WO2015046737A1 - Dna aptamer specifically binding to virulence regulatory factor prfa protein of listeria and use thereof - Google Patents

Dna aptamer specifically binding to virulence regulatory factor prfa protein of listeria and use thereof Download PDF

Info

Publication number
WO2015046737A1
WO2015046737A1 PCT/KR2014/007044 KR2014007044W WO2015046737A1 WO 2015046737 A1 WO2015046737 A1 WO 2015046737A1 KR 2014007044 W KR2014007044 W KR 2014007044W WO 2015046737 A1 WO2015046737 A1 WO 2015046737A1
Authority
WO
WIPO (PCT)
Prior art keywords
listeria monocytogenes
dna aptamer
prfa
prfa protein
aptamer
Prior art date
Application number
PCT/KR2014/007044
Other languages
French (fr)
Korean (ko)
Inventor
김양훈
이상희
엄현주
Original Assignee
충북대학교 산학협력단
한국보건산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단, 한국보건산업진흥원 filed Critical 충북대학교 산학협력단
Publication of WO2015046737A1 publication Critical patent/WO2015046737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Definitions

  • the present invention relates to a DNA aptamer specifically binding to PrfA (virulence regulator PrfA), which is a pathogenic regulatory protein of Listeria monocytogenes that causes Listeriosis.
  • PrfA viral regulatory protein of Listeria monocytogenes that causes Listeriosis.
  • Listeriosis a common acquired disease, occurs when a person eats food contaminated with Listeria monocytogenes .
  • Prostate symptoms including fever, anxiety, and typical listeriosis, such as meningitis, sepsis or encephalitis, is a high-risk disease that threatens human life.
  • patients with immune diseases newborns and pregnant women are more than 20 times more likely to be infected than normal people.
  • infected women premature delivery, spontaneous abortion, stillbirth, and fetal infections occur, and infected mothers and fetuses have meningitis or endocarditis. It is known to cause serious complications and lead to death.
  • Listeria caused by Listeria monocytogenes is a fatal disease with the lowest morbidity but high mortality compared to other food poisoning bacteria. It is the PrfA protein that takes contaminated food and controls pathogenic outbreaks in the body. When activated, it causes pathogenicity in the body.
  • Listeria monocytogenes which causes fatal diseases, is the number of occurrences of health and environmental diseases caused by various pathogenic microorganisms, human infections and public due to the increase of imported livestock, processed processed foods and the increase of domestic average temperature due to global warming and extreme weather. The rate of transmission to the environment is increasing rapidly. Accordingly, there is a demand for developing a technology capable of effectively detecting Listeria monocytogenes contained in various foods such as processed foods, imported livestock products, dairy products, and drinking water.
  • PCR polymerase chain reaction
  • immunological diagnostic methods using antigen antibodies have been developed and used for the rapid and sensitive diagnosis of Listeriosis.
  • These methods target specific pathogenic factors of Shigella Sonei, which can detect specific causative organisms more sensitively and faster than conventional sample culture methods.
  • the main pathogenic factors mainly used for the diagnosis of listeriosis are proteins expressed by genes such as prfA, inlA, inlB, and actA.
  • PrfA encoded by the prfA gene is known. Proteins regulate the onset through quorum recognition of Listeria monocytogenes.
  • PCR and immunological diagnostic methods based on pathogenic genes and proteins encoded therein have the advantages of being more sensitive and faster than conventional culture-based detection methods.
  • Aptamers are short-length oligomers that form specific tertiary structures with high affinity to specific targets.
  • chemical synthesis techniques it is possible to mass-produce in a short time and at low cost, and has an excellent advantage of continuously producing aptamers having the same ability once produced and produced.
  • it is highly stable to the surrounding pH and temperature, and recently, the possibility of use in various fields, such as the detection of target substances and the development of disease diagnosis sensors, is widely appreciated.
  • the present inventors have succeeded in developing a DNA aptamer capable of early diagnosis of Listeriosis, and have succeeded in synthesizing and selecting a DNA Aptamer specifically binding to the PrfA protein that controls the pathogenicity of Listeriosis.
  • the present invention was completed by making a kit for early diagnosis of Listeriosis using the same.
  • Another object of the present invention is a Listeria monocytogenes detection or listeria monocytogenes ( Listeria monocytogenes) comprising a DNA aptamer that specifically binds to the PrfA protein as an active ingredient, Listeria monocytogenes detection or diagnostic composition, diagnostic kit and diagnostic bio To provide a chip.
  • It is still another object of the present invention to provide a method for preparing a biologically active product comprising (a) contacting a biological sample isolated from a living body with a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ; And (b) confirming the presence of Listeria monocytogenes through a PrfA protein specific binding reaction between the biological sample and the DNA aptamer.
  • Listeria monocytogenes detection method comprising: It is to provide the information necessary for the diagnosis of Listeriosis.
  • the present invention provides a PrfA protein specific DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes.
  • the DNA aptamer is an oligonucleotide having a nucleotide sequence having at least 90% identity with any one nucleotide sequence selected from the group consisting of nucleotide sequences of SEQ ID NO: 7 to SEQ ID NO: 19 Can be.
  • the DNA aptamer may be an oligonucleotide having any one nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NO: 7 to SEQ ID NO: 19.
  • the DNA ampamer may further comprise a labeling material.
  • the DNA aptamer may be one of the labeling material selected from the group consisting of fluorescent material, amine group, biotin and thiol group is labeled at the 5 'end or 3' end of the DNA aptamer. have.
  • the DNA aptamer is any one of the group consisting of a hydrogen atom, a fluorine atom, -OR, -OCOR and a hydroxyl group of the ribose 2 'position of one or more nucleotides constituting the DNA aptamer It may be substituted with one.
  • the present invention also provides a composition for detecting Listeria monocytogenes or diagnosing Listeria, comprising as an active ingredient a DNA aptamer that specifically binds to PrfA protein of Listeria monocytogenes .
  • the present invention provides a kit for detecting Listeria monocytogenes detection or Listeria syndrome comprising DNA aptamer specifically binding to PrfA protein of Listeria monocytogenes as an active ingredient.
  • the present invention is for detecting Listeria monocytogenes detecting or diagnosing Listeriosis in which a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes is integrated on a substrate and specifically reacts to a sample containing the PrfA protein.
  • a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes is integrated on a substrate and specifically reacts to a sample containing the PrfA protein.
  • the substrate may be selected from the group consisting of paper, plastic, glass, metal and silicon.
  • the present invention comprises the steps of (a) contacting a biological sample isolated from the living body to a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ; And (b) confirming the presence of Listeria monocytogenes through a PrfA protein specific binding reaction between the biological sample and the DNA aptamer.
  • Listeria monocytogenes detection method comprising a to provide.
  • the present invention comprises the steps of (a) contacting a biological sample isolated from the living body to a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ( Listeria monocytogenes ); And (b) confirming the presence or absence of Listeria monocytogenes through a PrfA protein-specific binding reaction between the biological sample and the DNA aptamer.
  • the information necessary for diagnosing Listeriosis includes Provide a way to provide.
  • the DNA aptamer according to the present invention has an activity of specifically binding to Listeria monocytogenes PrfA protein, thereby early detection of Listeria monocytogenes, a harmful bacterium existing in the natural environment, food and human body, and premature listeriosis. This can be useful for diagnosis.
  • the DNA aptamer of the present invention has a high specificity for the PrfA protein of Listeria monocytogenes can increase the sensitivity of the diagnosis, and can be effectively used economically in the mass production of the same quality aptamer at a low cost could be.
  • Lane 1 is a result of transducing the expression vector containing the Listeria monocytogenes prfA gene into E. coli and expressing the GST fusion PrfA protein produced therefrom, and confirmed by SDS-PAGE (10%).
