal alignment film exhibiting the ability to fix the alignment of liquid crystals.
  • acrylic ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl.
  • the poly (meth) acrylate described above has a group for vertically aligning liquid crystals in the side chain, and further has a photopolymerizable group in the side chain. You may have.
  • a liquid crystal aligning agent is used for the liquid crystal display element of a horizontal alignment system, you may have a photoreactive group.
  • acrylic acid ester compounds and methacrylic acid ester compounds which are monomers, have a group or photopolymerizable group for vertically aligning liquid crystals introduced into the side chain and a photoreactive group introduced into the main chain or side chain. It is preferable.
  • Such a poly (meth) acrylate having a group for vertically aligning a liquid crystal, a photopolymerizable group or a photoreactive group is useful as a polymer for obtaining a liquid crystal alignment film exhibiting the ability to fix the alignment of liquid crystals. is there.
  • examples of the acrylate compound having a side chain and the methacrylic acid ester compound include an acrylate compound having a side chain represented by the above formula [5] and a methacrylic acid ester compound. . More specifically, examples include acrylic ester compounds and methacrylic ester compounds represented by the following formula [18] and the following formulas [19-1] to [19-3], but are not limited thereto. Is not to be done.
  • R is a hydrogen atom or a methyl group
  • S is an alkylene having 2 to 11 carbon atoms. Group.
  • R is a hydrogen atom or a methyl group
  • S is an alkylene group having 2 to 11 carbon atoms
  • X is an ether, ester or amide bond
  • R 10 is a hydrogen atom, or an unsubstituted or substituted carbon atom having 1 carbon atom. ⁇ 5 alkyl groups.
  • the solvent which the liquid crystal aligning agent of this invention contains will not be specifically limited if the said polymer and the said polymeric compound which a liquid crystal aligning agent contain melt
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, when a polyimide precursor or polyimide is used as the polymer.
  • N-ethyl-2-pyrrolidone N-methylcaprolactam
  • 2-pyrrolidone N-vinyl-2-pyrrolidone
  • dimethyl sulfoxide dimethyl sulfone
  • ⁇ -butyrolactone 1,3-dimethyl-imidazolidinone
  • 3-methoxy-N N-dimethylpropanamide and the like.
  • polysiloxane examples thereof include polyhydric alcohol compounds such as ethylene glycol and 1,2-propylene glycol, amide compounds such as N-methylformamide and N, N-dimethylformamide, and the like. Can do.
  • poly (meth) acrylate when using poly (meth) acrylate as a polymer, an alcohol compound, a ketone compound, an amide compound, an ester compound, or another aprotic compound can be mentioned, for example. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two or more
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the above-mentioned polymers, and the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film are changed.
  • Target dielectric material or conductive material silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, compound for improving film thickness uniformity and surface smoothness when liquid crystal alignment agent is applied, liquid crystal Addition of a crosslinkable compound for the purpose of increasing the hardness and density of the film when it is made into an alignment film, and an imidization accelerator for the purpose of efficiently progressing imidation of the polyimide precursor when the coating film is baked. May be.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like.
  • the ratio of use thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of polymers contained in the liquid crystal aligning agent. 1 part by mass.
  • compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent.
  • the liquid crystal alignment film used for the liquid crystal display element of the present invention is obtained by applying the liquid crystal aligning agent to a substrate, drying it as necessary, and then performing an alignment treatment on the coating surface obtained by baking. .
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, and the like can be used.
  • a substrate on which an ITO (Indium Tin Oxide) electrode or the like is formed is preferable from the viewpoint of simplification of the process.
  • an opaque object such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can be used.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, touch basic printing, an inkjet method, or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven is used, depending on the solvent used for the liquid crystal aligning agent, 30 to 300 ° C., preferably 30
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of ⁇ 250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the liquid crystal display element of the vertical alignment system of the present invention can be obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film containing a polymerizable compound. Specifically, a liquid crystal alignment film is formed by applying and baking a liquid crystal alignment agent on two substrates, and the two substrates are arranged so that the liquid crystal alignment films face each other. A liquid crystal composition containing liquid crystal is injected between the substrates to form a liquid crystal layer. A vertical alignment type liquid crystal display element having a liquid crystal cell is obtained by irradiating ultraviolet rays while applying a voltage to the liquid crystal layer and the liquid crystal alignment film.
  • the liquid crystal composition may contain a polymerizable compound.
  • the polymerizable unsaturated bond group of the polymerizable compound undergoes photopolymerization or photocrosslinking reaction, and the molecular alignment state of the liquid crystal layer is controlled.
  • the alignment of the liquid crystal positioned on the surface of the liquid crystal alignment film is fixed while being slightly inclined from the vertical direction without performing the rubbing treatment.
  • a horizontal alignment liquid crystal display element is a liquid crystal display element that switches liquid crystal molecules by applying an electric field in a horizontal direction (lateral direction) with respect to a substrate.
  • the liquid crystal display element of a horizontal alignment method such as the IPS method or the FFS method of the present invention can be obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film containing a polymer compound. . Specifically, the liquid crystal aligning agent is applied onto two substrates and baked, and a rubbing treatment is performed as necessary, and then a liquid crystal alignment film is formed by irradiating polarized ultraviolet rays.
  • liquid crystal composition may contain a polymerizable compound.
  • the process of irradiating the liquid crystal layer and the liquid crystal alignment film with ultraviolet rays causes the polymerizable unsaturated bond group of the polymerizable compound to undergo a photoreaction such as photopolymerization or photocrosslinking. Wake up. Thereby, the liquid crystal located on the surface of the liquid crystal alignment film is fixed while being aligned in the horizontal direction.
  • the liquid crystal display element of the vertical alignment method or horizontal alignment method of the present invention described above includes a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polymerizable compound. Since the polymerizable compound in the liquid crystal aligning agent has a functional group capable of hydrogen bonding as described above, it forms a dimer in the liquid crystal alignment film or in the liquid crystal aligning agent through hydrogen bonding. Furthermore, since the polymerizable compound used in the present invention has a rigid aromatic ring, the functional group capable of hydrogen bonding forms a mesogenic structure via the hydrogen bond. This mesogenic structure becomes a pseudo-large mesogenic structure due to hydrogen bonding, and has absorption on the long wavelength side in the ultraviolet region, so that sensitivity to light is improved. Accordingly, a liquid crystal display device having such a liquid crystal alignment film has improved sensitivity to light, a sufficiently high response speed even with ultraviolet light on the long wavelength side, and an alignment fixing ability as shown in the examples described later. It will be excellent.
  • PCH7 1,3-diamino-4- [4- (4-heptylcyclohexyl) phenoxy] benzene represented by the following formula
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • the polymerizable compounds [RM1] to [RM7] added to the liquid crystal aligning agent have the following structure.
  • the polymerizable compounds [RM1] to [RM6] are the same as the polymerizable compounds of the above formulas [2-1] to [2-6].
  • Reaction tracking was performed by HPLC, and after confirming the completion of the reaction, 6 L of distilled water was poured into the reaction solution, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave a crude product. The obtained crude product was washed with 100 g of 2-propanol (hereinafter abbreviated as IPA), filtered and dried to obtain 127 g of Compound [E] (yield 49%).
  • IPA 2-propanol
  • the measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM1] was as follows. 1 H-NMR (400 MHz, CDCl 3 , ⁇ ppm): 7.81 (1H, d), 7.60 (4H, s), 7.55 (2H, d), 6.97 (2H, d), 6 .47 (2H, d), 6.11-6.10 (1H, m), 5.56-5.52 (1H, m), 4.17 (2H, t), 4.00 (2H, t ), 1.95-1.94 (2H, m), 1.85-1.82 (3H, m), 1.75-1.71 (2H, m), 1.55-1.48 (4H) , M).
  • Example 2 The same procedure as in Example 1 was performed except that 6-chloro-1-hexanol used in the synthesis of compound [D], which was an intermediate of polymerizable compound [RM1], was changed to 8-chloro-1-hexanol. And 40.82 g of polymerizable compound [RM2] was obtained.
  • the measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM2] was as follows. 1 H-NMR (400 MHz, DMSO-d6, ⁇ ppm): 7.70-7.56 (7H, m), 6.97 (2H, d), 6.51 (1H, d), 5.98 (1H , S), 5.62 (1H, s), 4.04 (2H, t), 3.94 (2H, t), 1.83 (3H, s), 1.70-1.10 (12H) .
  • 6-bromo-2-naphthol [H] 150 g, 672 mol
  • tert-butyl acrylate [B] 103.4 g, 807 mmol
  • palladium acetate 3.02 g, 13.5 mmol
  • Tri (o-tolyl) phosphine 8.19 g, 26.9 mmol
  • tripropylamine 289.0 g, 2.02 mol
  • DMAc 700 g
  • reaction solution was cooled to around room temperature and poured into 3 L of 1M aqueous hydrochloric acid.
  • Ethyl acetate (2 L) was added thereto, and the aqueous layer was removed by a liquid separation operation.
  • the organic layer was washed twice with 1 L of a 10% aqueous hydrochloric acid solution and three times with 1 L of saturated brine, and then dried over magnesium sulfate. Then, 181g of compound [I] was obtained by filtering and distilling a solvent off by the evaporator (yield 99%).
  • Reaction tracking was performed by HPLC, and after confirming the completion of the reaction, 6 L of distilled water was poured into the reaction solution, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 140.9 g of Compound [K] (yield 92%).
  • the measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM3] was as follows. 1 H-NMR (400MHz, DMSO -d6, ⁇ ppm): 12.4 (1H, brs), 8.10 (1H, s), 7.84 (1H, d), 7.81-7.80 (2H M), 7.70 (1H, d), 7.35 (1H, d), 7.19 (1H, dd), 6.59 (1H, d), 6.03-6.02 (1H, m), 5.67-5.65 (1H, m), 4.13-4.07 (4H, m), 1.88-1.87 (3H, m), 1.83-1.41 ( 8H, m).
  • Example 2 The same procedure as in Example 1 was performed except that 6-chloro-1-hexanol used in the synthesis of compound [J], which was an intermediate of polymerizable compound [RM3], was changed to 8-chloro-1-hexanol. And 171 g of multi-layer compound [RM4] was obtained.
  • the measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM6] was as follows. 1 H-NMR (400 MHz, DMSO-d6, ⁇ ppm): 8.63 (1H, s), 8.08 (1H, dd), 7.87 (1H, d), 7.76 (1H, d), 7.22-7.19 (1H, m), 7.16-7.15 (1H, m), 6.11-6.10 (1H, m), 5.56-5.54 (1H, m ), 4.20-4.10 (4H, m), 1.97-1.95 (3H, m), 1.92-1.85 (2H, m), 1.78-1.71 (2H) , M), 1.60-1.47 (4HH, m).
  • the molecular weight measurement conditions for polyimide are as follows. Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
  • the imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 by Kusano Kagaku Co., Ltd.), add 1.0 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is the proton of the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). This is the ratio of the number of reference protons to one.
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • Example 1 BODA (10.0 g, 40.0 mmol), DBA (6.09 g, 40.0 mmol), PCH7 (11.5 g, 30.0 mmol), BEM-S (7.93 g, 30.0 mmol) were added to NMP (140. 7 g), and after reacting at 60 ° C. for 5 hours, CBDA (11.37 g, 58.0 mmol) and NMP (46.9 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. .
  • NMP (44.0 g) was added to the obtained polyimide powder (A) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 5 hours.
  • 3AMP (1 wt% NMP solution) 6.0g, NMP (14.0g), and BCS (30.0g) were added to this solution, and the liquid crystal aligning composition (B) was obtained by stirring at room temperature for 5 hours.
  • Example 2 The liquid crystal aligning agent (B2) was subjected to the same operation as in Example 1 except that [RM2] obtained in Synthesis Example 2 was used instead of the polymerizable compound [RM1]. ) was prepared.
  • Example 3 The liquid crystal aligning agent (B3) was subjected to the same operation as in Example 1 except that [RM3] obtained in Synthesis Example 3 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) was prepared.
  • Example 4 The liquid crystal aligning agent (B4) was subjected to the same operation as in Example 1 except that [RM4] obtained in Synthesis Example 4 was used instead of the polymerizable compound [RM1]. ) was prepared.
  • Example 5 The liquid crystal aligning agent (B5) was subjected to the same operation as in Example 1 except that [RM5] obtained in Synthesis Example 5 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) was prepared.
  • Example 6 A liquid crystal aligning agent (B6) was prepared in the same manner as in Example 1 except that [RM6] obtained in Synthesis Example 6 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) was prepared.
  • NMP (44.0 g) was added to the obtained polyimide powder (C) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 5 hours.
  • 3AMP (1 wt% NMP solution) 6.0g, NMP (14.0g), and BCS (30.0g) were added to this solution, and the liquid crystal aligning composition (D) was obtained by stirring at room temperature for 5 hours.
  • Example 8 The liquid crystal aligning agent (D2) was subjected to the same operation as in Example 7 except that [RM2] obtained in Synthesis Example 2 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) was prepared.
  • Example 9 The liquid crystal aligning agent (D3) was subjected to the same operation as in Example 7 except that [RM3] obtained in Synthesis Example 3 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) was prepared.
  • Example 10 The liquid crystal aligning agent (D4) was subjected to the same operation as in Example 7 except that [RM4] obtained in Synthesis Example 4 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) was prepared.
  • the liquid crystal alignment agents (B1) to (B6) of Examples 1 to 6 containing the polymerizable compounds [RM1] to [RM6] in the liquid crystal alignment composition (B) were precipitated. Since there was no thing etc., it turned out that storage stability is favorable. On the other hand, precipitates were generated in the liquid crystal aligning agent (B7) of Comparative Example 1 containing the polymerizable compound [RM7] in the liquid crystal aligning composition (B).
  • liquid crystal alignment agents (D1) to (D4) of Examples 7 to 10 containing the polymerizable compounds [RM1] to [RM4] in the liquid crystal alignment composition (D) are completely free of precipitates and the like. Although it was not, the deposit generate
  • the liquid crystal aligning agents of Examples 1 to 10 contain polymerizable compounds [RM1] to [RM6] having functional groups capable of hydrogen bonding, that is, carboxyl groups, and thus have solubility in solvents. It is considered that no precipitates were generated even after being stored in a freezer at ⁇ 20 ° C. for 1 week. Therefore, it was found that the storage stability of the liquid crystal aligning agent can be improved by making the polymerizable compound used for the liquid crystal aligning agent a polymerizable compound having a hydrogen-bonding functional group such as a carboxyl group.
  • the polymerizable compounds [RM1] to [RM6] having a carboxyl group form a hydrogen bond between molecules and form a huge mesogen structure, so that absorption extends to the long wavelength side of the ultraviolet region, and sensitivity to ultraviolet rays. Therefore, it is considered that the response speed was increased in the response speed measurement described later.
  • Example 11 Using the liquid crystal aligning agent (B1) obtained in Example 1, a liquid crystal cell was prepared according to the procedure shown below.
  • the liquid crystal aligning agent (B1) obtained in Example 1 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line / space of 5 ⁇ m was formed, After drying for 90 seconds on this hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
  • a sealant (solvent type thermosetting epoxy resin) was printed thereon.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to produce a liquid crystal cell.
  • Example 12 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B2) was used instead of the liquid crystal aligning agent (B1).
  • Example 13 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B3) was used instead of the liquid crystal aligning agent (B1).
  • Example 14 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B4) was used instead of the liquid crystal aligning agent (B1).
  • Example 15 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B5) was used instead of the liquid crystal aligning agent (B1).
  • Example 16 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B6) was used instead of the liquid crystal aligning agent (B1).
  • Example 17 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D1) was used instead of the liquid crystal aligning agent (B1).
  • Example 18 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D2) was used instead of the liquid crystal aligning agent (B1).
  • Example 19 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D3) was used instead of the liquid crystal aligning agent (B1).
  • Example 20 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D4) was used instead of the liquid crystal aligning agent (B1).
  • Example 3 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B7) was used instead of the liquid crystal aligning agent (B1).
  • Example 4 A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D5) was used instead of the liquid crystal aligning agent (B1).
  • a liquid crystal cell was placed between a pair of polarizing plates in a measuring device configured in the order of a backlight, a pair of polarizing plates in a crossed Nicol state, and a light quantity detector.
  • the ITO electrode pattern in which the line / space was formed was at an angle of 45 ° with respect to the crossed Nicols.
  • a rectangular wave having a voltage of ⁇ 6 V and a frequency of 1 KHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained.
  • a voltage of 0% and ⁇ 4 V was applied, the saturated luminance value was set to 100%, and the time taken for the luminance to change from 10% to 90% was defined as the response speed.
  • the liquid crystal cells of Examples 11 to 20 were obtained from liquid crystal aligning agents containing polymerizable compounds [RM1] to [RM6] having functional groups capable of hydrogen bonding, that is, carboxyl groups. It is a thing. In these liquid crystal cells, it is considered that a huge mesogen structure was formed in the liquid crystal alignment film due to hydrogen bonding caused by the carboxyl group.
  • the liquid crystal cells of Examples 11 to 20 are sensitive to ultraviolet light (365 nm) on the long wavelength side due to the influence of this huge mesogen structure, and sufficiently fast response speed (17 to 35 msec) even when irradiated with 365 nm ultraviolet light. ) was achieved. Further, since the liquid crystal cells of Examples 11 to 20 obtained a high pretilt angle, it was found that the liquid crystal aligning agent used in the production of these liquid crystal cells can impart excellent alignment fixing ability. .
  • the liquid crystal cells of Comparative Example 3 and Comparative Example 4 were obtained from a liquid crystal aligning agent to which a polymerizable compound [RM7] having no functional group capable of hydrogen bonding was added.
  • These liquid crystal cells have a simple biphenyl structure in the mesogen portion of the liquid crystal alignment film, so there is almost no sensitivity to ultraviolet light (365 nm) on the long wavelength side, and a sufficient response speed can be obtained by irradiation with 365 nm ultraviolet light. I could not.
  • the polymerizable compound [RM7] does not have a functional group capable of hydrogen bonding in the molecule, the solubility in a solvent is low, and the polymerizable compound [RM7] was precipitated during freezing.
  • the storage stability of the liquid crystal aligning agent can be improved by containing these polymerizable compounds. It was found that the sensitivity to ultraviolet rays can be improved.
  • the liquid crystal aligning agent of the present invention contains a highly soluble polymerizable compound, it is possible to obtain a liquid crystal aligning film having an alignment fixing ability excellent in light sensitivity. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, can be suitably used for a large-screen, high-definition liquid crystal television, etc. VA mode, TN mode, OCB mode, etc.) and various liquid crystal display elements adopting a horizontal electric field drive mode (IPS mode, FFS mode). In particular, it is useful for a liquid crystal display element having a liquid crystal alignment film that controls the alignment of liquid crystal by irradiating ultraviolet rays or polarized ultraviolet rays.
  • IPS mode horizontal electric field drive mode

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

This liquid-crystal alignment agent contains a polymer, a polymerizable compound, and a solvent. The polymerizable compound has a polymerizable unsaturated bonding group, a functional group that forms a hydrogen bond, and at least one aromatic ring near said functional group. The functional group forms intermolecular hydrogen bonds so as to form a mesogenic structure.

