WO2015052937A1 - スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法 - Google Patents

スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法 Download PDF

Info

Publication number
WO2015052937A1
WO2015052937A1 PCT/JP2014/005169 JP2014005169W WO2015052937A1 WO 2015052937 A1 WO2015052937 A1 WO 2015052937A1 JP 2014005169 W JP2014005169 W JP 2014005169W WO 2015052937 A1 WO2015052937 A1 WO 2015052937A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
spectrum
signal
input
input optical
Prior art date
Application number
PCT/JP2014/005169
Other languages
English (en)
French (fr)
Inventor
毅 小西
長谷川 誠
卓弥 村川
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2015541444A priority Critical patent/JPWO2015052937A1/ja
Publication of WO2015052937A1 publication Critical patent/WO2015052937A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present invention relates to a spectrum compression device that performs spectrum compression of an optical signal, and an optical analog / digital conversion system including the spectrum compression device.
  • optical signal spectral compression techniques are used. For example, in a coherent anti-Stokes Raman scattering (CARS) microscope, spectral compression of pump light is performed in order to increase the spectral resolution of CARS light (see, for example, Non-Patent Document 1).
  • CARS coherent anti-Stokes Raman scattering
  • Non-Patent Document 1 a nonlinear optical effect (self-phase modulation) is used for spectrum compression.
  • Non-Patent Document 1 when spectral compression is performed using the nonlinear optical effect as in Non-Patent Document 1, the realizable compression ratio depends on the physical characteristics of the optical device that generates the nonlinear optical effect. That is, since the spectrum compression rate is limited by the physical limit of the optical characteristics of the optical device, it is difficult to realize a high compression rate.
  • the present invention provides a spectrum compression device that can improve the compression rate of the spectrum of an optical signal.
  • a spectral compression apparatus is a spectral compression apparatus that performs spectral compression of an input optical signal, and duplicates the input optical signal to thereby delay at least two replicated lights that are delayed at an arbitrary time interval.
  • a duplicating unit that generates a signal; and a multiplexing unit that generates an output optical signal having a spectrum compressed from the spectrum of the input optical signal by multiplexing the at least two duplicated optical signals.
  • the spectral compression rate is not limited by the physical characteristics of the optical device, as in the case of performing spectral compression using the nonlinear optical effect. Therefore, for example, spectral compression of 10 times or more can be realized, and the compression ratio of the spectrum of the optical signal can be improved. As described above, it is possible to efficiently compress the spectrum of an input optical signal without using a nonlinear optical effect by combining at least two duplicated optical signals after being delayed at an arbitrary time interval. No one had realized it.
  • the input optical signal may be pulsed light, and the arbitrary time interval may be shorter than the duration of the wave packet in the input optical signal.
  • the time interval of the duplicate optical signal can be made shorter than the duration of the wave packet in the input optical signal. Therefore, it is possible to suppress a plurality of peaks having a large intensity from being included in the spectrum of the output optical signal.
  • a wave packet is a local wave lump that travels as a unit.
  • the lifetime of the wave packet is a time when the intensity of the pulsed light is equal to or higher than a threshold intensity (for example, half the peak intensity).
  • the input optical signal may be continuous wave light, and the arbitrary time interval may be shorter than the duration of the wave train in the input optical signal.
  • the time interval of the replica optical signal can be made shorter than the duration of the wave train in the input optical signal. Therefore, it is possible to suppress a plurality of peaks having a large intensity from being included in the spectrum of the output optical signal.
  • a wave train is a group of waves that can be regarded as being connected in phase. The duration of the wave run is equal to the coherent length corresponding to the temporal coherence of light.
  • the at least two duplicate optical signals are greater than the signal intensity of the first duplicate optical signal in time order, the last duplicate optical signal in time order, and the first duplicate optical signal and the last duplicate optical signal. And at least one replicated optical signal having signal strength.
  • the signal intensity of the duplicate optical signal between the first duplicate optical signal and the last duplicate optical signal can be relatively increased. Therefore, the output optical signal can be prevented from being separated into a plurality of signals, and the application range of the spectrum compression apparatus can be expanded.
  • the optical analog / digital conversion system which concerns on 1 aspect of this invention is an optical analog / digital conversion system which converts an analog optical signal into a digital signal, Comprising:
  • the present invention can be realized not only as a spectrum compression apparatus and an optical analog / digital conversion system having such characteristic components, but also by processes executed by characteristic components included in the spectrum compression apparatus.
  • the spectrum compression apparatus can improve the compression rate of the spectrum of an optical signal.
  • FIG. 1 is a configuration diagram of a spectrum compression apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing the spectrum compression method according to the first embodiment.
  • FIG. 3 is a diagram for explaining the principle of spectrum compression by the spectrum compression apparatus according to the first embodiment.
  • 4A is a graph showing a simulation result of spectrum compression according to Embodiment 1.
  • FIG. 4B is a graph showing a simulation result of spectrum compression according to Embodiment 1.
  • FIG. 5 is a graph showing a simulation result of spectrum compression according to the first embodiment.
  • FIG. 6A is a graph showing an experimental result of spectrum compression according to Embodiment 1.
  • FIG. 6B is a graph showing an experimental result of spectrum compression according to Embodiment 1.
  • FIG. 7 is a configuration diagram of the optical analog / digital conversion system according to the second embodiment.
  • FIG. 8 is a flowchart showing an optical analog / digital conversion method according to the second embodiment.
  • FIG. 9 is a graph showing a time waveform of an output optical signal in another embodiment.
  • FIG. 10 is a graph showing a simulation result of the output optical signal when an input optical signal having a center wavelength of 1560.2 nm is input to the duplicating unit and the multiplexing unit.
  • FIG. 11 is a graph showing a simulation result of the output optical signal when an input optical signal having a center wavelength of 1560.7 nm is input to the duplicating unit and the multiplexing unit.
  • FIG. 10 is a graph showing a simulation result of the output optical signal when an input optical signal having a center wavelength of 1560.7 nm is input to the duplicating unit and the multiplexing unit.
  • FIG. 12 is a graph showing a simulation result of the output optical signal when an input optical signal having a center wavelength of 1561.2 nm is input to the duplication unit and the multiplexing unit.
  • FIG. 13 is a graph showing a simulation result of an output optical signal when an input optical signal having a center wavelength of 1561.7 nm is input to the duplicating unit and the multiplexing unit.
  • FIG. 14 is a graph showing a simulation result of the output optical signal when an input optical signal having a center wavelength of 1562.2 nm is input to the duplication unit and the multiplexing unit.
  • the input optical signal is pulsed light
  • the input optical signal need not be limited to pulsed light.
  • FIG. 1 is a configuration diagram of a spectrum compression apparatus according to the first embodiment.
  • the spectrum compression apparatus 100 performs spectrum compression of an input optical signal.
  • the spectrum compression of the input optical signal means that the bandwidth (spectrum width) of the input optical signal is narrowed.
  • the bandwidth (spectrum width) is, for example, a frequency or wavelength range in which the spectrum intensity is equal to or greater than a threshold intensity (for example, half the peak intensity) smaller than the peak intensity.
  • the spectrum compression apparatus 100 includes a duplication unit 110 and a multiplexing unit 120.
  • the duplicating unit 110 creates at least two duplicated optical signals delayed by an arbitrary time interval by duplicating the input optical signal. For example, the duplicating unit 110 branches the input optical signal and delays a plurality of optical signals (replicated optical signals) obtained by the branching by a predetermined time interval.
  • copying means generating a signal having substantially the same waveform as the waveform of the original signal, or a signal having a waveform obtained by enlarging or reducing the waveform of the original signal.
