WO2015049798A1 - Lightweight small flight vehicle - Google Patents

Lightweight small flight vehicle Download PDF

Info

Publication number
WO2015049798A1
WO2015049798A1 PCT/JP2013/077143 JP2013077143W WO2015049798A1 WO 2015049798 A1 WO2015049798 A1 WO 2015049798A1 JP 2013077143 W JP2013077143 W JP 2013077143W WO 2015049798 A1 WO2015049798 A1 WO 2015049798A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
airframe
main shaft
flying
rotor
Prior art date
Application number
PCT/JP2013/077143
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 渡邉
梓 網野
淳一 玉本
幸生 山本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/077143 priority Critical patent/WO2015049798A1/en
Priority to JP2015540352A priority patent/JPWO2015049798A1/en
Publication of WO2015049798A1 publication Critical patent/WO2015049798A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • the present invention relates to a lightweight small aircraft.
  • Patent Document 2 states that “the present invention has a plurality of blades having a cross section of an airfoil shape and arranged at a constant angle interval, and one end portion of each of these blades.
  • a rotor having a hub connected to each other and generating lift by rotation thereof; and a rotor driving unit having a distal end coupled to the hub and having a rotatable driving shaft and applying a driving force necessary to rotate the rotor;
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-81936
  • Patent Document 2 Japanese Translation of PCT International Publication No. 2007-521174
  • Japanese Patent Application Laid-Open No. 2004-151867 describes a flying object configured to be able to fly with only one rotor (propeller).
  • this flying body has a plate-like body and is configured to fly in a state where the body rotates around the yaw axis (yaw rotation) by the reaction of the motor that rotates the rotor.
  • the flying object described in Patent Document 1 has a problem that it cannot maintain a floating state in a state where it does not rotate around the yaw axis.
  • Patent Document 2 describes a micro air vehicle that has one main rotor and can fly without rotating (yaw rotation) around a yaw axis.
  • This micro air vehicle has a plurality of wings below the main rotor so as to cancel the rotational torque around the yaw axis generated by the reaction of the motor that rotates the main rotor with the downward flow accompanying the rotation of the main rotor. It is configured.
  • the wing provided in the micro air vehicle of Patent Document 2 is a fixed type, and a stable levitation state cannot be maintained when the surrounding conditions (wind direction, wind speed, etc.) of the micro air vehicle in the levitation state change There is.
  • An object of the present invention is to provide a lightweight small aircraft that generates lift by rotation of a rotor and can suppress rotation around a yaw axis.
  • the present invention is a lightweight and small flying object in which a rotor rotates and in order to reduce reaction torque generated in the airframe as a reaction of rotation of the rotor, an air flow generated by rotation of the rotor is The blade surface that receives the tilt angle with respect to the axial direction of the yaw axis and generates the torque around the yaw axis in the aircraft, and the torque around the yaw axis generated in the aircraft by changing the inclination angle of the blade surface And a control device that adjusts the size of the image.
  • the present invention it is possible to provide a lightweight and small flying body capable of generating lift by rotation of the rotor and suppressing rotation around the yaw axis.
  • FIG. 1 is a perspective view showing a structure of a lightweight small aircraft according to a first embodiment.
  • (A) is a side view of the rotation suppression blade
  • (b) is a side view showing a state in which an air flow hits the rotation suppression blade and a rotation suppression torque around the main shaft is generated
  • (c) is a rotation suppression generated around the main shaft. It is a top view which shows a torque.
  • (A) is a side view showing a state where a lightweight small flying object is inclined and landed on the ground surface
  • (b) is a side view showing a state where the lightweight small flying object is upright on the ground surface.
  • FIG. (A) is a perspective view which shows the lightweight small aircraft of Example 2
  • (b) is a perspective view which shows the modification of the lightweight small aircraft of Example 2.
  • FIG. (A) is a diagram showing a state in which the rotation suppression blade is inclined with respect to the wind direction
  • (b) is a diagram showing a state in which the blade surface of the rotation suppression blade is parallel to the wind direction
  • (c) is larger than the reaction torque. It is a figure which shows the state which the rotation suppression torque has generate
  • (A) is a figure which shows the state which the detection blade of a wind direction detection means inclines with respect to a wind direction
  • (b) is a figure which shows the state in which the detection blade of a wind direction detection means is parallel to a wind direction.
  • (A) is a perspective view which shows the modification with which the light-weight small aircraft of Example 3 is equipped with three rotation suppression blades
  • (b) is a top view of the modification of the light-weight small aircraft of Example 3.
  • (A) is a top view which shows the state which the rotation suppression torque smaller than reaction force torque has generate
  • (b) is a top view which shows the body which the turning direction turned to the direction of D2.
  • (A) is a top view showing a state in which rotation suppression torque larger than reaction force torque is generated in the airframe
  • (b) is a top view showing the airframe whose traveling direction is turned in the direction of D3.
  • FIG. 1 is a perspective view showing a structure of a lightweight small aircraft according to the first embodiment.
  • 2 (a) is a side view of the rotation suppression blade
  • FIG. 2 (b) is a side view showing a state in which rotation suppression torque around the main shaft is generated by the air flow hitting the rotation suppression blade
  • FIG. 2 (c) is a top view showing rotation suppression torque generated around the main shaft.
  • FIG. 3A is a side view showing a state where the lightweight small flying object is tilted and landed on the ground surface
  • FIG. 3B is a side view showing a state where the lightweight small flying object stands upright on the ground surface. .
  • the lightweight small aircraft 1 of the first embodiment includes a frame body 10 having a shape in which a sphere is crushed in one axial direction (hereinafter referred to as an elliptic sphere).
  • a main axis 100 is defined as one axis whose axial direction is the direction in which the sphere is crushed.
  • the airframe 10 of the lightweight small aircraft 1 includes an annular frame (rim 10a) centered on the main shaft 100, and a cylindrical member (hub member 10d) extending coaxially with the main shaft 100 at the center of the rim 10a.
  • a plurality of frames (spokes 10b) extending radially in the radial direction of 10a.
  • FIG. 1 shows an example in which four spokes 10b are provided.
  • a plurality of frames (side frames 10c) constituting the outer shape of an elliptical sphere are attached to the rim 10a.
  • the side frame 10 c has an elliptical shape in a side view, and forms a top portion 10 ⁇ / b> T on the main shaft 100.
  • Such an elliptical side frame 10c is disposed along the annular shape of the rim 10a to form an elliptical spherical body 10.
  • three side frames 10c are shown, but the number of side frames 10c is not limited.
  • the side frame 10c is connected with a rim 10a at the most bulged portion that is the center in the axial direction of the main shaft 100. With this configuration, the rim 10a is disposed in the center of the main body 100 in the axial direction of the main body 100. .
  • the lightweight small aircraft 1 includes a frame body 10 formed of a rim 10a, a spoke 10b, and a side frame 10c. Since the airframe 10 is formed of a frame (rim 10a, spoke 10b, side frame 10c), the lightweight small aircraft 1 is reduced in weight, and resistance when the lightweight small aircraft 1 flies is reduced.
  • the lightweight small aircraft 1 includes a motor 20 that rotates a rotary shaft 20a coaxial with the main shaft 100, a rotor 2 that rotates together with the rotary shaft 20a, and auxiliary equipment (such as the motor 20) that is used to rotate the rotor 2.
  • the lightweight small aircraft 1 of the first embodiment is a “single rotor” in which one airframe 10 includes one rotor 2.
  • Auxiliary machines including the rotor 2, the motor 20, and the battery 21 are disposed inside the fuselage 10.
  • the rotor 2 has, for example, two blades 2 a and rotates with the rotary shaft 20 a to generate an air flow that flows in the axial direction of the main shaft 100.
  • the number of blades 2a provided in the rotor 2 is not limited to two, and may be a rotor 2 provided with three or more blades 2a.
  • the lightweight small aircraft 1 of the first embodiment is provided with a tilting device 22 that tilts the rotating shaft 20a of the rotor 2 with respect to the main shaft 100.
  • the tilting device 22 may be configured to tilt the rotating shaft 20a together with the motor 20, or may be configured to tilt only the rotating shaft 20a. In addition, what is necessary is just to use the tilting apparatus 22 conventionally used.
  • the rotation shaft 20a that is the rotation center of the rotor 2 is tilted with respect to the main shaft 100, the air flow generated by the rotation of the rotor 2 is tilted with respect to the axial direction of the main shaft 100, and a propulsive force is generated in the airframe 10.
  • the rotation shaft 20a is rotated from the state of being coaxial with the main shaft 100, the roll axis (R) orthogonal to the main shaft 100, and the pitch axis (P) orthogonal to the main shaft 100 and the roll axis (R). And can be tilted in two axial directions perpendicular to each other.
  • the lightweight small aircraft 1 changes the direction in which the propulsive force acts by appropriately tilting the rotating shaft 20a in the direction of the pitch axis (P) and the direction of the roll axis (R), and in a state where it floats from the ground surface G. Fly to travel in any direction. That is, the traveling direction of the lightweight small aircraft 1 is determined by the rotation shaft 20a being inclined at an arbitrary angle in the roll axis (R) direction and the pitch axis (P) direction.
  • the main axis 100 is an axis orthogonal to the pitch axis (P) and the roll axis (R), and serves as the yaw axis (Y) of the lightweight small aircraft 1.
  • the light and small air vehicle 1 includes a control device 23 that controls the motor 20 and the tilting device 22 to adjust the rotational speed and tilting angle of the rotor 2.
  • the lightweight small air vehicle 1 measures a rotational angular velocity around the pitch axis (P), a rotational angular velocity around the roll axis (R), and a rotational angular velocity around the yaw axis (Y) and a flight state.
  • a measuring device 24 including a sensor or the like is provided.
  • the measuring device 24 includes, for example, a sensor that measures the flight speed of the flying aircraft 10, a sensor that measures the flight altitude of the flying aircraft 10, a sensor that detects the traveling direction of the aircraft 10 in an absolute direction, and the like.
  • the measuring device 24 may include other sensors such as a sensor that measures a rotational angular velocity about the pitch axis (P), a rotational angle about the roll axis (R), a tilt about the yaw axis (Y), and an acceleration sensor. Good.
  • the lightweight small aircraft 1 of the first embodiment is configured to fly in response to a command (for example, a command by a radio signal) from the external controller 7 and receives a command (a radio signal) transmitted from the external controller 7.
  • a receiving device 25 is provided in the lightweight small aircraft 1.
  • the tilting device 22 for tilting the rotary shaft 20a is preferably disposed in the vicinity of the motor 20, and the control device 23 for controlling the motor 20 and the tilting device 22 is disposed in the vicinity of the motor 20 and the tilting device 22.
  • the measurement device 24 inputs a measurement signal measured by a sensor such as a gyro sensor to the control device 23, and the reception device 25 inputs a signal received from the external controller 7 to the control device 23.
  • the measuring device 24 and the receiving device 25 are preferably arranged in the vicinity of the control device 23. Therefore, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are preferably disposed on the same side as the motor 20 with respect to the rim 10a in the axial direction of the main shaft 100.
  • the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are disposed inside the body 10, similarly to the rotor 2 and the motor 20. That is, the lightweight small aircraft 1 according to the first embodiment includes an auxiliary machine including the rotor 2 (rotating shaft 20a), the motor 20, the tilting device 22, the control device 23, the measuring device 24, the receiving device 25, and the battery 21. 10 is disposed inside. Accordingly, the side frame 10c constituting the body 10 surrounds the auxiliary equipment including the rotor 2 (rotating shaft 20a), the motor 20, the tilting device 22, the control device 23, the measuring device 24, the receiving device 25, and the battery 21. These devices are protected by the side frame 10c.
  • the auxiliary machines including the battery 21 are preferably disposed on the axis of the main shaft 100 on the downstream side of the air flow generated by the rotation of the rotor 2. Further, the auxiliary machines including the battery 21 are arranged near one top 10T of the fuselage 10, and the rotor 2, the motor 20, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are connected to the battery 21. On the other hand, it is preferably disposed on the opposite side of the rim 10 a in the axial direction of the main shaft 100. The rotor 2, the motor 20, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are arranged on the axis of the main shaft 100 so that the weight balance of the airframe 10 is uniform around the main shaft 100.
  • the rotor 2, the motor 20, the tilting device 22, the control device 23, the measuring device 24, the receiving device 25, and the auxiliary equipment including the battery 21 are arranged on the axis of the main shaft 100 with the rim 10 a interposed therebetween. It is preferable.
  • a power line (not shown) for supplying power from the battery 21 to the motor 20 is wired inside the hollow hub member 10d.
  • the battery 21 is generally heavier than the motor 20 and the rotor 2, this configuration makes it possible to fly lightly and smallly at a position (near one top portion 10 ⁇ / b> T of the fuselage 10) where auxiliary equipment including the battery 21 is disposed.
  • the center of gravity of the body 1 can be set.
  • the structure in which the "weight” which is not shown in figure is included in auxiliary machines with the battery 21 may be sufficient.
  • the “weight” is preferably of a weight such that the center of gravity of the lightweight small aircraft 1 is located in the vicinity of the battery 21.
  • the control device 23, the measurement device 24, and the reception device 25 may be arranged at the position of the center of gravity together with auxiliary devices including the battery 21.
  • the top 10T side on which the battery 21 is disposed is downward (Dn), and the top 10T side of the airframe 10 facing the lower side (the motor 20 and the rotor 2 are disposed). (Upper side) is the upper side (Up).
  • the lightweight small aircraft 1 is provided with plate blades (rotation suppression blades 5) for suppressing rotation around the main shaft 100 generated in the airframe 10 by rotation of the rotor 2.
  • the rotation shaft 20a of the rotor 2 is coaxial with the main shaft 100, that is, when the rotation shaft 20a is not tilted with respect to the main shaft 100, the rotation center of the rotor 2 is the main shaft 100.
  • torque reaction torque T ⁇ b> 1
  • reaction force torque T1 is also generated in the airframe 10 when the rotary shaft 20a is tilted with respect to the main shaft 100.
  • the reaction force torque T1 is a torque that acts on the airframe 10 in a direction opposite to the rotation direction of the rotor 2.
  • the airframe 10 rotates in the reverse direction with respect to the rotor 2 with the main shaft 100 as the rotation center.
  • the main shaft 100 is the yaw axis (Y) of the lightweight small aircraft 1, and the airframe 10 rotates about the yaw axis (Y) as a reaction against the rotation of the rotor 2.
  • yaw rotation Such rotation of the body 10 around the yaw axis (main shaft 100) is hereinafter referred to as yaw rotation.
  • the use of the lightweight small aircraft 1 is not limited, and can be used for aerial photography.
  • an imaging device (not shown) attached to the aircraft 10 also rotates, so that the position desired by the user is in the air. I can't shoot. Therefore, it is preferable that yaw rotation during flight can be suppressed.
  • a flying object such as a helicopter flying with rotor blades such as a rotor has two rotors, and the rotational torque (reaction torque T1) generated in the fuselage by one rotor is canceled by the other rotor, and the yaw rotation of the fuselage Is suppressed.
  • reaction torque T1 rotational torque generated in the fuselage by one rotor
  • the fuselage becomes larger and the weight increases. Therefore, it is preferable that the number of rotors provided is small especially in a small aircraft.
  • the light and small air vehicle 1 of the first embodiment is provided with two rotation suppression blades 5 on a straight line with the main shaft 100 interposed therebetween.
  • the rotation suppression blade 5 is disposed below the rotor 2 and is formed so that an air flow generated by the rotation of the rotor 2 is received by the blade surface 5a and the air flow flows along the blade surface 5a.
  • the blade surface 5a hangs downward from the rotation shaft 5b extending radially from the main shaft 100 (hub member 10d) toward the rim 10a, and the blade surface 5a rotates. It is comprised so that it may rotate with the axis
  • the two rotation suppression blades 5 are arranged at an interval of 180 degrees with the main shaft 100 as the center.
  • four (two on one side) spokes 10b are arranged at intervals of 60 degrees between the two rotating shafts 5b.
  • the two rotation shafts 5b extend in the axial direction of the roll shaft (R).
  • the number of rotation suppression blades 5 and the rotation shaft 5b extend. The direction is not limited.
  • the lightweight small aircraft 1 is provided with a rotating device (not shown) that rotates the rotating shaft 5b around the axis.
  • the rotating device is preferably a small motor, for example, and is accommodated in the hub member 10d.
  • Such a rotating device (such as a small motor) is configured to rotate the rotating shaft 5b based on a command from the control device 23 and to change the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100.
  • control device 23 tilts the rotation suppression blade 5 with respect to the axial direction of the main shaft 100, and as shown in FIG. 2C, the torque around the main shaft 100 for reducing the reaction force torque T1 ( The rotation suppression torque T2) can be generated in the airframe 10.
  • the rotation suppression torque T2 is not generated.
  • the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100 increases (however, within 45 degrees)
  • the speed component Vh increases and the torque about the main shaft 100 increases. Therefore, as the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100 increases, the rotation suppression torque T2 generated in the airframe 10 by the air flow air generated by the rotation of the rotor 2 increases.
  • control device 23 determines the angle of the rotation suppression blade 5 so that the angular velocity of the airframe 10 detected by the gyro sensor (measurement device 24) that detects the angular velocity of the airframe 10 (see FIG. 1) that rotates by yaw becomes “0”.
  • the yaw rotation of the airframe 10 can be effectively suppressed.
  • the airframe 10 when the rotor 2 rotates counterclockwise as viewed from above (rotation in the Rot direction), the airframe 10 (see FIG. 1) has a right side as shown by a broken line as a reaction.
  • a reaction torque T1 is generated in the rotational direction.
  • the control device 23 controls the axial direction of the main shaft 100 so that a rotation suppression torque T2 (a one-dot chain line) in the left rotation direction is generated when the air flow air generated by the rotation of the rotor 2 flows along the blade surface 5a.
  • the inclination angle of the blade surface 5a is changed.
  • the control device 23 constantly monitors the angular velocity (angular velocity of yaw rotation) of the airframe 10 detected by the gyro sensor (measurement device 24). And the control apparatus 23 changes the inclination-angle of the blade surface 5a with respect to the axial direction of the main axis
  • the lightweight small aircraft 1 according to the first embodiment shown in FIG. 1 can fly with lift and propulsion generated by the rotation of one rotor 2, and is smaller than a configuration including two or more rotors 2. Weight reduction is possible. Further, the yaw rotation of the airframe 10 due to the reaction force torque T1 (see FIG. 2C) generated by the rotation of the rotor 2 can be suppressed, and the lightweight small aircraft 1 can fly without the airframe 10 rotating in yaw. is there.
  • the external controller 7 when the user operates the external controller 7 to set the flight state such as the flight altitude and the traveling direction (absolute direction) of the light and small air vehicle 1, the external controller 7 is light and small in the set flight state.
  • a command (radio signal) for flying the body 1 is transmitted.
  • the lightweight small aircraft 1 receives a command transmitted from the external controller 7 by the receiving device 25, and inputs the received command to the control device 23.
