WO2015053006A1 - L10型FeNi規則合金の製造方法 - Google Patents

L10型FeNi規則合金の製造方法 Download PDF

Info

Publication number
WO2015053006A1
WO2015053006A1 PCT/JP2014/072874 JP2014072874W WO2015053006A1 WO 2015053006 A1 WO2015053006 A1 WO 2015053006A1 JP 2014072874 W JP2014072874 W JP 2014072874W WO 2015053006 A1 WO2015053006 A1 WO 2015053006A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
substrate
alloy
ordered alloy
feni
Prior art date
Application number
PCT/JP2014/072874
Other languages
English (en)
French (fr)
Inventor
将輝 水口
敬之 田代
弘毅 高梨
隆幸 小嶋
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2015541475A priority Critical patent/JPWO2015053006A1/ja
Publication of WO2015053006A1 publication Critical patent/WO2015053006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition

Definitions

  • FeNi ordered alloy having an L1 0 type crystal structure As a method of manufacturing the L1 0 type FeNi ordered alloy, conventionally, a multilayer film having a complex composition on the (001) plane of MgO single crystal substrate, on top of the multilayer film, Fe monoatomic layer and Ni method for laminating repeatedly the monolayer (e.g., see non-Patent Document 1) and, the precursor particles containing iron and nickel, was reduced by heating in a hydrogen atmosphere, the structure of L1 0 type of the alloy particles There is a method of regularization (see, for example, Patent Document 1).
  • the film it is preferable to heat the film at a heating rate of more than 10 ° C. / sec.
  • the heating rate is particularly preferably 50 ° C./second or more.
  • the crystal structure can be L1 0 type, a large uniaxial magnetic anisotropy such as it is possible to manufacture an L1 0 type FeNi ordered alloy having excellent magnetic properties of the.
  • the rapid heating and heating can be performed by, for example, lamp heating.
  • the film thickness of the thin film containing Fe and Ni is 5 nm or more and 100 nm or less.
  • the manufacturing method of the L1 0 type FeNi ordered alloy embodiment of the present invention a side view of an apparatus for performing the thin film production by (a) sputtering a side view showing an apparatus for performing rapid thermal annealing (b).
  • the manufacturing method of L1 0 type FeNi ordered alloy embodiment of the present invention obtained from FeNi alloy thin film, the temperature reached rapid thermal heating different samples, according to Out-of-Plane measurement (a) FeNi ( 002) diffraction line, (b) X-ray diffraction intensity curve of FeNi (001) diffraction line.
  • the manufacturing method of the embodiment of the L1 0 type FeNi ordered alloy (a) The present invention, the magnetization curve of a sample of FeNi alloy thin film before the heat treatment, (b) an atomic force micrograph, of the present invention (c) the manufacturing method of L1 0 type FeNi ordered alloy in the form, the magnetization curve of the sample obtained from FeNi alloy thin film is a photomicrograph force between (d) atom.
  • the manufacturing method of the L1 0 type FeNi ordered alloy embodiment of the present invention, obtained by sputtering alternately Fe and Ni, is a side view showing the Fe / Ni multilayer film before the heat treatment.
  • the manufacturing method of L1 0 type FeNi ordered alloy embodiment of the present invention obtained from Fe / Ni multilayer (a) the Fe thin film and the film thickness is different samples of each Ni thin film, (b) achieving temperature and It is an X-ray diffraction intensity curve by In-Plane measurement of samples with different holding times.
  • the manufacturing method of L1 0 type FeNi ordered alloy embodiment of the present invention, the magnetization curve of the sample obtained from the Fe / Ni multilayer film, (inset) is an enlarged view in the vicinity of the origin.
  • the substrate 1 on which the thin film is placed is a heating container comprising a gold mirror having an inner surface 12a having a spheroid shape. 12, and an infrared lamp 13 installed at the top of the heating container 12 also uses the near-infrared reflection from the inner surface 12 a of the heating container 12 to rapidly raise the FeNi alloy thin film or the Fe / Ni multilayer film. Heat to warm. At this time, it is performed in a vacuum atmosphere or in an inert gas atmosphere, and is rapidly heated to a temperature of 310 ° C. or higher and lower than 400 ° C. at a temperature rising rate of 10 ° C./second or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】比較的簡便な方法で薄膜状のL1型FeNi規則合金を製造することができる、L1型FeNi規則合金の製造方法を提供する。 【解決手段】不活性ガス雰囲気中で、回転する基板の表面にFeとNiとを同時または交互にスパッタしてFeNi合金薄膜またはFe/Ni多層膜を製造し、真空雰囲気中または不活性ガス雰囲気中で、その薄膜を310℃以上400℃未満の所定の温度まで、10℃/秒以上の昇温速度で加熱した後、その所定の温度で2時間以上保持する。基板はMgO単結晶基板から成り、基板の表面が(001)面であることが好ましい。

