WO2015050260A2 - Polishing agent composition, polishing agent composition for silicon wafer, and method for manufacturing silicon wafer product - Google Patents

Polishing agent composition, polishing agent composition for silicon wafer, and method for manufacturing silicon wafer product Download PDF

Info

Publication number
WO2015050260A2
WO2015050260A2 PCT/JP2014/076631 JP2014076631W WO2015050260A2 WO 2015050260 A2 WO2015050260 A2 WO 2015050260A2 JP 2014076631 W JP2014076631 W JP 2014076631W WO 2015050260 A2 WO2015050260 A2 WO 2015050260A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
group
structural unit
synthetic polymer
soluble synthetic
Prior art date
Application number
PCT/JP2014/076631
Other languages
French (fr)
Japanese (ja)
Other versions
WO2015050260A3 (en
Inventor
竜一 谷本
古屋田 栄
孝一 福井
Original Assignee
株式会社Sumco
Atシリカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco, Atシリカ株式会社 filed Critical 株式会社Sumco
Priority to KR1020157036384A priority Critical patent/KR101785450B1/en
Priority to JP2015540576A priority patent/JP6373273B2/en
Publication of WO2015050260A2 publication Critical patent/WO2015050260A2/en
Publication of WO2015050260A3 publication Critical patent/WO2015050260A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to an abrasive composition, an abrasive composition for silicon wafers, and a method for producing a silicon wafer product.
  • abrasive composition used for polishing a silicon wafer or the like a slurry containing silica particles, an alkaline substance, a water-soluble polymer, water, and, if necessary, an additive is used.
  • Patent Document 1 As a water-soluble polymer used as a polishing aid in the above-mentioned abrasive composition, a material solubilized cellulose, for example, hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), etc. has been reported.
  • HEC hydroxyethyl cellulose
  • CMC carboxymethyl cellulose
  • HPC hydroxypropyl cellulose
  • water-soluble polymers other than the above substances include water-soluble synthetic polymers.
  • water-soluble synthetic polymers include polyethylene oxide, polyacrylamide, polyacrylic acid (Patent Document 2); polyvinylpyrrolidone, poly N-vinylformamide (Patent Document 3); block copolymer of ethylene oxide and propylene oxide (Patent Document) 4, 5); poly (N-acylalkylenimine) (Patent Document 6); or polyvinyl alcohol and a modified product thereof (Patent Document 7) used alone or mixed with other substances as a polishing aid It is reported to be possible.
  • water-soluble synthetic polymers that have been used in the past have high purity and are less likely to cause problems due to insoluble components, but are less hydrophilic than water-soluble polymers solubilized with cellulose, such as silicon wafers.
  • cellulose such as silicon wafers.
  • the polishing liquid is not sufficiently retained on the surface to be polished, and deposits are likely to remain on the polished surface of the wafer that has been cleaned after polishing. Therefore, the development of water-soluble synthetic polymers with performance equal to or better than cellulose-solubilized water-soluble polymers has been developed so that products of higher quality after polishing (silicon wafer products, etc.) can be manufactured more stably. It was desired.
  • the object of the present invention is to stabilize the surface quality of a polishing target such as a silicon wafer after polishing by using a water-soluble synthetic polymer, and to improve the wettability of the surface of the polishing target, Abrasive composition capable of reducing the number of particles remaining on the polished surface after cleaning and LPD (Light Point Defect), an abrasive composition for silicon wafers, and a silicon wafer product using these abrasive compositions It is in providing the manufacturing method of.
  • LPD is a defect observed as a bright spot when a wafer surface is scanned by laser irradiation of a light scattering particle counter.
  • the present invention is a polishing composition
  • a polishing composition comprising silica particles, an alkaline substance, a water-soluble synthetic polymer, and water
  • the water-soluble synthetic polymer has the structural unit (1)
  • the structural unit (1 ) Has an oxygen-containing group and a carbonyl group
  • the oxygen-containing group is an alcoholic hydroxyl group or a substituted or unsubstituted alkoxy group
  • the carbonyl group is a keto group or a carbonyl group that forms part of an ester bond.
  • a carbonyl group forming a part of an amide bond (Aspect 1).
  • the present invention provides an abrasive composition
  • an abrasive composition comprising silica particles, an alkaline substance, a water-soluble synthetic polymer, and water, wherein the water-soluble synthetic polymer is added to the water-soluble synthetic polymer of the above aspect 1 with an epoxy compound.
  • polishing agent composition which is a reaction material obtained by making this react (aspect 2).
  • the present invention is an abrasive composition for a silicon wafer comprising the abrasive composition of the above aspect 1 or aspect 2 (aspect 3).
  • the present invention is a method for producing a silicon wafer product, comprising a step of polishing a silicon wafer using the abrasive composition of any one of the above aspects 1 to 3. (Aspect 4)
  • the water-soluble synthetic polymer of the present invention As a polishing aid, an abrasive composition having hydrophilicity equivalent to that using a conventional water-soluble polymer solubilized cellulose can be formed. Such a water-soluble synthetic polymer is less likely to cause quality variations than a water-soluble polymer solubilized with cellulose. Therefore, by using the water-soluble synthetic polymer of the present invention as a polishing aid, the wettability to the surface of the object to be polished is improved, and a silicon wafer having high quality surface characteristics (low residual particles and low LPD) is stabilized. It becomes possible to provide a polishing composition for a silicon wafer that can be supplied and a method for producing a silicon wafer product using the same.
  • the abrasive composition according to the embodiment of the present invention will be described.
  • the abrasive composition according to the embodiment of the present invention includes silica particles (i), an alkaline substance (ii), a water-soluble synthetic polymer (iii), and water (iv).
  • the abrasive composition according to this embodiment may further contain an additive (v).
  • silica particles (i) is a general term for particles represented by the composition formula SiO 2 and particles obtained by surface-treating the particles.
  • examples of the silica particles (i) include colloidal silica, fumed silica, and precipitated silica, and surface-modified silica obtained by modifying these surfaces with boric acid treatment or aluminate treatment.
  • colloidal silica and its surface-modified silica are more preferable from the viewpoint of improving the surface characteristics of the silicon wafer.
  • the average particle diameter of the silica particles (i) can be measured by a BET method, a dynamic light scattering method, or the like.
  • the particle size of the silica particles (i) is not limited.
  • the particle size of the silica particles (i) can be selected depending on the properties required for the polished product. For example, when improvement in surface characteristics after polishing is required, the primary particle size (which can be measured by the BET method) is 10 to 40 nm, or 10 to 20 nm, and the secondary particle size (dynamic light Can be measured by the scattering method.) Can be 20 to 80 nm, or 20 to 40 nm.
  • the method for producing the silica particles (i) is not limited.
  • a synthesis method of silica particles (i) a hydrothermal synthesis method from water glass, a sol-gel method from alkoxysilane or its condensate, a gas phase synthesis method from silicon chloride, and the like are known.
  • silica particles produced by a sol-gel method from alkoxysilane or its condensate from the viewpoint of preventing the silicon wafer from being contaminated by impurities such as alkali metals and alkaline earth metals (I) is preferred.
  • the shape of the silica particles (i) is not particularly limited. Specific examples of the shape of the silica particles (i) include a true sphere type, a saddle type / new type, or a type having fine protrusions.
  • the soot-type and new-type silica particles are silica particles having a ratio of secondary particle size / primary particle size of 1.5 to 2.5.
  • silica particles prepared by a method including a step of hydrolyzing an alkoxysilane condensate may be particularly referred to as a new soot-type silica particle (Japanese Patent No. 4,712,556).
  • the soot type includes a new soot type. From the viewpoint of improving both the polishing rate and the surface accuracy, it is preferable to use a saddle type or a new type.
  • the content of silica particles (i) is not limited.
  • the content of the silica particles (i) is preferably 0.05 wt% or more and 0.5 wt% or less in the abrasive composition (slurry) used during polishing.
  • the alkaline substance (ii) can generate hydroxide ions in water that can chemically polish an object to be polished such as a silicon wafer. Furthermore, it has the effect
  • the alkaline substance (ii) include ammonia, organic amine compounds, tetramethylammonium hydroxide, sodium hydroxide, and potassium hydroxide.
  • organic amine compounds include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethanolamine, diisopropylethylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tris (2-aminoethyl) amine, N, N, N ', N'-tetramethylethylenediamine, hexamethylenediamine, 1,4,7-triazacyclononane, 1,4,7-trimethyl-1,4,7-triazacyclononane, 1,4-diazabicyclo Examples include octane, piperazine, and piperidine.
  • Alkaline substance (ii) may be comprised from 1 type of said substance, and may be comprised from 2 or more types.
  • alkaline substances (ii) ammonia, organic amine compounds, and tetramethylammonium hydroxide are preferable from the viewpoint of not containing alkali metal ions, and ammonia is particularly preferable from the viewpoint of having an appropriate pKa.
  • the concentration of the alkaline substance (ii) depends on the contents of pKa and silica (i) of the alkaline substance (ii) used.
  • Water-soluble synthetic polymer (iii) contributes to polishing by adsorbing on the surface of a polishing target such as a silicon wafer to form a hydrophilic film.
  • water-soluble synthetic polymer refers to a water-soluble polymer not derived from a natural product (cellulose or the like). However, it does not deny that the additive (v) includes a water-soluble polymer derived from a natural product solubilized with cellulose such as hydroxyethyl cellulose as long as the effect of the present invention is not impaired.
  • the abrasive composition according to this embodiment has the structural unit (1) in which the water-soluble synthetic polymer (iii) has an oxygen-containing group and a carbonyl group.
  • an oxygen-containing group is an alcoholic hydroxyl group or a substituted or unsubstituted alkoxy group
  • the carbonyl group is either a keto group, a carbonyl group that forms part of an ester bond, or a carbonyl group that forms part of an amide bond. It is.
  • Examples of the unsubstituted alkoxy (—OAk) group include alkoxy groups such as a methoxy group (—OCH 3 ) and an ethoxy group (—OCH 2 CH 3 ).
  • “Ak” represents a linear or branched alkyl group.
  • the number of carbon atoms of the alkyl group is not limited. For example, an alkyl group having 1 to 22, 1 to 12, 1 to 6, or 1 to 4 carbon atoms can be given.
  • the substituted alkoxy group (—OAk ′) is a group in which one or more carbon atoms of the alkoxy group are substituted.
  • substituent include a hydroxyl group, an alkoxy group (which may be substituted or unsubstituted), and halogen.
  • Ak ′ represents a linear or branched and substituted alkyl group.
  • the number of carbon atoms of the alkyl group is not limited. For example, an alkyl group having 1 to 22, 1 to 12, 1 to 6, or 1 to 4 carbon atoms can be given.
  • Examples of the substituted alkoxy group include hydroxyalkoxy groups such as a hydroxymethoxy group (—OCH 2 OH) and a hydroxyethoxy group (—OCH 2 CH 2 OH).
  • Examples of the substituted alkoxy group that is substituted include —OCH 2 CH (OH) CH 2 OH, —OCH (CH 2 OH) CH 2 OH, —OCH 2 CH (CH 3 ) OH, and —OCH (CH 3 ) CH 2 OH can be mentioned.
  • One or more of the hydroxyl groups contained in the substituted alkoxy group may be further substituted with a substituted alkoxy group (specific examples include a hydroxyl group-substituted alkoxy group).
  • the monomer giving the structural unit (1) is not particularly limited.
  • An example of such a monomer is a monomer ( ⁇ ) composed of a compound having an ethylenically unsaturated bond.
  • the compound having an ethylenically unsaturated bond include (meth) acrylic acid, (meth) acrylic acid ester, (meth) acrylamide, N-substituted (meth) acrylamide, acrylonitrile, vinyl ester, vinylamide, allyl alcohol, allylamine. , Allyl esters, allylamides, and styrene.
  • the monomer ( ⁇ ) may have both an oxygen-containing group and a carbonyl group, or may be a compound having no oxygen-containing group, no carbonyl group, or none of these functional groups. .
  • a necessary functional group can be introduced after polymerization.
  • the monomer ( ⁇ ) is a reaction product obtained by reacting a compound having an ethylenically unsaturated bond and a hydroxyl group with a cyclic ether compound, and may have a substituted alkoxy group.
  • the “cyclic ether compound” means a compound having a cyclic ether structure such as an epoxy group or an oxetane ring, which can open and react with the hydroxyl group of the above compound.
  • a typical example of the cyclic ether compound is an epoxy compound which is a compound having an epoxy group. The epoxy group of the epoxy compound may be substituted.
  • an epoxy compound for example, ethylene oxide, propylene oxide, and glycidol can be mentioned as preferable ones.
  • the structural unit (1) may include at least one type of units (1A) to (1F) represented by the general formulas 1A to 1F.
  • X is CH 2 , NH, or an oxygen atom, preferably NH or an oxygen atom, and more preferably NH.
  • Each R 1 is independently a hydrogen atom or a methyl group.
  • Each R 2 is independently a hydrogen atom, a hydroxyl group, or a substituted or unsubstituted alkoxy group.
  • m1 to m10 are each independently an integer of 1 to 6, preferably an integer of 1 to 3. At least one of R 2 in each unit is a substituent other than a hydrogen atom.
  • the m1 R 2 present in the unit (1A) represented by the general formula 1A may be different substituents. At least one of m1 R 2 is a substituent other than a hydrogen atom. Of m1 R 2 s , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
  • m1 may be an integer of 3 to 6
  • R 1 may be a methyl group
  • X may be an oxygen atom.
  • R 2 present in the unit (1B) represented by the general formula 1B may be different substituents. At least one of (m2 + m3 + 1) R 2 is a substituent other than a hydrogen atom. Of (m2 + m3 + 1) R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
  • the (m4 + m5 + m6) R 2 present in the unit (1C) represented by the general formula 1C may be different substituents. At least one of (m4 + m5 + m6) R 2 is a substituent other than a hydrogen atom. Of (m4 + m5 + m6) R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
  • the (m7 + m8) R 2 present in the unit (1D) represented by the general formula 1D may be a different substituent. At least one of (m7 + m8) R 2 is a substituent other than a hydrogen atom. Of (m7 + m8) R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
  • M9 one of R 2 that is present in the unit (1E) represented by the general formula 1E can each be different substituents. At least one of m9 R 2 is a substituent other than a hydrogen atom. Of m9 R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
  • M10 one of R 2 that is present in the unit (1F) represented by the general formula 1F may each be different substituents. At least one of m10 R 2 is a substituent other than a hydrogen atom. Of m10 R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
  • each of the units (1A) to (1F) represented by the general formulas 1A to 1F has one or more hydroxyl groups, More preferably, it has a hydroxyl group.
  • the unit (1A) can be obtained, for example, by polymerizing the monomer ( ⁇ ).
  • the monomer ( ⁇ ) used here include N- (hydroxymethyl) acrylamide, N- (2-hydroxyethyl) acrylamide, (2,3-dihydroxypropyl) acrylamide, and N- (hydroxymethyl) methacryl.
  • the unit (1B) can be obtained, for example, by polymerizing the monomer ( ⁇ ).
  • the monomer ( ⁇ ) used here include N- [bis (hydroxymethyl) methyl] acrylamide and (2-hydroxy-1-methylethyl) acrylamide.
  • the unit (1C) is obtained, for example, by polymerizing the monomer ( ⁇ ).
  • the monomer ( ⁇ ) used here include N- [tris (hydroxymethyl) methyl] acrylamide.
  • the unit (1D) can be obtained, for example, by polymerizing the monomer ( ⁇ ).
  • the monomer ( ⁇ ) used here include N, N-bis (hydroxymethyl) acrylamide and N, N-bis (hydroxyethyl) acrylamide.
  • the unit (1E) can be obtained, for example, by polymerizing the monomer ( ⁇ ).
  • the monomer ( ⁇ ) used here include N-glycolyl vinylamine, N-lactyl vinylamine, N- (3-hydroxypropionyl) vinylamine, and pentahydroxyhexanoyl vinylamine. it can.
  • pentahydroxyhexanoyl vinylamine can be obtained, for example, by reacting vinylamine and gluconolactone.
  • the unit (1F) can be obtained, for example, by polymerizing the monomer ( ⁇ ).
  • the monomer ( ⁇ ) used here include N-glycolylallylamine, N-lactylylamine, N- (3-hydroxypropionyl) allylamine, and pentahydroxyhexanoylallylamine.
  • pentahydroxyhexanoylallylamine can be obtained, for example, by reacting allylamine with gluconolactone.
  • the units (1A) to (1F) can be synthesized by previously polymerizing an appropriate monomer to obtain a polymer, and then reacting this polymer with an appropriate compound.
  • Units (1A) to (1C) can also be obtained, for example, by reacting poly (meth) acrylic acid or poly (meth) acrylic acid ester with an alcohol or primary amine having an appropriate substituent.
  • the unit (1D) can also be obtained, for example, by reacting poly (meth) acrylic acid or poly (meth) acrylic acid ester with a secondary amine having an appropriate substituent.
  • Unit (1E) can also be obtained by reaction of polyvinyl alcohol or polyvinylamine with a carboxylic acid, carboxylic acid anhydride, carboxylic acid chloride, or lactone having an appropriate substituent.
  • the unit (1F) can also be obtained by reacting polyallyl alcohol or polyallylamine with a carboxylic acid, carboxylic acid anhydride, carboxylic acid chloride, or lactone having an appropriate substituent.
  • the water-soluble synthetic polymer (iii) may be a homopolymer or a copolymer. That is, when the structural unit (1) includes any one of the units (1A) to (1F), even if it is a homopolymer composed only of the same unit, it is composed of two or more different units. It may be a copolymer. In the case of a copolymer, it may contain two or more different units in any proportion. Furthermore, a structural unit other than the structural unit (1) may be included.
  • the water-soluble synthetic polymer (iii) may further have a structural unit (2) represented by the following general formula 2.
  • q is an integer of 1 to 6, preferably an integer of 1 to 3.
  • X is CH 2 , NH or an oxygen atom.
  • Z 1 , Z 2 , Z 3 , and Z 4 are each independently a hydrogen atom or a methyl group.
  • Y ⁇ is an anion. Examples of the anion include chlorine ion, bromine ion, iodine ion, nitrate ion, acetate ion, sulfate ion, phosphate ion, and hydroxide ion.
  • Y ⁇ contained in the structural unit (2) is equivalent to a unit price ion equivalent (1/2 in the case of sulfate ion).
  • the cationic group in the above formula 2 is a primary to quaternary amino group (ammonium group).
  • the method for obtaining the structural unit (2) is not limited.
  • the structural unit (2) can be obtained by polymerizing the following compounds as monomers.
  • N-substituted acrylamides are N- (aminomethyl) acrylamide, N- (aminoethyl) acrylamide, N- (aminopropyl) acrylamide, N- (monomethylaminoethyl) acrylamide, N- (monomethylaminopropyl).
  • acrylamide N- (dimethylaminoethyl) acrylamide, N- (dimethylaminopropyl) acrylamide, (acrylamidoethyl) trimethylammonium salt and (acrylamidopropyl) trimethylammonium salt.
  • an appropriate compound such as acrylic acid, methacrylic acid, acrylate, methacrylate, acrylamide, and methacrylamide, and derivatives thereof
  • an appropriate compound is incorporated into a polymer by polymerization as a monomer, and then an appropriate compound To form a structural unit (2) by introducing a primary to quaternary amino group (ammonium group).
  • the structural unit (2) has a cationic group, when the object to be polished is a silicon wafer, the silicon wafer is negatively charged during polishing, so that the water-soluble polymer (iii) is adsorbed to the silicon wafer. It is expected that a protective film based on the water-soluble polymer (iii) is easily formed on the silicon wafer.
  • the water-soluble synthetic polymer (iii) is different from the water-soluble synthetic polymer (iii) of the aspect 1 in that an epoxy compound or the like is used. It can be set as the reaction material obtained by making a cyclic ether compound react.
  • an epoxy compound is described as a specific example, ethylene oxide and glycidol are expected to increase the hydrophilicity, and propylene oxide is expected to increase the hydrophobicity and increase the adsorptivity to the wafer.
  • glycidol is particularly preferred.
  • terminal structure of the water-soluble synthetic polymer (iii) there is no particular limitation on the terminal structure of the water-soluble synthetic polymer (iii) according to this embodiment.
  • a known chain transfer agent may be used, which may constitute the terminal structure.
  • preferred chain transfer agents include isopropyl alcohol, glycerin, and thioglycerin.
  • the structural unit of the water-soluble synthetic polymer (iii) As the structural unit of the water-soluble synthetic polymer (iii) according to the present embodiment, known structural units other than the above can be included for the purpose of imparting various properties or adjusting hydrophilicity / hydrophobicity.
  • constitutional units having a structure obtained by polymerization of the following monomers can be mentioned (of course, further reaction may be carried out after polymerizing other monomers, and the same constitutional unit may be obtained as a result.
  • the polymerization method of the monomer that gives the structural unit contained in the water-soluble polymer (iii) such as the structural unit (1) and the structural unit (2) is not limited. It can superpose
  • the molar fraction of the structural unit (1) with respect to the entire structural unit of the water-soluble synthetic polymer (iii) according to the present embodiment is not particularly limited. From the viewpoint of hydrophilicity, it is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more.
  • the molar fraction of the structural unit (2) with respect to the entire structural unit of the water-soluble synthetic polymer (iii) according to Embodiment 2 is not particularly limited. From the viewpoint of moderately suppressing the aggregation of silica, the molar fraction of the structural unit (2) is preferably less than 50 mol%, more preferably 0.01 mol% or more and 10 mol% or less. When it is desired to suppress the aggregation of silica more stably, the molar fraction of the structural unit (2) can be 0.01 mol% or more and 5 mol% or less. When the object to be polished is a silicon wafer, from the viewpoint of reducing the haze of the polished wafer, the molar fraction of the structural unit (2) can be 0.01 mol% or more and 2 mol% or less.
  • the molecular weight of the water-soluble synthetic polymer (iii) according to this embodiment is not limited.
  • the weight average molecular weight (Mw) is preferably 1,000 or more.
  • the weight average molecular weight (Mw) is more preferably 5,000 or more.
  • the weight average molecular weight (Mw) is preferably 10,000 or more.
  • the molecular weight of the water-soluble synthetic polymer (iii) is preferably 5,000,000 or less in terms of weight average molecular weight (Mw). Further, when the weight average molecular weight (Mw) is large, the protective film formed from the water-soluble synthetic polymer (iii) may have a structure having many gaps. From the viewpoint of more stably reducing the possibility that such a protective film is formed, 1,000,000 or less is preferable.
  • the concentration of the water-soluble synthetic polymer (iii) according to the present embodiment is preferably 10 ppm or more and 1000 ppm or less in the abrasive composition (slurry) used during polishing. In this, 20 ppm or more and 750 ppm or less are more preferable.
  • water (iv) has a function of dissolving or dispersing other components.
  • the amount of impurities contained in water (iv) is small. Specifically, distilled water, ion exchange water, ultrapure water and the like are preferable.
  • the content of water (iv) in the polishing composition is the remaining amount with respect to the concentration and content of other components in the polishing composition.
  • the abrasive composition according to this embodiment may further contain an additive (v).
  • an additive for example, for adjusting various properties of the slurry, capturing metal ions, assisting adsorption of the water-soluble synthetic polymer (iii) to the object to be polished (specifically, a silicon wafer is exemplified), or other purposes, Additives can be added.
  • one or more additives can be added from alcohols, chelates, and nonionic surfactants.
  • alcohols include methanol, ethanol, propyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, polyethylene glycol, and polypropylene glycol.
  • chelates include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyethylenediaminetetraacetic acid, propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and their ammonium, sodium, And metal salts such as potassium salts.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkenyl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, alkyl polyglycosides, and polyether-modified silicones.
  • the manufacturing method of the abrasive composition according to this embodiment is not limited. Conventionally known methods can be used.
  • the abrasive composition according to this embodiment can be obtained by mixing silica particles (i), an alkaline substance (ii), a water-soluble synthetic polymer (iii), and water (iv).
  • Specific aspect 3 of the abrasive composition according to the present embodiment relates to an abrasive composition for silicon wafers comprising the abrasive composition according to any one of aspects 1 and 2.
  • the abrasive composition for a silicon wafer can be obtained by mixing silica particles (i), an alkaline substance (ii), a water-soluble synthetic polymer (iii), and water (iv).
  • the obtained abrasive composition for silicon wafers can be used, for example, for final polishing of silicon wafers in a semiconductor device manufacturing process.
  • Specific Aspect 4 of the abrasive composition according to the present embodiment includes the step of polishing a silicon wafer using the abrasive composition according to any one of Aspects 1 and 2 above.
  • the “silicon wafer product” means a product obtained by polishing a silicon wafer using the abrasive composition according to any one of the first and second aspects. Such a process can be introduced as a polishing process for a silicon wafer, and it is particularly preferable to introduce it as a final polishing process for a silicon wafer.
  • HEAA N- (2-hydroxyethyl) acrylamide
  • TMAPAA (3-acrylamidopropyl) trimethylammonium chloride
  • DHPMA (2,3-dihydroxypropyl) methacrylate and bis (hydroxymethyl) methyl methacrylate mixture (about 75 mol%: about 25 mol) %)
  • THMMAA N- [Tris (hydroxymethyl) methyl] acrylamide
  • HPAA N- (3-hydroxypropyl) acrylamide
  • DHPAA N- (2,3-dihydroxypropyl) acrylamide
  • HEMAA N- (2-hydroxyethyl) methacrylamide
  • DHPMAA N- (2,3-dihydroxypropyl) methacrylamide
  • HEAA-GO 0.25 N- (2-hydroxyethyl) acrylamide-glycidol adduct
  • PAA poly (acrylamide)
  • PHEOVE Poly (hydroxyethyloxyethyl vinyl ether)
  • PVA poly (acryl
  • Examples 1 to 8, Reference Example 1, and Comparative Examples 1 to 5 Preparation of monomer> DHPMA was synthesized from glycidyl methacrylate manufactured by Aldrich by the method described in the literature (Shaw et al., Polymer 47, 8247-8252, 2006). According to the literature, the product is a mixture of (2,3-dihydroxypropyl) methacrylate and bis (hydroxymethyl) methylmethacrylate (about 75 mol%: about 25 mol%). When the product was confirmed by GPC measurement, two peaks were observed at an area ratio of 75:25.
  • Examples 2 and 3 are copolymers composed of HEAA and TMAPAA
  • Examples 5 and 6 are copolymers composed of HEAA and DHPMA
  • Example 8 is a copolymer composed of HEAA and THMAA.
  • the charge ratio (molar ratio) of each monomer is shown in Table 1.
  • HEC of Reference Example 1 was obtained from Daicel FineChem
  • PEG was obtained from Wako Pure Chemical Industries.
  • the PVA of Comparative Example 2 was obtained from Wako Pure Chemical Industries, and the PHEOEVE of Comparative Example 3 was obtained from Maruzen Petrochemical Co., Ltd.
  • the PVP of Comparative Example 4 and the PPEI of Comparative Example 5 were obtained from Aldrich.
  • Example 9 ⁇ Synthesis of polyHPAA> 0.020 g of APS was added to a mixed liquid of 2.15 g of methyl acrylate (MA) and 8.58 g of methanol, and then polymerization was performed at 65 ° C. for 10 hours under nitrogen. Thereafter, the reaction solution was cooled to room temperature, and the generated precipitate was taken out by decantation to obtain a polymethyl acrylate solid (conversion rate 97%). 8.58 g of methanol was added again to the obtained polymethyl acrylate solid, heated at 65 ° C. for 10 minutes, cooled to room temperature, and the supernatant was removed to remove unreacted monomers.
  • MA methyl acrylate
  • 8.58 g of methanol was added again to the obtained polymethyl acrylate solid, heated at 65 ° C. for 10 minutes, cooled to room temperature, and the supernatant was removed to remove unreacted monomers.
  • Example 10 ⁇ Synthesis of polyDHPAA> From the synthesis of polyHPAA, a 5% aqueous solution of polyDHPAA was obtained in the same manner except that 3-aminopropanol was replaced with 6.83 g of 3-amino-1,2-propanediol (yield 75%).
  • Example 11 ⁇ Preparation of monomer> 0.984 g of 28% NaOMe methanol solution was added dropwise to 10.0 g of ice-cooled methyl methacrylate (MMA). Next, the ice-cooling was removed, and 6.72 g of 2-aminoethanol was added dropwise over 30 minutes. At this time, care was taken that the liquid temperature of the reaction liquid did not exceed 30 ° C. Furthermore, after making it react at room temperature overnight, 25 g of pure water and 8.8 mL of cation exchange resin (organo Corporation 200CT H AG) were added, and the reaction liquid was neutralized. The cation exchange resin was removed by filtration through a 1 ⁇ m filter to obtain an aqueous HEMAA monomer solution.
  • MMA ice-cooled methyl methacrylate
  • the vacuum-dried solid was dissolved in 30 g of pure water and filtered through a 3 ⁇ m filter. After sampling about several grams from the solution and quantifying the polymer concentration by a drying method, an appropriate amount of pure water was added to finally make a 5% polyHEEMA aqueous solution (yield 74%).
  • Example 12 Preparation of monomer> A 10% DHPMAA monomer aqueous solution was obtained by the same method except that 2-aminoethanol was replaced with 10.00 g of 3-amino-1,2-propanediol from the monomer synthesis of polyHEMAA (yield 90%).
  • TEMED N, N′-
  • Wafer 4-inch silicon wafer (P type, resistivity 5-18 m ⁇ ⁇ cm, crystal plane direction ⁇ 111>) Surface pressure: 0.25 kgf / cm 2 Wafer rotation speed: 100 rpm Pad: SURFIN SSWI manufactured by Fujimi Pad rotation speed: 30 rpm Polishing slurry supply rate: 100 mL / min Polishing time: 10 minutes
  • LPD Light Point Defect
  • the surface of each sample wafer was finish-polished using a polishing liquid of a five-level polishing composition shown in Table 2.
  • the final polishing treatment conditions were the same. Specifically, the single-sided mirror polishing shown in FIG. 1 was used and held by the suede polishing cloth 3 and the polishing head 4 attached on the polishing surface plate 2.
  • the polishing liquid was supplied from the polishing liquid supply nozzle 1 at a rate of about 500 ml / min while rotating the sample wafer 5 with each other, and a finish single-side polishing process was performed under the conditions of polishing pressure: 125 g / cm 2 and polishing time: 300 seconds.
  • the preparation of the abrasive composition (slurry) was the same as in Examples 1 to 13 except for the water-soluble polymer used and the concentration of each component.
  • the water-soluble synthetic polymer of Example 14 is the same polyHEAA as in Example 1
  • the water-soluble synthetic polymer of Example 15 is the same polyHEMAA as Example 11
  • the water-soluble synthetic polymer of Example 16 is the same poly (HEAA-GO 0.25 ) as Example 13
  • the water-soluble synthetic polymer of Comparative Example 6 is the same PAA as Comparative Example 1
  • the water-soluble synthetic polymer of Reference Example 2 is high.
  • the molecule used was the same HEC + PEG as in Reference Example 1.
  • an LPD density of 35 nm size or more observed on the surface of each sample wafer was measured using a surface defect inspection apparatus (KLA-Tencor: Surfscan SP-2).
  • the LPD results shown in Table 2 are the average values of the measurement results of the six sample wafers subjected to finish polishing at each level, and are shown as relative values when the average value of Reference Example 1 is 100. is there. As is apparent from Table 2, in Examples 14 to 16, the LPD density was a defect. On the other hand, in Comparative Example 6, the number of detection points was too large for all the sample wafers, and the data overflowed, making measurement impossible.
  • the abrasive composition of the present invention, the abrasive composition for silicon wafers, and the method for producing a silicon wafer product can be used to stably supply silicon wafers having high quality surface characteristics (low residual particles and low LPD). It is.
  • polishing liquid supply nozzle 1: polishing liquid supply nozzle, 2: polishing surface plate, 3: polishing cloth, 4: polishing head, 5: sample wafer

Abstract

Provided are: a polishing agent composition that contains silica particles, an alkali substance, a water-soluble synthetic polymer, and water, and that is characterized by the water-soluble synthetic polymer having structural unit (1), the structural unit (1) having an oxygen-containing group and a carbonyl group, the oxygen-containing group being an alcoholic hydroxyl group or a substituted or unsubstituted alkoxy group, and the carbonyl group being a keto group or forming part of an ester bond or an amide bond; a polishing agent composition for silicon wafers that uses said polishing agent composition; and a method for manufacturing a silicon wafer product.