  • the duplicating unit 110 divides the input optical signal to generate five duplicated optical signals (first to fifth duplicated optical signals) from the input optical signal. Then, the duplicating unit 110 delays the first to fifth duplicated optical signals by a predetermined time interval. That is, the duplication unit 110 (i) delays the second duplication signal by a predetermined time interval with respect to the first duplication signal, and (ii) causes the third duplication signal to pass through the predetermined time with respect to the second duplication signal. (Iii) delay the fourth replica signal by a predetermined time interval with respect to the third replica signal, and (iv) delay the fifth replica signal by a predetermined time interval with respect to the fourth replica signal. Delay.
  • the delay time of the last duplicate optical signal (here, the fifth duplicate optical signal) in time order with respect to the first duplicate optical signal (here, the first duplicate optical signal) in time order is represented by a plurality of duplicates. This is called the total delay time of the optical signal (here, the first to fifth replicated optical signals).
  • the multiplexing unit 120 generates an output optical signal by multiplexing at least two replication optical signals generated by the replication unit 110. That is, the multiplexing unit 120 combines a plurality of duplicate optical signals delayed at an arbitrary time interval into one output optical signal with a delay. In FIG. 1, the multiplexing unit 120 outputs one output optical signal by multiplexing five replicated optical signals (first to fifth replicated optical signals).
  • the output optical signal generated in this way has a spectrum that is more compressed than the spectrum of the input optical signal. That is, the spectrum of the output optical signal (hereinafter referred to as “output spectrum”) is narrower than the spectrum of the input optical signal (hereinafter referred to as “input spectrum”). That is, the bandwidth of the output optical signal is narrower than the bandwidth of the input optical signal.
  • output spectrum the spectrum of the output optical signal
  • input spectrum the spectrum of the input optical signal
  • the bandwidth of the output optical signal is narrower than the bandwidth of the input optical signal.
  • duplication unit 110 and multiplexing unit 120 can be realized by, for example, an optical circuit in which optical waveguides are integrated.
  • the duplication unit 110 and the multiplexing unit 120 may be realized using a plurality of optical fibers having different lengths.
  • FIG. 2 is a flowchart showing the spectrum compression method according to the first embodiment.
  • the duplicating unit 110 creates at least two duplicated optical signals delayed by an arbitrary time interval by duplicating the input optical signal (S101).
  • the multiplexing unit 120 generates an output optical signal by multiplexing the generated at least two duplicate optical signals (S102).
  • FIG. 3 is a diagram for explaining the principle of spectrum compression by the spectrum compression apparatus according to the first embodiment.
  • FIG. 3A shows a window function in the time domain.
  • FIG. 3B shows an input optical signal in the time domain.
  • FIG. 3 (c) shows a comb function in the time domain.
  • the comb function is a superfunction in which delta functions are arranged at regular time intervals, and is also called a periodic delta function.
  • FIG. 3D shows a window function in the frequency domain.
  • FIG. 3E shows an input optical signal in the frequency domain. That is, (e) of FIG. 3 shows an input spectrum.
  • FIG. 3F shows a comb function in the frequency domain.
  • a signal (combined result) obtained by combining an infinite number of duplicate optical signals delayed by a time interval of T1 from the input optical signal s1 (t) is the input optical signal s1 (t) ((( b)) and a comb-shaped function comb T1 (t) having a period of T1 ((c) in FIG. 3).
  • the actual output optical signal is a result of combining a finite number of duplicate optical signals. Therefore, when the total delay time of a finite number of replica optical signals is T2, the output optical signal is a rectangular window function rect T2 (t) ((a) in FIG. 3) having a time width of T2, and an infinite number. It is expressed as a product (multiplication result) with the combined result s1 (t) * comb T1 (t) of the duplicate optical signal.
  • the output optical signal s2 (t) is expressed by the following equation (1).
  • the width of the output spectrum S2 ( ⁇ ) obtained by Fourier transform of s2 (t) is the input spectrum S1 obtained by Fourier transform of s1 (t). The fact that it becomes narrower than the width of ( ⁇ ) will be described.
  • a composite product in the time domain is represented by a product in the frequency domain. Further, the comb function comb T1 (t) having a period of T1 is converted into a comb function Comb T1 ( ⁇ ) having a period of 1 / T1 ((f) in FIG. 3) by Fourier transform. Accordingly, the combined product of s1 (t) and comb T1 (t) in the time domain is represented by the product of S1 ( ⁇ ) and Comb T1 ( ⁇ ) in the frequency domain.
  • the product in the time domain is expressed as a composite product in the frequency domain.
  • the window function rect T2 (t) having a time width of T2 is converted into a sinc function Sinc T2 ( ⁇ ) ((d) in FIG. 3) having a scaling factor proportional to T2 by Fourier transform. Therefore, the product of rect T2 (t) in the time domain and s1 (t) * comb T1 (t) is a combination of Sinc T2 ( ⁇ ) and S1 ( ⁇ ) ⁇ Comb T1 ( ⁇ ) in the frequency domain. Expressed as a product.
  • the period (1 / T1) of the comb function in the frequency domain is preferably larger than the width of the input spectrum (S1 ( ⁇ )) so that only the frequency component of the maximum peak of S1 ( ⁇ ) is sampled.
  • the width of the input spectrum is inversely proportional to the time width of the input optical signal (that is, the time duration of the wave packet). Therefore, the time interval (T1) of the duplicate optical signal is preferably shorter than the lifetime of the wave packet of the input optical signal.
  • time interval of the duplicate optical signal may be longer than the lifetime of the wave packet of the input optical signal. Even in this case, the output spectrum can be narrower than the input spectrum.
  • the time interval between duplicate optical signals adjacent in time is constant, but the time interval may vary.
  • the period of the comb function (time interval of the delta function) shown in FIG. 3C is not constant.
  • the period of the comb-transformed function shown in (f) of FIG. 3 is not constant.
  • the input spectrum is still sampled in the frequency domain. Therefore, if the period is set appropriately, spectrum compression can be performed.
  • the period of the comb function in the time domain is smaller than the width of the input optical signal (that is, if the delay time interval of the replica optical signal is smaller than the lifetime of the wave packet of the input optical signal)
  • the maximum of the input spectrum Since only the peaks are sampled, the effects of variations in delay time intervals can be removed from the output spectrum.
  • FIG. 4A and 4B are graphs showing simulation results of spectrum compression according to Embodiment 1.
  • the input optical signal is duplicated into 16 duplicate optical signals. Further, the time intervals of the 16 replicated optical signals are changed to 1.5 ps, 0.5 ps, and 0.25 ps.
  • the vertical axis represents intensity
  • the horizontal axis represents time and wavelength, respectively.
  • the time waveform of the input optical signal is output as shown in FIG. 4A. It is converted into a time waveform of an optical signal.
  • This time waveform change is expressed as a spectrum change as shown in FIG. 4B in the frequency domain.
  • the output spectrum is compressed more than the input spectrum.
  • the spectrum width is compressed from 5.8 nm to 0.4 nm.
  • FIG. 4B shows that the longer the time interval, the higher the spectrum compression rate. This change in the compression rate is strongly influenced by the change in the total delay time due to the change in the time interval. That is, FIG. 4B shows that the compression rate increases as the total delay time increases.
  • FIG. 5 is a graph showing a simulation result of spectrum compression according to the first embodiment.
  • the vertical axis represents intensity
  • the horizontal axis represents wavelength.
  • the wavelength of the input optical signal is changed from 1550 nm to 1600 nm.
  • the time interval of the duplicate optical signal is fixed at 1 ps.
  • the spectrum compression apparatus can compress the spectrum of the input optical signal even if the wavelength of the input optical signal changes.
  • pulse light (input optical signal) of about 2.5 ps is branched to generate two duplicate optical signals having a delay interval of about 5 ps, and the two duplicate optical signals are combined to output light.
  • a signal was generated.
  • the input optical signal had a wavelength of about 1550 nm, and the width (half width) of the input spectrum was 1.862 nm.
  • FIG. 6A and 6B are graphs showing experimental results of spectrum compression according to Embodiment 1.
  • FIG. 6A the vertical axis represents intensity and the horizontal axis represents time.
  • FIG. 6B the vertical axis represents intensity and the horizontal axis represents wavelength.
  • FIG. 6A shows a measurement result of a time waveform by superimposing pulses (passing one pulse of the same height). Therefore, the time waveform of the output optical signal (Output) appears to be a waveform having three peaks where the height of the middle peak is twice that of the other peaks. Further, as shown in FIG. 6B, the half width of the output spectrum (Output) was 0.997 nm, which was narrower than the half width of 1.862 nm of the input spectrum (Input).