  • the control device 23 sets the flight state of the lightweight small aircraft 1 based on the command input from the receiving device 25.
  • the control device 23 calculates the flight altitude of the lightweight small aircraft 1 based on the measurement signal input from the measuring device 24 and receives it.
  • the flight altitude of the lightweight small aircraft 1 is adjusted so that the deviation between the flight altitude (hereinafter referred to as altitude command value) included in the command input from the device 25 and the calculated flight altitude becomes “0”.
  • the control device 23 increases the rotation speed of the motor 20 to increase the rotation speed of the rotor 2 and raises the lightweight small aircraft 1 to the altitude command value.
  • the control device 23 lowers the rotation speed of the motor 20 to lower the rotation speed of the rotor 2 and lowers the lightweight small aircraft 1 to the altitude command value.
  • the control device 23 can control the blade surface 5a with respect to the axial direction of the main shaft 100. Is adjusted to adjust the magnitude of the rotation suppression torque T2 (see FIG. 2C), and the yaw rotation of the airframe 10 is suppressed.
  • the control device 23 changes the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100 according to the rotational speed of the rotor 2, and the rotational angular velocity around the yaw axis (Y) detected by the gyro sensor included in the measuring device 24. Is maintained at “0”.
  • the control device 23 advances the lightweight small flying vehicle 1 according to the measurement signal input from the measuring device 24.
  • the direction of the light and small air vehicle 1 is calculated so that the deviation between the absolute azimuth (hereinafter referred to as azimuth command value) included in the command input from the receiving device 25 and the calculated traveling direction is “0”. Adjust the direction. For example, when the heading command value is “north” and the traveling direction to be calculated is “north-northeast”, the control device 23 causes the rotor 2 (rotating shaft) so that the traveling direction of the lightweight small aircraft 1 turns northward. Tilt 20a).
  • control device 23 tilts the rotating shaft 20 a based on the measurement signal input from the measuring device 24, changes the tilt angle of the blade surface 5 a with respect to the axial direction of the main shaft 100, and transmits from the external controller 7.
  • the aircraft 10 is caused to fly in a flight state corresponding to the command to be executed.
  • the main shaft 100 may be inclined as shown in FIG.
  • the airframe 10 is an elliptical sphere, and the center of gravity is in the vicinity of the top portion 10 ⁇ / b> T below the airframe 10. Accordingly, the airframe 10 rolls so that the top portion 10T on the center of gravity side faces the ground surface G, and the top portion 10T below the airframe 10 is grounded as shown in FIG. Stands upright. That is, the lightweight small aircraft 1 according to the first embodiment having the ellipsoidal body 10 and having the center of gravity located below has a performance of self-returning to an upright state when landing on the ground surface G.
  • the air flow generated by the rotation of the rotor 2 flows downward (on the ground surface G side) and lift is generated in the airframe 10.
  • the lightweight and small flying object 1 floats from the ground surface G. In other words, if the lightweight small flying object 1 is in an upright state, the lightweight small flying object 1 can efficiently rise from the ground surface G when the flight is resumed.
  • FIG. 4A is a perspective view showing a lightweight small flying object of the second embodiment
  • FIG. 4B is a perspective view showing a modification of the lightweight small flying object of the second embodiment.
  • the lightweight small aircraft 1a of Example 2 shown to Fig.4 (a), (b) about the same structure as the lightweight small aircraft 1 of Example 1 shown in FIG. Description is omitted.
  • the shape of the rotation inhibiting blade 50a is the same as that of the rotation inhibiting blade 5 provided in the lightweight small flying vehicle 1 of the first embodiment shown in FIG. Is different.
  • the rotation suppression blade 50a provided in the lightweight small aircraft 1a according to the second embodiment is configured such that the outer edge (outer edge 52a) forms a part of the ellipsoidal sphere of the airframe 10.
  • the rotation suppression blade 50a of the second embodiment also rotates with the rotation shaft 5b, and the blade surface 51a so that the rotation suppression torque T2 shown in FIG. 2C is generated by the air flow air generated by the rotation of the rotor 2. Is preferably tiltable with respect to the axial direction of the main shaft 100.
  • the rotation suppression blade 50a configured as described above has a large blade surface 51a, and can effectively generate the rotation suppression torque T2 by the air flow air generated by the rotation of the rotor 2.
  • a light and small air vehicle 1a provided with a rotation restraining blade 50a in which a through hole 51a1 is formed in the blade surface 51a may be used.
  • the rotation suppression blade 50a having a shape in which the outer edge portion 52a forms a part of an elliptical sphere has a large resistance when the light and small air vehicle 1a has a large blade surface 51a. Therefore, as shown in FIG. 4 (b), a through-hole 51a1 may be formed in the blade surface 51a, and the rotation suppression blade 50a may be configured such that the resistance when the lightweight small flying object 1a flies is reduced. Moreover, it may replace with the through-hole 51a1, and may be the rotation suppression blade
  • the outer edge portion 52 a of the rotation suppression blade 50 a forms a part of the ellipsoidal sphere of the airframe 10. Therefore, it is possible to reduce the number of side frames 10c forming the ellipsoidal sphere of the airframe 10, and it is possible to reduce the weight of the lightweight small flying object 1a. Further, the light-weight small aircraft 1a has the performance of self-returning to an upright state when it lands on the ground surface G in the same manner as the light-weight small vehicle 1 (see FIG. 1) of the first embodiment.
  • FIG. 5A shows a state in which the rotation suppression blade is inclined with respect to the wind direction
  • FIG. 5B shows a state in which the blade surface of the rotation suppression blade is parallel to the wind direction
  • FIG. 5C shows a diagram showing a state in which a rotation suppression torque larger than a reaction force torque is generated.
  • 6 is a diagram showing an example of the configuration of the wind direction detecting means
  • FIG. 6 (a) is a diagram showing a state in which the detection blades of the wind direction detecting means are inclined with respect to the wind direction
  • FIG. 6 (b) is a diagram. It is a figure which shows the state in which the detection blade
  • about the same structure as the lightweight small aircraft 1 of Example 1 shown in FIG. Description is omitted.
  • the light and small air vehicle 1b of the third embodiment is provided with a wind direction detecting means 60 capable of detecting the wind direction of the wind W blowing toward the airframe 10 in flight.
  • the wind direction of the wind W detected by the wind direction detection means 60 is a combination of the air drag generated by the flight of the lightweight small aircraft 1b and the naturally generated wind.
  • the advancing direction of the lightweight small aircraft 1b shown to Fig.5 (a) shall be the direction of D1.
  • the lightweight small aircraft 1b of the third embodiment includes the wind direction detection means 60, detects the wind direction of the wind W blowing toward the airframe 10, and further, the blade surface 5a of the rotation suppression blade 5 is the wind direction of the wind W.
  • the attitude of the airframe 10 is maintained so as to be parallel (that is, the rotation shaft 5b of the rotation suppression blade 5 is parallel to the wind direction of the wind W).
  • the wind direction detection means 60 includes a detection blade 61 that rotates around a pin member 63 that protrudes in the axial direction of the main shaft 100 (see FIG. 1), and a frame portion that is disposed on both sides of the rotation direction of the detection blade 61. 62, and is configured to be able to output a signal (wind direction detection signal) corresponding to the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides.
  • the wind direction detection means 60 is capable of detecting the rotation angle when the detection blade 61 rotates around the pin member 63.
  • 6B when the detection blade 61 is at the center position of the frame portion 62, that is, when the gaps A1, A2 between the detection blade 61 and the frame portions 62 on both sides are equal, If the rotation angle is set to “0 degree”, the wind direction detection means 60 is based on the rotation angle of the detection blade 61 and the wind direction detection signal according to the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides. Can be output. Or the wind direction detection means 60 which outputs the rotation angle when the detection blade 61 rotates around the pin member 63 as a wind direction detection signal may be sufficient.
  • the detection blade 61 receives the wind W and rotates around the pin member 63 and is maintained in a state parallel to the wind direction of the wind W. Accordingly, the wind direction detecting means 60 is configured so that the detection blade 61 is parallel to the blade surface 5a (see FIG. 5A) of the rotation suppression blade 5 (that is, the detection blade 61 is parallel to the rotation shaft 5b).
  • the detection blade 61 is preferably attached to the machine body 10 (see FIG. 5A) so that the detection blade 61 is located at the center position of the frame portion 62.
  • the wind direction detecting means 60 When the wind direction detecting means 60 has such a configuration, when the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 (see FIG. 5A) are not parallel, as shown in FIG. Is at a position deviated from the center position of the frame portion 62, and the gap A1 between the detection blade 61 and one of the frame portions 62 and the gap A2 between the detection blade 61 and the other of the frame portions 62 have different values. . On the other hand, when the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are parallel, the detection blade 61 is at the center position of the frame portion 62 as shown in FIG. The gap A ⁇ b> 1 with one of 62 is equal to the gap A ⁇ b> 2 between the detection blade 61 and the other of the frame portion 62.
  • the control device 23 detects the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides. Based on the value, it can be determined whether or not the wind direction of the wind W and the blade surface 5a (see FIG. 5A) of the rotation suppression blade 5 are parallel.
  • the control device 23 determines that the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are not parallel, as shown in FIGS. 5 (a) to 5 (c), the airframe 10 is intentionally yawed. Rotate.
  • the control device 23 sets the inclination angle of the blade surface 5a of the rotation suppression blade 5 with respect to the axial direction of the main shaft 100 to “0” (or decreases the inclination angle).
  • the lightweight restrained aircraft 1b is in a state where no rotation inhibition torque T2 is generated in the airframe 10 (or in a state where the rotation inhibition torque T2 is small), and the airframe 10 is yaw-rotated with the reaction force torque T1 generated by the rotation of the rotor 2.
  • the control device 23 (see FIG. 1) is configured so that the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are parallel to each other as shown in FIG.
  • the blade surface 5a of the rotation suppression blade 5 is inclined with respect to the axial direction of the main shaft 100, and the rotation suppression torque T2 is generated in the airframe 10.
  • the control device 23 determines that the detection values of the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides are equal based on the wind direction detection signal, the control device 23 moves the blade surface 5a of the rotation suppression blade 5 to the main shaft 100.
  • the rotation suppression torque T2 is generated in the airframe 10 by being inclined with respect to the axial direction.
  • the reaction force torque T1 generated by the rotation of the rotor 2 is reduced (or canceled) by the rotation suppression torque T2 generated in the fuselage 10, and the yaw rotation of the fuselage 10 is stopped, as shown in FIG.
  • the posture in which the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are parallel to each other is maintained.
  • control device 23 controls the tilting device 22 to appropriately tilt the rotating shaft 20a of the rotor 2 so that the lightweight small aircraft 1 advances in the direction desired by the user.
  • FIG. 5A shows a state in which the airframe 10 is rotated leftward (yaw rotation) when the rotor 2 rotates counterclockwise when the lightweight small flying object 1b is viewed from above. Therefore, it is necessary to rotate the fuselage 10 around the main shaft 100 almost once.
  • the magnitude of the rotation suppression torque T2 is increased as shown in FIG. It becomes larger than the magnitude of the reaction torque T1, and the airframe 10 can be rotated to the right. Therefore, the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 can be made parallel to each other more quickly than when the body 10 is rotated counterclockwise.
  • the control device 23 determines the wind direction of the wind W and the blades of the rotation suppression blade 5. It is good also as a structure which generates the rotation suppression torque T2 before the surface 5a becomes parallel.
  • FIG. 7A is a perspective view showing a modified example in which the light and light aircraft of the third embodiment is provided with three rotation suppression blades
  • FIG. 7B is a top view of a modified example of the light and light aircraft of the third embodiment.
  • the airframe 10 is provided with three spokes 10b at intervals of 120 degrees, and between the spokes 10b, three rotation suppression blades 5 are provided at intervals of 120 degrees.
  • the lightweight and small aircraft 1b may be used.
  • the wind direction detection means 60 is preferably attached to the body 10 so as to detect a wind direction that minimizes the resistance caused by the wind W being blown against the blade surface 5a of the rotation suppression blade 5. Such a wind direction of the wind W is preferably determined by experimental measurement or the like or simulation.
  • the light and small air vehicle 1b of the third embodiment shown in FIG. 5A has the airframe 10 so that the wind direction of the wind W toward the airframe 10 and the blade surfaces 5a of the two rotation suppression blades 5 are parallel to each other. By maintaining this posture, it is possible to reduce the resistance caused by the wind W blowing on the blade surface 5a of the rotation suppression blade 5.
  • the attitude of the airframe 10 is minimized so that the resistance caused by the wind W being blown onto the blade surface 5a is minimized. Is maintained.
  • FIG. 8A is a top view showing a state in which a rotation suppression torque smaller than the reaction force torque is generated in the airframe
  • FIG. 8B is a top view showing the airframe whose traveling direction is turned in the direction D2.
  • FIG. 9 (a) is a top view showing a state in which a rotation suppression torque larger than the reaction torque is generated in the airframe
  • FIG. 9 (b) is a top view showing the airframe whose traveling direction is turned in the direction of D3. is there.
  • the lightweight small aircraft of Example 4 has the same configuration as the lightweight small aircraft 1 of Example 1 shown in FIG.
  • the tilting device 22 provided in the lightweight small aircraft 1 according to the fourth embodiment is configured so that the rotating shaft 20a can be tilted in a single axis direction orthogonal to the main shaft 100 from a state coaxial with the main shaft 100.
  • the tilting device 22 is configured to tilt the rotor 2 in the roll axis (R) direction.
  • the rotating shaft 20a tilts about the pitch axis (P) and tilts in the roll axis (R) direction.
  • the rotating shaft 20a tilts in one axial direction, and the aircraft 10 generates lift and propulsion to fly.
  • the rotary shaft 20a is configured to tilt only in the roll axis (R) direction
  • the lightweight small aircraft 1 can only travel in one direction by tilting the rotary shaft 20a (rotor 2). That is, when the rotor 2 is tilted in the roll axis (R) direction, a propulsive force is applied to the airframe 10 only in the axial direction of the roll axis (R), and the lightweight small aircraft 1 is in the axial direction of the roll axis (R). Can only proceed. Therefore, the control device 23 (see FIG. 1) of the fourth embodiment is configured to change the traveling direction of the lightweight small aircraft 1 by rotating the airframe 10 by yaw.
  • the traveling direction of the lightweight small aircraft 1 that is traveling in the direction D1 as the rotor 2 rotates in the direction of Rot is the direction of D2.
  • the control device 23 sets the inclination angle of the blade surface 5a of the rotation suppression blade 5 to the axial direction of the main shaft 100 to “0”.
  • the tilt angle is reduced from the state where the yaw rotation of the airframe 10 is suppressed.
  • the rotation suppression torque T2 disappears (or becomes smaller), the aircraft 10 rotates to the right by the reaction force torque T1, and the traveling direction of the lightweight small aircraft 1 also turns to the right.
  • the control device 23 rotates the rotation suppression blade 5 so that the angular velocity of the airframe 10 that rotates yaw becomes “0” when the traveling direction of the lightweight small aircraft 1 becomes D2.
  • the blade surface 5a is inclined with respect to the axial direction of the main shaft 100.
  • rotation suppression torque T2 is generated in the airframe 10, and rotation of the airframe 10 due to the reaction force torque T1 is suppressed.
  • the control device 23 detects that the traveling direction of the lightweight small aircraft 1 is D2 based on a measurement signal input from a sensor (measurement device 24) that detects the traveling direction of the airframe 10 in an absolute direction. What is necessary is just composition.
  • the control device 23 increases the inclination angle of the blade surface 5a of the rotation suppression blade 5 with respect to the axial direction of the main shaft 100 from the state where the yaw rotation of the airframe 10 is suppressed.
  • the magnitude of the rotation suppression torque T2 generated in the machine body 10 is greater than the magnitude of the reaction force torque T1, and the machine body 10 rotates in the opposite direction (left direction) to the direction in which the reaction force torque T1 acts due to the rotation inhibition torque T2.
  • the traveling direction of the small aircraft 1 also turns to the left. Then, as shown in FIG.
  • the control device 23 rotates the rotation suppression blade 5 so that the angular velocity of the airframe 10 that rotates yaw becomes “0” when the traveling direction of the lightweight small aircraft 1 becomes D3.
  • the blade surface 5a is inclined with respect to the axial direction of the main shaft 100.
  • the control device 23 is a lightweight and compact flight.
  • the body 1 can be advanced in any direction.
  • the rotation shaft 20a (see FIG. 1) of the rotor 2 is tilted in only one direction with respect to the main shaft 100 (see FIG. 1).
  • the control device 23 adjusts the rotation inhibition torque T2 generated in the body 10 by changing the inclination angle of the rotation inhibition blade 5 (see FIG. 8A) with respect to the axial direction of the main shaft 100,
  • the lightweight small aircraft 1 can be advanced in any direction.
  • the tilting device 22 (see FIG. 1) capable of tilting the rotating shaft 20a in only one direction with respect to the main shaft 100 has a simple structure and is lightweight. Further, the flight performance (turning performance) of the lightweight small aircraft 1 does not decrease. Therefore, by providing the tilting device 22 that can tilt the rotating shaft 20a in only one direction with respect to the main shaft 100, the lightweight small aircraft 1 can be reduced in weight without reducing the flight performance.
  • this invention is not limited to an above-described Example.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • the blade surface 5 a of the rotation suppression blade 5 is formed with a curved surface that is curved in the axial direction of the main shaft 100.
  • the rotation suppression blade 5 having 5a may be used.
  • the present invention is not limited to the above-described embodiments, and appropriate design changes can be made without departing from the spirit of the invention.
  • the airframe 10 of the lightweight small aircraft 1 shown in FIG. 1 is an elliptical sphere crushed in the axial direction of the main shaft 100, it may be a completely spherical airframe (not shown).
  • a cylindrical body (not shown) having the main shaft 100 as an axial direction may be used.
  • the shape of the aircraft is not limited.
  • wing 5 are exposed may be sufficient.
  • the blade surface 5 a that can be inclined with respect to the axial direction of the main shaft 100 is formed below the rotor 2 in the rotation suppression blade 5.
  • the lightweight small aircraft 1 that does not include the tilting device 22 that tilts the rotating shaft 20a of the rotor 2 with respect to the axial direction of the main shaft 100 may be used. In this case, only the lift can be generated in the airframe 10 of the lightweight small aircraft 1 by the rotation of the rotor 2.
  • the present invention can also be applied to a flying object.
  • FIG. 1 is a configuration in which one aircraft 10 is provided with one rotor 2, but a lightweight and small configuration in which one aircraft 10 is provided with two or more rotors 2.
  • the present invention can also be applied to a flying object.
  • the rotation directions of the rotor 2 may all be the same or different.