  • Lane M protein size marker (Elpis, Korea) (lane 1: water soluble protein (1 mM IPTG induction, 18 ° C. culture), lane 2: pellet protein (1 mM IPTG induction, 18 ° C. culture), lane 3: water soluble protein (18 ° C.) culture), lane 4: pellet protein (18 ° C culture))
  • Figure 2 shows the results of amplifying the random DNA aptamer using the PCR technique and the result of the ssDNA production using the heat-cooling (Heating-cooling) technique by comparing the result by 10% acrylamide gel electrophoresis.
  • Lane M 100 bp DNA marker (Elpis, Korea)
  • Lane 1 DNA aptamer was amplified by PCR technique.
  • Lane 2 DNA aptamer pool obtained by PCR amplification was heated-cooled to ssDNA. As a result)
  • Figure 3 shows the SELEX process for the production of DNA aptamers specifically binding to Listeria monocytogenes PrfA protein.
  • Figure 4 is a quantitative measurement of the concentration of Listeria monocytogenes PrfA protein specific binding DNA aptamer candidates eluted in each SELEX round after the SELEX process to produce Listeria monocytogenes PrfA protein specific binding DNA aptamer using a Nanodrop spectrophotometer One result.
  • Figure 5 illustrates a method for evaluating the binding capacity of Listeria monocytogenes PrfA protein and Listeria monocytogenes PrfA protein specific binding DNA aptamer.
  • each process of activating the surface of the carboxyl sensor chip, CM5, through EDC / NHS buffer solution and fixing Listeria monocytogenes PrfA protein to bind to Listeria monocytogenes PrfA protein specific binding DNA aptamer Is a diagram showing.
  • LMPA5 Listeria monocytogenes PrfA protein specific binding DNA aptamer
  • LMPA7 SPR measurement sensorgram (Sensorgram) showing the binding capacity of Listeria monocytogenes PrfA protein by concentration.
  • LMPA9 Listeria monocytogenes PrfA protein specific binding DNA aptamer
  • D Listeria monocytogenes PrfA protein specific binding DNA aptamer
  • Sensorgram SPR measurement sensorgram showing the binding capacity of Listeria monocytogenes PrfA protein by concentration.
  • FIG. 7 is a diagram showing the secondary structure of a total of four Listeria monocytogenes PrfA protein specific binding DNA aptamers selected as having a Listeria monocytogenes PrfA protein specific binding ability.
  • FIG. 8 is a schematic diagram of a diagnostic kit for Listeriosis using an aptamer specifically binding to Listeria monocytogenes PrfA protein.
  • Panel (a) is a diagram showing the configuration of a simple diagnostic kit capable of early detection of Listeria monocytogenes PrfA protein, and panel (b) shows Listeria monocytogenes PrfA for early detection of Listeria monocytogenes PrfA protein.
  • This is a schematic of the principles of a simple kit for diagnosing Listeria and detecting Listeria monocytogenes using protein-specific binding DNA aptamers.
  • the present invention relates to DNA aptamers that specifically bind to PrfA proteins that regulate listeriosis.
  • DNA aptamer refers to a DNA nucleic acid molecule capable of binding to a specific molecule with high affinity and specificity.
  • DNA aptamer is used interchangeably with “DNA oligonucleotide”.
  • oligonucleotide generally refers to a nucleotide polymer having less than about 200 lengths, which may include DNA and RNA, and is preferably a DNA molecule.
  • a nucleotide may be any substrate that can be introduced into a polymer by deoxyribonucleotides, ribonucleotides, modified nucleotides or bases and / or analogs thereof, or by DNA or RNA polymerase or by synthetic reactions. If modifications to the nucleotide structure are present, such modifications may be added before or after the synthesis of the oligonucleotide polymer.
  • Nucleotide sequences can be interrupted by non-nucleotide components. Oligonucleotides can be further modified after synthesis, for example by binding to a label.
  • DNA aptamers of the invention can typically be obtained by in vitro selection methods for binding of target molecules.
  • Methods of selecting aptamers that specifically bind to a target molecule are known in the art.
  • organic molecules, nucleotides, amino acids, polypeptides, marker molecules on the cell surface, ions, metals, salts, polysaccharides can be suitable target molecules that separate aptamers that can specifically bind to each ligand.
  • Screening of aptamers can utilize in vivo or in vitro selection techniques known as the Systematic Evolution of Ligands of Exponential enrichment (SELEX) method (Ellington et al., Nature 346, 818-22, 1990; and Tuerk et al.
  • SELEX Systematic Evolution of Ligands of Exponential enrichment
  • SELEX method refers to a method of determining a DNA binding sequence of a molecule by selecting and amplifying a DNA having a high binding strength to a specific molecule in a randomly synthesized DNA set (Louis et al., 1992. Nature 355,564-566). Specific methods for the selection and preparation of aptamers are described in US Pat. No. 5,582,981, WO 00/20040, US Pat. No. 5,270,163, Lorsch and Szostak, Biochemistry, 33: 973 (1994), Mannironi et al., Biochemistry 36: 9726 (1997), Blind, Proc. Natl. Acad. Sci.
  • the DNA aptamer of the present invention is selected through the following steps; (i) extracting and expressing the prfA gene in Listeria monocytogenes; (ii) amplifying DNA aptamers using PCR techniques and preparing ssDNA aptamers through heat treatment and streptavidin binding; (iii) screening DNA aptamers that specifically bind to PrfA protein after immobilizing PrfA, a listeriosis regulatory protein, on an immobilization column (see FIG. 3); (iv) analyzing specificity of selected DNA aptamers.
  • PrfA which is a listeriosis pathogenic regulatory protein
  • genomic DNA is extracted from listeria monocytogenes and amplified genes encoding PrfA protein.
  • Primers are prepared using the sequence information of prfA gene, which is known from the National Center for Biotechnology Information (NCBI) database, and amplified using PCR technique.
  • the amplified prfA gene is treated with the same restriction enzyme as the protein expression vector pGEX-4T-1, ligation and transformed into E. coli BL21.
  • Recombinant transformants are cultured in LB broth and treated with IPTG to induce overexpression of PrfA protein encoding pathogenic regulatory proteins.
  • the overexpressed PrfA protein is purified using Glutathione-S-Transferase (GST) protein, a fusion protein present in pGEX 4T-1, to obtain pure PrfA protein.
  • GST Glutathione-S-Transferase
  • the method for screening ssDNA aptamer for example, amplifies dsDNA by attaching biotin to a reverse primer during PCR, induces the amplification product to fall to a single strand, and then treats streptavidin. Only the ssDNA aptamer can be selected by forming a biotin-streptavidin complex to selectively remove the complex. The obtained ssDNA aptamer can be confirmed by electrophoresis on acrylamide gel (see Fig. 1). The prepared ssDNA aptamer is heated for denaturation for use in the SELEX method and then slowly reacts at room temperature to induce the formation of a three-dimensional structure.
  • the ssDNA aptamer and PrfA protein prepared above react with each other by inducing contact with each other, and the ssDNA aptamer which does not bind is washed and removed, and only ssDNA that specifically binds to PrfA protein is eluted.
  • This step may include a Negative SELEX step to remove ssDNA that binds to conditions other than PrfA, such as protein immobilization resin and buffer components.
  • the eluted ssDNA was selected from the nano-Drop spectrophotometer (Thermo Scientific.) To select an optimal SELEX round in which DNA aptamers specifically binding to the listeriosis control protein PrfA were eluted. Can be quantified using.
  • each of the aptamer sequences is secured for the selection of the PrfA protein-specific binding DNA aptamer during the optimal SELEX round to confirm the similarity between the obtained sequences.
