WO2015046766A1 - Transparent electrode and method for manufacturing same - Google Patents

Transparent electrode and method for manufacturing same Download PDF

Info

Publication number
WO2015046766A1
WO2015046766A1 PCT/KR2014/008082 KR2014008082W WO2015046766A1 WO 2015046766 A1 WO2015046766 A1 WO 2015046766A1 KR 2014008082 W KR2014008082 W KR 2014008082W WO 2015046766 A1 WO2015046766 A1 WO 2015046766A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
layer
forming
voltage
resistance state
Prior art date
Application number
PCT/KR2014/008082
Other languages
French (fr)
Korean (ko)
Inventor
김태근
이병룡
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015046766A1 publication Critical patent/WO2015046766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a transparent electrode and a method of manufacturing the same, and more particularly to a transparent electrode having a high electrical conductivity while having a good electrical conductivity, including the ultraviolet region and a method of manufacturing the same.
  • Transparent electrodes are used in various fields such as LEDs, solar cells, medical UV sterilizers, fisheries, and the like, and their application fields and their demands are increasing.
  • the transparent electrode is widely used in the LED field, the current transparent electrode technology applied to the LED can be applied to a portion (365nm ⁇ 400nm) of the visible region (400nm-800nm) and the entire ultraviolet region (10nm-400nm).
  • Indium Tin Oxide (ITO) -based technology is the main focus.
  • the transmittance shows the transmittance when the ITO transparent electrode is formed on the P-GaN semiconductor layer according to the prior art. As shown in FIG. 1, the transmittance shows 80% or more in the wavelength range of 350 nm or more, but the transmittance decreases rapidly in the ultraviolet range of short wavelength. In particular, the transmittance is 20% or less in the short wavelength region of 280 nm or less. It can be seen that decreases.
  • Another prior art to solve this problem is to form a metal electrode pad directly without forming a transparent electrode on a semiconductor layer, such as p-AlGaN, but the difference in work function between the metal and the semiconductor layer is too large Ohmic Contact is made Not only does it occur, but the current is concentrated in the metal electrode pad and is not supplied to the entire active layer, thereby causing a problem that the amount of light generated in the active layer is significantly reduced.
  • An object of the present invention is to provide a transparent electrode forming method exhibiting high transmittance and high conductivity not only in the visible light region but also in the short ultraviolet light region, and exhibiting good ohmic contact characteristics with the semiconductor layer, and a semiconductor device manufactured using the same. It is.
  • a voltage (forming voltage) above a threshold voltage inherent to a material is applied to form a conductive filament therein, whereby the resistance state is in a high resistance state.
  • a transparent electrode layer formed of a resistance change material changed to a low resistance state; And an electric field concentration layer formed in the transparent electrode layer to reduce the forming voltage.
  • the electric field concentrating layer of the transparent electrode according to the preferred embodiment of the present invention may be formed in the middle of the transparent electrode layer, and may be formed of any one of nanoparticles, nanowires, and conductive polymers.
  • the electric field concentration layer of the transparent electrode is formed on the interface between the transparent electrode layer and the semiconductor layer, it may be formed of any one of nanoparticles, nanowires, and conductive polymers.
  • the electric field concentration layer of the transparent electrode may be formed in a pattern corresponding to the electrode pad pattern formed on the transparent electrode.
  • the transparent electrode according to another embodiment of the present invention for solving the above problems is a transparent electrode formed on the semiconductor layer, the transparent electrode is applied to a voltage (forming voltage) or higher than the threshold voltage inherent to the material inside
  • the conductive filaments are formed in the resistive material, and the resistance state is formed of a resistance change material changed from a high resistance state to a low resistance state, and includes a plurality of transparent electrode layers having conductive filaments formed therein.
  • At least two layers of the plurality of transparent electrode layers of the transparent electrode according to the preferred embodiment of the present invention may be formed of a resistance change material having a different band gap.
  • the plurality of transparent electrode layers of the transparent electrode according to the preferred embodiment of the present invention may be arranged to reduce the difference in refractive index with the air toward the top.
  • the projection electrode according to another embodiment of the present invention for solving the above problems is a transparent electrode formed on the semiconductor layer, a voltage (forming voltage) or higher than the threshold voltage inherent to the material is applied to the conductive filament therein
  • the transparent electrode according to the preferred embodiment of the present invention may be formed so that a portion of the transparent conductive layer is exposed to the outside.
  • the transparent conductive layer between the transparent conductive layer and the semiconductor layer of the transparent electrode may further include a transparent conductive layer formed of a resistance change material formed with a conductive filament.
  • the method for forming a transparent electrode for solving the above problems, the conductive filament is formed therein when a voltage (forming voltage) higher than the threshold voltage inherent to the (a1) material is applied, Forming a lower transparent electrode layer using a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; (a2) forming an electric field concentration layer on the lower transparent electrode layer; (b) forming an upper transparent electrode layer on the field concentrating layer by using a resistance change material; And (c) applying a forming voltage to the upper transparent electrode layer to form conductive filaments inside the transparent electrode layers.
  • a voltage (forming voltage) higher than the threshold voltage inherent to the (a1) material is applied, Forming a lower transparent electrode layer using a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; (a2) forming an electric field concentration layer on the lower transparent electrode layer; (b) forming an upper transparent electrode layer on the field concentrating layer by using a resistance change material; And (c) applying a
  • the transparent electrode forming method for solving the above problems, (a2) forming an electric field concentration layer on the semiconductor layer; (b) When a voltage (forming voltage) higher than a threshold voltage inherent to the material is applied to the field concentrating layer, a conductive filament is formed therein, whereby a resistance change material whose resistance state is changed from a high resistance state to a low resistance state is formed. Forming a transparent electrode layer by using; And (c) applying a forming voltage to the transparent electrode layer to form a conductive filament inside the transparent electrode layer.
  • the electric field concentration layer may be formed using any one of nanoparticles, nanowires, and a conductive polymer.
  • the transparent electrode forming method for solving the above problems, (a) by applying a voltage (forming voltage) above the threshold voltage inherent to the material to form a conductive filament therein, Forming a plurality of transparent electrode layers of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; And (b) applying a forming voltage to the plurality of transparent electrode layers to form conductive filaments therein.
  • the transparent electrode forming method for solving the above problems, (a) by applying a voltage (forming voltage) above the threshold voltage inherent to the material to form a conductive filament therein, Forming a transparent electrode layer of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; (b) applying a forming voltage to the transparent electrode layer to form a conductive filament in the transparent electrode layer, thereby changing the resistance state to a low resistance state; And (c) repeatedly performing steps (a) and (b) one or more times sequentially to further form a transparent electrode layer having conductive filaments formed therein.
  • a voltage forming voltage
  • At least two layers of the plurality of transparent electrode layers included in the transparent electrode may be formed of a resistance change material having a different band gap.
  • the plurality of transparent electrode layers may be arranged to decrease the difference in refractive index with air toward the top.
  • the transparent electrode forming method for solving the above problems, (a) forming a transparent conductive layer having a higher conductivity because the band gap is smaller than the transparent electrode layer; (b) a conductive filament is formed therein by applying a voltage (forming voltage) higher than a threshold voltage inherent to the material on the transparent conductive layer, whereby the resistance state is transparent to a resistance change material that is changed from a high resistance state to a low resistance state. Forming an electrode layer; And (d) applying a voltage between the transparent conductive layer and the transparent electrode layer to form a conductive filament inside the transparent electrode layer.
  • the step (b), the transparent electrode layer is formed so that a portion of the transparent conductive layer is exposed to the outside
  • the step (d) the external A conductive filament may be formed inside the transparent electrode layer by applying a voltage between a portion of the transparent conductive layer and the transparent electrode layer.
  • the transparent conductive layer may be formed on the transparent electrode layer formed of a resistance change material formed therein.
  • a transparent electrode is formed of a resistance change material made of a transparent material whose resistance state is changed from a high resistance state to a low resistance state by an applied electric field, and a voltage is applied to the transparent electrode to reduce the resistance state of the transparent electrode.
  • the transparent electrode is made conductive by performing a forming process to change the shape of the transparent electrode, thereby exhibiting good ohmic characteristics with a semiconductor layer formed under or above the transparent electrode, It is possible to form a transparent electrode exhibiting high transmittance.
  • the present invention can be easily formed at a lower voltage by concentrating an electric field by including nanoparticles in the transparent electrode formed of a resistance change material, thicker transparent electrode when the same forming voltage is applied It can form to enhance the strength of the transparent electrode and the safety of the device.
  • the present invention can form a transparent electrode by stacking a plurality of transparent electrode layer formed of a resistance change material to form a transparent electrode, thereby enhancing the strength of the transparent electrode and the safety of the device.
  • a portion of the plurality of transparent electrode layers with a material that is well formed, it is possible to reduce the forming voltage while increasing the thickness of the transparent electrode.
  • the plurality of transparent electrode layers are stacked to form a transparent electrode
  • the plurality of transparent electrode layers by stacking the plurality of transparent electrode layers such that a difference in refractive index with the external air layer decreases toward the top, the light generated in the semiconductor layer is prevented from total reflection.
  • the light extraction efficiency can be improved.
  • the present invention by forming a transparent conductive layer in a pattern corresponding to the electrode pad pattern formed on the transparent electrode on the semiconductor layer, to facilitate the forming while minimizing the reduction in light extraction efficiency, to form a thick thickness of the transparent electrode Therefore, the strength of the transparent electrode and the safety of the device can be enhanced.
  • 1 is a diagram showing the transmittance when the ITO transparent electrode is formed on the P-GaN semiconductor layer according to the prior art.
  • FIG. 2 is a diagram illustrating a structure of a transparent electrode and a semiconductor device including the same according to the first embodiment of the present invention.
  • 3A to 3C are diagrams for explaining the properties of the resistance change material.
  • 4A to 4E illustrate the transmittance characteristics, ohmic characteristics before performing the forming process, contact resistance characteristics before performing the forming process, and performing the forming process according to the first embodiment in which a transparent electrode is formed using Ga 2 O 3 material on a p-GaN semiconductor layer.
  • the following ohmic characteristics and contact resistance characteristics after performing the forming process are respectively shown.
  • FIG 5 illustrates a structure of a transparent electrode and a semiconductor device including the same according to the second embodiment of the present invention.
  • FIG. 6 is a view showing the structure of a transparent electrode according to a third embodiment of the present invention.
  • FIG. 7A and 7B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fourth preferred embodiment of the present invention.
  • FIGS. 8A and 8B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fifth exemplary embodiment of the present invention.
  • the present invention is applied to all the transparent electrodes (OLED transparent electrode, solar cell transparent electrode, LED transparent electrode, etc.) in contact with the semiconductor layer, the contents described below are for explaining the technical idea of the present invention It should be noted that this is only one embodiment.
  • a transparent electrode and a semiconductor device having the same according to the first exemplary embodiment of the present invention include a transparent electrode on the semiconductor layer 10 such that the semiconductor layer 10 and the transparent electrode 20 are in contact with each other. 20 is formed, a metal electrode pad 30 is formed on the transparent electrode 20, and a conductive filament (or metal filament) is formed inside the transparent electrode.
  • the semiconductor layer 10 includes not only an inorganic semiconductor layer and an organic semiconductor layer, but also a concept including all materials through which charge can flow.
  • the inorganic semiconductor layer includes a single element semiconductor made of a single element such as Si and Ge.
  • the inorganic semiconductor layer is a compound such as a Nitride compound semiconductor layer (GaN, AlGaN, InN, InGaN, AlN, etc.) and an oxide compound compound semiconductor layer (GaO, ZnO, CoO, IrO2, Rh2O3, Al2O3, SnO, etc.).
  • the concept includes a semiconductor layer.
  • the organic semiconductor layer is typically a concept including a material forming an electron (hole) injection layer and an electron (hole) transport layer of an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • the surface in contact with the transparent electrode 20 of the semiconductor layer 10 is preferably doped with a p type or n type.
  • the transparent electrode of the present invention is formed of a transparent material (resistance change material) whose resistance state is changed by an applied electric field, and a conductive filament is formed therein by forming (forming process or electric break down). It is.
  • a resistance change material is mainly used in the field of resistive RAM (ReRAM), and when a voltage higher than a threshold inherent to the material is applied to the material, electro-forming is performed, so that the resistance state of the material, which is an insulator at first, is a high resistance state. It is changed to a low resistance state at to show conductivity.
  • FIG. 3A to 3C are diagrams illustrating the characteristics of such a resistance change material.
  • a voltage above a threshold is applied to a resistance change material that is an insulator
  • an electrode metal material is diffused into the thin film by an electrical forming process or a resistance structure as shown in FIG. 3A due to a defect structure in the thin film.
  • Conductive filaments are formed inside the change material. Thereafter, even when the voltage applied to the material is removed, the conductive filament 22 is maintained, and current flows through the conductive filament 22, so that the resistance state of the material is maintained in the low resistance state.
  • the resistance change material (AlN) shows an insulator characteristic before the forming process and then shows the I-V characteristic of the metal after the forming process.
  • the conductive filament formed in the transparent electrode may be SET or RESET as shown in FIG. 3B using the JOULE-HEATING effect.
  • Figure 3c is a graph showing how stable the conductive filament can be formed after the formation, as shown by the red dotted line of the graph shows that the low resistance state can be stably maintained for 10 years after the formation of the conductive filament Can be.
  • a transparent conductive oxide-based material SiO2, Ga2O3, Al2O3, ZnO, ITO, etc.
  • a transparent conductive Nitride-based material Si3N4, AlN, GaN, InN, etc.
  • Transparent conductive polymer-based materials polyaniline (PANI), poly (ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS), etc.
  • transparent conductive nanomaterials CNT, CNT-oxide, Graphene, Graphene-oxide, etc.
  • any material that is transparent and exhibits the above-described resistance change characteristics may be used to form the transparent electrode of the present invention.
  • the meaning of the materials having conductivity is that they have conductivity by a forming process.
  • 4A to 4E illustrate the transmittance characteristics, ohmic characteristics before performing the forming process, contact resistance characteristics before performing the forming process, and forming process according to the first embodiment in which a transparent electrode is formed using Ga 2 O 3 material on a p-GaN semiconductor layer. The subsequent ohmic characteristics and the contact resistance characteristics after performing the forming process are shown, respectively.
  • a transparent electrode thin film (thickness: 80 nm) was formed of Ga 2 O 3 material on a p-GaN semiconductor layer commonly used in LEDs.
  • the Ga 2 O 3 transparent electrode of the illustrated example exhibits transmittance of 80% or more with respect to light in an ultraviolet region having a wavelength of 264 nm or more. This also can be seen that the transmittance is significantly improved compared to the conventional ITO-based transparent electrode showing a transmittance of 20% shown in FIG.
  • FIGS. 4B to 4E are measured by using ohmic characteristics (FIGS. 4B and 4D) and TLM (Transfer Length Method) patterns when the distance between the measuring electrodes is 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, and 10 ⁇ m. Resistance characteristics (FIGS. 4C and 4E) are shown.
  • the forming process is carried out previously and the transparent electrode, independent of the voltage applied is of 1.0 * 10 -11 A and out to find out the current flow, not at all It can be seen that it does not exhibit ohmic characteristics.
  • the ohmic contact resistance characteristic also shows no linearity at all.
  • Ga 2 O 3 transparent electrode is at least 80% transmittance with respect to light of ultraviolet region having a wavelength of more than 264nm shows a result of measurement using the TLM pattern before performing the forming step exhibits a contact resistance of 51,680 ⁇ cm -2, performed after the forming step is 2.64 * 10 -5 exhibits a contact resistance of ⁇ cm -2 superior conductivity It can be seen that not only is it improved, but also shows good ohmic characteristics.
  • the transparent electrode was formed of a single layer, and thus, the transparent electrode was formed of a very thin thin film.
  • the above-mentioned resistance change material for forming the transparent electrode has a large band gap and thus a very large resistance, and thus, when the thickness thereof becomes thick, it is difficult to form an appropriate amount of conductive filaments.
  • the strength of the transparent electrode itself may be weakened, and thus, the overall strength of the semiconductor device may be weakened.
  • Transparent electrodes according to the second to fifth embodiments of the present invention described below solve this problem.
  • FIG 5 illustrates a structure of a transparent electrode and a semiconductor device including the same according to the second embodiment of the present invention.
  • the transparent electrode 500 according to the second exemplary embodiment may be formed of a resistance change material on the semiconductor layer 10.
  • the upper transparent electrode layer 511 and the lower transparent electrode layer 512, and the electric field concentrating layer 520 is formed in the transparent electrode layer (511, 512) to reduce the forming voltage.
  • the electric field concentrating layer 520 is composed of a plurality of nanoparticles, nanowires, conductive polymers, etc. (hereinafter referred to as "nanoparticles", etc.), and in the process of forming the transparent electrode layer 510 formed of a resistance change material, the electrode
  • nanoparticles nanoparticles
  • the formation of the conductive filaments 22 is possible by applying a relatively small voltage.
  • the conductive filament 22 can be formed in the transparent electrode layer thicker than the case where the electric field concentration layer is not included.
  • the thickness of the transparent electrode 510 can be formed to be thicker, thereby further enhancing the strength of the transparent electrode 510 and the safety of the device.
  • the nanoparticles are configured in the form of particles having a small aspect ratio.
  • the current concentrating layer 520 is formed in a pattern corresponding to the electrode pad pattern (not shown) formed on the transparent electrode 500, it is preferably formed so as not to impair the transmittance of light.
  • a plurality of conductive filaments 22 are formed in the transparent electrode layer 510, and each of the conductive filaments 22 forms nanoparticles 520 constituting the current concentrating layer 520.
  • the current path is formed through the semiconductor layer 10.
  • the conductive filament 22 is formed through the nanoparticles 520 of the current concentrating layer, it is easier to adjust the spacing of the nanoparticles 520 constituting the electric field concentrating layer 520.
  • the spacing of the conductive filaments 22 can be adjusted, thus forming uniform conductive filaments 22.
  • the lower transparent electrode layer 512 is formed on the semiconductor layer 10 by using a resistance change material, and the electric field concentration layer ( 520 is formed.
  • the method of forming the electric field concentrating layer 520 can be variously applied. In the simplest method, a solution containing nanoparticles or the like is applied onto the lower transparent electrode layer, and the solution is evaporated. Besides After depositing a thin metal, a method of forming nanoparticles through heat treatment may be applied.
  • the upper transparent electrode layer 511 is formed on the electric field concentrating layer 520 with the same resistance material as the resistance change material used to form the lower transparent electrode layer 512.
  • the electric field concentrating layer 520 is disposed in an arbitrary region on the lower transparent electrode layer 512 with nanoparticles or the like, a part of the upper transparent electrode layer 511 is formed on the lower transparent electrode layer 512, and a part of the nanoparticles is formed. Since the lower transparent electrode layer 512 and the upper transparent electrode layer 511 are connected to one, so as to form the transparent electrode layer 510, and the nanoparticles 520 are included at the same height in the middle of the transparent electrode layer. Has a structure.
  • the conductive filament 22 is formed inside the transparent electrode layer 510 by applying a voltage higher than a threshold voltage inherent to the transparent electrode to complete the transparent electrode.
  • FIG. 6 is a view showing the structure of a transparent electrode according to a third embodiment of the present invention.
  • the transparent electrode of the third embodiment is not formed in the middle of the transparent electrode layer, but is formed on the interface with the semiconductor layer 10. There is a difference.
  • the electric field concentrating layer 620 of the third embodiment may be formed on the semiconductor layer 10 using nanoparticles made of the same material as the electric field concentrating layer 520 of the second embodiment.
  • the nanoparticles 620 may be formed on the semiconductor layer 10 in the same manner as in the second embodiment, and may be formed to correspond to an electrode pad pattern (not shown) to be formed on the transparent electrode 600. It may be formed so as not to impair the transmittance of light.
  • a resistance change material is deposited on the electric field concentrating layer 620 to form a transparent electrode layer 610, and a conductive filament 22 is formed inside the transparent electrode layer 610 so that the resistance state of the transparent electrode layer 610 is increased. It is changed from the high resistance state to the low resistance state.
  • the conductive filaments 22 formed in the transparent electrode 600 are connected to the semiconductor layer 10 through the nanoparticles 620 as in the second embodiment, and thus, the nanoparticles and the like. Since the electric field is concentrated at 620, the conductive filament 22 can be formed with a relatively low forming voltage, and a thicker thickness when the same voltage is applied as compared with the case where the electric field concentrating layer 620 is not formed.
  • the transparent electrode 600 may be formed to improve the strength of the transparent electrode 600 and the safety of the device.
  • the conductive filaments 22 are formed through the nanoparticles 620 and the like of the electric field concentrating layer, by adjusting the intervals of the nanoparticles 620 constituting the electric field concentrating layer, the intervals of the conductive filaments 22 are more easily achieved. Can be adjusted, and thus uniform conductive filaments 22 can be formed.
  • the electric field concentrating layer 620 is formed on the semiconductor layer 10. Since the method of forming the electric field concentrating layer 620 is the same as in the above-described second embodiment, a detailed description thereof will be omitted.
  • the resistance change material is deposited on the semiconductor layer 10 and the electric field concentrating layer 620 to form the transparent electrode layer 610, thereby including the transparent electrode 600 including the transparent electrode layer 610 and the electric field concentrating layer 620. ).
  • the conductive filament 22 is formed inside the transparent electrode layer 610 by contacting the electrode probe 100 on the transparent electrode layer 610 and applying a voltage higher than a threshold voltage inherent to the transparent electrode layer 610. Complete 600.
  • FIG. 7A and 7B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fourth preferred embodiment of the present invention.
  • the transparent electrode according to the fourth embodiment of the present invention is characterized by including a plurality of transparent electrode layers, the thickness of each transparent electrode layer may be the same, or may be different from each other.
  • the material of each transparent electrode layer may also be a resistance change material of the same material having the same band gap, or may be a resistance change material having a different band gap.
  • the semiconductor layer 10 is a device that emits light, such as an LED or an OLED
  • the plurality of transparent electrode layers constituting the transparent electrode are made of a material having different refractive indices, and the more transparent electrode layers positioned above
  • light generated in the semiconductor layer 10 may be totally reflected by the transparent electrode and prevent the light from flowing back into the semiconductor layer 10.
  • the transparent electrode 700 according to the fourth embodiment illustrated in FIG. 7A includes a plurality of transparent electrode layers, and at least two layers of the transparent electrode layers may have different band gaps. It was formed of a material having.
  • the transparent electrode 710 is formed by sequentially forming a first transparent electrode layer 711 and a second transparent electrode layer 712.
  • the first transparent electrode layer 711 is formed of a resistance change material in which the conductive filament 22 is easily formed by foaming because the band gap is smaller than that of the second transparent electrode layer 712, and the second transparent electrode layer 712 is formed.
  • Silver was formed using a resistance change material having a larger band gap than that of the first transparent electrode layer and having better transmittance to light in all regions including the ultraviolet region.
  • the transparent electrode has a structure in which the third transparent electrode layer 713, the fourth transparent electrode layer 714, and the third transparent electrode layer 713 are sequentially formed.
  • the fourth transparent electrode layer 714 is formed of a resistance change material in which the conductive filament 22 is easily formed by foaming because the band gap is smaller than that of the third transparent electrode layer 713.
  • 713 may be formed using a resistance change material having a greater band gap than that of the fourth transparent electrode layer 714 and having better transmittance with respect to light in all regions including the ultraviolet region.
  • the third transparent electrode layer 713 and the fourth transparent electrode layer 714 illustrated in FIG. 7A (b) may include the second transparent electrode layer 712 and the first transparent electrode layer 711 illustrated in FIG. 7A (a). And each of the same material).
  • the total reflection effect may be reduced as the transparent electrode layer having a small difference in refractive index from air is disposed on the upper portion.
  • the first transparent electrode layer 711 may be formed of a resistance change material in which the conductive filament 22 is easily formed by foaming because the band gap is smaller than that of the second transparent electrode layer 712. As shown.
  • a second transparent electrode layer 712 is deposited on the first transparent electrode layer 711.
  • the second transparent electrode layer 712 may be formed using a resistance change material having a larger band gap than the first transparent electrode layer 711 and having a better transmittance to light in all regions including the ultraviolet region.
  • the electrode probe 100 is contacted with the second transparent electrode layer 712 positioned at the top to apply a voltage to the second transparent electrode 710.
  • the resistance state of the transparent electrode 710 is changed from a high resistance state to a low resistance state.
  • the method of forming the transparent electrode illustrated in FIG. 7A (b) may be similar to the method of forming the transparent electrode illustrated in FIG. 7A (a).
  • the third transparent electrode layer 713 and the fourth transparent electrode layer 4 may be formed on the semiconductor layer 10.
  • the transparent electrode layers 713, 714, and 715 are formed by contacting the electrode probe 100 with the fifth transparent electrode layer 715 and applying a voltage thereto.
  • the transparent electrode is completed by forming the conductive filament 22.
  • the fourth transparent electrode layer 714 may be formed of a resistance change material in which the conductive filament 22 is easily formed by forming because the band gap is smaller than that of the other transparent electrode layers 713 and 715.
  • a transparent electrode layer formed of a resistance change material which is relatively easy to form is included in the transparent electrode, so that the transparent electrode can be formed to a thicker thickness even when the same voltage is applied. Therefore, the physical strength of the transparent electrode and the safety of the device can be enhanced.
  • FIG. 7B is the same as that of FIG. 7A in that a plurality of transparent electrode layers are stacked to form a transparent electrode. However, in the case of FIG. 7B, there is a difference in that foaming is performed for each transparent electrode layer constituting the transparent electrode.
  • the first transparent electrode layer 721, the second transparent electrode layer 722, and the third transparent electrode layer 723 having different band gaps are sequentially formed.
  • the semiconductor layer 10 is stacked and formed.
  • the electrode probe 100 is in contact with the first transparent electrode layer 721 to apply a voltage to the first transparent electrode layer 721. ) Is first formed to form the conductive filaments 22 therein.
  • the second transparent electrode layer 722 is formed on the first transparent electrode layer 721, and the second transparent electrode layer 722 is formed in the same manner as the first transparent electrode layer 721 to form the conductive filament 22 therein.
  • the third transparent electrode layer 723 is formed on the second transparent electrode layer 722 and the transparent electrode 720 is completed by forming.
  • the fourth embodiment shown in (b) of FIG. 7B except that the plurality of transparent electrode layers are all formed of a resistance change material of the same material, the transparent electrode and the structure shown in (a) of FIG. 7B And since the formation method is the same, a detailed description is omitted.
  • the transparent electrode is formed to include a plurality of transparent electrode layers 731 each formed with a conductive filament 22, thereby forming the transparent electrode in a desired thickness.
  • the thickness of the transparent electrode and the safety of the device can be enhanced.
  • FIGS. 8A and 8B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fifth exemplary embodiment of the present invention.
  • the transparent electrode 810 according to the fifth preferred embodiment of the present invention illustrated in FIG. 8A includes a transparent conductive layer 811 formed on the semiconductor layer 10 and a transparent electrode layer formed of a resistance change material on the transparent conductive layer 811. 812).
  • the transparent conductive layer 811 is formed of a material having a higher conductivity due to a smaller band gap than the transparent electrode layer 812.
  • the transparent conductive layer 811 may be formed of materials (eg, ITO, ZnO, etc.) used as a transparent electrode in the conventional transparent electrode technology. Can be.
  • the transparent electrode layer 812 is formed of the above-described resistance change material and conductive filaments 22 are formed therein, and the resistance state thereof is changed to a low resistance state.
  • some regions of the transparent conductive layer 811 are formed to be exposed to the outside.
  • the partial region 813 of the transparent conductive layer 811 exposed to the outside is in contact with the electrode probe 100 and used in the forming process.
  • the transparent electrode layer 812 is formed on the entire surface of the transparent conductive layer 811, and a portion of the transparent electrode layer 812 is etched to etch the transparent conductive layer 811.
  • a transparent conductive layer having a higher conductivity due to a smaller band gap than a transparent electrode layer 812 described later as a very thin thin film on the semiconductor layer 10. 811 is formed by evaporation.
  • the transparent conductive layer 811 may be formed of materials (eg, ITO, ZnO, etc.) used as a transparent electrode in the prior art.
  • the transparent conductive layer 811 is formed too thick, since the light in the ultraviolet region flowing from the semiconductor layer 10 does not pass through the transparent conductive layer 811, it is preferable to form the thinnest layer possible.
  • the transparent conductive layer 811 is formed to a thickness of about 3 nm to 5 nm.
  • a transparent conductive layer 811 in a pattern corresponding to the electrode pad pattern (not shown) formed on the transparent electrode using a photo process, to the transparent conductive layer 811 As a result, the light extraction efficiency may be reduced. That is, since the electrode pad pattern (not shown) formed on the transparent electrode layer 812 does not allow light to pass through, forming a transparent conductive layer in a pattern corresponding thereto may reduce the light extraction efficiency.
  • a transparent electrode layer 812 is formed thereon using a resistance change material. At this time, the transparent electrode layer 812 is formed so that a portion of the transparent conductive layer 811 is exposed to the outside, and the method thereof has been described above and thus will be omitted.
  • a portion of the transparent conductive layer 811 exposed to the outside is in contact with the electrode probe 100 in the forming process of the transparent electrode layer 812 and used in the forming process. That is, one of the pair of electrode probes 100 for performing the forming is in contact with the transparent electrode layer 812, and the other is in direct contact with the exposed area of the transparent conductive layer 811 to apply a voltage.
  • a voltage is applied in this manner, as shown in FIG. 8A, a current path is formed through the transparent electrode layer 812 and the transparent conductive layer 811 formed thereunder to form a current path through only the transparent electrode layer 812.
  • the forming process may be performed at a lower voltage than that of forming.
  • the conductive filament 22 can be formed on the thicker transparent electrode at the same forming voltage as compared with the case where the transparent conductive layer 811 is not provided, thereby providing the strength and The safety of the device can be enhanced.
  • the transparent electrode 820 is a diagram showing a modification of the fifth preferred embodiment of the present invention.
  • the transparent electrode 820 may include a lower transparent electrode layer 821 formed on the semiconductor layer 10, a transparent conductive layer 822 formed on the lower transparent electrode layer 821, An upper transparent electrode layer 823 formed on the transparent conductive layer 822.
  • 8B is a transparent conductive layer 822 and an upper transparent electrode layer (except that the lower transparent electrode layer 821 is further formed under the transparent electrode of the fifth embodiment shown in FIG. 8A).
  • 823 has the same configuration as the transparent conductive layer 811 and the transparent electrode layer 812 of FIG. 8A.
  • the lower transparent electrode layer 821 is formed with a conductive filament 22 formed therein.
  • a resistive change material is deposited on the semiconductor layer 10 to form a lower transparent electrode layer 821, and contacting the electrode probe 100 thereon. Then, a forming voltage is applied to the lower transparent electrode layer 821 to form a conductive filament 22 therein.
  • the process of forming the lower transparent electrode layer 821 is the same as that of the first embodiment described above.
  • a transparent conductive layer 822 is formed by depositing on the lower transparent electrode layer 821, and an upper transparent electrode layer 823 is formed to expose a portion of the transparent conductive layer 822 thereon.
  • the transparent conductive layer 822 is preferably formed to correspond to the electrode pad pattern to be formed on the upper transparent electrode layer 823, and the method of generating the upper transparent electrode layer 823 is as described above with reference to FIG. 8A.
  • the forming electrode is applied by contacting the electrode probe 100 to the upper transparent electrode layer 823 and the transparent conductive layer 822, respectively.
  • Conductive filaments 22 are formed on the transparent electrode layer 823.
  • the forming of the transparent conductive layer 822 and the upper transparent electrode layer 823 capable of reducing the forming voltage on the lower transparent electrode layer 821, which is already formed, is performed to form the modified example of the fifth embodiment.
  • the transparent electrode can be formed thicker than the transparent electrode shown in Fig. 3, and as a result, the strength of the transparent electrode and the safety of the device can be further enhanced.