Description

L10型FeNi規則合金の製造方法
 本発明は、L1型FeNi規則合金の製造方法に関する。
 近年、大きい一軸磁気異方性を有し、貴金属やレアアースを含まない材料として、L1型の結晶構造を有するFeNi規則合金が注目されている。このL1型FeNi規則合金を製造する方法として、従来、MgO単結晶基板の(001)面上に複雑な組成を有する多層膜を形成し、その多層膜の上に、Fe単原子層とNi単原子層とを繰り返し積層する方法(例えば、非特許文献1参照)や、鉄とニッケルとを含有する前駆体粒子を、水素雰囲気下で加熱して還元し、合金粒子の構造をL1型に規則化する方法(例えば、特許文献1参照)がある。
T. Kojima, M. Mizuguchi, T. Koganezawa, K. Osaka, M. Kotsugi, and K. Takanashi, "Magnetic Anisotropy and Chemical Order of Artificially Synthesized L10-Ordered FeNi Films on Au-Cu-Ni Buffer Layers", Japanese Journal of Applied Physics (Rapid Communication), 2012, 51, 010204
国際公開WO2012/141205号
 しかしながら、非特許文献1に記載の方法は、特殊な装置を必要とし、製造工程が複雑であるという課題があった。また、特許文献1に記載の方法では、L1型FeNi合金の粒子を製造することはできるが、より体積の大きい物質として製造することはできない。このため、例えば、薄膜を製造する場合には、水素雰囲気下で、粒子から薄膜を製造する工程が必要となり、煩雑であるという課題があった。
 本発明は、このような課題に着目してなされたもので、比較的簡便な方法で薄膜状のL1型FeNi規則合金を製造することができる、L1型FeNi規則合金の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明に係るL1型FeNi規則合金の製造方法は、真空雰囲気中または不活性ガス雰囲気中で、FeとNiとを含む薄膜を所定の温度まで加熱した後、前記所定の温度で所定の時間保持する加熱工程を有することを特徴とする。
 本発明に係るL1型FeNi規則合金の製造方法は、前記薄膜を10℃/秒以上の昇温速度で加熱することが好ましい。昇温速度は、50℃/秒以上であることが特に好ましい。
 本発明に係るL1型FeNi規則合金の製造方法は、FeとNiとを含む薄膜を急速昇温加熱することにより、結晶構造をL1型にすることができ、大きい一軸磁気異方性などの優れた磁気特性を有するL1型FeNi規則合金を製造することができる。FeとNiとを含む薄膜を急速昇温加熱するだけの比較的簡便な方法で、薄膜状のL1型FeNi規則合金を製造することができる。急速昇温加熱は、例えば、ランプ加熱により行うことができる。また、FeとNiとを含む薄膜の膜厚は、5nm以上、100nm以下であることが好ましい。
 本発明に係るL1型FeNi規則合金の製造方法で、前記所定の温度は310℃以上、400℃未満であり、前記所定の時間は2時間以上であることが好ましい。この場合、特に優れた磁気特性を有するL1型FeNi規則合金を得ることができる。所定の温度は350℃程度が特に好ましく、所定の時間は20時間程度が特に好ましい。所定の温度が400℃以上では、L1型FeNi規則合金が安定して存在できなくなる。また、所定の温度が310℃未満、所定の時間が2時間未満では、結晶構造がL1型にならない。
 本発明に係るL1型FeNi規則合金の製造方法で、前記薄膜は、FeNi合金薄膜または、Fe薄膜とNi薄膜とを交互に積層して成るFe/Ni多層膜から成ることが好ましい。薄膜がFeNi合金薄膜から成る場合、前記加熱工程の前に、不活性ガス雰囲気中で、回転する基板の表面にFeとNiとを同時にスパッタして前記FeNi合金薄膜を得る薄膜製造工程を有していてもよい。また、薄膜がFe/Ni多層膜から成る場合、前記加熱工程の前に、不活性ガス雰囲気中で、回転する基板の表面にFeとNiとを交互にスパッタして、前記Fe/Ni多層膜を得る薄膜製造工程を有していてもよい。これらの場合、原料のFeとNiとから、容易にFeNi合金薄膜やFe/Ni多層膜を得ることができる。薄膜製造工程も加熱工程も、既存の技術を応用して実施することができ、比較的簡便な方法で、薄膜状のL1型FeNi規則合金を製造することができる。なお、FeNi合金薄膜を得る際、FeのスパッタとNiのスパッタとを同時に行ってもよいが、FeNi合金をスパッタしてもよい。
 また、これらの場合、前記基板は、単結晶基板、多結晶基板またはアモルファス基板であることが好ましい。特に、前記基板はMgO単結晶基板から成り、前記基板の表面が(001)面であることが好ましい。この場合、特に効率良く、L1型FeNi規則合金を製造することができる。
 本発明によれば、比較的簡便な方法で薄膜状のL1型FeNi規則合金を製造することができる、L1型FeNi規則合金の製造方法を提供することができる。