  • spectrum compression apparatus 100 by multiplexing at least two duplicated optical signals obtained by duplicating an input optical signal and delayed at an arbitrary time interval, The spectrum of the input optical signal can be compressed. That is, spectrum compression can be realized by duplication, delay, and multiplexing in the time domain of the input optical signal. Accordingly, the spectral compression rate is not limited by the physical characteristics of the optical device, as in the case of performing spectral compression using the nonlinear optical effect. Therefore, the spectrum compression apparatus 100 can realize, for example, 10 times or more spectrum compression, and can improve the spectrum compression ratio of the optical signal.
  • spectrum compression apparatus 100 can compress the spectrum at a high compression rate without amplifying the optical signal. That is, spectrum compression apparatus 100 according to the present embodiment can efficiently perform spectrum compression.
  • spectrum compression can be performed independently of the wavelength (frequency) of the input optical signal. That is, spectrum compression can be performed even if the wavelength of the input optical signal is not known. For example, when performing spectral compression of an input optical signal by removing unnecessary wavelength components using a wavelength filter, the wavelength of the input optical signal capable of compressing the spectrum is limited to the wavelength that passes through the wavelength filter. Is done.
  • the wavelength of the input optical signal that can compress the spectrum is not limited to a specific wavelength. That is, spectrum compression can be performed independently of the wavelength (frequency) of the input optical signal.
  • FIG. 7 is a configuration diagram of the optical analog / digital conversion system according to the second embodiment.
  • the optical analog / digital conversion system 1000 converts an analog optical signal into a digital signal.
  • the optical analog / digital conversion system 1000 includes the spectrum compression apparatus 100 according to the first embodiment, a conversion unit 200, and a measurement unit 300.
  • the conversion unit 200 converts the analog optical signal into an optical signal having a wavelength corresponding to the signal intensity of the analog optical signal.
  • the conversion unit 200 is, for example, a highly nonlinear optical fiber that generates a self-frequency shift.
  • the optical signal resulting from the conversion is input to the spectrum compression apparatus 100.
  • the measuring unit 300 acquires a digital signal corresponding to the signal intensity of the analog optical signal by measuring the wavelength of the output optical signal of the spectrum compression apparatus 100.
  • the measurement unit 300 is, for example, an arrayed waveguide diffraction grating (AWG: Arrayed Waveguide Gratings).
  • FIG. 8 is a flowchart showing an optical analog / digital conversion method according to the second embodiment.
  • the conversion unit 200 converts the analog optical signal into an optical signal having a wavelength corresponding to the signal intensity of the analog optical signal (S201).
  • the spectrum compression apparatus 100 performs spectrum compression of the optical signal. Specifically, as shown in FIG. 2, the duplicating unit 110 creates at least two duplicated optical signals delayed by an arbitrary time interval by duplicating the input optical signal (S101).
  • the multiplexing unit 120 generates an output optical signal by multiplexing the generated at least two duplicate optical signals (S102).
  • the measurement unit 300 acquires a digital signal corresponding to the signal intensity of the analog optical signal by measuring the wavelength of the output optical signal of the spectrum compression apparatus 100 (S202).
  • the compression ratio of the spectrum of an optical signal having a wavelength corresponding to the signal intensity of the analog optical signal using the spectrum compression apparatus 100 can be improved. Therefore, the resolution in the optical analog / digital conversion can be improved.
  • the input optical signal of the spectrum compression device may be continuous wave light.
  • the wave train in the continuous wave light corresponds to the wave packet of the pulsed light in the above embodiment, so that the spectrum of the continuous wave light can be compressed.
  • the time interval between the plurality of duplicate optical signals is preferably shorter than the duration of the wave train in the input optical signal.
  • the spectrum compression device may be applied to other devices.
  • the spectral compression apparatus according to Embodiment 1 may be used to perform spectral compression of pump light in a CARS microscope disclosed in Non-Patent Document 1.
  • the gain of the duplicate optical signal may be adjusted so that the output optical signal is not separated into a plurality of signals.
  • the signal intensity of the duplicate optical signal between the first duplicate optical signal and the last duplicate optical signal is larger than the signal intensity of the first duplicate optical signal and the last duplicate optical signal.
  • the signal intensity of the duplicate optical signal may be adjusted.
  • the at least two duplicate optical signals have a signal strength greater than the signal strength of the first duplicate optical signal in time order, the last duplicate optical signal in time order, and the first duplicate optical signal and the last duplicate optical signal. And at least one replicated optical signal.
  • the signal intensity of the middle duplicate optical signal among the three duplicate optical signals is increased as shown in FIG. 9B.
  • the time waveform (FIG. 9B) of the output optical signal which is the result of combining the three replicated optical signals, is the time waveform of the output optical signal when the signal intensity of the replicated optical signal is the same (FIG. 9).
  • (A)) can be made smoother. Thereby, it can suppress that an output optical signal is isolate
  • the three replicated optical signals are examples, and the above-described effect can be achieved even when four or more replicated optical signals are generated from the input optical signal. That is, if the four or more duplicate optical signals include at least one duplicate optical signal having a signal intensity greater than the signal intensity of the first duplicate optical signal and the last duplicate optical signal, the above effect can be obtained.
  • the spectrum compression apparatus according to Embodiment 1 may be used for an optical OFDM signal separation apparatus or a wavelength meter.
  • the refractive index of the light propagation path in the duplication unit and the multiplexing unit changes according to the center wavelength of the input optical signal due to the influence of chromatic dispersion. Therefore, the time delay of light propagating through each propagation path changes according to the center wavelength of the input optical signal. That is, the time interval T1 of the duplicate optical signal changes according to the center wavelength of the input optical signal s1 (t). Further, the position (frequency) of the delta function in the comb function Comb T1 ( ⁇ ) shown in (f) of FIG. 3 depends on the time interval T1.
  • the center wavelength (center frequency) of the input optical signal s1 (t) the position (frequency) of the delta function in the comb function Comb T1 ( ⁇ ) and the center frequency shift, and the input spectrum S ( ⁇ ). May not be able to sample the center frequency of. As a result, the spectrum of the input optical signal may not be compressed.
  • duplicating unit and the multiplexing unit for performing spectrum compression of an input optical signal in a predetermined wavelength band.
  • a duplicating unit and a multiplexing unit for performing spectral compression of an input optical signal having a center wavelength of 1560.2 nm to 1562.2 nm is shown.
  • the duplicating unit and the multiplexing unit are configured by 20 propagation paths having different lengths by 1 mm.
  • the dispersion in each propagation path is 3500 ps / nm / km.
  • the dispersion slope in each propagation path is 0 ps / nm ⁇ 2 / km.
  • (a) shows the time waveform of the input optical signal.
  • (B) shows the time waveform of an output optical signal.
  • (C) shows the spectrum of the input optical signal.
  • (D) shows the spectrum of the output optical signal.
  • an output optical signal is generated by multiplexing 20 replicated optical signals delayed by a time interval depending on the center wavelength of the input optical signal.
  • the spectrum of the output optical signal shown in (d) is compressed compared to the spectrum of the input optical signal shown in (c).
  • the duplication unit and the multiplexing unit configured as described above are used, the spectrum of the input optical signal having the center wavelength of 1560.2 nm to 1562.2 nm can be appropriately compressed.
  • the present invention can be used as a spectrum compression device that performs spectrum compression of an input optical signal, and can be applied to an optical analog / digital conversion system, a nonlinear optical microscope, a wavelength meter, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 入力光信号のスペクトル圧縮を行うスペクトル圧縮装置(100)は、入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する複製部(110)と、少なくとも2つの複製光信号を合波することにより、入力光信号のスペクトルよりも圧縮されたスペクトルを有する出力光信号を生成する合波部(120)とを備える。