Description

研磨剤組成物、シリコンウェハー用研磨剤組成物、およびシリコンウェハー製品の製造方法Abrasive composition, abrasive composition for silicon wafer, and method for producing silicon wafer product
 本発明は、研磨剤組成物、シリコンウェハー用研磨剤組成物、およびシリコンウェハー製品の製造方法に関する。 The present invention relates to an abrasive composition, an abrasive composition for silicon wafers, and a method for producing a silicon wafer product.
 シリコンウェハーなどの研磨に用いられる研磨剤組成物として、シリカ粒子、アルカリ性物質、水溶性高分子、水、および必要に応じて添加物を含むスラリーが用いられる。 As an abrasive composition used for polishing a silicon wafer or the like, a slurry containing silica particles, an alkaline substance, a water-soluble polymer, water, and, if necessary, an additive is used.
 上記の研磨剤組成物において研磨助剤として用いられる水溶性高分子として、セルロースを可溶化した物質、例えば、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)等が報告されている(特許文献1、特許文献2)。 As a water-soluble polymer used as a polishing aid in the above-mentioned abrasive composition, a material solubilized cellulose, for example, hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), etc. has been reported. (Patent Document 1, Patent Document 2).
 上記の物質以外の水溶性高分子の例として水溶性合成高分子が挙げられる。水溶性合成高分子としては、ポリエチレンオキシド、ポリアクリルアミド、ポリアクリル酸(特許文献2);ポリビニルピロリドン、ポリN-ビニルホルムアミド(特許文献3);エチレンオキシドとプロピレンオキシドとのブロック共重合体(特許文献4、5);ポリ(N-アシルアルキレンイミン)(特許文献6);またはポリビニルアルコールおよびその変性物(特許文献7)等が、単独でまたは他の物質と混合して、研磨助剤として使用可能であると報告されている。 Examples of water-soluble polymers other than the above substances include water-soluble synthetic polymers. Examples of water-soluble synthetic polymers include polyethylene oxide, polyacrylamide, polyacrylic acid (Patent Document 2); polyvinylpyrrolidone, poly N-vinylformamide (Patent Document 3); block copolymer of ethylene oxide and propylene oxide (Patent Document) 4, 5); poly (N-acylalkylenimine) (Patent Document 6); or polyvinyl alcohol and a modified product thereof (Patent Document 7) used alone or mixed with other substances as a polishing aid It is reported to be possible.
米国特許3715842号明細書U.S. Pat. No. 3,715,842 特開平02-158684号公報Japanese Patent Laid-Open No. 02-158684 特開2008-53415号公報JP 2008-53415 A 特開平10-245545号公報Japanese Patent Laid-Open No. 10-245545 特開2005-85858号公報Japanese Patent Laying-Open No. 2005-85858 特開2010-099757号公報JP 2010-099757 A 特開2012-015462号公報JP 2012-015462 A
 しかしながら、セルロースを可溶化した水溶性高分子は、可溶化処理を行った際に一部反応がされない不溶成分(フリー・ファイバー)が不可避的に残存する。この残存した不溶成分が研磨剤組成物中に混在すると、研磨後のシリコンウェハー表面に表面欠陥が発生しやすくなるという問題がある。また、セルロースを可溶化した水溶性高分子は天然のパルプを原料として生産されるため、原料ロットの違いにより、その性能(可溶性等)に大きなばらつきが生じ、研磨後のシリコンウェハー製品の表面品質(表面欠陥)が安定しないという問題がある。 However, in the water-soluble polymer in which cellulose is solubilized, insoluble components (free fibers) that are not partly reacted during the solubilization treatment inevitably remain. When the remaining insoluble component is mixed in the polishing composition, there is a problem that surface defects are likely to occur on the polished silicon wafer surface. In addition, since water-soluble polymers solubilized with cellulose are produced using natural pulp as raw materials, the performance (solubility, etc.) varies greatly depending on the raw material lot, and the surface quality of polished silicon wafer products There is a problem that (surface defects) are not stable.
 一方、従来使用されている水溶性合成高分子は高純度であり不溶成分に起因する問題は生じにくいものの、セルロースを可溶化した水溶性高分子に比べて、親水性が低いため、シリコンウェハーなどの研磨対象の表面への研磨液の保持が不十分となり、研磨後の洗浄を経たウェハー研磨面に付着物が残留しやすいなどの問題がある。したがって、より高品質の研磨後の製品(シリコンウェハー製品など)をより安定的に製造できるように、セルロースを可溶化した水溶性高分子と同等以上の性能を持つ水溶性合成高分子の開発が望まれていた。 On the other hand, water-soluble synthetic polymers that have been used in the past have high purity and are less likely to cause problems due to insoluble components, but are less hydrophilic than water-soluble polymers solubilized with cellulose, such as silicon wafers. There is a problem that the polishing liquid is not sufficiently retained on the surface to be polished, and deposits are likely to remain on the polished surface of the wafer that has been cleaned after polishing. Therefore, the development of water-soluble synthetic polymers with performance equal to or better than cellulose-solubilized water-soluble polymers has been developed so that products of higher quality after polishing (silicon wafer products, etc.) can be manufactured more stably. It was desired.
 本発明の目的は、水溶性合成高分子を用いることで、研磨後のシリコンウェハーなどの研磨対象の表面品質の安定化を図るとともに、研磨対象物の表面の濡れ性を高めて、研磨後の洗浄を経た研磨面に残存するパーティクル数およびLPD(Light Point Defect)を低減させることが可能な研磨剤組成物、およびシリコンウェハー用研磨剤組成物、さらにこれらの研磨剤組成物を用いるシリコンウェハー製品の製造方法を提供することにある。LPDとは、光散乱式パーティクルカウンターのレーザー照射によりウェハー表面を走査した際に、輝点として観察される不良のことである。 The object of the present invention is to stabilize the surface quality of a polishing target such as a silicon wafer after polishing by using a water-soluble synthetic polymer, and to improve the wettability of the surface of the polishing target, Abrasive composition capable of reducing the number of particles remaining on the polished surface after cleaning and LPD (Light Point Defect), an abrasive composition for silicon wafers, and a silicon wafer product using these abrasive compositions It is in providing the manufacturing method of. LPD is a defect observed as a bright spot when a wafer surface is scanned by laser irradiation of a light scattering particle counter.
 すなわち本発明は、シリカ粒子、アルカリ性物質、水溶性合成高分子、および水を含む研磨用組成物であって、前記水溶性合成高分子は構成単位(1)を有し、前記構成単位(1)は、酸素含有基およびカルボニル基を有し、前記酸素含有基は、アルコール性水酸基または置換もしくは非置換のアルコキシ基であり、前記カルボニル基は、ケト基、エステル結合の一部をなすカルボニル基、またはアミド結合の一部をなすカルボニル基のいずれかであることを特徴とする研磨剤組成物である(態様1)。 That is, the present invention is a polishing composition comprising silica particles, an alkaline substance, a water-soluble synthetic polymer, and water, wherein the water-soluble synthetic polymer has the structural unit (1), and the structural unit (1 ) Has an oxygen-containing group and a carbonyl group, and the oxygen-containing group is an alcoholic hydroxyl group or a substituted or unsubstituted alkoxy group, and the carbonyl group is a keto group or a carbonyl group that forms part of an ester bond. Or a carbonyl group forming a part of an amide bond (Aspect 1).
 さらに本発明は、シリカ粒子、アルカリ性物質、水溶性合成高分子、および水を含む研磨剤組成物であって、前記水溶性合成高分子は、上記態様1の水溶性合成高分子に、エポキシ化合物を反応させて得られる反応物である、研磨剤組成物である(態様2)。 Furthermore, the present invention provides an abrasive composition comprising silica particles, an alkaline substance, a water-soluble synthetic polymer, and water, wherein the water-soluble synthetic polymer is added to the water-soluble synthetic polymer of the above aspect 1 with an epoxy compound. It is an abrasive | polishing agent composition which is a reaction material obtained by making this react (aspect 2).
 また本発明は、上記態様1または態様2の研磨剤組成物からなるシリコンウェハー用研磨剤組成物である(態様3)。 Further, the present invention is an abrasive composition for a silicon wafer comprising the abrasive composition of the above aspect 1 or aspect 2 (aspect 3).
 また本発明は、上記態様1から態様3のうちいずれかの研磨剤組成物を用いてシリコンウェハーを研磨する工程を含む、シリコンウェハー製品の製造方法である(態様4)。 Further, the present invention is a method for producing a silicon wafer product, comprising a step of polishing a silicon wafer using the abrasive composition of any one of the above aspects 1 to 3. (Aspect 4)
 本発明の水溶性合成高分子を研磨助剤として用いることにより、従来のセルロースを可溶化した水溶性高分子を用いたものと同等の親水性を有する研磨剤組成物を構成することができる。かかる水溶性合成高分子は、セルロースを可溶化した水溶性高分子よりも品質のばらつきが生じにくい。したがって、本発明の水溶性合成高分子を研磨助剤として用いることにより、研磨対象の表面への濡れ性が高められ、高品質の表面特性(低残存パーティクル・低LPD)を有するシリコンウェハーを安定供給できるシリコンウェハー用研磨剤組成物、およびこれを用いたシリコンウェハー製品の製造方法を提供することが可能となる。 By using the water-soluble synthetic polymer of the present invention as a polishing aid, an abrasive composition having hydrophilicity equivalent to that using a conventional water-soluble polymer solubilized cellulose can be formed. Such a water-soluble synthetic polymer is less likely to cause quality variations than a water-soluble polymer solubilized with cellulose. Therefore, by using the water-soluble synthetic polymer of the present invention as a polishing aid, the wettability to the surface of the object to be polished is improved, and a silicon wafer having high quality surface characteristics (low residual particles and low LPD) is stabilized. It becomes possible to provide a polishing composition for a silicon wafer that can be supplied and a method for producing a silicon wafer product using the same.
片面研磨装置を示す模式図である。It is a schematic diagram which shows a single-side polishing apparatus.
 本発明の実施形態に係る研磨剤組成物について説明する。
 本発明の実施形態に係る研磨剤組成物は、シリカ粒子(i)、アルカリ性物質(ii)、水溶性合成高分子(iii)、および水(iv)を含む。本実施形態に係る研磨剤組成物は、さらに添加物(v)を含んでもよい。
The abrasive composition according to the embodiment of the present invention will be described.
The abrasive composition according to the embodiment of the present invention includes silica particles (i), an alkaline substance (ii), a water-soluble synthetic polymer (iii), and water (iv). The abrasive composition according to this embodiment may further contain an additive (v).
 本明細書において、「シリカ粒子(i)」とは、組成式SiOで表される粒子および当該粒子を表面処理して得られる粒子の総称である。シリカ粒子(i)としては、コロイダルシリカ、ヒュームドシリカ、および沈澱法シリカ、ならびにこれらの表面にホウ酸処理、またはアルミン酸処理等の修飾を施した表面修飾シリカが挙げられる。これらの中でも、シリコンウェハーの表面特性を向上させる観点から、コロイダルシリカおよびその表面修飾シリカがより好ましい。シリカ粒子(i)の平均粒径はBET法および動的光散乱法等により測定することができる。 In the present specification, “silica particles (i)” is a general term for particles represented by the composition formula SiO 2 and particles obtained by surface-treating the particles. Examples of the silica particles (i) include colloidal silica, fumed silica, and precipitated silica, and surface-modified silica obtained by modifying these surfaces with boric acid treatment or aluminate treatment. Among these, colloidal silica and its surface-modified silica are more preferable from the viewpoint of improving the surface characteristics of the silicon wafer. The average particle diameter of the silica particles (i) can be measured by a BET method, a dynamic light scattering method, or the like.
 シリカ粒子(i)の粒径は限定されない。シリカ粒子(i)の粒径は、研磨後の製品に求められる性質により選択することができる。例えば、研磨後の表面特性向上が求められる場合には、一次粒子径(BET法で測定することができる。)は10~40nm、または10~20nmとするとともに、二次粒子径(動的光散乱法で測定することができる。)は20~80nm、または20~40nmとすることができる。 The particle size of the silica particles (i) is not limited. The particle size of the silica particles (i) can be selected depending on the properties required for the polished product. For example, when improvement in surface characteristics after polishing is required, the primary particle size (which can be measured by the BET method) is 10 to 40 nm, or 10 to 20 nm, and the secondary particle size (dynamic light Can be measured by the scattering method.) Can be 20 to 80 nm, or 20 to 40 nm.
 シリカ粒子(i)の製造方法は限定されない。シリカ粒子(i)の合成方法としては、水ガラスからの水熱合成法、アルコキシシランまたはその縮合体からのゾルゲル法、シリコン塩化物からの気相合成法等が知られている。研磨対象がシリコンウェハーである場合には、アルカリ金属やアルカリ土類金属等の不純物によりシリコンウェハーが汚染されるのを防ぐ観点より、アルコキシシランまたはその縮合体からのゾルゲル法により製造されたシリカ粒子(i)が好ましい。 The method for producing the silica particles (i) is not limited. As a synthesis method of silica particles (i), a hydrothermal synthesis method from water glass, a sol-gel method from alkoxysilane or its condensate, a gas phase synthesis method from silicon chloride, and the like are known. When the object to be polished is a silicon wafer, silica particles produced by a sol-gel method from alkoxysilane or its condensate from the viewpoint of preventing the silicon wafer from being contaminated by impurities such as alkali metals and alkaline earth metals (I) is preferred.
 シリカ粒子(i)の形状は特に限定されない。シリカ粒子(i)の形状の具体例として、真球型、繭型・新繭型、または細かい突起のついた型を挙げることができる。繭型・新繭型シリカ粒子とは、二次粒子径/一次粒子径の比が1.5以上2.5以下となることを特徴とするシリカ粒子をいう。繭型シリカ粒子の中でも、アルコキシシランの縮合体を加水分解する工程を含む方法で調製されるシリカ粒子を、特に新繭型シリカ粒子と呼ぶこともある(特許第4712556号)。本明細書では「繭型(新繭型を含まない)」のように特に断らない限り、繭型とは新繭型も含むものとする。研磨速度と表面精度をいずれも向上させる観点より繭型・新繭型であることが好ましい。 The shape of the silica particles (i) is not particularly limited. Specific examples of the shape of the silica particles (i) include a true sphere type, a saddle type / new type, or a type having fine protrusions. The soot-type and new-type silica particles are silica particles having a ratio of secondary particle size / primary particle size of 1.5 to 2.5. Among the soot-type silica particles, silica particles prepared by a method including a step of hydrolyzing an alkoxysilane condensate may be particularly referred to as a new soot-type silica particle (Japanese Patent No. 4,712,556). In this specification, unless otherwise specified, such as “saddle type (not including a new soot type)”, the soot type includes a new soot type. From the viewpoint of improving both the polishing rate and the surface accuracy, it is preferable to use a saddle type or a new type.
 シリカ粒子(i)の含有量は限定されない。シリカ粒子(i)の含有量は、研磨時に使用される研磨剤組成物(スラリー)において、0.05wt%以上0.5wt%以下が好ましい。 The content of silica particles (i) is not limited. The content of the silica particles (i) is preferably 0.05 wt% or more and 0.5 wt% or less in the abrasive composition (slurry) used during polishing.
 アルカリ性物質(ii)は、シリコンウェハーなどの研磨対象を化学的に研磨することができる水酸化物イオンを水中で発生させることができる。さらに、シリカ粒子(i)の分散を助ける作用も有する。こうした作用をより安定的に得る観点から、アルカリ性物質(ii)は、組成物中に溶存していることが好ましい。