本発明の実施の形態のL1型FeNi規則合金の製造方法の、(a)スパッタによる薄膜製造を行う装置を示す側面図、(b)急速昇温加熱を行う装置を示す側面図である。 本発明の実施の形態のL1型FeNi規則合金の製造方法により、FeNi合金薄膜から得られた、急速昇温加熱の到達温度が異なる試料の、Out-of-Plane測定による(a)FeNi(002)回折線、(b)FeNi(001)回折線のX線回折強度曲線である。 本発明の実施の形態のL1型FeNi規則合金の製造方法により、FeNi合金薄膜から得られた(a)急速昇温加熱の到達温度が異なる試料、(b)到達温度での保持時間が異なる試料のIn-Plane測定によるX線回折強度曲線である。 (a)本発明の実施の形態のL1型FeNi規則合金の製造方法の、熱処理前のFeNi合金薄膜の試料の磁化曲線、(b)原子間力顕微鏡写真、(c)本発明の実施の形態のL1型FeNi規則合金の製造方法により、FeNi合金薄膜から得られた試料の磁化曲線、(d)原子間力顕微鏡写真である。 本発明の実施の形態のL1型FeNi規則合金の製造方法の、FeとNiとを交互にスパッタして得られた、熱処理前のFe/Ni多層膜を示す側面図である。 本発明の実施の形態のL1型FeNi規則合金の製造方法により、Fe/Ni多層膜から得られた(a)各Fe薄膜および各Ni薄膜の膜厚が異なる試料、(b)到達温度および保持時間が異なる試料のIn-Plane測定によるX線回折強度曲線である。 本発明の実施の形態のL1型FeNi規則合金の製造方法により、Fe/Ni多層膜から得られた試料の磁化曲線、(挿入図)その原点付近の拡大図である。
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1(a)に示すように、本発明の実施の形態のL1型FeNi規則合金の製造方法では、まず、不活性ガス雰囲気中で、回転台11に設置された基板1の表面に、基板1を回転させながら、FeとNiとを同時または交互にスパッタしてFeとNiとを含む薄膜を製造する。このとき、FeとNiとを同時にスパッタするとFeNi合金薄膜が得られ、FeとNiとを交互にスパッタすると、Fe薄膜とNi薄膜とを交互に積層して成るFe/Ni多層膜が得られる。ここで、Fe/Ni多層膜を製造するとき、基板1の表面には、Fe薄膜から積層しても、Ni薄膜から積層してもよい。なお、具体的な一例では、基板1は、表面が(001)面のMgO単結晶基板から成っているが、他の単結晶基板や多結晶基板、アモルファス基板から成っていてもよい。
 FeNi合金薄膜またはFe/Ni多層膜を製造した後、図1(b)に示すように、その薄膜が載った基板1を、内面12aが回転楕円体形状を成す金製の鏡から成る加熱容器12の下部に設置し、加熱容器12の頂部に設置された赤外線ランプ13により、加熱容器12の内面12aからの近赤外線の反射も利用して、FeNi合金薄膜またはFe/Ni多層膜を急速昇温加熱する。このとき、真空雰囲気中または不活性ガス雰囲気中で行い、310℃以上400℃未満の温度まで、10℃/秒以上の昇温速度で急速昇温加熱する。また、熱が逃げないよう、基板1の表面を透明な水晶板14で覆うとともに、基板1の温度を熱電対15で測定しながら温度を調整する。急速昇温加熱の後、到達した温度で2時間以上保持する。こうして、L1型FeNi規則合金を製造することができる。
 このように、本発明の実施の形態のL1型FeNi規則合金の製造方法は、FeNi合金薄膜またはFe/Ni多層膜を急速昇温加熱することにより、結晶構造をL1型にすることができ、大きい一軸磁気異方性などの優れた磁気特性を有するL1型FeNi規則合金を製造することができる。スパッタによりFeNi合金薄膜またはFe/Ni多層膜を製造し、その薄膜を急速昇温加熱するという、既存の技術を応用した比較的簡便な方法で、薄膜状のL1型FeNi規則合金を容易に製造することができる。製造されたL1型FeNi規則合金は、レアアースを使用したネオジム磁石等の磁石に代わるものとして期待できる。
 本発明の実施の形態のL1型FeNi規則合金の製造方法により、FeとNiとを同時にスパッタして得られたFeNi合金薄膜からFeNi合金を製造し、各種の試験を行った。FeNi合金の製造では、FeとNiのスパッタを、マグネトロンスパッタリングにより、0.2Paのアルゴンガス雰囲気中で、室温で行った。また、Feは31W、Niは10Wでスパッタを行った。基板1は、表面が(001)面のMgO単結晶基板から成り、縦横がそれぞれ1cm、厚みが0.5mmとした。急速昇温加熱を、5×10-4Pa以下の真空雰囲気中で行い、昇温速度は50℃/秒とした。
 試験用の試料として、急速昇温加熱の到達温度での保持時間を20時間、到達温度を250℃、275℃、300℃、325℃、および350℃としたもの、到達温度を350℃、保持時間を5時間および10時間としたものを製造した。また、比較のために、熱処理前のFeNi合金薄膜の試料(as-depo.または、as-deposited)も使用した。なお、得られたFeNi合金は、厚さが約5nmである。