Abstract

According to the present invention, a transparent electrode is formed using a transparent resistance changing material, the resistance state of which changes from a high-resistance state to a low-resistance state according to an applied electric field; a forming process is performed by applying a voltage to the transparent electrode to change the resistance state of the transparent electrode to the low-resistance state such that the transparent electrode has conductivity; as a result, a transparent electrode can be formed which exhibits good Ohmic characteristics with a semiconductor layer formed on the lower portion or the upper portion of the transparent electrode, and which exhibits a high degree of transmission not only with respect to light in the visible light range, but also with respect to short-wavelength light in the UV range. Particularly, according to the present invention, nanoparticles etc. are included inside a transparent electrode, which is made of a resistance changing material, thereby concentrating the electric field, such that forming can be performed easily at a lower voltage; when the same forming voltage is applied, a thicker transparent electrode is formed, thereby enhancing strength of the transparent electrode and safety of the device. In addition, according to the present invention, a plurality of transparent electrode layers, which are made of resistance changing materials, are stacked to form a transparent electrode, thereby forming a transparent electrode having a large thickness and enhancing strength of the transparent electrode and safety of the device. Particularly, a part of the plurality of transparent electrode layers is formed using a material that is well suited to forming, thereby increasing the thickness of the transparent electrode and reducing the forming voltage. In addition, when a plurality of transparent electrode layers are stacked to form a transparent electrode according to the present invention, the plurality of transparent electrode layers are stacked such that the difference in refractive index with regard to an outer air layer decreases towards the upper portion, thereby preventing total reflection of light generated by the semiconductor layer and improving light extraction efficiency. In addition, according to the present invention, a transparent conductive layer is formed on the semiconductor layer in a pattern corresponding to an electrode pad pattern formed on the transparent electrode such that forming is made easy while minimizing degradation of light extraction efficiency, thereby forming a transparent electrode having a large thickness and accordingly enhancing strength of the transparent electrode and safety of the device.