Description

液晶配向剤、液晶配向膜および液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向膜を作製する際に用いる液晶配向剤、液晶配向剤から得られる液晶配向膜および液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent used when producing a liquid crystal alignment film, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。 Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
 現在、工業的に最も普及している方法によれば、液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製され、このラビング処理により、液晶配向膜に配向性が付与される。 At present, according to the most widespread industrial method, the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, polyester. The film is rubbed in one direction with a cloth such as a so-called rubbing process, and the alignment is imparted to the liquid crystal alignment film by the rubbing process.
 しかしながら、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する液晶配向膜の表面の傷、発塵、機械的な力や静電気による影響、さらには、配向処理面内の不均一性など種々な問題が明らかとなってきている。 However, the demand for higher performance, higher definition, and larger size of liquid crystal display elements is increasing, and the surface of the liquid crystal alignment film caused by rubbing treatment, dust generation, the influence of mechanical force and static electricity, Various problems such as non-uniformity in the orientation processing surface have been revealed.
 ラビング処理を施さない技術の1つとして、光配向法が知られている(例えば、特許文献1参照)。光配向法は、偏光紫外線を、液晶配向膜に照射することにより、液晶配向膜に含有される重合体に光異性化反応や光二量化反応などを起こさせ、液晶配向膜に配向能を付与するものである。光配向法は、液晶表示素子の高精細化、高品位化への要求が高まる中、IPS方式(In-Plane Switching)やFFS方式(Fringe Field Switching)の液晶表示素子への適用が行われている(例えば、特許文献2参照)。また、IPS方式については、近年、配向能をさらに向上させるため、重合性化合物を含有した液晶を用いたPSA方式(Polymer sustained Alignment)と組み合わせる手法が開発されている。 A photo-alignment method is known as one of the techniques that do not perform rubbing treatment (see, for example, Patent Document 1). The photo-alignment method irradiates the liquid crystal alignment film with polarized ultraviolet rays to cause a polymer contained in the liquid crystal alignment film to undergo a photoisomerization reaction, a photodimerization reaction, and the like, thereby imparting an alignment ability to the liquid crystal alignment film. Is. The optical alignment method is applied to liquid crystal display elements of IPS (In-Plane Switching) and FFS (Fringe Field Switching) as demands for higher definition and higher quality of liquid crystal display elements increase. (For example, refer to Patent Document 2). As for the IPS system, in recent years, a technique combined with a PSA system (Polymer Sustained Alignment) using a liquid crystal containing a polymerizable compound has been developed in order to further improve the alignment ability.
 一方、ラビング処理を施さない他の技術として、VA(垂直)方式が知られている。VA方式には、液晶の倒れる方向を制御するための突起をTFT基板やカラーフィルタ基板に形成するMVA(Multi Vertical Alignment)方式や、基板のITO電極にスリットを形成し電界によって液晶の倒れる方向を制御するPVA(Patterned Vertical Alignment)方式や、PSA方式が知られている。VA方式の中でも、PSA方式は近年注目されている技術である。 On the other hand, the VA (vertical) method is known as another technique that does not perform the rubbing process. The VA method includes an MVA (Multi Vertical Alignment) method in which protrusions for controlling the direction in which the liquid crystal is tilted are formed on the TFT substrate or the color filter substrate, and a direction in which the liquid crystal is tilted by forming an slit in the ITO electrode of the substrate. A PVA (Patterned Vertical Alignment) method and a PSA method to be controlled are known. Among VA systems, the PSA system is a technology that has attracted attention in recent years.
 PSA方式は、液晶に光または熱で重合する重合性化合物を添加し、液晶セルの作製後に、電界を印加しながら液晶を傾斜させた状態でUVを照射する。これにより、重合性化合物を重合または架橋させ、液晶を傾斜方向に配向させる。このPSA方式によれば、液晶セルを構成する片側の電極にスリットを作製し、対向側の電極パターンにはMVAのような突起やPVAのようなスリットを設けていない構造でも動作可能となる(例えば、特許文献3参照)。
 また、上記重合性化合物を、液晶組成物中ではなく液晶配向膜中に添加することによっても、液晶表示素子の応答速度が速くなることが報告されている(例えば、非特許文献1参照)。
In the PSA method, a polymerizable compound that is polymerized by light or heat is added to a liquid crystal, and after the liquid crystal cell is produced, UV is irradiated in a state where the liquid crystal is tilted while applying an electric field. Thereby, the polymerizable compound is polymerized or crosslinked, and the liquid crystal is aligned in the tilt direction. According to this PSA method, it is possible to operate even in a structure in which a slit is formed in one electrode constituting a liquid crystal cell, and a protrusion such as MVA or a slit such as PVA is not provided in the opposite electrode pattern ( For example, see Patent Document 3).
In addition, it has been reported that the response speed of the liquid crystal display device is increased by adding the polymerizable compound to the liquid crystal alignment film instead of the liquid crystal composition (see, for example, Non-Patent Document 1).
 しかしながら、液晶配向剤に添加される重合性化合物の溶解性は低く、液晶配向剤の保存中に重合性化合物が析出するなど保存安定性において問題がある。
 また液晶表示素子中に未反応の重合性化合物が不純物として残存すると、焼き付きなどが発生しやすくなり、未反応の重合性化合物を減らそうと紫外線の照射量を増やすと紫外線による液晶や部材へのダメージが大きくなり液晶表示素子の信頼性の低下につながるといった問題もある。このため光の感度をより高くするために、紫外光の長波長側まで吸収を持たせようとすると、重合性化合物の共役をより長くする必要があり、メソゲン構造がより大きくなったり、環構造などの剛直な構造が増えるため液晶配向剤への溶解性が益々低下するという問題を生じる。
However, the solubility of the polymerizable compound added to the liquid crystal aligning agent is low, and there is a problem in storage stability such that the polymerizable compound is precipitated during storage of the liquid crystal aligning agent.
In addition, if unreacted polymerizable compounds remain as impurities in the liquid crystal display element, seizure or the like is likely to occur, and if the amount of UV irradiation is increased in order to reduce the unreacted polymerizable compounds, the liquid crystals and members caused by the ultraviolet rays are increased. There is also a problem that damage is increased and the reliability of the liquid crystal display element is lowered. For this reason, in order to increase the sensitivity of light, it is necessary to increase the conjugation of the polymerizable compound to increase the absorption to the long wavelength side of ultraviolet light, resulting in a larger mesogenic structure or a ring structure. As a result, the problem that the solubility in the liquid crystal aligning agent is further reduced arises.
特開2004-163646号公報JP 2004-163646 A 特開2013-080193号公報JP 2013-080193 A 特開2004-302061号公報JP 2004-302061 A
 本発明は、このような事情に鑑み、重合性化合物の溶解性を向上させ、高感度な配向固定化能を有する液晶配向剤、液晶配向剤から得られる液晶配向膜および液晶表示素子を提供することを目的とする。 In view of such circumstances, the present invention provides a liquid crystal aligning agent having improved solubility of a polymerizable compound and a highly sensitive alignment fixing ability, a liquid crystal alignment film obtained from the liquid crystal aligning agent, and a liquid crystal display element. For the purpose.
 本発明者は、鋭意研究を行った結果、重合性不飽和結合基と、水素結合する官能基と、官能基の近傍に少なくとも1以上の芳香環とを有し、官能基が分子間で水素結合を形成することによりメソゲン構造を形成する重合性化合物を含有する液晶配向剤が上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。 As a result of earnest research, the present inventor has a polymerizable unsaturated bond group, a functional group capable of hydrogen bonding, and at least one aromatic ring in the vicinity of the functional group, and the functional group is hydrogenated between molecules. The present inventors have found that a liquid crystal aligning agent containing a polymerizable compound that forms a mesogen structure by forming a bond is extremely effective for achieving the above object, and has completed the present invention.
 本発明は、以下を要旨とする。 The gist of the present invention is as follows.
(1)重合体と、重合性化合物と、溶媒とを含有し、前記重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、前記官能基の近傍に少なくとも1以上の芳香環とを有し、前記官能基が分子間で水素結合を形成することによりメソゲン構造を形成することを特徴とする液晶配向剤。 (1) A polymer, a polymerizable compound, and a solvent, wherein the polymerizable compound includes a polymerizable unsaturated bond group, a hydrogen-bonding functional group, and at least one fragrance in the vicinity of the functional group. A liquid crystal aligning agent comprising a ring, wherein the functional group forms a mesogen structure by forming a hydrogen bond between molecules.
(2)前記官能基はカルボキシル基であることを特徴とする上記(1)に記載の液晶配向剤。 (2) The liquid crystal aligning agent according to (1), wherein the functional group is a carboxyl group.
(3)前記重合性化合物は、下記の式[1-1]~[1-4]から選ばれる少なくとも1種であることを特徴とする上記(1)または(2)に記載の液晶配向剤。 (3) The liquid crystal aligning agent according to the above (1) or (2), wherein the polymerizable compound is at least one selected from the following formulas [1-1] to [1-4] .
Figure JPOXMLDOC01-appb-C000005
(Tはエーテル、エステル、アミド結合、Sは炭素原子数2~11のアルキレン基、Rは水素原子もしくはメチル基、n=1もしくは2)
Figure JPOXMLDOC01-appb-C000005
(T is an ether, ester, amide bond, S is an alkylene group having 2 to 11 carbon atoms, R is a hydrogen atom or a methyl group, n = 1 or 2)
(4)前記重合性化合物は、下記の式[2-1]~[2-6]から選ばれる少なくとも1種であることを特徴とする(1)~(3)のいずれかに記載の液晶配向剤。 (4) The liquid crystal according to any one of (1) to (3), wherein the polymerizable compound is at least one selected from the following formulas [2-1] to [2-6] Alignment agent.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(5)前記重合体は、液晶を垂直に配向させる基を側鎖に有することを特徴とする上記(1)~(4)のいずれかに記載の液晶配向剤。 (5) The liquid crystal aligning agent according to any one of the above (1) to (4), wherein the polymer has a group for vertically aligning liquid crystals in a side chain.
(6)前記重合体は、さらに光重合性基を側鎖に有することを特徴とする上記(5)に記載の液晶配向剤。 (6) The liquid crystal aligning agent according to (5), wherein the polymer further has a photopolymerizable group in a side chain.
(7)前記光重合性基は、下記の式[3-1]~[3-7]から選ばれる少なくとも1種であることを特徴とする上記(6)に記載の液晶配向剤。 (7) The liquid crystal aligning agent according to the above (6), wherein the photopolymerizable group is at least one selected from the following formulas [3-1] to [3-7].
Figure JPOXMLDOC01-appb-C000007
(式中、Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, Me represents a methyl group.)
(8)前記重合体は、光反応性基を有することを特徴とする上記(1)~(4)のいずれかに記載の液晶配向剤。 (8) The liquid crystal aligning agent according to any one of the above (1) to (4), wherein the polymer has a photoreactive group.
(9)前記光反応性基は、下記の式[4-1]~[4-5]から選ばれる少なくとも1種であることを特徴とする上記(8)に記載の液晶配向剤。 (9) The liquid crystal aligning agent as described in (8) above, wherein the photoreactive group is at least one selected from the following formulas [4-1] to [4-5].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(10)前記重合体は、ポリイミド前駆体及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1つ、ポリシロキサンまたはポリ(メタ)アクリレートを含むことを特徴とする上記(1)~(9)のいずれかに記載の液晶配向剤。 (10) The above polymer (1) to (9), wherein the polymer contains at least one selected from a polyimide precursor and a polyimide obtained by imidizing the polyimide precursor, polysiloxane or poly (meth) acrylate. The liquid crystal aligning agent in any one of.
(11)上記(5)~(7)のいずれかに記載の液晶配向剤を用いて作製され、電圧を印加しながら紫外線を照射する工程を経て得られることを特徴とする液晶配向膜。 (11) A liquid crystal alignment film produced using the liquid crystal aligning agent according to any one of (5) to (7), and obtained through a step of irradiating ultraviolet rays while applying a voltage.
(12)上記(11)に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 (12) A liquid crystal display device comprising the liquid crystal alignment film according to (11).
(13)上記(8)または(9)に記載の液晶配向剤を用いて作製され、偏光紫外線を照射する工程を経て得られることを特徴とする液晶配向膜。 (13) A liquid crystal alignment film produced using the liquid crystal aligning agent according to (8) or (9) and obtained through a step of irradiating polarized ultraviolet rays.
(14)上記(13)に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 (14) A liquid crystal display device comprising the liquid crystal alignment film according to (13).
 本発明によれば、水素結合によりメソゲン構造を形成する官能基を有する重合性化合物を含有することにより、重合性化合物の溶解性を向上させ、高感度な配向固定化能を有する液晶配向剤、液晶配向剤から得られる液晶配向膜および液晶表示素子が実現される。 According to the present invention, by containing a polymerizable compound having a functional group that forms a mesogen structure by hydrogen bonding, the solubility of the polymerizable compound is improved, and a liquid crystal aligning agent having a highly sensitive alignment fixing ability, A liquid crystal alignment film and a liquid crystal display element obtained from the liquid crystal aligning agent are realized.
 以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <重合性化合物>
 本発明の液晶配向剤は、重合性化合物を含有する。重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、官能基の近傍に少なくとも1以上の芳香環とを有し、水素結合する官能基が分子間で水素結合を形成することによりメソゲン構造を形成する。
<Polymerizable compound>
The liquid crystal aligning agent of this invention contains a polymeric compound. The polymerizable compound has a polymerizable unsaturated bond group, a hydrogen bonding functional group, and at least one aromatic ring in the vicinity of the functional group, and the hydrogen bonding functional group forms a hydrogen bond between molecules. This forms a mesogenic structure.
 重合性不飽和結合基とは、熱や紫外線等の刺激によって、光重合または光架橋反応に寄与するエチレン性の不飽和二重結合基をいう。具体的には、ビニル基、(メタ)アクリロイル基およびイソプロペニル基、アリル基、スチリル基、α-メチレン-γ-ブチルラクトン基などのラジカル重合性基が挙げられる。 The polymerizable unsaturated bond group refers to an ethylenically unsaturated double bond group that contributes to photopolymerization or photocrosslinking reaction by stimulation with heat, ultraviolet rays or the like. Specific examples include radical polymerizable groups such as vinyl group, (meth) acryloyl group and isopropenyl group, allyl group, styryl group, and α-methylene-γ-butyllactone group.
 また、本発明にかかる水素結合とは、官能基にある水素原子と、この水素原子に隣接する電気陰性度の高い原子との電気陰性度の差により生じる電子の偏りから、液晶配向剤の溶媒中もしくは液晶配向膜中で、水素原子が電気陰性度の高い他の原子との間で引力的相互作用を生じ、分子間で水素原子を介して形成される結合をいう。水素結合する官能基とは、液晶配向膜中や液晶配向剤の溶媒中において分子間で水素結合を形成する基をいう。このような水素結合する官能基は、液晶配向膜中や液晶配向剤の溶媒中において分子間で、主に二量体を形成する。このような重合性化合物はカルボキシル基や水酸基など極性の高い基を有しているため通常の重合性化合物等に比べて溶解性が非常に高い。このため、重合性化合物の溶媒への溶解性が向上し液晶配向剤の保存時(例えば冷凍保存など)においても重合性化合物の析出等が起こりにくい。 In addition, the hydrogen bond according to the present invention is a solvent for a liquid crystal aligning agent because of a bias of electrons caused by a difference in electronegativity between a hydrogen atom in a functional group and an atom having high electronegativity adjacent to the hydrogen atom. A bond in which hydrogen atoms cause attractive interaction with other atoms having a high electronegativity in a liquid crystal alignment film or in a liquid crystal alignment film and are formed through hydrogen atoms between molecules. The functional group capable of hydrogen bonding refers to a group that forms hydrogen bonds between molecules in a liquid crystal alignment film or in a solvent of a liquid crystal alignment agent. Such a functional group capable of hydrogen bonding mainly forms a dimer between molecules in a liquid crystal alignment film or a solvent of a liquid crystal alignment agent. Since such a polymerizable compound has a highly polar group such as a carboxyl group and a hydroxyl group, the solubility is very high as compared with a normal polymerizable compound. For this reason, the solubility of the polymerizable compound in the solvent is improved, and precipitation of the polymerizable compound hardly occurs even when the liquid crystal aligning agent is stored (for example, frozen storage).
 さらに、水素結合する官能基は、分子間で水素結合を形成することによりメソゲン構造を形成する。メソゲン構造とは、液晶性を発現するための剛直な構造をいう。このような水素結合を介したメソゲン構造の形成、すなわち、剛直な構造の形成により、液晶配向膜の光に対する感度が高くなると共に液晶配向膜の配向固定化能が向上する。 Furthermore, the functional group capable of hydrogen bonding forms a mesogenic structure by forming a hydrogen bond between molecules. The mesogenic structure means a rigid structure for exhibiting liquid crystallinity. By forming such a mesogen structure via a hydrogen bond, that is, formation of a rigid structure, the sensitivity of the liquid crystal alignment film to light is increased and the alignment fixing ability of the liquid crystal alignment film is improved.
 なお、水素結合する官能基としては、特に限定されず、カルボキシル基、水酸基、ウレア基、アミド基およびイミド基などが挙げられる。これらの中でも、二量体の形成のし易さに鑑みると、カルボキシル基が好ましい。 The functional group capable of hydrogen bonding is not particularly limited, and examples thereof include a carboxyl group, a hydroxyl group, a urea group, an amide group, and an imide group. Among these, a carboxyl group is preferable in view of easy formation of a dimer.
 また、重合性化合物が有する少なくとも1以上の芳香環は、剛直であるため、水素結合する官能基の近傍に位置することにより、この官能基と共にメソゲン構造を形成する。これらのメソゲン構造は擬似的に巨大なメソゲン構造を取っているため共役が広がっており、長波長側の紫外領域まで(例えば365nmまで)吸収を有する。このため、長波長の紫外線照射に対しても感度が高くなり弱いエネルギーの紫外線照射でも配向固定化が可能となる。芳香環としては、ベンゼン環や、ナフタレン環およびアントラセン環などの炭化水素芳香環や、ピリジン環、ピラジン環およびピロール環などの複素芳香環が挙げられる。芳香環の数は特に限定されず、1~4であることが好ましい。なお、これらの芳香環は置換基を有していてもよい。 Further, since at least one or more aromatic rings of the polymerizable compound are rigid, the mesogenic structure is formed together with the functional group by being positioned in the vicinity of the functional group to be hydrogen bonded. Since these mesogenic structures have pseudo-huge mesogenic structures, conjugation is widened, and absorption is performed up to the ultraviolet region (for example, up to 365 nm) on the long wavelength side. For this reason, the sensitivity becomes high even for ultraviolet irradiation with a long wavelength, and the alignment can be fixed even with ultraviolet irradiation with weak energy. Examples of the aromatic ring include hydrocarbon aromatic rings such as benzene ring, naphthalene ring and anthracene ring, and heteroaromatic rings such as pyridine ring, pyrazine ring and pyrrole ring. The number of aromatic rings is not particularly limited and is preferably 1 to 4. These aromatic rings may have a substituent.
 以上に説明した重合性化合物の一例としては、カルボキシル基を有する上記式[1-1]~[1-4]や上記式[2-1]~[2-6]で表される重合性化合物が挙げられる。カルボキシル基の水素原子と、この水素原子に隣接する酸素原子との電気陰性度の差は大きいため、これらの重合性化合物を用いることにより、分子間において、より強い水素結合を介して二量体が形成される。このような重合性化合物の分子は非常に小さいため、二量体の一つ一つの分子も非常に小さいものとなる。これにより、重合性化合物の溶媒への溶解性はさらに向上し、液晶配向膜の光に対する感度はさらに高くなる。また、上記式[1-1]~[1-4]や上記式[2-1]~[2-6]で表される重合性化合物は、カルボキシル基の近傍に、該カルボキシル基と共にメソゲン構造を形成する二つ以上の芳香環を有する。これにより、液晶配向膜の光に対する感度はより一層高くなり、配向固定化能はより向上する。 Examples of the polymerizable compound described above include polymerizable compounds having a carboxyl group and represented by the above formulas [1-1] to [1-4] and the above formulas [2-1] to [2-6]. Is mentioned. Since the difference in electronegativity between the hydrogen atom of the carboxyl group and the oxygen atom adjacent to this hydrogen atom is large, by using these polymerizable compounds, a dimer is formed through a stronger hydrogen bond between molecules. Is formed. Since the molecule of such a polymerizable compound is very small, each molecule of the dimer is also very small. Thereby, the solubility of the polymerizable compound in the solvent is further improved, and the sensitivity of the liquid crystal alignment film to light is further increased. Further, the polymerizable compounds represented by the above formulas [1-1] to [1-4] and the above formulas [2-1] to [2-6] have a mesogenic structure in the vicinity of the carboxyl group together with the carboxyl group. Having two or more aromatic rings. Thereby, the sensitivity with respect to the light of a liquid crystal aligning film becomes still higher, and alignment fixing ability improves more.
 なお、液晶配向剤に添加される重合性化合物の添加割合は、例えば、液晶配向剤に対して重合性化合物が0.1~30(質量)%となるようにすればよい。  Note that the addition ratio of the polymerizable compound added to the liquid crystal aligning agent may be, for example, 0.1 to 30 (mass)% of the polymerizable compound with respect to the liquid crystal aligning agent.
 <液晶配向剤>
 液晶配向剤は、液晶配向膜を作製するために用いられ、上記重合性化合物と、重合体と、溶媒とを含む。本発明の液晶配向剤は、1)液晶セルに電圧を印加しながら紫外線を照射することで作製される垂直配向方式、すなわち縦電界駆動方式の液晶表示素子、または、2)偏光された紫外線(偏光紫外線)を照射する工程を経た後、液晶セルを作製し、該液晶セルに紫外線を照射することで作製されるIPS方式(In-Plane Switching)やFFS方式(Fringe Field Switching)などの水平配向方式、すなわち横電界駆動方式の液晶表示素子に用いられる。
<Liquid crystal aligning agent>
A liquid crystal aligning agent is used in order to produce a liquid crystal aligning film, and contains the said polymeric compound, a polymer, and a solvent. The liquid crystal aligning agent of the present invention is 1) a vertical alignment type produced by irradiating ultraviolet rays while applying a voltage to a liquid crystal cell, that is, a liquid crystal display element of a vertical electric field driving type, or 2) polarized ultraviolet rays ( After passing through the step of irradiating polarized ultraviolet rays, a liquid crystal cell is produced, and the liquid crystal cell is produced by irradiating the ultraviolet rays with an IPS method (In-Plane Switching) or FFS method (Fringe Field Switching). It is used for a liquid crystal display element of a system, that is, a horizontal electric field drive system.
 垂直配向方式の液晶表示素子に用いられる場合の液晶配向剤は、重合体として液晶を垂直に配向させる基を側鎖に有する重合体を含有する。またこれらの重合体は光反応性基や光ラジカル発生基を側鎖に有していてもよい。これらの光反応性基や光ラジカル発生基を側鎖に有する重合体を使用した場合、紫外線の照射による光重合または光架橋反応がより起こりやすくなり配向固定化能が向上する。 A liquid crystal aligning agent used in a vertical alignment type liquid crystal display element contains a polymer having a side chain having a group for vertically aligning a liquid crystal as a polymer. Further, these polymers may have a photoreactive group or a photoradical generating group in the side chain. When a polymer having such a photoreactive group or photoradical generating group in the side chain is used, photopolymerization or photocrosslinking reaction due to ultraviolet irradiation is more likely to occur, and the alignment and fixing ability is improved.