  • the acquired sequences can be analyzed for homology between the sequences using the Cluster X program.
  • the DNA aptamer of the present invention may include any DNA aptamer that binds to the PrfA protein, but preferably may be an oligonucleotide having a nucleotide sequence disclosed in any one of SEQ ID NOS: 7-19.
  • DNA aptamer of the present invention is to include an oligonucleotide having a nucleotide sequence showing a substantial identity to the base sequence of any one of SEQ ID NO: 7 to 19, while maintaining the property of binding specifically to PrfA, a listeriosis regulator protein Interpreted
  • the substantial identity above aligns the nucleotide sequence of the present invention with any other sequence to the maximum correspondence, and the algorithm commonly used in the art (Smith and Waterman, Adv. Appl. Math. 2: 482 (1981) ) Needleman and Wunsch, J. Mol. Bio. 48: 443 (1970); Pearson and Lipman, Methods in Mol. Biol.
  • the "% sequence homology" for a polynucleotide is determined by comparing the comparison regions with two optimally arranged sequences, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
  • surface plasmon resonance may be used to quantitatively provide the binding force of the listeriosis regulatory protein PrfA and the DNA aptamer specifically binding thereto.
  • the Biacore 3000 a device capable of measuring SPR-based binding forces, is used to process EDC / NHS on a commonly used CM5 chip and react with Ethanolamine to encode an unactivated gold surface. After fixing the PrfA protein having an amine group, it is possible to measure the binding force with the PrfA protein while inducing the reaction by flowing the each aptamer secured.
  • the DNA aptamer belonging to SEQ ID NO: 7 sequence 19 of the present invention that binds with a high affinity to the PrfA protein through the above experiment can form a secondary structure shown in FIG.
  • the invention also provides compositions and methods for diagnosing Listeria monocytogenes PrfA specific binding DNA aptamer based Listeriasis and detecting Listeria monocytogenes.
  • the detection of the PrfA protein is based on the method for detecting the binding complex of the DNA aptamer and the PrfA protein proposed in the present invention.
  • the DNA aptamer may be a coloring material, for example, a fluorescent material such as fluorescein, Cy3, or Cy5, and may include nanoparticles; Nucleotides modified with radioactive substances or chemicals such as biotin or modified to have primary amines, thiol groups can be included in the DNA aptamers.
  • the DNA aptamers of the invention can be biotinylated, for example, which can be successfully immobilized on a streptavidin coated substrate.
  • the DNA aptamer of the present invention immobilized on a substrate can bind to and capture the PrfA protein, and the captured PrfA protein can be visualized by using a DNA aptamer that specifically binds to the PrfA protein. have.
  • the present invention also relates to a method for detecting diseased PrfA protein of Listeria monocytogenes comprising the steps of: (a) reacting the DNA aptamer with a sample expected to contain PrfA protein; (b) identifying the DNA aptamer bound to the protein PrfA protein. Since the DNA aptamer of the present invention has a property of specifically binding to PrfA protein in Listeria monocytogenes, preferably Listeria monocytogenes, early detection of Listeria monocytogenes is possible.
  • the present invention provides a sensor for diagnosing Listeriosis comprising the DNA aptamer as an active ingredient.
  • the DNA aptamer may be immobilized on a chip or a substrate, and specifically, the DNA aptamer may be in the form of a microarray immobilized on a substrate.
  • microarray refers to a microarray in which oligonucleotide groups are immobilized at a high density on a substrate, and the oligonucleotide groups are immobilized in a predetermined region, respectively.
  • microarrays are well known in the art. For example, microarrays are disclosed in US Pat. Nos.
  • microarray refers to specific regions of the substrate. Refers to an array (array) to which DNA nucleic acid material is attached at a high density.
  • substrate of a microarray is a support having suitable rigidity or semi-rigidity, where “substrate” refers to any substrate to which a DNA aptamer can be attached under conditions where the background level of binding is kept low.
  • DNA aptamer of the invention is arranged and immobilized on the substrate. This immobilization is carried out by chemical bonding methods or by covalent binding methods such as UV.
  • DNA oligonucleotides can be bound to glass surfaces that have been modified to include epoxy compounds or aldehyde groups, and can also be bound by UV at the polylysine coating surface.
  • the DNA oligonucleotide may be bound to the substrate via a linker (eg, ethylene glycol oligomer and diamine).
  • the DNA aptamers of the present invention can be biotinylated, for example, which can be successfully bound onto a substrate that has been encoded with strapavidin.
  • the sensor of the present invention is a sensor for use in detecting Listeria monocytogenes PrfA protein in a sample can be used for the diagnosis of Listeriosis, and the use of a sensor chip for the diagnosis and the instructions or labels for using the sensor further May contain
  • the present invention provides a diagnostic kit for detecting the presence of PrfA protein of Listeria monocytogenes in patients and biological samples suspected of Listeria infection to provide information necessary for diagnosing Listeria (see FIG. 8).
  • biological sample may include blood, saliva, tear fluid, urea, vigor, mucus, cells, tissues, and other tissues and body fluids, as well as cell culture supernatants, ruptured eukaryotic cells, and bacterial expression systems. It also includes, but is not limited to, water samples and food in the environment.
  • the present invention provides a diagnostic method for a kit for early diagnosis of Listeriosis using DNA aptamer as an active ingredient: (a) containing a target substance in a first aptamer fixed to a solid phase and specifically binding to the target substance Reacting by adding a second aptamer specifically bound to the sample and the target material and to which a labeling substance is attached; And (b) analyzing the label to detect the target.
  • the "solid phase” is a solid support in which the aptamer is fixed, and the shape or material is not limited as long as the aptamer can be fixed.
  • nanoparticles that can be identified with the naked eye, but the color factor is not limited to nanoparticles having ordinary skill in the art. Will be self-evident.
  • multi-well type microplates can be generally used for the convenience of performing analytical methods, but other shapes such as sensor chips, plastics, polypropylene, or columns filled with beads such as Sepharose or Agarose can also be used.
  • a fluorescent material is used as a label, emission or color change occurs in the presence of the target material, and thus the target material can be detected by measuring the same.
  • an image scanner capable of detecting a fluorescent dye may be scanned to determine whether a target substance is detected by scanning a well that caused a reaction, and the amount of detection may be measured by measuring the degree of thickening of the image through software.
  • the method according to the invention may be provided in the form of a kit, in order to increase portability. That is, in another aspect, the present invention includes a detection reagent containing a solid phase in which a first aptamer specifically binding to a target material is immobilized on a solid phase, and a second aptamer specifically binding to the target material.
  • the present invention relates to a kit for detecting a target substance.
  • the detection reagent containing the second aptamer may be provided in a separate container or in a reaction part to perform sandwich bonding.
  • the detection kit may include a detection buffer solution and the like, and may further include a tool for mixing the detection reagent and a sample solution to be detected.
  • the optimal Listeria monocytogenes PrfA protein binding DNA aptamer according to the present invention can be utilized for early detection of Listeria in the medical field and the environment and food industry for the diagnosis of Listeriosis.
  • a recombinant expression vector including a Listeria monocytogenes prfA gene was constructed as a first step for the production of recombinant strains.
  • a pair of primers containing a gene sequence and a restriction enzyme site were prepared by Bioneer, Korea. [Forward primer: 5'-ATTGTCGACAGATGAACGCTCAAGCAGAA-3 ', (SEQ ID NO: 1), reverse primer: 5'-ATAGCGGCCGCATTTAATTTTCCCCAAGTA-3', (SEQ ID NO: 2)].