Description

スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法
 本発明は、光信号のスペクトル圧縮を行うスペクトル圧縮装置、および、スペクトル圧縮装置を備える光アナログ/デジタル変換システムに関する。
 光信号を利用する様々な技術分野(例えば、光OFDM(Orthogonal Frequency Division Multiplexing)、光アナログ/デジタル変換、非線形光学顕微鏡など)において、光信号のスペクトル圧縮技術が利用されている。例えば、コヒーレントアンチストークスラマン散乱(CARS)顕微鏡では、CARS光のスペクトル分解能を高めるために、ポンプ光のスペクトル圧縮を行う(例えば、非特許文献1を参照)。非特許文献1では、スペクトルの圧縮に、非線形光学効果(自己位相変調)が利用されている。
夛田量宏、唐沢直樹、「CARS分光のためのPCFを用いた単一ビーム光源の実験と解析」、電子情報通信学会技術研究報告、OPE、光エレクトロニクス、vol.111、No.185、pp.7-10、2011年8月 T. Konishi、et al.、「All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique」、JOSA B、vol.19、Issue 11、pp.2817-2823、2002
 しかしながら、非特許文献1のように非線形光学効果を利用してスペクトル圧縮を行う場合、実現可能な圧縮率は、非線形光学効果を発生させる光学デバイスの物理的特性に依存する。つまり、光学デバイスの光学特性の物理的限界によってスペクトルの圧縮率が制限されるため、高い圧縮率を実現することが難しい。
 そこで、本発明は、光信号のスペクトルの圧縮率を向上させることができるスペクトル圧縮装置を提供する。
 本発明の一態様に係るスペクトル圧縮装置は、入力光信号のスペクトル圧縮を行うスペクトル圧縮装置であって、前記入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する複製部と、前記少なくとも2つの複製光信号を合波することにより、前記入力光信号のスペクトルよりも圧縮されたスペクトルを有する出力光信号を生成する合波部とを備える。
 この構成によれば、入力光信号を複製して得られた、任意の時間間隔で遅延された少なくとも2つの複製光信号を合波することにより、入力光信号のスペクトル圧縮を行うことができる。つまり、入力光信号の時間領域における複製、遅延および合波によって、スペクトル圧縮を実現することができる。したがって、非線形光学効果を利用してスペクトル圧縮を行う場合のように、光学デバイスの物理的特性によってスペクトルの圧縮率が制限されない。ゆえに、例えば、10倍以上のスペクトル圧縮を実現することができ、光信号のスペクトルの圧縮率を向上させることができる。このように、少なくとも2つの複製光信号を任意の時間間隔で遅延させた上で合波することにより、非線形光学効果を使うことなく入力光信号のスペクトルを効率的に圧縮することは、これまで誰も実現していなかった。
 例えば、前記入力光信号は、パルス光であり、前記任意の時間間隔は、前記入力光信号における波束の存続時間よりも短くてもよい。
 この構成によれば、入力光信号がパルス光である場合に、複製光信号の時間間隔を、入力光信号における波束の存続時間よりも短くすることができる。したがって、出力光信号のスペクトルに大きな強度を有する複数のピークが含まれることを抑制することができる。なお、波束とは、一体として進行する局所的な波動の塊である。波束の存続時間は、パルス光の強度が閾値強度(例えば、ピーク強度の半分の強度)以上となる時間である。
 例えば、前記入力光信号は、連続発振光であり、前記任意の時間間隔は、前記入力光信号における波連の存続時間よりも短くてもよい。
 この構成によれば、入力光信号が連続発振光である場合に、複製光信号の時間間隔を、入力光信号における波連の存続時間よりも短くすることができる。したがって、出力光信号のスペクトルに大きな強度を有する複数のピークが含まれることを抑制することができる。なお、波連とは、位相的につながっているとみなせる一塊りの波である。波連の存続時間は、光の時間的干渉性に対応するコヒーレント長と等しくなる。
 例えば、前記少なくとも2つの複製光信号は、時間順で最初の複製光信号と、時間順で最後の複製光信号と、前記最初の複製光信号および前記最後の複製光信号の信号強度よりも大きい信号強度を有する少なくとも1つの複製光信号とを含んでもよい。
 この構成によれば、最初の複製光信号および最後の複製光信号の間の複製光信号の信号強度を相対的に大きくすることができる。したがって、出力光信号が複数の信号に分離されることを抑制することができ、スペクトル圧縮装置の適用範囲を広げることができる。
 本発明の一態様に係る光アナログ/デジタル変換システムは、アナログ光信号をデジタル信号に変換する光アナログ/デジタル変換システムであって、前記アナログ光信号を、当該アナログ光信号の信号強度に対応する波長の入力光信号に変換する変換部と、上記スペクトル圧縮装置と、前記出力光信号の波長を測定することにより、前記アナログ光信号の信号強度に対応するデジタル信号を取得する測定部とを備える。
 この構成によれば、スペクトル圧縮装置を利用して、アナログ光信号の信号強度に対応する波長を有する光信号のスペクトルの圧縮率を向上させることができる。したがって、光アナログ/デジタル変換における解像度を向上させることができる。
 なお、本発明は、このような特徴的な構成要素を備えるスペクトル圧縮装置および光アナログ/デジタル変換システムとして実現することができるだけでなく、スペクトル圧縮装置に含まれる特徴的な構成要素が実行する処理をステップとするスペクトル圧縮方法および光アナログ/デジタル変換方法として実現することができる。
 本発明の一態様に係るスペクトル圧縮装置は、光信号のスペクトルの圧縮率を向上させることができる
図1は、実施の形態1に係るスペクトル圧縮装置の構成図である。 図2は、実施の形態1に係るスペクトル圧縮方法を示すフローチャートである。 図3は、実施の形態1に係るスペクトル圧縮装置によるスペクトル圧縮の原理を説明するための図である。 図4Aは、実施の形態1に係るスペクトル圧縮のシミュレーション結果を示すグラフである。 図4Bは、実施の形態1に係るスペクトル圧縮のシミュレーション結果を示すグラフである。 図5は、実施の形態1に係るスペクトル圧縮のシミュレーション結果を示すグラフである。 図6Aは、実施の形態1に係るスペクトル圧縮の実験結果を示すグラフである。 図6Bは、実施の形態1に係るスペクトル圧縮の実験結果を示すグラフである。 図7は、実施の形態2に係る光アナログ/デジタル変換システムの構成図である。 図8は、実施の形態2に係る光アナログ/デジタル変換方法を示すフローチャートである。 図9は、他の実施の形態における出力光信号の時間波形を示すグラフである。 図10は、1560.2nmの中心波長を有する入力光信号が複製部および合波部に入力された場合の出力光信号のシミュレーション結果を示すグラフである。 図11は、1560.7nmの中心波長を有する入力光信号が複製部および合波部に入力された場合の出力光信号のシミュレーション結果を示すグラフである。 図12は、1561.2nmの中心波長を有する入力光信号が複製部および合波部に入力された場合の出力光信号のシミュレーション結果を示すグラフである。 図13は、1561.7nmの中心波長を有する入力光信号が複製部および合波部に入力された場合の出力光信号のシミュレーション結果を示すグラフである。 図14は、1562.2nmの中心波長を有する入力光信号が複製部および合波部に入力された場合の出力光信号のシミュレーション結果を示すグラフである。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、以下では、主として、入力光信号がパルス光である場合について説明する。なお、入力光信号は、パルス光に限定される必要はない。