 水平配向方式の液晶表示素子に用いられる場合の液晶配向剤は、重合体として、光反応性基を有していてもよい。光反応性基を有することにより、偏光紫外線の照射による光異性化反応などの光反応が起こり、ラビング処理を伴わなくても液晶配向膜に水平配向能が付与される(所謂、光配向)。以下に、液晶を垂直に配向させる基、光重合性基および光反応性基について説明する。 The liquid crystal aligning agent when used in a horizontal alignment type liquid crystal display element may have a photoreactive group as a polymer. By having a photoreactive group, a photoreaction such as a photoisomerization reaction caused by irradiation with polarized ultraviolet rays occurs, and the liquid crystal alignment film is imparted with a horizontal alignment ability even without a rubbing treatment (so-called photoalignment). Hereinafter, a group for vertically aligning the liquid crystal, a photopolymerizable group, and a photoreactive group will be described.
 <液晶を垂直に配向させる基>
 液晶表示素子が垂直配向方式の場合、液晶配向剤が含有する重合体は、液晶を垂直に配向させる基を側鎖に有する。液晶を垂直に配向させる基とは、液晶分子を基板に対して垂直に配向させる能力を有する基であり、この能力を有していればその構造は特に限定されない。液晶を垂直に配向させる基としては、直鎖のアルキル基、直鎖のフルオロアルキル基、末端にアルキル基やフルオロアルキル基を有する環状基、ステロイド基などが挙げられる。具体例としては、下記式[5]で表される基が挙げられる。
<Group for aligning liquid crystal vertically>
When the liquid crystal display element is of a vertical alignment type, the polymer contained in the liquid crystal aligning agent has a group for vertically aligning the liquid crystal in the side chain. The group for aligning the liquid crystal vertically is a group having the ability to align liquid crystal molecules vertically with respect to the substrate, and the structure is not particularly limited as long as it has this ability. Examples of the group for vertically aligning the liquid crystal include a linear alkyl group, a linear fluoroalkyl group, a cyclic group having an alkyl group or a fluoroalkyl group at the terminal, and a steroid group. Specific examples include groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 Rは、炭素数2~6、好ましくは2~4のアルキレン基、-O-、-COO-、-OCO-、-NHCO-、-CONH-、または炭素数1~3のアルキレン-エーテル基(-C-C-O-)を表す。これらの中でも合成の容易性の観点から、-O-、-COO-、-CONH-、または炭素数1~3のアルキレン-エーテル基が好ましい。上記R、R、Rはそれぞれ独立に、フェニレン基またはシクロアルキレン基を表す。合成の容易性および液晶を垂直に配向させる能力の点から、表1に示すa、b、c、R、RおよびRの組み合わせが好ましい。 R 1 represents an alkylene group having 2 to 6, preferably 2 to 4 carbon atoms, —O—, —COO—, —OCO—, —NHCO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms. (—C—C—O—) is represented. Among these, from the viewpoint of easy synthesis, —O—, —COO—, —CONH—, or an alkylene-ether group having 1 to 3 carbon atoms is preferable. R 2 , R 3 and R 4 each independently represent a phenylene group or a cycloalkylene group. The combination of a, b, c, R 2 , R 3 and R 4 shown in Table 1 is preferable from the viewpoint of ease of synthesis and ability to orient the liquid crystal vertically.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記Rは、水素原子、炭素数2~24、好ましくは5~8のアルキル基もしくはフッ素含有アルキル基、芳香環、脂肪族環、複素環、またはこれらからなる大環状基を表す。a、bおよびcの少なくとも一つが1である場合、Rの構造として、好ましくは、水素原子、炭素数2~14のアルキル基、または炭素数2~14のフッ素含有アルキル基であり、より好ましくは水素原子、炭素数2~12、好ましくは2~10のアルキル基もしくはフッ素含有アルキル基を表す。 R 5 represents a hydrogen atom, an alkyl group having 2 to 24 carbon atoms, preferably 5 to 8 carbon atoms or a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or a macrocyclic group composed of these. When at least one of a, b and c is 1, the structure of R 5 is preferably a hydrogen atom, an alkyl group having 2 to 14 carbon atoms, or a fluorine-containing alkyl group having 2 to 14 carbon atoms, and more It preferably represents a hydrogen atom, an alkyl group having 2 to 12 carbon atoms, preferably 2 to 10 carbon atoms, or a fluorine-containing alkyl group.
 また、a、bおよびcが共に0である場合、Rの構造として好ましくは、炭素数12~22、好ましくは12~20のアルキル基もしくはフッ素含有アルキル基、芳香環、脂肪族環、複素環、またはこれらからなる大環状基であり、より好ましくは、炭素数12~20、好ましくは12~18のアルキル基もしくはフッ素含有アルキル基である。 When a, b and c are all 0, the structure of R 5 is preferably an alkyl group or a fluorine-containing alkyl group having 12 to 22 carbon atoms, preferably 12 to 20 carbon atoms, an aromatic ring, an aliphatic ring, a hetero ring. A ring or a macrocyclic group composed of these, more preferably an alkyl group having 12 to 20 carbon atoms, preferably 12 to 18 carbon atoms, or a fluorine-containing alkyl group.
 なお、液晶を垂直に配向させる基の側鎖は、重合体の主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。このように、液晶を垂直に配向させる基の側鎖への導入方法は特に限定されない。 The side chain of the group that orients the liquid crystal vertically may be directly bonded to the main chain of the polymer, or may be bonded through an appropriate bonding group. Thus, the method for introducing the group for vertically aligning the liquid crystal into the side chain is not particularly limited.
 また、液晶を垂直に配向させる基の存在量は、配向を固定化できる範囲であることが好ましく、光に対する感度および配向固定化能をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。 In addition, the amount of the group that vertically aligns the liquid crystal is preferably within a range in which the alignment can be fixed, and other characteristics are not affected in order to further improve the sensitivity to light and the alignment fixing ability. In the range, as much as possible is preferable.
 <光重合性基>
 本発明の液晶配向剤が含有する重合体は、さらに光重合性基を側鎖に有していてもよい。光重合性基は、紫外線等の光によって重合反応を起こす基、例えば、紫外線等の光によって重合する基(以下、光重合する基ともいう)や光架橋する基(以下、光架橋する基ともいう)であれば特に限定はされないが、上記式[3-1]~[3-7]で表される光重合性基から選ばれる少なくとも1種が好ましく用いられる。
<Photopolymerizable group>
The polymer contained in the liquid crystal aligning agent of the present invention may further have a photopolymerizable group in the side chain. The photopolymerizable group is a group that undergoes a polymerization reaction by light such as ultraviolet rays, for example, a group that is polymerized by light such as ultraviolet rays (hereinafter also referred to as a photopolymerizable group) or a photocrosslinkable group (hereinafter also referred to as a photocrosslinkable group). In particular, at least one selected from the photopolymerizable groups represented by the above formulas [3-1] to [3-7] is preferably used.
 このような重合体を含有する液晶配向剤を用いて得られる液晶配向膜には光重合性基が含有される。液晶配向膜中に光重合性基を含有する液晶表示素子に紫外線等の光を照射すると、液晶配向膜と液晶とが接する面に位置する光重合性基や、上述した重合性化合物の重合性不飽和結合基が光重合または光架橋反応を起こし、液晶配向膜の表面に位置する液晶の配向がより効率的に固定化される。 A liquid crystal aligning film obtained using a liquid crystal aligning agent containing such a polymer contains a photopolymerizable group. When a liquid crystal display element containing a photopolymerizable group in the liquid crystal alignment film is irradiated with light such as ultraviolet rays, the photopolymerizable group located on the surface where the liquid crystal alignment film and the liquid crystal are in contact with each other, or the polymerizable property of the above-described polymerizable compound The unsaturated bonding group causes photopolymerization or photocrosslinking reaction, and the alignment of the liquid crystal positioned on the surface of the liquid crystal alignment film is more efficiently fixed.
 重合体の側鎖に導入される光重合性基(以下、光重合性の側鎖ともいう)は、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα-メチレン-γ-ブチロラクトン基から選択される少なくとも一種を含む側鎖が好ましい。 The photopolymerizable group introduced into the side chain of the polymer (hereinafter also referred to as photopolymerizable side chain) is a methacryl group, an acrylic group, a vinyl group, an allyl group, a styryl group, or an α-methylene-γ-butyrolactone group. A side chain containing at least one selected from is preferred.
 このような光重合性の側鎖は、重合体の主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。このように、光重合性の側鎖の導入方法は特に限定されない。光重合性の側鎖としては、例えば下記式[6]で表されるものが挙げられる。 Such a photopolymerizable side chain may be directly bonded to the main chain of the polymer, or may be bonded through an appropriate bonding group. Thus, the method for introducing the photopolymerizable side chain is not particularly limited. Examples of the photopolymerizable side chain include those represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式[6]中、Rは単結合又は-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、-N(CH)CO-、のいずれかを表し、Rは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、アルキレン基の-CH-は-CF-又は-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、二価の複素環。Rは、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα-メチレン-γ-ブチロラクトン基を表す。 In the formula [6], R 6 represents a single bond or —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N ( CH 3 ) —, —CON (CH 3 ) —, —N (CH 3 ) CO—, wherein R 7 is a single bond, unsubstituted or substituted with a fluorine atom, having 1 to 20 represents an alkylene group, and —CH 2 — in the alkylene group may be optionally replaced by —CF 2 — or —CH═CH—, and when any of the following groups is not adjacent to each other: These groups may be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocycle, and a divalent heterocycle. R 8 represents a methacryl group, an acryl group, a vinyl group, an allyl group, a styryl group, and an α-methylene-γ-butyrolactone group.
 なお、上記式[6]中のRは、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、-CH-、-O-、-COO-、-NHCO-、-NH-、-CHO-が好ましい。 R 6 in the above formula [6] can be formed by a general organic synthetic method, but from the viewpoint of ease of synthesis, —CH 2 —, —O—, —COO—, —NHCO —, —NH— and —CH 2 O— are preferred.
 また、Rの任意の-CH-を置き換える二価の炭素環や二価の複素環の炭素環や複素環としては、具体的には以下のような構造が挙げられるが、これに限定されるものではない。 Specific examples of the divalent carbocycle or divalent heterocycle carbocycle or heterocycle for replacing any —CH 2 — in R 7 include the following structures, but are not limited thereto. Is not to be done.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 Rは、光重合性の観点から、メタクリル基、アクリル基、ビニル基またはα-メチレン-γ-ブチロラクトン基であることが好ましい。 R 8 is preferably a methacryl group, an acryl group, a vinyl group or an α-methylene-γ-butyrolactone group from the viewpoint of photopolymerization.
 光重合性の側鎖の存在量は、紫外線等の光の照射によって反応し共有結合を形成することにより配向を固定化できる範囲であることが好ましく、光に対する感度および配向固定化能をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。 The abundance of the photopolymerizable side chain is preferably within a range where the alignment can be fixed by reacting with irradiation of light such as ultraviolet rays to form a covalent bond, and the sensitivity to light and the alignment fixing ability are further improved. In order to achieve this, as much as possible is preferable as long as other characteristics are not affected.
 <光反応性基>
 液晶表示素子が偏光紫外線を照射することで作製されるIPS方式やFFS方式などの水平配向方式の場合、液晶配向剤が含有する重合体は、偏光紫外線の利用によって液晶配向能を発現する光反応性基が導入されていることが好ましい。
<Photoreactive group>
In the case of a horizontal alignment method such as an IPS method or an FFS method in which a liquid crystal display element is irradiated with polarized ultraviolet rays, the polymer containing the liquid crystal aligning agent is a photoreaction that exhibits liquid crystal alignment ability by using polarized ultraviolet rays. It is preferable that a sex group is introduced.
 光反応性基が導入された重合体を含有する液晶配向剤から得られる液晶配向膜に偏光紫外線を照射することで、光反応が進行し、偏光方向と同一方向、または偏光方向に対して垂直方向に異方性が付与され、液晶が配向する。光反応には、光二量化、光異性化などがある。光反応性基としては、不飽和結合、特に二重結合を有するものが好ましく、アクリル基、ビニル基、メタクリル基、アントラセニル基、カルコニル基、クマリン基、スチルベン基、マレイミド基およびシンナモイル基などが挙げられる。 By irradiating polarized ultraviolet rays to a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polymer having a photoreactive group introduced, a photoreaction progresses and is the same as the polarization direction or perpendicular to the polarization direction. Anisotropy is imparted in the direction, and the liquid crystal is aligned. Photoreaction includes photodimerization and photoisomerization. As the photoreactive group, those having an unsaturated bond, particularly a double bond, are preferable, and examples thereof include an acrylic group, a vinyl group, a methacryl group, an anthracenyl group, a calconyl group, a coumarin group, a stilbene group, a maleimide group, and a cinnamoyl group. It is done.
 具体例を挙げるならば、光二量化反応が進行する構造としては、上記式[4-1]~[4-3]で表される構造が挙げられる。また、光異性化反応が進行する構造としては、上記式[4-4]、[4-5]で表される構造が挙げられる。なお、上記式[4-1]~[4-5]から選ばれる構造を有する光反応性基とは、これらの式[4-1]~[4-5]の構造から任意の数のHが取れた基、上記式[4-1]でOが結合手である基や、これらの構造がその他の構造(例えばアルキレン基等)と結合した基である。 As a specific example, examples of the structure in which the photodimerization reaction proceeds include structures represented by the above formulas [4-1] to [4-3]. Examples of the structure in which the photoisomerization reaction proceeds include structures represented by the above formulas [4-4] and [4-5]. The photoreactive group having a structure selected from the above formulas [4-1] to [4-5] refers to any number of H from the structures of the formulas [4-1] to [4-5]. A group in which O is a bond in the above formula [4-1], or a group in which these structures are bonded to other structures (such as an alkylene group).
 なお、このような光反応性基は、重合体の主鎖に導入されていても、側鎖に導入されていてもよい。このように、光反応性基の導入方法は特に限定されない。また、重合体は、光反応性基と共に上記液晶を垂直に配向させる基を有していてもよい。 Such a photoreactive group may be introduced into the main chain of the polymer or may be introduced into the side chain. Thus, the method for introducing the photoreactive group is not particularly limited. Further, the polymer may have a group that vertically aligns the liquid crystal together with the photoreactive group.
 また、光反応性基の存在量は、光反応を起こし、配向を固定化できる範囲であることが好ましく、光に対する感度および配向固定化能をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。 The abundance of the photoreactive group is preferably within a range where the photoreaction can be caused and the orientation can be fixed. In order to further improve the sensitivity to light and the ability to fix the orientation, other properties are affected. As much as possible is preferable as long as it does not come out.
 <重合体>
 本発明の液晶配向剤が含有する重合体は、ポリイミド前駆体、それをイミド化して得られるポリイミドの他、ポリシロキサンやポリ(メタ)アクリレートが好ましく用いられる。ここで、ポリイミド前駆体とは、ポリアミック酸(ポリアミド酸ともいう)や、ポリアミック酸エステルを指す。また、液晶配向剤中に、これらの異なる重合体が同時に含有されていても良く、それらの含有比率は、液晶表示素子の特性に応じ、種々選択される。液晶配向剤が含有する重合体の総量は、0.1~20(質量)%であることが好ましい。なお、本発明の液晶配向剤が含有するポリイミド前駆体、ポリイミド、ポリシロキサンやポリ(メタ)アクリレート等の重合体は、液晶配向剤に含有される溶媒に溶解可能である必要がある。以下にそれぞれの重合体について説明する。
<Polymer>
As the polymer contained in the liquid crystal aligning agent of the present invention, polysiloxane and poly (meth) acrylate are preferably used in addition to a polyimide precursor and a polyimide obtained by imidizing it. Here, the polyimide precursor refers to polyamic acid (also referred to as polyamic acid) or polyamic acid ester. In addition, these different polymers may be simultaneously contained in the liquid crystal aligning agent, and the content ratio thereof is variously selected according to the characteristics of the liquid crystal display element. The total amount of the polymer contained in the liquid crystal aligning agent is preferably 0.1 to 20 (mass)%. The polyimide precursor, polyimide, polymer such as polysiloxane and poly (meth) acrylate contained in the liquid crystal aligning agent of the present invention needs to be soluble in the solvent contained in the liquid crystal aligning agent. Each polymer will be described below.
 <ポリイミド前駆体およびそれをイミド化して得られるポリイミド>
 本発明の液晶配向剤が含有する重合体がポリイミド前駆体を含む場合、ポリイミド前駆体は、例えば下記式[7]で表される繰り返し単位(構造単位)を有する。
<Polyimide precursor and polyimide obtained by imidizing it>
When the polymer which the liquid crystal aligning agent of this invention contains a polyimide precursor, a polyimide precursor has a repeating unit (structural unit) represented, for example by following formula [7].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式[7]中、Rは水素原子、又は炭素数1~4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。Xは4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式[X-1]~[X-43]が挙げられる。液晶配向性の観点から、Xは、[X-1]~[X-10]、[X-26]~[X-28]、[X-31]~[X-37]が好ましい。 In the formula [7], R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable. X 2 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include the following formulas [X-1] to [X-43]. From the viewpoint of liquid crystal orientation, X 2 is preferably [X-1] to [X-10], [X-26] to [X-28], or [X-31] to [X-37].
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式[X-1]中、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基である。液晶配向性の観点から、R、R、R、及びRは、水素原子、ハロゲン原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましく、さらに好ましくは、下記式[X1-1]~[X1-2]で表される構造からなる群から選ばれる少なくとも1種である。 In the formula [X-1], R 2 , R 3 , R 4 , and R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. , An alkenyl group, or a phenyl group. From the viewpoint of liquid crystal orientation, R 2 , R 3 , R 4 and R 5 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group, and still more preferably At least one selected from the group consisting of structures represented by [X1-1] to [X1-2].
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の液晶配向剤が偏光紫外線を照射することにより作製される液晶表示素子に用いられる場合、Xの好ましい構造としては、[X1-1]、[X1-2]、[X-2]、[X-3]、[X-5]、[X-6]、[X-7]、[X-8]、[X-9]、[X-10]が挙げられ、[X1-1]、[X1-2]および[X-6]が特に好ましい。 When the liquid crystal aligning agent of the present invention is used in a liquid crystal display device produced by irradiating polarized ultraviolet rays, preferred structures of X 2 include [X1-1], [X1-2], [X-2] , [X-3], [X-5], [X-6], [X-7], [X-8], [X-9], [X-10], and [X1-1] ], [X1-2] and [X-6] are particularly preferred.
 上記式[7]中、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記式[Y-1]~[Y-73]が挙げられる。 In the formula [7], Y 2 is a divalent organic group, the structure thereof is not particularly limited. Specific examples of Y 2 include the following formulas [Y-1] to [Y-73].
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式中、Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, Me represents a methyl group.)
 ポリイミド前駆体やポリイミド等の有機溶剤に対する溶解性の向上が期待できるため、[Y-8]、[Y-20]、[Y-21]、[Y-22]、[Y-28]、[Y-29]又は[Y-30]の構造を有する構造単位を有することが好ましい。 Since improvement in solubility in organic solvents such as polyimide precursor and polyimide can be expected, [Y-8], [Y-20], [Y-21], [Y-22], [Y-28], [Y It is preferable to have a structural unit having a structure of Y-29] or [Y-30].
 本発明の液晶配向剤が含有するポリイミド前駆体は、ジアミン成分(例えば、後述する液晶を垂直に配向させる側鎖を有するジアミン、光重合性の側鎖を有するジアミンや、光反応性基を有するジアミン等のジアミン)とテトラカルボン酸二無水物成分(例えば、後述するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等)との反応によって得られる。ポリイミド前駆体としては、例えば、ポリアミック酸やポリアミック酸エステルが挙げられる。具体的には、ポリアミック酸は、ジアミン成分とテトラカルボン酸二無水物との反応によって得られる。ポリアミック酸エステルは、ジアミン成分とテトラカルボン酸ジエステルジクロリドを塩基存在下で反応させる、またはジアミン成分とテトラカルボン酸ジエステルを適当な縮合剤、塩基の存在下にて反応させることによって得られる。また、ポリイミドはこのポリアミック酸を脱水閉環させる、あるいはポリアミック酸エステルを加熱閉環させることにより得られる。かかるポリアミック酸、ポリアミック酸エステル及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。 The polyimide precursor contained in the liquid crystal aligning agent of the present invention has a diamine component (for example, a diamine having a side chain for vertically aligning a liquid crystal described later, a diamine having a photopolymerizable side chain, or a photoreactive group. A diamine such as a diamine) and a tetracarboxylic dianhydride component (for example, tetracarboxylic dianhydride, tetracarboxylic diester dichloride, tetracarboxylic diester, etc. described later). Examples of the polyimide precursor include polyamic acid and polyamic acid ester. Specifically, a polyamic acid is obtained by reaction of a diamine component and tetracarboxylic dianhydride. The polyamic acid ester can be obtained by reacting the diamine component and tetracarboxylic acid diester dichloride in the presence of a base, or reacting the diamine component and tetracarboxylic acid diester in the presence of a suitable condensing agent or base. Polyimide can be obtained by dehydrating and ring-closing this polyamic acid or by heating and ring-closing the polyamic acid ester. Any of such polyamic acid, polyamic acid ester, and polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
 <液晶を垂直に配向させる側鎖を有するジアミン>
 液晶を垂直に配向させる側鎖を有するジアミンとしては、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するジアミン、例えば上記式[5]で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば、水素原子がフッ素で置換されていてもよい炭素数が8~30の炭化水素基等を有するジアミンや、下記式[8]~[11]で表されるジアミンを挙げることができるが、これに限定されるものではない。
<Diamines with side chains that align liquid crystals vertically>
Examples of the diamine having a side chain for vertically aligning the liquid crystal include a long chain alkyl group, a group having a ring structure or a branched structure in the middle of the long chain alkyl group, a hydrocarbon group such as a steroid group, and the hydrogen of these groups. A diamine having a group in which a part or all of the atoms are replaced with fluorine atoms as a side chain, for example, a diamine having a side chain represented by the above formula [5] can be mentioned. More specifically, for example, diamines having a hydrocarbon group having 8 to 30 carbon atoms, in which hydrogen atoms may be substituted with fluorine, and diamines represented by the following formulas [8] to [11] are exemplified. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000027
(式[8]中のa、b、c、R~Rの定義は、上記式[5]と同じである。)
Figure JPOXMLDOC01-appb-C000027
(The definitions of a, b, c, and R 1 to R 5 in Formula [8] are the same as in Formula [5] above.)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式[9]及び式[10]中、A10は-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を表し、A11は単結合若しくはフェニレン基を表し、a10は上記式[5]で表される液晶を垂直に配向させる側鎖と同一の構造を表し、a10’は上記式[5]で表される液晶を垂直に配向させる側鎖と同一の構造から水素等の元素が一つ取れた構造である二価の基を表す。) (In Formula [9] and Formula [10], A 10 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—. , A 11 represents a single bond or a phenylene group, a 10 represents the same structure as the side chain for vertically aligning the liquid crystal represented by the above formula [5], and a 10 ′ represents the above formula [5]. (This represents a divalent group having a structure in which one element such as hydrogen is removed from the same structure as the side chain for vertically aligning the liquid crystal.)