 アルカリ性物質(ii)の例としては、アンモニア、有機アミン化合物、水酸化テトラメチルアンモニウム、水酸化ナトリウム、および水酸化カリウムが挙げられる。有機アミン化合物の例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エタノールアミン、ジイソプロピルエチルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、トリス(2-アミノエチル)アミン、N,N,N′,N′-テトラメチルエチレンジアミン、ヘキサメチレンジアミン、1,4,7-トリアザシクロノナン、1,4,7-トリメチル-1,4,7-トリアザシクロノナン、1,4-ジアザビシクロオクタン、ピペラジン、およびピペリジンが挙げられる。アルカリ性物質(ii)は、上記の物質の1種から構成されていてもよいし、2種以上から構成されていてもよい。
The alkaline substance (ii) can generate hydroxide ions in water that can chemically polish an object to be polished such as a silicon wafer. Furthermore, it has the effect | action which assists dispersion | distribution of a silica particle (i). From the viewpoint of obtaining such an action more stably, the alkaline substance (ii) is preferably dissolved in the composition.
Examples of the alkaline substance (ii) include ammonia, organic amine compounds, tetramethylammonium hydroxide, sodium hydroxide, and potassium hydroxide. Examples of organic amine compounds include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethanolamine, diisopropylethylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tris (2-aminoethyl) amine, N, N, N ', N'-tetramethylethylenediamine, hexamethylenediamine, 1,4,7-triazacyclononane, 1,4,7-trimethyl-1,4,7-triazacyclononane, 1,4-diazabicyclo Examples include octane, piperazine, and piperidine. Alkaline substance (ii) may be comprised from 1 type of said substance, and may be comprised from 2 or more types.
 アルカリ性物質(ii)のうち、アルカリ金属イオンを含まないという観点から、アンモニア、有機アミン化合物、および水酸化テトラメチルアンモニウムが好ましく、適度なpKaを持つという観点から、アンモニアが特に好ましい。 Among the alkaline substances (ii), ammonia, organic amine compounds, and tetramethylammonium hydroxide are preferable from the viewpoint of not containing alkali metal ions, and ammonia is particularly preferable from the viewpoint of having an appropriate pKa.
 アルカリ性物質(ii)の濃度は、用いるアルカリ性物質(ii)のpKaおよびシリカ(i)の含有量に依存する。アルカリ性物質(ii)の濃度は、研磨時に使用される研磨剤組成物(スラリー)の40倍濃縮液において、pH=9.0~11.5となる濃度が好ましく、pH=10.0~11.0となる濃度がさらに好ましい。 The concentration of the alkaline substance (ii) depends on the contents of pKa and silica (i) of the alkaline substance (ii) used. The concentration of the alkaline substance (ii) is preferably a concentration of pH = 9.0 to 11.5 in a 40-fold concentrated solution of the abrasive composition (slurry) used during polishing, and pH = 10.0 to 11 A concentration of 0.0 is more preferable.
 水溶性合成高分子(iii)は、シリコンウェハーなどの研磨対象の表面に吸着し親水性膜を作ることなどにより研磨に寄与している。 Water-soluble synthetic polymer (iii) contributes to polishing by adsorbing on the surface of a polishing target such as a silicon wafer to form a hydrophilic film.
 本明細書において、「水溶性合成高分子」とは、天然物(セルロース等)由来でない水溶性高分子をいう。ただし、本発明の効果を阻害しない範囲において、添加物(v)としてヒドロキシエチルセルロースの様なセルロースを可溶化した天然物由来の水溶性高分子を含むことを否定するものではない。 In this specification, “water-soluble synthetic polymer” refers to a water-soluble polymer not derived from a natural product (cellulose or the like). However, it does not deny that the additive (v) includes a water-soluble polymer derived from a natural product solubilized with cellulose such as hydroxyethyl cellulose as long as the effect of the present invention is not impaired.
 本実施形態に係る研磨剤組成物は、その具体的な態様1において、水溶性合成高分子(iii)が、酸素含有基およびカルボニル基を有する構成単位(1)を有する。かかる酸素含有基は、アルコール性水酸基または置換もしくは非置換のアルコキシ基であり、カルボニル基は、ケト基、エステル結合の一部をなすカルボニル基、またはアミド結合の一部をなすカルボニル基のいずれかである。 In the specific aspect 1, the abrasive composition according to this embodiment has the structural unit (1) in which the water-soluble synthetic polymer (iii) has an oxygen-containing group and a carbonyl group. Such an oxygen-containing group is an alcoholic hydroxyl group or a substituted or unsubstituted alkoxy group, and the carbonyl group is either a keto group, a carbonyl group that forms part of an ester bond, or a carbonyl group that forms part of an amide bond. It is.
 非置換のアルコキシ(-OAk)基としては、例えば、メトキシ基(-OCH)、エトキシ基(-OCHCH)の様なアルコキシ基を挙げることができる。ここで「Ak」は、直鎖または分岐のアルキル基を示す。アルキル基の炭素数は限定されない。例えば、炭素数1~22、1~12、1~6、または1~4のアルキル基を挙げることができる。 Examples of the unsubstituted alkoxy (—OAk) group include alkoxy groups such as a methoxy group (—OCH 3 ) and an ethoxy group (—OCH 2 CH 3 ). Here, “Ak” represents a linear or branched alkyl group. The number of carbon atoms of the alkyl group is not limited. For example, an alkyl group having 1 to 22, 1 to 12, 1 to 6, or 1 to 4 carbon atoms can be given.
 置換アルコキシ基(-OAk´)とは、アルコキシ基の炭素が一つ以上置換されている基である。置換基としては、例えば、水酸基、アルコキシ基(置換されていてもよいし非置換であってもよい。)、およびハロゲンを挙げることができる。ここで「Ak´」は、直鎖または分岐、かつ置換されたアルキル基を示す。アルキル基の炭素数は限定されない。例えば、炭素数1~22、1~12、1~6、または1~4のアルキル基を挙げることができる。 The substituted alkoxy group (—OAk ′) is a group in which one or more carbon atoms of the alkoxy group are substituted. Examples of the substituent include a hydroxyl group, an alkoxy group (which may be substituted or unsubstituted), and halogen. Here, “Ak ′” represents a linear or branched and substituted alkyl group. The number of carbon atoms of the alkyl group is not limited. For example, an alkyl group having 1 to 22, 1 to 12, 1 to 6, or 1 to 4 carbon atoms can be given.
 置換アルコキシ基として、例えば、ヒドロキシメトキシ基(-OCHOH)、ヒドロキシエトキシ基(-OCHCHOH)等のヒドロキシアルコキシ基を挙げることができる。複数置換された置換アルコキシ基として、-OCHCH(OH)CHOH、-OCH(CHOH)CHOH、-OCHCH(CH)OH、および-OCH(CH)CHOHを挙げることができる。かかる置換アルコキシ基に含まれる水酸基の一つ以上が、さらに置換アルコキシ基(具体例として水酸基置換アルコキシ基が挙げられる。)で置換されていてもよい。 Examples of the substituted alkoxy group include hydroxyalkoxy groups such as a hydroxymethoxy group (—OCH 2 OH) and a hydroxyethoxy group (—OCH 2 CH 2 OH). Examples of the substituted alkoxy group that is substituted include —OCH 2 CH (OH) CH 2 OH, —OCH (CH 2 OH) CH 2 OH, —OCH 2 CH (CH 3 ) OH, and —OCH (CH 3 ) CH 2 OH can be mentioned. One or more of the hydroxyl groups contained in the substituted alkoxy group may be further substituted with a substituted alkoxy group (specific examples include a hydroxyl group-substituted alkoxy group).
 構成単位(1)を与える単量体は特に限定されない。かかる単量体の一例として、エチレン性不飽和結合を有する化合物からなる単量体(α)が挙げられる。エチレン性不飽和結合を有する化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド、N-置換(メタ)アクリルアミド、アクリロニトリル、ビニルエステル、ビニルアミド、アリルアルコール、アリルアミン、アリルエステル、アリルアミド、およびスチレンを挙げることができる。 The monomer giving the structural unit (1) is not particularly limited. An example of such a monomer is a monomer (α) composed of a compound having an ethylenically unsaturated bond. Examples of the compound having an ethylenically unsaturated bond include (meth) acrylic acid, (meth) acrylic acid ester, (meth) acrylamide, N-substituted (meth) acrylamide, acrylonitrile, vinyl ester, vinylamide, allyl alcohol, allylamine. , Allyl esters, allylamides, and styrene.
 単量体(α)は、酸素含有基およびカルボニル基の両方を有していてもよいし、酸素含有基を有しない、カルボニル基を有しない、またはこれらいずれの官能基も有しない化合物でもよい。酸素含有基を有しない、カルボニル基を有しない、またはこれらいずれの官能基も有しない単量体(α)については、重合を行った後で必要な官能基を導入することができる。 The monomer (α) may have both an oxygen-containing group and a carbonyl group, or may be a compound having no oxygen-containing group, no carbonyl group, or none of these functional groups. . For the monomer (α) that does not have an oxygen-containing group, does not have a carbonyl group, or does not have any of these functional groups, a necessary functional group can be introduced after polymerization.
 単量体(α)は、エチレン性不飽和結合および水酸基を有する化合物に、環状エーテル化合物を反応させて得られる反応物であって、置換アルコキシ基を有するものであってもよい。本明細書において、「環状エーテル化合物」とは、エポキシ基やオキセタン環のような環状エーテル構造を有し、当該構造が開環して上記化合物の水酸基と反応しうる化合物を意味する。環状エーテル化合物の典型例としてエポキシ基を有する化合物であるエポキシ化合物が挙げられる。エポキシ化合物が有するエポキシ基は置換されていてもよい。かかるエポキシ化合物としては、例えば、エチレンオキシド、プロピレンオキシド、およびグリシドールを好ましいものとして挙げることができる。 The monomer (α) is a reaction product obtained by reacting a compound having an ethylenically unsaturated bond and a hydroxyl group with a cyclic ether compound, and may have a substituted alkoxy group. In the present specification, the “cyclic ether compound” means a compound having a cyclic ether structure such as an epoxy group or an oxetane ring, which can open and react with the hydroxyl group of the above compound. A typical example of the cyclic ether compound is an epoxy compound which is a compound having an epoxy group. The epoxy group of the epoxy compound may be substituted. As such an epoxy compound, for example, ethylene oxide, propylene oxide, and glycidol can be mentioned as preferable ones.
 構成単位(1)は、一般式1A~1Fで表される単位(1A)~(1F)のうち少なくとも一種の単位を含むものであってもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
The structural unit (1) may include at least one type of units (1A) to (1F) represented by the general formulas 1A to 1F.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 上記式1A~1F中、XはCH、NH、または酸素原子であり、NHまたは酸素原子であることが好ましく、NHであることがより好ましい。Rはそれぞれ独立に、水素原子またはメチル基である。Rはそれぞれ独立に、水素原子、水酸基、または置換または非置換のアルコキシ基である。m1~m10はそれぞれ独立に1~6の整数であり、好ましくは、1~3の整数である。各単位中のRの少なくとも一つは水素原子以外の置換基である。 In the above formulas 1A to 1F, X is CH 2 , NH, or an oxygen atom, preferably NH or an oxygen atom, and more preferably NH. Each R 1 is independently a hydrogen atom or a methyl group. Each R 2 is independently a hydrogen atom, a hydroxyl group, or a substituted or unsubstituted alkoxy group. m1 to m10 are each independently an integer of 1 to 6, preferably an integer of 1 to 3. At least one of R 2 in each unit is a substituent other than a hydrogen atom.
 一般式1Aで表される単位(1A)に存在するm1個のRは、各々異なる置換基であってもよい。m1個のRのうち、少なくとも一つは水素原子以外の置換基である。m1個のRのうち、少なくとも一つが水酸基または置換アルコキシ基であることが好ましく、二つ以上の水酸基が存在することがより好ましい。
 一般式1Aで表される単位(1A)は、m1が3~6の整数、Rがメチル基、またはXが酸素原子であってもよい。
The m1 R 2 present in the unit (1A) represented by the general formula 1A may be different substituents. At least one of m1 R 2 is a substituent other than a hydrogen atom. Of m1 R 2 s , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
In the unit (1A) represented by the general formula 1A, m1 may be an integer of 3 to 6, R 1 may be a methyl group, or X may be an oxygen atom.
 一般式1Bで表される単位(1B)中に存在する(m2+m3+1)個のRは、各々異なる置換基であってもよい。(m2+m3+1)個のRのうち、少なくとも一つは水素原子以外の置換基である。(m2+m3+1)個のRのうち、少なくとも一つが水酸基または置換アルコキシ基であることが好ましく、二つ以上の水酸基が存在することがより好ましい。 (M2 + m3 + 1) R 2 present in the unit (1B) represented by the general formula 1B may be different substituents. At least one of (m2 + m3 + 1) R 2 is a substituent other than a hydrogen atom. Of (m2 + m3 + 1) R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
 一般式1Cで表される単位(1C)中に存在する(m4+m5+m6)個のRは、各々異なる置換基であってもよい。(m4+m5+m6)個のRのうち、少なくとも一つは水素原子以外の置換基である。(m4+m5+m6)個のRのうち、少なくとも一つが水酸基または置換アルコキシ基であることが好ましく、二つ以上の水酸基が存在することがより好ましい。 The (m4 + m5 + m6) R 2 present in the unit (1C) represented by the general formula 1C may be different substituents. At least one of (m4 + m5 + m6) R 2 is a substituent other than a hydrogen atom. Of (m4 + m5 + m6) R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
 一般式1Dで表される単位(1D)中に存在する(m7+m8)個のRは、各々異なる置換基であってもよい。(m7+m8)個のRのうち、少なくとも一つは水素原子以外の置換基である。(m7+m8)個のRのうち、少なくとも一つが水酸基または置換アルコキシ基であることが好ましく、二つ以上の水酸基が存在することがより好ましい。 The (m7 + m8) R 2 present in the unit (1D) represented by the general formula 1D may be a different substituent. At least one of (m7 + m8) R 2 is a substituent other than a hydrogen atom. Of (m7 + m8) R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
 一般式1Eで表される単位(1E)中に存在するm9個のRは各々異なる置換基であってもよい。m9個のRのうち、少なくとも一つは水素原子以外の置換基である。m9個のRのうち、少なくとも一つが水酸基または置換アルコキシ基であることが好ましく、二つ以上の水酸基が存在することがより好ましい。 M9 one of R 2 that is present in the unit (1E) represented by the general formula 1E can each be different substituents. At least one of m9 R 2 is a substituent other than a hydrogen atom. Of m9 R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
 一般式1Fで表される単位(1F)中に存在するm10個のRは、各々異なる置換基であってもよい。m10個のRのうち、少なくとも一つは水素原子以外の置換基である。m10個のRのうち、少なくとも一つが水酸基または置換アルコキシ基であることが好ましく、二つ以上の水酸基が存在することがより好ましい。 M10 one of R 2 that is present in the unit (1F) represented by the general formula 1F may each be different substituents. At least one of m10 R 2 is a substituent other than a hydrogen atom. Of m10 R 2 , at least one is preferably a hydroxyl group or a substituted alkoxy group, and more preferably two or more hydroxyl groups are present.
 水溶性高分子(iii)の親水性を高める観点から、一般式1A~1Fで表される単位(1A)~(1F)の各々が、一以上の水酸基を有することが好ましく、二つ以上の水酸基を有することがより好ましい。 From the viewpoint of enhancing the hydrophilicity of the water-soluble polymer (iii), it is preferable that each of the units (1A) to (1F) represented by the general formulas 1A to 1F has one or more hydroxyl groups, More preferably, it has a hydroxyl group.
 単位(1A)は、例えば単量体(α)を重合することにより得られる。ここで用いられる単量体(α)としては、例えば、N-(ヒドロキシメチル)アクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、(2,3-ジヒドロキシプロピル)アクリルアミド、N-(ヒドロキシメチル)メタクリルアミド、N-(2-ヒドロキシエチル)メタクリルアミド、(2,3-ジヒドロキシプロピル)メタクリルアミド、N-(ヒドロキシメチル)アクリレート、N-(2-ヒドロキシエチル)アクリレート、(2,3-ジヒドロキシプロピル)アクリレート、N-(ヒドロキシメチル)メタクリレート、N-(2-ヒドロキシエチル)メタクリレート、および(2,3-ジヒドロキシプロピル)メタクリレートを挙げることができる。 The unit (1A) can be obtained, for example, by polymerizing the monomer (α). Examples of the monomer (α) used here include N- (hydroxymethyl) acrylamide, N- (2-hydroxyethyl) acrylamide, (2,3-dihydroxypropyl) acrylamide, and N- (hydroxymethyl) methacryl. Amides, N- (2-hydroxyethyl) methacrylamide, (2,3-dihydroxypropyl) methacrylamide, N- (hydroxymethyl) acrylate, N- (2-hydroxyethyl) acrylate, (2,3-dihydroxypropyl) Mention may be made of acrylates, N- (hydroxymethyl) methacrylates, N- (2-hydroxyethyl) methacrylates and (2,3-dihydroxypropyl) methacrylates.