 (実施の形態1)
 <構成>
 図1は、実施の形態1に係るスペクトル圧縮装置の構成図である。このスペクトル圧縮装置100は、入力光信号のスペクトル圧縮を行う。
 入力光信号のスペクトル圧縮とは、入力光信号の帯域幅(スペクトル幅)を狭くすることを意味する。帯域幅(スペクトル幅)とは、例えば、スペクトルの強度が、ピーク強度より小さい閾値強度(例えばピーク強度の半分の強度)以上である周波数または波長の範囲である。
 図1に示すように、スペクトル圧縮装置100は、複製部110と、合波部120とを備える。
 複製部110は、入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する。例えば、複製部110は、入力光信号を分岐し、分岐して得られた複数の光信号(複製光信号)を所定の時間間隔ずつ遅延させる。なお、複製とは、原信号の波形と略同一の波形を有する信号、または、原信号の波形を拡大もしくは縮小した波形を有する信号を生成することを意味する。
 図1では、複製部110は、入力光信号を分岐することにより、入力光信号から5つの複製光信号(第1~第5複製光信号)を生成する。そして、複製部110は、第1~第5複製光信号を所定の時間間隔ずつ遅延させる。つまり、複製部110は、(i)第2複製信号を、第1複製信号に対して所定の時間間隔だけ遅延させ、(ii)第3複製信号を、第2複製信号に対して所定の時間間隔だけ遅延させ、(iii)第4複製信号を、第3複製信号に対して所定の時間間隔だけ遅延させ、(iv)第5複製信号を、第4複製信号に対して所定の時間間隔だけ遅延させる。なお、以下において、時間順で最初の複製光信号(ここでは、第1複製光信号)に対する時間順で最後の複製光信号(ここでは、第5複製光信号)の遅延時間を、複数の複製光信号(ここでは、第1~第5複製光信号)の総遅延時間と呼ぶ。
 合波部120は、複製部110によって生成された少なくとも2つの複製光信号を合波することにより出力光信号を生成する。つまり、合波部120は、任意の時間間隔で遅延された複数の複製光信号を、遅延を有する状態で1つの出力光信号にまとめる。図1では、合波部120は、5つの複製光信号(第1~第5複製光信号)を合波することにより、1つの出力光信号を出力する。
 このように生成された出力光信号は、入力光信号のスペクトルよりも圧縮されたスペクトルを有する。つまり、出力光信号のスペクトル(以下、「出力スペクトル」と呼ぶ)の幅は、入力光信号のスペクトル(以下、「入力スペクトル」と呼ぶ)の幅よりも狭い。すなわち、出力光信号の帯域幅は、入力光信号の帯域幅よりも狭い。このように出力スペクトルの幅が入力スペクトルの幅よりも狭くなる原理については後述する。
 なお、上記の複製部110および合波部120は、例えば、光導波路を集積した光回路によって実現できる。また例えば、複製部110および合波部120は、互いに長さの異なる複数の光ファイバを用いて実現されてもよい。
 <方法>
 次に、以上のように構成されたスペクトル圧縮装置100によるスペクトル圧縮方法について説明する。
 図2は、実施の形態1に係るスペクトル圧縮方法を示すフローチャートである。
 まず、複製部110は、入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する(S101)。続いて、合波部120は、生成された少なくとも2つの複製光信号を合波することにより出力光信号を生成する(S102)。
 <スペクトル圧縮の原理>
 次に、本実施の形態に係るスペクトル圧縮装置によって入力スペクトルが圧縮される原理について説明する。ここでは、説明の便宜のため、複数の複製光信号の時間間隔(つまり、複数の複製光信号に含まれる時間的に隣り合う複製光信号の遅延の時間間隔)が一定であるとして説明する。つまり、複数の複製光信号は、所定の時間間隔ずつ遅延されているとして説明する。
 図3は、実施の形態1に係るスペクトル圧縮装置によるスペクトル圧縮の原理を説明するための図である。具体的には、図3の(a)は、時間領域における窓関数を示す。図3の(b)は、時間領域における入力光信号を示す。図3の(c)は、時間領域における櫛型関数(comb function)を示す。櫛型関数とは、デルタ関数を一定の時間間隔で並べた超関数であり、周期的デルタ関数とも呼ばれる。図3の(d)は、周波数領域における窓関数を示す。図3の(e)は、周波数領域における入力光信号を示す。つまり、図3の(e)は、入力スペクトルを示す。図3の(f)は、周波数領域における櫛型関数を示す。
 なお、乗算は“×”で表され、畳み込み(convolution)は“*”で表される。
 入力光信号s1(t)から、T1の時間間隔ずつ遅延された無限数の複製光信号を合波して得られる信号(合波結果)は、入力光信号s1(t)(図3の(b))と、T1の周期を有する櫛型関数combT1(t)(図3の(c))との合成積(畳み込み結果)によって表現される。
 ただし、実際の出力光信号は、有限数の複製光信号の合波結果である。そこで、有限数の複製光信号の総遅延時間がT2である場合、出力光信号は、T2の時間幅を有する矩形の窓関数rectT2(t)(図3の(a))と、無限数の複製光信号の合波結果s1(t)*combT1(t)との積(乗算結果)として表される。
 つまり、出力光信号s2(t)は、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、周波数領域において上記の演算を表現することにより、s2(t)をフーリエ変換して得られる出力スペクトルS2(ω)の幅が、s1(t)をフーリエ変換して得られる入力スペクトルS1(ω)の幅よりも狭くなることについて説明する。
 時間領域における合成積は、周波数領域では積で表される。また、T1の周期を有する櫛型関数combT1(t)は、フーリエ変換によって、1/T1の周期を有する櫛型関数CombT1(ω)(図3の(f))に変換される。したがって、時間領域におけるs1(t)とcombT1(t)との合成積は、周波数領域においてS1(ω)とCombT1(ω)との積で表される。
 また、時間領域における積は、周波数領域では合成積で表される。また、T2の時間幅を有する窓関数rectT2(t)は、フーリエ変換によって、T2に比例するスケーリングファクタを有するsinc関数SincT2(ω)(図3の(d))に変換される。したがって、時間領域におけるrectT2(t)と、s1(t)*combT1(t)との積は、周波数領域においてSincT2(ω)と、S1(ω)×CombT1(ω)との合成積で表される。
 つまり、出力スペクトルS2(ω)は、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 図3および式(2)から分かるように、周波数領域において、S1(ω)は、CombT1(ω)の周期1/T1でサンプリングされ、サンプリング結果と、T2に比例するスケーリングファクタを有するSincT2(ω)との合成積が取られる。したがって、適切な遅延の時間間隔(T1)と総遅延時間(T2)とを与えることにより、所望の圧縮率でスペクトル圧縮を行うことができる。