Figure JPOXMLDOC01-appb-C000030
(式[11]中、A14は、フッ素原子で置換されていてもよい、炭素数3~20のアルキル基であり、A15は、1,4-シクロへキシレン基、又は1,4-フェニレン基であり、A16は、酸素原子、又は-COO-*(ただし、「*」を付した結合手がA15と結合する)であり、A17は酸素原子、又は-COO-*(ただし、「*」を付した結合手が(CH)aと結合する。)である。また、aは0、又は1の整数であり、aは2~10の整数であり、aは0、又は1の整数である。)
Figure JPOXMLDOC01-appb-C000030
(In the formula [11], A 14 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 15 is a 1,4-cyclohexylene group, or 1,4- A phenylene group, A 16 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 15 ), and A 17 is an oxygen atom or —COO — * ( However, bond marked with "*" is (CH 2) binds to a 2.) is. in addition, a 1 is 0, or an integer 1, a 2 is an integer from 2 to 10, a 3 is 0 or an integer of 1.
 式[8]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula [8] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
 式[8]の具体的な構造としては、下記の式[A-1]~式[A-24]で表されるジアミンを例示することができるが、これに限定されるものではない。 Specific examples of the structure of the formula [8] include diamines represented by the following formulas [A-1] to [A-24], but are not limited thereto.
Figure JPOXMLDOC01-appb-C000031
(式[A-1]~式[A-5]中、Aは、炭素数2~24のアルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000031
(In the formulas [A-1] to [A-5], A 1 is an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000032
(式[A-6]及び式[A-7]中、Aは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Aは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000032
(In Formula [A-6] and Formula [A-7], A 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and 3 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000033
(式[A-8]~式[A-10]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Aは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000033
(In the formulas [A-8] to [A-10], A 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or —CH 2 —, and A 5 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000034
(式[A-11]及び式[A-12]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000034
(In Formula [A-11] and Formula [A-12], A 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O—, or —NH—, and A 7 represents fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy Group or hydroxyl group.)
Figure JPOXMLDOC01-appb-C000035
(式[A-13]及び式[A-14]中、Aは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000035
(In Formula [A-13] and Formula [A-14], A 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)
Figure JPOXMLDOC01-appb-C000036
(式[A-15]及び式[A-16]中、Aは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000036
(In the formulas [A-15] and [A-16], A 9 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式[9]で表されるジアミンの具体例としては、下記の式[A-25]~式[A-30]で示されるジアミンを挙げることができるが、これに限るものではない。 Specific examples of the diamine represented by the formula [9] include diamines represented by the following formulas [A-25] to [A-30], but are not limited thereto.
Figure JPOXMLDOC01-appb-C000038
(式[A-25]~式[A-30]中、A12は、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、A13は炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000038
(In the formulas [A-25] to [A-30], A 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—, and A 13 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
 式[10]で表されるジアミンの具体例としては、下記の式[A-31]~式[A-32]で示されるジアミンを挙げることができるが、これに限るものではない。 Specific examples of the diamine represented by the formula [10] include diamines represented by the following formulas [A-31] to [A-32], but are not limited thereto.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 この中でも、液晶を垂直に配向させる能力、液晶の応答速度の観点から、[A-1]、[A-2]、[A-3]、[A-4]、[A-5]、[A-25]、[A-26]、[A-27]、[A-28]、[A-29]、[A-30]のジアミンが好ましい。 Among these, [A-1], [A-2], [A-3], [A-4], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5] The diamines of A-25], [A-26], [A-27], [A-28], [A-29], and [A-30] are preferred.
 上記のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The above-mentioned diamines can be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is used.
 <光重合性の側鎖を有するジアミン>
 本発明の液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶配向剤が含有するポリイミド前駆体の原料となるジアミン成分には、光重合性の側鎖が導入されていることが好ましい。光重合性の側鎖を有するジアミンは、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα-メチレン-γ-ブチロラクトン基から選択される少なくとも一種を含み、例えば、上記式[6]で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば下記の一般式[12]で表されるジアミンを挙げることができるが、これに限定されるものではない。
<Diamine having photopolymerizable side chain>
When the liquid crystal aligning agent of this invention is used for the liquid crystal display element of a vertical alignment system, the photopolymerizable side chain may be introduce | transduced into the diamine component used as the raw material of the polyimide precursor which a liquid crystal aligning agent contains. preferable. The diamine having a photopolymerizable side chain includes at least one selected from a methacryl group, an acryl group, a vinyl group, an allyl group, a styryl group, and an α-methylene-γ-butyrolactone group, and includes, for example, the above formula [6] A diamine having a side chain represented by More specifically, for example, diamines represented by the following general formula [12] can be exemplified, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000040
(式[12]中のR、R及びRの定義は、上記式[6]と同じである。)
Figure JPOXMLDOC01-appb-C000040
(The definitions of R 6 , R 7 and R 8 in Formula [12] are the same as in Formula [6] above.)
 式[12]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula [12] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
 メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα-メチレン-γ-ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンとしては、具体的には以下のような化合物が挙げられるが、これに限定されるものではない。 Specific examples of the diamine having a photopolymerizable side chain containing at least one selected from a methacryl group, an acryl group, a vinyl group, an allyl group, a styryl group, and an α-methylene-γ-butyrolactone group are as follows. However, it is not limited to this.
Figure JPOXMLDOC01-appb-C000041
(式中、Rは-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-より選ばれる基を表す。Rは、炭素数1から炭素数30で形成されるアルキレン基、二価の炭素環もしくは複素環であり、このアルキレン基、二価の炭素環もしくは複素環の1つまたは複数の水素原子は、フッ素原子もしくは有機基で置き換えられていてもよい。また、Rは、次に挙げるいずれかの基が互いに隣り合わない場合において、-CH-がこれらの基に置き換えられていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Rは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、単結合のいずれかを表す。Rはシンナモイル基を表す。R10は単結合、または、炭素数1から炭素数30で形成されるアルキレン基、二価の炭素環もしくは複素環であり、このアルキレン基、二価の炭素環もしくは複素環の1つまたは複数の水素原子は、フッ素原子もしくは有機基で置き換えられていてもよい。また、R10は、次に挙げるいずれかの基が互いに隣り合わない場合において、-CH-がこれらの基に置き換えられていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。R11はアクリル基、メタクリル基のいずれかから選ばれる光重合性基を示す。)
Figure JPOXMLDOC01-appb-C000041
(Wherein R 6 represents a group selected from —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—. R 7 represents An alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are a fluorine atom or . may be replaced by an organic radical addition, R 7 is in the if any of the following groups not adjacent to each other, -CH 2 - may be replaced by these groups; -O- , —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—, R 8 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, R 9 represents a single bond, R 9 represents a cinnamoyl group, R 10 represents a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic ring or a heterocyclic ring, One or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocyclic ring may be replaced with a fluorine atom or an organic group, and R 10 may be any of the following groups adjacent to each other: In this case, —CH 2 — may be replaced by these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, — CO— R 11 represents a photopolymerizable group selected from an acrylic group and a methacryl group.)
Figure JPOXMLDOC01-appb-C000042
(Xは単結合、又は、-O-、-COO-、-NHCO-、-NH-より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000042
(X is a single bond, or a bonding group selected from —O—, —COO—, —NHCO—, —NH—, Y is a single bond, unsubstituted or substituted with a fluorine atom, Represents 20 alkylene groups.)
 上記メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα-メチレン-γ-ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、光に対する感度、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類または2種類以上を混合して使用することもできる。 The diamine having a photopolymerizable side chain containing at least one selected from the methacryl group, acryl group, vinyl group, allyl group, styryl group and α-methylene-γ-butyrolactone group is a liquid crystal alignment film. Depending on the liquid crystal orientation, sensitivity to light, pretilt angle, voltage holding characteristics, accumulated charge characteristics, liquid crystal display response speed, etc. You can also.
 また、このようなメタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα-メチレン-γ-ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の総量の10~70モル%となる量を用いることが好ましく、より好ましく20~60モル%、特に好ましくは30~50モル%である。 Further, such a diamine having a photopolymerizable side chain containing at least one selected from a methacryl group, an acrylic group, a vinyl group, an allyl group, a styryl group, and an α-methylene-γ-butyrolactone group is a polyamic acid. It is preferable to use an amount that is 10 to 70 mol% of the total amount of diamine components used in the synthesis, more preferably 20 to 60 mol%, and particularly preferably 30 to 50 mol%.
 <光反応性基を有するジアミン>
 本発明の液晶配向剤が偏光紫外線を照射することで作製される液晶表示素子に用いられる場合、液晶配向剤が含有するポリイミド前駆体の原料となるジアミン成分には、光反応性基が導入されていることが好ましい。
<Diamine having photoreactive group>
When the liquid crystal aligning agent of the present invention is used in a liquid crystal display device produced by irradiating polarized ultraviolet rays, a photoreactive group is introduced into the diamine component that is a raw material for the polyimide precursor contained in the liquid crystal aligning agent. It is preferable.
 偏光紫外線の照射により、光二量化反応や光異性化反応が進行し、異方性を生じさせる配向処理方法を用いる場合、上記式[4-1]~[4-5]の構造を、重合体の主鎖もしくは側鎖に導入すれば良い。 In the case of using an orientation treatment method in which photodimerization reaction or photoisomerization reaction proceeds by irradiation with polarized ultraviolet rays and anisotropy is generated, the structure of the above formulas [4-1] to [4-5] It may be introduced into the main chain or side chain.
 液晶配向剤に含有させる重合体として、ポリイミド前駆体及びそれをイミド化して得られるポリイミドを用いる場合、上記式[4-1]~[4-5]の構造を主鎖もしくは側鎖に含有するテトラカルボン酸二無水物又はジアミンを用いる方法があるが、合成の容易性の観点から、上記式[4-1]~[4-5]の構造を側鎖に含有するジアミンを用いることが好ましい。なお、ジアミンの側鎖とは、ジアミンの2つのアミノ基を結ぶ構造から枝分かれした構造である。そのようなジアミンの具体例としては、下記式に表す化合物が挙げられるが、これに限定されるものではない。 When using a polyimide precursor and a polyimide obtained by imidizing it as a polymer to be contained in the liquid crystal aligning agent, the structure of the above formulas [4-1] to [4-5] is contained in the main chain or side chain. Although there is a method using tetracarboxylic dianhydride or diamine, it is preferable to use a diamine containing the structure of the above formulas [4-1] to [4-5] in the side chain from the viewpoint of ease of synthesis. . The side chain of diamine is a structure branched from a structure connecting two amino groups of diamine. Specific examples of such diamines include, but are not limited to, compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000043
(式中、Xは単結合、又は、-O-、-COO-、-NHCO-、-NH-より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。Rは水素原子、又は、非置換またはフッ素原子によって置換されている炭素数1~5のアルキル基、もしくはアルキルエーテル基を表す。)
Figure JPOXMLDOC01-appb-C000043
(Wherein X is a single bond or a linking group selected from —O—, —COO—, —NHCO—, —NH—, Y is a single bond, or carbon that is unsubstituted or substituted by a fluorine atom. Represents an alkylene group having a number of 1 to 20. R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms which is unsubstituted or substituted by a fluorine atom, or an alkyl ether group.
Figure JPOXMLDOC01-appb-C000044
(式中、Xは単結合、又は、-O-、-COO-、-NHCO-、-NH-より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。Rは水素原子、又は、非置換またはフッ素原子によって置換されている炭素数1~5のアルキル基、もしくはアルキルエーテル基を表す。)
Figure JPOXMLDOC01-appb-C000044
(Wherein X is a single bond or a linking group selected from —O—, —COO—, —NHCO—, —NH—, Y is a single bond, or carbon that is unsubstituted or substituted by a fluorine atom. Represents an alkylene group having a number of 1 to 20. R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms which is unsubstituted or substituted by a fluorine atom, or an alkyl ether group.
 <テトラカルボン酸二無水物>
 本発明の液晶配向剤中に含有されるポリイミド前駆体であるポリアミック酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
<Tetracarboxylic dianhydride>
In order to obtain the polyamic acid which is a polyimide precursor contained in the liquid crystal aligning agent of this invention, the tetracarboxylic dianhydride made to react with a diamine component is not specifically limited. Specific examples are given below.
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物などが挙げられる。 Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane. Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexyltetra Carboxylic dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride, cis-3,7-dibutylcycloocta-1,5-diene-1,2,5,6-tetracarboxylic dianhydride , Tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3,4: 7,8-dianhydride, hexacyclo [6.6.0.1 2 , 7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dianhydride, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2 3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride and the like.
 更には、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。 Furthermore, when an aromatic tetracarboxylic dianhydride is used in addition to the tetracyclic dianhydride having the alicyclic structure or aliphatic structure, the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. Since it can reduce, it is preferable. Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
 テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、光に対する感度、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上併用することができる。 Tetracarboxylic dianhydride can be used singly or in combination of two or more according to properties such as liquid crystal orientation, sensitivity to light, pretilt angle, voltage holding characteristics, accumulated charge, etc. when a liquid crystal alignment film is formed. .
 本発明の液晶配向剤中に含有されるポリイミド前駆体であるポリアミック酸エステルを得るためにジアミン成分と反応させるテトラカルボン酸ジアルキルエステルは特に限定されない。その具体例を以下に挙げる。 The tetracarboxylic acid dialkyl ester that is reacted with the diamine component in order to obtain a polyamic acid ester that is a polyimide precursor contained in the liquid crystal aligning agent of the present invention is not particularly limited. Specific examples are given below.
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステルなどが挙げられる。  Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy- , 2,3,4-Tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butanetetracarboxylic acid dialkyl ester, bicyclo [3,3,0] octane-2,4,6,8- Tetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxycyclopentylacetic acid dialkyl ester, cis-3,7-dibutylcycloocta-1,5- Diene-1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3, 4: 7,8 A dialkyl ester, hexacyclo [6.6. 12, 7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dialkyl ester, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2, Examples include 3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester.
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。 Examples of the aromatic tetracarboxylic acid dialkyl ester include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl es Le and the like.
 <ポリシロキサン>
 液晶配向剤が含有する重合体がポリシロキサンを含む場合、ポリシロキサンはアルコキシシラン成分を有機溶媒中で反応(例えば重縮合反応)することにより得られる。アルコキシシラン成分とは、分子内に1~4個のアルコキシ基を有するアルコキシシランをいう。例えば、下記式[14]で表されるアルコキシシラン成分を反応させることによりポリシロキサンが得られる。
<Polysiloxane>
When the polymer contained in the liquid crystal aligning agent contains polysiloxane, the polysiloxane can be obtained by reacting an alkoxysilane component in an organic solvent (for example, polycondensation reaction). The alkoxysilane component refers to an alkoxysilane having 1 to 4 alkoxy groups in the molecule. For example, polysiloxane can be obtained by reacting an alkoxysilane component represented by the following formula [14].
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 式[14]中、R11は1価の有機基を表し、R12は炭素数1~5、好ましくは1~3のアルキルである。より好ましくは、R12がメチル基またはエチル基である。 In the formula [14], R 11 represents a monovalent organic group, and R 12 is alkyl having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 12 is a methyl group or an ethyl group.
<垂直配向性の側鎖を有するアルコキシシラン>
 液晶を垂直に配向させる側鎖を有するアルコキシシランとしては、式[14]中、R11が長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するアルコキシシラン、例えば上記式[5]で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば、水素原子がフッ素で置換されていてもよい炭素数が8~30の炭化水素基等を有するジアミンや、下記式[15]で表されるアルコキシシランを挙げることができるが、これに限定されるものではない。
<Alkoxysilane having a vertical alignment side chain>
The alkoxysilane having a side chain to align the liquid crystal vertically, Equation [14] in the alkyl group for R 11 is a long chain, groups having a middle ring structure or branched structure of the long-chain alkyl group, such as a steroid group Examples include hydrocarbon silanes and alkoxysilanes having groups in which some or all of the hydrogen atoms in these groups are replaced by fluorine atoms as side chains, such as diamines having side chains represented by the above formula [5]. it can. More specifically, for example, a diamine having a hydrocarbon group having 8 to 30 carbon atoms in which a hydrogen atom may be substituted with fluorine, or an alkoxysilane represented by the following formula [15] can be given. However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000046
(式[15]中のa、b、c、R~Rの定義は、上記式[5]と同じである。式[15]中、Rは単結合もしくは-(CHO-(nは炭素原子数0~5のアルキル基)、R12は炭素数1~5、好ましくは1~3のアルキルを表す。)
Figure JPOXMLDOC01-appb-C000046
(The definitions of a, b, c, and R 1 to R 5 in Formula [15] are the same as those in Formula [5]. In Formula [15], R 9 is a single bond or — (CH 2 ) n. O— (n is an alkyl group having 0 to 5 carbon atoms), R 12 represents an alkyl having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.)
 ここで、以下に式[14]で表される垂直配向性の側鎖構造を持つアルコキシシランの具体例として式[14-1]~[14-13]を挙げるが、これに限定されるものではない。なお、下記式[14-1]~[14-13]におけるR12は、式[14]におけるR12と同じ、R9は式[15]におけるR9と同じである。 Here, specific examples of the alkoxysilane having a vertical alignment side chain structure represented by the formula [14] include the formulas [14-1] to [14-13], but are not limited thereto. is not. Incidentally, R 12 in the formula [14-1] - [14-13] is the same as R 12 in the formula [14], R 9 is the same as R 9 in the formula [15].
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
(式[14-7]~式[14-9]中、R13は炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000048
(In the formulas [14-7] to [14-9], R 13 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.)
Figure JPOXMLDOC01-appb-C000049
(式[14-10]および式[14-11]中、R14はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である。)
Figure JPOXMLDOC01-appb-C000049
(In the formulas [14-10] and [14-11], R 14 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.)
Figure JPOXMLDOC01-appb-C000050
(式[14-12]および式[14-13]中、R15は炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。) 
Figure JPOXMLDOC01-appb-C000050
(In the formulas [14-12] and [14-13], R 15 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. )
 式[14]で表されるアルコキシシランは、シロキサンポリマー(ポリシロキサン)とした際の溶媒への溶解性、液晶配向膜とした際の液晶配向性、光に対する感度、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類または2種類以上を混合して使用することもできる。また、炭素数10~18の長鎖アルキル基を含有するアルコキシシランとの併用も可能である。 The alkoxysilane represented by the formula [14] is soluble in a solvent when used as a siloxane polymer (polysiloxane), liquid crystal alignment when used as a liquid crystal alignment film, sensitivity to light, pretilt angle, voltage holding characteristics, One type or a mixture of two or more types can also be used depending on characteristics such as accumulated charge and the response speed of liquid crystal when a liquid crystal display element is used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
 このように式[14]で表されるアルコキシシランは、例えば、特開昭61-286393号公報に記載されるような公知の方法で製造することが可能である。 Thus, the alkoxysilane represented by the formula [14] can be produced by a known method as described in, for example, JP-A-61-286393.
<光重合性の側鎖を有するアルコキシシラン>
 また、ポリシロキサンを得るために用いられるアルコキシシラン成分として、例えば、下記式[16]で表されるような光重合性基を有するアルコキシシランも用いることができる。
<Alkoxysilane having a photopolymerizable side chain>
Moreover, as an alkoxysilane component used for obtaining polysiloxane, for example, an alkoxysilane having a photopolymerizable group represented by the following formula [16] can also be used.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 式[16]中、R21は、水素原子が、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換されたアルキル基である。置換されている水素原子は1つ以上であり、好ましくは1つである。アルキル基の炭素数は1~30が好ましく、より好ましくは1~20である。さらに好ましくは1~10である。R22は、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、特に好ましくは炭素数1~2である。 In the formula [16], R 21 is an alkyl group in which a hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group. The number of substituted hydrogen atoms is one or more, preferably one. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10. R 22 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