 まず、X線回折(XRD)により、Out-of-Plane測定を行い、その結果を図2に示す。測定には、保持時間が20時間の異なる到達温度の試料を用いた。図2(a)に示すように、到達温度が325℃および350℃の試料の、FeNi(002)でのピークが大きく、到達温度325℃以上でFeNiの(001)配向性が高いことが確認された。また、図2(b)に示すように、この温度以上でFeNi(001)ピークが強くなっており、同時にL1型規則化が進んでいることも確認された。
 次に、保持時間が20時間、到達温度が325℃および350℃の各試料、および、到達温度が350℃、保持時間が5時間、10時間および20時間の各試料について、X線回折(XRD)によりIn-Plane測定を行い、その結果をそれぞれ図3(a)および(b)に示す。図3(a)に示すように、急速昇温加熱の到達温度が350℃のときの方が、325℃のときよりも、(001)、(110)でのピークが大きくなっており、L1規則化が進んだL1型FeNi規則合金が得られていることが確認された。また、図3(b)に示すように、急速昇温加熱の到達温度での保持時間が長くなるほど、(001)、(110)でのピークが大きくなっており、特に保持時間が20時間のとき、L1規則化が進んだL1型FeNi規則合金が得られていることが確認された。
 次に、熱処理前のFeNi合金薄膜の試料(as-depo.)および、到達温度が350℃、保持時間が20時間の試料について、超伝導量子干渉素子(SQUID)による磁化測定、および原子間力顕微鏡(AFM)による観測を行い、その結果を図4に示す。図4(a)および(c)に示すように、面直磁化の飽和に必要な磁場が熱処理により減少したことが確認された。また、面内に磁場を印加した場合、熱処理により保磁力が増加したことが確認された。その保磁力は、約300 Oeである。一方、図4(b)および(d)に示すように、熱処理により、薄膜の表面形態や粗さパラメータRqに大きな変化は確認されなかった。これらは、熱処理による磁化特性の変化が、FeNi合金のL1相の生成に起因するものであることを示していると考えられる。
 本発明の実施の形態のL1型FeNi規則合金の製造方法により、FeとNiとを交互にスパッタして得られたFe/Ni多層膜からFeNi合金を製造し、各種の試験を行った。FeNi合金の製造では、FeとNiのスパッタを、マグネトロンスパッタリングにより、0.2Paのアルゴンガス雰囲気中で、室温で行った。また、Feは31W、Niは10Wでスパッタを行った。基板1は、表面が(001)面のMgO単結晶基板から成り、縦横がそれぞれ1cm、厚みが0.5mmとした。急速昇温加熱を、5×10-4Pa以下の真空雰囲気中で行い、昇温速度は50℃/秒とした。
 試験用の試料として、まず、図5に示すように、各Fe薄膜および各Ni薄膜の膜厚xを、それぞれx=0.3nm、0.4nm、1.0nmとした3種類のFe/Ni多層膜を製造した。各Fe/Ni多層膜の厚さは30nmである。次に、各Fe/Ni多層膜について、急速昇温加熱の到達温度を350℃、保持時間を20時間としたもの、また、x=0.3nmのFe/Ni多層膜について、急速昇温加熱の到達温度を350℃および300℃、保持時間を10時間および20時間としたものを製造した。また、比較のために、熱処理前のx=0.3nmのFe/Ni多層膜の試料(as-depo.)も、試験に使用した。なお、図5に示すFe/Ni多層膜は、基板1の表面にNi薄膜から積層して形成されているが、Fe薄膜から積層して形成されてもよく、その場合にも、以下の試験では同様の結果が得られる。
 まず、x=0.3nm、0.4nm、1.0nmの各Fe/Ni多層膜を、到達温度350℃、保持時間20時間で熱処理した各試料について、X線回折(XRD)により、In-Plane測定を行った。その結果を、図6(a)に示す。図6(a)に示すように、各Fe薄膜および各Ni薄膜の膜厚xが小さい方が、(110)でのピークが大きくなっており、L1規則化が進んだL1型FeNi規則合金が多く得られていることが確認された。
 次に、x=0.3nmのFe/Ni多層膜を、到達温度350℃および300℃、保持時間10時間および20時間で熱処理した各試料について、X線回折(XRD)により、In-Plane測定を行った。その結果を、図6(b)に示す。図6(b)に示すように、各保持時間での到達温度の違いによる差異はほとんど認められないが、各到達温度で保持時間が長いほど、(110)でのピークが大きくなっており、保持時間が20時間のとき、L1規則化が進んだL1型FeNi規則合金が得られていることが確認された。
 次に、x=0.3nmのFe/Ni多層膜を、到達温度350℃、保持時間20時間で熱処理した試料について、超伝導量子干渉素子(SQUID)により、面内方向(In-plane)および面直方向(Out-of-plane)にそれぞれ磁場(Magnetic field)を印加したときの磁化(Magnetization)の測定を行った。その結果を、図7に示す。図7に示すように、面直方向に磁場を印加したとき、保磁力が大きくなっていることが確認された。その保磁力は、約850 Oeである。これは、熱処理によりFeNi合金のL1相が生成されたためであると考えられる。
  1 基板
 11 回転台
 12 加熱容器
  12a 内面
 13 赤外線ランプ
 14 水晶板
 15 熱電対
 