Description

투명 전극 및 이의 제조 방법Transparent electrode and manufacturing method thereof
본 발명은 투명 전극 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로는 자외선 영역을 포함하는 빛에 대한 투과도가 높으면서도 양호한 전기 전도도를 갖는 투명 전극 및 이의 제조 방법에 관한 것이다.The present invention relates to a transparent electrode and a method of manufacturing the same, and more particularly to a transparent electrode having a high electrical conductivity while having a good electrical conductivity, including the ultraviolet region and a method of manufacturing the same.
투명 전극은 LED, 태양전지, 의료용 자외선 소독기, 수산업 등 다양한 분야에서 이용되고 있고, 점점 그 응용 분야와 그 수요가 증대되는 추세에 있다. 특히, 투명 전극은 LED 분야에서 많이 이용되고 있고, LED에 적용되는 현재의 투명 전극 기술은 가시광 영역(400nm-800nm)과 전체 자외선 영역(10nm-400nm) 중 일부 영역(365nm~400nm)까지 적용될 수 있는 ITO(Indium Tin Oxide) 기반의 기술이 주를 이루고 있다.Transparent electrodes are used in various fields such as LEDs, solar cells, medical UV sterilizers, fisheries, and the like, and their application fields and their demands are increasing. In particular, the transparent electrode is widely used in the LED field, the current transparent electrode technology applied to the LED can be applied to a portion (365nm ~ 400nm) of the visible region (400nm-800nm) and the entire ultraviolet region (10nm-400nm). Indium Tin Oxide (ITO) -based technology is the main focus.
최근에는, 자외선 영역의 빛을 발생시키는 UV LED에 대한 수요가 급속히 증가하고 있으나, 자외선 영역에서 고전도성과 고투과도를 나타내는 투명 전극이 현재까지 개발되지 못하여, 자외선 LED는 상용화되기 어려운 실정이다. Recently, the demand for UV LEDs that generate light in the ultraviolet region is increasing rapidly, but since the transparent electrode showing high conductivity and high transmittance in the ultraviolet region has not been developed until now, it is difficult to commercialize the ultraviolet LED.
예컨대, 현재 가장 많이 이용되고 있는 ITO 투명 전극이 형성된 UV LED의 경우에, 활성층에서 생성된 단파장의 자외선 영역(10nm~320nm)의 빛은 대부분 ITO에서 흡수되어, ITO를 투과하여 외부로 추출되는 빛이 1%정도에 불과하다.For example, in the case of a UV LED having an ITO transparent electrode, which is currently used the most, light in the short wavelength ultraviolet region (10 nm to 320 nm) generated in the active layer is mostly absorbed by the ITO, and is transmitted through the ITO to be extracted to the outside. This is only about 1%.
도 1에는 종래기술에 따라서 P-GaN 반도체층위 ITO 투명 전극을 형성한 경우의 투과도를 도시하였다. 도 1에 도시된 바와 같이, 파장이 350nm 이상인 영역에서는 80% 이상의 투과도를 나타내지만, 단파장의 자외선 영역에서는 투과도가 급격히 감소하는 것을 알 수 있고, 특히, 280nm 이하의 단파장 영역에서는 투과도가 20%이하로 감소함을 알 수 있다.1 shows the transmittance when the ITO transparent electrode is formed on the P-GaN semiconductor layer according to the prior art. As shown in FIG. 1, the transmittance shows 80% or more in the wavelength range of 350 nm or more, but the transmittance decreases rapidly in the ultraviolet range of short wavelength. In particular, the transmittance is 20% or less in the short wavelength region of 280 nm or less. It can be seen that decreases.
이러한 문제점을 해결하기 위한 다른 종래기술은 p-AlGaN와 같은 반도체층 위에 투명 전극을 형성하지 않고, 금속 전극 패드를 직접 형성하였으나, 금속과 반도체층 사이의 일함수의 차이가 너무 커서 Ohmic Contact이 이루어지지 않을 뿐 만 아니라, 전류가 금속 전극 패드에 집중되고 활성층 전체로 공급되지 않아 활성층에서 발생되는 빛이 양이 현저하게 감소하는 문제점이 발생한다.Another prior art to solve this problem is to form a metal electrode pad directly without forming a transparent electrode on a semiconductor layer, such as p-AlGaN, but the difference in work function between the metal and the semiconductor layer is too large Ohmic Contact is made Not only does it occur, but the current is concentrated in the metal electrode pad and is not supplied to the entire active layer, thereby causing a problem that the amount of light generated in the active layer is significantly reduced.
이러한 문제를 해결하기 위해서, 다양한 연구들이 진행되고 있으나, 아직까지 자외선 영역을 포함하는 모든 빛의 영역에서 고전도성과 고투과도를 동시에 나타내는 투명 전극은 개발되고 못하는 실정이다. 이는 물질의 전도성과 투과도는 서로 trade-off관계를 가지고 있기 때문이다. 자외선 영역에서 이용될 수 있을 만큼 높은 투과도를 가지는 물질은 큰 밴드갭(large band-gap)을 가지므로, 전극으로 이용되기에는 전기전도성이 매우 낮고 반도체 물질과 Ohmic contact이 이루어지지 않아 전극으로 이용하는 것이 불가능하다.In order to solve this problem, various studies have been conducted, but a transparent electrode which shows high conductivity and high transmittance at the same time in all light regions including the ultraviolet region has not been developed. This is because the conductivity and permeability of materials have a trade-off relationship with each other. The material having a high transmittance in the ultraviolet region has a large band-gap, so it is very low in electrical conductivity to be used as an electrode and does not have ohmic contact with a semiconductor material. impossible.
본 발명이 해결하고자 하는 과제는, 가시광 영역뿐만 아니라, 단파장의 자외선 영역에서도 고투과도와 고전도성을 나타내며, 반도체층과 양호한 Ohmic Contact 특성을 나타내는 투명 전극 형성 방법 및 이를 이용하여 제조된 반도체 장치를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a transparent electrode forming method exhibiting high transmittance and high conductivity not only in the visible light region but also in the short ultraviolet light region, and exhibiting good ohmic contact characteristics with the semiconductor layer, and a semiconductor device manufactured using the same. It is.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 투명 전극은, 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화된 저항 변화 물질로 형성된 투명 전극층; 및 상기 투명 전극층 내부에 형성되어 포밍 전압을 감소시키기 위한 전계 집중층을 포함한다.In the transparent electrode according to the preferred embodiment of the present invention for solving the above problems, a voltage (forming voltage) above a threshold voltage inherent to a material is applied to form a conductive filament therein, whereby the resistance state is in a high resistance state. A transparent electrode layer formed of a resistance change material changed to a low resistance state; And an electric field concentration layer formed in the transparent electrode layer to reduce the forming voltage.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 상기 전계 집중층은 상기 투명 전극층 중간에 형성되고, 나노 파티클, 나노 와이어, 및 전도성 폴리머 중 어느 하나로 형성될 수 있다.In addition, the electric field concentrating layer of the transparent electrode according to the preferred embodiment of the present invention may be formed in the middle of the transparent electrode layer, and may be formed of any one of nanoparticles, nanowires, and conductive polymers.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 상기 전계 집중층은 상기 투명 전극층과 상기 반도체층과의 경계면에 형성되고, 나노 파티클, 나노 와이어, 및 전도성 폴리머 중 어느 하나로 형성될 수 있다.In addition, the electric field concentration layer of the transparent electrode according to a preferred embodiment of the present invention is formed on the interface between the transparent electrode layer and the semiconductor layer, it may be formed of any one of nanoparticles, nanowires, and conductive polymers.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 상기 전계 집중층은, 상기 투명 전극의 상부에 형성되는 전극 패드 패턴과 대응되는 패턴으로 형성될 수 있다.In addition, the electric field concentration layer of the transparent electrode according to a preferred embodiment of the present invention, may be formed in a pattern corresponding to the electrode pad pattern formed on the transparent electrode.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 다른 실시예에 따른 투명 전극은, 반도체층 위에 형성된 투명 전극으로서, 상기 투명 전극은 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화된 저항 변화 물질로 형성되고, 그 내부에 전도성 필라멘트가 형성된 복수의 투명 전극층들을 포함한다.On the other hand, the transparent electrode according to another embodiment of the present invention for solving the above problems is a transparent electrode formed on the semiconductor layer, the transparent electrode is applied to a voltage (forming voltage) or higher than the threshold voltage inherent to the material inside The conductive filaments are formed in the resistive material, and the resistance state is formed of a resistance change material changed from a high resistance state to a low resistance state, and includes a plurality of transparent electrode layers having conductive filaments formed therein.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 상기 복수의 투명 전극층들 중 적어도 2개의 층은 서로 다른 밴드 갭을 갖는 저항 변화 물질로 형성될 수 있다.In addition, at least two layers of the plurality of transparent electrode layers of the transparent electrode according to the preferred embodiment of the present invention may be formed of a resistance change material having a different band gap.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 상기 복수의 투명 전극층들은 상부로 갈수록 공기와의 굴절율 차이가 감소하도록 배치될 수 있다.In addition, the plurality of transparent electrode layers of the transparent electrode according to the preferred embodiment of the present invention may be arranged to reduce the difference in refractive index with the air toward the top.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 다른 실시예에 따른 투면 전극은, 반도체층 위에 형성된 투명 전극으로서, 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화된 저항 변화 물질로 형성된 투명 전극층; 및 상기 투명 전극층과 상기 반도체층 사이에 형성되고, 상기 투명 전극층보다 밴드 갭이 작아 전도도가 더 높은 투명 전도층을 포함한다.On the other hand, the projection electrode according to another embodiment of the present invention for solving the above problems is a transparent electrode formed on the semiconductor layer, a voltage (forming voltage) or higher than the threshold voltage inherent to the material is applied to the conductive filament therein A transparent electrode layer formed of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; And a transparent conductive layer formed between the transparent electrode layer and the semiconductor layer and having a smaller conductivity than the transparent electrode layer, having a smaller band gap.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극은 상기 투명 전도층의 일부 영역이 외부로 드러나도록 형성될 수 있다.In addition, the transparent electrode according to the preferred embodiment of the present invention may be formed so that a portion of the transparent conductive layer is exposed to the outside.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 상기 투명 전도층과 상기 반도체층 사이에, 전도성 필라멘트가 형성된 저항 변화 물질로 형성된 투명 전도층을 더 포함할 수 있다.In addition, the transparent conductive layer between the transparent conductive layer and the semiconductor layer of the transparent electrode according to a preferred embodiment of the present invention may further include a transparent conductive layer formed of a resistance change material formed with a conductive filament.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 투명 전극 형성 방법은, (a1) 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되면 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질을 이용하여 하부 투명 전극층을 형성하는 단계; (a2) 상기 하부 투명 전극층 위에 전계 집중층을 형성하는 단계; (b) 상기 전계 집중층 위에 저항 변화 물질을 이용하여 상부 투명 전극층을 형성하는 단계; 및 (c) 상기 상부 투명 전극층에 포밍 전압을 인가하여 투명 전극층들 내부에 전도성 필라멘트를 형성하는 단계를 포함한다.On the other hand, the method for forming a transparent electrode according to a preferred embodiment of the present invention for solving the above problems, the conductive filament is formed therein when a voltage (forming voltage) higher than the threshold voltage inherent to the (a1) material is applied, Forming a lower transparent electrode layer using a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; (a2) forming an electric field concentration layer on the lower transparent electrode layer; (b) forming an upper transparent electrode layer on the field concentrating layer by using a resistance change material; And (c) applying a forming voltage to the upper transparent electrode layer to form conductive filaments inside the transparent electrode layers.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 다른 실시예에 따른 투명 전극 형성 방법은, (a2) 반도체층 위에 전계 집중층을 형성하는 단계; (b) 상기 전계 집중층 위에, 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되면 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질을 이용하여 투명 전극층을 형성하는 단계; 및 (c) 상기 투명 전극층에 포밍 전압을 인가하여 투명 전극층 내부에 전도성 필라멘트를 형성하는 단계를 포함한다.On the other hand, the transparent electrode forming method according to another embodiment of the present invention for solving the above problems, (a2) forming an electric field concentration layer on the semiconductor layer; (b) When a voltage (forming voltage) higher than a threshold voltage inherent to the material is applied to the field concentrating layer, a conductive filament is formed therein, whereby a resistance change material whose resistance state is changed from a high resistance state to a low resistance state is formed. Forming a transparent electrode layer by using; And (c) applying a forming voltage to the transparent electrode layer to form a conductive filament inside the transparent electrode layer.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극 형성 방법의 상기 (a2) 단계는, 나노 파티클, 나노 와이어, 및 전도성 폴리머 중 어느 하나를 이용하여 상기 전계 집중층을 형성할 수 있다.In addition, in the step (a2) of the method for forming a transparent electrode according to the preferred embodiment of the present invention, the electric field concentration layer may be formed using any one of nanoparticles, nanowires, and a conductive polymer.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 다른 실시예에 따른 투명 전극 형성 방법은, (a) 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질로 복수의 투명 전극층을 형성하는 단계; 및 (b) 상기 복수의 투명 전극층에 포밍 전압을 인가하여, 그 내부에 전도성 필라멘트를 형성하는 단계를 포함한다.On the other hand, the transparent electrode forming method according to another preferred embodiment of the present invention for solving the above problems, (a) by applying a voltage (forming voltage) above the threshold voltage inherent to the material to form a conductive filament therein, Forming a plurality of transparent electrode layers of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; And (b) applying a forming voltage to the plurality of transparent electrode layers to form conductive filaments therein.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 다른 실시예에 따른 투명 전극 형성 방법은, (a) 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질로 투명 전극층을 형성하는 단계; (b) 상기 투명 전극층에 포밍 전압을 인가하여 상기 투명 전극층에 전도성 필라멘트를 형성하여, 저항 상태를 저저항 상태로 변화시키는 단계; 및 (c) 상기 (a) 단계 및 (b) 단계를 적어도 1회 이상 순차적으로 반복수행하여 내부에 전도성 필라멘트가 형성된 투명 전극층을 추가로 형성하는 단계를 포함한다.On the other hand, the transparent electrode forming method according to another preferred embodiment of the present invention for solving the above problems, (a) by applying a voltage (forming voltage) above the threshold voltage inherent to the material to form a conductive filament therein, Forming a transparent electrode layer of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; (b) applying a forming voltage to the transparent electrode layer to form a conductive filament in the transparent electrode layer, thereby changing the resistance state to a low resistance state; And (c) repeatedly performing steps (a) and (b) one or more times sequentially to further form a transparent electrode layer having conductive filaments formed therein.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극 형성 방법에서, 상기 투명 전극에 포함된 복수의 투명 전극층 중 적어도 2개의 층은 서로 다른 밴드 갭을 갖는 저항 변화 물질로 형성될 수 있다.In addition, in the method of forming a transparent electrode according to the preferred embodiment of the present invention, at least two layers of the plurality of transparent electrode layers included in the transparent electrode may be formed of a resistance change material having a different band gap.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극 형성 방법에서, 상기 복수의 투명 전극층들은 상부로 갈수록 공기와의 굴절율 차이가 감소하도록 배치될 수 있다.In addition, in the method of forming a transparent electrode according to the preferred embodiment of the present invention, the plurality of transparent electrode layers may be arranged to decrease the difference in refractive index with air toward the top.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 다른 실시예에 따른 투명 전극 형성 방법은, (a) 투명 전극층보다 밴드 갭이 작아 전도도가 더 높은 투명 전도층을 형성하는 단계; (b) 상기 투명 전도층 위에 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질로 투명 전극층을 형성하는 단계; 및 (d) 상기 투명 전도층과 상기 투명 전극층 사이에 전압을 인가하여 상기 투명 전극층 내부에 전도성 필라멘트를 형성하는 단계를 포함한다.On the other hand, the transparent electrode forming method according to another embodiment of the present invention for solving the above problems, (a) forming a transparent conductive layer having a higher conductivity because the band gap is smaller than the transparent electrode layer; (b) a conductive filament is formed therein by applying a voltage (forming voltage) higher than a threshold voltage inherent to the material on the transparent conductive layer, whereby the resistance state is transparent to a resistance change material that is changed from a high resistance state to a low resistance state. Forming an electrode layer; And (d) applying a voltage between the transparent conductive layer and the transparent electrode layer to form a conductive filament inside the transparent electrode layer.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극 형성 방법에서, 상기 (b) 단계는, 상기 투명 전도층의 일부 영역이 외부로 드러나도록 상기 투명 전극층을 형성하고, 상기 (d) 단계는, 외부로 드러난 상기 투명 전도층의 일부 영역과 상기 투명 전극층 사이에 전압을 인가하여 상기 투명 전극층 내부에 전도성 필라멘트를 형성할 수 있다.In addition, in the transparent electrode forming method according to a preferred embodiment of the present invention, the step (b), the transparent electrode layer is formed so that a portion of the transparent conductive layer is exposed to the outside, the step (d), the external A conductive filament may be formed inside the transparent electrode layer by applying a voltage between a portion of the transparent conductive layer and the transparent electrode layer.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극 형성 방법에서, 상기 (a) 단계에서, 상기 투명 전도층은 전도성 필라멘트가 내부에 형성된 저항 변화 물질로 형성된 투명 전극층 위에 형성될 수 있다.In addition, in the transparent electrode forming method according to a preferred embodiment of the present invention, in the step (a), the transparent conductive layer may be formed on the transparent electrode layer formed of a resistance change material formed therein.