 式[16]で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシランである。 Although the specific example of the alkoxysilane represented by Formula [16] is given, it is not limited to these. For example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxy Silane, acryloxyethyltrimethoxysilane, acryloxyethyltriethoxysilane, styrylethyltrimethoxysilane, styrylethyltriethoxysilane, and 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane.
<その他のアルコキシシラン>
 さらに、ポリシロキサンを得るために用いられるアルコキシシラン成分として、例えば、下記式[17]で表されるアルコキシシランも用いることができる。
<Other alkoxysilanes>
Furthermore, as an alkoxysilane component used for obtaining polysiloxane, for example, an alkoxysilane represented by the following formula [17] can also be used.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 式[17]で表されるアルコキシシランのR23は、水素原子、又は水素原子がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素数1~10の炭化水素基であり、好ましくは、アミノ基、グリシド基、ウレイド基である。R24は炭素数1~5、好ましくは1~3のアルキル基であり、n2は0~3、好ましくは0~2の整数を表す。 R 23 of the alkoxysilane represented by the formula [17] may be a hydrogen atom, or the hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. A hydrocarbon group having 1 to 10 carbon atoms, preferably an amino group, a glycid group, or a ureido group. R 24 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and n2 represents an integer of 0 to 3, preferably 0 to 2.
 このような式[17]で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。例えば、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシランなどが挙げられる。 Specific examples of the alkoxysilane represented by the formula [17] are listed below, but are not limited thereto. For example, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyl Diethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane and γ-ureidopropyltri And propoxysilane.
 式[17]で表されるアルコキシシランにおいて、n2が0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、上記式[14]~式[16]で表されるアルコキシシランと重縮合反応をし易いので、ポリシロキサンを得るために好ましい。 In the alkoxysilane represented by the formula [17], the alkoxysilane in which n2 is 0 is tetraalkoxysilane. Tetraalkoxysilane is preferable for obtaining a polysiloxane because it easily undergoes a polycondensation reaction with the alkoxysilane represented by the above formulas [14] to [16].
 このような式[17]においてn2が0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。 As such an alkoxysilane having n2 of 0 in the formula [17], tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 液晶配向剤が含有するポリシロキサンを得る方法は、特に限定されず、例えば、上記式[14]~式[17]で表されるアルコキシシランを含有するアルコキシシラン成分を有機溶媒中で反応(例えば重縮合反応)させて得られる。通常、ポリシロキサンは、このようなアルコキシシラン成分を重縮合して、有機溶媒に均一に溶解した溶液として得られる。なお、上記式[14]~[17]などのアルコキシシランを含有するアルコキシシラン成分中のアルコキシシランの配合割合は特に限定されない。 The method for obtaining the polysiloxane contained in the liquid crystal aligning agent is not particularly limited. For example, the alkoxysilane component containing the alkoxysilane represented by the above formulas [14] to [17] is reacted in an organic solvent (for example, (Polycondensation reaction). Usually, polysiloxane is obtained as a solution in which such an alkoxysilane component is polycondensed and uniformly dissolved in an organic solvent. The mixing ratio of the alkoxysilane in the alkoxysilane component containing the alkoxysilane such as the above formulas [14] to [17] is not particularly limited.
 ポリシロキサンを得るためにアルコキシシランを重縮合する方法として、例えば、アルコキシシランをアルコール又はグリコールなどの有機溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解および完全加水分解のいずれであってもよい。 Examples of the method of polycondensing alkoxysilane to obtain polysiloxane include a method of hydrolyzing and condensing alkoxysilane in an organic solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
 以上に説明したポリシロキサンは、液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶を垂直に配向させる基を側鎖に有し、さらに光重合性基を側鎖に有していてもよい。また、液晶配向剤が水平配向方式の液晶表示素子に用いられる場合、光反応性基を有していてもよい。このため、モノマーであるアルコキシシラン成分には、液晶を垂直に配向させる基や光重合性基が側鎖に、光反応性基が主鎖もしくは側鎖に導入されていることが好ましい。このような液晶を垂直に配向させる基、光重合性基または光反応性基を有するポリシロキサンは、液晶の配向固定化能を発現する液晶配向膜を得るための重合体として有用である。 When the liquid crystal aligning agent is used in a vertical alignment type liquid crystal display element, the polysiloxane described above has a group for vertically aligning liquid crystals in the side chain and further has a photopolymerizable group in the side chain. May be. Moreover, when a liquid crystal aligning agent is used for the liquid crystal display element of a horizontal alignment system, you may have a photoreactive group. For this reason, it is preferable that the alkoxysilane component which is a monomer has a group or photopolymerizable group for vertically aligning the liquid crystal introduced in the side chain and a photoreactive group introduced in the main chain or side chain. Such a polysiloxane having a group for vertically aligning a liquid crystal, a photopolymerizable group or a photoreactive group is useful as a polymer for obtaining a liquid crystal alignment film exhibiting the ability to fix the alignment of liquid crystals.
 <ポリ(メタ)アクリレート>
 液晶配向剤が含有する重合体がポリ(メタ)アクリレートを含む場合、ポリ(メタ)アクリレートは、アクリル酸エステル化合物や、メタクリル酸エステル化合物等のモノマーと、重合開始剤などとを重合反応させることにより得られる。
<Poly (meth) acrylate>
When the polymer contained in the liquid crystal aligning agent contains poly (meth) acrylate, the poly (meth) acrylate is caused to undergo a polymerization reaction between a monomer such as an acrylic ester compound or a methacrylic ester compound and a polymerization initiator. Is obtained.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレートおよび8-エチル-8-トリシクロデシルアクリレートなどが挙げられる。 Examples of the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate Such as beauty 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレートおよび8-エチル-8-トリシクロデシルメタクリレートなどが挙げられる。 Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-me Le -8- tricyclodecylacrylate methacrylate and 8-ethyl-8-tricyclodecyl methacrylate, and the like.
 以上に説明したポリ(メタ)アクリレートは、液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶を垂直に配向させる基を側鎖に有し、さらに光重合性基を側鎖に有していてもよい。また、液晶配向剤が水平配向方式の液晶表示素子に用いられる場合、光反応性基を有していてもよい。このため、モノマーであるアクリル酸エステル化合物や、メタクリル酸エステル化合物等には、液晶を垂直に配向させる基や光重合性基が側鎖に、光反応性基が主鎖もしくは側鎖に導入されていることが好ましい。このような液晶を垂直に配向させる基、光重合性基または光反応性基を有するポリ(メタ)アクリレートは、液晶の配向固定化能を発現する液晶配向膜を得るための重合体として有用である。 When the liquid crystal aligning agent is used in a vertical alignment type liquid crystal display element, the poly (meth) acrylate described above has a group for vertically aligning liquid crystals in the side chain, and further has a photopolymerizable group in the side chain. You may have. Moreover, when a liquid crystal aligning agent is used for the liquid crystal display element of a horizontal alignment system, you may have a photoreactive group. For this reason, acrylic acid ester compounds and methacrylic acid ester compounds, which are monomers, have a group or photopolymerizable group for vertically aligning liquid crystals introduced into the side chain and a photoreactive group introduced into the main chain or side chain. It is preferable. Such a poly (meth) acrylate having a group for vertically aligning a liquid crystal, a photopolymerizable group or a photoreactive group is useful as a polymer for obtaining a liquid crystal alignment film exhibiting the ability to fix the alignment of liquid crystals. is there.
 ここで、側鎖を有するアクリル酸エステル化合物や、メタクリル酸エステル化合物としては、例えば、上記式[5]で表される側鎖を有するアクリル酸エステル化合物や、メタクリル酸エステル化合物を挙げることができる。より具体的には例えば、下記式[18]及び下記式[19-1]~[19-3]で表されるアクリル酸エステル化合物や、メタクリル酸エステル化合物を挙げることができるが、これに限定されるものではない。 Here, examples of the acrylate compound having a side chain and the methacrylic acid ester compound include an acrylate compound having a side chain represented by the above formula [5] and a methacrylic acid ester compound. . More specifically, examples include acrylic ester compounds and methacrylic ester compounds represented by the following formula [18] and the following formulas [19-1] to [19-3], but are not limited thereto. Is not to be done.
Figure JPOXMLDOC01-appb-C000053
(式[18]中のa、b、c、R~Rの定義は、上記式[5]と同じである。Rは水素原子もしくはメチル基、Sは炭素原子数2~11のアルキレン基である。)
Figure JPOXMLDOC01-appb-C000053
(Definition of a, b, c and R 1 to R 5 in the formula [18] is the same as in the above formula [5]. R is a hydrogen atom or a methyl group, and S is an alkylene having 2 to 11 carbon atoms. Group.)
Figure JPOXMLDOC01-appb-C000054
 (Rは水素原子もしくはメチル基、Sは炭素原子数2~11のアルキレン基、Xはエーテル、エステル、アミド結合、R10は水素原子、または非置換またはフッ素原子によって置換されている炭素数1~5のアルキル基である。)
Figure JPOXMLDOC01-appb-C000054
(R is a hydrogen atom or a methyl group, S is an alkylene group having 2 to 11 carbon atoms, X is an ether, ester or amide bond, R 10 is a hydrogen atom, or an unsubstituted or substituted carbon atom having 1 carbon atom. ˜5 alkyl groups.)
 <溶媒>
 本発明の液晶配向剤が含有する溶媒は、液晶配向剤が含有する上記重合体や上記重合性化合物が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、重合体としてポリイミド前駆体やポリイミドを用いる場合は、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。また、重合体として、ポリシロキサンを用いる場合は、例えば、エチレングリコール、1,2-プロピレングリコールなどの多価アルコール化合物、N-メチルホルムアミド、N,N-ジメチルホルムアミドなどのアミド化合物等を挙げることができる。また、重合体として、ポリ(メタ)アクリレートを用いる場合は、例えばアルコール化合物、ケトン化合物、アミド化合物もしくはエステル化合物またはその他の非プロトン性化合物等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体や重合性化合物を均一に溶解できない溶媒であっても、重合体や重合性化合物が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
<Solvent>
The solvent which the liquid crystal aligning agent of this invention contains will not be specifically limited if the said polymer and the said polymeric compound which a liquid crystal aligning agent contain melt | dissolve uniformly. Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, when a polyimide precursor or polyimide is used as the polymer. N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N , N-dimethylpropanamide and the like. Further, when polysiloxane is used as the polymer, examples thereof include polyhydric alcohol compounds such as ethylene glycol and 1,2-propylene glycol, amide compounds such as N-methylformamide and N, N-dimethylformamide, and the like. Can do. Moreover, when using poly (meth) acrylate as a polymer, an alcohol compound, a ketone compound, an amide compound, an ester compound, or another aprotic compound can be mentioned, for example. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt | dissolve a polymer and a polymeric compound uniformly by itself, as long as a polymer and a polymeric compound do not precipitate, you may mix with said organic solvent.
 本発明の液晶配向剤は、重合体や重合性化合物を溶解させるための溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類以上を併用してもよい。 The liquid crystal aligning agent of this invention may contain the solvent for improving the coating-film uniformity at the time of apply | coating a liquid crystal aligning agent to a board | substrate other than the solvent for dissolving a polymer and a polymeric compound. . As such a solvent, a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two or more of these solvents may be used in combination.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、前述の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the above-mentioned polymers, and the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film are changed. Target dielectric material or conductive material, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, compound for improving film thickness uniformity and surface smoothness when liquid crystal alignment agent is applied, liquid crystal Addition of a crosslinkable compound for the purpose of increasing the hardness and density of the film when it is made into an alignment film, and an imidization accelerator for the purpose of efficiently progressing imidation of the polyimide precursor when the coating film is baked. May be.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like. When these surfactants are used, the ratio of use thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of polymers contained in the liquid crystal aligning agent. 1 part by mass.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。また液晶配向膜の膜強度をさらに上げるために2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、液晶配向剤に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。 Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N′-tetraglycidyl-4, 4′-diaminodiphenylmethane, 3- (N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, etc. . In order to further increase the film strength of the liquid crystal alignment film, a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. When these compounds are used, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent.
 <液晶配向膜>
 本発明の液晶表示素子に用いられる液晶配向膜は、上記液晶配向剤を基板に塗布し、必要に応じて乾燥した後、焼成して得られた塗膜面に配向処理を行うことで得られる。
<Liquid crystal alignment film>
The liquid crystal alignment film used for the liquid crystal display element of the present invention is obtained by applying the liquid crystal aligning agent to a substrate, drying it as necessary, and then performing an alignment treatment on the coating surface obtained by baking. .
 液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができ、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。 The substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, and the like can be used. Use of a substrate on which an ITO (Indium Tin Oxide) electrode or the like is formed is preferable from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can be used.
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、触れ基礎印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。 The application method of the liquid crystal aligning agent is not particularly limited, but industrially, a method performed by screen printing, offset printing, touch basic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、液晶配向剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。 After the liquid crystal aligning agent is applied on the substrate, the heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven is used, depending on the solvent used for the liquid crystal aligning agent, 30 to 300 ° C., preferably 30 The liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of ˜250 ° C. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
 <垂直配向方式の液晶表示素子>
 本発明の垂直配向方式の液晶表示素子は、重合性化合物を含有する液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製して得ることができる。具体的には、液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶を含む液晶組成物を注入して液晶層を形成する。そして、液晶層および液晶配向膜に電圧を印加しながら紫外線を照射することで液晶セルを具備する垂直配向方式の液晶表示素子が得られる。なお、液晶組成物は重合性化合物を含有してもよい。
<Vertical alignment type liquid crystal display element>
The liquid crystal display element of the vertical alignment system of the present invention can be obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film containing a polymerizable compound. Specifically, a liquid crystal alignment film is formed by applying and baking a liquid crystal alignment agent on two substrates, and the two substrates are arranged so that the liquid crystal alignment films face each other. A liquid crystal composition containing liquid crystal is injected between the substrates to form a liquid crystal layer. A vertical alignment type liquid crystal display element having a liquid crystal cell is obtained by irradiating ultraviolet rays while applying a voltage to the liquid crystal layer and the liquid crystal alignment film. The liquid crystal composition may contain a polymerizable compound.
 電圧を印加しながら紫外線を照射する工程により、重合性化合物が有する重合性不飽和結合基が光重合または光架橋反応を起こし、液晶層の分子の配向状態は制御される。これにより、液晶配向膜の表面に位置する液晶の配向は、ラビング処理を行わなくても垂直方向から僅かに傾いた状態で固定化される。 In the step of irradiating ultraviolet rays while applying a voltage, the polymerizable unsaturated bond group of the polymerizable compound undergoes photopolymerization or photocrosslinking reaction, and the molecular alignment state of the liquid crystal layer is controlled. Thereby, the alignment of the liquid crystal positioned on the surface of the liquid crystal alignment film is fixed while being slightly inclined from the vertical direction without performing the rubbing treatment.
 <水平配向方式の液晶表示素子>
 水平配向方式の液晶表示素子とは、基板に対して水平方向(横方向)に電界を印加し液晶分子をスイッチングする方式の液晶表示素子である。本発明のIPS方式やFFS方式などの水平配向方式の液晶表示素子は、重合体化合物を含有する液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製して得ることができる。具体的には、液晶配向剤を2枚の基板上に塗布して焼成し、必要に応じてラビング処理を行った後、偏光紫外線を照射することにより液晶配向膜を形成する。次いで、液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶を含む液晶組成物を注入して液晶層を形成する。そして、液晶層および液晶配向膜に偏光紫外線を照射することで液晶セルを具備する水平配向方式の液晶表示素子が得られる。なお、液晶組成物は重合性化合物を含有してもよい。
<Horizontal alignment type liquid crystal display element>
A horizontal alignment liquid crystal display element is a liquid crystal display element that switches liquid crystal molecules by applying an electric field in a horizontal direction (lateral direction) with respect to a substrate. The liquid crystal display element of a horizontal alignment method such as the IPS method or the FFS method of the present invention can be obtained by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film containing a polymer compound. . Specifically, the liquid crystal aligning agent is applied onto two substrates and baked, and a rubbing treatment is performed as necessary, and then a liquid crystal alignment film is formed by irradiating polarized ultraviolet rays. Next, two substrates are arranged so that the liquid crystal alignment films face each other, and a liquid crystal composition containing liquid crystal is injected between the two substrates to form a liquid crystal layer. Then, the liquid crystal layer and the liquid crystal alignment film are irradiated with polarized ultraviolet rays to obtain a horizontal alignment type liquid crystal display device having a liquid crystal cell. The liquid crystal composition may contain a polymerizable compound.
 液晶層および液晶配向膜に紫外線を照射する工程、すなわち、素子作製後に素子の外側から紫外線照射する工程により、重合性化合物が有する重合性不飽和結合基が光重合や光架橋などの光反応を起こす。これにより、液晶配向膜の表面に位置する液晶は水平方向に配向したまま固定化される。 The process of irradiating the liquid crystal layer and the liquid crystal alignment film with ultraviolet rays, that is, the step of irradiating ultraviolet rays from the outside of the device after the device is fabricated, causes the polymerizable unsaturated bond group of the polymerizable compound to undergo a photoreaction such as photopolymerization or photocrosslinking. Wake up. Thereby, the liquid crystal located on the surface of the liquid crystal alignment film is fixed while being aligned in the horizontal direction.
 以上に説明した本発明の垂直配向方式や水平配向方式の液晶表示素子は、重合性化合物を含有する液晶配向剤から得られた液晶配向膜を具備する。液晶配向剤中の重合性化合物は、上述したように水素結合する官能基を有するため、液晶配向膜中や液晶配向剤中で水素結合を介して二量体を形成する。さらに本発明で使用される重合性化合物は剛直な芳香環を有するため、水素結合する官能基は水素結合を介してメソゲン構造を形成する。このメソゲン構造は水素結合によって擬似的に巨大なメソゲン構造となり、紫外領域の長波長側に吸収を有するため光に対する感度が向上する。従って、このような液晶配向膜を具備する液晶表示素子は、後述する実施例に示すように、光に対する感度が向上し、長波長側の紫外光でも応答速度が充分速く、かつ配向固定化能に優れたものとなる。 The liquid crystal display element of the vertical alignment method or horizontal alignment method of the present invention described above includes a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polymerizable compound. Since the polymerizable compound in the liquid crystal aligning agent has a functional group capable of hydrogen bonding as described above, it forms a dimer in the liquid crystal alignment film or in the liquid crystal aligning agent through hydrogen bonding. Furthermore, since the polymerizable compound used in the present invention has a rigid aromatic ring, the functional group capable of hydrogen bonding forms a mesogenic structure via the hydrogen bond. This mesogenic structure becomes a pseudo-large mesogenic structure due to hydrogen bonding, and has absorption on the long wavelength side in the ultraviolet region, so that sensitivity to light is improved. Accordingly, a liquid crystal display device having such a liquid crystal alignment film has improved sensitivity to light, a sufficiently high response speed even with ultraviolet light on the long wavelength side, and an alignment fixing ability as shown in the examples described later. It will be excellent.
 以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 下記液晶配向剤の調製で用いた略号は以下のとおりである。
 <液晶配向剤の調製>
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DBA:3.5-ジアミノ安息香酸
m-PCH7:下記式で表される1,3-ジアミノ-5-((4-(4-ヘプチルシクロヘキシル)フェノキシ)メチル)ベンゼン
The abbreviations used in the preparation of the following liquid crystal aligning agents are as follows.
<Preparation of liquid crystal aligning agent>
BODA: Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride DBA: 3.5-diamino Benzoic acid m-PCH7: 1,3-diamino-5-((4- (4-heptylcyclohexyl) phenoxy) methyl) benzene represented by the following formula
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
PCH7:下記式で表される1,3-ジアミノ-4-[4-(4-ヘプチルシクロヘキシル)フェノキシ]ベンゼン PCH7: 1,3-diamino-4- [4- (4-heptylcyclohexyl) phenoxy] benzene represented by the following formula
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
BEM-S:下記式で表される2-(メタクリロイロキシ)エチル 3,5-ジアミノベンゾエート BEM-S: 2- (methacryloyloxy) ethyl 3,5-diaminobenzoate represented by the following formula
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
 <添加剤>
 3AMP:3-ピコリルアミン
<Additives>
3AMP: 3-picolylamine
 <重合性化合物>
 液晶配向剤に添加した重合性化合物[RM1]~[RM7]は以下の構造である。なお、重合性化合物[RM1]~[RM6]は、上記式[2-1]~[2-6]の重合性化合物と同一のものである。
<Polymerizable compound>
The polymerizable compounds [RM1] to [RM7] added to the liquid crystal aligning agent have the following structure. The polymerizable compounds [RM1] to [RM6] are the same as the polymerizable compounds of the above formulas [2-1] to [2-6].
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
<合成例1>
 重合性化合物[RM1]の合成 
<Synthesis Example 1>
Synthesis of polymerizable compound [RM1]
Figure JPOXMLDOC01-appb-C000059
                  