 単位(1B)は、例えば単量体(α)を重合することにより得られる。ここで用いられる単量体(α)としては、例えば、N-[ビス(ヒドロキシメチル)メチル]アクリルアミド、および(2-ヒドロキシ-1-メチルエチル)アクリルアミドを挙げることができる。 The unit (1B) can be obtained, for example, by polymerizing the monomer (α). Examples of the monomer (α) used here include N- [bis (hydroxymethyl) methyl] acrylamide and (2-hydroxy-1-methylethyl) acrylamide.
 単位(1C)は、例えば単量体(α)を重合することにより得られる。ここで用いられる単量体(α)としては、例えば、N-[トリス(ヒドロキシメチル)メチル]アクリルアミドを挙げることができる。 The unit (1C) is obtained, for example, by polymerizing the monomer (α). Examples of the monomer (α) used here include N- [tris (hydroxymethyl) methyl] acrylamide.
 単位(1D)は、例えば単量体(α)を重合することにより得られる。ここで用いられる単量体(α)としては、例えば、N,N-ビス(ヒドロキシメチル)アクリルアミド、およびN,N-ビス(ヒドロキシエチル)アクリルアミドを挙げることができる。 The unit (1D) can be obtained, for example, by polymerizing the monomer (α). Examples of the monomer (α) used here include N, N-bis (hydroxymethyl) acrylamide and N, N-bis (hydroxyethyl) acrylamide.
 単位(1E)は、例えば単量体(α)を重合することにより得られる。ここで用いられる単量体(α)としては、例えば、N-グリコリルビニルアミン、N-ラクチルビニルアミン、およびN-(3-ヒドロキシプロピオニル)ビニルアミン、ペンタヒドロキシヘキサノイルビニルアミンを挙げることができる。ここで、ペンタヒドロキシヘキサノイルビニルアミンは、例えばビニルアミンとグルコノラクトンを反応させることで得られる。 The unit (1E) can be obtained, for example, by polymerizing the monomer (α). Examples of the monomer (α) used here include N-glycolyl vinylamine, N-lactyl vinylamine, N- (3-hydroxypropionyl) vinylamine, and pentahydroxyhexanoyl vinylamine. it can. Here, pentahydroxyhexanoyl vinylamine can be obtained, for example, by reacting vinylamine and gluconolactone.
 単位(1F)は、例えば単量体(α)を重合することにより得られる。ここで用いられる単量体(α)としては、例えば、N-グリコリルアリルアミン、N-ラクチルアリルアミン、N-(3-ヒドロキシプロピオニル)アリルアミン、ペンタヒドロキシヘキサノイルアリルアミンを挙げることができる。ここで、ペンタヒドロキシヘキサノイルアリルアミンは、例えばアリルアミンとグルコノラクトンを反応させることで得られる。 The unit (1F) can be obtained, for example, by polymerizing the monomer (α). Examples of the monomer (α) used here include N-glycolylallylamine, N-lactylylamine, N- (3-hydroxypropionyl) allylamine, and pentahydroxyhexanoylallylamine. Here, pentahydroxyhexanoylallylamine can be obtained, for example, by reacting allylamine with gluconolactone.
 上記の他、単位(1A)~(1F)は、適切な単量体を先に重合させ重合体とした後、この重合体と適切な化合物とを反応させることで合成することもできる。 In addition to the above, the units (1A) to (1F) can be synthesized by previously polymerizing an appropriate monomer to obtain a polymer, and then reacting this polymer with an appropriate compound.
 単位(1A)~(1C)は、例えば、ポリ(メタ)アクリル酸またはポリ(メタ)アクリル酸エステルを、適切な置換基を持つアルコールまたは一級アミンと反応させることで得ることもできる。 Units (1A) to (1C) can also be obtained, for example, by reacting poly (meth) acrylic acid or poly (meth) acrylic acid ester with an alcohol or primary amine having an appropriate substituent.
 単位(1D)は、例えば、ポリ(メタ)アクリル酸またはポリ(メタ)アクリル酸エステルを、適切な置換基を持つ二級アミンと反応させることで得ることもできる。 The unit (1D) can also be obtained, for example, by reacting poly (meth) acrylic acid or poly (meth) acrylic acid ester with a secondary amine having an appropriate substituent.
 単位(1E)はポリビニルアルコールまたはポリビニルアミンと、適切な置換基を持つカルボン酸、カルボン酸無水物、カルボン酸塩化物、またはラクトンとの反応で得ることもできる。 Unit (1E) can also be obtained by reaction of polyvinyl alcohol or polyvinylamine with a carboxylic acid, carboxylic acid anhydride, carboxylic acid chloride, or lactone having an appropriate substituent.
 単位(1F)はポリアリルアルコールまたはポリアリルアミンと、適切な置換基を持つカルボン酸、カルボン酸無水物、カルボン酸塩化物、またはラクトンとの反応で得ることもできる。 The unit (1F) can also be obtained by reacting polyallyl alcohol or polyallylamine with a carboxylic acid, carboxylic acid anhydride, carboxylic acid chloride, or lactone having an appropriate substituent.
 水溶性合成高分子(iii)は、ホモポリマーであってもよいし、コポリマーであってもよい。すなわち、構成単位(1)が単位(1A)~(1F)のいずれかの単位を含む場合、同一の単位のみから構成されるホモポリマーであっても、二種以上の異なる単位から構成されるコポリマーであってもよい。コポリマーの場合、二つ以上の異なる単位を任意の割合で含んでよい。さらに構成単位(1)以外の構成単位を含んでもよい。 The water-soluble synthetic polymer (iii) may be a homopolymer or a copolymer. That is, when the structural unit (1) includes any one of the units (1A) to (1F), even if it is a homopolymer composed only of the same unit, it is composed of two or more different units. It may be a copolymer. In the case of a copolymer, it may contain two or more different units in any proportion. Furthermore, a structural unit other than the structural unit (1) may be included.
 水溶性合成高分子(iii)は、下記一般式2で表される構成単位(2)をさらに有していてもよい。
Figure JPOXMLDOC01-appb-C000014
The water-soluble synthetic polymer (iii) may further have a structural unit (2) represented by the following general formula 2.
Figure JPOXMLDOC01-appb-C000014
 上記式2中、qは1~6の整数であり、好ましくは1~3の整数である。XはCH、NHまたは酸素原子である。Z、Z、Z、およびZは、それぞれ独立に、水素原子またはメチル基である。Yは陰イオンである。陰イオンとしては、例えば、塩素イオン、臭素イオン、ヨウ素イオン、硝酸イオン、酢酸イオン、硫酸イオン、リン酸イオン、および水酸化物イオンを挙げることができる。硫酸イオン(SO 2-)のように、価数が1より大きい陰イオンについては、構成単位(2)に含まれるYは、単価イオン換算の等量(硫酸イオンの場合は1/2)を示すものとする。 In the above formula 2, q is an integer of 1 to 6, preferably an integer of 1 to 3. X is CH 2 , NH or an oxygen atom. Z 1 , Z 2 , Z 3 , and Z 4 are each independently a hydrogen atom or a methyl group. Y is an anion. Examples of the anion include chlorine ion, bromine ion, iodine ion, nitrate ion, acetate ion, sulfate ion, phosphate ion, and hydroxide ion. For an anion having a valence greater than 1, such as sulfate ion (SO 4 2− ), Y contained in the structural unit (2) is equivalent to a unit price ion equivalent (1/2 in the case of sulfate ion). ).
 上記式2中のカチオン性基は、1級から4級のアミノ基(アンモニウム基)である。 The cationic group in the above formula 2 is a primary to quaternary amino group (ammonium group).
 構成単位(2)を得る方法は限定されない。例えば、以下の化合物を単量体として重合することにより構成単位(2)を得ることができる。N-置換アクリルアミドについてのみ例示すれば、N-(アミノメチル)アクリルアミド、N-(アミノエチル)アクリルアミド、N-(アミノプロピル)アクリルアミド、N-(モノメチルアミノエチル)アクリルアミド、N-(モノメチルアミノプロピル)アクリルアミド、N-(ジメチルアミノエチル)アクリルアミド、N-(ジメチルアミノプロピル)アクリルアミド、(アクリルアミドエチル)トリメチルアンモニウム塩および(アクリルアミドプロピル)トリメチルアンモニウム塩を挙げることができる。または、適切な化合物(アクリル酸、メタクリル酸、アクリレート、メタクリレート、アクリルアミド、およびメタクリルアミド、ならびにこれらの誘導体が例示される。)を単量体として重合により高分子中に取り込んだ後、適切な化合物と反応させ、1級から4級アミノ基(アンモニウム基)を導入し、構成単位(2)を構築してもよい。 The method for obtaining the structural unit (2) is not limited. For example, the structural unit (2) can be obtained by polymerizing the following compounds as monomers. Examples of N-substituted acrylamides are N- (aminomethyl) acrylamide, N- (aminoethyl) acrylamide, N- (aminopropyl) acrylamide, N- (monomethylaminoethyl) acrylamide, N- (monomethylaminopropyl). Mention may be made of acrylamide, N- (dimethylaminoethyl) acrylamide, N- (dimethylaminopropyl) acrylamide, (acrylamidoethyl) trimethylammonium salt and (acrylamidopropyl) trimethylammonium salt. Alternatively, an appropriate compound (such as acrylic acid, methacrylic acid, acrylate, methacrylate, acrylamide, and methacrylamide, and derivatives thereof) is incorporated into a polymer by polymerization as a monomer, and then an appropriate compound To form a structural unit (2) by introducing a primary to quaternary amino group (ammonium group).
 構成単位(2)は、カチオン性基を持つため、研磨対象がシリコンウェハーの場合には、研磨中にシリコンウェハーがマイナスに帯電するため、水溶性高分子(iii)のシリコンウェハーへの吸着が促進され、シリコンウェハー上に水溶性高分子(iii)に基づく保護膜が形成されやすくなると期待される。 Since the structural unit (2) has a cationic group, when the object to be polished is a silicon wafer, the silicon wafer is negatively charged during polishing, so that the water-soluble polymer (iii) is adsorbed to the silicon wafer. It is expected that a protective film based on the water-soluble polymer (iii) is easily formed on the silicon wafer.
 本実施形態に係る研磨剤組成物は、その具体的な態様2において、水溶性合成高分子(iii)は、上記態様1のいずれかの水溶性合成高分子(iii)に、エポキシ化合物などの環状エーテル化合物を反応させて得られる反応物とすることができる。エポキシ化合物を具体例として説明すれば、エチレンオキシド、およびグリシドールは親水性を上げる効果が、プロピレンオキシドは疎水性を上げウェハーへの吸着性を上げる効果が期待される。態様2においては、グリシドールが特に好ましい。 In the specific aspect 2 of the abrasive composition according to the present embodiment, the water-soluble synthetic polymer (iii) is different from the water-soluble synthetic polymer (iii) of the aspect 1 in that an epoxy compound or the like is used. It can be set as the reaction material obtained by making a cyclic ether compound react. When an epoxy compound is described as a specific example, ethylene oxide and glycidol are expected to increase the hydrophilicity, and propylene oxide is expected to increase the hydrophobicity and increase the adsorptivity to the wafer. In aspect 2, glycidol is particularly preferred.
 本実施形態に係る水溶性合成高分子(iii)の末端の構造には特に制限はない。分子量を制御する目的で、既知の連鎖移動剤を用い、それが末端の構造を構成してもよい。末端にも水酸基を導入するという観点から、好ましい連鎖移動剤の例としてイソプロピルアルコール、グリセリン、およびチオグリセリンを挙げることができる。 There is no particular limitation on the terminal structure of the water-soluble synthetic polymer (iii) according to this embodiment. For the purpose of controlling the molecular weight, a known chain transfer agent may be used, which may constitute the terminal structure. From the viewpoint of introducing a hydroxyl group at the terminal, examples of preferred chain transfer agents include isopropyl alcohol, glycerin, and thioglycerin.
 本実施形態に係る水溶性合成高分子(iii)の構成単位として、さまざまな性質の付与、または親水性・疎水性の調整等の目的で上記以外にも既知の構成単位を含むことができる。例えば、以下の単量体の重合により得られる構造を持つ構成単位を挙げることができる(もちろん他の単量体を重合した後にさらに反応を行い、結果的に同様の構成単位を得てもよい。):アクリルアミド、N-メチルアクリルアミド、N-イソプロピルアクリルアミド、N-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジアルキルアクリルアミド、アクリロイルモルホリン、N-(トリメトキシシリルアルキル)アクリルアミド、アクリル酸、メチルアクリレート、エチルアクリレート、アルキルアクリレート、トリメトキシシリルアルキルアクリレート、ビニルエステル(ビニルアルコール)、ビニルアミド(ビニルアミン)、N-アルカノイルビニルアミン、N-モノアルキルビニルアミン、N,N-ジアルキルビニルアミン、アリルアミン、N-アルカノイルアリルアミン、N-モノアルキルアリルアミン、N,N-ジアルキルアリルアミン、ビニルピロリドン、オキサゾリン、アルキルオキサゾリン、ビニルイミダゾール、ビニルピリジン(ビニルピリジンN-オキシド)、スチレン、およびヒドロキシスチレン。 As the structural unit of the water-soluble synthetic polymer (iii) according to the present embodiment, known structural units other than the above can be included for the purpose of imparting various properties or adjusting hydrophilicity / hydrophobicity. For example, constitutional units having a structure obtained by polymerization of the following monomers can be mentioned (of course, further reaction may be carried out after polymerizing other monomers, and the same constitutional unit may be obtained as a result. .): Acrylamide, N-methylacrylamide, N-isopropylacrylamide, N-alkylacrylamide, N, N-dimethylacrylamide, N, N-dialkylacrylamide, acryloylmorpholine, N- (trimethoxysilylalkyl) acrylamide, acrylic acid, Methyl acrylate, ethyl acrylate, alkyl acrylate, trimethoxysilyl alkyl acrylate, vinyl ester (vinyl alcohol), vinyl amide (vinyl amine), N-alkanoyl vinyl amine, N-monoalkyl vinyl amine, N, N-dial Rubiniruamin, allylamine, N- alkanoyl allylamine, N- monoalkyl allylamine, N, N- dialkylallylamine, vinylpyrrolidone, oxazoline, alkyl oxazolines, vinyl imidazole, vinyl pyridine (vinylpyridine N- oxide), styrene, and hydroxystyrene.
 構成単位(1)、構成単位(2)など、水溶性高分子(iii)に含まれる構成単位を与える単量体の重合方法は限定されない。従来公知の方法により重合することができる。 The polymerization method of the monomer that gives the structural unit contained in the water-soluble polymer (iii) such as the structural unit (1) and the structural unit (2) is not limited. It can superpose | polymerize by a conventionally well-known method.
 本実施形態に係る水溶性合成高分子(iii)の構成単位全体に対する、構成単位(1)のモル分率は特に制限されない。親水性の観点から、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上とすることができる。 The molar fraction of the structural unit (1) with respect to the entire structural unit of the water-soluble synthetic polymer (iii) according to the present embodiment is not particularly limited. From the viewpoint of hydrophilicity, it is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more.
 態様2に係る水溶性合成高分子(iii)の構成単位全体に対する、構成単位(2)のモル分率は特に制限されない。シリカの凝集を適度に抑えるという観点から、構成単位(2)のモル分率を好ましくは50モル%未満、より好ましくは、0.01モル%以上10モル%以下とすることができる。シリカの凝集をより安定的に抑えたい場合には、構成単位(2)のモル分率を0.01モル%以上5モル%以下とすることができる。研磨対象がシリコンウェハーである場合には、研磨後のウェハーのヘイズを低減させる観点からは、構成単位(2)のモル分率を0.01モル%以上2モル%以下とすることができる。 The molar fraction of the structural unit (2) with respect to the entire structural unit of the water-soluble synthetic polymer (iii) according to Embodiment 2 is not particularly limited. From the viewpoint of moderately suppressing the aggregation of silica, the molar fraction of the structural unit (2) is preferably less than 50 mol%, more preferably 0.01 mol% or more and 10 mol% or less. When it is desired to suppress the aggregation of silica more stably, the molar fraction of the structural unit (2) can be 0.01 mol% or more and 5 mol% or less. When the object to be polished is a silicon wafer, from the viewpoint of reducing the haze of the polished wafer, the molar fraction of the structural unit (2) can be 0.01 mol% or more and 2 mol% or less.