  • the Listeria monocytogenes prfA gene was amplified and the reaction composition was 1 to 2 ⁇ l of template DNA, 5 ⁇ l of 10X PCR buffer, 4 ⁇ l of each 2.5 mM dNTP mixture, 2 ⁇ l of 25 uM forward primer and 25 ⁇ M reverse primer. 2 ⁇ l, Ex Taq polymerase (TaKaRa, Japan) 0.3 ⁇ l (1 unit / ⁇ l) and 35.7 to 34.7 ⁇ l of water. PCR reaction conditions were first denatured at 94 ° C. for 5 minutes, repeated 30 cycles at 94 ° C. for 30 seconds, 65 ° C. for 30 seconds, and 72 ° C.
  • the amplified Listeria monocytogenes prfA gene and pGEX 4T-1 vector were cut with the same restriction enzyme (SalI / NotI), and then ligated to prepare a recombinant expression vector.
  • Recombinant expression vector induces transformation in E. coli BL21 hosts by electroporation, and selects colonies that are resistant to ampicillin and chloramphenicol antibiotics to select recombinant Listeria monocytogenes prfA gene. An expression vector having was obtained.
  • PrfA protein was induced by using the Lac operon system in a recombinant expression vector containing a prfA gene.
  • Culture conditions at the time of passage were added 10 ml LB broth, 1 mM IPTG (isopropylthio- ⁇ -D-galactoside).
  • IPTG isopropylthio- ⁇ -D-galactoside
  • 100 ⁇ l of transformed E. coli BL21 was inoculated into 10 ml of LB broth, and incubated at 18 ° C. for 10 hours.
  • IPTG was 0 mM, 0.1 mM, and 1 mM, respectively. IPTG induction to be incubated for 20 hours at 18 °C.
  • the cell culture was centrifuged at 13,000 rpm for 10 minutes at 4 ° C to separate only cells.
  • the cells obtained through centrifugation were resuspended in 10 mM Tris-HCl (pH 8.0) and centrifuged again to wash the cells. Thereafter, the cells were disrupted using an ultrasonic grinder, and then centrifuged at 13,000 rpm for 10 minutes at 4 ° C to separate soluble proteins and insoluble proteins. Each result was confirmed using a 10% SDS-PAGE gel (see Fig. 1).
  • the site of 5 ⁇ -ATACCAGCTTATTCAATT and 3 ⁇ -AGATTGCACTTACTATCT are composed of 40 sites at the center to easily amplify the aptamer pool at both ends.
  • a biotinylated reverse primer to be used for the purpose of recovering amplified forward primer and single-stranded DNA was ordered to Bioneer, Korea.
  • PCR reaction composition for amplification of 76 bp DNA library includes 5 ⁇ l of 10X PCR buffer, 4 ⁇ l of each 2.5 mM dNTP mixture, 2 ⁇ l of 10 pM forward primer (SEQ ID NO: 4), and a biotinylated reverse primer (SEQ ID NO: 6). ) 2 ⁇ l, template DNA library (SEQ ID NO: 3) 1-2 ⁇ l, Ex Taq polymerase (TaKaRa, Japan) 0.3 ⁇ l (1 unit / ⁇ l) and distilled water 34.7-35.7 ⁇ l.
  • PCR reaction conditions were first denatured at 94 ° C. for 5 minutes, followed by 20 cycles of reaction for 30 seconds at 94 ° C., 30 seconds at 52 ° C., and 30 seconds at 72 ° C., followed by further extension at 72 ° C. for 5 minutes. Was used.
  • 3 ⁇ l was taken to confirm that the band appeared at the correct size of 76 bp using 2% agarose gel.
  • Confirmed DNA was recovered from the DNA aptamer pool using a PCR purification kit (Qiagen, USA). The recovered aptamer pool was confirmed by using a 10% acrylamide gel to show the band of the correct size (see Figure 2, lane 1).
  • dsDNA was denatured to ssDNA using a heating-cooling technique. Specifically, the dsDNA obtained in Example was reacted at 85 ° C. for 5 minutes to denature the dsDNA to ssDNA, and immediately after the reaction was completed, the reaction solution was cooled to 4 ° C. to prepare ssDNA.
  • the strept was added to 100 ul of the reaction solution obtained in the present example.
  • 50 ⁇ l of avidin agarose resin (Streptavidin agarose resin, Thermo Scientific, USA) was added and reacted at room temperature for 1 hour.
  • the supernatant was recovered by centrifugation at 13,000 rpm for 15 minutes at. 1/100 volume of tRNA (sigma aldrich, USA), 1/10 volume of 3 M sodium acetate (pH 4.5) and 3 volumes of 100% ethanol were added to the supernatant for at least 1 hour at -70 ° C. I was. After the reaction was centrifuged for 20 minutes at 13,000 rpm at 4 °C to recover only ssDNA. The recovered ssDNA was dried at 65 ° C. and then dissolved in 50 ⁇ l of distilled water. 10 ⁇ l of the recovered ssDNA was taken, and 10% acrylamide gel was used to confirm that the band of the correct size appeared compared to dsDNA (see FIG. 2 and lane 2).
  • Each solution used in SELEX was used a GST bulk kit (GE healthcare, UK), the composition was as follows. Namely, 1 X aptamer selection solution: 10 mM PBS (pH 7.4), 2 X aptamer selection solution: 20 mM PBS (pH 7.4), washing solution: 1 X aptamer selection solution, DNA aptamer elution solution: 50 mM Tris-HCl (pH 8.0), 10 mM glutathione.
  • Example 3.2 10 ⁇ l of a GST fusion IpaH protein obtained through the method described in Example 1 was prepared in Example 3.2. After mixing with the ssDNA aptamer pool obtained through the method described in the section, the total reaction volume was adjusted to 100 ⁇ l with 1 X aptamer selection solution, and then reacted at 4 ° C. for at least 12 hours.
  • 200 ml of glutathione sepharose 4B was added with 1 ml of 1 X PBS, stirred at 4 ° C. for 20 minutes, and reacted, followed by centrifugation at 4 ° C. at 13,000 rpm for 10 minutes. The supernatant was removed.
  • reaction solution of the GST fusion PrfA protein and the ssDNA aptamer pool was reacted with activated glutathione Sepharose 4B at 4 ° C. for 1 hour with stirring. Thereafter, the supernatant was removed by centrifugation at 13,000 rpm for 10 minutes at 4 ° C., followed by three times of washing with 1 ml of 1 ⁇ PBS to remove ssDNA aptamer that did not bind with GST fusion PrfA protein.
  • DNA aptamer elution solution 50 mM Tris-HCl (pH 8.0), 10 mM glutathione
  • 100 ⁇ l of DNA aptamer elution solution 50 mM Tris-HCl (pH 8.0), 10 mM glutathione
  • the reaction was stirred for 30 minutes at, followed by centrifugation at 13,000 rpm for 10 minutes at 4 ° C. to obtain an upper elution solution. This procedure was repeated twice to obtain an eluting solution of the upper layer.
  • SELEX was carried out up to 10 times in the same manner as in 3.3.
  • the binding conditions of SELEX decreased the reaction time of ssDNA aptamer pool and GST fusion PrfA protein as the number of times increased. To obtain an aptamer that binds more specifically to the target material PrfA protein.
  • the concentration of ssDNA bound to PrfA protein, a pathogenic regulator of Listeria monocytogenes recovered in each round was measured. Measurement was performed using a Nano-drop spectrophotometer (Thermo Scientific). As a result of measuring the concentration of ssDNA aptamer eluted in each round, the highest concentration of 87 rounds was 877.0 ng / ⁇ l, and the concentration of 10 rounds was 467.8 ng / ⁇ l. Through this, it was confirmed that the optimal aptamer pool that specifically binds to the pathogenic regulatory protein PrfA of Listeria monocytogenes is a 9 round pool (see FIG. 4).