Figure JPOXMLDOC01-appb-C000059
                  
 3L四つ口フラスコに、4-ブロモ-4’-ヒドロキシビフェニル[A](150g、0.60mol)、アクリル酸 tert-ブチル[B](162g、1.3mol)、酢酸パラジウム(2.7g、12mmol)、トリ(o-トリル)ホスフィン(7.3g、24mmol)、トリブチルアミン(334g、1.8mol)、N,N-ジメチルアセトアミド(以下、DMAcと省略)(750g)を加え、100℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却し、1M塩酸水溶液1.8Lを注いだ。そこに、酢酸エチル(1L)を加え、分液操作にて水層を除去した。有機層を10%塩酸水溶液1Lで2回、飽和食塩水1Lで3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[C]を174g得た(収率98%)。 In a 3 L four-necked flask, 4-bromo-4′-hydroxybiphenyl [A] (150 g, 0.60 mol), tert-butyl acrylate [B] (162 g, 1.3 mol), palladium acetate (2.7 g, 12 mmol), tri (o-tolyl) phosphine (7.3 g, 24 mmol), tributylamine (334 g, 1.8 mol), N, N-dimethylacetamide (hereinafter abbreviated as DMAc) (750 g) at 100 ° C. Heating and stirring were performed. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature, and 1.8 L of 1M hydrochloric acid aqueous solution was poured. Ethyl acetate (1 L) was added thereto, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed twice with 1 L of a 10% aqueous hydrochloric acid solution and three times with 1 L of saturated brine, and then dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 174 g of Compound [C] as an oily compound (yield 98%).
 化合物[C]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):9.68(1H,s),7.72(2H,d),7.63(2H,d),7.59-7.55(9H,m),6.87-6.85(2H,m),1.44(9H,s). 
The measurement result of the nuclear magnetic resonance (NMR) of the compound [C] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.68 (1H, s), 7.72 (2H, d), 7.63 (2H, d), 7.59-7.55 (9H M), 6.87-6.85 (2H, m), 1.44 (9H, s).
 メカニカルスターラー、撹拌羽を備え付けた2L四つ口フラスコに上記で得た化合物[C](174g、0.59mol)、6-クロロ-1-ヘキサノール(96.7g、0.71mol)、炭酸カリウム(163g、1.2mol)、ヨウ化カリウム(9.8g、59mmol)、N,N-ジメチルホルムアミド(以下、DMFと省略)(1600g)を加え、80℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却し、反応溶液に蒸留水2Lを注いだ。析出した固体をろ別後、メタノール/蒸留水(1:1)溶液に注ぎ、再度ろ別した。得られた固体を減圧乾燥することで、化合物[D]を221g得た(収率95%)。 In a 2 L four-necked flask equipped with a mechanical stirrer and a stirring blade, the compound [C] obtained above (174 g, 0.59 mol), 6-chloro-1-hexanol (96.7 g, 0.71 mol), potassium carbonate ( 163 g, 1.2 mol), potassium iodide (9.8 g, 59 mmol), N, N-dimethylformamide (hereinafter abbreviated as DMF) (1600 g) were added, and the mixture was heated and stirred at 80 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature, and 2 L of distilled water was poured into the reaction solution. The precipitated solid was filtered off, poured into a methanol / distilled water (1: 1) solution, and filtered again. The obtained solid was dried under reduced pressure to obtain 221 g of compound [D] (yield 95%).
 化合物[D]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,CDCl,δppm):7.61(1H,d),7.56-7.52(6H,m),6.98-6.95(2H,m),6.38(1H,d),4.02(2H,t),3.67(2H,t),1.84-1.44(17H,m). 
The measurement result of the nuclear magnetic resonance (NMR) of the compound [D] was as follows.
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.61 (1H, d), 7.56-7.52 (6H, m), 6.98-6.95 (2H, m), 6. 38 (1H, d), 4.02 (2H, t), 3.67 (2H, t), 1.84-1.44 (17H, m).
 3L四つ口フラスコに上記で得た化合物[D](221g、0.56mol)、トリエチルアミン(67.7g、0.67mol)、テトラヒドロフラン(以下、THFと省略)(1800g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(70.0g、0.67mmol)のTHF(200g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水6Lを注ぎ、酢酸エチル2Lを加え、分液操作にて水層を除去した。その後、5%水酸化カリウム水溶液、1M塩酸水溶液、飽和食塩水で順次有機層を洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターで溶媒留去し粗物を得た。得られた粗物を2-プロパーノール(以下、IPAと省略)100gで洗浄し、ろ過、乾燥することで、化合物[E]を127g得た(収率49%)。 The compound [D] obtained above (221 g, 0.56 mol), triethylamine (67.7 g, 0.67 mol), tetrahydrofuran (hereinafter abbreviated as THF) (1800 g) was added to a 3 L four-necked flask, and the reaction solution was added. Cooled down. A solution of methacrylic acid chloride (70.0 g, 0.67 mmol) in THF (200 g) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. for further reaction. Reaction tracking was performed by HPLC, and after confirming the completion of the reaction, 6 L of distilled water was poured into the reaction solution, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave a crude product. The obtained crude product was washed with 100 g of 2-propanol (hereinafter abbreviated as IPA), filtered and dried to obtain 127 g of Compound [E] (yield 49%).
 化合物[E]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):7.73(2H,d),7.70-7.63(4H,m),7.58(1H,d),7.02-7.00(2H,m),6.53(1H,d),6.03-6.02(1H,m),5.67-5.66(1H,m),4.11(2H,t),4.00(2H,t),1.88-1.87(3H,m),1.79-1.25(17H,m). 
The measurement result of the nuclear magnetic resonance (NMR) of the compound [E] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.73 (2H, d), 7.70-7.63 (4H, m), 7.58 (1H, d), 7.02-7 .00 (2H, m), 6.53 (1H, d), 6.03-6.02 (1H, m), 5.67-5.66 (1H, m), 4.11 (2H, t ), 4.00 (2H, t), 1.88-1.87 (3H, m), 1.79-1.25 (17H, m).
 1L四つ口フラスコに上記で得た化合物[E](81g、0.17mol)、ギ酸(400g)を加え、40℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水3Lを注ぎろ過した。得られた固体をメタノール200gで洗浄し、固体を乾燥させることで重合性化合物[RM1]を56g得た(収率79%)。 The compound [E] obtained above (81 g, 0.17 mol) and formic acid (400 g) were added to a 1 L four-necked flask, and the mixture was heated and stirred at 40 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, 3 L of distilled water was poured into the reaction solution and filtered. The obtained solid was washed with 200 g of methanol and dried to obtain 56 g of a polymerizable compound [RM1] (yield 79%).
 重合性化合物[RM1]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,CDCl,δppm):7.81(1H,d),7.60(4H,s),7.55(2H,d),6.97(2H,d),6.47(2H,d),6.11-6.10(1H,m),5.56-5.52(1H,m),4.17(2H,t),4.00(2H,t),1.95-1.94(2H,m),1.85-1.82(3H,m),1.75-1.71(2H,m),1.55-1.48(4H,m). 
The measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM1] was as follows.
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.81 (1H, d), 7.60 (4H, s), 7.55 (2H, d), 6.97 (2H, d), 6 .47 (2H, d), 6.11-6.10 (1H, m), 5.56-5.52 (1H, m), 4.17 (2H, t), 4.00 (2H, t ), 1.95-1.94 (2H, m), 1.85-1.82 (3H, m), 1.75-1.71 (2H, m), 1.55-1.48 (4H) , M).
<合成例2>
 重合性化合物[RM2]の合成
<Synthesis Example 2>
Synthesis of polymerizable compound [RM2]
 重合性化合物[RM1]の中間体である化合物[D]を合成する際に使用した6-クロロ-1-ヘキサノールを8-クロロ-1-ヘキサノールに変更した以外は実施例1と同様の操作を行い、重合性化合物[RM2]を40.82g得た。 The same procedure as in Example 1 was performed except that 6-chloro-1-hexanol used in the synthesis of compound [D], which was an intermediate of polymerizable compound [RM1], was changed to 8-chloro-1-hexanol. And 40.82 g of polymerizable compound [RM2] was obtained.
 重合性化合物[RM2]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):7.70-7.56(7H,m),6.97(2H,d),6.51(1H,d),5.98(1H,s),5.62(1H,s),4.04(2H,t),3.94(2H,t),1.83(3H,s),1.70-1.10(12H).
The measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM2] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.70-7.56 (7H, m), 6.97 (2H, d), 6.51 (1H, d), 5.98 (1H , S), 5.62 (1H, s), 4.04 (2H, t), 3.94 (2H, t), 1.83 (3H, s), 1.70-1.10 (12H) .
<合成例3>
 重合性化合物[RM3]の合成 
<Synthesis Example 3>
Synthesis of polymerizable compound [RM3]
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 2L四つ口フラスコに、6-ブロモ-2-ナフトール[H](150g、672mol)、アクリル酸tert-ブチル[B](103.4g、807mmol)、酢酸パラジウム(3.02g、13.5mmol)、トリ(o-トリル)ホスフィン(8.19g、26.9mmol)、トリプロピルアミン(289.0g、2.02mol)、DMAc(700g)を加え、100℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却し、1M塩酸水溶液3Lに注いだ。そこに、酢酸エチル(2L)を加え、分液操作にて水層を除去した。有機層を10%塩酸水溶液1Lで2回、飽和食塩水1Lで3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[I]を181g得た(収率99%)。 In a 2 L four-necked flask, 6-bromo-2-naphthol [H] (150 g, 672 mol), tert-butyl acrylate [B] (103.4 g, 807 mmol), palladium acetate (3.02 g, 13.5 mmol) , Tri (o-tolyl) phosphine (8.19 g, 26.9 mmol), tripropylamine (289.0 g, 2.02 mol), and DMAc (700 g) were added, and the mixture was heated and stirred at 100 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to around room temperature and poured into 3 L of 1M aqueous hydrochloric acid. Ethyl acetate (2 L) was added thereto, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed twice with 1 L of a 10% aqueous hydrochloric acid solution and three times with 1 L of saturated brine, and then dried over magnesium sulfate. Then, 181g of compound [I] was obtained by filtering and distilling a solvent off by the evaporator (yield 99%).
 化合物[I]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):10.01(1H,s),8.04(1H,s),7.81-7.74(2H,m),7.70-7.63(2H,m),7.14-7.10(2H,m),6.54(1H,d),1.51-1.48(9H,m).
 メカニカルスターラー、撹拌羽を備え付けた2L四つ口フラスコに上記で得た化合物[I](181g、672mmol)、6-クロロ-1-ヘキサノール(110.2g、806mol)、炭酸カリウム(111.5g、806mmol)、ヨウ化カリウム(1.12g、6.7mmol)、DMF(900g)を加え、80℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水2Lを注ぎ、酢酸エチル(2L)を加え、分液操作により水層を除去した。その後、有機層を飽和食塩水(1L)で2回洗浄し、硫酸マグネシウムで有機層を乾燥させ、ろ過後、溶媒を留去し粗物を得た。得られた粗物を酢酸エチル/ヘキサン混合溶媒で再結晶し、化合物[J]を185g得た(収率74%)。
The measurement result of the nuclear magnetic resonance (NMR) of the compound [I] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 10.1 (1H, s), 8.04 (1H, s), 7.81-7.74 (2H, m), 7.70-7 63 (2H, m), 7.14-7.10 (2H, m), 6.54 (1H, d), 1.51-1.48 (9H, m).
In a 2 L four-necked flask equipped with a mechanical stirrer and a stirring blade, the compound [I] obtained above (181 g, 672 mmol), 6-chloro-1-hexanol (110.2 g, 806 mol), potassium carbonate (111.5 g, 806 mmol), potassium iodide (1.12 g, 6.7 mmol), and DMF (900 g) were added, and the mixture was heated and stirred at 80 ° C. Reaction tracking was performed by HPLC, and after confirming the completion of the reaction, 2 L of distilled water was poured into the reaction solution, ethyl acetate (2 L) was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed twice with saturated brine (1 L), the organic layer was dried over magnesium sulfate, filtered, and then the solvent was distilled off to obtain a crude product. The obtained crude product was recrystallized with a mixed solvent of ethyl acetate / hexane to obtain 185 g of Compound [J] (yield 74%).
 化合物[J]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):8.06(1H,s),7.80(1H,d),7.77-7.76(2H,m),7.62(1H,d),7.34(1H,d),7.15(1H,dd),6.53(1H,d),4.34(1H,t),4.05(2H,t),3.39-3.33(2H,m),1.73(2H,t),1.46-1.31(15H,m). 
The measurement result of the nuclear magnetic resonance (NMR) of the compound [J] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.06 (1H, s), 7.80 (1H, d), 7.77-7.76 (2H, m), 7.62 (1H , D), 7.34 (1H, d), 7.15 (1H, dd), 6.53 (1H, d), 4.34 (1H, t), 4.05 (2H, t), 3 39-3.33 (2H, m), 1.73 (2H, t), 1.46-1.31 (15H, m).
 3L四つ口フラスコに上記で得た化合物[J](130.5g、352mmol)、トリエチルアミン(42.76g、423mmol)、THF(950g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(44.2g、423mmol)のTHF(100g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水6Lを注ぎ、酢酸エチル2Lを加え、分液操作にて水層を除去した。その後、5%水酸化カリウム水溶液、1M塩酸水溶液、飽和食塩水で順次有機層を洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターで溶媒留去し化合物[K]を140.9g得た(収率92%)。 The compound [J] obtained above (130.5 g, 352 mmol), triethylamine (42.76 g, 423 mmol), and THF (950 g) were added to a 3 L four-necked flask, and the reaction solution was cooled. A solution of methacrylic acid chloride (44.2 g, 423 mmol) in THF (100 g) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. for further reaction. Reaction tracking was performed by HPLC, and after confirming the completion of the reaction, 6 L of distilled water was poured into the reaction solution, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 140.9 g of Compound [K] (yield 92%).
 化合物[K]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):8.09(1H,s),7.83(1H,d),7.80-7.79(2H,m),7.66(1H,d),7.33(1H,d),7.18(1H,dd),6.57(1H,d),6.02-6.01(1H,m),5.66-5.65(1H,m),4.12-4.06(4H,m),1.88-1.87(3H,m),1.84-1.42(15H,m).
The measurement result of the nuclear magnetic resonance (NMR) of the compound [K] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.09 (1H, s), 7.83 (1H, d), 7.80-7.79 (2H, m), 7.66 (1H , d), 7.33 (1H, d), 7.18 (1H, dd), 6.57 (1H, d), 6.02-6.01 (1H, m), 5.66-5. 65 (1H, m), 4.12-4.06 (4H, m), 1.88-1.87 (3H, m), 1.84-1.42 (15H, m).
 3L四つ口フラスコに上記で得た化合物[K](140.9g、321mmol)、ギ酸(700g)を加え、40℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水4.5Lを注ぎろ過した。得られた固体をIPA/ヘキサン混合溶媒で洗浄し、固体を乾燥させることで重合性化合物[RM3]を95.9g得た(収率78%)。 The compound [K] obtained above (140.9 g, 321 mmol) and formic acid (700 g) were added to a 3 L four-necked flask, and the mixture was heated and stirred at 40 ° C. Reaction tracking was performed by HPLC, and after confirming the completion of the reaction, 4.5 L of distilled water was poured into the reaction solution and filtered. The obtained solid was washed with an IPA / hexane mixed solvent, and the solid was dried to obtain 95.9 g of a polymerizable compound [RM3] (yield 78%).
 重合性化合物[RM3]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):12.4(1H,brs),8.10(1H,s),7.84(1H,d),7.81-7.80(2H,m),7.70(1H,d),7.35(1H,d),7.19(1H,dd),6.59(1H,d),6.03-6.02(1H,m),5.67-5.65(1H,m),4.13-4.07(4H,m),1.88-1.87(3H,m),1.83-1.41(8H,m).
The measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM3] was as follows.
1 H-NMR (400MHz, DMSO -d6, δppm): 12.4 (1H, brs), 8.10 (1H, s), 7.84 (1H, d), 7.81-7.80 (2H M), 7.70 (1H, d), 7.35 (1H, d), 7.19 (1H, dd), 6.59 (1H, d), 6.03-6.02 (1H, m), 5.67-5.65 (1H, m), 4.13-4.07 (4H, m), 1.88-1.87 (3H, m), 1.83-1.41 ( 8H, m).
<合成例4>
 重合性化合物[RM4]の合成 
<Synthesis Example 4>
Synthesis of polymerizable compound [RM4]
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 重合性化合物[RM3]の中間体である化合物[J]を合成する際に使用した6-クロロ-1-ヘキサノールを8-クロロ-1-ヘキサノールに変更した以外は実施例1と同様の操作を行い、重層性化合物[RM4]を171g得た。 The same procedure as in Example 1 was performed except that 6-chloro-1-hexanol used in the synthesis of compound [J], which was an intermediate of polymerizable compound [RM3], was changed to 8-chloro-1-hexanol. And 171 g of multi-layer compound [RM4] was obtained.
 重合性化合物[RM4]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,CDCl3,δppm):12.4(1H,brs),7.94-7.88(2H,m),7.77-7.71(2H,m),7.70-7.63(1H,m),7.17(1H,dd),7.12-7.11(1H,m),6.51(1H,d),6.11-6.10(1H,m),5.55-5.54(1H,m),4.17-4.06(4H,m),1.95-1.94(3Hm),1.87-1.40(12H,m).
The measurement results of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM4] were as follows.
1 H-NMR (400 MHz, CDCl 3, δ ppm): 12.4 (1H, brs), 7.94-7.88 (2H, m), 7.77-7.71 (2H, m), 7.70 -7.63 (1H, m), 7.17 (1H, dd), 7.12-7.11 (1H, m), 6.51 (1H, d), 6.11-6.10 (1H M), 5.55-5.54 (1H, m), 4.17-4.06 (4H, m), 1.95-1.94 (3Hm), 1.87-1.40 (12H , M).
<合成例5>
 公知の下記式で表される重合性化合物を、重合性化合物[RM5]とした。
<Synthesis Example 5>
A known polymerizable compound represented by the following formula was designated as a polymerizable compound [RM5].
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
<合成例6>
 重合性化合物[RM6]の合成 
<Synthesis Example 6>
Synthesis of polymerizable compound [RM6]
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 2L四つ口フラスコに、6-ヒドロキシ-2-ナフタレンカルボン酸[N](300g、1.59mol)、水酸化カリウム(205g、3.66mol)、蒸留水(1200g)を加え、100℃で加熱撹拌を行なった。そこに、6-クロロ-1-ヘキサノール(261g、1.91mol)を滴下した。滴下終了後、HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、氷水(3L)に反応溶液を注ぎ、35%塩酸を加え中和を行なった。その後、析出した固体をろ過、蒸留水で洗浄後、固体を減圧乾燥することで、化合物[O]を275g得た(収率60%)。 To a 2 L four-necked flask, add 6-hydroxy-2-naphthalenecarboxylic acid [N] (300 g, 1.59 mol), potassium hydroxide (205 g, 3.66 mol), and distilled water (1200 g), and heat at 100 ° C. Stirring was performed. 6-Chloro-1-hexanol (261 g, 1.91 mol) was added dropwise thereto. After completion of the dropwise addition, the reaction was monitored by HPLC. After confirming the completion of the reaction, the reaction solution was cooled to near room temperature, poured into ice water (3 L), and neutralized by adding 35% hydrochloric acid. Thereafter, the precipitated solid was filtered and washed with distilled water, and then the solid was dried under reduced pressure to obtain 275 g of Compound [O] (yield 60%).
 化合物[O]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):8.53-8.52(1H,m),8.06-7.87(3H,m),7.40(1H,d),7.27-7.23(1H,m),4.32(1H,t),4.12(2H,m),3.44-3.33(2H,m),1.82-1.76(2H,m),1.51-1.3(6H).
The measurement results of nuclear magnetic resonance (NMR) of the compound [O] were as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.53-8.52 (1H, m), 8.06-7.87 (3H, m), 7.40 (1H, d), 7 .27-7.23 (1H, m), 4.32 (1H, t), 4.12 (2H, m), 3.44 -3.33 (2H, m), 1.82-1.76 (2H, m), 1.51-1.3 (6H).
 2L四つ口フラスコに上記で得た化合物[O](50.00g、173mmol)、ジメチルアミノフェノール(46.23g、382mmol)、ニトロベンゼン(2.13g、17.3mmol)、THF(500g)を加え窒素置換した後、加熱還流下で撹拌を行なった。そこへ、メタクリル酸クロリド(38.1g、361mmol)のTHF(100g)溶液を徐々に滴下した。滴下終了後、HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温まで冷却した。その後、1M塩酸水溶液3Lに反応溶液を注ぎ、析出した固体をろ過し粗物を得た。次に、得られた粗物をエタノール/ヘキサン混合溶媒、ついでアセトンで洗浄した後、減圧乾燥することで、重合性化合物[RM6]を38.4g得た(収率62%)。 To the 2 L four-necked flask was added the compound [O] obtained above (50.00 g, 173 mmol), dimethylaminophenol (46.23 g, 382 mmol), nitrobenzene (2.13 g, 17.3 mmol), and THF (500 g). After purging with nitrogen, the mixture was stirred with heating under reflux. A THF (100 g) solution of methacrylic acid chloride (38.1 g, 361 mmol) was gradually added dropwise thereto. After completion of the dropwise addition, the reaction was traced by HPLC. After confirming the completion of the reaction, the reaction solution was cooled to room temperature. Thereafter, the reaction solution was poured into 3 L of 1M aqueous hydrochloric acid, and the precipitated solid was filtered to obtain a crude product. Next, the obtained crude product was washed with an ethanol / hexane mixed solvent and then with acetone and then dried under reduced pressure to obtain 38.4 g of a polymerizable compound [RM6] (yield 62%).
 重合性化合物[RM6]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(400MHz,DMSO-d6,δppm):8.63(1H,s),8.08(1H,dd),7.87(1H,d),7.76(1H,d),7.22-7.19(1H,m),7.16-7.15(1H,m),6.11-6.10(1H,m),5.56-5.54(1H,m),4.20-4.10(4H,m),1.97-1.95(3H,m),1.92-1.85(2H,m),1.78-1.71(2H,m),1.60-1.47(4HH,m). 
The measurement result of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM6] was as follows.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.63 (1H, s), 8.08 (1H, dd), 7.87 (1H, d), 7.76 (1H, d), 7.22-7.19 (1H, m), 7.16-7.15 (1H, m), 6.11-6.10 (1H, m), 5.56-5.54 (1H, m ), 4.20-4.10 (4H, m), 1.97-1.95 (3H, m), 1.92-1.85 (2H, m), 1.78-1.71 (2H) , M), 1.60-1.47 (4HH, m).
<合成例7>
 重合性化合物[RM7]の合成
 冷却管付き500mlナスフラスコに、ビフェノール14.9g(80.0mmol)、5-ブロモペンチルアセテート35g(167.0mmol)、炭酸カリウム41.5g(300mmol)、およびアセトン250mlを加えて混合物とし、温度60℃で48時間攪拌しながら反応させた。反応終了後、反応液を純水600mlに注ぎ、白色固体の化合物[P]を33.6g得た(収率95%)。
<Synthesis Example 7>
Synthesis of polymerizable compound [RM7] In a 500 ml eggplant flask equipped with a cooling tube, 14.9 g (80.0 mmol) of biphenol, 35 g (167.0 mmol) of 5-bromopentyl acetate, 41.5 g (300 mmol) of potassium carbonate, and 250 ml of acetone Was added to form a mixture, which was reacted at a temperature of 60 ° C. with stirring for 48 hours. After completion of the reaction, the reaction solution was poured into 600 ml of pure water to obtain 33.6 g of white solid compound [P] (yield 95%).
 化合物[P]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(CDCl)δ:1.57(m,4H),1.74(m,4H),1.86(m,4H),2.06(s,6H),4.02(t,4H),4.12(t,4H),6.95(d,4H),7.47(d,4H).
The measurement result of the nuclear magnetic resonance (NMR) of the compound [P] was as follows.
1 H-NMR (CDCl 3 ) δ: 1.57 (m, 4H), 1.74 (m, 4H), 1.86 (m, 4H), 2.06 (s, 6H), 4.02 ( t, 4H), 4.12 (t, 4H), 6.95 (d, 4H), 7.47 (d, 4H).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 冷却管付き1lナスフラスコに、エタノール250ml、上記で得られた化合物[P]18.0g(41mmol)、および10%水酸化ナトリウム水溶液100mlを加えて混合物とし、温度85℃で5時間攪拌しながら反応させた。反応終了後、1000mlのビーカーに水500mlと反応液を加えて、30分間室温で攪拌した後、10%HCl水溶液80mlを滴下した後、ろ過して白色固体の化合物[Q]を12.2g得た(収率83%)。 To a 1-liter eggplant flask equipped with a condenser tube, 250 ml of ethanol, 18.0 g (41 mmol) of the compound [P] obtained above, and 100 ml of 10% aqueous sodium hydroxide solution were added to form a mixture, and the mixture was stirred at a temperature of 85 ° C. for 5 hours. Reacted. After completion of the reaction, 500 ml of water and the reaction solution were added to a 1000 ml beaker and stirred for 30 minutes at room temperature, and then 80 ml of 10% HCl aqueous solution was added dropwise, followed by filtration to obtain 12.2 g of compound [Q] as a white solid. (Yield 83%).
 化合物[Q]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(DMSO-d6)δ:1.46(m,8H),1.71(m,4H),3.41(m,4H),3.98(m,4H),4.39(m,2H),6.96(m,4H),7.51(m,4H).
The measurement result of the nuclear magnetic resonance (NMR) of the compound [Q] was as follows.
1 H-NMR (DMSO-d6) δ: 1.46 (m, 8H), 1.71 (m, 4H), 3.41 (m, 4H), 3.98 (m, 4H), 4.39 (m, 2H), 6.96 (m, 4H), 7.51 (m, 4H).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 上記で得られた化合物[Q]5.0g(14.0mmol)をトリエチルアミン3.2gと少量の2,6-ジ-tert-ブチル-p-クレゾール(BHT)と共にTHF30mlに溶解させて室温にて攪拌し、水浴による冷却下、THF20mlにメタクリロイルクロライド3.3g(32mmol)を溶解した溶液を15分間かけて滴下した。滴下後、30分間攪拌し、水浴を除去して室温に戻しながら終夜攪拌を続けた。反応終了後、反応液を純水200mlに注ぎ、ろ過をした後白色固体を得た。この固体をクロロホルムに溶解させ、ヘキサンを用い(ヘキサン/クロロホルム=2/1)沈殿した後、白色固体の重合性化合物[RM7]を2.6g得た(収率38%)。 Compound [Q] (5.0 g, 14.0 mmol) obtained above was dissolved in 30 ml of THF together with 3.2 g of triethylamine and a small amount of 2,6-di-tert-butyl-p-cresol (BHT) at room temperature. The mixture was stirred and a solution prepared by dissolving 3.3 g (32 mmol) of methacryloyl chloride in 20 ml of THF was added dropwise over 15 minutes while cooling with a water bath. After dropping, the mixture was stirred for 30 minutes, and the water bath was removed and stirring was continued overnight while returning to room temperature. After completion of the reaction, the reaction solution was poured into 200 ml of pure water and filtered to obtain a white solid. This solid was dissolved in chloroform and precipitated with hexane (hexane / chloroform = 2/1) to obtain 2.6 g of a white solid polymerizable compound [RM7] (yield 38%).
 重合性化合物[RM7]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
 H-NMR(CDCl)δ:1.56(m,4H),1.74(m,4H),1.82(m,4H),1.97(s,6H),4.03(m,4H),4.20(m,4H),5.55(m,2H),6.10(m,2H),6.94(d,4H),7.45(d,4H).
The measurement results of the nuclear magnetic resonance (NMR) of the polymerizable compound [RM7] were as follows.
1 H-NMR (CDCl 3 ) δ: 1.56 (m, 4H), 1.74 (m, 4H), 1.82 (m, 4H), 1.97 (s, 6H), 4.03 ( m, 4H), 4.20 (m, 4H), 5.55 (m, 2H), 6.10 (m, 2H), 6.94 (d, 4H), 7.45 (d, 4H).