 本実施形態に係る水溶性合成高分子(iii)の分子量は限定されない。シリコンウェハーなどの研磨対象の表面に吸着し適度な強度の保護膜を得るという観点から、重量平均分子量(Mw)で1,000以上が好ましい。より強い保護膜を得るという観点からは重量平均分子量(Mw)は5,000以上であることより好ましい。さらに強い保護膜を得るには、重量平均分子量(Mw)は10,000以上であること好ましい。一方、重量平均分子量(Mw)が大きすぎると、シリカの凝集が過度に促進されたり、研磨後の水洗において保護膜が除去されにくくなったりする可能性がある。それゆえ、本実施形態に係る水溶性合成高分子(iii)の分子量は、重量平均分子量(Mw)で5,000,000以下が好ましい。さらに重量平均分子量(Mw)が大きい場合には、水溶性合成高分子(iii)から形成された保護膜が隙間を多く有する構造となる可能性がある。このような保護膜が形成される可能性をより安定的に低減させる観点からは、1,000,000以下が好ましい。 The molecular weight of the water-soluble synthetic polymer (iii) according to this embodiment is not limited. From the viewpoint of obtaining a protective film having an appropriate strength by adsorbing to the surface of a polishing target such as a silicon wafer, the weight average molecular weight (Mw) is preferably 1,000 or more. From the viewpoint of obtaining a stronger protective film, the weight average molecular weight (Mw) is more preferably 5,000 or more. In order to obtain a stronger protective film, the weight average molecular weight (Mw) is preferably 10,000 or more. On the other hand, if the weight average molecular weight (Mw) is too large, the aggregation of silica may be excessively promoted, or the protective film may be difficult to be removed by washing with water after polishing. Therefore, the molecular weight of the water-soluble synthetic polymer (iii) according to this embodiment is preferably 5,000,000 or less in terms of weight average molecular weight (Mw). Further, when the weight average molecular weight (Mw) is large, the protective film formed from the water-soluble synthetic polymer (iii) may have a structure having many gaps. From the viewpoint of more stably reducing the possibility that such a protective film is formed, 1,000,000 or less is preferable.
 本実施形態に係る水溶性合成高分子(iii)の濃度は、研磨時に使用される研磨剤組成物(スラリー)において10ppm以上1000ppm以下であるのが好ましい。この中ではさらに20ppm以上750ppm以下が好ましい。 The concentration of the water-soluble synthetic polymer (iii) according to the present embodiment is preferably 10 ppm or more and 1000 ppm or less in the abrasive composition (slurry) used during polishing. In this, 20 ppm or more and 750 ppm or less are more preferable.
 本実施形態に係る研磨剤組成物において、水(iv)は、他の含有成分を溶解、または分散させる機能を有する。他の含有成分の作用阻害を防ぐため、水(iv)に含有される不純物は少ないことが好ましい。具体的には蒸留水、イオン交換水、超純水等が好ましい。研磨剤組成物中の水(iv)の含有量は、研磨組成物中の他成分の濃度や含有量に対する残量である。 In the abrasive composition according to this embodiment, water (iv) has a function of dissolving or dispersing other components. In order to prevent the action inhibition of other components, it is preferable that the amount of impurities contained in water (iv) is small. Specifically, distilled water, ion exchange water, ultrapure water and the like are preferable. The content of water (iv) in the polishing composition is the remaining amount with respect to the concentration and content of other components in the polishing composition.
 本実施形態に係る研磨剤組成物は、さらに添加(v)物を含んでもよい。例えば、スラリーの各種性状の調整、金属イオン捕捉、水溶性合成高分子(iii)の研磨対象(具体例としてシリコンウェハーが例示される。)への吸着の補助、またはその他の目的のために、添加物を加えることができる。具体的には例えば、アルコール類、キレート類、および非イオン性界面活性剤から1種以上の添加剤を加えることができる。アルコール類の例としては、メタノール、エタノール、プロピルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリン、ポリエチレングリコール、およびポリプロピレングリコールを挙げることができる。キレート類の例としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、ヒドロキシエチレンジアミン四酢酸、プロパンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、ならびにこれらのアンモニウム塩、ナトリウム塩、およびカリウム塩等の金属塩を挙げることができる。非イオン性界面活性剤の例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルケニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル、アルキルポリグリコシド、およびポリエーテル変性シリコーンを挙げることができる。 The abrasive composition according to this embodiment may further contain an additive (v). For example, for adjusting various properties of the slurry, capturing metal ions, assisting adsorption of the water-soluble synthetic polymer (iii) to the object to be polished (specifically, a silicon wafer is exemplified), or other purposes, Additives can be added. Specifically, for example, one or more additives can be added from alcohols, chelates, and nonionic surfactants. Examples of alcohols include methanol, ethanol, propyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, polyethylene glycol, and polypropylene glycol. Examples of chelates include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyethylenediaminetetraacetic acid, propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and their ammonium, sodium, And metal salts such as potassium salts. Examples of nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkenyl ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, alkyl polyglycosides, and polyether-modified silicones.
 本実施形態に係る研磨剤組成物の製造方法は限定されない。従来公知の方法を用いることができる。例えば、本実施形態に係る研磨剤組成物は、シリカ粒子(i)、アルカリ性物質(ii)、水溶性合成高分子(iii)、および水(iv)を混合することにより得られる。 The manufacturing method of the abrasive composition according to this embodiment is not limited. Conventionally known methods can be used. For example, the abrasive composition according to this embodiment can be obtained by mixing silica particles (i), an alkaline substance (ii), a water-soluble synthetic polymer (iii), and water (iv).
 本実施形態に係る研磨剤組成物の具体的な態様3は、上記態様1および態様2のいずれかに記載の研磨剤組成物からなる、シリコンウェハー用研磨剤組成物に関する。
 シリコンウェハー用研磨剤組成物は、シリカ粒子(i)、アルカリ性物質(ii)、水溶性合成高分子(iii)、および水(iv)を混合することにより得ることができる。得られたシリコンウェハー用研磨剤組成物は、例えば、半導体デバイス製造プロセスにおけるシリコンウェハーの最終研磨用途に用いることができる。
Specific aspect 3 of the abrasive composition according to the present embodiment relates to an abrasive composition for silicon wafers comprising the abrasive composition according to any one of aspects 1 and 2.
The abrasive composition for a silicon wafer can be obtained by mixing silica particles (i), an alkaline substance (ii), a water-soluble synthetic polymer (iii), and water (iv). The obtained abrasive composition for silicon wafers can be used, for example, for final polishing of silicon wafers in a semiconductor device manufacturing process.
 本実施形態に係る研磨剤組成物の具体的な態様4は、上記態様1および態様2のいずれかに記載の研磨剤組成物を用いてシリコンウェハーを研磨する工程を含む、シリコンウェハー製品の製造方法に関する。本明細書において、「シリコンウェハー製品」とは、上記態様1および態様2のいずれかに記載の研磨剤組成物を用いてシリコンウェハーを研磨する工程を経たものを意味する。シリコンウェハーの研磨工程として、かかる工程を導入することができ、特に、シリコンウェハーの最終研磨工程として、導入することが好ましい。 Specific Aspect 4 of the abrasive composition according to the present embodiment includes the step of polishing a silicon wafer using the abrasive composition according to any one of Aspects 1 and 2 above. Regarding the method. In the present specification, the “silicon wafer product” means a product obtained by polishing a silicon wafer using the abrasive composition according to any one of the first and second aspects. Such a process can be introduced as a polishing process for a silicon wafer, and it is particularly preferable to introduce it as a final polishing process for a silicon wafer.
 本明細書中において使用する略称は次の通りである。
HEAA:N-(2-ヒドロキシエチル)アクリルアミド
TMAPAA:(3-アクリルアミドプロピル)トリメチルアンモニウム・クロライド
DHPMA:(2,3-ジヒドロキシプロピル)メタクリレートとビス(ヒドロキシメチル)メチルメタクリレート混合物(約75mol%:約25mol%)
THMMAA:N-[トリス(ヒドロキシメチル)メチル]アクリルアミド
HPAA:N-(3-ヒドロキシプロピル)アクリルアミド
DHPAA:N-(2,3-ジヒドロキシプロピル)アクリルアミド
HEMAA:N-(2-ヒドロキシエチル)メタクリルアミド
DHPMAA:N-(2,3-ジヒドロキシプロピル)メタクリルアミド
HEAA-GO0.25:N-(2-ヒドロキシエチル)アクリルアミド-グリシドール付加体
PAA:ポリ(アクリルアミド)
PHEOVE:ポリ(ヒドロキシエチルオキシエチルビニルエーテル)
PVA:ポリビニルアルコール
PVP:ポリ(ビニルピロリドン)
PPEI:ポリ(N-プロピオニルエチレンイミン)
Abbreviations used in the present specification are as follows.
HEAA: N- (2-hydroxyethyl) acrylamide TMAPAA: (3-acrylamidopropyl) trimethylammonium chloride DHPMA: (2,3-dihydroxypropyl) methacrylate and bis (hydroxymethyl) methyl methacrylate mixture (about 75 mol%: about 25 mol) %)
THMMAA: N- [Tris (hydroxymethyl) methyl] acrylamide HPAA: N- (3-hydroxypropyl) acrylamide DHPAA: N- (2,3-dihydroxypropyl) acrylamide HEMAA: N- (2-hydroxyethyl) methacrylamide DHPMAA : N- (2,3-dihydroxypropyl) methacrylamide HEAA-GO 0.25 : N- (2-hydroxyethyl) acrylamide-glycidol adduct PAA: poly (acrylamide)
PHEOVE: Poly (hydroxyethyloxyethyl vinyl ether)
PVA: polyvinyl alcohol PVP: poly (vinyl pyrrolidone)
PPEI: Poly (N-propionylethyleneimine)
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下に、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
実施例1~8、参考例1、及び比較例1~5
<単量体の準備>
 DHPMAは、アルドリッチ社製グリシジルメタクリレートから文献(Shaw et al.,Polymer 47、8247-8252、2006年)記載の方法で合成した。文献によると、生成物は(2,3-ジヒドロキシプロピル)メタクリレートとビス(ヒドロキシメチル)メチルメタクリレート混合物(約75mol%:約25mol%)である。生成物をGPC測定により確認したところ、二つのピークが75:25の面積比で観測された。
Examples 1 to 8, Reference Example 1, and Comparative Examples 1 to 5
<Preparation of monomer>
DHPMA was synthesized from glycidyl methacrylate manufactured by Aldrich by the method described in the literature (Shaw et al., Polymer 47, 8247-8252, 2006). According to the literature, the product is a mixture of (2,3-dihydroxypropyl) methacrylate and bis (hydroxymethyl) methylmethacrylate (about 75 mol%: about 25 mol%). When the product was confirmed by GPC measurement, two peaks were observed at an area ratio of 75:25.
 それ以外の単量体の入手先は次の通りである。
  HEAA:東京化成社
  TMAPAA:東京化成社
  THMMAA:アルドリッチ社
  AA:東京化成社
Other sources of monomers are as follows.
HEAA: Tokyo Kaseisha TMAPAA: Tokyo Kaseisha THMMAA: Aldrich AG AA: Tokyo Kaseisha
<水溶性合成高分子の合成>
 実施例1~8および比較例1の水溶性合成高分子を以下の方法で合成した。
 窒素気流下、70℃に維持した過硫酸アンモニウム溶液(過硫酸アンモニウム1.6g(7.0mmol)、純水1000g)に、単量体1.0mol(共重合体の場合は全単量体物質量の和が1.0mol)と純水960gからなる溶液を約2時間かけて滴下した。滴下完了後、さらに70℃で1時間攪拌した後、室温まで冷却した。つづいて、未反応単量体を除去するため、反応液を5倍容のアセトンに滴下した。生成した沈殿をデカンテーションにより取り出し、1倍容のアセトンで洗った後、真空乾燥した。
実施例2及び3はHEAAとTMAPAAとから構成されるコポリマー、実施例5及び6はHEAAとDHPMAとから構成されるコポリマー、実施例8はHEAAとTHMAAとから構成されるコポリマーである。各単量体の仕込み量比(モル比)を表1に示した。
参考例1のHECはダイセルファインケム社より、PEGは和光純薬工業社よりそれぞれ入手した。
 比較例2のPVAは和光純薬工業社から、比較例3のPHEOEVEは丸善石油化学社からそれぞれ入手した。
 比較例4のPVPおよび比較例5のPPEIはアルドリッチ社より入手した。
<Synthesis of water-soluble synthetic polymer>
The water-soluble synthetic polymers of Examples 1 to 8 and Comparative Example 1 were synthesized by the following method.
In an ammonium persulfate solution (ammonium persulfate 1.6 g (7.0 mmol), pure water 1000 g) maintained at 70 ° C. under a nitrogen stream, a monomer of 1.0 mol (in the case of a copolymer, the amount of all monomer substances) A solution consisting of 1.0 mol) and 960 g of pure water was added dropwise over about 2 hours. After completion of dropping, the mixture was further stirred at 70 ° C. for 1 hour, and then cooled to room temperature. Subsequently, in order to remove unreacted monomers, the reaction solution was dropped into 5 volumes of acetone. The produced precipitate was taken out by decantation, washed with 1 volume of acetone, and then vacuum dried.
Examples 2 and 3 are copolymers composed of HEAA and TMAPAA, Examples 5 and 6 are copolymers composed of HEAA and DHPMA, and Example 8 is a copolymer composed of HEAA and THMAA. The charge ratio (molar ratio) of each monomer is shown in Table 1.
HEC of Reference Example 1 was obtained from Daicel FineChem, and PEG was obtained from Wako Pure Chemical Industries.
The PVA of Comparative Example 2 was obtained from Wako Pure Chemical Industries, and the PHEOEVE of Comparative Example 3 was obtained from Maruzen Petrochemical Co., Ltd.
The PVP of Comparative Example 4 and the PPEI of Comparative Example 5 were obtained from Aldrich.
実施例9
<polyHPAAの合成>
 アクリル酸メチル(MA)2.15gとメタノール8.58gの混合液にAPS 0.020gを添加した後、65℃にて10時間窒素条件下重合を行った。その後、反応液を室温に冷却し生成した沈澱をデカンテーションにより取り出し、ポリアクリル酸メチル固体を得た(転化率97%)。得られたポリアクリル酸メチル固体に再びメタノール8.58gを加え、65℃にて10分加熱した後、室温に冷却し、上澄みを除くことで、未反応モノマーの除去を行った。
 得られたポリアクリル酸メチルに、3-アミノプロパノール5.63gおよび28%NaOMeメタノール溶液0.082gを加え、100℃にて20時間アミド化反応を行った。反応終了後、反応液は、メタノール3.3gを加えた後、アセトン25g中に滴下した。生成した固体は、デカンテーションで上澄みから分離した後、さらにアセトン15gでリンスし、40℃にて1時間真空乾燥を行った。乾燥後、30gの純水に溶解させ、次いで3μmフィルター濾過を行った。濾液から数g程度サンプリングし、乾燥法によりポリマー濃度を定量した後、純水を適量加え最終的にpolyHPAA5%水溶液とした(収率80%)。
Example 9
<Synthesis of polyHPAA>
0.020 g of APS was added to a mixed liquid of 2.15 g of methyl acrylate (MA) and 8.58 g of methanol, and then polymerization was performed at 65 ° C. for 10 hours under nitrogen. Thereafter, the reaction solution was cooled to room temperature, and the generated precipitate was taken out by decantation to obtain a polymethyl acrylate solid (conversion rate 97%). 8.58 g of methanol was added again to the obtained polymethyl acrylate solid, heated at 65 ° C. for 10 minutes, cooled to room temperature, and the supernatant was removed to remove unreacted monomers.
To the obtained poly (methyl acrylate), 5.63 g of 3-aminopropanol and 0.082 g of 28% NaOMe methanol solution were added, and an amidation reaction was performed at 100 ° C. for 20 hours. After completion of the reaction, the reaction solution was added dropwise with 3.3 g of methanol and then dropped into 25 g of acetone. The produced solid was separated from the supernatant by decantation, further rinsed with 15 g of acetone, and vacuum dried at 40 ° C. for 1 hour. After drying, it was dissolved in 30 g of pure water, and then filtered through a 3 μm filter. After sampling about several g from the filtrate and quantifying the polymer concentration by a drying method, an appropriate amount of pure water was added to finally make a polyHPAA 5% aqueous solution (yield 80%).
実施例10
<polyDHPAAの合成>
 polyHPAAの合成から、3-アミノプロパノールを3-アミノ-1,2-プロパンジオール6.83gに代えた以外は同じ方法でpolyDHPAA5%水溶液を得た(収率75%)。
Example 10
<Synthesis of polyDHPAA>
From the synthesis of polyHPAA, a 5% aqueous solution of polyDHPAA was obtained in the same manner except that 3-aminopropanol was replaced with 6.83 g of 3-amino-1,2-propanediol (yield 75%).
実施例11
<単量体の準備>