본 발명은 인가되는 전계에 의해서 저항상태가 고저항 상태에서 저저항 상태로 변화되는 투명 재질의 저항 변화 물질로 투명 전극을 형성하고, 투명 전극에 전압을 인가하여 투명 전극의 저항상태를 저저항 상태로 변화시키는 포밍(forming) 공정을 수행하여 투명 전극이 전도성을 갖도록 함으로써, 투명 전극의 하부 또는 상부에 형성되는 반도체층과 양호한 오믹 특성을 나타내면서도, 가시광 영역뿐만 아니라 단파장의 자외선 영역의 빛에 대해서도 높은 투과도를 나타내는 투명 전극을 형성할 수 있다.According to the present invention, a transparent electrode is formed of a resistance change material made of a transparent material whose resistance state is changed from a high resistance state to a low resistance state by an applied electric field, and a voltage is applied to the transparent electrode to reduce the resistance state of the transparent electrode. The transparent electrode is made conductive by performing a forming process to change the shape of the transparent electrode, thereby exhibiting good ohmic characteristics with a semiconductor layer formed under or above the transparent electrode, It is possible to form a transparent electrode exhibiting high transmittance.
특히, 본 발명은 저항 변화 물질로 형성되는 투명 전극 내부에 나노 파티클등을 포함시켜 전계를 집중시킴으로써 보다 낮은 전압으로 용이하게 포밍을 수행할 수 있고, 동일한 포밍 전압을 적용하는 경우에는 보다 두껍게 투명 전극을 형성하여 투명 전극의 강도 및 소자의 안전성을 강화시킬 수 있다.In particular, the present invention can be easily formed at a lower voltage by concentrating an electric field by including nanoparticles in the transparent electrode formed of a resistance change material, thicker transparent electrode when the same forming voltage is applied It can form to enhance the strength of the transparent electrode and the safety of the device.
또한, 본 발명은 저항 변화 물질로 형성되는 투명 전극층을 복수로 적층하여 투명 전극을 형성함으로써 투명 전극의 두께를 두껍게 형성하여, 투명 전극의 강도 및 소자의 안전성을 강화시킬 수 있다. 특히, 복수의 투명 전극층 중 일부를 포밍이 잘되는 물질로 형성함으로써, 투명 전극의 두께를 두껍게 하면서도 포밍 전압을 감소시킬 수 있다. In addition, the present invention can form a transparent electrode by stacking a plurality of transparent electrode layer formed of a resistance change material to form a transparent electrode, thereby enhancing the strength of the transparent electrode and the safety of the device. In particular, by forming a portion of the plurality of transparent electrode layers with a material that is well formed, it is possible to reduce the forming voltage while increasing the thickness of the transparent electrode.
또한, 본 발명은 복수의 투명 전극층을 적층하여 투명 전극을 형성할 때, 상부로 갈수록 외부 공기층과의 굴절율 차이가 감소되도록 복수의 투명 전극층을 적층함으로써, 반도체층에서 발생되는 빛이 전반사되는 것을 방지하여 광 추출 효율을 향상시킬 수 있다.In addition, in the present invention, when the plurality of transparent electrode layers are stacked to form a transparent electrode, by stacking the plurality of transparent electrode layers such that a difference in refractive index with the external air layer decreases toward the top, the light generated in the semiconductor layer is prevented from total reflection. The light extraction efficiency can be improved.
또한, 본 발명은 반도체층 위에, 투명 전극 위에 형성되는 전극 패드 패턴에 대응되는 패턴으로 투명 전도층을 형성함으로써 광추출 효율을 저하를 최소화하면서도 포밍을 용이하게 하여, 투명 전극의 두께를 두껍게 형성할 수 있고, 따라서 투명 전극의 강도 및 소자의 안전성을 강화시킬 수 있다.In addition, the present invention by forming a transparent conductive layer in a pattern corresponding to the electrode pad pattern formed on the transparent electrode on the semiconductor layer, to facilitate the forming while minimizing the reduction in light extraction efficiency, to form a thick thickness of the transparent electrode Therefore, the strength of the transparent electrode and the safety of the device can be enhanced.
도 1은 종래기술에 따라서 P-GaN 반도체층위 ITO 투명 전극을 형성한 경우의 투과도를 도시한 도면이다.1 is a diagram showing the transmittance when the ITO transparent electrode is formed on the P-GaN semiconductor layer according to the prior art.
도 2는 본 발명의 바람직한 제 1 실시예에 따른 투명 전극과 이를 구비하는 반도체 장치의 구조를 도시한 도면이다.2 is a diagram illustrating a structure of a transparent electrode and a semiconductor device including the same according to the first embodiment of the present invention.
도 3a 내지 도 3c 는 저항 변화 물질의 특성을 설명하는 도면이다.3A to 3C are diagrams for explaining the properties of the resistance change material.
도 4a 내지 도 4e는 p-GaN 반도체층위에 Ga2O3 물질을 이용하여 투명 전극을 형성한 제 1 실시예의 투과도 특성, 포밍 공정 수행전의 오믹 특성, 포밍 공정 수행전의 접촉 저항 특성, 포밍 공정 수행후의 오믹 특성, 포밍 공정 수행후의 접촉 저항 특성을 각각 도시한 도면이다.4A to 4E illustrate the transmittance characteristics, ohmic characteristics before performing the forming process, contact resistance characteristics before performing the forming process, and performing the forming process according to the first embodiment in which a transparent electrode is formed using Ga 2 O 3 material on a p-GaN semiconductor layer. The following ohmic characteristics and contact resistance characteristics after performing the forming process are respectively shown.
도 5는 본 발명의 바람직한 제 2 실시예에 따른 투명 전극 및 이를 포함하는 반도체 장치의 구조를 도시한다.5 illustrates a structure of a transparent electrode and a semiconductor device including the same according to the second embodiment of the present invention.
도 6은 본 발명의 바람직한 제 3 실시예에 따른 투명 전극의 구조를 도시한 도면이다.6 is a view showing the structure of a transparent electrode according to a third embodiment of the present invention.
도 7a 및 도 7b 본 발명의 바람직한 제 4 실시예에 따른 투명 전극의 구조 및 투명 전극 형성 방법을 설명하는 도면이다.7A and 7B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fourth preferred embodiment of the present invention.
도 8a 및 도 8b는 본 발명의 바람직한 제 5 실시예에 따른 투명 전극의 구조 및 투명 전극 형성 방법을 도시하는 도면이다.8A and 8B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fifth exemplary embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
다만, 본 발명은 반도체층과 접촉하는 모든 투명 전극(OLED용 투명전극, 태양전지용 투명전극, LED용 투명 전극 등)에 적용되는 것이고, 이하에서 설명되는 내용은 본 발명의 기술적 사상을 설명하기 위한 일 실시예에 불과함을 주의해야 한다. However, the present invention is applied to all the transparent electrodes (OLED transparent electrode, solar cell transparent electrode, LED transparent electrode, etc.) in contact with the semiconductor layer, the contents described below are for explaining the technical idea of the present invention It should be noted that this is only one embodiment.
도 2는 본 발명의 바람직한 제 1 실시예에 따른 투명 전극과 이를 구비하는 반도체 장치의 구조를 도시한 도면이다. 도 2를 참조하면, 본 발명의 바람직한 제 1 실시예에 따른 투명 전극과 이를 구비하는 반도체 장치는, 반도체층(10)과 투명 전극(20)이 상호 접촉하도록 반도체층(10) 위에 투명 전극(20)이 형성되고, 투명 전극(20) 위에 금속 전극 패드(30)가 형성되며, 투명 전극 내부에는 전도성 필라멘트(또는 금속 필라멘트)가 형성되어 있다.2 is a diagram illustrating a structure of a transparent electrode and a semiconductor device including the same according to the first embodiment of the present invention. Referring to FIG. 2, a transparent electrode and a semiconductor device having the same according to the first exemplary embodiment of the present invention include a transparent electrode on the semiconductor layer 10 such that the semiconductor layer 10 and the transparent electrode 20 are in contact with each other. 20 is formed, a metal electrode pad 30 is formed on the transparent electrode 20, and a conductive filament (or metal filament) is formed inside the transparent electrode.
여기서, 반도체층(10)은 무기 반도체층과 유기 반도체층을 모두 포함할 뿐만 아니라, 전하가 유동할 수 있는 모든 물질을 포함하는 개념임을 주의하여야 한다. 아울러, 이하에서 언급되는 "반도체층"은 모두 동일한 의미로 사용됨을 주의해야 한다. 무기 반도체층은 Si 및 Ge 과 같은 단일 원소로 이루어지는 단일 원소 반도체를 포함한다. 또한, 무기 반도체층은 Nitride 계열의 화합물 반도체층(GaN, AlGaN, InN, InGaN, AlN 등) 및 Oxide 계열의 화합물 반도체층(GaO, ZnO, CoO, IrO2, Rh2O3, Al2O3, SnO 등)과 같은 화합물 반도체층을 포함하는 개념이다.Here, it should be noted that the semiconductor layer 10 includes not only an inorganic semiconductor layer and an organic semiconductor layer, but also a concept including all materials through which charge can flow. In addition, it should be noted that all of the "semiconductor layers" mentioned below are used in the same sense. The inorganic semiconductor layer includes a single element semiconductor made of a single element such as Si and Ge. In addition, the inorganic semiconductor layer is a compound such as a Nitride compound semiconductor layer (GaN, AlGaN, InN, InGaN, AlN, etc.) and an oxide compound compound semiconductor layer (GaO, ZnO, CoO, IrO2, Rh2O3, Al2O3, SnO, etc.). The concept includes a semiconductor layer.
유기 반도체층은 대표적으로 OLED(Organic Light Emitting Diode)의 전자(정공) 주입층 및 전자(정공) 수송층을 구성하는 물질을 포함하는 개념이다.The organic semiconductor layer is typically a concept including a material forming an electron (hole) injection layer and an electron (hole) transport layer of an organic light emitting diode (OLED).
한편, 반도체층(10)의 전도성을 향상시키기 위해서, 반도체층(10)의 투명 전극(20)과 접촉하는 표면에는 p타입 또는 n타입으로 도핑되는 것이 바람직하다.On the other hand, in order to improve the conductivity of the semiconductor layer 10, the surface in contact with the transparent electrode 20 of the semiconductor layer 10 is preferably doped with a p type or n type.
한편, 본 발명의 투명 전극은 인가된 전계에 의해서 저항상태가 변화되는 투명 재질의 물질(저항 변화 물질)로 형성되고, 포밍 공정(forming process 또는 electric break down)이 수행됨으로써 내부에 전도성 필라멘트가 형성되어 있다. 이러한, 저항 변화 물질은 주로 ReRAM(Resistive RAM) 분야에서 이용되는 것으로서, 물질에 고유한 임계치 이상의 전압을 물질에 인가하면, electro-forming이 수행되어, 최초에는 절연체인 물질의 저항 상태가 고저항 상태에서 저저항 상태로 변화되어 전도성을 나타내게 된다. Meanwhile, the transparent electrode of the present invention is formed of a transparent material (resistance change material) whose resistance state is changed by an applied electric field, and a conductive filament is formed therein by forming (forming process or electric break down). It is. Such a resistance change material is mainly used in the field of resistive RAM (ReRAM), and when a voltage higher than a threshold inherent to the material is applied to the material, electro-forming is performed, so that the resistance state of the material, which is an insulator at first, is a high resistance state. It is changed to a low resistance state at to show conductivity.
도 3a 내지 도 3c 는 이러한 저항 변화 물질의 특성을 설명하는 도면이다. 도 3a를 참조하면, 절연체인 저항 변화 물질에 임계치 이상의 전압을 인가하면, 전기적 스트레스(forming process)에 의해 박막 내부로 전극 금속 물질이 확산되거나 박막내 결함구조에 의해 도 3a에 도시된 바와 같이 저항 변화 물질 내부에 전도성 필라멘트(22:conducting filaments)(또는, 금속 필라멘트(metallic filaments))가 형성된다. 이 후에는, 물질에 인가된 전압이 제거되어도 전도성 필라멘트(22)는 유지되고, 이러한 전도성 필라멘트(22)를 통해서 전류가 흐르게 되어, 물질의 저항 상태가 저저항 상태로 유지된다.3A to 3C are diagrams illustrating the characteristics of such a resistance change material. Referring to FIG. 3A, when a voltage above a threshold is applied to a resistance change material that is an insulator, an electrode metal material is diffused into the thin film by an electrical forming process or a resistance structure as shown in FIG. 3A due to a defect structure in the thin film. Conductive filaments (or metallic filaments) are formed inside the change material. Thereafter, even when the voltage applied to the material is removed, the conductive filament 22 is maintained, and current flows through the conductive filament 22, so that the resistance state of the material is maintained in the low resistance state.
도 3b를 참조하면, 저항 변화 물질(AlN)은 forming과정 전에는 절연체 특성을 보이다가 forming 과정 이후 금속의 I-V 특성을 나타냄을 확인 할 수 있다. 또한, 투명 전극 내부에 형성된 전도성 필라멘트는 JOULE-HEATING 효과를 이용하여 도 3b에 도시된 바와 것과 같이 형성(SET) 또는 제거 (RESET)를 할 수 있다. Referring to FIG. 3B, it can be seen that the resistance change material (AlN) shows an insulator characteristic before the forming process and then shows the I-V characteristic of the metal after the forming process. In addition, the conductive filament formed in the transparent electrode may be SET or RESET as shown in FIG. 3B using the JOULE-HEATING effect.
도 3c는 전도성 필라멘트가 형성된 후 얼마나 안정적으로 유지 될 수 있는가를 보여 주는 그래프로서, 그래프의 빨간색 점선이 보여 주는 것과 같이 전도성 필라멘트가 형성 된 후 10년 동안 안정적으로 저저항 상태가 유지 될 수 있음을 알 수 있다.Figure 3c is a graph showing how stable the conductive filament can be formed after the formation, as shown by the red dotted line of the graph shows that the low resistance state can be stably maintained for 10 years after the formation of the conductive filament Can be.
본 발명의 바람직한 실시예에서는, 이러한 저항 변화 물질로서, 투명한 전도성 Oxide 계열의 물질(SiO2, Ga2O3, Al2O3, ZnO, ITO 등), 투명한 전도성 Nitride 계열의 물질(Si3N4, AlN, GaN, InN 등), 투명한 전도성 폴리머 계열의 물질(polyaniline (PANI), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) 등), 및 투명한 전도성 나노 물질(CNT, CNT-oxide, Graphene, Graphene-oxide 등) 등을 이용하였으나, 상술한 물질 이외에도 투명하고 상술한 저항 변화 특성을 나타내는 물질이라면 본 발명의 투명 전극을 형성하는데 이용될 수 있음은 물론이다. 다만, 상기 물질들이 전도성을 갖는다는 의미는, 포밍(forming) 공정에 의해서 전도성을 갖는다는 의미임을 주의해야 한다.In a preferred embodiment of the present invention, as the resistance change material, a transparent conductive oxide-based material (SiO2, Ga2O3, Al2O3, ZnO, ITO, etc.), a transparent conductive Nitride-based material (Si3N4, AlN, GaN, InN, etc.), Transparent conductive polymer-based materials (polyaniline (PANI), poly (ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS), etc.), and transparent conductive nanomaterials (CNT, CNT-oxide, Graphene, Graphene-oxide, etc.) were used. In addition to the above materials, any material that is transparent and exhibits the above-described resistance change characteristics may be used to form the transparent electrode of the present invention. However, it should be noted that the meaning of the materials having conductivity is that they have conductivity by a forming process.
도 4a 내지 도 4e에는 p-GaN 반도체층위에 Ga2O3 물질을 이용하여 투명 전극을 형성한 제 1 실시예의 투과도 특성, 포밍 공정 수행전의 오믹 특성, 포밍 공정 수행전의 접촉 저항 특성, 포밍 공정 수행후의 오믹 특성, 포밍 공정 수행후의 접촉 저항 특성을 각각 도시하였다.4A to 4E illustrate the transmittance characteristics, ohmic characteristics before performing the forming process, contact resistance characteristics before performing the forming process, and forming process according to the first embodiment in which a transparent electrode is formed using Ga 2 O 3 material on a p-GaN semiconductor layer. The subsequent ohmic characteristics and the contact resistance characteristics after performing the forming process are shown, respectively.
도 4a 내지 도 4e에 도시된 예에서는, LED에서 많이 이용되는 p-GaN 반도체층 위에 Ga2O3 물질로 투명 전극 박막(두께:80nm)을 형성하였다.In the example illustrated in FIGS. 4A to 4E, a transparent electrode thin film (thickness: 80 nm) was formed of Ga 2 O 3 material on a p-GaN semiconductor layer commonly used in LEDs.
도 4a에 도시된 그래프를 참조하면, 도시된 예의 Ga2O3 투명 전극은 파장이 264nm 이상인 자외선 영역의 빛에 대해서 80% 이상의 투과도를 나타냄을 알 수 있다. 이 역시 도 1에 도시된 20%의 투과도를 나타내는 종래의 ITO 기반의 투명전극에 비하여 투과도가 현저하게 개선된 것임을 알 수 있다.Referring to the graph shown in FIG. 4A, it can be seen that the Ga 2 O 3 transparent electrode of the illustrated example exhibits transmittance of 80% or more with respect to light in an ultraviolet region having a wavelength of 264 nm or more. This also can be seen that the transmittance is significantly improved compared to the conventional ITO-based transparent electrode showing a transmittance of 20% shown in FIG.
도 4b 내지 도 4e에는 측정 전극간의 거리가 2㎛, 4㎛, 6㎛, 8㎛, 및 10㎛ 일때 오믹 특성(도 4b 및 도 4d) 및 TLM(Transfer Length Method) 패턴을 이용하여 측정한 접촉 저항 특성(도 4c 및 도 4e)을 나타낸다.4B to 4E are measured by using ohmic characteristics (FIGS. 4B and 4D) and TLM (Transfer Length Method) patterns when the distance between the measuring electrodes is 2 μm, 4 μm, 6 μm, 8 μm, and 10 μm. Resistance characteristics (FIGS. 4C and 4E) are shown.
도 4b를 참조하면, 측정 전극간의 거리가 2㎛인 경우를 기준으로, 포밍 공정 수행 이전에는 인가되는 전압과 무관하게 투명 전극에 1.0*10-11A 내외의 전류가 흐름을 알 수 있고, 전혀 오믹 특성을 나타내지 않음을 알 수 있다. 또한, 도 4c를 참조하면 오믹 접촉 저항 특성 역시 전혀 선형성을 나타내지 않음을 알 수 있다.Referring to Figure 4b, based on the case where the distance between the measuring electrode 2㎛, the forming process is carried out previously and the transparent electrode, independent of the voltage applied is of 1.0 * 10 -11 A and out to find out the current flow, not at all It can be seen that it does not exhibit ohmic characteristics. In addition, referring to FIG. 4C, it can be seen that the ohmic contact resistance characteristic also shows no linearity at all.
반면, 도 4d를 참조하면, 포밍 공정 수행 이후에는, 측정 전극간의 거리가 2㎛인 경우를 기준으로, 투명 전극에 인가되는 전압이 0V ~ 1.0V 일때, 투명 전극에 0 ~ 2.0*10-2 A정도의 전류가 흐르므로, 포밍 공정 수행 이전과 비교하여 109 배만큼의 전류가 더 흐르고, 전류 대 전압 관계도 상호 비례하는 양호한 오믹 특성을 나타냄을 알 수 있다. 또한, 도 4e를 참조하면, 접촉 저항 특성 역시 선형성을 나타내므로 포밍 공정 수행 이전과 비교하여 오믹 접촉 저항 특성이 상당히 개선되었음을 알 수 있다.On the other hand, referring to Figure 4d, after performing the forming process, when the voltage applied to the transparent electrode is 0V ~ 1.0V, based on the distance between the measuring electrode is 2 0 ~ 2.0 * 10 -2 to the transparent electrode As the current flows about A, 10 9 times more current flows than before the forming process, and the current-voltage relationship also shows good ohmic characteristics that are proportional to each other. In addition, referring to Figure 4e, it can be seen that the ohmic contact resistance characteristics are significantly improved compared to before the forming process because the contact resistance characteristics also exhibit a linearity.
도 4a 내지 도 4e에 도시된 예의 p-GaN 반도체층 위에 형성된 Ga2O3 투명 전극 특성을 정리하면, Ga2O3 투명 전극은 264nm 이상의 파장을 갖는 자외선 영역의 빛에 대해서 80% 이상의 투과도를 나타내고, TLM 패턴을 이용하여 측정한 결과, 포밍 공정 수행 전에는 51,680Ω㎝-2 의 접촉저항을 나타내지만, 포밍 공정 수행 후에는 2.64*10-5Ω㎝-2 의 접촉 저항을 나타내므로 전도성이 월등하게 향상될 뿐만 아니라, 양호한 오믹 특성을 나타냄을 알 수 있다.When Figures 4a to clean up the Ga 2 O 3 transparent electrode characteristics formed on the illustrated example p-GaN semiconductor layer in Fig. 4e, Ga 2 O 3 transparent electrode is at least 80% transmittance with respect to light of ultraviolet region having a wavelength of more than 264nm shows a result of measurement using the TLM pattern before performing the forming step exhibits a contact resistance of 51,680Ω㎝ -2, performed after the forming step is 2.64 * 10 -5 exhibits a contact resistance of Ω㎝ -2 superior conductivity It can be seen that not only is it improved, but also shows good ohmic characteristics.
지금까지 본 발명의 바람직한 제 1 실시예에 따른 투명 전극 및 이를 포함하는 반도체 장치에 대해서 설명하였다.The transparent electrode and the semiconductor device including the same according to the first embodiment of the present invention have been described so far.
상술한 제 1 실시예의 경우에는, 투명 전극이 단일층으로 형성되었고, 이에 따라서, 매우 얇은 박막으로 투명 전극이 형성되었다. 그 이유는 상술한 투명전극을 형성하는 저항변화 물질은 밴드갭이 크고 이에 따러 저항이 매우 크므로 그 두께가 두꺼워지면 적절한 양의 전도성 필라멘트 형성에 어려움이 있기 때문이다.In the case of the first embodiment described above, the transparent electrode was formed of a single layer, and thus, the transparent electrode was formed of a very thin thin film. The reason is that the above-mentioned resistance change material for forming the transparent electrode has a large band gap and thus a very large resistance, and thus, when the thickness thereof becomes thick, it is difficult to form an appropriate amount of conductive filaments.