  • Cloning was performed by mixing 1 ⁇ l of T-vector (10 ng / ⁇ l), 4 ⁇ l of PCR product (20 ng / ⁇ l), and 1 ⁇ l of 6 ⁇ T-blunt buffer and reacting at 25 ° C. for 5 minutes. 10 ⁇ l of the ligate TA cloned was mixed with 100 ⁇ l of DH5 ⁇ and subjected to a heat shock at 42 ° C. for 1 minute and 30 seconds.
  • Nhydroxysuccinimide (NHS) and 0.2 M Nethyl-N '-(dimethylaminopropyl) carbodiimide (EDC) mixed solution were flowed into the sensor chip CM5 for 10 minutes at a rate of 10 ⁇ l / min to make the carboxyl group on the surface of the sensor chip more reactive.
  • Activated with hydroxysuccinimide ester N-Hydroxy-succinimide ester; NHS-ester).
  • PrfA protein-binding DNA aptamer candidates obtained for screening aptamers having the highest affinity with PrfA protein were dissolved in HBS-EP buffer (GE Healthcare, UK) at concentrations of 300 nM, 500 nM, 1000 nM and 2000 nM, respectively. Ready.
  • the prepared PrfA binding DNA aptamer is bound to PrfA of various concentrations (300 nM, 500 nM, 1000 nM, 2000 nM) to a sensor chip (channel 1) to which nothing is bound, and a sensor chip (channel 2) to which PrfA protein is fixed.
  • Affinity between the PrfA protein and the DNA aptamer candidate group specifically binding thereto was quantified by injecting the DNA aptamer candidate group.
  • Rensselear polytechnic institute provides the structure of LMPA-5, LMPA-7, LMPA-9, and LMPA-12, among the PrfA-specific binding DNA aptamer candidates of Listeria monocytogenes, with high affinity to the PrfA protein. Imaging was possible using the DNA mfold program (see FIG. 7).
  • the present invention is reported in the form of Rapid test kit. Diagnostic method was used.
  • a membrane was produced to show the results.
  • the membrane is composed of a sample pad to react the sample and an absorbing pad to draw a solution of the sample pad so that the sample can react with the membrane to form a line on the membrane. It consists of capture line and control line.
  • the control line was prepared to fix the streptavidin to confirm that the reaction occurred even if the PrfA protein was not present in the sample to form a control line by combining the sample with the biotinylated aptamer and nanoparticle complexes. .
  • PrfA protein-specific binding aptamer LMPA-9 was fixed in front of the control line of the membrane. If PrfA protein is present in the sample, the band is designed to appear in the capture line. The relevant figure is shown in detail in FIG. 8.
  • the Listeria simple detection or diagnostic kit using PrfA protein specific binding aptamer is used for the detection of Listeria monocytogenes using streptavidin-biotin binding to LMPA-9 having high affinity with PrfA protein in Example 5. Biotin was labeled at the 3 'end, and an amine group was labeled at the 5' end. Then, LMPA-9 modified at both ends is fixed to the membrane coated with streptavidin obtained through the above process using biotin labeled at the 3 ′ end. After mixing LMPA-12 and Listeria monocytogenes with a sample that can be colored and nanoparticles that can be colored, drop them onto the sample pad of the LMPA-9 immobilized membrane.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a DNA aptamer specifically binding to the PrfA protein, which is a virulence regulatory factor of Listeria and a use thereof, and more specifically, a method for detecting Listeria monocytogenes using a DNA aptamer specifically binding to the PrfA protein of Listeria monocytogenes, and to a composition for diagnosing listeriosis. The DNA aptamer according to the present invention has activity to specifically bind to the PrfA protein of Listeria monocytogenes, and thus can be useful in early detection of Listeria monocytogenes, which is the harmful bacterium present in the conventional natural environment, food, and the human body, and early diagnose listeriosis. In addition, the DNA aptamer of the present invention has high specificity to PrfA protein of Listeria monocytogenes, thereby improving diagnostic sensitivity and mass-producing the same quality of aptamer at a low cost, and thus can be effectively used from an economical aspect.

Description

리스테리아의 병원성 조절인자 PRFA 단백질과 특이적으로 결합하는 DNA 앱타머 및 이의 용도DNA Aptamer specifically binding to the pathogenic regulator PRFA protein of Listeria and its use
본 발명은 리스테리아증을 유발하는 리스테리아 모노사이토제네스의 병원성 조절 단백질인 PrfA (virulence regulator PrfA)에 특이적으로 결합하는 DNA 앱타머 및 이의 용도에 관한 것이다.The present invention relates to a DNA aptamer specifically binding to PrfA (virulence regulator PrfA), which is a pathogenic regulatory protein of Listeria monocytogenes that causes Listeriosis.
인수 공통 질환인 리스테리아증 (listeriosis)은 리스테리아 모노사이토제네스(Listeria monocytogenes)에 오염된 식품을 섭취하였을 때 발생하는 질환으로 초기 가벼운 두통 및 복통을 유발하는 식중독 증세를 보이지만 인체 중추 신경계로 감염될 경우 구토, 발열, 불안 등을 포함한 전구증상과 전형적인 뇌수막염, 패혈증 또는 뇌염 등의 리스테리아증이 유발되어 인간의 생명을 치명적으로 위협하는 고위험성 질환이다. 특히, 면역질환 환자와 신생아, 임산부는 정상인에 비해 약 20배 이상 높은 감염 위험성을 보이며, 임산부의 경우 조기 분만, 자연 유산, 사산, 태아 감염 등을 유발하며, 감염 산모 및 태아는 뇌수막염 혹은 심내막염 등의 심각한 합병증을 일으켜 사망에 이르게 하는 것으로 알려져 있다. 특히, 리스테리아 모노사이토제네스로 인한 리스테리아증은 타 식중독균에 비해 질환 발병률은 가장 낮으나 높은 사망률을 보이는 치명적인 질환이다. 오염된 식품을 섭취하여 인체 내로 감염시 병원성 발병 여부를 조절하는 것은 PrfA 단백질로, 이 단백질이 활성화 될 경우 인체 내에서 병원성을 유발시킨다. Listeriosis, a common acquired disease, occurs when a person eats food contaminated with Listeria monocytogenes . Prostate symptoms including fever, anxiety, and typical listeriosis, such as meningitis, sepsis or encephalitis, is a high-risk disease that threatens human life. In particular, patients with immune diseases, newborns and pregnant women are more than 20 times more likely to be infected than normal people.In pregnant women, premature delivery, spontaneous abortion, stillbirth, and fetal infections occur, and infected mothers and fetuses have meningitis or endocarditis. It is known to cause serious complications and lead to death. In particular, Listeria caused by Listeria monocytogenes is a fatal disease with the lowest morbidity but high mortality compared to other food poisoning bacteria. It is the PrfA protein that takes contaminated food and controls pathogenic outbreaks in the body. When activated, it causes pathogenicity in the body.
상기한 바와 같이 치명적인 질환을 유발하는 리스테리아 모노사이토제네스는 수입 축산, 수입 가공식품 증가와 지구 온난화 및 기상이변으로 인한 국내 평균기온의 상승으로 각종 병원성 미생물에 의한 보건 환경성 질환 발생건수 및 인체 감염 및 공공환경으로의 전염속도가 급속하게 증가 되고 있다. 이에 가공식품, 수입축산품, 유제품 등 다양한 식품, 식수 등의 환경에 포함된 리스테리아 모노사이토제네스를 효과적으로 검출할 수 있는 기술 개발이 요구되고 있다. As mentioned above, Listeria monocytogenes, which causes fatal diseases, is the number of occurrences of health and environmental diseases caused by various pathogenic microorganisms, human infections and public due to the increase of imported livestock, processed processed foods and the increase of domestic average temperature due to global warming and extreme weather. The rate of transmission to the environment is increasing rapidly. Accordingly, there is a demand for developing a technology capable of effectively detecting Listeria monocytogenes contained in various foods such as processed foods, imported livestock products, dairy products, and drinking water.