 例えば、S1(ω)の最大ピークの周波数成分のみがサンプリングされるようにT1が与えられれば、最大ピーク以外の周波数成分がサンプリングされることによって出力スペクトルに大きな強度を有する複数のピークが含まれることを抑制することができ、スペクトルの圧縮率を向上させることができる。したがって、S1(ω)の最大ピークの周波数成分のみがサンプリングされるように、周波数領域における櫛型関数の周期(1/T1)が入力スペクトル(S1(ω))の幅よりも大きいことが好ましい。ここで、入力スペクトルの幅は、入力光信号の時間幅(つまり、波束の存続時間)に反比例する。したがって、複製光信号の時間間隔(T1)は、入力光信号の波束の存続時間よりも短いことが好ましい。
 なお、複製光信号の時間間隔は、入力光信号の波束の存続時間よりも長くてもよい。この場合であっても、入力スペクトルの幅よりも出力スペクトルの幅を狭くすることはできる。
 なお、ここでは、時間的に隣り合う複製光信号の時間間隔が一定であるとして説明したが、時間間隔はばらつきを有してもよい。この場合、図3の(c)に示す櫛型関数の周期(デルタ関数の時間間隔)は一定でなくなる。その結果、図3の(f)に示すフーリエ変換された櫛型関数の周期も一定ではなくなる。しかしながら、櫛型関数の周期が一定でなくても、周波数領域において入力スペクトルがサンプリングされることに変わりはない。したがって、周期が適切に設定されれば、スペクトル圧縮を行うことができる。特に、時間領域における櫛型関数の周期が入力光信号の幅よりも小さければ(つまり、複製光信号の遅延の時間間隔が入力光信号の波束の存続時間よりも小さければ)、入力スペクトルの最大ピークのみがサンプリングされるので、遅延の時間間隔のばらつきの影響を出力スペクトルから除去することができる。
 <シミュレーション結果>
 次に、本実施の形態に係るスペクトル圧縮装置100によるスペクトル圧縮のシミュレーション結果について説明する。
 図4Aおよび図4Bは、実施の形態1に係るスペクトル圧縮のシミュレーション結果を示すグラフである。このシミュレーションでは、入力光信号を16個の複製光信号に複製している。また、16個の複製光信号の時間間隔を、1.5ps、0.5ps、0.25psに変化させている。また、図4Aおよび図4Bにおいて、縦軸は強度を示し、横軸は、それぞれ時間および波長を示す。
 所定の時間間隔(1.5ps、0.5ps、または0.25ps)ずつ遅延された16個の複製光信号を合波することにより、入力光信号の時間波形は、図4Aに示すような出力光信号の時間波形に変換される。
 この時間波形の変化は、周波数領域では、図4Bのようなスペクトルの変化として表される。いずれの時間間隔の場合でも、出力スペクトルは、入力スペクトルよりも圧縮されている。例えば、時間間隔が1.5psの場合、スペクトルの幅は、5.8nmから0.4nmに圧縮されている。
 また、図4Bでは、時間間隔が長いほどスペクトルの圧縮率が高くなっている。この圧縮率の変化は、時間間隔が変化することにより総遅延時間が変化した影響を強く受けている。つまり、図4Bは、総遅延時間が長いほど圧縮率が高くなることを示している。
 図5は、実施の形態1に係るスペクトル圧縮のシミュレーション結果を示すグラフである。図5では、縦軸は強度を示し、横軸は波長を示す。このシミュレーションでは、入力光信号の波長を1550nmから1600nmまで変化させている。なお、複製光信号の時間間隔は1psで固定されている。
 図5から明らかなように、入力光信号の波長を変化させても、スペクトルの圧縮率はほとんど変化していない。つまり、本実施の形態に係るスペクトル圧縮装置は、入力光信号の波長が変化しても、入力光信号のスペクトル圧縮を行うことができる。
 <実験結果>
 次に、本実施の形態に係るスペクトル圧縮装置100によるスペクトル圧縮の実験結果について説明する。
 この実験では、約2.5psのパルス光(入力光信号)を分岐させて、約5psの遅延間隔を有する2つの複製光信号を生成し、この2つの複製光信号を合波して出力光信号を生成した。入力光信号は、約1550nmの波長を有し、入力スペクトルの幅(半値幅)は1.862nmであった。
 図6Aおよび図6Bは、実施の形態1に係るスペクトル圧縮の実験結果を示すグラフである。図6Aでは、縦軸は強度を示し、横軸は時間を示す。図6Bでは、縦軸は強度を示し、横軸は波長を示す。
 図6Aには、パルスの重ね合わせ(1つの同じ高さのパルスのすれ違い)による時間波形の測定結果が示されている。したがって、出力光信号(Output)の時間波形は、真ん中の山の高さが他の山の高さの2倍である3つの山を有する波形に見えている。また、図6Bに示すように、出力スペクトル(Output)の半値幅は、0.997nmであり、入力スペクトル(Input)の半値幅1.862nmよりも狭くすることができた。
 <効果>
 以上のように、本実施の形態に係るスペクトル圧縮装置100によれば、入力光信号を複製して得られた、任意の時間間隔で遅延された少なくとも2つの複製光信号を合波することにより、入力光信号のスペクトル圧縮を行うことができる。つまり、入力光信号の時間領域における複製、遅延および合波によって、スペクトル圧縮を実現することができる。したがって、非線形光学効果を利用してスペクトル圧縮を行う場合のように、光学デバイスの物理的特性によってスペクトルの圧縮率が制限されない。ゆえに、スペクトル圧縮装置100は、例えば、10倍以上のスペクトル圧縮を実現することができ、光信号のスペクトルの圧縮率を向上させることができる。
 また、非線形光学効果を利用してスペクトル圧縮を行う場合、高い圧縮率を得るためには光信号の増幅が必要となり、信号増幅のための電力が必要となる。しかしながら、本実施の形態に係るスペクトル圧縮装置100では、光信号を増幅しなくてもスペクトルを高い圧縮率で圧縮することができる。つまり、本実施の形態に係るスペクトル圧縮装置100によれば、効率的にスペクトル圧縮を行うことが可能となる。
 また、本実施の形態に係るスペクトル圧縮装置100によれば、入力光信号の波長(周波数)に無依存でスペクトル圧縮を行うことができる。つまり、入力光信号の波長が既知でなくてもスペクトル圧縮を行うことができる。例えば、波長フィルタなどを用いて不要な波長の成分を除去することにより入力光信号のスペクトル圧縮を行う場合には、スペクトルを圧縮可能な入力光信号の波長は、波長フィルタを通過する波長に限定される。これに対して、本実施の形態に係るスペクトル圧縮装置100によれば、スペクトルを圧縮可能な入力光信号の波長は特定の波長に限定されない。つまり、入力光信号の波長(周波数)に無依存でスペクトル圧縮を行うことができる。
 (実施の形態2)
 実施の形態2では、実施の形態1に係るスペクトル圧縮装置の応用例として、光アナログ/デジタル変換システムについて説明する。なお、実施の形態1に記載の構成要素と実質的に同一の構成要素については、説明が冗長となるのを避けるために、図示および説明を省略する。
 <構成>
 図7は、実施の形態2に係る光アナログ/デジタル変換システムの構成図である。この光アナログ/デジタル変換システム1000は、アナログ光信号をデジタル信号に変換する。光アナログ/デジタル変換システム1000は、実施の形態1に係るスペクトル圧縮装置100と、変換部200と、測定部300とを備える。
 変換部200は、アナログ光信号を、当該アナログ光信号の信号強度に対応する波長の光信号に変換する。具体的には、変換部200は、例えば、自己周波数シフトを発生させる高非線形性光ファイバである。変換結果の光信号は、スペクトル圧縮装置100の入力となる。