그런데, 상술한 제 1 실시예와 같이, 투명 전극을 매우 얇은 두께로 형성하면, 투명 전극 자체의 강도가 약해지고, 이에 따라 반도체 장치 전체 강도가 약해지는 문제점이 발생할 수 있다.However, as in the first embodiment described above, when the transparent electrode is formed to have a very thin thickness, the strength of the transparent electrode itself may be weakened, and thus, the overall strength of the semiconductor device may be weakened.
이하에서 후술하는 본 발명의 바람직한 제 2 내지 5 실시예에 따른 투명 전극들은 이러한 문제점을 해결한다.Transparent electrodes according to the second to fifth embodiments of the present invention described below solve this problem.
도 5는 본 발명의 바람직한 제 2 실시예에 따른 투명 전극 및 이를 포함하는 반도체 장치의 구조를 도시한다.5 illustrates a structure of a transparent electrode and a semiconductor device including the same according to the second embodiment of the present invention.
도 5를 참조하여, 본 발명의 바람직한 제 2 실시예에 따른 투명 전극(500)의 구조를 살펴보면, 제 2 실시예에 따른 투명 전극(500)은, 반도체층(10) 위에 저항 변화 물질로 형성된 상부 투명 전극층(511)과 하부 투명 전극층(512), 및 투명 전극층(511, 512) 내부에 형성되어 포밍 전압을 감소시키는 전계 집중층(520)을 포함하여 구성된다.Referring to FIG. 5, referring to a structure of a transparent electrode 500 according to a second exemplary embodiment of the present invention, the transparent electrode 500 according to the second exemplary embodiment may be formed of a resistance change material on the semiconductor layer 10. The upper transparent electrode layer 511 and the lower transparent electrode layer 512, and the electric field concentrating layer 520 is formed in the transparent electrode layer (511, 512) to reduce the forming voltage.
전계 집중층(520)은 복수의 나노 파티클, 나노 와이어, 전도성 폴리머 등(이하, "나노 파티클 등"으로 칭함)으로 구성되어 있어, 저항 변화 물질로 형성된 투명 전극층(510)의 포밍 과정에서, 전극 프로브(100)에 의해서 인가된 전계가 여러 방향으로 흩어지지 않고 나노 파티클, 나노 와이어, 전도성 폴리머 등으로 집중되도록 함으로써, 상대적으로 작은 크기의 전압 인가만으로도 전도성 필라멘트(22)의 형성이 가능하고, 동일한 전압을 인가한 경우에는 전계 집중층이 포함되지 않은 경우보다 두꺼운 투명 전극층에 전도성 필라멘트(22)를 형성할 수 있게 한다. 따라서, 투명 전극(510)의 두께를 더 두껍게 형성할 수 있게 되고, 이에 따라서 투명 전극(510)의 강도 및 소자의 안전성을 더 강화할 수 있다. 이 때, 나노 와이어 및 전도성 폴리머 등의 경우에도, 나노 파티클과 마찬가지로 종횡비가 크지 않은 입자 형태로 구성되는 것이 바람직하다.The electric field concentrating layer 520 is composed of a plurality of nanoparticles, nanowires, conductive polymers, etc. (hereinafter referred to as "nanoparticles", etc.), and in the process of forming the transparent electrode layer 510 formed of a resistance change material, the electrode By concentrating the electric field applied by the probe 100 in nanoparticles, nanowires, conductive polymers, etc. without being scattered in various directions, the formation of the conductive filaments 22 is possible by applying a relatively small voltage. When a voltage is applied, the conductive filament 22 can be formed in the transparent electrode layer thicker than the case where the electric field concentration layer is not included. Therefore, the thickness of the transparent electrode 510 can be formed to be thicker, thereby further enhancing the strength of the transparent electrode 510 and the safety of the device. In this case, also in the case of nanowires, conductive polymers, and the like, it is preferable that the nanoparticles are configured in the form of particles having a small aspect ratio.
아울러, 전류 집중층(520)은 투명 전극(500) 위에 형성되는 전극 패드 패턴(미도시 됨)과 대응되는 패턴으로 형성됨으로써, 빛의 투과도를 저해시키지 않도록 형성되는 것이 바람직하다. In addition, the current concentrating layer 520 is formed in a pattern corresponding to the electrode pad pattern (not shown) formed on the transparent electrode 500, it is preferably formed so as not to impair the transmittance of light.
다시 도 5를 참조하면, 투명 전극층(510) 내부에는 복수의 전도성 필라멘트(22)들이 형성되어 있고, 각각의 전도성 필라멘트(22)들은 전류 집중층(520)을 구성하는 나노 파티클 등(520)을 통해서 반도체층(10)까지 전류 패스가 이어지도록 형성되어 있다.Referring to FIG. 5 again, a plurality of conductive filaments 22 are formed in the transparent electrode layer 510, and each of the conductive filaments 22 forms nanoparticles 520 constituting the current concentrating layer 520. The current path is formed through the semiconductor layer 10.
제 2 실시예에서, 전도성 필라멘트(22)는 전류 집중층의 나노 파티클 등(520)을 통해서 형성되므로 전계 집중층(520)을 구성하는 나노 파티클 등(520)의 간격을 조절하면, 보다 용이하게 전도성 필라멘트(22)의 간격을 조절할 수 있고, 따라서 균일한 전도성 필라멘트(22)들을 형성할 수 있다.In the second embodiment, since the conductive filament 22 is formed through the nanoparticles 520 of the current concentrating layer, it is easier to adjust the spacing of the nanoparticles 520 constituting the electric field concentrating layer 520. The spacing of the conductive filaments 22 can be adjusted, thus forming uniform conductive filaments 22.
본 발명의 바람직한 제 2 실시예에 따른 투명 전극을 형성하는 방법을 설명하면, 먼저, 반도체층(10) 위에 저항 변화 물질을 이용하여 하부 투명 전극층(512)을 형성하고, 그 위에 전계 집중층(520)을 형성한다. 전계 집중층(520)을 형성하는 방식은 다양하게 적용 가능한데, 가장 간단한 방식으로는 나노 파티클 등이 포함된 용액을 하부 투명 전극층 위에 도포하고, 용액을 증발시키는 방법이 있다. 이 외에도 금속을 얇게 증착 시킨 후 열처리를 통해 나노 파티클을 형성하는 방법이 적용될 수 있다. Referring to the method of forming the transparent electrode according to the second preferred embodiment of the present invention, first, the lower transparent electrode layer 512 is formed on the semiconductor layer 10 by using a resistance change material, and the electric field concentration layer ( 520 is formed. The method of forming the electric field concentrating layer 520 can be variously applied. In the simplest method, a solution containing nanoparticles or the like is applied onto the lower transparent electrode layer, and the solution is evaporated. Besides After depositing a thin metal, a method of forming nanoparticles through heat treatment may be applied.
전계 집중층(520)이 형성된 후, 하부 투명 전극층(512) 형성에 이용된 저항 변화 물질과 동일한 저항 물질로 상부 투명 전극층(511)을 전계 집중층(520) 위에 형성한다. 이 때, 전계 집중층(520)은 나노 파티클 등으로 하부 투명 전극층(512) 위에 임의의 영역에 배치되므로 상부 투명 전극층(511)의 일부는 하부 투명 전극층(512) 위에 형성되고, 일부는 나노 파티클 위에 형성되므로, 결론적으로, 하부 투명 전극층(512)과 상부 투명 전극층(511)은 하나로 이어져서 투명 전극층(510)을 형성하고, 나노 파티클 등(520)이 투명 전극층의 중간에 동일한 높이로 포함되는 구조를 갖는다.After the electric field concentrating layer 520 is formed, the upper transparent electrode layer 511 is formed on the electric field concentrating layer 520 with the same resistance material as the resistance change material used to form the lower transparent electrode layer 512. At this time, since the electric field concentrating layer 520 is disposed in an arbitrary region on the lower transparent electrode layer 512 with nanoparticles or the like, a part of the upper transparent electrode layer 511 is formed on the lower transparent electrode layer 512, and a part of the nanoparticles is formed. Since the lower transparent electrode layer 512 and the upper transparent electrode layer 511 are connected to one, so as to form the transparent electrode layer 510, and the nanoparticles 520 are included at the same height in the middle of the transparent electrode layer. Has a structure.
상부 투명 전극층(511)이 형성되면, 마지막으로, 상부 투명 전극층(511) 위에 전극 프로브(100)를 접촉하고, 상부 투명 전극층(511) 및 하부 투명 전극층(512)의 형성에 이용된 저항 변화 물질에 고유한 임계 전압 이상의 전압을 인가함으로써 투명 전극층(510) 내부에 전도성 필라멘트(22)를 형성하여 투명 전극을 완성한다.Finally, when the upper transparent electrode layer 511 is formed, the resistance change material used to contact the electrode probe 100 on the upper transparent electrode layer 511 and form the upper transparent electrode layer 511 and the lower transparent electrode layer 512. The conductive filament 22 is formed inside the transparent electrode layer 510 by applying a voltage higher than a threshold voltage inherent to the transparent electrode to complete the transparent electrode.
도 6은 본 발명의 바람직한 제 3 실시예에 따른 투명 전극의 구조를 도시한 도면이다. 도 6을 참조하면, 제 3 실시예의 투명 전극은 제 2 실시예와 비교하여, 전계 집중층(620)이 투명 전극층 중간에 형성된 것이 아니라, 반도체층(10)과의 경계면에 형성되어 있다는 점에서 차이가 있다.6 is a view showing the structure of a transparent electrode according to a third embodiment of the present invention. Referring to FIG. 6, in comparison with the second embodiment, the transparent electrode of the third embodiment is not formed in the middle of the transparent electrode layer, but is formed on the interface with the semiconductor layer 10. There is a difference.
도 6을 참조하면, 제 3 실시예의 전계 집중층(620)은 제 2 실시예의 전계 집중층(520)과 동일한 재질의 나노 파티클 등으로 반도체층(10) 위에 형성될 수 있다. 이 때, 나노 파티클 등(620)은 제 2 실시예와 동일한 방식으로 반도체층(10) 위에 형성될 수 있고, 투명 전극(600) 위에 형성될 전극 패드 패턴(미도시 됨)에 대응되도록 형성되어 빛의 투과도를 저해시키지 않도록 형성될 수도 있다.Referring to FIG. 6, the electric field concentrating layer 620 of the third embodiment may be formed on the semiconductor layer 10 using nanoparticles made of the same material as the electric field concentrating layer 520 of the second embodiment. In this case, the nanoparticles 620 may be formed on the semiconductor layer 10 in the same manner as in the second embodiment, and may be formed to correspond to an electrode pad pattern (not shown) to be formed on the transparent electrode 600. It may be formed so as not to impair the transmittance of light.
아울러, 전계 집중층(620) 위에는 저항 변화 물질이 증착되어 투명 전극층(610)이 형성되어 있고, 투명 전극층(610) 내부에는 전도성 필라멘트(22)가 형성되어, 투명 전극층(610)의 저항 상태가 고저항 상태에서 저저항 상태로 변화되어 있다.In addition, a resistance change material is deposited on the electric field concentrating layer 620 to form a transparent electrode layer 610, and a conductive filament 22 is formed inside the transparent electrode layer 610 so that the resistance state of the transparent electrode layer 610 is increased. It is changed from the high resistance state to the low resistance state.
도 6에 도시된 바와 같이, 투명 전극(600) 내부에 형성된 전도성 필라멘트(22)는 제 2 실시예와 마찬가지로 나노 파티클 등(620)을 통해서 반도체층(10)과 연결되고, 따라서, 나노 파티클 등(620)에 전계가 집중되므로, 상대적으로 적은 포밍 전압으로 전도성 필라멘트(22)를 형성할 수 있고, 전계 집중층(620)이 형성되지 않은 경우와 비교하여 동일한 전압을 인가했을 때, 더 두꺼운 두께로 투명 전극(600)을 형성하여 투명 전극(600)의 강도 및 소자의 안전성을 향상시킬 수 있다.As shown in FIG. 6, the conductive filaments 22 formed in the transparent electrode 600 are connected to the semiconductor layer 10 through the nanoparticles 620 as in the second embodiment, and thus, the nanoparticles and the like. Since the electric field is concentrated at 620, the conductive filament 22 can be formed with a relatively low forming voltage, and a thicker thickness when the same voltage is applied as compared with the case where the electric field concentrating layer 620 is not formed. The transparent electrode 600 may be formed to improve the strength of the transparent electrode 600 and the safety of the device.
또한, 전도성 필라멘트(22)가 전계 집중층의 나노 파티클 등(620)을 통해서 형성되므로 전계 집중층을 구성하는 나노 파티클 등(620)의 간격을 조절하면, 보다 용이하게 전도성 필라멘트(22)의 간격을 조절할 수 있고, 따라서 균일한 전도성 필라멘트(22)들을 형성할 수 있다.In addition, since the conductive filaments 22 are formed through the nanoparticles 620 and the like of the electric field concentrating layer, by adjusting the intervals of the nanoparticles 620 constituting the electric field concentrating layer, the intervals of the conductive filaments 22 are more easily achieved. Can be adjusted, and thus uniform conductive filaments 22 can be formed.
본 발명의 바람직한 제 3 실시예에 따른 투명 전극 형성 방법을 설명하면, 먼저, 반도체층(10) 위에 전계 집중층(620)을 형성한다. 전계 집중층(620)을 형성하는 방법은 상술한 제 2 실시예와 동일하므로 구체적인 설명은 생략한다.Referring to the method of forming the transparent electrode according to the third preferred embodiment of the present invention, first, the electric field concentrating layer 620 is formed on the semiconductor layer 10. Since the method of forming the electric field concentrating layer 620 is the same as in the above-described second embodiment, a detailed description thereof will be omitted.
그 후, 저항 변화 물질을 반도체층(10)과 전계 집중층(620) 위에 증착하여 투명 전극층(610)을 형성함으로써, 투명 전극층(610)과 전계 집중층(620)을 포함하는 투명 전극(600)을 형성한다.Thereafter, the resistance change material is deposited on the semiconductor layer 10 and the electric field concentrating layer 620 to form the transparent electrode layer 610, thereby including the transparent electrode 600 including the transparent electrode layer 610 and the electric field concentrating layer 620. ).
마지막으로, 투명 전극층(610) 위에 전극 프로브(100)를 접촉하고, 투명 전극층(610)에 고유한 임계 전압 이상의 전압을 인가함으로써 투명 전극층(610) 내부에 전도성 필라멘트(22)를 형성하여 투명 전극(600)을 완성한다.Finally, the conductive filament 22 is formed inside the transparent electrode layer 610 by contacting the electrode probe 100 on the transparent electrode layer 610 and applying a voltage higher than a threshold voltage inherent to the transparent electrode layer 610. Complete 600.
도 7a 및 도 7b 본 발명의 바람직한 제 4 실시예에 따른 투명 전극의 구조 및 투명 전극 형성 방법을 설명하는 도면이다.7A and 7B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fourth preferred embodiment of the present invention.
본 발명의 제 4 실시예에 따른 투명 전극은 복수의 투명 전극층을 구비하는 것을 특징으로 하고, 각 투명 전극층의 두께는 동일할 수도 있고, 서로 상이할 수도 있다. 또한, 각 투명 전극층의 재질 역시 서로 동일한 밴드갭을 갖는 동일한 재질의 저항 변화 물질일 수도 있고, 서로 상이한 밴드갭을 갖는 저항변화 물질일 수도 있다. The transparent electrode according to the fourth embodiment of the present invention is characterized by including a plurality of transparent electrode layers, the thickness of each transparent electrode layer may be the same, or may be different from each other. In addition, the material of each transparent electrode layer may also be a resistance change material of the same material having the same band gap, or may be a resistance change material having a different band gap.
특히, 반도체층(10)이 LED 또는 OLED와 같이 빛을 방출하는 소자인 경우에, 투명 전극을 구성하는 복수의 투명 전극층이 서로 다른 굴절률을 갖는 물질로 구성되고, 상부에 위치하는 투명 전극층일수록 외부 공기와의 굴절율차가 적은 물질을 이용하여 형성하면, 반도체층(10)에서 발생된 빛이 투명 전극에서 전반사되어 반도체층(10) 내부로 다시 유입되는 것을 막을 수 있다.In particular, when the semiconductor layer 10 is a device that emits light, such as an LED or an OLED, the plurality of transparent electrode layers constituting the transparent electrode are made of a material having different refractive indices, and the more transparent electrode layers positioned above When formed using a material having a small difference in refractive index with air, light generated in the semiconductor layer 10 may be totally reflected by the transparent electrode and prevent the light from flowing back into the semiconductor layer 10.
먼저, 도 7a를 참조하여 설명하면, 도 7a에 도시된 제 4 실시예에 따른 투명전극(700)은 복수의 투명 전극층들로 구성되고, 투명 전극층들 중 적어도 2개의 층은 서로 다른 밴드갭을 갖는 재질로 형성되었다. First, referring to FIG. 7A, the transparent electrode 700 according to the fourth embodiment illustrated in FIG. 7A includes a plurality of transparent electrode layers, and at least two layers of the transparent electrode layers may have different band gaps. It was formed of a material having.
도 7a의 (a)에 도시된 예에서, 투명 전극(710)은 제 1 투명 전극층(711)과 제 2 투명 전극층(712)이 순차적으로 형성되어 구성된다. 제 1 투명 전극층(711)은 제 2 투명 전극층(712)에 비하여 상대적으로 밴드갭이 작아 포밍에 의해서 전도성 필라멘트(22)가 용이하게 형성되는 저항 변화 물질로 형성되고, 제 2 투명 전극층(712)은 제 1 투명 전극층에 비하여 밴드갭이 커서 자외선 영역을 포함한 모든 영역의 빛에 대해서 투과도가 더 우수한 저항 변화 물질을 이용하여 형성되었다.In the example illustrated in FIG. 7A, the transparent electrode 710 is formed by sequentially forming a first transparent electrode layer 711 and a second transparent electrode layer 712. The first transparent electrode layer 711 is formed of a resistance change material in which the conductive filament 22 is easily formed by foaming because the band gap is smaller than that of the second transparent electrode layer 712, and the second transparent electrode layer 712 is formed. Silver was formed using a resistance change material having a larger band gap than that of the first transparent electrode layer and having better transmittance to light in all regions including the ultraviolet region.
또한, 도 7a의 (b)에 도시된 예와 같이, 투명 전극이 제 3 투명 전극층(713), 제 4 투명 전극층(714), 및 제 3 투명 전극층(713)이 순차적으로 형성된 구조를 갖도록 구현될 수도 있다. 이 때, 제 4 투명 전극층(714)은 제 3 투명 전극층(713)에 비하여 상대적으로 밴드갭이 작아 포밍에 의해서 전도성 필라멘트(22)가 용이하게 형성되는 저항 변화 물질로 형성되고, 제 3 투명 전극층(713)은 제 4 투명 전극층(714)에 비하여 밴드갭이 커서 자외선 영역을 포함한 모든 영역의 빛에 대해서 투과도가 더 우수한 저항 변화 물질을 이용하여 형성될 수 있다.In addition, as shown in the example of FIG. 7A, the transparent electrode has a structure in which the third transparent electrode layer 713, the fourth transparent electrode layer 714, and the third transparent electrode layer 713 are sequentially formed. May be In this case, the fourth transparent electrode layer 714 is formed of a resistance change material in which the conductive filament 22 is easily formed by foaming because the band gap is smaller than that of the third transparent electrode layer 713. 713 may be formed using a resistance change material having a greater band gap than that of the fourth transparent electrode layer 714 and having better transmittance with respect to light in all regions including the ultraviolet region.
즉, 도 7a의 (b)에 도시된 제 3 투명 전극층(713) 및 제 4 투명 전극층(714)은 도 7a의 (a)에 도시된 제 2 투명 전극층(712) 및 제 1 투명 전극층(711)과 각각 동일한 물질로 형성될 수 있다. That is, the third transparent electrode layer 713 and the fourth transparent electrode layer 714 illustrated in FIG. 7A (b) may include the second transparent electrode layer 712 and the first transparent electrode layer 711 illustrated in FIG. 7A (a). And each of the same material).
도 7a에 도시된 복수의 투명 전극층들에서 공기와의 굴절율 차이가 적은 투명 전극층을 상부에 배치할수록 전반사 효과를 감소시킬 수 있음은 상술한 바와 같다. As described above, in the plurality of transparent electrode layers illustrated in FIG. 7A, the total reflection effect may be reduced as the transparent electrode layer having a small difference in refractive index from air is disposed on the upper portion.
도 7a의 (a)에 도시된 투명 전극을 형성하는 방법을 설명하면, 먼저, 반도체층(10) 위에 저항 변화 물질을 증착하여 제 1 투명 전극층(711)을 형성한다. 이 때, 제 1 투명 전극층(711)은 제 2 투명 전극층(712)에 비하여 상대적으로 밴드갭이 작아 포밍에 의해서 전도성 필라멘트(22)가 용이하게 형성되는 저항 변화 물질로 형성될 수 있음은 상술한 바와 같다.Referring to the method of forming the transparent electrode illustrated in FIG. 7A, first, a resistance change material is deposited on the semiconductor layer 10 to form the first transparent electrode layer 711. In this case, the first transparent electrode layer 711 may be formed of a resistance change material in which the conductive filament 22 is easily formed by foaming because the band gap is smaller than that of the second transparent electrode layer 712. As shown.