 氷冷したメタクリル酸メチル(MMA)10.0gに28%NaOMeメタノール溶液0.984gを滴下した。次いで、氷冷を外し2-アミノエタノール6.72gを30分かけ滴下した。この時、反応液の液温が30℃を超えないよう注意した。さらに一晩室温で反応させた後、純水25gおよび陽イオン交換樹脂(オルガノ株式会社 200CT H AG)8.8mLを加え、反応液の中和を行った。1μmフィルター濾過により陽イオン交換樹脂を除き、HEMAAモノマー水溶液を得た。溶液から数g程度サンプリングし、乾燥法によりモノマー濃度を定量した後、純水を適量加え20%HEMAAモノマー水溶液とした(収率68%)。
<polyHEMAAの合成>
 上で得たHEMAA水溶液8.40gと純水8.30gの混合液に10%APS水溶液0.10gを添加した後、65℃にて10時間窒素条件下重合を行った。重合終了後、室温に冷却した反応液をアセトン30g中に滴下し、polyHEMAA固体を得た。得られた固体はさらにアセトン15gでリンスした後、40℃にて1時間真空乾燥を行った。真空乾燥させた固体は30gの純水に溶解させた後、3μmフィルター濾過を行った。溶液から数g程度サンプリングし、乾燥法によりポリマー濃度を定量した後、純水を適量加え最終的に5%polyHEMAA水溶液とした(収率74%)。
Example 11
<Preparation of monomer>
0.984 g of 28% NaOMe methanol solution was added dropwise to 10.0 g of ice-cooled methyl methacrylate (MMA). Next, the ice-cooling was removed, and 6.72 g of 2-aminoethanol was added dropwise over 30 minutes. At this time, care was taken that the liquid temperature of the reaction liquid did not exceed 30 ° C. Furthermore, after making it react at room temperature overnight, 25 g of pure water and 8.8 mL of cation exchange resin (organo Corporation 200CT H AG) were added, and the reaction liquid was neutralized. The cation exchange resin was removed by filtration through a 1 μm filter to obtain an aqueous HEMAA monomer solution. After sampling about several grams from the solution and quantifying the monomer concentration by a drying method, an appropriate amount of pure water was added to form a 20% HEMAA monomer aqueous solution (yield 68%).
<Synthesis of polyHEMAA>
After adding 0.10 g of 10% APS aqueous solution to the mixed solution of 8.40 g of HEMAA aqueous solution obtained above and 8.30 g of pure water, polymerization was performed at 65 ° C. for 10 hours under nitrogen. After completion of the polymerization, the reaction solution cooled to room temperature was dropped into 30 g of acetone to obtain a polyHEMAA solid. The obtained solid was further rinsed with 15 g of acetone and then vacuum-dried at 40 ° C. for 1 hour. The vacuum-dried solid was dissolved in 30 g of pure water and filtered through a 3 μm filter. After sampling about several grams from the solution and quantifying the polymer concentration by a drying method, an appropriate amount of pure water was added to finally make a 5% polyHEEMA aqueous solution (yield 74%).
実施例12
<単量体の準備>
 polyHEMAAのモノマー合成から、2-アミノエタノールを3-アミノ-1,2-プロパンジオール10.00gに代えた以外は同じ方法で10%DHPMAAモノマー水溶液を得た(収率90%)。
<polyDHPMAAの合成>
 polyHEMAAのポリマー合成から、HEMAA水溶液をDHPMAA水溶液8.40gに代えた以外は同じ方法で5%polyDHPMAA水溶液を得た(収率77%)。
Example 12
<Preparation of monomer>
A 10% DHPMAA monomer aqueous solution was obtained by the same method except that 2-aminoethanol was replaced with 10.00 g of 3-amino-1,2-propanediol from the monomer synthesis of polyHEMAA (yield 90%).
<Synthesis of polyDHPMAA>
From the polymer synthesis of polyHEMAA, a 5% polyDHPMAA aqueous solution was obtained in the same manner except that the HEMAA aqueous solution was replaced with 8.40 g of the DHPMAA aqueous solution (yield 77%).
実施例13
<単量体(HEAA:GO=1:0.25 mol/mol)の準備>
 70℃に加熱したHEAAモノマー1.00gとN,N′-テトラメチルエチレンジアミン(TEMED)0.0025gの混合液に、グリシドール0.16gを約1時間かけ滴下した。滴下終了後さらに10分間70℃を維持した後、室温に戻した。
<poly(HEAA-GO0.25)の合成>
 上記反応液に、純水21.9gおよび10%APS水溶液0.14gを加え、65℃にて10時間窒素条件下重合を行った。重合終了後、3μmフィルター濾過を行った。得られた溶液は、poly(HEAA-GO0.25)の5.0%溶液とみなし各種実験溶液/スラリーの調製に用いた。
Example 13
<Preparation of monomer (HEAA: GO = 1: 0.25 mol / mol)>
To a mixed liquid of 1.00 g of HEAA monomer heated to 70 ° C. and 0.0025 g of N, N′-tetramethylethylenediamine (TEMED), 0.16 g of glycidol was dropped over about 1 hour. After the completion of dropping, the temperature was maintained at 70 ° C. for 10 minutes, and then returned to room temperature.
<Synthesis of poly (HEAA-GO 0.25 )>
To the reaction solution, 21.9 g of pure water and 0.14 g of 10% APS aqueous solution were added, and polymerization was carried out at 65 ° C. for 10 hours under nitrogen. After completion of the polymerization, 3 μm filter filtration was performed. The obtained solution was regarded as a 5.0% solution of poly (HEAA-GO 0.25 ) and used for preparing various experimental solutions / slurries.
<分子量および分子量分布>
 実施例1~13、参考例1および比較例1~5の水溶性合成高分子の数平均分子量(Mn)および重量平均分子量(Mw)をGPC測定により測定した。GPC測定の条件は以下の通りであった。各分子量の値を表1に示す。
GPC装置:島津製作所社製SCL-10A
カラム  :東ソー社製TSKgel GMPWXL(×1)+TSKgel G2500PWXL(×1)
溶離液  :0.1mol/kg NaCl、20%メタノール、残り純水
流速   :0.6mL/min
検出方法 :RI+UV(254nm)
標準物質 :ポリエチレンオキシド
<Molecular weight and molecular weight distribution>
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the water-soluble synthetic polymers of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 5 were measured by GPC measurement. The conditions of GPC measurement were as follows. The molecular weight values are shown in Table 1.
GPC device: SCL-10A manufactured by Shimadzu Corporation
Column: Tosoh Corporation TSKgel GMPW XL (× 1) + TSKgel G2500PW XL (× 1)
Eluent: 0.1 mol / kg NaCl, 20% methanol, remaining pure water flow rate: 0.6 mL / min
Detection method: RI + UV (254 nm)
Reference material: Polyethylene oxide
<濡れ性実験:水溶性合成高分子>
 1インチ・シリコンウェハーを1%フッ化水素酸に2分間浸漬させ表面の酸化膜を除去した。表面が水を十分はじくこと(濡れ性0%)を確認した後、ウェハーを実施例1~13、参考例1および比較例1~5の各水溶性合成高分子4000ppm水溶液(参考例1はHEC3600ppm、PEG400ppm)に10分間漬けた。10分後、ウェハーを取り出し軽く水をかけた後、表面の濡れ性を確認した。ここで濡れ性とは、ウェハー表面の中で濡れている面積の全体に対する割合をパーセント表示したものである。結果を表1に示す。
<Wetting test: water-soluble synthetic polymer>
A 1-inch silicon wafer was immersed in 1% hydrofluoric acid for 2 minutes to remove the oxide film on the surface. After confirming that the surface repels water sufficiently (0% wettability), each wafer was subjected to 4000 ppm aqueous solution of each water-soluble synthetic polymer of Examples 1 to 13, Reference Example 1 and Comparative Examples 1 to 5 (Reference Example 1 is HEC 3600 ppm). PEG400ppm) for 10 minutes. After 10 minutes, the wafer was taken out and lightly watered, and the wettability of the surface was confirmed. Here, the wettability is a percentage of the total wetted area on the wafer surface. The results are shown in Table 1.
<研磨剤組成物(スラリー)の調製>
 研磨剤組成物は、特許第4712556号に記載の方法で調製したシリカ粒子スラリー(BET法による粒径17.8nm;動的光散乱法による粒径D50=30.7nm、SD=10.0nm)、アンモニア水(関東化学社製)、水溶性高分子の水溶液、およびイオン交換水を混合し調製した。
<Preparation of abrasive composition (slurry)>
The abrasive composition was a silica particle slurry prepared by the method described in Japanese Patent No. 4712556 (particle size 17.8 nm by BET method; particle size D50 by dynamic light scattering method = 30.7 nm, SD = 10.0 nm) Ammonia water (manufactured by Kanto Chemical Co., Inc.), an aqueous solution of a water-soluble polymer, and ion-exchanged water were mixed to prepare.
<研磨速度および研磨後の濡れ性:研磨剤組成物>
 以下の条件で研磨を行い、研磨前後のウェハーの重量変化から研磨速度を求めた。また、研磨直後のウェハーについて、表面に軽く純水をかけた後、表面の濡れ性を確認した。結果を表1に示す。
研磨剤組成物組成:シリカ1125ppm、アンモニア100ppm、水溶性合成高分子100ppm(参考例1はHEC90ppm、PEG10ppm)
研磨機       :ミクロ技研社製LGP-15S-I
ウェハー      :4インチシリコンウェハー
(P型、抵抗率5~18mΩ・cm、結晶面方<111>)
面圧        :0.25kgf/cm
ウェハー回転速度  :100rpm
パッド       :フジミ社製SURFIN SSWI
パッド回転速度   :30rpm
研磨スラリー供給速度:100mL/分
研磨時間      :10分
<Polishing rate and wettability after polishing: abrasive composition>
Polishing was performed under the following conditions, and the polishing rate was determined from the change in weight of the wafer before and after polishing. Further, for the wafer immediately after polishing, the surface was lightly sprayed with pure water, and then the wettability of the surface was confirmed. The results are shown in Table 1.
Abrasive composition: silica 1125 ppm, ammonia 100 ppm, water-soluble synthetic polymer 100 ppm (Reference Example 1 is HEC 90 ppm, PEG 10 ppm)
Polishing machine: LGP-15S-I manufactured by Micro Engineering Co., Ltd.
Wafer: 4-inch silicon wafer (P type, resistivity 5-18 mΩ · cm, crystal plane direction <111>)
Surface pressure: 0.25 kgf / cm 2
Wafer rotation speed: 100 rpm
Pad: SURFIN SSWI manufactured by Fujimi
Pad rotation speed: 30 rpm
Polishing slurry supply rate: 100 mL / min Polishing time: 10 minutes
Figure JPOXMLDOC01-appb-T000015
註:参考例1の水溶性高分子・分子量・MnおよびMwのセルにおいて、上段の数字はHECの分子量および下段の数字はPEGの分子量をそれぞれ示す。
 表1から明らかなように、実施例1~実施例13の全ての結果において、研磨後のウェハー表面の濡れ性が高いことが確認された。
Figure JPOXMLDOC01-appb-T000015
註: In the water-soluble polymer / molecular weight / Mn and Mw cell of Reference Example 1, the upper number indicates the molecular weight of HEC and the lower number indicates the molecular weight of PEG.
As is clear from Table 1, in all the results of Examples 1 to 13, it was confirmed that the wettability of the polished wafer surface was high.
<LPD評価>
 次に、製品用シリコンウェハーの製造過程における、仕上げ研磨用研磨液として上記した各種水溶性高分子を含有させた研磨液を用い、研磨後のシリコンウェハー表面で観察されるLPD(Light Point Defect)密度を評価した。
 具体的には、以下の実験を行った。
 仕上げ研磨試験用サンプルウェハーとして、直径300mmの両面研磨シリコンウェハーを複数枚準備した。図示しない片面鏡面研磨(CMP)装置を用いて各サンプルウェハー表面を1μm除去する片面研磨処理を行い、各サンプルウェハー表面の加工ダメージを除去した。その後、最終の仕上げ片面研磨処理として、表2に示す5水準の研磨組成物の研磨液を用いて、各サンプルウェハー表面を仕上げ研磨処理した。仕上げ研磨の処理条件は何れも同じ条件であり、具体的には、図1に示す片面鏡面研磨を用い、研磨定盤2上に貼り付けたスエード製の研磨布3と研磨ヘッド4により保持したサンプルウェハー5を互いに回転させながら、研磨液供給ノズル1から研磨液を約500ml/minで供給し、研磨圧力:125g/cm、研磨時間:300秒の条件で仕上げ片面研磨処理を行った。なお、研磨剤組成物(スラリー)の調合は、使用した水溶性高分子および各成分の濃度以外は、実施例1~13と同じである。
 実施例14の水溶性合成高分子は実施例1と同じpolyHEAA、
実施例15の水溶性合成高分子は実施例11と同じpolyHEMAA、
実施例16の水溶性合成高分子は実施例13と同じpoly(HEAA-GO0.25)、比較例6の水溶性合成高分子は比較例1と同じPAA、参考例2の水溶性合成高分子は参考例1と同じHEC+PEGを使用した。
 仕上げ研磨された各サンプルウェハーをRCA洗浄した後、表面欠陥検査装置(KLA-Tencor社製:Surfscan SP-2)を用い、各サンプルウェハー表面で観察される35nmサイズ以上のLPD密度を測定した。表2に示すLPD結果は、各水準とも、仕上げ研磨を行った6枚のサンプルウェハーの測定結果の平均値であり、参考例1の平均値を100としたときの相対値で示したものである。
 表2から明らかなように、実施例14~16ではLPD密度は低い欠陥であった。一方、比較例6はいずれのサンプルウェハーも検出点が多過ぎてデータがオーバーフローし、測定不能であった。
<LPD evaluation>
Next, using the polishing liquid containing the various water-soluble polymers described above as the polishing liquid for final polishing in the manufacturing process of the silicon wafer for products, LPD (Light Point Defect) observed on the surface of the polished silicon wafer Density was evaluated.
Specifically, the following experiment was conducted.
A plurality of 300 mm diameter double-side polished silicon wafers were prepared as sample wafers for the final polishing test. Using a single-sided mirror polishing (CMP) apparatus (not shown), a single-side polishing process for removing 1 μm of the surface of each sample wafer was performed to remove processing damage on the surface of each sample wafer. Thereafter, as the final finish single-side polishing treatment, the surface of each sample wafer was finish-polished using a polishing liquid of a five-level polishing composition shown in Table 2. The final polishing treatment conditions were the same. Specifically, the single-sided mirror polishing shown in FIG. 1 was used and held by the suede polishing cloth 3 and the polishing head 4 attached on the polishing surface plate 2. The polishing liquid was supplied from the polishing liquid supply nozzle 1 at a rate of about 500 ml / min while rotating the sample wafer 5 with each other, and a finish single-side polishing process was performed under the conditions of polishing pressure: 125 g / cm 2 and polishing time: 300 seconds. The preparation of the abrasive composition (slurry) was the same as in Examples 1 to 13 except for the water-soluble polymer used and the concentration of each component.
The water-soluble synthetic polymer of Example 14 is the same polyHEAA as in Example 1,
The water-soluble synthetic polymer of Example 15 is the same polyHEMAA as Example 11,
The water-soluble synthetic polymer of Example 16 is the same poly (HEAA-GO 0.25 ) as Example 13, the water-soluble synthetic polymer of Comparative Example 6 is the same PAA as Comparative Example 1, and the water-soluble synthetic polymer of Reference Example 2 is high. The molecule used was the same HEC + PEG as in Reference Example 1.
After the RCA cleaning of each finish polished sample wafer, an LPD density of 35 nm size or more observed on the surface of each sample wafer was measured using a surface defect inspection apparatus (KLA-Tencor: Surfscan SP-2). The LPD results shown in Table 2 are the average values of the measurement results of the six sample wafers subjected to finish polishing at each level, and are shown as relative values when the average value of Reference Example 1 is 100. is there.
As is apparent from Table 2, in Examples 14 to 16, the LPD density was a defect. On the other hand, in Comparative Example 6, the number of detection points was too large for all the sample wafers, and the data overflowed, making measurement impossible.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 本発明の研磨剤組成物、シリコンウェハー用研磨剤組成物、およびシリコンウェハー製品の製造方法は、高品質の表面特性(低残存パーティクル・低LPD)を有するシリコンウェハーを安定供給するために利用可能である。 The abrasive composition of the present invention, the abrasive composition for silicon wafers, and the method for producing a silicon wafer product can be used to stably supply silicon wafers having high quality surface characteristics (low residual particles and low LPD). It is.
1:研磨液供給ノズル、 2:研磨定盤、 3:研磨布、 4:研磨ヘッド、5:サンプルウェハー 1: polishing liquid supply nozzle, 2: polishing surface plate, 3: polishing cloth, 4: polishing head, 5: sample wafer