Abstract

A lightweight small flight vehicle (1) that flies by rotation of a rotor (2) is characterized by being equipped with: a rotation prevention blade (5) that generates a torque about a main shaft (100) in a fuselage (10) by receiving by a blade surface (5a) an airflow that is generated in the axial direction of the main shaft (100) by the rotation of the rotor (2) in order to reduce a reaction torque that is generated in the fuselage (10) as a counteraction to the rotation of the rotor (2), the tilt angle of said blade surface being changeable with respect to the axial direction of the main shaft (100); and a control device (23) that changes the tilt angle of the blade surface (5a) in order to adjust the magnitude of the torque to be generated about the main shaft (100) in the fuselage (10).

Description

軽量小型飛行体Lightweight small air vehicle
本発明は、軽量小型飛行体に関する。 The present invention relates to a lightweight small aircraft.
本技術分野の背景技術として、例えば、特許文献2には、「本発明は、断面がエアフォイル形状であり、一定角度の間隔で配置された複数のブレード、及びこれらの各ブレードの一端部が互いに連結されるハブを備え、その回転によって揚力を発生させるロータと、先端がハブに結合され、回転自在な駆動軸を備え、ロータを回転させるために必要な駆動力を付与するロータ駆動部と、ロータ駆動部を収容し、ロータの下側に位置して、そのロータの回転によって発生する揚力により飛行するボディーと、ロータの回転によって、そのロータが回転する方向と逆方向にボディーを回転させる反作用トルクを低減させるか、または無くすために、ボディーの外側面の周縁方向に沿って一定角度の間隔で配置され、そのそれぞれの一端部は、駆動軸の長手方向に前記ボディーに固定された複数の固定ウィングと、を備える。」と記載されている(要約参照)。 As background art in this technical field, for example, Patent Document 2 states that “the present invention has a plurality of blades having a cross section of an airfoil shape and arranged at a constant angle interval, and one end portion of each of these blades. A rotor having a hub connected to each other and generating lift by rotation thereof; and a rotor driving unit having a distal end coupled to the hub and having a rotatable driving shaft and applying a driving force necessary to rotate the rotor; A body that houses the rotor drive unit and is located below the rotor and flies by the lift generated by the rotation of the rotor; and the rotation of the rotor causes the body to rotate in a direction opposite to the direction in which the rotor rotates. In order to reduce or eliminate the reaction torque, it is arranged at regular angular intervals along the peripheral direction of the outer surface of the body, each end of which is driven Comprising a plurality of fixed wing which is fixed longitudinally to said body, a. "Is described as (see Abstract).
特許文献1:特開2012-81936号公報
特許文献2:特表2007-521174号公報
Patent Document 1: Japanese Patent Laid-Open No. 2012-81936 Patent Document 2: Japanese Translation of PCT International Publication No. 2007-521174
1つのロータ(プロペラ)だけで飛行可能に構成されている飛行体が特許文献1に記載されている。しかしながら、この飛行体は板状の機体を有し、ロータを回転させるモータの反作用で機体がヨー軸回りに回転(ヨー回転)した状態で飛行するように構成されている。つまり、特許文献1に記載される飛行体は、ヨー軸回りに回転しない状態での浮上状態を維持できないという問題がある。
 また、特許文献2には、1つのメインロータを有し、ボディ(機体)がヨー軸回りに回転(ヨー回転)することなく飛行可能な超小型飛行体が記載されている。この超小型飛行体は、メインロータの下方に複数のウィングを有し、メインロータを回転させるモータの反作用で機体に生じるヨー軸回りの回転トルクを、メインロータの回転に伴う下降流で打ち消すように構成されている。しかしながら、特許文献2の超小型飛行体に備わるウィングは固定式であり、浮上状態にある超小型飛行体の周囲の状況(風向や風速等)が変化した場合に安定した浮上状態を維持できない場合がある。
Japanese Patent Application Laid-Open No. 2004-151867 describes a flying object configured to be able to fly with only one rotor (propeller). However, this flying body has a plate-like body and is configured to fly in a state where the body rotates around the yaw axis (yaw rotation) by the reaction of the motor that rotates the rotor. In other words, the flying object described in Patent Document 1 has a problem that it cannot maintain a floating state in a state where it does not rotate around the yaw axis.
Patent Document 2 describes a micro air vehicle that has one main rotor and can fly without rotating (yaw rotation) around a yaw axis. This micro air vehicle has a plurality of wings below the main rotor so as to cancel the rotational torque around the yaw axis generated by the reaction of the motor that rotates the main rotor with the downward flow accompanying the rotation of the main rotor. It is configured. However, the wing provided in the micro air vehicle of Patent Document 2 is a fixed type, and a stable levitation state cannot be maintained when the surrounding conditions (wind direction, wind speed, etc.) of the micro air vehicle in the levitation state change There is.
そこで本発明は、ロータの回転で揚力を発生するとともに、ヨー軸回りの回転を抑止可能な軽量小型飛行体を提供することを課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a lightweight small aircraft that generates lift by rotation of a rotor and can suppress rotation around a yaw axis.
前記課題を解決するため本発明は、ロータが回転して飛行する軽量小型飛行体で、ロータの回転の反作用として機体に生じる反作用トルクを低減するために、ロータの回転で発生する空気流を、ヨー軸の軸方向に対する傾斜角度が可変の羽根面で受けて、機体にヨー軸回りのトルクを発生させる板羽根と、羽根面の傾斜角度を変更して、機体に発生するヨー軸回りのトルクの大きさを調節する制御装置と、を備えるという特徴を有する。 In order to solve the above-mentioned problem, the present invention is a lightweight and small flying object in which a rotor rotates and in order to reduce reaction torque generated in the airframe as a reaction of rotation of the rotor, an air flow generated by rotation of the rotor is The blade surface that receives the tilt angle with respect to the axial direction of the yaw axis and generates the torque around the yaw axis in the aircraft, and the torque around the yaw axis generated in the aircraft by changing the inclination angle of the blade surface And a control device that adjusts the size of the image.
本発明によると、ロータの回転で揚力を発生するとともに、ヨー軸回りの回転を抑止可能な軽量小型飛行体を提供できる。 According to the present invention, it is possible to provide a lightweight and small flying body capable of generating lift by rotation of the rotor and suppressing rotation around the yaw axis.
実施例1に係る軽量小型飛行体の構造を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a structure of a lightweight small aircraft according to a first embodiment. (a)は回転抑止羽根の側面図、(b)は回転抑止羽根に空気流が当たって主軸回りの回転抑止トルクが発生する状態を示す側面図、(c)は主軸回りに発生する回転抑止トルクを示す上面図である。(A) is a side view of the rotation suppression blade, (b) is a side view showing a state in which an air flow hits the rotation suppression blade and a rotation suppression torque around the main shaft is generated, and (c) is a rotation suppression generated around the main shaft. It is a top view which shows a torque. (a)は軽量小型飛行体が傾いて地表面に着地した状態を示す側面図、(b)は軽量小型飛行体が地表面で正立した状態を示す側面図である。(A) is a side view showing a state where a lightweight small flying object is inclined and landed on the ground surface, and (b) is a side view showing a state where the lightweight small flying object is upright on the ground surface. (a)は実施例2の軽量小型飛行体を示す斜視図、(b)は実施例2の軽量小型飛行体の変形例を示す斜視図である。(A) is a perspective view which shows the lightweight small aircraft of Example 2, (b) is a perspective view which shows the modification of the lightweight small aircraft of Example 2. FIG. (a)は回転抑止羽根が風向に対して傾斜している状態を示す図、(b)は回転抑止羽根の羽根面が風向と平行な状態を示す図、(c)は反力トルクより大きな回転抑止トルクが発生している状態を示す図である。(A) is a diagram showing a state in which the rotation suppression blade is inclined with respect to the wind direction, (b) is a diagram showing a state in which the blade surface of the rotation suppression blade is parallel to the wind direction, and (c) is larger than the reaction torque. It is a figure which shows the state which the rotation suppression torque has generate | occur | produced. (a)は風向検出手段の検出羽根が風向に対して傾斜している状態を示す図、(b)は風向検出手段の検出羽根が風向と平行な状態を示す図である。(A) is a figure which shows the state which the detection blade of a wind direction detection means inclines with respect to a wind direction, (b) is a figure which shows the state in which the detection blade of a wind direction detection means is parallel to a wind direction. (a)は実施例3の軽量小型飛行体に3枚の回転抑止羽根が備わる変形例を示す斜視図、(b)は実施例3の軽量小型飛行体の変形例の上面図である。(A) is a perspective view which shows the modification with which the light-weight small aircraft of Example 3 is equipped with three rotation suppression blades, (b) is a top view of the modification of the light-weight small aircraft of Example 3. (a)は反力トルクより小さな回転抑止トルクが機体に発生している状態を示す上面図、(b)は進行方向がD2の方向に転向した機体を示す上面図である。(A) is a top view which shows the state which the rotation suppression torque smaller than reaction force torque has generate | occur | produced in the body, (b) is a top view which shows the body which the turning direction turned to the direction of D2. (a)は反力トルクより大きな回転抑止トルクが機体に発生している状態を示す上面図、(b)は進行方向がD3の方向に転向した機体を示す上面図である。(A) is a top view showing a state in which rotation suppression torque larger than reaction force torque is generated in the airframe, and (b) is a top view showing the airframe whose traveling direction is turned in the direction of D3.
以下、適宜図を参照して本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
図1は実施例1に係る軽量小型飛行体の構造を示す斜視図である。また、図2(a)は回転抑止羽根の側面図、図2(b)は回転抑止羽根に空気流が当たって主軸回りの回転抑止トルクが発生する状態を示す側面図、図2(c)は主軸回りに発生する回転抑止トルクを示す上面図である。また、図3(a)は軽量小型飛行体が傾いて地表面に着地した状態を示す側面図、図3(b)は軽量小型飛行体が地表面で正立した状態を示す側面図である。 FIG. 1 is a perspective view showing a structure of a lightweight small aircraft according to the first embodiment. 2 (a) is a side view of the rotation suppression blade, FIG. 2 (b) is a side view showing a state in which rotation suppression torque around the main shaft is generated by the air flow hitting the rotation suppression blade, and FIG. 2 (c). FIG. 5 is a top view showing rotation suppression torque generated around the main shaft. FIG. 3A is a side view showing a state where the lightweight small flying object is tilted and landed on the ground surface, and FIG. 3B is a side view showing a state where the lightweight small flying object stands upright on the ground surface. .
図1に示すように、実施例1の軽量小型飛行体1は、球体が1つの軸方向に押しつぶされた形状(以下、楕円球体と称する)を呈するフレーム構造の機体10を有する。この機体10において、球体が押しつぶされる方向を軸方向とする1軸を主軸100とする。
 軽量小型飛行体1の機体10は、主軸100を中心とする円環状のフレーム(リム10a)と、リム10aの中心に主軸100と同軸に延設される筒状部材(ハブ部材10d)からリム10aの径方向に放射状に延設される複数のフレーム(スポーク10b)と、を有する。図1には4本のスポーク10bが備わる一例が示されている。
As shown in FIG. 1, the lightweight small aircraft 1 of the first embodiment includes a frame body 10 having a shape in which a sphere is crushed in one axial direction (hereinafter referred to as an elliptic sphere). In the airframe 10, a main axis 100 is defined as one axis whose axial direction is the direction in which the sphere is crushed.
The airframe 10 of the lightweight small aircraft 1 includes an annular frame (rim 10a) centered on the main shaft 100, and a cylindrical member (hub member 10d) extending coaxially with the main shaft 100 at the center of the rim 10a. A plurality of frames (spokes 10b) extending radially in the radial direction of 10a. FIG. 1 shows an example in which four spokes 10b are provided.
また、リム10aには、楕円球体の外形を構成する複数のフレーム(サイドフレーム10c)が取り付けられる。サイドフレーム10cは側面視で楕円形状を呈し、主軸100上に頂部10Tを形成する。このような楕円形状に湾曲するサイドフレーム10cがリム10aの円環状に沿って配設されて楕円球体の機体10が形成される。なお、図1には3本のサイドフレーム10cが記載されているが、サイドフレーム10cの数は限定するものではない。
 また、サイドフレーム10cは、主軸100の軸方向に中央となる最も膨出した部分がリム10aで連結され、この構成によって、機体10における主軸100の軸方向の中央にリム10aが配設される。
A plurality of frames (side frames 10c) constituting the outer shape of an elliptical sphere are attached to the rim 10a. The side frame 10 c has an elliptical shape in a side view, and forms a top portion 10 </ b> T on the main shaft 100. Such an elliptical side frame 10c is disposed along the annular shape of the rim 10a to form an elliptical spherical body 10. In FIG. 1, three side frames 10c are shown, but the number of side frames 10c is not limited.
Further, the side frame 10c is connected with a rim 10a at the most bulged portion that is the center in the axial direction of the main shaft 100. With this configuration, the rim 10a is disposed in the center of the main body 100 in the axial direction of the main body 100. .
図1に示すように、実施例1の軽量小型飛行体1は、リム10a、スポーク10b、およびサイドフレーム10cで形成されるフレーム構造の機体10を有する。
 機体10がフレーム(リム10a,スポーク10b,サイドフレーム10c)で形成されることによって軽量小型飛行体1が軽量化され、さらに軽量小型飛行体1が飛行するときの抵抗が軽減される。
As shown in FIG. 1, the lightweight small aircraft 1 according to the first embodiment includes a frame body 10 formed of a rim 10a, a spoke 10b, and a side frame 10c.
Since the airframe 10 is formed of a frame (rim 10a, spoke 10b, side frame 10c), the lightweight small aircraft 1 is reduced in weight, and resistance when the lightweight small aircraft 1 flies is reduced.
また、軽量小型飛行体1には、主軸100と同軸の回転軸20aを回転させるモータ20と、回転軸20aとともに回転するロータ2と、ロータ2の回転に使用される補機類(モータ20に電力を供給するバッテリ21等)が備わる。実施例1の軽量小型飛行体1は、1つの機体10に1つのロータ2が備わる「シングルロータ」である。
 ロータ2、モータ20およびバッテリ21を含む補機類は機体10の内側に配設される。また、ロータ2は、例えば2枚のブレード2aを有し、回転軸20aとともに回転して主軸100の軸方向に流れる空気流を発生させる。そして、ロータ2の回転で生じる空気流によって機体10に揚力が発生し、軽量小型飛行体1が地表面G(地面,海面)から主軸100の軸方向に浮上するように構成される。なお、ロータ2に備わるブレード2aの数は2枚に限定するものではなく、3枚以上のブレード2aが備わるロータ2であってもよい。
Further, the lightweight small aircraft 1 includes a motor 20 that rotates a rotary shaft 20a coaxial with the main shaft 100, a rotor 2 that rotates together with the rotary shaft 20a, and auxiliary equipment (such as the motor 20) that is used to rotate the rotor 2. A battery 21 for supplying power). The lightweight small aircraft 1 of the first embodiment is a “single rotor” in which one airframe 10 includes one rotor 2.
Auxiliary machines including the rotor 2, the motor 20, and the battery 21 are disposed inside the fuselage 10. Further, the rotor 2 has, for example, two blades 2 a and rotates with the rotary shaft 20 a to generate an air flow that flows in the axial direction of the main shaft 100. Then, lift is generated in the airframe 10 by the air flow generated by the rotation of the rotor 2, and the lightweight small aircraft 1 is configured to float in the axial direction of the main shaft 100 from the ground surface G (ground, sea surface). The number of blades 2a provided in the rotor 2 is not limited to two, and may be a rotor 2 provided with three or more blades 2a.
また、実施例1の軽量小型飛行体1には、ロータ2の回転軸20aを主軸100に対して傾倒させる傾倒装置22が備わる。傾倒装置22はモータ20ごと回転軸20aを傾倒させる構成であってもよいし、回転軸20aのみ傾倒させる構成であってもよい。なお、傾倒装置22は、従来から使用されているものを使用すればよい。
 ロータ2の回転中心となる回転軸20aが主軸100に対して傾倒するとロータ2の回転で生じる空気流が主軸100の軸方向に対して傾斜し、機体10に推進力が生じる。
 実施例1の傾倒装置22は、回転軸20aを、主軸100と同軸の状態から、主軸100と直交するロール軸(R)と、主軸100およびロール軸(R)と直交するピッチ軸(P)と、に向かう互いに直交する2軸方向に傾倒可能に構成される。そして軽量小型飛行体1は、回転軸20aをピッチ軸(P)の方向とロール軸(R)の方向に適宜傾倒して推進力が作用する方向を変更し、地表面Gから浮上した状態で任意の方向に進行するように飛行する。
 つまり、回転軸20aがロール軸(R)方向とピッチ軸(P)方向にそれそれ任意の角度で傾倒することによって軽量小型飛行体1の進行方向が決定される。
Further, the lightweight small aircraft 1 of the first embodiment is provided with a tilting device 22 that tilts the rotating shaft 20a of the rotor 2 with respect to the main shaft 100. The tilting device 22 may be configured to tilt the rotating shaft 20a together with the motor 20, or may be configured to tilt only the rotating shaft 20a. In addition, what is necessary is just to use the tilting apparatus 22 conventionally used.
When the rotation shaft 20a that is the rotation center of the rotor 2 is tilted with respect to the main shaft 100, the air flow generated by the rotation of the rotor 2 is tilted with respect to the axial direction of the main shaft 100, and a propulsive force is generated in the airframe 10.
In the tilting device 22 according to the first embodiment, the rotation shaft 20a is rotated from the state of being coaxial with the main shaft 100, the roll axis (R) orthogonal to the main shaft 100, and the pitch axis (P) orthogonal to the main shaft 100 and the roll axis (R). And can be tilted in two axial directions perpendicular to each other. Then, the lightweight small aircraft 1 changes the direction in which the propulsive force acts by appropriately tilting the rotating shaft 20a in the direction of the pitch axis (P) and the direction of the roll axis (R), and in a state where it floats from the ground surface G. Fly to travel in any direction.
That is, the traveling direction of the lightweight small aircraft 1 is determined by the rotation shaft 20a being inclined at an arbitrary angle in the roll axis (R) direction and the pitch axis (P) direction.
なお、主軸100は、ピッチ軸(P)およびロール軸(R)と直交する軸であり、軽量小型飛行体1のヨー軸(Y)となる。 The main axis 100 is an axis orthogonal to the pitch axis (P) and the roll axis (R), and serves as the yaw axis (Y) of the lightweight small aircraft 1.
また、軽量小型飛行体1には、モータ20や傾倒装置22を制御してロータ2の回転速度や傾倒角度を調節する制御装置23が備わる。また、軽量小型飛行体1には、ピッチ軸(P)回りの回転角速度、ロール軸(R)回りの回転角速度、ヨー軸(Y)回りの回転角速度を検出するジャイロセンサや飛行の状態を計測するセンサ等を含む計測装置24が備わっている。
 計測装置24には、例えば、飛行している機体10の飛行速度を計測するセンサ、飛行している機体10の飛行高度を計測するセンサ、機体10の進行方向を絶対方位で検出するセンサ、などが飛行状態を計測するセンサとして含まれている。なお、ピッチ軸(P)回り、ロール軸(R)回りの回転角速度、ヨー軸(Y)回りの傾斜を計測するセンサ、や加速度センサなど、他のセンサが計測装置24に含まれていてもよい。
In addition, the light and small air vehicle 1 includes a control device 23 that controls the motor 20 and the tilting device 22 to adjust the rotational speed and tilting angle of the rotor 2. In addition, the lightweight small air vehicle 1 measures a rotational angular velocity around the pitch axis (P), a rotational angular velocity around the roll axis (R), and a rotational angular velocity around the yaw axis (Y) and a flight state. A measuring device 24 including a sensor or the like is provided.
The measuring device 24 includes, for example, a sensor that measures the flight speed of the flying aircraft 10, a sensor that measures the flight altitude of the flying aircraft 10, a sensor that detects the traveling direction of the aircraft 10 in an absolute direction, and the like. Is included as a sensor for measuring the flight state. Note that the measuring device 24 may include other sensors such as a sensor that measures a rotational angular velocity about the pitch axis (P), a rotational angle about the roll axis (R), a tilt about the yaw axis (Y), and an acceleration sensor. Good.
また、実施例1の軽量小型飛行体1は、外部コントローラ7からの指令(例えば、無線信号による指令)に応じて飛行する構成であり、外部コントローラ7が発信する指令(無線信号)を受信する受信装置25が軽量小型飛行体1に備わっている。 The lightweight small aircraft 1 of the first embodiment is configured to fly in response to a command (for example, a command by a radio signal) from the external controller 7 and receives a command (a radio signal) transmitted from the external controller 7. A receiving device 25 is provided in the lightweight small aircraft 1.
回転軸20aを傾倒させる傾倒装置22はモータ20の近傍に配設されることが好ましく、モータ20や傾倒装置22を制御する制御装置23はモータ20および傾倒装置22の近傍に配設されることが好ましい。さらに、計測装置24はジャイロセンサ等のセンサが計測した計測信号を制御装置23に入力し、受信装置25は外部コントローラ7から受信した信号を制御装置23に入力する。このため、計測装置24および受信装置25は制御装置23の近傍に配設されることが好ましい。
 したがって、傾倒装置22、制御装置23、計測装置24、および受信装置25は、主軸100の軸方向に、リム10aに対してモータ20と同じ側に配設されることが好ましい。