그 후, 제 1 투명 전극층(711) 위에 제 2 투명 전극층(712)을 증착하여 형성한다. 제 2 투명 전극층(712)은 제 1 투명 전극층(711)에 비하여 밴드갭이 커서 자외선 영역을 포함한 모든 영역의 빛에 대해서 투과도가 더 우수한 저항 변화 물질을 이용하여 형성될 수 있다.Thereafter, a second transparent electrode layer 712 is deposited on the first transparent electrode layer 711. The second transparent electrode layer 712 may be formed using a resistance change material having a larger band gap than the first transparent electrode layer 711 and having a better transmittance to light in all regions including the ultraviolet region.
복수의 투명 전극층(711,712)을 포함하는 투명 전극(710)이 완성되면, 마지막으로, 최상부에 위치하는 제 2 투명 전극층(712)에 전극 프로브(100)를 접촉시켜 전압을 인가함으로써, 제 2 투명 전극층(712) 및 제 1 투명 전극층(711)에 포밍을 수행하여 전도성 필라멘트(22)를 형성함으로써, 투명 전극(710)의 저항 상태를 고저항 상태에서 저저항 상태로 변화시킨다.When the transparent electrode 710 including the plurality of transparent electrode layers 711 and 712 is completed, the electrode probe 100 is contacted with the second transparent electrode layer 712 positioned at the top to apply a voltage to the second transparent electrode 710. By forming the conductive filaments 22 by forming the electrode layer 712 and the first transparent electrode layer 711, the resistance state of the transparent electrode 710 is changed from a high resistance state to a low resistance state.
도 7a의 (b)에 도시된 투명 전극을 형성하는 방법은, 도 7a의 (a)에 도시된 투명전극 형성방법과 유사하게, 반도체층(10) 위에 제 3 투명 전극층(713), 제 4 투명 전극층(714), 및 제 5 투명 전극층(715)을 순차적으로 형성한 후, 제 5 투명 전극층(715)에 전극 프로브(100)를 접촉하여 전압을 인가함으로써 투명 전극층들(713,714,715)을 포밍시켜 전도성 필라멘트(22)를 형성함으로써 투명 전극을 완성한다. 이 때, 제 4 투명 전극층(714)은 다른 투명 전극층(713, 715)에 비해서 상대적으로 밴드갭이 작아 포밍에 의해서 전도성 필라멘트(22)가 용이하게 형성되는 저항 변화 물질로 형성될 수 있다.The method of forming the transparent electrode illustrated in FIG. 7A (b) may be similar to the method of forming the transparent electrode illustrated in FIG. 7A (a). The third transparent electrode layer 713 and the fourth transparent electrode layer 4 may be formed on the semiconductor layer 10. After the transparent electrode layer 714 and the fifth transparent electrode layer 715 are sequentially formed, the transparent electrode layers 713, 714, and 715 are formed by contacting the electrode probe 100 with the fifth transparent electrode layer 715 and applying a voltage thereto. The transparent electrode is completed by forming the conductive filament 22. In this case, the fourth transparent electrode layer 714 may be formed of a resistance change material in which the conductive filament 22 is easily formed by forming because the band gap is smaller than that of the other transparent electrode layers 713 and 715.
도 7a에 도시된 제 4 실시예의 경우에는 상대적으로 포밍이 용이한 저항 변화 물질로 형성된 투명 전극층을 투명 전극 내부에 포함시킴으로써, 동일한 전압을 인가하더라도, 보다 두꺼운 두께로 투명 전극을 형성할 수 있고, 따라서, 투명 전극의 물리적 강도 및 소자의 안전성을 강화시킬 수 있다.In the case of the fourth embodiment shown in FIG. 7A, a transparent electrode layer formed of a resistance change material which is relatively easy to form is included in the transparent electrode, so that the transparent electrode can be formed to a thicker thickness even when the same voltage is applied. Therefore, the physical strength of the transparent electrode and the safety of the device can be enhanced.
도 7b는 복수의 투명 전극층을 적층하여 투명전극을 형성한다는 점에서는 도 7a의 경우와 동일하다. 다만, 도 7b의 경우, 투명 전극을 구성하는 각 투명 전극층마다 포밍을 수행한다는 점에서 차이가 있다.7B is the same as that of FIG. 7A in that a plurality of transparent electrode layers are stacked to form a transparent electrode. However, in the case of FIG. 7B, there is a difference in that foaming is performed for each transparent electrode layer constituting the transparent electrode.
구체적으로, 도 7b의 (a)에 도시된 복수의 투명 전극층은 서로 다른 밴드갭을 갖는 제 1 투명 전극층(721), 제 2 투명 전극층(722), 및 제 3 투명 전극층(723)이 순차적으로 반도체층(10) 위에 적층되어 형성되어 있다. Specifically, in the plurality of transparent electrode layers illustrated in (a) of FIG. 7B, the first transparent electrode layer 721, the second transparent electrode layer 722, and the third transparent electrode layer 723 having different band gaps are sequentially formed. The semiconductor layer 10 is stacked and formed.
투명 전극층 형성 과정에서, 반도체층(10) 위에 제 1 투명 전극층(721)을 형성한 후, 전극 프로브(100)를 제 1 투명 전극층(721)에 접촉시켜 전압을 인가함으로써 제 1 투명 전극층(721)을 먼저 포밍하여 전도성 필라멘트(22)들을 내부에 형성한다. In the process of forming the transparent electrode layer, after forming the first transparent electrode layer 721 on the semiconductor layer 10, the electrode probe 100 is in contact with the first transparent electrode layer 721 to apply a voltage to the first transparent electrode layer 721. ) Is first formed to form the conductive filaments 22 therein.
그 후, 제 2 투명 전극층(722)을 제 1 투명 전극층(721) 위에 형성하고, 제 1 투명 전극층(721)과 동일한 방식으로 제 2 투명 전극층(722)을 포밍하여 전도성 필라멘트(22)를 내부에 형성한다. 마찬가지로, 제 2 투명 전극층(722) 위에 제 3 투명 전극층(723)을 형성하고, 포밍을 수행함으로써 투명 전극(720)을 완성한다. Thereafter, the second transparent electrode layer 722 is formed on the first transparent electrode layer 721, and the second transparent electrode layer 722 is formed in the same manner as the first transparent electrode layer 721 to form the conductive filament 22 therein. To form. Similarly, the third transparent electrode layer 723 is formed on the second transparent electrode layer 722 and the transparent electrode 720 is completed by forming.
도 7b의 (a)의 예에서, 제 1 투명 전극층(721)에서 제 3 투명 전극층(723)으로 갈수록 외부 공기와의 굴절률 차이가 감소하는 경우, 반도체층(10)에서 유입된 빛이 전반사되어 다시 반도체층(10)으로 유입되는 것을 차단할 수 있는 효과가 있음은 상술한 바와 같다.In the example of FIG. 7B, when the difference in refractive index with the outside air decreases from the first transparent electrode layer 721 to the third transparent electrode layer 723, the light introduced from the semiconductor layer 10 is totally reflected. As described above, there is an effect of blocking the flow into the semiconductor layer 10 again.
한편, 도 7b의 (b)에 도시된 제 4 실시예는 복수의 투명 전극층을 모두 동일한 재질의 저항 변화 물질로 형성한다는 점을 제외하면, 도 7b의 (a)에 도시된 투명 전극과 그 구조 및 형성 방법이 동일하므로 구체적인 설명은 생략한다.On the other hand, the fourth embodiment shown in (b) of FIG. 7B except that the plurality of transparent electrode layers are all formed of a resistance change material of the same material, the transparent electrode and the structure shown in (a) of FIG. 7B And since the formation method is the same, a detailed description is omitted.
도 7b를 참조하여 상술한 제 4 실시예에 따른 투명 전극의 경우에는 각각 포밍되어 전도성 필라멘트(22)가 형성된 복수의 투명 전극층(731)이 포함되도록 투명 전극을 형성함으로써, 투명 전극을 원하는 두께로 형성할 수 있어 투명 전극의 강도 및 소자의 안전성을 강화시킬 수 있다.In the case of the transparent electrode according to the fourth embodiment described above with reference to FIG. 7B, the transparent electrode is formed to include a plurality of transparent electrode layers 731 each formed with a conductive filament 22, thereby forming the transparent electrode in a desired thickness. The thickness of the transparent electrode and the safety of the device can be enhanced.
도 8a 및 도 8b는 본 발명의 바람직한 제 5 실시예에 따른 투명 전극의 구조 및 투명 전극 형성 방법을 도시하는 도면이다.8A and 8B illustrate a structure of a transparent electrode and a method of forming a transparent electrode according to a fifth exemplary embodiment of the present invention.
도 8a에 도시된 본 발명의 바람직한 제 5 실시예에 따른 투명 전극(810)은 반도체층(10) 위에 형성된 투명 전도층(811) 및 투명 전도층(811) 위에 저항 변화 물질로 형성된 투명 전극층(812)을 포함한다.The transparent electrode 810 according to the fifth preferred embodiment of the present invention illustrated in FIG. 8A includes a transparent conductive layer 811 formed on the semiconductor layer 10 and a transparent electrode layer formed of a resistance change material on the transparent conductive layer 811. 812).
투명 전도층(811)은 투명 전극층(812)보다 밴드갭이 작아 전도도가 더 높은 물질로 형성되는데, 종래의 투명 전극 기술에서 투명 전극으로 이용되는 물질들(예컨대, ITO, ZnO 등)로 형성될 수 있다. The transparent conductive layer 811 is formed of a material having a higher conductivity due to a smaller band gap than the transparent electrode layer 812. The transparent conductive layer 811 may be formed of materials (eg, ITO, ZnO, etc.) used as a transparent electrode in the conventional transparent electrode technology. Can be.
또한, 투명 전극층(812)은 상술한 저항 변화 물질로 형성되고 내부에 전도성 필라멘트(22)들이 형성되어, 그 저항 상태가 저저항 상태로 변화된 상태이다.In addition, the transparent electrode layer 812 is formed of the above-described resistance change material and conductive filaments 22 are formed therein, and the resistance state thereof is changed to a low resistance state.
아울러, 투명 전도층(811)의 일부 영역은 외부에 드러나도록 형성된다. 이렇게 외부로 드러난 투명 전도층(811)의 일부 영역(813)은, 전극 프로브(100)와 접촉되어 포밍 공정에 이용된다. 투명 전도층(811)의 일부 영역을 외부로 노출시키는 방법은 투명 전극층(812)을 투명 전도층(811) 전면에 형성하고, 투명 전극층(812)의 일부 영역을 식각하여 투명 전도층(811)을 일부 영역(813)을 외부로 노출시키는 방법을 이용하거나, 투명 전도층(811)의 노출 영역을 제외한 영역에만 저항 변화 물질을 증착하여 투명 전도층의 일부 영역을 외부로 노출시킬 수도 있다.In addition, some regions of the transparent conductive layer 811 are formed to be exposed to the outside. The partial region 813 of the transparent conductive layer 811 exposed to the outside is in contact with the electrode probe 100 and used in the forming process. In the method of exposing a portion of the transparent conductive layer 811 to the outside, the transparent electrode layer 812 is formed on the entire surface of the transparent conductive layer 811, and a portion of the transparent electrode layer 812 is etched to etch the transparent conductive layer 811. By using a method of exposing a portion of the region 813 to the outside, or by depositing a resistive change material only in the region except the exposed region of the transparent conductive layer 811 to expose a portion of the transparent conductive layer to the outside.
도 8a를 참조하여 제 5 실시예에 따른 투명 전극 형성 방법을 설명하면, 먼저, 반도체층(10) 위에 아주 얇은 박막으로 후술하는 투명 전극층(812)보다 밴드갭이 작아 전도도가 더 높은 투명 전도층(811)을 증착하여 형성한다. 이 때, 투명 전도층(811)은 종래 기술에서 투명 전극으로 이용되는 물질들(예컨대, ITO, ZnO 등)로 형성될 수 있다. 다만, 투명 전도층(811)을 너무 두껍게 형성하는 경우에는, 반도체층(10)으로부터 유입되는 자외선 영역의 빛이 투명 전도층(811)을 통과하지 못하므로, 가능한 얇게 형성하는 것이 바람직하다. 본 발명의 바람직한 실시에에서는, 투명 전도층(811)을 약 3nm 내지 5nm 두께로 형성하였다. Referring to FIG. 8A, a method of forming a transparent electrode according to a fifth embodiment is described. First, a transparent conductive layer having a higher conductivity due to a smaller band gap than a transparent electrode layer 812 described later as a very thin thin film on the semiconductor layer 10. 811 is formed by evaporation. At this time, the transparent conductive layer 811 may be formed of materials (eg, ITO, ZnO, etc.) used as a transparent electrode in the prior art. However, when the transparent conductive layer 811 is formed too thick, since the light in the ultraviolet region flowing from the semiconductor layer 10 does not pass through the transparent conductive layer 811, it is preferable to form the thinnest layer possible. In a preferred embodiment of the present invention, the transparent conductive layer 811 is formed to a thickness of about 3 nm to 5 nm.
아울러, 본 발명의 바람직한 실시예에서는, 포토 공정을 이용하여 투명 전극 위에 형성되는 전극 패드 패턴(미도시 됨)에 대응되는 패턴으로 투명 전도층(811)을 형성함으로써, 투명 전도층(811)에 의해서 광추출 효율이 저하되는 것을 최소화할 수 있다. 즉, 투명 전극층(812)위에 형성되는 전극 패드 패턴(미도시 됨)은 빛을 통과시키지 않으므로, 이에 대응되는 패턴으로 투명 전도층을 형성하면, 광 추출 효율의 저하를 최소화할 수 있다.In addition, in a preferred embodiment of the present invention, by forming a transparent conductive layer 811 in a pattern corresponding to the electrode pad pattern (not shown) formed on the transparent electrode using a photo process, to the transparent conductive layer 811 As a result, the light extraction efficiency may be reduced. That is, since the electrode pad pattern (not shown) formed on the transparent electrode layer 812 does not allow light to pass through, forming a transparent conductive layer in a pattern corresponding thereto may reduce the light extraction efficiency.
투명 전도층(811)이 형성된 후, 그 위에 저항 변화 물질을 이용하여 투명 전극층(812)을 형성한다. 이 때, 투명 전도층(811)의 일부 영역이 외부로 노출되도록 투명 전극층(812)을 형성하고, 그 방법은 상술하였으므로 생략한다.After the transparent conductive layer 811 is formed, a transparent electrode layer 812 is formed thereon using a resistance change material. At this time, the transparent electrode layer 812 is formed so that a portion of the transparent conductive layer 811 is exposed to the outside, and the method thereof has been described above and thus will be omitted.
그 후, 이렇게 외부로 노출된 투명 전도층(811)의 일부 영역은 투명 전극층(812)의 포밍 과정에서 전극 프로브(100)와 접촉하여 포밍 공정에 이용된다. 즉, 포밍을 수행하기 위한 한 쌍의 전극 프로브(100) 중 하나는 투명 전극층(812)에 접촉되고, 나머지 하나는 투명 전도층(811)의 노출된 영역에 직접 접촉되어 전압을 인가한다. 이렇게 전압이 인가되면, 도 8a에 도시된 바와 같이, 투명 전극층(812)과 그 하부에 형성된 투명 전도층(811)을 통해서 전류 패스가 형성되어, 투명 전극층(812)만을 통해서 전류 패스를 형성하여 포밍을 수행하는 것보다 낮은 전압으로 포밍 공정을 수행할 수 있다. Subsequently, a portion of the transparent conductive layer 811 exposed to the outside is in contact with the electrode probe 100 in the forming process of the transparent electrode layer 812 and used in the forming process. That is, one of the pair of electrode probes 100 for performing the forming is in contact with the transparent electrode layer 812, and the other is in direct contact with the exposed area of the transparent conductive layer 811 to apply a voltage. When a voltage is applied in this manner, as shown in FIG. 8A, a current path is formed through the transparent electrode layer 812 and the transparent conductive layer 811 formed thereunder to form a current path through only the transparent electrode layer 812. The forming process may be performed at a lower voltage than that of forming.
투명 전도층(811)이 없는 경우에는 고저항의 저항 변화 물질만을 통해서 전류 패스가 형성되어야 하므로 포밍이 그 만큼 어렵고, 따라서 더 큰 포밍 전압이 요구된다. 따라서, 본 발명의 제 5 실시예에 따르면, 투명 전도층(811)이 없는 경우와 비교하여, 동일한 포밍 전압으로 보다 두꺼운 투명 전극에 전도성 필라멘트(22)를 형성할 수 있어, 투명 전극의 강도 및 소자의 안전성을 강화시킬 수 있다.In the absence of the transparent conductive layer 811, a current path must be formed only through a high resistance resistance change material, so that forming is difficult, and thus a larger forming voltage is required. Therefore, according to the fifth embodiment of the present invention, the conductive filament 22 can be formed on the thicker transparent electrode at the same forming voltage as compared with the case where the transparent conductive layer 811 is not provided, thereby providing the strength and The safety of the device can be enhanced.
도 8b는 본 발명의 바람직한 제 5 실시예의 변형예를 도시한 도면이다. 도 8b를 참조하면, 제 5 실시예의 변형예에 따른 투명 전극(820)은, 반도체층(10) 위에 형성된 하부 투명 전극층(821), 하부 투명 전극층(821) 위에 형성된 투명 전도층(822), 투명 전도층(822) 위에 형성된 상부 투명 전극층(823)을 포함한다. 8B is a diagram showing a modification of the fifth preferred embodiment of the present invention. Referring to FIG. 8B, the transparent electrode 820 according to the modification of the fifth embodiment may include a lower transparent electrode layer 821 formed on the semiconductor layer 10, a transparent conductive layer 822 formed on the lower transparent electrode layer 821, An upper transparent electrode layer 823 formed on the transparent conductive layer 822.
도 8b에 도시된 변형예는, 도 8a에 도시된 제 5 실시예의 투명 전극 아래에 하부 투명 전극층(821)이 추가로 형성되어 있다는 점을 제외하면, 투명 전도층(822) 및 상부 투명 전극층(823)은 도 8a의 투명 전도층(811) 및 투명 전극층(812)과 동일한 구성이다. 하부 투명 전극층(821)에는 투명 전도층(822)을 형성하기 이전에 이미 포밍 공정이 수행되어 그 내부에 전도성 필라멘트(22)가 형성되어 있다. 8B is a transparent conductive layer 822 and an upper transparent electrode layer (except that the lower transparent electrode layer 821 is further formed under the transparent electrode of the fifth embodiment shown in FIG. 8A). 823 has the same configuration as the transparent conductive layer 811 and the transparent electrode layer 812 of FIG. 8A. Before forming the transparent conductive layer 822, the lower transparent electrode layer 821 is formed with a conductive filament 22 formed therein.
도 8b에 도시된 변형예에 따른 투명 전극 형성 방법을 설명하면, 먼저, 반도체층(10) 위에 저항 변화 물질을 증착하여 하부 투명 전극층(821)을 생성하고, 그 위에 전극 프로브(100)를 접촉하고 포밍 전압을 인가하여 하부 투명 전극층(821)에 포밍 공정을 수행하여, 그 내부에 전도성 필라멘트(22)를 형성한다. 하부 투명 전극층(821)에 포밍 공정을 수행하는 과정은 상술한 제 1 실시예 등과 동일하다.Referring to the method of forming the transparent electrode according to the modification illustrated in FIG. 8B, first, a resistive change material is deposited on the semiconductor layer 10 to form a lower transparent electrode layer 821, and contacting the electrode probe 100 thereon. Then, a forming voltage is applied to the lower transparent electrode layer 821 to form a conductive filament 22 therein. The process of forming the lower transparent electrode layer 821 is the same as that of the first embodiment described above.
그 후, 하부 투명 전극층(821) 위에 투명 전도층(822)을 증착하여 형성하고, 그 위에 투명 전도층(822)의 일부 영역이 노출되도록 상부 투명 전극층(823)을 형성한다. 투명 전도층(822)은 상부 투명 전극층(823) 위에 형성될 전극 패드 패턴에 대응되록 형성되는 것이 바람직하고, 상부 투명 전극층(823)을 생성하는 방식은 도 8a를 참조하여 상술한 바와 같다.Thereafter, a transparent conductive layer 822 is formed by depositing on the lower transparent electrode layer 821, and an upper transparent electrode layer 823 is formed to expose a portion of the transparent conductive layer 822 thereon. The transparent conductive layer 822 is preferably formed to correspond to the electrode pad pattern to be formed on the upper transparent electrode layer 823, and the method of generating the upper transparent electrode layer 823 is as described above with reference to FIG. 8A.
상부 투명 전극층(823)이 형성되면, 도 8a를 참조하여 상술한 바와 같이, 상부 투명 전극층(823)과 투명 전도층(822)에 각각 전극 프로브(100)를 접촉하여 포밍 전압을 인가함으로써, 상부 투명 전극층(823)에 전도성 필라멘트(22)를 형성한다.When the upper transparent electrode layer 823 is formed, as described above with reference to FIG. 8A, the forming electrode is applied by contacting the electrode probe 100 to the upper transparent electrode layer 823 and the transparent conductive layer 822, respectively. Conductive filaments 22 are formed on the transparent electrode layer 823.
이렇게, 이미 포밍이 완료된 하부 투명 전극층(821) 위에 포밍 전압을 감소시킬 수 있는 투명 전도층(822) 및 상부 투명 전극층(823)을 형성하여 포밍을 수행함으로써, 제 5 실시예의 변형예는 도 8a 에 도시된 투명 전극보다 더 두껍게 투명전극을 형성할 수 있어, 결과적으로 투명 전극의 강도 및 소자의 안전성을 더 강화시킬 수 있다.In this manner, the forming of the transparent conductive layer 822 and the upper transparent electrode layer 823 capable of reducing the forming voltage on the lower transparent electrode layer 821, which is already formed, is performed to form the modified example of the fifth embodiment. The transparent electrode can be formed thicker than the transparent electrode shown in Fig. 3, and as a result, the strength of the transparent electrode and the safety of the device can be further enhanced.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (20)