종래 식품, 식수 등의 환경 및 인체에 감염되어 증상을 유발하는 리스테리아증의 조기 진단을 위한 방법으로는 배양 기반의 미생물 동정법, 현미경 검사법 및 생화학적 혈청학적 방법을 이용한 진단 방법 등이 이용되고 있다. 이러한 방법들은 검출 효율을 높이기 위해서 샘플내 DNA 추출 및 목적 미생물 분리, 배양 단계를 거쳐야하는 단점을 가지고 있어 샘플 전처리 후 병원성 미생물의 검출 확인까지의 긴 시간이 소요되며, 결과 해석 시에도 모호한 경우가 많아 정확한 검출 및 확인을 위해서는 두세 가지의 실험을 병행해야하는 등의 단점을 가지고 있다. 따라서 빠르고 간단하게 처리할 수 있는 고효율의 리스테리아증 진단 시스템이 요구되는 실정이다.Conventionally, culture-based microbial identification, microscopy, and biochemical serological methods have been used as a method for early diagnosis of Listeriosis, which is caused by the infection of food and drinking water and the human body. . These methods have the disadvantage of having to go through DNA extraction, target microorganism separation and culture step in order to increase the detection efficiency, so it takes a long time to confirm the detection of pathogenic microorganisms after sample pretreatment, and it is often ambiguous even when interpreting the results. There are disadvantages such as two or three experiments must be performed in parallel for accurate detection and confirmation. Therefore, there is a need for a high-efficiency Listeriosis diagnosis system that can be processed quickly and simply.
최근 빠르고 민감한 리스테리아증의 진단을 위해서 중합효소연쇄반응 (Polymerase Chain Reaction; PCR) 기법을 이용한 진단 방법과 항원항체를 이용한 면역학적 진단방법 등의 검출 방법들이 개발 활용되고 있다. 이와 같은 방법들은 시겔라 소네이의 특징적인 병원성 인자를 표적으로 하고 있어 기존의 검체 배양 방법 보다 민감하고 빠르게 특정 원인균을 검출할 수 있다. 리스테리아증의 진단을 위해 주로 사용되는 주요 병원성 인자로는 prfA, inlA, inlB, actA 등의 유전자들에 의해 발현되는 단백질 등이 알려져 있으며, 특히 prfA 유전자에 인코딩되어 있는 PrfA 단백질은 리스테리아 모노사이토제네스의 정족수 인식을 통해 발병 여부를 조절하는 기능을 한다. 이처럼 병원성 관련 유전자 및 이에 의해 인코딩되어 있는 단백질을 기반으로 하는 PCR 기법 및 면역학적 진단방법은 종래 배양 기반의 검출법보다 민감하고 빠르다는 장점을 지니지만 검출 효율을 높이기 위해서는 샘플 내 DNA 추출 과정 및 단백질 추출 과정 등의 샘플 전처리 과정과 결과를 분석하기 위한 고가의 분석 장비가 요구되어 현장에서의 적용 범위가 매우 낮다는 단점을 가지고 있다. 따라서 대규모의 시료를 정확하고 빠르며, 간단하게 처리할 수 있는 고효율의 리스테리아증 진단을 위한 시스템 개발이 절실히 요구된다. Recently, detection methods using polymerase chain reaction (PCR) techniques and immunological diagnostic methods using antigen antibodies have been developed and used for the rapid and sensitive diagnosis of Listeriosis. These methods target specific pathogenic factors of Shigella Sonei, which can detect specific causative organisms more sensitively and faster than conventional sample culture methods. The main pathogenic factors mainly used for the diagnosis of listeriosis are proteins expressed by genes such as prfA, inlA, inlB, and actA. In particular, PrfA encoded by the prfA gene is known. Proteins regulate the onset through quorum recognition of Listeria monocytogenes. As such, PCR and immunological diagnostic methods based on pathogenic genes and proteins encoded therein have the advantages of being more sensitive and faster than conventional culture-based detection methods. Expensive analytical equipment for analyzing the sample pretreatment process and results such as the process is required, which has a disadvantage in that the field of application is very low. Therefore, there is an urgent need to develop a system for the diagnosis of high-efficiency listeriasis that can accurately and quickly process large-scale samples.
앱타머는 짧은 길이의 올리고머로 안정된 삼차구조 형성을 통하여 표적 물질과 높은 친화도를 가지고 특이적으로 결합하는 특징을 가지고 있다. 또한 화학적 합성 기법을 이용하여, 단시간, 저비용으로 대량 생산이 가능하며 한번 제작, 생산 후 동일한 능력을 가지는 앱타머를 지속적으로 생산 가능한 탁월한 장점을 갖고 있다. 뿐만 아니라, 주변의 pH와 온도에 매우 안정성이 높아 최근 표적 물질의 탐지 및 질환 진단 센서 개발 등 환경, 의료 등 다양한 분야에서의 활용 가능성이 높이 평가되고 있다. Aptamers are short-length oligomers that form specific tertiary structures with high affinity to specific targets. In addition, by using chemical synthesis techniques, it is possible to mass-produce in a short time and at low cost, and has an excellent advantage of continuously producing aptamers having the same ability once produced and produced. In addition, it is highly stable to the surrounding pH and temperature, and recently, the possibility of use in various fields, such as the detection of target substances and the development of disease diagnosis sensors, is widely appreciated.
이에 본 발명자들은 리스테리아증을 조기에 진단 가능한 DNA 앱타머(aptamer)를 개발하기 위해 연구 노력하던 중, 리스테리아증의 병원성을 조절하는 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 합성 및 선별하는데 성공하였으며, 이를 이용한 리스테리아증 조기 진단용 키트를 제작함으로써 본 발명을 완성하였다.Therefore, the present inventors have succeeded in developing a DNA aptamer capable of early diagnosis of Listeriosis, and have succeeded in synthesizing and selecting a DNA Aptamer specifically binding to the PrfA protein that controls the pathogenicity of Listeriosis. The present invention was completed by making a kit for early diagnosis of Listeriosis using the same.
따라서, 본 발명의 목적은 리스테리아증 (listeriosis)을 조기 진단하기 위한 리스테리아증 병원성 조절인자인 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a DNA aptamer specifically binding to PrfA protein, which is a Listeriosis pathogenic regulator for early diagnosis of Listeriosis.
본 발명의 또 다른 목적은, 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 유효성분으로 포함하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 조성물, 진단용 키트 및 진단용 바이오 칩을 제공하는 것이다. Another object of the present invention is a Listeria monocytogenes detection or listeria monocytogenes ( Listeria monocytogenes) comprising a DNA aptamer that specifically binds to the PrfA protein as an active ingredient, Listeria monocytogenes detection or diagnostic composition, diagnostic kit and diagnostic bio To provide a chip.
본 발명의 또 다른 목적은, (a) 생체로부터 분리된 생물학적 시료를 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머에 접촉시키는 단계; 및 (b) 상기 생물학적 시료와 상기 DNA 앱타머 간의 PrfA 단백질 특이적 결합반응을 통해 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 존부를 확인하는 단계;를 포함하는 리스테리아 모노사이토제네스 (Listeria monocytogenes)검출 방법 또는 리스테리아증(Listeriosis)의 진단에 필요한 정보를 제공하는 것이다. It is still another object of the present invention to provide a method for preparing a biologically active product comprising (a) contacting a biological sample isolated from a living body with a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ; And (b) confirming the presence of Listeria monocytogenes through a PrfA protein specific binding reaction between the biological sample and the DNA aptamer. Listeria monocytogenes detection method comprising: It is to provide the information necessary for the diagnosis of Listeriosis.