The tilting device 22 for tilting the rotary shaft 20a is preferably disposed in the vicinity of the motor 20, and the control device 23 for controlling the motor 20 and the tilting device 22 is disposed in the vicinity of the motor 20 and the tilting device 22. Is preferred. Further, the measurement device 24 inputs a measurement signal measured by a sensor such as a gyro sensor to the control device 23, and the reception device 25 inputs a signal received from the external controller 7 to the control device 23. For this reason, the measuring device 24 and the receiving device 25 are preferably arranged in the vicinity of the control device 23.
Therefore, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are preferably disposed on the same side as the motor 20 with respect to the rim 10a in the axial direction of the main shaft 100.
また、傾倒装置22、制御装置23、計測装置24、および受信装置25は、ロータ2およびモータ20と同様に、機体10の内側に配設される。
 つまり、実施例1の軽量小型飛行体1は、ロータ2(回転軸20a)、モータ20、傾倒装置22、制御装置23、計測装置24、受信装置25、およびバッテリ21を含む補機類が機体10の内側に配設される。したがって、機体10を構成するサイドフレーム10cが、ロータ2(回転軸20a)、モータ20、傾倒装置22、制御装置23、計測装置24、受信装置25、およびバッテリ21を含む補機類を囲むように備わり、これらの機器類はサイドフレーム10cによって保護される。
Further, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are disposed inside the body 10, similarly to the rotor 2 and the motor 20.
That is, the lightweight small aircraft 1 according to the first embodiment includes an auxiliary machine including the rotor 2 (rotating shaft 20a), the motor 20, the tilting device 22, the control device 23, the measuring device 24, the receiving device 25, and the battery 21. 10 is disposed inside. Accordingly, the side frame 10c constituting the body 10 surrounds the auxiliary equipment including the rotor 2 (rotating shaft 20a), the motor 20, the tilting device 22, the control device 23, the measuring device 24, the receiving device 25, and the battery 21. These devices are protected by the side frame 10c.
また、バッテリ21を含む補機類は、ロータ2の回転で生じる空気流の下流側に、主軸100の軸線上に配設されていることが好ましい。さらに、バッテリ21を含む補機類は、機体10の一方の頂部10T付近に配置され、ロータ2、モータ20、傾倒装置22、制御装置23、計測装置24、および受信装置25は、バッテリ21に対して主軸100の軸方向にリム10aと反対側に配設されることが好ましい。そして、主軸100回りに機体10の重量バランスが均等になるように、ロータ2、モータ20、傾倒装置22、制御装置23、計測装置24、および受信装置25は主軸100の軸線上に配設されていることが好ましい。
 つまり、ロータ2、モータ20、傾倒装置22、制御装置23、計測装置24、および受信装置25と、バッテリ21を含む補機類と、は主軸100の軸線上にリム10aを挟んで配設されることが好ましい。そして、中空のハブ部材10dの内部に、バッテリ21からモータ20に電力を供給する電力線(図示せず)が配線される。
In addition, the auxiliary machines including the battery 21 are preferably disposed on the axis of the main shaft 100 on the downstream side of the air flow generated by the rotation of the rotor 2. Further, the auxiliary machines including the battery 21 are arranged near one top 10T of the fuselage 10, and the rotor 2, the motor 20, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are connected to the battery 21. On the other hand, it is preferably disposed on the opposite side of the rim 10 a in the axial direction of the main shaft 100. The rotor 2, the motor 20, the tilting device 22, the control device 23, the measuring device 24, and the receiving device 25 are arranged on the axis of the main shaft 100 so that the weight balance of the airframe 10 is uniform around the main shaft 100. It is preferable.
That is, the rotor 2, the motor 20, the tilting device 22, the control device 23, the measuring device 24, the receiving device 25, and the auxiliary equipment including the battery 21 are arranged on the axis of the main shaft 100 with the rim 10 a interposed therebetween. It is preferable. A power line (not shown) for supplying power from the battery 21 to the motor 20 is wired inside the hollow hub member 10d.
一般的にバッテリ21はモータ20やロータ2よりも重量が重いため、この構成によって、バッテリ21を含む補機類が配設される位置(機体10の一方の頂部10Tの近傍)を軽量小型飛行体1の重心の位置にすることができる。なお、バッテリ21が軽すぎる場合、図示しない「おもり」がバッテリ21とともに補機類に含まれる構成であってもよい。この「おもり」は、軽量小型飛行体1の重心がバッテリ21の近傍に位置する程度の重量であることが好ましい。
 また、制御装置23、計測装置24、および受信装置25が、バッテリ21を含む補機類とともに重心の位置に配設される構成であってもよい。以下、実施例1の軽量小型飛行体1において、バッテリ21が配設される頂部10Tの側を下方(Dn)、下方と対向する機体10の頂部10Tの側(モータ20およびロータ2が配設される側)を上方(Up)とする。
Since the battery 21 is generally heavier than the motor 20 and the rotor 2, this configuration makes it possible to fly lightly and smallly at a position (near one top portion 10 </ b> T of the fuselage 10) where auxiliary equipment including the battery 21 is disposed. The center of gravity of the body 1 can be set. In addition, when the battery 21 is too light, the structure in which the "weight" which is not shown in figure is included in auxiliary machines with the battery 21 may be sufficient. The “weight” is preferably of a weight such that the center of gravity of the lightweight small aircraft 1 is located in the vicinity of the battery 21.
In addition, the control device 23, the measurement device 24, and the reception device 25 may be arranged at the position of the center of gravity together with auxiliary devices including the battery 21. Hereinafter, in the light and small air vehicle 1 of the first embodiment, the top 10T side on which the battery 21 is disposed is downward (Dn), and the top 10T side of the airframe 10 facing the lower side (the motor 20 and the rotor 2 are disposed). (Upper side) is the upper side (Up).
そして、実施例1の軽量小型飛行体1には、ロータ2の回転で機体10に生じる主軸100回りの回転を抑制するための板羽根(回転抑止羽根5)が備わっている。
 ロータ2の回転軸20aが主軸100と同軸のとき、すなわち、回転軸20aが主軸100に対して傾倒していないとき、ロータ2の回転中心は主軸100になる。このとき、機体10には、ロータ2の回転に対する反作用として、図2(c)に示すように、主軸100を回転中心とするトルク(反力トルクT1)が生じる。このような反力トルクT1は、回転軸20aが主軸100に対して傾倒したときにも機体10に生じる。
The lightweight small aircraft 1 according to the first embodiment is provided with plate blades (rotation suppression blades 5) for suppressing rotation around the main shaft 100 generated in the airframe 10 by rotation of the rotor 2.
When the rotation shaft 20a of the rotor 2 is coaxial with the main shaft 100, that is, when the rotation shaft 20a is not tilted with respect to the main shaft 100, the rotation center of the rotor 2 is the main shaft 100. At this time, as a reaction against the rotation of the rotor 2, torque (reaction torque T <b> 1) with the main shaft 100 as the rotation center is generated in the body 10 as shown in FIG. Such reaction force torque T1 is also generated in the airframe 10 when the rotary shaft 20a is tilted with respect to the main shaft 100.
反力トルクT1はロータ2の回転方向と逆方向に機体10に作用するトルクであり、回転抑止羽根5が備わらない場合、機体10は主軸100を回転中心としてロータ2と逆回転する。前記したように主軸100は軽量小型飛行体1のヨー軸(Y)であり、機体10は、ロータ2の回転に対する反作用としてヨー軸(Y)回りに回転する。このようなヨー軸(主軸100)回りの機体10の回転を、以下、ヨー回転と称する。 The reaction force torque T1 is a torque that acts on the airframe 10 in a direction opposite to the rotation direction of the rotor 2. When the rotation suppression blade 5 is not provided, the airframe 10 rotates in the reverse direction with respect to the rotor 2 with the main shaft 100 as the rotation center. As described above, the main shaft 100 is the yaw axis (Y) of the lightweight small aircraft 1, and the airframe 10 rotates about the yaw axis (Y) as a reaction against the rotation of the rotor 2. Such rotation of the body 10 around the yaw axis (main shaft 100) is hereinafter referred to as yaw rotation.
軽量小型飛行体1の用途は限定されるものではなく、空中撮影等に使用可能である。軽量小型飛行体1が空中撮影に使用される場合、飛行中に機体10がヨー回転すると、機体10に取り付けられる図示しない撮像装置(ビデオカメラ等)も回転するため使用者が所望する位置を空中撮影できない。したがって、飛行中のヨー回転が抑止可能であることが好ましい。 The use of the lightweight small aircraft 1 is not limited, and can be used for aerial photography. When the lightweight small flying object 1 is used for aerial photography, when the aircraft 10 rotates yaw during flight, an imaging device (not shown) attached to the aircraft 10 also rotates, so that the position desired by the user is in the air. I can't shoot. Therefore, it is preferable that yaw rotation during flight can be suppressed.
従来、ロータなどの回転翼で飛行する飛行体(ヘリコプタ等)は2つのロータを備え、一方のロータで機体に生じる回転トルク(反力トルクT1)を他方のロータで相殺して機体のヨー回転を抑止している。しかしながら、ロータの数が増えると、機体が大きくなるとともに重量も増大するため、特に小型の飛行体では、備わるロータの数は少ないことが好ましい。 Conventionally, a flying object (such as a helicopter) flying with rotor blades such as a rotor has two rotors, and the rotational torque (reaction torque T1) generated in the fuselage by one rotor is canceled by the other rotor, and the yaw rotation of the fuselage Is suppressed. However, as the number of rotors increases, the fuselage becomes larger and the weight increases. Therefore, it is preferable that the number of rotors provided is small especially in a small aircraft.
そこで、実施例1の軽量小型飛行体1には、図1に示すように、主軸100を挟んだ直線上に2枚の回転抑止羽根5が配設される。回転抑止羽根5はロータ2の下方に配設され、ロータ2の回転で生じる空気流を羽根面5aで受け、空気流が羽根面5aに沿って流れるように形成されている。
 また、回転抑止羽根5は、主軸100(ハブ部材10d)からリム10aに向かって径方向に延設される回動軸5bから下方に向かって羽根面5aが垂下し、羽根面5aが回動軸5bとともに回動するように構成される。そして、2枚の回転抑止羽根5は、主軸100を中心として180度の間隔で配設される。また、2つの回動軸5bの間に、60度間隔で4本(片側2本)のスポーク10bが配設される。
 なお、実施例1では、ロール軸(R)の軸方向に2本の回動軸5bが延設される構成としたが、回転抑止羽根5の枚数や、回動軸5bが延設される方向は限定されるものではない。
Therefore, as shown in FIG. 1, the light and small air vehicle 1 of the first embodiment is provided with two rotation suppression blades 5 on a straight line with the main shaft 100 interposed therebetween. The rotation suppression blade 5 is disposed below the rotor 2 and is formed so that an air flow generated by the rotation of the rotor 2 is received by the blade surface 5a and the air flow flows along the blade surface 5a.
Further, in the rotation suppression blade 5, the blade surface 5a hangs downward from the rotation shaft 5b extending radially from the main shaft 100 (hub member 10d) toward the rim 10a, and the blade surface 5a rotates. It is comprised so that it may rotate with the axis | shaft 5b. The two rotation suppression blades 5 are arranged at an interval of 180 degrees with the main shaft 100 as the center. In addition, four (two on one side) spokes 10b are arranged at intervals of 60 degrees between the two rotating shafts 5b.
In the first embodiment, the two rotation shafts 5b extend in the axial direction of the roll shaft (R). However, the number of rotation suppression blades 5 and the rotation shaft 5b extend. The direction is not limited.
また、軽量小型飛行体1には、回動軸5bを軸回りに回転させる図示しない回転装置が備わる。回転装置は、例えば小型モータで、ハブ部材10dの内部に収容されていることが好ましい。このような回転装置(小型モータ等)は制御装置23からの指令に基づいて回動軸5bを回転させ、主軸100の軸方向に対する羽根面5aの傾斜角度を変更可能に構成される。 Further, the lightweight small aircraft 1 is provided with a rotating device (not shown) that rotates the rotating shaft 5b around the axis. The rotating device is preferably a small motor, for example, and is accommodated in the hub member 10d. Such a rotating device (such as a small motor) is configured to rotate the rotating shaft 5b based on a command from the control device 23 and to change the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100.
図1に示すように構成される軽量小型飛行体1のロータ2が図2(c)に実線で示すように、Rot方向に回転すると、回転するロータ2の反作用となる反力トルクT1(破線)が機体10(図1参照)に生じる。また、図2(a)に示すように、主軸100の軸方向(回転軸20aの軸方向)に流れる空気流airが発生する。
 このとき、回転抑止羽根5の羽根面5aが主軸100に対して傾斜していると、羽根面5aが空気流airを受け、空気流airは羽根面5aに沿って流れる。したがって、羽根面5aが主軸100の軸方向に対して傾斜していると、図2(b)に示すように、主軸100を回転中心とするトルクを生じさせる速度成分Vhが機体10(図1参照)に付与される。さらに、図1に示すように、主軸100を中心として180度の間隔で直線上に2枚の回転抑止羽根5が備わり、図2(a)に示すように、2枚の回転抑止羽根5が主軸100の軸方向に対して互いに逆方向に傾斜していると、速度成分Vhによって、一点鎖線で示すように主軸100を回転中心とするトルクが発生し、このトルクが機体10を主軸100の回りに回転させるトルク(図2(c)に示す回転抑止トルクT2)になる。したがって、制御装置23は、回転抑止羽根5を主軸100の軸方向に対して傾斜させることで、図2(c)に示すように、反力トルクT1を低減するための主軸100回りのトルク(回転抑止トルクT2)を機体10に発生させることができる。
When the rotor 2 of the lightweight small aircraft 1 configured as shown in FIG. 1 rotates in the Rot direction as shown by a solid line in FIG. 2C, a reaction force torque T1 (broken line) that acts as a reaction of the rotating rotor 2 ) Occurs in the fuselage 10 (see FIG. 1). Further, as shown in FIG. 2A, an air flow air that flows in the axial direction of the main shaft 100 (the axial direction of the rotating shaft 20a) is generated.
At this time, if the blade surface 5a of the rotation suppression blade 5 is inclined with respect to the main shaft 100, the blade surface 5a receives the air flow air, and the air flow air flows along the blade surface 5a. Therefore, when the blade surface 5a is inclined with respect to the axial direction of the main shaft 100, as shown in FIG. 2 (b), the velocity component Vh that generates torque about the main shaft 100 as the rotation center is generated in the airframe 10 (FIG. 1). Reference). Further, as shown in FIG. 1, two rotation suppression blades 5 are provided on a straight line at an interval of 180 degrees around the main shaft 100, and as shown in FIG. 2A, the two rotation suppression blades 5 are provided. When the main shaft 100 is inclined in directions opposite to each other, the speed component Vh generates a torque about the main shaft 100 as indicated by the alternate long and short dash line. It becomes the torque (rotation suppression torque T2 shown in FIG.2 (c)) rotated around. Therefore, the control device 23 tilts the rotation suppression blade 5 with respect to the axial direction of the main shaft 100, and as shown in FIG. 2C, the torque around the main shaft 100 for reducing the reaction force torque T1 ( The rotation suppression torque T2) can be generated in the airframe 10.
なお、主軸100の軸方向に対する回転抑止羽根5の傾斜角度が大きいほど速度成分Vhが大きくなり、主軸100を回転中心とするトルクが大きくなって、機体10に発生する回転抑止トルクT2が大きくなる。 As the inclination angle of the rotation suppression blade 5 with respect to the axial direction of the main shaft 100 increases, the speed component Vh increases, the torque around the main shaft 100 increases, and the rotation suppression torque T2 generated in the body 10 increases. .
例えば、羽根面5aが主軸100と平行のとき(すなわち、主軸100の軸方向に対する羽根面5aの傾斜角度が「0度」のとき)、ロータ2の回転で生じる空気流airでは機体10(図1参照)に回転抑止トルクT2が発生しない。そして、主軸100の軸方向に対する羽根面5aの傾斜角度が大きくなると(但し、45度以内)、速度成分Vhが大きくなって主軸100を回転中心とするトルクが大きくなる。したがって、主軸100の軸方向に対する羽根面5aの傾斜角度が大きくなるほど、ロータ2の回転で生じる空気流airで機体10に発生する回転抑止トルクT2が大きくなる。 For example, when the blade surface 5a is parallel to the main shaft 100 (that is, when the angle of inclination of the blade surface 5a with respect to the axial direction of the main shaft 100 is “0 degree”), the airframe 10 generated by the rotation of the rotor 2 (see FIG. 1), the rotation suppression torque T2 is not generated. When the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100 increases (however, within 45 degrees), the speed component Vh increases and the torque about the main shaft 100 increases. Therefore, as the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100 increases, the rotation suppression torque T2 generated in the airframe 10 by the air flow air generated by the rotation of the rotor 2 increases.
そして、制御装置23は、ヨー回転する機体10(図1参照)の角速度を検出するジャイロセンサ(計測装置24)が検出する機体10の角速度が「0」になるように回転抑止羽根5の角度を調節可能であり、機体10のヨー回転を効果的に抑止できる。 Then, the control device 23 determines the angle of the rotation suppression blade 5 so that the angular velocity of the airframe 10 detected by the gyro sensor (measurement device 24) that detects the angular velocity of the airframe 10 (see FIG. 1) that rotates by yaw becomes “0”. The yaw rotation of the airframe 10 can be effectively suppressed.
例えば、図2(c)に実線で示すように、上方から見てロータ2が左回転する場合(Rot方向への回転)、機体10(図1参照)には反作用として破線で示すように右回転方向に反力トルクT1が生じる。この場合、制御装置23は、ロータ2の回転で生じる空気流airが羽根面5aに沿って流れるときに左回転方向の回転抑止トルクT2(一点鎖線)が生じるように、主軸100の軸方向に対する羽根面5aの傾斜角度を変更する。これによって、ロータ2の回転で生じる右回転方向の反力トルクT1が、機体10に生じる左回転方向の回転抑止トルクT2で低減されて(または、打ち消されて)、機体10(図1参照)のヨー回転が抑制される。 For example, as shown by a solid line in FIG. 2 (c), when the rotor 2 rotates counterclockwise as viewed from above (rotation in the Rot direction), the airframe 10 (see FIG. 1) has a right side as shown by a broken line as a reaction. A reaction torque T1 is generated in the rotational direction. In this case, the control device 23 controls the axial direction of the main shaft 100 so that a rotation suppression torque T2 (a one-dot chain line) in the left rotation direction is generated when the air flow air generated by the rotation of the rotor 2 flows along the blade surface 5a. The inclination angle of the blade surface 5a is changed. As a result, the reaction torque T1 in the right rotation direction generated by the rotation of the rotor 2 is reduced (or canceled) by the rotation suppression torque T2 in the left rotation direction generated in the body 10, and the body 10 (see FIG. 1). Yaw rotation is suppressed.
図1に示す軽量小型飛行体1の飛行中に、制御装置23が、ジャイロセンサ(計測装置24)が検出する機体10の角速度(ヨー回転の角速度)を常時監視する。そして、制御装置23は、機体10の角速度が増大した場合には回転抑止トルクT2が増大するように、主軸100の軸方向に対する羽根面5aの傾斜角度を変更する。このような構成とすれば、機体10のヨー回転が抑制される。 During the flight of the lightweight small aircraft 1 shown in FIG. 1, the control device 23 constantly monitors the angular velocity (angular velocity of yaw rotation) of the airframe 10 detected by the gyro sensor (measurement device 24). And the control apparatus 23 changes the inclination-angle of the blade surface 5a with respect to the axial direction of the main axis | shaft 100 so that rotation suppression torque T2 may increase, when the angular velocity of the body 10 increases. With such a configuration, yaw rotation of the airframe 10 is suppressed.
このように、図1に示す実施例1の軽量小型飛行体1は、1つのロータ2の回転で生じる揚力と推進力で飛行可能であり、2つ以上のロータ2を備える構成に比べて小型軽量化が可能になる。さらに、ロータ2の回転で生じる反力トルクT1(図2(c)参照)による機体10のヨー回転を抑止可能であり、軽量小型飛行体1は、機体10がヨー回転しない状態で飛行可能である。 As described above, the lightweight small aircraft 1 according to the first embodiment shown in FIG. 1 can fly with lift and propulsion generated by the rotation of one rotor 2, and is smaller than a configuration including two or more rotors 2. Weight reduction is possible. Further, the yaw rotation of the airframe 10 due to the reaction force torque T1 (see FIG. 2C) generated by the rotation of the rotor 2 can be suppressed, and the lightweight small aircraft 1 can fly without the airframe 10 rotating in yaw. is there.
例えば、使用者が外部コントローラ7を操作して、軽量小型飛行体1の飛行高度や進行方向(絶対方位)などの飛行状態を設定すると、外部コントローラ7は、設定された飛行状態で軽量小型飛行体1を飛行させる指令(無線信号)を発信する。軽量小型飛行体1は受信装置25で外部コントローラ7から発信される指令を受信し、受信した指令を制御装置23に入力する。制御装置23は、受信装置25から入力される指令に基づいて、軽量小型飛行体1の飛行状態を設定する。 For example, when the user operates the external controller 7 to set the flight state such as the flight altitude and the traveling direction (absolute direction) of the light and small air vehicle 1, the external controller 7 is light and small in the set flight state. A command (radio signal) for flying the body 1 is transmitted. The lightweight small aircraft 1 receives a command transmitted from the external controller 7 by the receiving device 25, and inputs the received command to the control device 23. The control device 23 sets the flight state of the lightweight small aircraft 1 based on the command input from the receiving device 25.
受信装置25から入力される指令に軽量小型飛行体1の飛行高度が含まれる場合、制御装置23は、計測装置24から入力される計測信号によって軽量小型飛行体1の飛行高度を算出し、受信装置25から入力される指令に含まれる飛行高度(以下、高度指令値という)と、算出する飛行高度の偏差が「0」になるように、軽量小型飛行体1の飛行高度を調節する。
 例えば、算出する飛行高度が高度指令値より低い場合、制御装置23はモータ20の回転速度を高めてロータ2の回転速度を高め、軽量小型飛行体1を高度指令値まで上昇させる。また、算出する飛行高度が高度指令値より高い場合、制御装置23はモータ20の回転速度を低くしてロータ2の回転速度を低くし、軽量小型飛行体1を高度指令値まで下降させる。