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
<ポリイミドの分子量測定>
 ポリイミドの分子量測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、
カラム:Shodex社製カラム(KD-803、KD-805)
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<Measurement of molecular weight of polyimide>
The molecular weight measurement conditions for polyimide are as follows.
Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
Column: Column made by Shodex (KD-803, KD-805)
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight of about 9,000,150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (manufactured by Polymer Laboratories) Molecular weight about 12,000, 4,000, 1,000).
 また、ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
 イミド化率(%)=(1-α・x/y)×100
Moreover, the imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 by Kusano Kagaku Co., Ltd.), add 1.0 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value. In the following formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is the proton of the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). This is the ratio of the number of reference protons to one.
Imidization rate (%) = (1−α · x / y) × 100
 (実施例1)
 BODA(10.0g、 40.0mmol)、DBA(6.09g、40.0mmol)、PCH7(11.5g、30.0mmol)、BEM-S(7.93g、30.0mmol)をNMP(140.7g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.37g、58.0mmol)とNMP(46.9g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(200g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(17.4g)、およびピリジン(67.6g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(3000ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(A)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は12,000、重量平均分子量は26,000であった。
Example 1
BODA (10.0 g, 40.0 mmol), DBA (6.09 g, 40.0 mmol), PCH7 (11.5 g, 30.0 mmol), BEM-S (7.93 g, 30.0 mmol) were added to NMP (140. 7 g), and after reacting at 60 ° C. for 5 hours, CBDA (11.37 g, 58.0 mmol) and NMP (46.9 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. . After adding NMP to this polyamic acid solution (200 g) and diluting to 6% by mass, acetic anhydride (17.4 g) and pyridine (67.6 g) were added as an imidization catalyst, and the mixture was reacted at 50 ° C. for 3 hours. This reaction solution was poured into methanol (3000 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (A). The imidation ratio of this polyimide was 60%, the number average molecular weight was 12,000, and the weight average molecular weight was 26,000.
 得られたポリイミド粉末(A)(6.0g)にNMP(44.0g)を加え、50℃にて5時間攪拌して溶解させた。この溶液に3AMP(1wt%NMP溶液)6.0g、NMP(14.0g)、BCS(30.0g)を加え、室温で5時間攪拌することにより液晶配向組成物(B)を得た。 NMP (44.0 g) was added to the obtained polyimide powder (A) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 5 hours. 3AMP (1 wt% NMP solution) 6.0g, NMP (14.0g), and BCS (30.0g) were added to this solution, and the liquid crystal aligning composition (B) was obtained by stirring at room temperature for 5 hours.
 また、上記の液晶配向組成物(B)10.0gに対して合成例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(B1)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Synthesis Example 1 was added to 10.0 g of the liquid crystal alignment composition (B), and the mixture was stirred at room temperature for 3 hours. And dissolved to prepare a liquid crystal aligning agent (B1).
 (実施例2)
 液晶配向組成物(B)に対して重合性化合物[RM1]のかわりに合成例2で得られた[RM2]を用いた以外は実施例1と同様の操作を行って、液晶配向剤(B2)を調製した。
(Example 2)
The liquid crystal aligning agent (B2) was subjected to the same operation as in Example 1 except that [RM2] obtained in Synthesis Example 2 was used instead of the polymerizable compound [RM1]. ) Was prepared.
 (実施例3)
 液晶配向組成物(B)に対して重合性化合物[RM1]のかわりに合成例3で得られた[RM3]を用いた以外は実施例1と同様の操作を行って、液晶配向剤(B3)を調製した。
Example 3
The liquid crystal aligning agent (B3) was subjected to the same operation as in Example 1 except that [RM3] obtained in Synthesis Example 3 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) Was prepared.
 (実施例4)
 液晶配向組成物(B)に対して重合性化合物[RM1]のかわりに合成例4で得られた[RM4]を用いた以外は実施例1と同様の操作を行って、液晶配向剤(B4)を調製した。
Example 4
The liquid crystal aligning agent (B4) was subjected to the same operation as in Example 1 except that [RM4] obtained in Synthesis Example 4 was used instead of the polymerizable compound [RM1]. ) Was prepared.
 (実施例5)
 液晶配向組成物(B)に対して重合性化合物[RM1]のかわりに合成例5で得られた[RM5]を用いた以外は実施例1と同様の操作を行って、液晶配向剤(B5)を調製した。
(Example 5)
The liquid crystal aligning agent (B5) was subjected to the same operation as in Example 1 except that [RM5] obtained in Synthesis Example 5 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) Was prepared.
 (実施例6)
 液晶配向組成物(B)に対して重合性化合物[RM1]のかわりに合成例6で得られた[RM6]を用いた以外は実施例1と同様の操作を行って、液晶配向剤(B6)を調製した。
(Example 6)
A liquid crystal aligning agent (B6) was prepared in the same manner as in Example 1 except that [RM6] obtained in Synthesis Example 6 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) Was prepared.
 (比較例1)
 液晶配向組成物(B)に対して重合性化合物[RM1]のかわりに合成例7で得られた[RM7]を用いた以外は実施例1と同様の操作を行って、液晶配向剤(B7)を調製した。
(Comparative Example 1)
The liquid crystal aligning agent (B7) was subjected to the same operation as in Example 1 except that [RM7] obtained in Synthesis Example 7 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (B). ) Was prepared.
 (実施例7)
 BODA(10.0g、40.0mmol)、DBA(5.3g、35.0mmol)、m-PCH7(12.0g、30.0mmol)、BEM-S(9.2g、35.0mmol)をNMP(144.5g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.5g、58.5mmol)とNMP(48.2g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(200g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(17.0g)、およびピリジン(65.8g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(3000ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は14,000、重量平均分子量は47,000であった。
(Example 7)
BODA (10.0 g, 40.0 mmol), DBA (5.3 g, 35.0 mmol), m-PCH7 (12.0 g, 30.0 mmol), BEM-S (9.2 g, 35.0 mmol) were added to NMP ( 144.5 g), and after reacting at 60 ° C. for 5 hours, CBDA (11.5 g, 58.5 mmol) and NMP (48.2 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. Obtained. After adding NMP to this polyamic acid solution (200 g) and diluting to 6% by mass, acetic anhydride (17.0 g) and pyridine (65.8 g) were added as imidization catalysts, and the mixture was reacted at 50 ° C. for 3 hours. This reaction solution was poured into methanol (3000 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 60 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide was 60%, the number average molecular weight was 14,000, and the weight average molecular weight was 47,000.
 得られたポリイミド粉末(C)(6.0g)にNMP(44.0g)を加え、50℃にて5時間攪拌して溶解させた。この溶液に3AMP(1wt%NMP溶液)6.0g、NMP(14.0g)、BCS(30.0g)を加え、室温で5時間攪拌することにより液晶配向組成物(D)を得た。 NMP (44.0 g) was added to the obtained polyimide powder (C) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 5 hours. 3AMP (1 wt% NMP solution) 6.0g, NMP (14.0g), and BCS (30.0g) were added to this solution, and the liquid crystal aligning composition (D) was obtained by stirring at room temperature for 5 hours.
 また、上記の液晶配向組成物(D)10.0gに対して合成例1で得られた重合性化合物[RM1]を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(D1)を調製した。 In addition, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound [RM1] obtained in Synthesis Example 1 was added to 10.0 g of the above liquid crystal alignment composition (D), and 3 at room temperature. The liquid crystal aligning agent (D1) was prepared by stirring for a time and dissolving.
 (実施例8)
 液晶配向組成物(D)に対して重合性化合物[RM1]のかわりに合成例2で得られた[RM2]を用いた以外は実施例7と同様の操作を行って、液晶配向剤(D2)を調製した。
(Example 8)
The liquid crystal aligning agent (D2) was subjected to the same operation as in Example 7 except that [RM2] obtained in Synthesis Example 2 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) Was prepared.
 (実施例9)
 液晶配向組成物(D)に対して重合性化合物[RM1]のかわりに合成例3で得られた[RM3]を用いた以外は実施例7と同様の操作を行って、液晶配向剤(D3)を調製した。
Example 9
The liquid crystal aligning agent (D3) was subjected to the same operation as in Example 7 except that [RM3] obtained in Synthesis Example 3 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) Was prepared.
 (実施例10)
 液晶配向組成物(D)に対して重合性化合物[RM1]のかわりに合成例4で得られた[RM4]を用いた以外は実施例7と同様の操作を行って、液晶配向剤(D4)を調製した。
(Example 10)
The liquid crystal aligning agent (D4) was subjected to the same operation as in Example 7 except that [RM4] obtained in Synthesis Example 4 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) Was prepared.
 (比較例2)
 液晶配向組成物(D)に対して重合性化合物[RM1]のかわりに合成例7で得られた[RM7]を用いた以外は実施例7と同様の操作を行って、液晶配向剤(D5)を調製した。
(Comparative Example 2)
The liquid crystal aligning agent (D5) was subjected to the same operation as in Example 7 except that [RM7] obtained in Synthesis Example 7 was used instead of the polymerizable compound [RM1] for the liquid crystal aligning composition (D). ) Was prepared.
<保存安定性試験>
 実施例1~実施例10、比較例1および比較例2で得られた液晶配向剤を、-20℃の冷凍庫で1週間保管した後に、析出物等がないか目視で確認した。析出物等が全く無いものを保存安定性が良好であるとした。表2に、液晶配向剤の構成および保存安定性試験の結果を示す。
<Storage stability test>
The liquid crystal aligning agents obtained in Examples 1 to 10 and Comparative Examples 1 and 2 were stored in a freezer at −20 ° C. for 1 week, and then visually checked for precipitates and the like. Those having no precipitates were considered to have good storage stability. Table 2 shows the composition of the liquid crystal aligning agent and the results of the storage stability test.
 表2に示すように、液晶配向組成物(B)中に重合性化合物[RM1]~[RM6]を含有した実施例1~実施例6の液晶配向剤(B1)~(B6)は、析出物等が全く無かったため、保存安定性が良好であることがわかった。一方、液晶配向組成物(B)中に重合性化合物[RM7]を含有した比較例1の液晶配向剤(B7)中には、析出物が発生した。 As shown in Table 2, the liquid crystal alignment agents (B1) to (B6) of Examples 1 to 6 containing the polymerizable compounds [RM1] to [RM6] in the liquid crystal alignment composition (B) were precipitated. Since there was no thing etc., it turned out that storage stability is favorable. On the other hand, precipitates were generated in the liquid crystal aligning agent (B7) of Comparative Example 1 containing the polymerizable compound [RM7] in the liquid crystal aligning composition (B).
 同様に、液晶配向組成物(D)中に重合性化合物[RM1]~[RM4]を含有した実施例7~実施例10の液晶配向剤(D1)~(D4)は、析出物等が全く無かったが、液晶配向剤(D)中に重合性化合物[RM7]を含有した比較例2の液晶配向剤(D5)中には、析出物が発生した。 Similarly, the liquid crystal alignment agents (D1) to (D4) of Examples 7 to 10 containing the polymerizable compounds [RM1] to [RM4] in the liquid crystal alignment composition (D) are completely free of precipitates and the like. Although it was not, the deposit generate | occur | produced in the liquid crystal aligning agent (D5) of the comparative example 2 which contained polymeric compound [RM7] in the liquid crystal aligning agent (D).
 以上の結果から、実施例1~実施例10の液晶配向剤は、水素結合する官能基、すなわち、カルボキシル基を有する重合性化合物[RM1]~[RM6]を含有するため、溶媒への溶解性が非常に高く、-20℃の冷凍庫で1週間保管した後であっても、析出物等が全く発生しなかったと考えられる。したがって、液晶配向剤に使用する重合性化合物を、カルボキシル基などの水素結合する官能基を有する重合性化合物にすることで液晶配向剤の保存安定性を良好にできることがわかった。 From the above results, the liquid crystal aligning agents of Examples 1 to 10 contain polymerizable compounds [RM1] to [RM6] having functional groups capable of hydrogen bonding, that is, carboxyl groups, and thus have solubility in solvents. It is considered that no precipitates were generated even after being stored in a freezer at −20 ° C. for 1 week. Therefore, it was found that the storage stability of the liquid crystal aligning agent can be improved by making the polymerizable compound used for the liquid crystal aligning agent a polymerizable compound having a hydrogen-bonding functional group such as a carboxyl group.
 また、カルボキシル基を有する重合性化合物[RM1]~[RM6]は分子間で水素結合を形成し巨大なメソゲン構造を形成するために紫外領域の長波長側にまで吸収が伸びており紫外線に対する感度が向上したため、後述する応答速度の測定において、応答速度が速くなったと考えられる。 In addition, the polymerizable compounds [RM1] to [RM6] having a carboxyl group form a hydrogen bond between molecules and form a huge mesogen structure, so that absorption extends to the long wavelength side of the ultraviolet region, and sensitivity to ultraviolet rays. Therefore, it is considered that the response speed was increased in the response speed measurement described later.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
 <液晶セルの作製>
 (実施例11)
 実施例1で得られた液晶配向剤(B1)を用いて下記に示すような手順で液晶セルの作製を行った。
<Production of liquid crystal cell>
(Example 11)
Using the liquid crystal aligning agent (B1) obtained in Example 1, a liquid crystal cell was prepared according to the procedure shown below.
 実施例1で得られた液晶配向剤(B1)を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 The liquid crystal aligning agent (B1) obtained in Example 1 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 μm × 300 μm and a line / space of 5 μm was formed, After drying for 90 seconds on this hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
 また、液晶配向剤(B1)を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで90秒乾燥させた後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 Moreover, after spin-coating the liquid crystal aligning agent (B1) on the ITO surface in which the electrode pattern is not formed and drying for 90 seconds on a hot plate at 80 ° C., baking is performed in a hot air circulation oven at 200 ° C. for 30 minutes, A liquid crystal alignment film having a thickness of 100 nm was formed.
 上記の2枚の基板について一方の基板の液晶配向膜上に4μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC-6608(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。 After spraying a 4 μm bead spacer on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to produce a liquid crystal cell.
(実施例12)
 液晶配向剤(B1)のかわりに液晶配向剤(B2)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
Example 12
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B2) was used instead of the liquid crystal aligning agent (B1).
(実施例13)
 液晶配向剤(B1)のかわりに液晶配向剤(B3)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 13)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B3) was used instead of the liquid crystal aligning agent (B1).
(実施例14)
 液晶配向剤(B1)のかわりに液晶配向剤(B4)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 14)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B4) was used instead of the liquid crystal aligning agent (B1).
(実施例15)
 液晶配向剤(B1)のかわりに液晶配向剤(B5)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 15)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B5) was used instead of the liquid crystal aligning agent (B1).
(実施例16)
 液晶配向剤(B1)のかわりに液晶配向剤(B6)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 16)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B6) was used instead of the liquid crystal aligning agent (B1).
(実施例17)
 液晶配向剤(B1)のかわりに液晶配向剤(D1)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 17)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D1) was used instead of the liquid crystal aligning agent (B1).
(実施例18)
 液晶配向剤(B1)のかわりに液晶配向剤(D2)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 18)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D2) was used instead of the liquid crystal aligning agent (B1).
(実施例19)
 液晶配向剤(B1)のかわりに液晶配向剤(D3)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 19)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D3) was used instead of the liquid crystal aligning agent (B1).
(実施例20)
 液晶配向剤(B1)のかわりに液晶配向剤(D4)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Example 20)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D4) was used instead of the liquid crystal aligning agent (B1).
 (比較例3)
 液晶配向剤(B1)のかわりに液晶配向剤(B7)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Comparative Example 3)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (B7) was used instead of the liquid crystal aligning agent (B1).
 (比較例4)
 液晶配向剤(B1)のかわりに液晶配向剤(D5)を用いた以外は実施例11と同様の操作を行って、液晶セルを作製した。
(Comparative Example 4)
A liquid crystal cell was produced in the same manner as in Example 11 except that the liquid crystal aligning agent (D5) was used instead of the liquid crystal aligning agent (B1).
<応答速度の測定方法>
 実施例11~実施例20、比較例3および比較例4で得られた液晶セルのUV照射に対する応答速度を、下記方法により測定した。
<Measurement method of response speed>
The response speed of the liquid crystal cells obtained in Examples 11 to 20, Comparative Example 3 and Comparative Example 4 to UV irradiation was measured by the following method.
 まず、バックライト、クロスニコルの状態にした一組の偏光版、光量検出器の順で構成される測定装置において、一組の偏光版の間に液晶セルを配置した。このときライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±6V、周波数1KHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±4Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。 First, a liquid crystal cell was placed between a pair of polarizing plates in a measuring device configured in the order of a backlight, a pair of polarizing plates in a crossed Nicol state, and a light quantity detector. At this time, the ITO electrode pattern in which the line / space was formed was at an angle of 45 ° with respect to the crossed Nicols. Then, a rectangular wave having a voltage of ± 6 V and a frequency of 1 KHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained. A voltage of 0% and ± 4 V was applied, the saturated luminance value was set to 100%, and the time taken for the luminance to change from 10% to 90% was defined as the response speed.
 その後、この液晶セルに10VのDC電圧を印加した状態で、この液晶セルの外側から365nmのバンドパスフィルターを通したUVを10J照射した。その後、再び応答速度を測定し、UV照射前後での応答速度を比較した。表3に、応答速度の測定結果を示す。 Thereafter, with a DC voltage of 10 V applied to the liquid crystal cell, 10 J UV irradiation through a 365 nm band pass filter was applied from the outside of the liquid crystal cell. Thereafter, the response speed was measured again, and the response speed before and after UV irradiation was compared. Table 3 shows the response speed measurement results.
<プレチルト角の測定>
 実施例11~実施例20、比較例3および比較例4で得られた液晶セルについて、UV照射後の画素部分のプレチルト角を測定した。測定装置は、名菱テクニカ製LCDアナライザーLCA-LUV42Aを使用した。表3に、プレチルト角の測定結果を示す。
<Measurement of pretilt angle>
For the liquid crystal cells obtained in Examples 11 to 20, Comparative Example 3 and Comparative Example 4, the pretilt angle of the pixel portion after UV irradiation was measured. As a measuring apparatus, an LCD analyzer LCA-LUV42A manufactured by Meiryo Technica was used. Table 3 shows the measurement results of the pretilt angle.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 表3に示すように、実施例11~実施例20の液晶セルは、水素結合する官能基、すなわち、カルボキシル基を有する重合性化合物[RM1]~[RM6]を含有した液晶配向剤から得られたものである。これらの液晶セルは、カルボキシル基に起因する水素結合により、液晶配向膜中で巨大なメソゲン構造が形成されたと考えられる。実施例11~実施例20の液晶セルは、この巨大なメソゲン構造の影響により、長波長側の紫外光(365nm)にも感度が有り、365nmの紫外線照射でも充分に速い応答速度(17~35msec)を達成できた。さらに、実施例11~実施例20の液晶セルは、高いプレチルト角が得られたことから、これらの液晶セルの作製に用いた液晶配向剤は、優れた配向固定化能を付与できることがわかった。 As shown in Table 3, the liquid crystal cells of Examples 11 to 20 were obtained from liquid crystal aligning agents containing polymerizable compounds [RM1] to [RM6] having functional groups capable of hydrogen bonding, that is, carboxyl groups. It is a thing. In these liquid crystal cells, it is considered that a huge mesogen structure was formed in the liquid crystal alignment film due to hydrogen bonding caused by the carboxyl group. The liquid crystal cells of Examples 11 to 20 are sensitive to ultraviolet light (365 nm) on the long wavelength side due to the influence of this huge mesogen structure, and sufficiently fast response speed (17 to 35 msec) even when irradiated with 365 nm ultraviolet light. ) Was achieved. Further, since the liquid crystal cells of Examples 11 to 20 obtained a high pretilt angle, it was found that the liquid crystal aligning agent used in the production of these liquid crystal cells can impart excellent alignment fixing ability. .
 一方、比較例3および比較例4の液晶セルは、水素結合する官能基を持たない重合性化合物[RM7]を添加した液晶配向剤から得られたものである。これらの液晶セルは、液晶配向膜中のメソゲン部位が単純なビフェニル構造であるため、長波長側の紫外光(365nm)への感度がほとんどなく、365nmの紫外線照射では充分な応答速度を得ることができなかった。 On the other hand, the liquid crystal cells of Comparative Example 3 and Comparative Example 4 were obtained from a liquid crystal aligning agent to which a polymerizable compound [RM7] having no functional group capable of hydrogen bonding was added. These liquid crystal cells have a simple biphenyl structure in the mesogen portion of the liquid crystal alignment film, so there is almost no sensitivity to ultraviolet light (365 nm) on the long wavelength side, and a sufficient response speed can be obtained by irradiation with 365 nm ultraviolet light. I could not.
 さらに、重合性化合物[RM7]は分子内に水素結合する官能基を持たないため、溶媒への溶解性が低く、冷凍時に重合性化合物[RM7]が析出してしまった。 Furthermore, since the polymerizable compound [RM7] does not have a functional group capable of hydrogen bonding in the molecule, the solubility in a solvent is low, and the polymerizable compound [RM7] was precipitated during freezing.
 以上の結果から、カルボキシル基を有する重合性化合物[RM1]~[RM6]を含有することにより、長波長側の紫外光でも充分に速い応答速度を達成でき、かつ優れた配向固定化能を付与できる液晶配向剤、液晶配向膜および液晶表示素子を実現できることがわかった。 From the above results, by containing the polymerizable compounds [RM1] to [RM6] having a carboxyl group, a sufficiently fast response speed can be achieved even with ultraviolet light on the long wavelength side, and excellent alignment fixing ability is imparted. It was found that a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element that can be realized are realized.
 さらに、カルボキシル基を有する重合性化合物[RM1]~[RM6]は、溶媒中への残存が無いため、これらの重合性化合物を含有することにより、液晶配向剤の保存安定性を良好にできると共に紫外線に対する感度を向上できることがわかった。 Furthermore, since the polymerizable compounds [RM1] to [RM6] having a carboxyl group do not remain in the solvent, the storage stability of the liquid crystal aligning agent can be improved by containing these polymerizable compounds. It was found that the sensitivity to ultraviolet rays can be improved.
 本発明の液晶配向剤は、高溶解性の重合性化合物を含有するため、光の感度に優れた配向固定化能を有する液晶配向膜を得ることができる。よって、本発明の液晶配向剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用でき、縦電界駆動方式(VA方式、TN方式、OCB方式など)や、横電界駆動方式(IPS方式、FFS方式)を採用する各種の液晶表示素子に有用である。特に、紫外線または偏光紫外線を照射することにより液晶の配向を制御する液晶配向膜を有する液晶表示素子に有用である。 Since the liquid crystal aligning agent of the present invention contains a highly soluble polymerizable compound, it is possible to obtain a liquid crystal aligning film having an alignment fixing ability excellent in light sensitivity. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, can be suitably used for a large-screen, high-definition liquid crystal television, etc. VA mode, TN mode, OCB mode, etc.) and various liquid crystal display elements adopting a horizontal electric field drive mode (IPS mode, FFS mode). In particular, it is useful for a liquid crystal display element having a liquid crystal alignment film that controls the alignment of liquid crystal by irradiating ultraviolet rays or polarized ultraviolet rays.