상기 목적을 위하여, 본 발명은 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 PrfA 단백질 특이적 DNA 앱타머(aptamer)를 제공한다.For this purpose, the present invention provides a PrfA protein specific DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes.
본 발명의 일실시예에 있어서, 상기 DNA 앱타머는 서열번호 7 내지 서열번호 19의 염기서열로 이루어진 군 중 선택된 어느 하나의 염기서열과 90% 이상의 동일성을 갖는 염기서열을 갖는 올리고뉴클레오타이드(oligonucleotide)일 수 있다. In one embodiment of the present invention, the DNA aptamer is an oligonucleotide having a nucleotide sequence having at least 90% identity with any one nucleotide sequence selected from the group consisting of nucleotide sequences of SEQ ID NO: 7 to SEQ ID NO: 19 Can be.
본 발명의 일실시예에 있어서 상기 DNA 앱타머는 서열번호 7 내지 서열번호 19의 염기서열로 이루어진 군 중 선택된 어느 하나의 염기서열을 갖는 올리고뉴클레오타이드(oligonucleotide)일 수 있다.In one embodiment of the present invention, the DNA aptamer may be an oligonucleotide having any one nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NO: 7 to SEQ ID NO: 19.
본 발명의 일실시예에 있어서, 상기 DNA 앰타머는 표지물질을 더 포함하여 구성될 수 있다. In one embodiment of the present invention, the DNA ampamer may further comprise a labeling material.
본 발명의 일실시예에 있어서, 상기 DNA 앱타머는 형광물질, 아민기, 바이오틴 및 티올기로 이루어진 군에서 선택된 어느 하나의 표지물질이 상기 DNA 앱타머의 5’말단 또는 3'말단에 표지되는 것일 수 있다.In one embodiment of the present invention, the DNA aptamer may be one of the labeling material selected from the group consisting of fluorescent material, amine group, biotin and thiol group is labeled at the 5 'end or 3' end of the DNA aptamer. have.
본 발명의 일실시예에 있어서, 상기 DNA 앱타머는 상기 DNA 앱타머를 구성하는 하나 이상의 뉴클레오타이드의 리보스 2' 위치의 하이드록시기가 수소원자, 불소원자, -OR, -OCOR 및 아미노기로 이루어진 군 중 어느 하나로 치환된 것일 수 있다.In one embodiment of the present invention, the DNA aptamer is any one of the group consisting of a hydrogen atom, a fluorine atom, -OR, -OCOR and a hydroxyl group of the ribose 2 'position of one or more nucleotides constituting the DNA aptamer It may be substituted with one.
또한, 본 발명은 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 유효성분으로 포함하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 조성물을 제공한다. The present invention also provides a composition for detecting Listeria monocytogenes or diagnosing Listeria, comprising as an active ingredient a DNA aptamer that specifically binds to PrfA protein of Listeria monocytogenes .
또한, 본 발명은 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 유효성분으로 포함하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 키트를 제공한다.In another aspect, the present invention provides a kit for detecting Listeria monocytogenes detection or Listeria syndrome comprising DNA aptamer specifically binding to PrfA protein of Listeria monocytogenes as an active ingredient.
또한, 본 발명은 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머가 기판에 집적되어 PrfA 단백질을 포함하는 시료에 특이적으로 반응하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 바이오칩을 제공한다.In addition, the present invention is for detecting Listeria monocytogenes detecting or diagnosing Listeriosis in which a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes is integrated on a substrate and specifically reacts to a sample containing the PrfA protein. Provide biochips.
본 발명의 일실시예에 있어서, 상기 기판은 종이, 플라스틱, 유리, 금속 및 실리콘으로 이루어진 군으로부터 선택되는 것일 수 있다.In one embodiment of the present invention, the substrate may be selected from the group consisting of paper, plastic, glass, metal and silicon.
또한 본 발명은 (a) 생체로부터 분리된 생물학적 시료를 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머에 접촉시키는 단계; 및 (b) 상기 생물학적 시료와 상기 DNA 앱타머 간의 PrfA 단백질 특이적 결합반응을 통해 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 존부를 확인하는 단계;를 포함하는 리스테리아 모노사이토제네스 (Listeria monocytogenes)검출 방법을 제공한다. In another aspect, the present invention comprises the steps of (a) contacting a biological sample isolated from the living body to a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ; And (b) confirming the presence of Listeria monocytogenes through a PrfA protein specific binding reaction between the biological sample and the DNA aptamer. Listeria monocytogenes detection method comprising a to provide.
또한, 본 발명은 (a) 생체로부터 분리된 생물학적 시료를 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머에 접촉시키는 단계; 및 (b) 상기 생물학적 시료와 상기 DNA 앱타머 간의 PrfA 단백질 특이적 결합반응을 통해 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 존부를 확인하는 단계;를 포함하는 리스테리아증(Listeriosis)의 진단에 필요한 정보를 제공하는 방법을 제공한다. In addition, the present invention comprises the steps of (a) contacting a biological sample isolated from the living body to a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ( Listeria monocytogenes ); And (b) confirming the presence or absence of Listeria monocytogenes through a PrfA protein-specific binding reaction between the biological sample and the DNA aptamer. The information necessary for diagnosing Listeriosis includes Provide a way to provide.
본 발명에 따른 DNA 앱타머는 리스테리아 모노사이토제네스 PrfA 단백질과 특이적으로 결합하는 활성을 가짐으로써, 종래 자연환경과 식품 및 인체 등에 존재하는 유해 세균인 리스테리아 모노사이토제네스를 조기에 검출하고 리스테리아증을 조기에 진단하는데 유용하게 활용할 수 있을 것이다. The DNA aptamer according to the present invention has an activity of specifically binding to Listeria monocytogenes PrfA protein, thereby early detection of Listeria monocytogenes, a harmful bacterium existing in the natural environment, food and human body, and premature listeriosis. This can be useful for diagnosis.
또한, 본 발명의 DNA 앱타머는 리스테리아 모노사이토제네스의 PrfA 단백질에 대한 높은 특이성을 가지고 있어 진단의 민감도를 증가시킬 수 있고, 동일 품질의 앱타머를 낮은 비용으로 대량 생산할 수 있어 경제적인 면에서도 효과적으로 활용할 수 있을 것이다.In addition, the DNA aptamer of the present invention has a high specificity for the PrfA protein of Listeria monocytogenes can increase the sensitivity of the diagnosis, and can be effectively used economically in the mass production of the same quality aptamer at a low cost Could be.