Claims (8)

  1.  真空雰囲気中または不活性ガス雰囲気中で、FeとNiとを含む薄膜を所定の温度まで加熱した後、前記所定の温度で所定の時間保持する加熱工程を有することを特徴とするL1型FeNi規則合金の製造方法。
  2.  前記薄膜を10℃/秒以上の昇温速度で加熱することを特徴とする請求項1記載のL1型FeNi規則合金の製造方法。
  3.  前記所定の温度は310℃以上、400℃未満であり、前記所定の時間は2時間以上であることを特徴とする請求項1または2記載のL1型FeNi規則合金の製造方法。
  4.  前記薄膜は、FeNi合金薄膜または、Fe薄膜とNi薄膜とを交互に積層して成るFe/Ni多層膜から成ることを特徴とする請求項1乃至3のいずれか1項に記載のL1型FeNi規則合金の製造方法。
  5.  前記加熱工程の前に、不活性ガス雰囲気中で、回転する基板の表面にFeとNiとを同時にスパッタして前記FeNi合金薄膜を得る薄膜製造工程を有することを特徴とする請求項4記載のL1型FeNi規則合金の製造方法。
  6.  前記加熱工程の前に、不活性ガス雰囲気中で、回転する基板の表面にFeとNiとを交互にスパッタして、前記Fe/Ni多層膜を得る薄膜製造工程を有することを特徴とする請求項4記載のL1型FeNi規則合金の製造方法。
  7.  前記基板は、単結晶基板、多結晶基板またはアモルファス基板であることを特徴とする請求項5または6記載のL1型FeNi規則合金の製造方法。
  8.  前記基板はMgO単結晶基板から成り、前記基板の表面が(001)面であることを特徴とする請求項5または6記載のL1型FeNi規則合金の製造方法。
PCT/JP2014/072874 2013-10-08 2014-09-01 L10型FeNi規則合金の製造方法 WO2015053006A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541475A JPWO2015053006A1 (ja) 2013-10-08 2014-09-01 L10型FeNi規則合金の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013210679 2013-10-08
JP2013-210679 2013-10-08