When the command input from the receiving device 25 includes the flight altitude of the lightweight small aircraft 1, the control device 23 calculates the flight altitude of the lightweight small aircraft 1 based on the measurement signal input from the measuring device 24 and receives it. The flight altitude of the lightweight small aircraft 1 is adjusted so that the deviation between the flight altitude (hereinafter referred to as altitude command value) included in the command input from the device 25 and the calculated flight altitude becomes “0”.
For example, when the calculated flight altitude is lower than the altitude command value, the control device 23 increases the rotation speed of the motor 20 to increase the rotation speed of the rotor 2 and raises the lightweight small aircraft 1 to the altitude command value. When the calculated flight altitude is higher than the altitude command value, the control device 23 lowers the rotation speed of the motor 20 to lower the rotation speed of the rotor 2 and lowers the lightweight small aircraft 1 to the altitude command value.
モータ20(ロータ2)の回転測度が変化すると機体10に生じる反力トルクT1(図2(c)参照)の大きさが変化するため、制御装置23は、主軸100の軸方向に対する羽根面5aの傾斜角度を変更して回転抑止トルクT2(図2(c)参照)の大きさを調節し、機体10のヨー回転を抑止する。
 制御装置23は、ロータ2の回転速度に応じて主軸100の軸方向に対する羽根面5aの傾斜角度を変更し、計測装置24に含まれるジャイロセンサが検出する、ヨー軸(Y)回りの回転角速度を「0」に維持する。
When the rotation measure of the motor 20 (rotor 2) changes, the magnitude of the reaction force torque T1 (see FIG. 2C) generated in the airframe 10 changes, so that the control device 23 can control the blade surface 5a with respect to the axial direction of the main shaft 100. Is adjusted to adjust the magnitude of the rotation suppression torque T2 (see FIG. 2C), and the yaw rotation of the airframe 10 is suppressed.
The control device 23 changes the inclination angle of the blade surface 5a with respect to the axial direction of the main shaft 100 according to the rotational speed of the rotor 2, and the rotational angular velocity around the yaw axis (Y) detected by the gyro sensor included in the measuring device 24. Is maintained at “0”.
また、受信装置25から入力される指令に軽量小型飛行体1の進行方向(絶対方位)が含まれる場合、制御装置23は、計測装置24から入力される計測信号によって軽量小型飛行体1の進行方向を算出し、受信装置25から入力される指令に含まれる絶対方位(以下、方位指令値という)と、算出する進行方向の偏差が「0」になるように、軽量小型飛行体1の進行方向を調節する。
 例えば、方位指令値が「北」であり、算出する進行方向が「北北東」の場合、制御装置23は、軽量小型飛行体1の進行方向が北向きに転向するようにロータ2(回転軸20a)を傾倒させる。
When the command input from the receiving device 25 includes the traveling direction (absolute direction) of the lightweight small aircraft 1, the control device 23 advances the lightweight small flying vehicle 1 according to the measurement signal input from the measuring device 24. The direction of the light and small air vehicle 1 is calculated so that the deviation between the absolute azimuth (hereinafter referred to as azimuth command value) included in the command input from the receiving device 25 and the calculated traveling direction is “0”. Adjust the direction.
For example, when the heading command value is “north” and the traveling direction to be calculated is “north-northeast”, the control device 23 causes the rotor 2 (rotating shaft) so that the traveling direction of the lightweight small aircraft 1 turns northward. Tilt 20a).
このように、制御装置23は、計測装置24から入力される計測信号に基づいて、回転軸20aを傾倒させるとともに主軸100の軸方向に対する羽根面5aの傾斜角度を変更し、外部コントローラ7から発信される指令に応じた飛行状態で機体10を飛行させる。 As described above, the control device 23 tilts the rotating shaft 20 a based on the measurement signal input from the measuring device 24, changes the tilt angle of the blade surface 5 a with respect to the axial direction of the main shaft 100, and transmits from the external controller 7. The aircraft 10 is caused to fly in a flight state corresponding to the command to be executed.
また、図1に示すように構成される軽量小型飛行体1が地表面Gに着地したとき、図3(a)に示すように主軸100が傾斜した状態に傾く場合がある。しかしながら、軽量小型飛行体1は、機体10が楕円球体であって重心が機体10の下方の頂部10T近傍にある。したがって、重心側の頂部10Tが地表面Gに向かうように機体10が転がり、図3(b)に示すように機体10の下方の頂部10Tが接地して主軸100が直立し軽量小型飛行体1は正立する。つまり、楕円球体の機体10を有して重心が下方に位置する、実施例1の軽量小型飛行体1は、地表面Gに着地したときに正立した状態に自己復帰する性能を有する。
 したがって、軽量小型飛行体1が飛行を再開するときにロータ2が回転すると、ロータ2の回転で生じる空気流が下方(地表面Gの側)に向かって流れて機体10に揚力が発生し、軽量小型飛行体1が地表面Gから浮上する。つまり、軽量小型飛行体1が正立した状態であれば、飛行の再開時に軽量小型飛行体1は効率よく地表面Gから浮上できる。
実施例2 
Further, when the lightweight small aircraft 1 configured as shown in FIG. 1 lands on the ground surface G, the main shaft 100 may be inclined as shown in FIG. However, in the lightweight small aircraft 1, the airframe 10 is an elliptical sphere, and the center of gravity is in the vicinity of the top portion 10 </ b> T below the airframe 10. Accordingly, the airframe 10 rolls so that the top portion 10T on the center of gravity side faces the ground surface G, and the top portion 10T below the airframe 10 is grounded as shown in FIG. Stands upright. That is, the lightweight small aircraft 1 according to the first embodiment having the ellipsoidal body 10 and having the center of gravity located below has a performance of self-returning to an upright state when landing on the ground surface G.
Accordingly, when the rotor 2 rotates when the lightweight small aircraft 1 resumes flight, the air flow generated by the rotation of the rotor 2 flows downward (on the ground surface G side) and lift is generated in the airframe 10. The lightweight and small flying object 1 floats from the ground surface G. In other words, if the lightweight small flying object 1 is in an upright state, the lightweight small flying object 1 can efficiently rise from the ground surface G when the flight is resumed.
Example 2
図4(a)は実施例2の軽量小型飛行体を示す斜視図、図4(b)は実施例2の軽量小型飛行体の変形例を示す斜視図である。
 なお、図4(a)、(b)に示す実施例2の軽量小型飛行体1aにおいて、図1に示す実施例1の軽量小型飛行体1と同じ構成については同じ符号を付して詳細な説明は省略する。
FIG. 4A is a perspective view showing a lightweight small flying object of the second embodiment, and FIG. 4B is a perspective view showing a modification of the lightweight small flying object of the second embodiment.
In addition, in the lightweight small aircraft 1a of Example 2 shown to Fig.4 (a), (b), about the same structure as the lightweight small aircraft 1 of Example 1 shown in FIG. Description is omitted.
図4(a)に示すように、実施例2の軽量小型飛行体1aは、回転抑止羽根50aの形状が、図1に示す実施例1の軽量小型飛行体1に備わる回転抑止羽根5の形状と異なっている。
 実施例2の軽量小型飛行体1aに備わる回転抑止羽根50aは、その外側縁部(外縁部52a)が機体10の楕円球体の一部を形成するように構成される。
 なお、実施例2の回転抑止羽根50aも回動軸5bとともに回動し、ロータ2の回転で生じる空気流airによって、図2(c)に示す回転抑止トルクT2が生じるように、羽根面51aが主軸100の軸方向に対して傾斜可能であることが好ましい。
As shown in FIG. 4 (a), in the lightweight small aircraft 1a of the second embodiment, the shape of the rotation inhibiting blade 50a is the same as that of the rotation inhibiting blade 5 provided in the lightweight small flying vehicle 1 of the first embodiment shown in FIG. Is different.
The rotation suppression blade 50a provided in the lightweight small aircraft 1a according to the second embodiment is configured such that the outer edge (outer edge 52a) forms a part of the ellipsoidal sphere of the airframe 10.
It should be noted that the rotation suppression blade 50a of the second embodiment also rotates with the rotation shaft 5b, and the blade surface 51a so that the rotation suppression torque T2 shown in FIG. 2C is generated by the air flow air generated by the rotation of the rotor 2. Is preferably tiltable with respect to the axial direction of the main shaft 100.
このように構成される回転抑止羽根50aは、羽根面51aの面積が広く、ロータ2の回転で生じる空気流airで効果的に回転抑止トルクT2を発生させることができる。 The rotation suppression blade 50a configured as described above has a large blade surface 51a, and can effectively generate the rotation suppression torque T2 by the air flow air generated by the rotation of the rotor 2.
なお、実施例2の変形例として、図4(b)に示すように、羽根面51aに貫通孔51a1が形成されている回転抑止羽根50aが備わる軽量小型飛行体1aであってもよい。
 外縁部52aが楕円球体の一部を構成するような形状の回転抑止羽根50aは、羽根面51aの面積が広く軽量小型飛行体1aが飛行するときの抵抗が大きくなる。そこで、図4(b)に示すように羽根面51aに貫通孔51a1を形成される構成とし、軽量小型飛行体1aが飛行するときの抵抗が小さくなるような回転抑止羽根50aとしてもよい。
 また、貫通孔51a1に替えて、図示しないスリットが羽根面51aに形成される回転抑止羽根50aであってもよい。
As a modification of the second embodiment, as shown in FIG. 4 (b), a light and small air vehicle 1a provided with a rotation restraining blade 50a in which a through hole 51a1 is formed in the blade surface 51a may be used.
The rotation suppression blade 50a having a shape in which the outer edge portion 52a forms a part of an elliptical sphere has a large resistance when the light and small air vehicle 1a has a large blade surface 51a. Therefore, as shown in FIG. 4 (b), a through-hole 51a1 may be formed in the blade surface 51a, and the rotation suppression blade 50a may be configured such that the resistance when the lightweight small flying object 1a flies is reduced.
Moreover, it may replace with the through-hole 51a1, and may be the rotation suppression blade | wing 50a in which the slit which is not shown in figure is formed in the blade | wing surface 51a.
実施例2の軽量小型飛行体1aは、図4(a)に示すように、回転抑止羽根50aの外縁部52aが機体10の楕円球体の一部を形成する。したがって、機体10の楕円球体を形成するサイドフレーム10cの数を減らすことが可能であり、軽量小型飛行体1aを軽量化することが可能になる。また、軽量小型飛行体1aが地表面Gに着地したときに正立した状態に自己復帰する性能は、実施例1の軽量小型飛行体1(図1参照)と同じように有する。
実施例3 
As shown in FIG. 4A, in the lightweight small aircraft 1 a according to the second embodiment, the outer edge portion 52 a of the rotation suppression blade 50 a forms a part of the ellipsoidal sphere of the airframe 10. Therefore, it is possible to reduce the number of side frames 10c forming the ellipsoidal sphere of the airframe 10, and it is possible to reduce the weight of the lightweight small flying object 1a. Further, the light-weight small aircraft 1a has the performance of self-returning to an upright state when it lands on the ground surface G in the same manner as the light-weight small vehicle 1 (see FIG. 1) of the first embodiment.
Example 3
図5(a)は回転抑止羽根が風向に対して傾斜している状態を示す図、図5(b)は回転抑止羽根の羽根面が風向と平行な状態を示す図、図5(c)は反力トルクより大きな回転抑止トルクが発生している状態を示す図である。また、図6は風向検出手段の一構成例を示す図であり、図6(a)は風向検出手段の検出羽根が風向に対して傾斜している状態を示す図、図6(b)は風向検出手段の検出羽根が風向と平行な状態を示す図である。
 なお、図5(a)、(b)に示す実施例3の軽量小型飛行体1bにおいて、図1に示す実施例1の軽量小型飛行体1と同じ構成については同じ符号を付して詳細な説明は省略する。
FIG. 5A shows a state in which the rotation suppression blade is inclined with respect to the wind direction, FIG. 5B shows a state in which the blade surface of the rotation suppression blade is parallel to the wind direction, and FIG. 5C. FIG. 4 is a diagram showing a state in which a rotation suppression torque larger than a reaction force torque is generated. 6 is a diagram showing an example of the configuration of the wind direction detecting means, FIG. 6 (a) is a diagram showing a state in which the detection blades of the wind direction detecting means are inclined with respect to the wind direction, and FIG. 6 (b) is a diagram. It is a figure which shows the state in which the detection blade | wing of a wind direction detection means is parallel to a wind direction.
In addition, in the lightweight small aircraft 1b of Example 3 shown to Fig.5 (a), (b), about the same structure as the lightweight small aircraft 1 of Example 1 shown in FIG. Description is omitted.
図5(a)に示すように、実施例3の軽量小型飛行体1bには、飛行中の機体10に向かって吹く風Wの風向を検出可能な風向検出手段60が備わっている。
 風向検出手段60が検出する風Wの風向は、軽量小型飛行体1bの飛行で生じる空気抗力と、自然発生する風と、が合成されたものになる。なお、図5(a)に示す軽量小型飛行体1bの進行方向はD1の方向とする。
このような風Wが、機体10に向かって回転抑止羽根5の羽根面5aに吹き付けられると軽量小型飛行体1bの飛行に対する抵抗が大きくなる。
As shown in FIG. 5A, the light and small air vehicle 1b of the third embodiment is provided with a wind direction detecting means 60 capable of detecting the wind direction of the wind W blowing toward the airframe 10 in flight.
The wind direction of the wind W detected by the wind direction detection means 60 is a combination of the air drag generated by the flight of the lightweight small aircraft 1b and the naturally generated wind. In addition, the advancing direction of the lightweight small aircraft 1b shown to Fig.5 (a) shall be the direction of D1.
When such a wind W is blown toward the blade surface 5a of the rotation suppression blade 5 toward the airframe 10, resistance to the flight of the lightweight small flying vehicle 1b increases.
そこで、実施例3の軽量小型飛行体1bは、風向検出手段60を備え、機体10に向かって吹く風Wの風向を検出し、さらに、回転抑止羽根5の羽根面5aが風Wの風向と平行になるように(つまり、回転抑止羽根5の回動軸5bが風Wの風向と平行になるように)、機体10の姿勢が維持される構成とする。回転抑止羽根5の羽根面5aが風Wの風向と平行になると、風Wが羽根面5aに吹き付けられることによる抵抗が最小になり、軽量小型飛行体1bの飛行に対する抵抗が小さくなる。 Accordingly, the lightweight small aircraft 1b of the third embodiment includes the wind direction detection means 60, detects the wind direction of the wind W blowing toward the airframe 10, and further, the blade surface 5a of the rotation suppression blade 5 is the wind direction of the wind W. The attitude of the airframe 10 is maintained so as to be parallel (that is, the rotation shaft 5b of the rotation suppression blade 5 is parallel to the wind direction of the wind W). When the blade surface 5a of the rotation suppression blade 5 is parallel to the wind direction of the wind W, the resistance due to the wind W being blown against the blade surface 5a is minimized, and the resistance of the lightweight small aircraft 1b to flight is reduced.
風向検出手段60の構成は限定されるものではないが、例えば、図6(a)、(b)に示すように構成される。
 風向検出手段60は、主軸100(図1参照)の軸方向に突設されるピン部材63の回りに回動する検出羽根61と、検出羽根61の回動方向両側に配設される枠部62と、を有し、検出羽根61と両側の枠部62の間隙A1,A2に応じた信号(風向検出信号)を出力可能に構成される。
Although the structure of the wind direction detection means 60 is not limited, For example, it is comprised as shown to Fig.6 (a), (b).
The wind direction detection means 60 includes a detection blade 61 that rotates around a pin member 63 that protrudes in the axial direction of the main shaft 100 (see FIG. 1), and a frame portion that is disposed on both sides of the rotation direction of the detection blade 61. 62, and is configured to be able to output a signal (wind direction detection signal) corresponding to the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides.
例えば、検出羽根61がピン部材63の回りに回動するときの回転角度を検出可能な風向検出手段60とする。そして、図6(b)に示すように、検出羽根61が枠部62の中心位置にあるとき、つまり、検出羽根61と両側の枠部62の間隙A1,A2が等しいときの検出羽根61の回転角度が「0度」となる構成とすれば、風向検出手段60は、検出羽根61の回転角度に基づいて、検出羽根61と両側の枠部62の間隙A1,A2に応じた風向検出信号を出力可能になる。
 または、検出羽根61がピン部材63の回りに回動するときの回転角度を風向検出信号として出力する風向検出手段60であってもよい。
For example, it is assumed that the wind direction detection means 60 is capable of detecting the rotation angle when the detection blade 61 rotates around the pin member 63. 6B, when the detection blade 61 is at the center position of the frame portion 62, that is, when the gaps A1, A2 between the detection blade 61 and the frame portions 62 on both sides are equal, If the rotation angle is set to “0 degree”, the wind direction detection means 60 is based on the rotation angle of the detection blade 61 and the wind direction detection signal according to the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides. Can be output.
Or the wind direction detection means 60 which outputs the rotation angle when the detection blade 61 rotates around the pin member 63 as a wind direction detection signal may be sufficient.
また、検出羽根61は風Wを受けてピン部材63の回りに回動して風Wの風向と平行な状態に維持される。したがって、風向検出手段60は、検出羽根61が回転抑止羽根5の羽根面5a(図5の(a)参照)と平行になったとき(つまり、検出羽根61が回動軸5bと平行になったとき)に検出羽根61が枠部62の中心位置になるように機体10(図5(a)参照)に取り付けられていることが好ましい。 Further, the detection blade 61 receives the wind W and rotates around the pin member 63 and is maintained in a state parallel to the wind direction of the wind W. Accordingly, the wind direction detecting means 60 is configured so that the detection blade 61 is parallel to the blade surface 5a (see FIG. 5A) of the rotation suppression blade 5 (that is, the detection blade 61 is parallel to the rotation shaft 5b). The detection blade 61 is preferably attached to the machine body 10 (see FIG. 5A) so that the detection blade 61 is located at the center position of the frame portion 62.
風向検出手段60がこのような構成の場合、風Wの風向と回転抑止羽根5の羽根面5a(図5(a)参照)が平行でないときには図6(a)に示すように、検出羽根61が枠部62の中心位置からずれた位置にあり、検出羽根61と枠部62の一方との間隙A1と、検出羽根61と枠部62の他方との間隙A2と、は異なった値となる。
 これに対し、風Wの風向と回転抑止羽根5の羽根面5aが平行のときには図6(b)に示すように、検出羽根61が枠部62の中心位置にあり、検出羽根61と枠部62の一方との間隙A1と、検出羽根61と枠部62の他方との間隙A2と、が等しくなる。
When the wind direction detecting means 60 has such a configuration, when the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 (see FIG. 5A) are not parallel, as shown in FIG. Is at a position deviated from the center position of the frame portion 62, and the gap A1 between the detection blade 61 and one of the frame portions 62 and the gap A2 between the detection blade 61 and the other of the frame portions 62 have different values. .
On the other hand, when the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are parallel, the detection blade 61 is at the center position of the frame portion 62 as shown in FIG. The gap A <b> 1 with one of 62 is equal to the gap A <b> 2 between the detection blade 61 and the other of the frame portion 62.
したがって、風向検出手段60が出力する風向検出信号が制御装置23(図1参照)に入力される構成であれば、制御装置23は検出羽根61と両側の枠部62の間隙A1,A2の検出値に基づいて風Wの風向と回転抑止羽根5の羽根面5a(図5(a)参照)が平行か否かを判定できる。
 そして、制御装置23は、風Wの風向と回転抑止羽根5の羽根面5aが平行ではないと判定したとき、図5(a)~(c)に示すように、機体10を意図的にヨー回転させる。具体的に制御装置23は、回転抑止羽根5の羽根面5aの主軸100の軸方向に対する傾斜角度を「0」にする(または、傾斜角度を小さくする)。軽量小型飛行体1bの機体10に回転抑止トルクT2が発生しない状態(または、回転抑止トルクT2が小さい状態)になり、機体10は、ロータ2の回転で生じる反力トルクT1でヨー回転する。
Therefore, if the wind direction detection signal output by the wind direction detection means 60 is input to the control device 23 (see FIG. 1), the control device 23 detects the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides. Based on the value, it can be determined whether or not the wind direction of the wind W and the blade surface 5a (see FIG. 5A) of the rotation suppression blade 5 are parallel.
When the control device 23 determines that the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are not parallel, as shown in FIGS. 5 (a) to 5 (c), the airframe 10 is intentionally yawed. Rotate. Specifically, the control device 23 sets the inclination angle of the blade surface 5a of the rotation suppression blade 5 with respect to the axial direction of the main shaft 100 to “0” (or decreases the inclination angle). The lightweight restrained aircraft 1b is in a state where no rotation inhibition torque T2 is generated in the airframe 10 (or in a state where the rotation inhibition torque T2 is small), and the airframe 10 is yaw-rotated with the reaction force torque T1 generated by the rotation of the rotor 2.
制御装置23(図1参照)は、風向検出手段60から入力される風向検出信号に基づいて、図5(b)に示すように、風Wの風向と回転抑止羽根5の羽根面5aが平行になったと判定したとき、回転抑止羽根5の羽根面5aを主軸100の軸方向に対して傾斜させて機体10に回転抑止トルクT2を発生させる。具体的に制御装置23は、風向検出信号に基づいて検出羽根61と両側の枠部62の間隙A1,A2の検出値が等しいと判定したときに回転抑止羽根5の羽根面5aを主軸100の軸方向に対して傾斜させて機体10に回転抑止トルクT2を発生させる。
 ロータ2の回転で生じる反力トルクT1が、機体10に生じる回転抑止トルクT2で低減されて(または、打ち消されて)機体10のヨー回転が停止し、図5(b)に示すように、風Wの風向と回転抑止羽根5の羽根面5aが平行になる姿勢が維持される。