  1. 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화된 저항 변화 물질로 형성된 투명 전극층; 및A transparent electrode layer formed of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state by applying a voltage (forming voltage) above a threshold voltage unique to the material to form a conductive filament therein; And
    상기 투명 전극층 내부에 형성되어 포밍 전압을 감소시키기 위한 전계 집중층을 포함하는 것을 특징으로 하는 투명 전극.And an electric field concentrating layer formed in the transparent electrode layer to reduce the forming voltage.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 전계 집중층은 상기 투명 전극층 중간에 형성되고, 나노 파티클, 나노 와이어, 및 전도성 폴리머 중 어느 하나로 형성되는 것을 특징으로 하는 투명 전극.The field concentrating layer is formed in the middle of the transparent electrode layer, characterized in that formed of any one of nanoparticles, nanowires, and conductive polymers.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 전계 집중층은 상기 투명 전극층과 상기 반도체층과의 경계면에 형성되고, 나노 파티클, 나노 와이어, 및 전도성 폴리머 중 어느 하나로 형성되는 것을 특징으로 하는 투명 전극.The field concentrating layer is formed at an interface between the transparent electrode layer and the semiconductor layer, and is formed of any one of nanoparticles, nanowires, and a conductive polymer.
  4. 제 2 항 또는 제 3 항 중 어느 한 항에 있어서, The method according to claim 2 or 3,
    상기 전계 집중층은, 상기 투명 전극의 상부에 형성되는 전극 패드 패턴과 대응되는 패턴으로 형성되는 것을 특징으로 하는 투명 전극.The field concentrating layer is formed in a pattern corresponding to the electrode pad pattern formed on the transparent electrode.
  5. 반도체층 위에 형성된 투명 전극으로서, 상기 투명 전극은 A transparent electrode formed on a semiconductor layer, wherein the transparent electrode
    물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화된 저항 변화 물질로 형성되고, 그 내부에 전도성 필라멘트가 형성된 복수의 투명 전극층들을 포함하는 것을 특징으로 하는 투명 전극.By applying a voltage (forming voltage) above a threshold voltage inherent to the material to form a conductive filament therein, the resistance state is formed of a resistance change material that is changed from a high resistance state to a low resistance state, and a conductive filament is formed therein. A transparent electrode comprising a plurality of transparent electrode layers.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 복수의 투명 전극층들 중 적어도 2개의 층은 서로 다른 밴드 갭을 갖는 저항 변화 물질로 형성된 것을 특징으로 하는 투명 전극.At least two layers of the plurality of transparent electrode layers is formed of a resistance change material having a different band gap.
  7. 제 5 항 또는 제 6 항에 있어서, The method according to claim 5 or 6,
    상기 복수의 투명 전극층들은 상부로 갈수록 공기와의 굴절율 차이가 감소하도록 배치된 것을 특징으로 하는 투명 전극.The plurality of transparent electrode layers are disposed so that the difference in refractive index with the air decreases toward the top.
  8. 반도체층 위에 형성된 투명 전극으로서,As a transparent electrode formed on a semiconductor layer,
    물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화된 저항 변화 물질로 형성된 투명 전극층; 및A transparent electrode layer formed of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state by applying a voltage (forming voltage) above a threshold voltage unique to the material to form a conductive filament therein; And
    상기 투명 전극층과 상기 반도체층 사이에 형성되고, 상기 투명 전극층보다 밴드 갭이 작아 전도도가 더 높은 투명 전도층을 포함하는 것을 특징으로 하는 투명 전극.And a transparent conductive layer formed between the transparent electrode layer and the semiconductor layer and having a smaller conductivity than the transparent electrode layer with a smaller band gap.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 투명 전도층의 일부 영역이 외부로 드러나도록 형성된 것을 특징으로 하는 투명 전극.And a portion of the transparent conductive layer is exposed to the outside.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 투명 전도층과 상기 반도체층 사이에, Between the transparent conductive layer and the semiconductor layer,
    전도성 필라멘트가 형성된 저항 변화 물질로 형성된 투명 전도층을 더 포함하는 것을 특징으로 하는 투명 전극.The transparent electrode further comprises a transparent conductive layer formed of a resistance change material formed with a conductive filament.
  11. 투명 전극을 형성하는 방법으로서, As a method of forming a transparent electrode,
    (a1) 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되면 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질을 이용하여 하부 투명 전극층을 형성하는 단계;(a1) When a voltage (forming voltage) above a specific threshold voltage is applied to the material, a conductive filament is formed therein, thereby forming a lower transparent electrode layer using a resistance change material whose resistance state is changed from a high resistance state to a low resistance state. Forming;
    (a2) 상기 하부 투명 전극층 위에 전계 집중층을 형성하는 단계; (a2) forming an electric field concentration layer on the lower transparent electrode layer;
    (b) 상기 전계 집중층 위에 저항 변화 물질을 이용하여 상부 투명 전극층을 형성하는 단계; 및(b) forming an upper transparent electrode layer on the field concentrating layer by using a resistance change material; And
    (c) 상기 상부 투명 전극층에 포밍 전압을 인가하여 투명 전극층들 내부에 전도성 필라멘트를 형성하는 단계를 포함하는 것을 특징으로 하는 투명 전극 형성 방법.(c) forming a conductive filament inside the transparent electrode layers by applying a forming voltage to the upper transparent electrode layer.
  12. 투명 전극을 형성하는 방법으로서, As a method of forming a transparent electrode,
    (a2) 반도체층 위에 전계 집중층을 형성하는 단계; (a2) forming an electric field concentration layer on the semiconductor layer;
    (b) 상기 전계 집중층 위에, 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되면 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질을 이용하여 투명 전극층을 형성하는 단계; 및(b) When a voltage (forming voltage) higher than a threshold voltage inherent to the material is applied to the field concentrating layer, a conductive filament is formed therein, whereby a resistance change material whose resistance state is changed from a high resistance state to a low resistance state is formed. Forming a transparent electrode layer by using; And
    (c) 상기 투명 전극층에 포밍 전압을 인가하여 투명 전극층 내부에 전도성 필라멘트를 형성하는 단계를 포함하는 것을 특징으로 하는 투명 전극 형성 방법.(c) forming a conductive filament in the transparent electrode layer by applying a forming voltage to the transparent electrode layer.
  13. 제 11 항 또는 제 12 항에 있어서,The method according to claim 11 or 12,
    상기 (a2) 단계는, 나노 파티클, 나노 와이어, 및 전도성 폴리머 중 어느 하나를 이용하여 상기 전계 집중층을 형성하는 것을 특징으로 하는 투명 전극 형성 방법.In the step (a2), the electric field concentrating layer is formed using any one of nanoparticles, nanowires, and conductive polymers.
  14. (a) 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질로 복수의 투명 전극층을 형성하는 단계; 및(a) a conductive filament is formed therein by applying a voltage (forming voltage) above a threshold voltage inherent to the material, thereby forming a plurality of transparent electrode layers of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state; Doing; And
    (b) 상기 복수의 투명 전극층에 포밍 전압을 인가하여, 그 내부에 전도성 필라멘트를 형성하는 단계를 포함하는 것을 특징으로 하는 투명 전극 형성 방법.(b) forming a conductive filament therein by applying a forming voltage to the plurality of transparent electrode layers.
  15. (a) 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질로 투명 전극층을 형성하는 단계; (a) forming a transparent electrode layer of a resistance change material whose resistance state is changed from a high resistance state to a low resistance state by applying a voltage (forming voltage) above a threshold voltage inherent to the material to form a conductive filament therein; ;
    (b) 상기 투명 전극층에 포밍 전압을 인가하여 상기 투명 전극층에 전도성 필라멘트를 형성하여, 저항 상태를 저저항 상태로 변화시키는 단계; 및(b) applying a forming voltage to the transparent electrode layer to form a conductive filament in the transparent electrode layer, thereby changing the resistance state to a low resistance state; And
    (c) 상기 (a) 단계 및 (b) 단계를 적어도 1회 이상 순차적으로 반복수행하여 내부에 전도성 필라멘트가 형성된 투명 전극층을 추가로 형성하는 단계를 포함하는 것을 특징으로 하는 투명 전극 형성 방법.(c) repeatedly performing steps (a) and (b) at least once in order to further form a transparent electrode layer having conductive filaments formed therein.
  16. 제 14 항 또는 제 15 항에 있어서, The method according to claim 14 or 15,
    상기 투명 전극에 포함된 복수의 투명 전극층 중 적어도 2개의 층은 서로 다른 밴드 갭을 갖는 저항 변화 물질로 형성된 것을 특징으로 하는 투명 전극 형성 방법.At least two layers of the plurality of transparent electrode layers included in the transparent electrode is formed of a resistance change material having a different band gap.
  17. 제 14 항 또는 제 15 항에 있어서, The method according to claim 14 or 15,
    상기 복수의 투명 전극층들은 상부로 갈수록 공기와의 굴절율 차이가 감소하도록 배치된 것을 특징으로 하는 투명 전극 형성 방법.And the plurality of transparent electrode layers are disposed such that a difference in refractive index with air decreases toward the upper portion.
  18. (a) 투명 전극층보다 밴드 갭이 작아 전도도가 더 높은 투명 전도층을 형성하는 단계;(a) forming a transparent conductive layer having a higher conductivity with a smaller band gap than the transparent electrode layer;
    (b) 상기 투명 전도층 위에 물질에 고유한 임계 전압 이상의 전압(포밍 전압)이 인가되어 내부에 전도성 필라멘트가 형성됨으로써, 그 저항 상태가 고저항 상태에서 저저항 상태로 변화되는 저항 변화 물질로 투명 전극층을 형성하는 단계; 및 (b) a conductive filament is formed therein by applying a voltage (forming voltage) higher than a threshold voltage inherent to the material on the transparent conductive layer, whereby the resistance state is transparent to a resistance change material that is changed from a high resistance state to a low resistance state. Forming an electrode layer; And
    (d) 상기 투명 전도층과 상기 투명 전극층 사이에 전압을 인가하여 상기 투명 전극층 내부에 전도성 필라멘트를 형성하는 단계를 포함하는 것을 특징으로 하는 투명 전극 형성 방법.(d) applying a voltage between the transparent conductive layer and the transparent electrode layer to form a conductive filament inside the transparent electrode layer.
  19. 제 18 항에 있어서, The method of claim 18,
    상기 (b) 단계는, 상기 투명 전도층의 일부 영역이 외부로 드러나도록 상기 투명 전극층을 형성하고, In the step (b), forming the transparent electrode layer so that a part of the transparent conductive layer is exposed to the outside,
    상기 (d) 단계는, 외부로 드러난 상기 투명 전도층의 일부 영역과 상기 투명 전극층 사이에 전압을 인가하여 상기 투명 전극층 내부에 전도성 필라멘트를 형성하는 것을 특징으로 하는 투명 전극 형성 방법.In the step (d), a conductive filament is formed inside the transparent electrode layer by applying a voltage between a portion of the transparent conductive layer exposed to the outside and the transparent electrode layer.
  20. 제 18 항에 있어서, 상기 (a) 단계에서, 상기 투명 전도층은 The method of claim 18, wherein in the step (a), the transparent conductive layer
    전도성 필라멘트가 내부에 형성된 저항 변화 물질로 형성된 투명 전극층 위에 형성된 것을 특징으로 하는 투명 전극 형성 방법.The conductive filament is formed on the transparent electrode layer formed of a resistance change material formed therein.
PCT/KR2014/008082 2013-09-27 2014-08-29 Transparent electrode and method for manufacturing same WO2015046766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130114917A KR101505512B1 (en) 2013-09-27 2013-09-27 Transparent electrode and manufacturing method of the same
KR10-2013-0114917 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046766A1 true WO2015046766A1 (en) 2015-04-02