Claims (13)

  1.  シリカ粒子、アルカリ性物質、水溶性合成高分子、および水を含む研磨用組成物であって、
     前記水溶性合成高分子は構成単位(1)を有し、
     前記構成単位(1)は、酸素含有基およびカルボニル基を有し、
     前記酸素含有基は、アルコール性水酸基または置換もしくは非置換のアルコキシ基であり、
     前記カルボニル基は、ケト基、エステル結合の一部をなすカルボニル基、またはアミド結合の一部をなすカルボニル基であること
    を特徴とする研磨剤組成物。
    A polishing composition comprising silica particles, an alkaline substance, a water-soluble synthetic polymer, and water,
    The water-soluble synthetic polymer has a structural unit (1),
    The structural unit (1) has an oxygen-containing group and a carbonyl group,
    The oxygen-containing group is an alcoholic hydroxyl group or a substituted or unsubstituted alkoxy group,
    The abrasive composition, wherein the carbonyl group is a keto group, a carbonyl group that forms part of an ester bond, or a carbonyl group that forms part of an amide bond.
  2.  前記構成単位(1)は単量体(α)に由来し、
     当該単量体(α)は、エチレン性不飽和結合および水酸基を有する化合物に、エポキシ化合物を反応させて得られる反応物であって、置換アルコキシ基を有する、請求項1に記載の研磨剤組成物。
    The structural unit (1) is derived from the monomer (α),
    The abrasive composition according to claim 1, wherein the monomer (α) is a reaction product obtained by reacting an epoxy compound with a compound having an ethylenically unsaturated bond and a hydroxyl group, and has a substituted alkoxy group. object.
  3.  前記構成単位(1)は、一般式1A~1Fで表される単位(1A)~(1F)のうち少なくとも一種の単位を含むことを特徴とする請求項1または2に記載の研磨剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (上記式1A~1F中、XはCH、NH、または酸素原子である。Rはそれぞれ独立に、水素原子またはメチル基である。Rはそれぞれ独立に、水素原子、水酸基、または置換または非置換のアルコキシ基である。m1~m10はそれぞれ独立に1~6の整数である。各単位中のRの少なくとも一つは水素原子以外の置換基である。)
    The abrasive composition according to claim 1 or 2, wherein the structural unit (1) contains at least one unit of units (1A) to (1F) represented by the general formulas 1A to 1F. .
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In the above formulas 1A to 1F, X is CH 2 , NH, or an oxygen atom. R 1 is independently a hydrogen atom or a methyl group. R 2 is independently a hydrogen atom, a hydroxyl group, or a substituent. Or an unsubstituted alkoxy group, wherein m1 to m10 are each independently an integer of 1 to 6. At least one of R 2 in each unit is a substituent other than a hydrogen atom.
  4.  前記一般式1A~1Fで表される単位(1A)~(1F)の各々が、一以上の水酸基を有する、請求項3に記載の研磨剤組成物。 4. The abrasive composition according to claim 3, wherein each of the units (1A) to (1F) represented by the general formulas 1A to 1F has one or more hydroxyl groups.
  5.  前記一般式1A~1Fで表される単位(1A)~(1F)の各々が、二つ以上の水酸基を有する、請求項3または4に記載の研磨剤組成物。 The abrasive composition according to claim 3 or 4, wherein each of the units (1A) to (1F) represented by the general formulas 1A to 1F has two or more hydroxyl groups.
  6.  前記一般式1A、1B、1C、1E、および1Fにおいて、XがNHまたは酸素原子である請求項3から5のいずれか一項に記載の研磨剤組成物。 In the general formulas 1A, 1B, 1C, 1E, and 1F, X is NH or an oxygen atom, The abrasive composition according to any one of claims 3 to 5.
  7.  前記水溶性合成高分子の構成単位全体に対する前記構成単位(1)のモル分率が50モル%以上である、請求項1から6のいずれか一項に記載の研磨剤組成物。 The abrasive composition according to any one of claims 1 to 6, wherein the molar fraction of the structural unit (1) with respect to the entire structural unit of the water-soluble synthetic polymer is 50 mol% or more.
  8.  前記水溶性合成高分子は、下記一般式2で表される構成単位(2)をさらに有する、請求項1から7のいずれか一項に記載の研磨剤組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式2中、qは1~6の整数である。XはCH、NHまたは酸素原子である。Z、Z、Z、およびZは、それぞれ独立に、水素原子またはメチル基である。Yは陰イオンである。)
    The said water-soluble synthetic polymer is an abrasive | polishing agent composition as described in any one of Claim 1 to 7 which further has the structural unit (2) represented by following General formula 2.
    Figure JPOXMLDOC01-appb-C000007
    (In Formula 2, q is an integer of 1 to 6. X is CH 2 , NH or an oxygen atom. Z 1 , Z 2 , Z 3 and Z 4 are each independently a hydrogen atom or a methyl group. Y is an anion.)
  9.  前記水溶性合成高分子の構成単位全体に対する前記構成単位(2)のモル分率が50モル%未満である、請求項8に記載の研磨剤組成物。 The abrasive | polishing agent composition of Claim 8 whose molar fraction of the said structural unit (2) with respect to the whole structural unit of the said water-soluble synthetic polymer is less than 50 mol%.
  10.  シリカ粒子、アルカリ性物質、水溶性合成高分子、および水を含む研磨剤組成物であって、
     前記水溶性合成高分子は、請求項1から9のいずれか一項に記載の水溶性合成高分子に、エポキシ化合物を反応させて得られる反応物である、研磨剤組成物。
    An abrasive composition comprising silica particles, an alkaline substance, a water-soluble synthetic polymer, and water,
    The said water-soluble synthetic polymer is an abrasive | polishing agent composition which is a reaction material obtained by making an epoxy compound react with the water-soluble synthetic polymer as described in any one of Claims 1-9.
  11.  前記シリカ粒子が、アルコキシシランまたはその縮合体を原料として調製され、一次粒子径が10~40nm、かつ二次粒子径が20~80nmである、請求項1から10のいずれか一項に記載の研磨剤組成物。 The silica particle according to any one of claims 1 to 10, wherein the silica particles are prepared using alkoxysilane or a condensate thereof as a raw material, and have a primary particle diameter of 10 to 40 nm and a secondary particle diameter of 20 to 80 nm. Abrasive composition.
  12.  請求項1から11のいずれか一項に記載の研磨剤組成物からなる、シリコンウェハー用研磨剤組成物。 An abrasive composition for silicon wafers, comprising the abrasive composition according to any one of claims 1 to 11.
  13.  請求項1から11のいずれか一項に記載の研磨剤組成物を用いてシリコンウェハーを研磨する工程を含む、シリコンウェハー製品の製造方法。 A method for producing a silicon wafer product, comprising a step of polishing a silicon wafer using the abrasive composition according to any one of claims 1 to 11.
PCT/JP2014/076631 2013-10-04 2014-10-03 Polishing agent composition, polishing agent composition for silicon wafer, and method for manufacturing silicon wafer product WO2015050260A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157036384A KR101785450B1 (en) 2013-10-04 2014-10-03 Polishing agent composition, polishing agent composition for silicon wafer, and method for manufacturing silicon wafer product
JP2015540576A JP6373273B2 (en) 2013-10-04 2014-10-03 Abrasive composition, abrasive composition for silicon wafer, and method for producing silicon wafer product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013209171 2013-10-04
JP2013-209171 2013-10-04