As shown in FIG. 5B, the control device 23 (see FIG. 1) is configured so that the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are parallel to each other as shown in FIG. When it is determined that the rotation has occurred, the blade surface 5a of the rotation suppression blade 5 is inclined with respect to the axial direction of the main shaft 100, and the rotation suppression torque T2 is generated in the airframe 10. Specifically, when the control device 23 determines that the detection values of the gaps A1 and A2 between the detection blade 61 and the frame portions 62 on both sides are equal based on the wind direction detection signal, the control device 23 moves the blade surface 5a of the rotation suppression blade 5 to the main shaft 100. The rotation suppression torque T2 is generated in the airframe 10 by being inclined with respect to the axial direction.
The reaction force torque T1 generated by the rotation of the rotor 2 is reduced (or canceled) by the rotation suppression torque T2 generated in the fuselage 10, and the yaw rotation of the fuselage 10 is stopped, as shown in FIG. The posture in which the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 are parallel to each other is maintained.
この状態で制御装置23は、傾倒装置22を制御してロータ2の回転軸20aを適宜傾倒して使用者が所望する方向に軽量小型飛行体1を進行させる。 In this state, the control device 23 controls the tilting device 22 to appropriately tilt the rotating shaft 20a of the rotor 2 so that the lightweight small aircraft 1 advances in the direction desired by the user.
なお、図5(a)は、軽量小型飛行体1bを上方からみてロータ2が左回転する場合に機体10を左方向に回転(ヨー回転)させる状態を示しているが、この場合、機体10が右方向にヨー回転するため、機体10を主軸100の回りに一周近く回転させる必要がある。
 この場合、機体10のヨー回転が抑止されている状態から主軸100の軸方向に対する回転抑止羽根5の傾斜角度を大きくすると、図5(c)に示すように、回転抑止トルクT2の大きさが反力トルクT1の大きさよりも大きくなって、機体10を右回転させることができる。したがって、機体10を左回転させるよりも速やかに、風Wの風向と回転抑止羽根5の羽根面5aを平行にできる。
FIG. 5A shows a state in which the airframe 10 is rotated leftward (yaw rotation) when the rotor 2 rotates counterclockwise when the lightweight small flying object 1b is viewed from above. Therefore, it is necessary to rotate the fuselage 10 around the main shaft 100 almost once.
In this case, when the inclination angle of the rotation suppression blade 5 with respect to the axial direction of the main shaft 100 is increased from the state where the yaw rotation of the machine body 10 is suppressed, the magnitude of the rotation suppression torque T2 is increased as shown in FIG. It becomes larger than the magnitude of the reaction torque T1, and the airframe 10 can be rotated to the right. Therefore, the wind direction of the wind W and the blade surface 5a of the rotation suppression blade 5 can be made parallel to each other more quickly than when the body 10 is rotated counterclockwise.
なお、機体10に回転抑止トルクT2が発生してからも慣性力によって機体10がヨー回転する場合があるため、制御装置23(図1参照)は、風Wの風向と回転抑止羽根5の羽根面5aが平行になるより前に回転抑止トルクT2を発生させる構成としてもよい。 Since the airframe 10 may yaw due to inertial force even after the rotation suppression torque T2 is generated in the airframe 10, the control device 23 (see FIG. 1) determines the wind direction of the wind W and the blades of the rotation suppression blade 5. It is good also as a structure which generates the rotation suppression torque T2 before the surface 5a becomes parallel.
図7(a)は実施例3の軽量小型飛行体に3枚の回転抑止羽根が備わる変形例を示す斜視図、(b)は実施例3の軽量小型飛行体の変形例の上面図である。
 例えば、図7(a)、(b)に示すように、機体10に120度間隔で3本のスポーク10bが備わり、スポーク10bの間に120度間隔で3枚の回転抑止羽根5が備わる構成の軽量小型飛行体1bであってもよい。この場合、風向検出手段60は、風Wが回転抑止羽根5の羽根面5aに吹き付けられることによる抵抗が最も小さくなるような風向を検出するように機体10に取り付けられることが好ましい。このような風Wの風向は、実験計測等やシミュレーションによって決定されることが好ましい。
FIG. 7A is a perspective view showing a modified example in which the light and light aircraft of the third embodiment is provided with three rotation suppression blades, and FIG. 7B is a top view of a modified example of the light and light aircraft of the third embodiment. .
For example, as shown in FIGS. 7A and 7B, the airframe 10 is provided with three spokes 10b at intervals of 120 degrees, and between the spokes 10b, three rotation suppression blades 5 are provided at intervals of 120 degrees. The lightweight and small aircraft 1b may be used. In this case, the wind direction detection means 60 is preferably attached to the body 10 so as to detect a wind direction that minimizes the resistance caused by the wind W being blown against the blade surface 5a of the rotation suppression blade 5. Such a wind direction of the wind W is preferably determined by experimental measurement or the like or simulation.
このように、図5(a)に示す実施例3の軽量小型飛行体1bは、機体10に向かう風Wの風向と2枚の回転抑止羽根5の羽根面5aが平行になるように機体10の姿勢を維持することによって、風Wが回転抑止羽根5の羽根面5aに吹き付けることによる抵抗を軽減できる。
 また、図7(a)に示すように3枚(または、それ以上)の回転抑止羽根5が備わる場合、風Wが羽根面5aに吹き付けられることによる抵抗が最も小さくなるように機体10の姿勢が維持される。
実施例4 
As described above, the light and small air vehicle 1b of the third embodiment shown in FIG. 5A has the airframe 10 so that the wind direction of the wind W toward the airframe 10 and the blade surfaces 5a of the two rotation suppression blades 5 are parallel to each other. By maintaining this posture, it is possible to reduce the resistance caused by the wind W blowing on the blade surface 5a of the rotation suppression blade 5.
In addition, when three (or more) rotation suppression blades 5 are provided as shown in FIG. 7A, the attitude of the airframe 10 is minimized so that the resistance caused by the wind W being blown onto the blade surface 5a is minimized. Is maintained.
Example 4
図8(a)は反力トルクより小さな回転抑止トルクが機体に発生している状態を示す上面図、図8(b)は進行方向がD2の方向に転向した機体を示す上面図である。また、図9(a)は反力トルクより大きな回転抑止トルクが機体に発生している状態を示す上面図、図9(b)は進行方向がD3の方向に転向した機体を示す上面図である。 FIG. 8A is a top view showing a state in which a rotation suppression torque smaller than the reaction force torque is generated in the airframe, and FIG. 8B is a top view showing the airframe whose traveling direction is turned in the direction D2. FIG. 9 (a) is a top view showing a state in which a rotation suppression torque larger than the reaction torque is generated in the airframe, and FIG. 9 (b) is a top view showing the airframe whose traveling direction is turned in the direction of D3. is there.
実施例4の軽量小型飛行体は、図1に示す実施例1の軽量小型飛行体1と同等の構成である。そして、実施例4の軽量小型飛行体1に備わる傾倒装置22は、回転軸20aを、主軸100と同軸の状態から、主軸100と直交する1軸方向に傾倒可能に構成される。例えば、傾倒装置22はロータ2をロール軸(R)方向に傾倒可能に構成される。なお、実施例4において、回転軸20aはピッチ軸(P)を中心として傾動し、ロール軸(R)方向へ傾倒する。 The lightweight small aircraft of Example 4 has the same configuration as the lightweight small aircraft 1 of Example 1 shown in FIG. The tilting device 22 provided in the lightweight small aircraft 1 according to the fourth embodiment is configured so that the rotating shaft 20a can be tilted in a single axis direction orthogonal to the main shaft 100 from a state coaxial with the main shaft 100. For example, the tilting device 22 is configured to tilt the rotor 2 in the roll axis (R) direction. In Example 4, the rotating shaft 20a tilts about the pitch axis (P) and tilts in the roll axis (R) direction.
実施例4の軽量小型飛行体1は、回転軸20a(図1参照)が1軸方向に傾倒して機体10に揚力と推進力を発生させて飛行する。
 しかしながら、回転軸20aがロール軸(R)方向にのみ傾倒する構成の場合、回転軸20a(ロータ2)の傾倒だけでは、軽量小型飛行体1は一方向にしか進行できない。
すなわち、ロータ2がロール軸(R)方向に傾倒すると、機体10にはロール軸(R)の軸線方向にのみ推進力が作用し、軽量小型飛行体1はロール軸(R)の軸線方向にのみ進行可能となる。
 そこで、実施例4の制御装置23(図1参照)は、機体10をヨー回転させて軽量小型飛行体1の進行方向を変更するように構成される。
In the lightweight small aircraft 1 of the fourth embodiment, the rotating shaft 20a (see FIG. 1) tilts in one axial direction, and the aircraft 10 generates lift and propulsion to fly.
However, when the rotary shaft 20a is configured to tilt only in the roll axis (R) direction, the lightweight small aircraft 1 can only travel in one direction by tilting the rotary shaft 20a (rotor 2).
That is, when the rotor 2 is tilted in the roll axis (R) direction, a propulsive force is applied to the airframe 10 only in the axial direction of the roll axis (R), and the lightweight small aircraft 1 is in the axial direction of the roll axis (R). Can only proceed.
Therefore, the control device 23 (see FIG. 1) of the fourth embodiment is configured to change the traveling direction of the lightweight small aircraft 1 by rotating the airframe 10 by yaw.
例えば、図8(a)に示すように、ロータ2がRotの方向に回転(上方から見て左回転)してD1の方向に進行している軽量小型飛行体1の進行方向をD2の方向に転向させる場合(上方から見て右方向に転向させる場合)、制御装置23(図1参照)は、回転抑止羽根5の羽根面5aの主軸100の軸方向に対する傾斜角度を「0」にする(または、機体10のヨー回転が抑止されている状態から傾斜角度を小さくする)。これによって回転抑止トルクT2が消失し(または、小さくなり)、機体10が反力トルクT1によって右回転し、軽量小型飛行体1の進行方向も右方向に転向する。そして制御装置23は、図8(b)に示すように軽量小型飛行体1の進行方向がD2になったとき、ヨー回転する機体10の角速度が「0」になるように、回転抑止羽根5の羽根面5aの主軸100の軸方向に対して傾斜させる。これによって、機体10に回転抑止トルクT2が発生し、反力トルクT1による機体10の回転が抑止される。そして、軽量小型飛行体1の進行方向がD2の方向に転向した状態が維持される。
 なお、制御装置23は、機体10の進行方向を絶対方位で検出するセンサ(計測装置24)から入力される計測信号に基づいて、軽量小型飛行体1の進行方向がD2であることを検知する構成とすればよい。
For example, as shown in FIG. 8 (a), the traveling direction of the lightweight small aircraft 1 that is traveling in the direction D1 as the rotor 2 rotates in the direction of Rot (left rotation as viewed from above) is the direction of D2. When turning to the right (when turning to the right when viewed from above), the control device 23 (see FIG. 1) sets the inclination angle of the blade surface 5a of the rotation suppression blade 5 to the axial direction of the main shaft 100 to “0”. (Or, the tilt angle is reduced from the state where the yaw rotation of the airframe 10 is suppressed). As a result, the rotation suppression torque T2 disappears (or becomes smaller), the aircraft 10 rotates to the right by the reaction force torque T1, and the traveling direction of the lightweight small aircraft 1 also turns to the right. Then, as shown in FIG. 8B, the control device 23 rotates the rotation suppression blade 5 so that the angular velocity of the airframe 10 that rotates yaw becomes “0” when the traveling direction of the lightweight small aircraft 1 becomes D2. The blade surface 5a is inclined with respect to the axial direction of the main shaft 100. As a result, rotation suppression torque T2 is generated in the airframe 10, and rotation of the airframe 10 due to the reaction force torque T1 is suppressed. And the state which the advancing direction of the lightweight small aircraft 1 turned to the direction of D2 is maintained.
Note that the control device 23 detects that the traveling direction of the lightweight small aircraft 1 is D2 based on a measurement signal input from a sensor (measurement device 24) that detects the traveling direction of the airframe 10 in an absolute direction. What is necessary is just composition.
また、回転抑止トルクT2が反力トルクT1と同じ方向に生じるように回転抑止羽根5の羽根面5aが主軸100の軸方向に対して傾斜すると(つまり、回転抑止トルクT2が反力トルクT1を低減するときと逆方向に羽根面5aが傾斜すると)、機体10はより速やかにヨー回転し、進行方向の転向(D1→D2)が速やかになる。 When the blade surface 5a of the rotation suppression blade 5 is inclined with respect to the axial direction of the main shaft 100 so that the rotation suppression torque T2 is generated in the same direction as the reaction force torque T1 (that is, the rotation suppression torque T2 reduces the reaction force torque T1). When the blade surface 5a is inclined in the opposite direction to the time of reduction), the fuselage 10 yaw-rotates more quickly, and the turn in the traveling direction (D1 → D2) becomes faster.
一方、図9(a)に示すようにD1の方向に進行している軽量小型飛行体1の進行方向をD3の方向に転向させる場合(上方から見て左方向に転向させる場合)、制御装置23(図1参照)は、機体10のヨー回転が抑止されている状態から、回転抑止羽根5の羽根面5aの主軸100の軸方向に対する傾斜角度を大きくする。機体10に生じる回転抑止トルクT2の大きさが反力トルクT1の大きさより大きくなり、機体10は回転抑止トルクT2によって反力トルクT1が作用する方向と逆方向(左方向)に回転し、軽量小型飛行体1の進行方向も左方向に転向する。そして制御装置23は、図9(b)に示すように軽量小型飛行体1の進行方向がD3になったとき、ヨー回転する機体10の角速度が「0」になるように、回転抑止羽根5の羽根面5aの主軸100の軸方向に対して傾斜させる。これによって機体10に回転抑止トルクT2が発生し、反力トルクT1による機体10の回転が抑止される。そして、軽量小型飛行体1の進行方向がD3の方向に転向した状態が維持される。 On the other hand, as shown in FIG. 9 (a), when the traveling direction of the lightweight small aircraft 1 traveling in the direction D1 is changed to the direction D3 (when turning leftward as viewed from above), the control device 23 (see FIG. 1) increases the inclination angle of the blade surface 5a of the rotation suppression blade 5 with respect to the axial direction of the main shaft 100 from the state where the yaw rotation of the airframe 10 is suppressed. The magnitude of the rotation suppression torque T2 generated in the machine body 10 is greater than the magnitude of the reaction force torque T1, and the machine body 10 rotates in the opposite direction (left direction) to the direction in which the reaction force torque T1 acts due to the rotation inhibition torque T2. The traveling direction of the small aircraft 1 also turns to the left. Then, as shown in FIG. 9B, the control device 23 rotates the rotation suppression blade 5 so that the angular velocity of the airframe 10 that rotates yaw becomes “0” when the traveling direction of the lightweight small aircraft 1 becomes D3. The blade surface 5a is inclined with respect to the axial direction of the main shaft 100. As a result, rotation suppression torque T2 is generated in the airframe 10, and rotation of the airframe 10 due to the reaction force torque T1 is suppressed. And the state which the advancing direction of the lightweight small aircraft 1 turned to the direction of D3 is maintained.
このように、ロータ2の回転軸20a(図1参照)が主軸100(図1参照)に対して1つの方向に傾倒する構成であっても、制御装置23(図1参照)は軽量小型飛行体1を任意の方向に進行させることができる。 Thus, even if the rotating shaft 20a (see FIG. 1) of the rotor 2 is tilted in one direction with respect to the main shaft 100 (see FIG. 1), the control device 23 (see FIG. 1) is a lightweight and compact flight. The body 1 can be advanced in any direction.
実施例4の軽量小型飛行体1(図8(a)参照)は、ロータ2の回転軸20a(図1参照)が、主軸100(図1参照)に対して1つの方向にのみ傾倒する。しかしながら、制御装置23(図1参照)は、回転抑止羽根5(図8(a)参照)の主軸100の軸方向に対する傾斜角度を変更することによって機体10に生じる回転抑止トルクT2を調節し、軽量小型飛行体1を任意の方向に進行させることができる。
 回転軸20aを主軸100に対して1つの方向にのみ傾倒可能な傾倒装置22(図1参照)は、構造が簡素になって軽量になる。また、軽量小型飛行体1の飛行性能(転向性能)は低下しない。したがって、回転軸20aを主軸100に対して1つの方向にのみ傾倒可能な傾倒装置22を備えることによって、飛行性能を低下させることなく軽量小型飛行体1を軽量化できる。
In the lightweight small aircraft 1 according to the fourth embodiment (see FIG. 8A), the rotation shaft 20a (see FIG. 1) of the rotor 2 is tilted in only one direction with respect to the main shaft 100 (see FIG. 1). However, the control device 23 (see FIG. 1) adjusts the rotation inhibition torque T2 generated in the body 10 by changing the inclination angle of the rotation inhibition blade 5 (see FIG. 8A) with respect to the axial direction of the main shaft 100, The lightweight small aircraft 1 can be advanced in any direction.
The tilting device 22 (see FIG. 1) capable of tilting the rotating shaft 20a in only one direction with respect to the main shaft 100 has a simple structure and is lightweight. Further, the flight performance (turning performance) of the lightweight small aircraft 1 does not decrease. Therefore, by providing the tilting device 22 that can tilt the rotating shaft 20a in only one direction with respect to the main shaft 100, the lightweight small aircraft 1 can be reduced in weight without reducing the flight performance.
なお、本発明は前記した実施例に限定されるものではない。例えば、前記した実施例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
In addition, this invention is not limited to an above-described Example. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
例えば、図1に示す実施例1の軽量小型飛行体1は、回転抑止羽根5の羽根面5aが主軸100の軸方向に湾曲する曲面で形成されているが、湾曲していない平面の羽根面5aを有する回転抑止羽根5であってもよい。 For example, in the lightweight small aircraft 1 according to the first embodiment illustrated in FIG. 1, the blade surface 5 a of the rotation suppression blade 5 is formed with a curved surface that is curved in the axial direction of the main shaft 100. The rotation suppression blade 5 having 5a may be used.
この他、本発明は、前記した実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
 例えば、図1に示す軽量小型飛行体1の機体10は主軸100の軸方向に押しつぶされた楕円球体としたが完全球体の機体(図示せず)であってもよい。または、主軸100を軸方向とする円筒形状の機体(図示せず)であってもよい。このように、機体の形状は限定されるものではない。
In addition, the present invention is not limited to the above-described embodiments, and appropriate design changes can be made without departing from the spirit of the invention.
For example, although the airframe 10 of the lightweight small aircraft 1 shown in FIG. 1 is an elliptical sphere crushed in the axial direction of the main shaft 100, it may be a completely spherical airframe (not shown). Alternatively, a cylindrical body (not shown) having the main shaft 100 as an axial direction may be used. Thus, the shape of the aircraft is not limited.
また、機体10を有さず、ロータ2および回転抑止羽根5が露出する構成の軽量小型飛行体1であってもよい。この場合もロータ2の下方に、主軸100の軸方向に対して傾斜可能な羽根面5aが回転抑止羽根5に形成される構成とすればよい。 Moreover, the light-weight small aircraft 1 of the structure which does not have the airframe 10, but the rotor 2 and the rotation suppression blade | wing 5 are exposed may be sufficient. In this case as well, the blade surface 5 a that can be inclined with respect to the axial direction of the main shaft 100 is formed below the rotor 2 in the rotation suppression blade 5.
また、例えば、ロータ2の回転軸20aを主軸100の軸方向に対して傾倒させる傾倒装置22が備わらない軽量小型飛行体1であってもよい。この場合、ロータ2の回転で軽量小型飛行体1の機体10に揚力のみ発生可能になる。 Further, for example, the lightweight small aircraft 1 that does not include the tilting device 22 that tilts the rotating shaft 20a of the rotor 2 with respect to the axial direction of the main shaft 100 may be used. In this case, only the lift can be generated in the airframe 10 of the lightweight small aircraft 1 by the rotation of the rotor 2.
また、図1に示す実施例1の軽量小型飛行体1は、外部コントローラ7からの指令に基づいて飛行する構成としたが、制御装置23にあらかじめ組み込まれたプログラムに応じて自律飛行する軽量小型飛行体にも本発明を適用可能である。 1 is configured to fly based on a command from the external controller 7, but the lightweight small vehicle 1 autonomously flies in accordance with a program pre-installed in the control device 23. The present invention can also be applied to a flying object.
また、図1に示す実施例1の軽量小型飛行体1は、1つの機体10に1つのロータ2が備わる構成であるが、1つの機体10に2つ以上のロータ2が備わる構成の軽量小型飛行体にも本発明を適用可能である。この場合、ロータ2の回転方向は、全て同じであってもよいし異なっていてもよい。
符号の説明
1 is a configuration in which one aircraft 10 is provided with one rotor 2, but a lightweight and small configuration in which one aircraft 10 is provided with two or more rotors 2. The present invention can also be applied to a flying object. In this case, the rotation directions of the rotor 2 may all be the same or different.
Explanation of symbols
1,1a,1b 軽量小型飛行体
2 ロータ
5,50a 回転抑止羽根(板羽根) 
5a,51a 羽根面
7 外部コントローラ
10 機体
10a リム
10b スポーク
10c サイドフレーム
10d ハブ部材
20a 回転軸
22 傾倒装置
23 制御装置
52a 外縁部
100 主軸
G 地表面
1, 1a, 1b Lightweight and small flying vehicle 2 Rotor 5, 50a Rotation suppression blade (plate blade)
5a, 51a Blade surface 7 External controller 10 Airframe 10a Rim 10b Spoke 10c Side frame 10d Hub member 20a Rotating shaft 22 Inclining device 23 Controller 52a Outer edge portion 100 Spindle G Ground surface