 測定部300は、スペクトル圧縮装置100の出力光信号の波長を測定することにより、アナログ光信号の信号強度に対応するデジタル信号を取得する。具体的には、測定部300は、例えば、アレイ導波路回折格子(AWG:Arrayed Waveguide Gratings)である。
 なお、変換部200および測定部300については、非特許文献2と同様であるので、詳細な説明を省略する。
 <方法>
 次に、このように構成された光アナログ/デジタル変換システム1000による光アナログ/デジタル変換方法について説明する。
 図8は、実施の形態2に係る光アナログ/デジタル変換方法を示すフローチャートである。
 まず、変換部200は、アナログ光信号を、当該アナログ光信号の信号強度に対応する波長の光信号に変換する(S201)。続いて、スペクトル圧縮装置100は、光信号のスペクトル圧縮を行う。具体的には、図2に示すように、複製部110は、入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する(S101)。続いて、合波部120は、生成された少なくとも2つの複製光信号を合波することにより出力光信号を生成する(S102)。最後に、測定部300は、スペクトル圧縮装置100の出力光信号の波長を測定することにより、アナログ光信号の信号強度に対応するデジタル信号を取得する(S202)。
 <効果>
 以上のように、本実施の形態に係る光アナログ/デジタル変換システム1000によれば、スペクトル圧縮装置100を利用して、アナログ光信号の信号強度に対応する波長を有する光信号のスペクトルの圧縮率を向上させることができる。したがって、光アナログ/デジタル変換における解像度を向上させることができる。
 (他の実施の形態)
 以上、本発明の実施の形態に係るスペクトル圧縮装置および光アナログ/デジタル変換システムについて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれてもよい。
 例えば、上記各実施の形態では、スペクトル圧縮装置の入力光信号がパルス光である場合について説明したが、入力光信号は、連続発振光であってもよい。この場合、連続発振光における波連が上記実施の形態におけるパルス光の波束に相当するので、連続発振光のスペクトル圧縮を行うことができる。また、上記各実施の形態と同様に、複数の複製光信号の時間間隔は、入力光信号における波連の存続時間よりも短いことが好ましい。
 また、上記実施の形態2では、スペクトル圧縮装置を光アナログ/デジタル変換システムに用いる応用例を説明したが、スペクトル圧縮装置は、他の装置に応用されてもよい。例えば、非特許文献1に開示されているCARS顕微鏡においてポンプ光のスペクトル圧縮を行うために、実施の形態1に係るスペクトル圧縮装置が用いられてもよい。
 例えば、CARS顕微鏡にスペクトル圧縮装置が用いられる場合、出力光信号が複数の信号に分離されないように、複製光信号のゲイン調整が行われてもよい。つまり、時間順で最初の複製光信号および最後の複製光信号の信号強度よりも、最初の複製光信号および最後の複製光信号の間の複製光信号の信号強度が大きくなるように、複数の複製光信号の信号強度が調整されてもよい。言い換えると、少なくとも2つの複製光信号は、時間順で最初の複製光信号と、時間順で最後の複製光信号と、最初の複製光信号および最後の複製光信号の信号強度よりも大きい信号強度を有する少なくとも1つの複製光信号とを含んでもよい。
 例えば入力光信号から3つの複製光信号が生成される場合に、図9の(b)に示すように、3つの複製光信号のうちの真ん中の複製光信号の信号強度を大きくする。その結果、3つの複製光信号の合波結果である出力光信号の時間波形(図9の(b))を、複製光信号の信号強度が同一の場合の出力光信号の時間波形(図9の(a))よりも滑らかにすることができる。これにより、出力光信号が複数の信号に分離されることを抑制することができ、CARS顕微鏡などにおいて利用しやすい出力光信号を生成することができる。なお、3つの複製光信号は一例であり、入力光信号から4つ以上の複製光信号が生成される場合も、上記効果を奏することができる。つまり、4つ以上の複製光信号が、最初の複製光信号および最後の複製光信号の信号強度よりも大きい信号強度を有する少なくとも1つの複製光信号を含めば、上記効果を奏することができる。
 また、実施の形態1に係るスペクトル圧縮装置は、光OFDM用の信号分離装置あるいは波長計などに用いられてもよい。
 (複製部および合波部の具体例)
 次に、上記各実施の形態における複製部および合波部の具体例について説明する。
 複製部および合波部における光の伝搬経路の屈折率は、波長分散の影響により、入力光信号の中心波長に応じて変化する。そのために、各伝搬経路を伝搬する光の時間遅延は、入力光信号の中心波長に応じて変化する。つまり、複製光信号の時間間隔T1は、入力光信号s1(t)の中心波長に応じて変化する。また、図3の(f)に示される櫛型関数CombT1(ω)におけるデルタ関数の位置(周波数)は、時間間隔T1に依存する。
 そのため、入力光信号s1(t)の中心波長(中心周波数)によっては、櫛型関数CombT1(ω)におけるデルタ関数の位置(周波数)と中心周波数とがずれてしまい、入力スペクトルS(ω)の中心周波数をうまくサンプリングできない場合がある。その結果、入力光信号のスペクトルを圧縮できない場合が発生する。
 つまり、所定の波長帯域の入力光信号のスペクトル圧縮を行うためには、複製部および合波部を適切に構成する必要がある。そこで、所定の波長帯域の入力光信号のスペクトル圧縮を行うための複製部および合波部の一例を以下に示す。ここでは、1560.2nm~1562.2nmの中心波長を有する入力光信号のスペクトル圧縮を行うための複製部および合波部の一例を示す。
 ここでは、複製部および合波部は、その長さが1mmずつ異なる20個の伝搬経路によって構成される。各伝搬経路における分散(dispersion)は、3500ps/nm/kmである。また、各伝搬経路における分散勾配(dispersion slope)は、0ps/nm^2/kmである。
 このような複製部および合波部に、1560.2nm、1560.7nm、1561.2nm、1561.7nm、および1562.2nmの中心波長をそれぞれ有する入力光信号が入力された場合の出力光信号のシミュレーション結果を図10~図14に示す。
 図10~図14において、(a)は、入力光信号の時間波形を示す。(b)は、出力光信号の時間波形を示す。(c)は、入力光信号のスペクトルを示す。(d)は、出力光信号のスペクトルを示す。
 (a)および(b)に示すように、入力光信号の中心波長に依存する時間間隔で遅延された20個の複製光信号を合波することにより出力光信号が生成されている。このとき、(d)に示す出力光信号のスペクトルは、(c)に示す入力光信号のスペクトルに比べて圧縮されている。
 このように、上述のように構成された複製部および合波部を用いれば、1560.2nm~1562.2nmの中心波長を有する入力光信号のスペクトルを適切に圧縮することができる。
 本発明は、入力光信号のスペクトル圧縮を行うスペクトル圧縮装置として利用でき、光アナログ/デジタル変換システム、非線形光学顕微鏡、あるいは波長計などに応用できる。
  100 スペクトル圧縮装置
  110 複製部
  120 合波部
  200 変換部
  300 測定部
 1000 光アナログ/デジタル変換システム