Publications (1)

Publication Number Publication Date
WO2015053006A1 true WO2015053006A1 (ja) 2015-04-16

Family

ID=52812826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072874 WO2015053006A1 (ja) 2013-10-08 2014-09-01 L10型FeNi規則合金の製造方法

Country Status (2)

Country Link
JP (1) JPWO2015053006A1 (ja)
WO (1) WO2015053006A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171232A1 (ja) * 2015-04-23 2016-10-27 国立大学法人東北大学 L10型FeNi規則相を含むFeNi合金組成物、L10型FeNi規則相を含むFeNi合金組成物の製造方法、アモルファスを主相とするFeNi合金組成物、アモルファス材の母合金、アモルファス材、磁性材料および磁性材料の製造方法
WO2017064989A1 (ja) * 2015-10-14 2017-04-20 株式会社デンソー FeNi規則合金およびFeNi規則合金の製造方法
JP2017075388A (ja) * 2015-10-14 2017-04-20 株式会社デンソー FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料
CN110506313A (zh) * 2017-04-13 2019-11-26 株式会社电装 FeNi有序合金、FeNi有序合金磁铁及FeNi有序合金的制造方法
US10685781B2 (en) * 2016-05-31 2020-06-16 The Regents Of The University Of California Synthesis of tetrataenite thin films via rapid thermal annealing
WO2022176842A1 (ja) * 2021-02-16 2022-08-25 株式会社デンソー FeNi規則合金構造体およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349662A (ja) * 1993-06-11 1994-12-22 Sony Corp 磁気抵抗効果膜の形成方法
JPH0992906A (ja) * 1995-09-22 1997-04-04 Sony Corp 磁気抵抗効果素子及び磁界検出装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAYUKI TASHIRO ET AL.: "Sankabutsu Kiban-jo eno Sputter-ho ni yoru L10-FeNi Kisoku Gokin no Sakusei", DAI 37 KAI THE MAGNETICS SOCIETY OF JAPAN GAKUJUTSU KOEN GAIYOSHU, 3 September 2013 (2013-09-03), pages 171 *
YAN,M.L. ET AL.: "Highly oriented nonepitaxially grown L10 FePt films", JOURNAL OF APPLIED PHYSICS, vol. 93, no. 10, 15 May 2003 (2003-05-15), pages 8292 - 8294 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171232A1 (ja) * 2015-04-23 2016-10-27 国立大学法人東北大学 L10型FeNi規則相を含むFeNi合金組成物、L10型FeNi規則相を含むFeNi合金組成物の製造方法、アモルファスを主相とするFeNi合金組成物、アモルファス材の母合金、アモルファス材、磁性材料および磁性材料の製造方法
JPWO2016171232A1 (ja) * 2015-04-23 2017-05-18 国立大学法人東北大学 L10型FeNi規則相を含むFeNi合金組成物、L10型FeNi規則相を含むFeNi合金組成物の製造方法、アモルファスを主相とするFeNi合金組成物、アモルファス材の母合金、アモルファス材、磁性材料および磁性材料の製造方法
EP3287534A4 (en) * 2015-04-23 2018-10-03 Tohoku University FeNi ALLOY COMPOSITION CONTAINING L10-TYPE FeNi ORDERED PHASE, METHOD FOR PRODUCING FeNi ALLOY COMPOSITION INCLUDING L10-TYPE FeNi ORDERED PHASE, FeNi ALLOY COMPOSITION HAVING AMORPHOUS MAIN PHASE, PARENT ALLOY OF AMORPHOUS MEMBER, AMORPHOUS MEMBER, MAGNETIC MATERIAL, AND METHOD FOR PRODUCING MAGNETIC MATERIAL
WO2017064989A1 (ja) * 2015-10-14 2017-04-20 株式会社デンソー FeNi規則合金およびFeNi規則合金の製造方法
JP2017075388A (ja) * 2015-10-14 2017-04-20 株式会社デンソー FeNi規則合金、FeNi規則合金の製造方法、および、FeNi規則合金を含む磁性材料
CN108138252A (zh) * 2015-10-14 2018-06-08 株式会社电装 FeNi有序合金及FeNi有序合金的制造方法
US10685781B2 (en) * 2016-05-31 2020-06-16 The Regents Of The University Of California Synthesis of tetrataenite thin films via rapid thermal annealing
CN110506313A (zh) * 2017-04-13 2019-11-26 株式会社电装 FeNi有序合金、FeNi有序合金磁铁及FeNi有序合金的制造方法
WO2022176842A1 (ja) * 2021-02-16 2022-08-25 株式会社デンソー FeNi規則合金構造体およびその製造方法