Claims (19)

  1. 回転軸とともに回転し、機体の主軸となる1軸の軸方向に流れる空気流を発生して前記空気流で機体に揚力を発生させて前記機体を地表面から前記軸方向に浮上させるロータと、
    前記ロータの回転の反作用として前記機体に生じる反作用トルクを低減するために、前記軸方向に対する傾斜角度が可変の羽根面で前記空気流を受けて前記機体に前記主軸回りのトルクを発生させる板羽根と、
    前記回転軸を、前記主軸と同軸の状態から、前記主軸と直交し、かつ、互いに直交する2軸方向に傾倒させて、回転する前記ロータで前記機体に推進力を発生させる傾倒装置と、
    前記傾斜角度を変更して、前記機体に発生する前記主軸回りのトルクの大きさを調節する制御装置と、を備えることを特徴とする軽量小型飛行体。
    A rotor that rotates together with the rotating shaft, generates an air flow that flows in the axial direction of one axis that is a main axis of the aircraft, generates lift in the aircraft by the air flow, and floats the aircraft in the axial direction from the ground surface;
    In order to reduce the reaction torque generated in the airframe as a reaction of the rotation of the rotor, a blade blade that receives the air flow at the blade surface with a variable inclination angle with respect to the axial direction and generates torque around the main shaft in the airframe When,
    A tilting device that tilts the rotating shaft in a biaxial direction perpendicular to the main shaft and perpendicular to the main shaft from a state of being coaxial with the main shaft, and generates a propulsive force on the airframe by the rotating rotor;
    And a control device for adjusting the magnitude of the torque around the main shaft generated in the airframe by changing the tilt angle.
  2. 回転軸とともに回転し、機体の主軸となる1軸の軸方向に流れる空気流を発生して前記空気流で機体に揚力を発生させて前記機体を地表面から前記軸方向に浮上させるロータと、
    前記ロータの回転の反作用として前記機体に生じる反作用トルクを低減するために、前記軸方向に対する傾斜角度が可変の羽根面で前記空気流を受けて前記機体に前記主軸回りのトルクを発生させる板羽根と、
    前記回転軸を、前記主軸と同軸の状態から、前記主軸と直交する1軸方向に傾倒させて、回転する前記ロータで前記機体に推進力を発生させる傾倒装置と、
    前記傾斜角度を変更して、前記機体に発生する前記主軸回りのトルクの大きさを調節し、前記機体を前記主軸回りに回転させて進行方向を転向する制御装置と、を備えることを特徴とする軽量小型飛行体。
    A rotor that rotates together with the rotating shaft, generates an air flow that flows in the axial direction of one axis that is a main axis of the aircraft, generates lift in the aircraft by the air flow, and floats the aircraft in the axial direction from the ground surface;
    In order to reduce the reaction torque generated in the airframe as a reaction of the rotation of the rotor, a blade blade that receives the air flow at the blade surface with a variable inclination angle with respect to the axial direction and generates torque around the main shaft in the airframe When,
    A tilting device that tilts the rotating shaft in a single axial direction perpendicular to the main shaft from a state coaxial with the main shaft, and generates a propulsive force on the airframe by the rotating rotor;
    A control device that changes the tilt angle, adjusts the magnitude of the torque around the main shaft generated in the airframe, and rotates the airframe around the main shaft to change the traveling direction. A lightweight, small flying vehicle.
  3. 1つの前記機体に1つの前記ロータが備わっていることを特徴とする請求項1に記載の軽量小型飛行体。 The lightweight small air vehicle according to claim 1, wherein one airfoil is provided with one rotor.
  4. 1つの前記機体に1つの前記ロータが備わっていることを特徴とする請求項2に記載の軽量小型飛行体。 The lightweight small aircraft according to claim 2, wherein one aircraft is provided with one rotor.
  5. 前記機体はフレーム構造であり、
    前記フレーム構造は、前記主軸を中心とする円環状のリムと、
    前記主軸と同軸に延設されるハブ部材から前記リムの径方向に放射状に延設されるスポークと、
    前記制御装置、前記傾倒装置、前記ロータ、前記回転軸を回転させるモータ、および前記モータに電力を供給するバッテリを含む補機類を囲むように前記リムの円環状に沿って配設されるサイドフレームと、を含んで構成され、
    前記ロータおよび前記モータと、前記補機類と、が前記主軸の軸線上に前記リムを挟んで配設され、前記補機類が配設される位置が重心の位置になることを特徴とする請求項1から請求項4までのいずれか1項に記載の軽量小型飛行体。
    The aircraft has a frame structure;
    The frame structure has an annular rim centered on the main axis;
    Spokes extending radially in the radial direction of the rim from a hub member extending coaxially with the main shaft;
    The side disposed along the annular shape of the rim so as to surround the control device, the tilting device, the rotor, a motor that rotates the rotating shaft, and auxiliary equipment including a battery that supplies power to the motor. And a frame including
    The rotor, the motor, and the auxiliary machinery are arranged on the axis of the main shaft with the rim interposed therebetween, and the position where the auxiliary machinery is arranged is the position of the center of gravity. The lightweight small aircraft according to any one of claims 1 to 4.
  6. 前記サイドフレームが側面視で楕円形状を呈し、
    前記機体が、前記軸方向に球体が押しつぶされた楕円球体であることを特徴とする請求項5に記載の軽量小型飛行体。
    The side frame has an elliptical shape in a side view,
    6. The lightweight and small flying object according to claim 5, wherein the aircraft is an elliptical sphere in which a sphere is crushed in the axial direction.
  7. 前記板羽根の外縁部が前記楕円球体の一部を形成することを特徴とする請求項6に記載の軽量小型飛行体。 The lightweight small aircraft according to claim 6, wherein an outer edge portion of the plate blade forms a part of the elliptic sphere.
  8. 回転する前記ロータによって発生する揚力および推進力で飛行する機体に向かう風の風向を検出する風向検出手段を備え、
    前記制御装置が、前記風向検出手段が検出する風向に応じて前記機体に発生する前記主軸回りのトルクの大きさを調節し、飛行している前記機体を前記主軸回りに回転させて前記機体に向かう風が前記板羽根に吹き付けられることによる抵抗を最小にすることを特徴とする請求項1から請求項4までのいずれか1項に記載の軽量小型飛行体。
    Wind direction detection means for detecting the wind direction of the wind toward the aircraft flying with lift and propulsion generated by the rotating rotor,
    The control device adjusts the magnitude of the torque around the main shaft generated in the airframe according to the wind direction detected by the wind direction detecting means, and rotates the flying airframe around the main shaft to the airframe. The lightweight small-sized flying body according to any one of claims 1 to 4, wherein a resistance caused by blowing wind toward the plate blades is minimized.
  9. 回転する前記ロータによって発生する揚力および推進力で飛行する機体に向かう風の風向を検出する風向検出手段を備え、
    前記制御装置が、前記風向検出手段が検出する風向に応じて前記機体に発生する前記主軸回りのトルクの大きさを調節し、飛行している前記機体を前記主軸回りに回転させて前記機体に向かう風が前記板羽根に吹き付けられることによる抵抗を最小にすることを特徴とする請求項5に記載の軽量小型飛行体。
    Wind direction detection means for detecting the wind direction of the wind toward the aircraft flying with lift and propulsion generated by the rotating rotor,
    The control device adjusts the magnitude of the torque around the main shaft generated in the airframe according to the wind direction detected by the wind direction detecting means, and rotates the flying airframe around the main shaft to the airframe. 6. The lightweight and small air vehicle according to claim 5, wherein resistance caused by blowing wind toward the plate blades is minimized.
  10. 回転する前記ロータによって発生する揚力および推進力で飛行する機体に向かう風の風向を検出する風向検出手段を備え、
    前記制御装置が、前記風向検出手段が検出する風向に応じて前記機体に発生する前記主軸回りのトルクの大きさを調節し、飛行している前記機体を前記主軸回りに回転させて前記機体に向かう風が前記板羽根に吹き付けられることによる抵抗を最小にすることを特徴とする請求項6に記載の軽量小型飛行体。
    Wind direction detection means for detecting the wind direction of the wind toward the aircraft flying with lift and propulsion generated by the rotating rotor,
    The control device adjusts the magnitude of the torque around the main shaft generated in the airframe according to the wind direction detected by the wind direction detecting means, and rotates the flying airframe around the main shaft to the airframe. The lightweight small air vehicle according to claim 6, wherein a resistance caused by a wind to be blown against the blade is minimized.
  11. 回転する前記ロータによって発生する揚力および推進力で飛行する機体に向かう風の風向を検出する風向検出手段を備え、
    前記制御装置が、前記風向検出手段が検出する風向に応じて前記機体に発生する前記主軸回りのトルクの大きさを調節し、飛行している前記機体を前記主軸回りに回転させて前記機体に向かう風が前記板羽根に吹き付けられることによる抵抗を最小にすることを特徴とする請求項7に記載の軽量小型飛行体。
    Wind direction detection means for detecting the wind direction of the wind toward the aircraft flying with lift and propulsion generated by the rotating rotor,
    The control device adjusts the magnitude of the torque around the main shaft generated in the airframe according to the wind direction detected by the wind direction detecting means, and rotates the flying airframe around the main shaft to the airframe. The lightweight small air vehicle according to claim 7, wherein a resistance caused by a wind to be blown against the blade is minimized.
  12. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項1から請求項4までのいずれか1項に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight small aircraft according to any one of claims 1 to 4, wherein the aircraft is caused to fly in a flight state in accordance with a command transmitted by an external controller.
  13. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項5に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    6. The lightweight small aircraft according to claim 5, wherein the aircraft is caused to fly in a flight state in accordance with a command transmitted by an external controller.
  14. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項6に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight and small aircraft according to claim 6, wherein the aircraft is caused to fly in a flight state according to a command transmitted by an external controller.
  15. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項7に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight small aircraft according to claim 7, wherein the aircraft is caused to fly in a flight state according to a command transmitted by an external controller.
  16. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項8に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight small aircraft according to claim 8, wherein the aircraft is caused to fly in a flight state in accordance with a command transmitted by an external controller.
  17. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項9に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight and small aircraft according to claim 9, wherein the aircraft is caused to fly in a flight state according to a command transmitted by an external controller.
  18. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項10に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight small aircraft according to claim 10, wherein the aircraft is caused to fly in a flight state according to a command transmitted by an external controller.
  19. 前記制御装置は、
    少なくとも、飛行している前記機体の飛行高度、前記機体の進行方向を示す絶対方位、および飛行している前記機体の前記主軸回りの回転角速度、を計測可能な計測装置から入力される計測信号に基づいて、前記回転軸を傾倒させるとともに前記傾斜角度を変更し、
    外部コントローラが発信する指令に応じた飛行状態で前記機体を飛行させることを特徴とする請求項11に記載の軽量小型飛行体。
    The controller is
    A measurement signal input from a measurement device capable of measuring at least a flight altitude of the flying aircraft, an absolute direction indicating a traveling direction of the aircraft, and a rotational angular velocity of the flying aircraft around the main axis. And tilting the rotating shaft and changing the tilt angle,
    The lightweight small aircraft according to claim 11, wherein the aircraft is caused to fly in a flight state according to a command transmitted by an external controller.
PCT/JP2013/077143 2013-10-04 2013-10-04 Lightweight small flight vehicle WO2015049798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/077143 WO2015049798A1 (en) 2013-10-04 2013-10-04 Lightweight small flight vehicle
JP2015540352A JPWO2015049798A1 (en) 2013-10-04 2013-10-04 Lightweight small air vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077143 WO2015049798A1 (en) 2013-10-04 2013-10-04 Lightweight small flight vehicle