Claims (14)

  1.  重合体と、重合性化合物と、溶媒とを含有し、
     前記重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、前記官能基の近傍に少なくとも1以上の芳香環とを有し、前記官能基が分子間で水素結合を形成することによりメソゲン構造を形成することを特徴とする液晶配向剤。
    Containing a polymer, a polymerizable compound, and a solvent;
    The polymerizable compound has a polymerizable unsaturated bond group, a functional group that forms a hydrogen bond, and at least one aromatic ring in the vicinity of the functional group, and the functional group forms a hydrogen bond between molecules. A liquid crystal aligning agent characterized by forming a mesogenic structure.
  2.  前記官能基はカルボキシル基であることを特徴とする請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the functional group is a carboxyl group.
  3.  前記重合性化合物は、下記の式[1-1]~[1-4]から選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Tはエーテル、エステル、アミド結合、Sは炭素原子数2~11のアルキレン基、Rは水素原子もしくはメチル基、n=1もしくは2)
    3. The liquid crystal aligning agent according to claim 1, wherein the polymerizable compound is at least one selected from the following formulas [1-1] to [1-4].
    Figure JPOXMLDOC01-appb-C000001
    (T is an ether, ester, amide bond, S is an alkylene group having 2 to 11 carbon atoms, R is a hydrogen atom or a methyl group, n = 1 or 2)
  4.  前記重合性化合物は、下記の式[2-1]~[2-6]から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the polymerizable compound is at least one selected from the following formulas [2-1] to [2-6].
    Figure JPOXMLDOC01-appb-C000002
  5.  前記重合体は、液晶を垂直に配向させる基を側鎖に有することを特徴とする請求項1~4のいずれか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the polymer has a group in the side chain that vertically aligns the liquid crystal.
  6.  前記重合体は、さらに光重合性基を側鎖に有することを特徴とする請求項5に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 5, wherein the polymer further has a photopolymerizable group in a side chain.
  7.  前記光重合性基は、下記の式[3-1]~[3-7]から選ばれる少なくとも1種であることを特徴とする請求項6に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Meはメチル基を表す。)
    7. The liquid crystal aligning agent according to claim 6, wherein the photopolymerizable group is at least one selected from the following formulas [3-1] to [3-7].
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Me represents a methyl group.)
  8.  前記重合体は、光反応性基を有することを特徴とする請求項1~4のいずれか一項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the polymer has a photoreactive group.
  9.  前記光反応性基は、下記の式[4-1]~[4-5]から選ばれる少なくとも1種であることを特徴とする請求項8に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    9. The liquid crystal aligning agent according to claim 8, wherein the photoreactive group is at least one selected from the following formulas [4-1] to [4-5].
    Figure JPOXMLDOC01-appb-C000004
  10.  前記重合体は、ポリイミド前駆体及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1つ、ポリシロキサンまたはポリ(メタ)アクリレートを含むことを特徴とする請求項1~9のいずれか一項に記載の液晶配向剤。 The polymer according to any one of claims 1 to 9, wherein the polymer contains at least one selected from a polyimide precursor and a polyimide obtained by imidization thereof, polysiloxane or poly (meth) acrylate. The liquid crystal aligning agent of description.
  11.  請求項5~7のいずれか一項に記載の液晶配向剤を用いて作製され、電圧を印加しながら紫外線を照射する工程を経て得られることを特徴とする液晶配向膜。 A liquid crystal alignment film produced using the liquid crystal aligning agent according to any one of claims 5 to 7 and obtained through a step of irradiating ultraviolet rays while applying a voltage.
  12.  請求項11に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 11.
  13.  請求項8または請求項9に記載の液晶配向剤を用いて作製され、偏光紫外線を照射する工程を経て得られることを特徴とする液晶配向膜。 A liquid crystal alignment film produced using the liquid crystal aligning agent according to claim 8 or 9 and obtained through a step of irradiating polarized ultraviolet rays.
  14.  請求項13に記載の液晶配向膜を具備することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 13.
PCT/JP2014/076725 2013-10-07 2014-10-06 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element WO2015053232A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167011735A KR102351459B1 (en) 2013-10-07 2014-10-06 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
JP2015541573A JP6418401B2 (en) 2013-10-07 2014-10-06 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201480066711.7A CN105814478B (en) 2013-10-07 2014-10-06 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-210500 2013-10-07
JP2013210500 2013-10-07

Publications (1)

Publication Number Publication Date
WO2015053232A1 true WO2015053232A1 (en) 2015-04-16

Family

ID=52813048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076725 WO2015053232A1 (en) 2013-10-07 2014-10-06 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element

Country Status (5)

Country Link
JP (1) JP6418401B2 (en)
KR (1) KR102351459B1 (en)
CN (1) CN105814478B (en)
TW (1) TWI659063B (en)
WO (1) WO2015053232A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153151A (en) * 2015-08-28 2015-12-16 张文莲 Method for synthesizing pyrimidinones compounds
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016194846A1 (en) * 2015-06-02 2016-12-08 日産化学工業株式会社 Liquid crystal aligning agent for photo-alignment, aligning material and retardation material
WO2017135130A1 (en) * 2016-02-01 2017-08-10 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301085A1 (en) * 2016-09-29 2018-04-04 Biogem S.Ca.R.L. Retinoid derivatives with antitumor activity
TWI660004B (en) * 2016-09-30 2019-05-21 奇美實業股份有限公司 Liquid crystal alignment agent and method of producing the same, liquid crystal alignment film, and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903826A (en) * 2006-08-11 2007-01-31 友达光电股份有限公司 Monomer and method of manufacturing liquid crystal display panel using same
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
WO2014061754A1 (en) * 2012-10-19 2014-04-24 シャープ株式会社 Liquid crystal display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148608C (en) * 2001-12-14 2004-05-05 中国科学院长春光学精密机械与物理研究所 Preparation method of photo orientated film whose two ends possess photosensitive monomer
JP4524458B2 (en) * 2002-05-31 2010-08-18 エルシコン・インコーポレーテッド Branched hybrid polymer material for optical alignment layer preparation
JP3885714B2 (en) 2002-11-13 2007-02-28 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP4504626B2 (en) 2003-03-31 2010-07-14 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP2008231360A (en) * 2007-03-23 2008-10-02 Nec Lcd Technologies Ltd Liquid crystal display device
JP5712472B2 (en) * 2009-08-19 2015-05-07 Dic株式会社 Polymerizable liquid crystal composition
KR101831011B1 (en) * 2010-02-26 2018-02-21 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal display element and liquid crystal aligning agent
JP5761532B2 (en) * 2010-06-30 2015-08-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP5966329B2 (en) 2011-03-30 2016-08-10 Jsr株式会社 Manufacturing method of liquid crystal display element
WO2013021826A1 (en) * 2011-08-08 2013-02-14 Dic株式会社 Polymerizable liquid crystal composition, and method for producing optically anisotropic body
KR101478303B1 (en) * 2011-11-28 2014-12-31 주식회사 엘지화학 Photo-curable composition, optical anistropic film and its preparation method
KR101607730B1 (en) * 2012-01-26 2016-03-30 주식회사 엘지화학 Composition for alignment layer
KR20130092816A (en) * 2012-02-13 2013-08-21 (주)켐넥스 Reactive mesogen compound, liquid crystal composition including the same, method of manufacturing a display panel, and display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903826A (en) * 2006-08-11 2007-01-31 友达光电股份有限公司 Monomer and method of manufacturing liquid crystal display panel using same
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
WO2014061754A1 (en) * 2012-10-19 2014-04-24 シャープ株式会社 Liquid crystal display device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINBAO GUO ET AL.: "Electrothermal Switching Characteristics from a Hydrogen-Bonded Polymer Network Structure in Cholesteric Liquid Crystals with a Double-Handed Circularly Polarized Light Reflection Band", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 115, no. 5, 2011, pages 861 - 868 *
YOU-JIN LEE ET AL.: "Surface-controlled patterned vertical alignment mode with reactive mesogen", OPTICS EXPRESS, vol. 17, no. ISSUE, pages 10298 - 10303, XP055076587, DOI: doi:10.1364/OE.17.010298 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016113930A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JPWO2016113931A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen bonding polymer liquid crystal and liquid crystal alignment film
WO2016194846A1 (en) * 2015-06-02 2016-12-08 日産化学工業株式会社 Liquid crystal aligning agent for photo-alignment, aligning material and retardation material
TWI696636B (en) * 2015-06-02 2020-06-21 日商日產化學工業股份有限公司 Liquid crystal orientation agent for photo-alignment, alignment material and retardation material
CN107615148A (en) * 2015-06-02 2018-01-19 日产化学工业株式会社 Light orientation aligning agent for liquid crystal, oriented material and phase difference material
KR20180014695A (en) * 2015-06-02 2018-02-09 닛산 가가쿠 고교 가부시키 가이샤 A liquid crystal aligning agent for optical alignment, an alignment agent and a retardation agent
JPWO2016194846A1 (en) * 2015-06-02 2018-04-05 日産化学工業株式会社 Liquid crystal aligning agent for photo-alignment, alignment material and retardation material
EP3299879A4 (en) * 2015-06-02 2018-04-25 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent for photo-alignment, aligning material and retardation material
KR102588261B1 (en) * 2015-06-02 2023-10-12 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, alignment material, and retardation material for photo-alignment
CN107615148B (en) * 2015-06-02 2021-05-25 日产化学工业株式会社 Liquid crystal aligning agent for photo-alignment, alignment material and phase difference material
US10428274B2 (en) 2015-06-02 2019-10-01 Nissan Chemical Industries, Ltd. Liquid crystal alignment agent for photo-alignment, aligning member, and retardation member
CN105153151A (en) * 2015-08-28 2015-12-16 张文莲 Method for synthesizing pyrimidinones compounds
WO2017135130A1 (en) * 2016-02-01 2017-08-10 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2017135130A1 (en) * 2016-02-01 2018-12-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7046310B2 (en) 2016-02-01 2022-04-04 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN108603036A (en) * 2016-02-01 2018-09-28 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element

Also Published As

Publication number Publication date
KR102351459B1 (en) 2022-01-13
JPWO2015053232A1 (en) 2017-03-09
JP6418401B2 (en) 2018-11-07
TW201529726A (en) 2015-08-01
CN105814478A (en) 2016-07-27
CN105814478B (en) 2019-09-17
TWI659063B (en) 2019-05-11
KR20160067156A (en) 2016-06-13

Similar Documents

Publication Publication Date Title
JP6418401B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6460341B2 (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JP5831712B2 (en) Coating liquid for forming polyimide film, liquid crystal aligning agent, polyimide film, liquid crystal aligning film and liquid crystal display element
JP5975227B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP6368955B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5896164B2 (en) Functional polymer film forming coating solution and functional polymer film forming method
WO2015152174A1 (en) Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same
TWI476490B (en) Method for manufacturing liquid crystal display device for driving electric field
JP2021015134A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5672762B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN104969123B (en) Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display element
JP6822411B2 (en) Liquid crystal display element
WO2013146589A1 (en) Liquid crystal display element and manufacturing method therefor
KR102470287B1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7318826B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022196565A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2022071286A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2020162508A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using same
JP2023174508A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167011735

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14852959

Country of ref document: EP

Kind code of ref document: A1