Also Published As

Publication number Publication date
JPWO2015053006A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015053006A1 (ja) L10型FeNi規則合金の製造方法
Hunter et al. Giant magnetostriction in annealed Co1− xFex thin-films
Hasegawa et al. Stabilisation of tetragonal FeCo structure with high magnetic anisotropy by the addition of V and N elements
Wang et al. Promotion of [001]-oriented L1-FePt by rapid thermal annealing with light absorption layer
Espejo et al. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction
Wang et al. Magnetic, thermal, electrical properties and crystallization kinetics of Co60Fe20B20 alloy films
Choi et al. Enhancement of current-perpendicular-to-plane giant magnetoresistance by insertion of amorphous ferromagnetic underlayer in Heusler alloy-based spin-valve structures
Vladymyrskyi et al. Influence of the substrate choice on the L1 phase formation of post-annealed Pt/Fe and Pt/Ag/Fe thin films
Katona et al. Diffusion and solid state reactions in Fe/Ag/Pt and FePt/Ag thin-film systems
Ghasemi The role of annealing temperature on the structural and magnetic consequences of Ta/PrFeB/Ta thin films processed by rapid thermal annealing
Kumar et al. Cu interfaced Fe/Pt multilayer with improved (001) texture, enhanced L10 transformation kinetics and high magnetic anisotropy
US10685781B2 (en) Synthesis of tetrataenite thin films via rapid thermal annealing
Yuan et al. Ordering transformation of FePt thin films by initial stress/strain control
Cher et al. TiN and TiC intermediate layers for FePt-C-based magnetic recording media
Jia et al. Synthesis and characteristics of nanocrystalline Co/N thin film containing Co4N phase
Hsiao et al. Evolution of microstructure, residual stress, and texture in FePt films during rapid thermal annealing
JP2018041873A (ja) L10型FeNi規則合金の製造方法
Caesario et al. Effect of nitrogen incorporation on the ordering transformation of CoPt in CoPt/TiN bilayer films
Abbas et al. Influence of annealing temperature on the structural and magnetic properties of FeGaSiB thin films
Gupta et al. Pt diffusion driven L10 ordering in off-stoichiometric FePt thin films
Basumatary et al. Influence of surface roughness on magnetic property of magnetron sputter deposited FePtCo films
Shalyguina et al. The influence of annealing on magnetic and magneto-optical properties of iron and nickel films
Noguchi et al. Enhancement of order degree and perpendicular magnetic anisotropy of L10 ordered Fe (Pt, Pd) alloy film by introducing a thin MgO cap-layer
Yu et al. Low temperature ordering of FePt films by in-situ heating deposition plus post deposition annealing
Borza et al. Single step nanocrystallization of FeCuNbSiB/CoPt (Cu) soft/hard magnetic multilayer microwires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851658

Country of ref document: EP

Kind code of ref document: A1