Publications (1)

Publication Number Publication Date
WO2015049798A1 true WO2015049798A1 (en) 2015-04-09

Family

ID=52778406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077143 WO2015049798A1 (en) 2013-10-04 2013-10-04 Lightweight small flight vehicle

Country Status (2)

Country Link
JP (1) JPWO2015049798A1 (en)
WO (1) WO2015049798A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105752353A (en) * 2016-02-26 2016-07-13 李俊明 Aircraft, pan-tilt and sprinkler
BE1022943B1 (en) * 2015-04-17 2016-10-20 Aerobot Sa Drone
CN108082506A (en) * 2018-01-26 2018-05-29 锐合防务技术(北京)有限公司 Unmanned vehicle
CN108572664A (en) * 2018-06-29 2018-09-25 长沙市云智航科技有限公司 Tilt angle detection device, control system and the method for aircraft tilting rotor
CN109850117A (en) * 2018-12-05 2019-06-07 中国航空工业集团公司成都飞机设计研究所 A kind of multi-rotor aerocraft with walking function
WO2019127528A1 (en) * 2017-12-29 2019-07-04 深圳市钛翼科技有限公司 Spin light-emitting aircraft
JP2019172256A (en) * 2017-11-06 2019-10-10 株式会社エアロネクスト Flying body and method for controlling flying body
CN111566007A (en) * 2018-02-05 2020-08-21 株式会社理光 Aircraft, flight system, and structure inspection system
WO2021134538A1 (en) * 2019-12-31 2021-07-08 李庆远 Circular rotor display device
WO2022070376A1 (en) * 2020-09-30 2022-04-07 日本電信電話株式会社 Propeller guard
WO2022102091A1 (en) * 2020-11-13 2022-05-19 日本電信電話株式会社 Anti-lightning strike structure for flying vehicle
WO2022185441A1 (en) * 2021-03-03 2022-09-09 日本電信電話株式会社 Lightning induction system and method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236774A (en) * 1994-03-02 1995-09-12 Sakura Giken Kk Model plane
JPH11514951A (en) * 1995-10-28 1999-12-21 シィール・ヨハネス Flying object
US20030025032A1 (en) * 2000-02-15 2003-02-06 Bertin Technologies Remote controlled aircraft, in particular for surveillance or inspection
JP2004017722A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Vtol aircraft
JP2010052713A (en) * 2009-03-05 2010-03-11 Technical Research & Development Institute Ministry Of Defence Globular aircraft and tail sitter machine
JP2011527263A (en) * 2008-07-07 2011-10-27 サンテック エンタープライゼス Mitsuha Lower Wing Aircraft
JP2012081936A (en) * 2010-10-14 2012-04-26 Institute Of National Colleges Of Technology Japan Flying body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236774A (en) * 1994-03-02 1995-09-12 Sakura Giken Kk Model plane
JPH11514951A (en) * 1995-10-28 1999-12-21 シィール・ヨハネス Flying object
US20030025032A1 (en) * 2000-02-15 2003-02-06 Bertin Technologies Remote controlled aircraft, in particular for surveillance or inspection
JP2004017722A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Vtol aircraft
JP2011527263A (en) * 2008-07-07 2011-10-27 サンテック エンタープライゼス Mitsuha Lower Wing Aircraft
JP2010052713A (en) * 2009-03-05 2010-03-11 Technical Research & Development Institute Ministry Of Defence Globular aircraft and tail sitter machine
JP2012081936A (en) * 2010-10-14 2012-04-26 Institute Of National Colleges Of Technology Japan Flying body

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1022943B1 (en) * 2015-04-17 2016-10-20 Aerobot Sa Drone
WO2016166366A1 (en) * 2015-04-17 2016-10-20 Aerobot Drone comprising a ducted propeller
CN105752353A (en) * 2016-02-26 2016-07-13 李俊明 Aircraft, pan-tilt and sprinkler
JP2019172256A (en) * 2017-11-06 2019-10-10 株式会社エアロネクスト Flying body and method for controlling flying body
WO2019127528A1 (en) * 2017-12-29 2019-07-04 深圳市钛翼科技有限公司 Spin light-emitting aircraft
CN110214111A (en) * 2017-12-29 2019-09-06 深圳市钛翼科技有限公司 Self-rotary shines aircraft
CN108082506A (en) * 2018-01-26 2018-05-29 锐合防务技术(北京)有限公司 Unmanned vehicle
US11560215B2 (en) 2018-02-05 2023-01-24 Ricoh Company, Ltd. Aircraft, flight system, and structure inspection system
CN111566007B (en) * 2018-02-05 2023-10-03 株式会社理光 Aircraft, flight system and structure inspection system
CN111566007A (en) * 2018-02-05 2020-08-21 株式会社理光 Aircraft, flight system, and structure inspection system
CN108572664A (en) * 2018-06-29 2018-09-25 长沙市云智航科技有限公司 Tilt angle detection device, control system and the method for aircraft tilting rotor
CN108572664B (en) * 2018-06-29 2023-08-04 长沙市云智航科技有限公司 Tilting angle detection device, control system and method for tilting rotor wing of aircraft
CN109850117A (en) * 2018-12-05 2019-06-07 中国航空工业集团公司成都飞机设计研究所 A kind of multi-rotor aerocraft with walking function
WO2021134538A1 (en) * 2019-12-31 2021-07-08 李庆远 Circular rotor display device
WO2022070376A1 (en) * 2020-09-30 2022-04-07 日本電信電話株式会社 Propeller guard
JP7464884B2 (en) 2020-09-30 2024-04-10 日本電信電話株式会社 Propeller Guard
WO2022102091A1 (en) * 2020-11-13 2022-05-19 日本電信電話株式会社 Anti-lightning strike structure for flying vehicle
WO2022185441A1 (en) * 2021-03-03 2022-09-09 日本電信電話株式会社 Lightning induction system and method therefor

Also Published As

Publication number Publication date
JPWO2015049798A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015049798A1 (en) Lightweight small flight vehicle
KR101767943B1 (en) Multirotor type Unmanned Aerial Vehicle Available for Adjusting Direction of Thrust
JP6076833B2 (en) Control method for vertical takeoff and landing vehicle
WO2016136848A1 (en) Multicopter
EP3594117B1 (en) Canted co-axial rotors for a rotorcraft
US10144509B2 (en) High performance VTOL aircraft
KR100812756B1 (en) Quadro copter
US20170308101A1 (en) Aircraft and method of orienting an airframe of an aircraft
US11860622B2 (en) Hybrid gyrodyne aircraft
JP6508331B2 (en) Moving body
WO2012053276A1 (en) Horizontal attitude stabilization device for disc air vehicle
JP2007521174A (en) Micro air vehicle
JP2017528355A (en) High performance vertical take-off and landing aircraft
JP2016068692A (en) Multi-rotor craft posture stabilization control device
JP2008094277A (en) Double reversal rotation impeller machine
WO2018037795A1 (en) Flight device
US10564648B2 (en) High-authority yaw control for a tandem vehicle with rigid rotors
WO2018004325A1 (en) Octocopter
US10908618B2 (en) Rotor control law for multi-rotor vehicles systems and methods
JP4702882B2 (en) Small rotorcraft
JP6721191B2 (en) Rotorcraft
JP2017074868A (en) Rotorcraft
JP2006327219A (en) Helicopter
KR102260716B1 (en) Multicopter Yawing Control System
WO2020115934A1 (en) Rotary wing aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894945

Country of ref document: EP

Kind code of ref document: A1