Publications (2)

Publication Number Publication Date
WO2015050260A2 true WO2015050260A2 (en) 2015-04-09
WO2015050260A3 WO2015050260A3 (en) 2015-06-04

Family

ID=52779247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076631 WO2015050260A2 (en) 2013-10-04 2014-10-03 Polishing agent composition, polishing agent composition for silicon wafer, and method for manufacturing silicon wafer product

Country Status (4)

Country Link
JP (1) JP6373273B2 (en)
KR (1) KR101785450B1 (en)
TW (1) TWI553049B (en)
WO (1) WO2015050260A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073055A (en) * 2013-10-04 2015-04-16 花王株式会社 Polishing liquid composition for silicon wafers
JP2018006538A (en) * 2016-06-30 2018-01-11 花王株式会社 Polishing liquid composition for silicon wafer
JP2018206956A (en) * 2017-06-05 2018-12-27 Atシリカ株式会社 Polishing composition
CN109716487A (en) * 2016-09-21 2019-05-03 福吉米株式会社 Surface treating composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876377A (en) * 2021-01-15 2021-06-01 南京红宝丽醇胺化学有限公司 Preparation method of hydroxypropyl acrylamide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204960B2 (en) * 2006-08-24 2013-06-05 株式会社フジミインコーポレーテッド Polishing composition and polishing method
JP2011171689A (en) * 2009-07-07 2011-09-01 Kao Corp Polishing liquid composition for silicon wafer
JP4772156B1 (en) * 2010-07-05 2011-09-14 花王株式会社 Polishing liquid composition for silicon wafer
JP5822356B2 (en) * 2012-04-17 2015-11-24 花王株式会社 Polishing liquid composition for silicon wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073055A (en) * 2013-10-04 2015-04-16 花王株式会社 Polishing liquid composition for silicon wafers
JP2018006538A (en) * 2016-06-30 2018-01-11 花王株式会社 Polishing liquid composition for silicon wafer
CN109716487A (en) * 2016-09-21 2019-05-03 福吉米株式会社 Surface treating composition
CN109716487B (en) * 2016-09-21 2023-12-01 福吉米株式会社 Surface treatment composition
JP2018206956A (en) * 2017-06-05 2018-12-27 Atシリカ株式会社 Polishing composition

Also Published As

Publication number Publication date
WO2015050260A3 (en) 2015-06-04
TW201529670A (en) 2015-08-01
JP6373273B2 (en) 2018-08-15
KR101785450B1 (en) 2017-10-16
TWI553049B (en) 2016-10-11
KR20160013971A (en) 2016-02-05
JPWO2015050260A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6373273B2 (en) Abrasive composition, abrasive composition for silicon wafer, and method for producing silicon wafer product
TWI541335B (en) Silicon wafer polishing composition
KR101639505B1 (en) Composition for silicon wafer polishing liquid
EP3400267A1 (en) Tungsten processing slurry with catalyst
KR20160013896A (en) Composition for silicon wafer polishing
KR20170048513A (en) Slurry composition, rinse composition, substrate polishing method and rinsing method
KR102327245B1 (en) Rinse composition for silicon wafer
JP6306383B2 (en) Slurry composition and substrate polishing method
JP2016115809A (en) Polishing liquid composition for semiconductor substrate
JP2016213216A (en) Polishing liquid composition for silicon wafers
JP6039419B2 (en) Polishing liquid composition for silicon wafer
JP6489690B2 (en) Polishing liquid composition for silicon wafer
JP2019071365A (en) Final polishing liquid composition for silicon wafer
JP2019009278A (en) Finish polishing liquid composition for silicon wafer
WO2015159507A1 (en) Composition for polishing silicon wafers
WO2018079675A1 (en) Rinsing agent composition for silicon wafers
JP2010095568A (en) Silica sol for polishing, composition for polishing, and method for producing silica sol for polishing
JP5995659B2 (en) Polishing liquid composition for silicon wafer
JP6792413B2 (en) Abrasive liquid composition for silicon wafer
JP6168984B2 (en) Polishing liquid composition for silicon wafer
JP2023063021A (en) Method for manufacturing silicon substrate
JP6811089B2 (en) Abrasive liquid composition for silicon wafer
JP2016119418A (en) Polishing liquid composition for silicon wafer
TWI235170B (en) Polyacrylic surfactants and methods of their manufacture
JP2015073055A (en) Polishing liquid composition for silicon wafers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850711

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2015540576

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase in:

Ref document number: 20157036384

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850711

Country of ref document: EP

Kind code of ref document: A2