Family

ID=52743841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008082 WO2015046766A1 (en) 2013-09-27 2014-08-29 Transparent electrode and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101505512B1 (en)
WO (1) WO2015046766A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635975B1 (en) * 2015-06-23 2016-07-04 고려대학교 산학협력단 Transparent electrode and manufacturing method of the same
KR20170018718A (en) 2015-08-10 2017-02-20 삼성전자주식회사 Transparent electrode using amorphous alloy and method for manufacturing the same
KR101985737B1 (en) * 2017-05-08 2019-06-04 고려대학교 산학협력단 Micro LED and manufacturing method of the same
US10847681B2 (en) 2018-06-15 2020-11-24 Korea University Research And Business Foundation Method for manufacturing micro light emitting device by minimizing mask processes, and micro light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080070475A (en) * 2007-01-25 2008-07-30 삼성전기주식회사 High-transmissive optical thin film and semicondutor light emitting device having the same
KR20110114038A (en) * 2010-04-12 2011-10-19 고려대학교 산학협력단 Reram memory device with multi-level and manufacturing method of the same
KR20130077504A (en) * 2011-12-29 2013-07-09 에스케이하이닉스 주식회사 Resistance variable memory device and method for fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080070475A (en) * 2007-01-25 2008-07-30 삼성전기주식회사 High-transmissive optical thin film and semicondutor light emitting device having the same
KR20110114038A (en) * 2010-04-12 2011-10-19 고려대학교 산학협력단 Reram memory device with multi-level and manufacturing method of the same
KR20130077504A (en) * 2011-12-29 2013-07-09 에스케이하이닉스 주식회사 Resistance variable memory device and method for fabricating the same

Also Published As

Publication number Publication date
KR101505512B1 (en) 2015-03-24

Similar Documents

Publication Publication Date Title
WO2014010779A1 (en) Light-emitting element having a transparent electrode and production method for same
WO2014129709A1 (en) Vertical light-emitting device provided with transparent electrode and method for manufacturing same
US7563711B1 (en) Method of forming a carbon nanotube-based contact to semiconductor
WO2015046766A1 (en) Transparent electrode and method for manufacturing same
WO2014133232A1 (en) Light receiving element having transparent electrode and method for manufacturing same
WO2014046373A1 (en) Organic light-emitting diode provided with transparent electrode having conductive filaments and method for manufacturing same
WO2014109454A1 (en) Light-emitting diode and method for manufacturing same
WO2020055143A1 (en) Light-emitting element
WO2016003205A1 (en) Light emitting element
WO2013172511A1 (en) Method for forming transparent electrode and semiconductor device manufactured using same
KR101508574B1 (en) Semiconductor device including transparent electrode and method for manufacturing the same
WO2017213403A1 (en) Gallium nitride-based high-efficiency light emitting diode and manufacturing method therefor
WO2019066411A1 (en) Reflective electrode for micro light emitting element, micro light emitting element having same, and method for manufacturing reflective electrode for micro light emitting element
WO2022119107A1 (en) Display device and method for manufacturing light-emitting element
WO2015023048A1 (en) Nitride semiconductor light emitting device using nanowires
WO2013176484A1 (en) Transparent electrode and method for forming transparent electrode
WO2017003202A1 (en) Light-emitting device
WO2016036067A1 (en) Light emitting diode
TWI520193B (en) Method for forming transparent electrode and semiconductor device produced by using the same
WO2022215876A1 (en) Ultraviolet semiconductor light-emitting device and method for manufacturing same
KR100995795B1 (en) Nitride light emitting device
WO2023128337A1 (en) Staggered metal-semiconductor field effect transistor for thin film power device
KR100660135B1 (en) Article having a transparent electrode of p-type conducting oxide and manufacturing thereof
WO2011099658A1 (en) Group-iii nitride semiconductor light-emitting device
WO2016208963A1 (en) Transparent electrode and method for forming transparent electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847575

Country of ref document: EP

Kind code of ref document: A1