Claims (6)

  1.  入力光信号のスペクトル圧縮を行うスペクトル圧縮装置であって、
     前記入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する複製部と、
     前記少なくとも2つの複製光信号を合波することにより、前記入力光信号のスペクトルよりも圧縮されたスペクトルを有する出力光信号を生成する合波部とを備える
     スペクトル圧縮装置。
  2.  前記入力光信号は、パルス光であり、
     前記任意の時間間隔は、前記入力光信号における波束の存続時間よりも短い
     請求項1に記載のスペクトル圧縮装置。
  3.  前記入力光信号は、連続発振光であり、
     前記任意の時間間隔は、前記入力光信号における波連の存続時間よりも短い
     請求項1に記載のスペクトル圧縮装置。
  4.  前記少なくとも2つの複製光信号は、
     時間順で最初の複製光信号と、
     時間順で最後の複製光信号と、
     前記最初の複製光信号および前記最後の複製光信号の信号強度よりも大きい信号強度を有する少なくとも1つの複製光信号とを含む
     請求項1~3のいずれか1項に記載のスペクトル圧縮装置。
  5.  アナログ光信号をデジタル信号に変換する光アナログ/デジタル変換システムであって、
     前記アナログ光信号を、当該アナログ光信号の信号強度に対応する波長の入力光信号に変換する変換部と、
     前記入力光信号のスペクトル圧縮を行うスペクトル圧縮装置と、
     前記スペクトル圧縮装置からの出力光信号の波長を測定することにより、前記アナログ光信号の信号強度に対応するデジタル信号を取得する測定部とを備え、
     前記スペクトル圧縮装置は、
     前記入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を生成する複製部と、
     前記少なくとも2つの複製光信号を合波することにより、前記入力光信号のスペクトルよりも圧縮されたスペクトルを有する光信号を前記出力光信号として生成する合波部とを備える
     光アナログ/デジタル変換システム。
  6.  入力光信号のスペクトル圧縮を行うためのスペクトル圧縮方法であって、
     前記入力光信号を複製することにより、任意の時間間隔で遅延された少なくとも2つの複製光信号を出力する複製ステップと、
     前記少なくとも2つの複製光信号を合波することにより、前記入力光信号のスペクトルよりも圧縮されたスペクトルを有する出力光信号を出力する光合波ステップとを含む
     スペクトル圧縮方法。
PCT/JP2014/005169 2013-10-11 2014-10-10 スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法 WO2015052937A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541444A JPWO2015052937A1 (ja) 2013-10-11 2014-10-10 スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013214231 2013-10-11
JP2013-214231 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015052937A1 true WO2015052937A1 (ja) 2015-04-16

Family

ID=52812764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005169 WO2015052937A1 (ja) 2013-10-11 2014-10-10 スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法

Country Status (2)

Country Link
JP (1) JPWO2015052937A1 (ja)
WO (1) WO2015052937A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261476A1 (ja) * 2020-06-23 2021-12-30 国立大学法人大阪大学 光信号検出システム、光信号検出装置及び光信号検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160654A (ja) * 1992-08-14 1994-06-07 Telefon Ab L M Ericsson 干渉型同調可能光フィルタ
JPH085834A (ja) * 1994-06-24 1996-01-12 Nippon Telegr & Teleph Corp <Ntt> 光フィルタ及び発振波長安定化光源
US6411417B1 (en) * 1998-09-22 2002-06-25 Nortel Networks Limited Optical equalizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160654A (ja) * 1992-08-14 1994-06-07 Telefon Ab L M Ericsson 干渉型同調可能光フィルタ
JPH085834A (ja) * 1994-06-24 1996-01-12 Nippon Telegr & Teleph Corp <Ntt> 光フィルタ及び発振波長安定化光源
US6411417B1 (en) * 1998-09-22 2002-06-25 Nortel Networks Limited Optical equalizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 24, no. 10, pages 830 - 832 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261476A1 (ja) * 2020-06-23 2021-12-30 国立大学法人大阪大学 光信号検出システム、光信号検出装置及び光信号検出方法

Also Published As

Publication number Publication date
JPWO2015052937A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
Liu et al. Integrated microwave photonic filters
JP4459547B2 (ja) 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法
JP4674694B2 (ja) 光アナログ/ディジタル変換方法およびその装置
US9753349B2 (en) Optical circuit apparatus, method, and application
JP4047224B2 (ja) 基準高周波信号発生方法および基準高周波信号発生装置
US8611759B1 (en) Optical domain wideband RF spectrum analyzer/channelizer based on third-order nonlinear mixing
Lei et al. Recirculating frequency shifting based wideband optical frequency comb generation by phase coherence control
Chen et al. Applications of ultrashort pulse propagation in Bragg gratings for wavelength-division multiplexing and code-division multiple access
JP2011053688A (ja) 高次モードファイバの利用により生成された連続スペクトル光の圧縮
JP2013072962A (ja) 広帯域光源
WO2015052937A1 (ja) スペクトル圧縮装置、光アナログ/デジタル変換システム、およびスペクトル圧縮方法
Wu et al. Reconfigurable temporal Fourier transformation and temporal imaging
Preussler et al. Microwave-photonic filters
Jamshidi et al. A review to the all-optical quasi-light storage
Chan High-order infinite impulse response microwave photonic filters
JP2004258411A (ja) 波長変換装置
JP6395340B2 (ja) 光量子化器
CN111693158B (zh) 基于波分解复用的高重频超快脉冲时域探测方法和系统
JP2008096493A (ja) 光アナログ−ディジタル変換装置および方法
JP2005070610A (ja) 多波長光源装置
JP5487491B2 (ja) 非線形光ループミラー及び光a/d変換器
Mi et al. An apodized optimization methods for phase shift sampled fiber Bragg grating
JP2016090944A (ja) スペクトル圧縮装置、非線形光学顕微鏡、光アナログ/デジタル変換システムおよびスペクトル圧縮方法
Zou et al. Multichannel narrow, flat-top optical filters based on multiple-phase-shifted and phase sampled FBG
Sheveleva et al. The temporal analogue of diffractive couplers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851957

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015541444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851957

Country of ref document: EP

Kind code of ref document: A1