도 1은 리스테리아 모노사이토제네스 prfA 유전자를 포함하는 발현 벡터를 대장균에 형질도입한 후 이로부터 생산되는 GST 융합 PrfA 단백질을 발현하고, SDS-PAGE (10%)로 확인한 결과이다. 레인 M: protein size 마커 (Elpis, Korea)(레인 1: 수용성 단백질(1mM IPTG induction, 18℃ culture), 레인 2: pellet 단백질(1mM IPTG induction, 18℃ culture), 레인 3 : 수용성 단백질(18℃ culture), 레인 4 : pellet 단백질(18℃ culture))1 is a result of transducing the expression vector containing the Listeria monocytogenes prfA gene into E. coli and expressing the GST fusion PrfA protein produced therefrom, and confirmed by SDS-PAGE (10%). Lane M: protein size marker (Elpis, Korea) (lane 1: water soluble protein (1 mM IPTG induction, 18 ° C. culture), lane 2: pellet protein (1 mM IPTG induction, 18 ° C. culture), lane 3: water soluble protein (18 ° C.) culture), lane 4: pellet protein (18 ° C culture))
도 2는 랜덤 DNA 앱타머를 PCR 기법을 이용하여 증폭한 결과와 가열-냉각 (Heating-cooling) 기법을 활용한 ssDNA 제작한 결과를 10% 아크릴아마이드 겔 전기영동을 통하여 비교하여 확인한 결과이다.(레인 M: 100 bp DNA 마커 (Elpis, Korea), 레인 1: DNA 앱타머를 PCR 기법을 이용하여 증폭한 결과, 레인 2: PCR 증폭을 통해 확보한 DNA 앱타머 풀을 가열-냉각기법을 통해 ssDNA로 제작한 결과)Figure 2 shows the results of amplifying the random DNA aptamer using the PCR technique and the result of the ssDNA production using the heat-cooling (Heating-cooling) technique by comparing the result by 10% acrylamide gel electrophoresis. Lane M: 100 bp DNA marker (Elpis, Korea), Lane 1: DNA aptamer was amplified by PCR technique. Lane 2: DNA aptamer pool obtained by PCR amplification was heated-cooled to ssDNA. As a result)
도 3은 리스테리아 모노사이토제네스 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머 제작을 위한 SELEX 과정을 나타낸 것이다. Figure 3 shows the SELEX process for the production of DNA aptamers specifically binding to Listeria monocytogenes PrfA protein.
도 4는 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 제작 과정인 SELEX 과정 후 각각의 SELEX 라운드에서 용리된 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 후보군들의 농도를 Nanodrop spectrophotometer를 이용하여 정량적으로 측정한 결과이다.Figure 4 is a quantitative measurement of the concentration of Listeria monocytogenes PrfA protein specific binding DNA aptamer candidates eluted in each SELEX round after the SELEX process to produce Listeria monocytogenes PrfA protein specific binding DNA aptamer using a Nanodrop spectrophotometer One result.
도 5는 리스테리아 모노사이토제네스 PrfA 단백질와 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머의 결합력을 평가하기 위한 방법을 도식화한 것이다. Biacore 장비를 이용하고자 카르복실기를 가지고 있는 센서칩, CM5의 표면을 EDC/NHS 완충용액을 통해 활성화 시키고 리스테리아 모노사이토제네스 PrfA 단백질을 고정시켜 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머와 결합시키는 각 과정을 나타낸 도이다.Figure 5 illustrates a method for evaluating the binding capacity of Listeria monocytogenes PrfA protein and Listeria monocytogenes PrfA protein specific binding DNA aptamer. In order to use Biacore equipment, each process of activating the surface of the carboxyl sensor chip, CM5, through EDC / NHS buffer solution and fixing Listeria monocytogenes PrfA protein to bind to Listeria monocytogenes PrfA protein specific binding DNA aptamer Is a diagram showing.
도 6은 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 중 리스테리아 모노사이토제네스 PrfA 단백질과 높은 특이성을 보여 선별된 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머이다. (a) 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 (LMPA5)의 농도 별 리스테리아 모노사이토제네스 PrfA 단백질과의 결합력을 나타내는 SPR 측정 센소그램 (sensorgram)이다. (b) 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 (LMPA7)의 농도 별 리스테리아 모노사이토제네스 PrfA 단백질과의 결합력을 나타내는 SPR 측정 센소그램 (sensorgram)이다. (c) 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 (LMPA9)의 농도 별 리스테리아 모노사이토제네스 PrfA 단백질과의 결합력을 나타내는 SPR 측정 센소그램 (sensorgram)이다. (d) 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머 (LMPA12)의 농도 별 리스테리아 모노사이토제네스 PrfA 단백질과의 결합력을 나타내는 SPR 측정 센소그램 (sensorgram)이다. 6 is a Listeria monocytogenes PrfA protein specific binding DNA aptamer showing high specificity with Listeria monocytogenes PrfA protein among Listeria monocytogenes PrfA protein specific binding DNA aptamers. (a) Listeria monocytogenes PrfA protein specific binding DNA aptamer (LMPA5) is a SPR measurement sensorgram (sensorgram) showing the binding capacity with Listeria monocytogenes PrfA protein by concentration. (b) Listeria monocytogenes PrfA protein specific binding DNA aptamer (LMPA7) is a SPR measurement sensorgram (Sensorgram) showing the binding capacity of Listeria monocytogenes PrfA protein by concentration. (c) Listeria monocytogenes PrfA protein specific binding DNA aptamer (LMPA9) is a SPR measurement sensorgram (Sensorgram) showing the binding capacity with Listeria monocytogenes PrfA protein by concentration. (D) Listeria monocytogenes PrfA protein specific binding DNA aptamer (LMPA12) is a SPR measurement sensorgram (Sensorgram) showing the binding capacity of Listeria monocytogenes PrfA protein by concentration.
도 7은 리스테리아 모노사이토제네스 PrfA 단백질 특이적인 결합력을 보이는 것으로 선별된 총 4개의 리스테리아 모노사이토제네스 PrfA 단백질 특이 결합 DNA 앱타머의 2차 구조를 나타낸 도면이다. FIG. 7 is a diagram showing the secondary structure of a total of four Listeria monocytogenes PrfA protein specific binding DNA aptamers selected as having a Listeria monocytogenes PrfA protein specific binding ability.
도 8은 리스테리아 모노사이토제네스 PrfA 단백질과 특이적으로 결합하는 앱타머를 이용한 리스테리아증의 진단 키트의 모식도를 나타낸 도면이다. 패널 (a)는 리스테리아 모노사이토제네스 PrfA 단백질을 조기에 검출 할 수 있는 간이 진단 kit의 구성에 대해 나타낸 도이며, 패널 (b)는 리스테리아 모노사이토제네스 PrfA 단백질을 조기 검출을 위한 리스테리아 모노사이토제네스 PrfA 단백질 특이결합 DNA 앱타머를 이용한 리스테리아증 진단 및 리스테리아 모노사이토제네스 검출용 간이 kit의 원리를 구체화하여 도식화 한 것이다. FIG. 8 is a schematic diagram of a diagnostic kit for Listeriosis using an aptamer specifically binding to Listeria monocytogenes PrfA protein. Panel (a) is a diagram showing the configuration of a simple diagnostic kit capable of early detection of Listeria monocytogenes PrfA protein, and panel (b) shows Listeria monocytogenes PrfA for early detection of Listeria monocytogenes PrfA protein. This is a schematic of the principles of a simple kit for diagnosing Listeria and detecting Listeria monocytogenes using protein-specific binding DNA aptamers.
이하, 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 리스테리아증을 조절하는 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머에 관한 것이다. The present invention relates to DNA aptamers that specifically bind to PrfA proteins that regulate listeriosis.
본 명세서에서 용어 “DNA 앱타머 (aptamer)”는 특정 분자에 고친화성 및 특이성으로 결합할 수 있는 DNA 핵산 분자를 의미한다. 본 명세서에서 “DNA 앱타머”는 “DNA 올리고뉴클레오타이드(oligonucleotide)”와 혼용하여 사용한다. As used herein, the term “DNA aptamer” refers to a DNA nucleic acid molecule capable of binding to a specific molecule with high affinity and specificity. As used herein, “DNA aptamer” is used interchangeably with “DNA oligonucleotide”.
본 명세서에서 용어 “올리고뉴클레오타이드”는 일반적으로 길이가 약 200개 미만을 갖는 뉴클레오타이드 중합체를 지칭하며, 이에는 DNA 및 RNA가 포함될 수 있으며, 바람직하게는 DNA 분자이다. 뉴클레오타이드는 데옥시리보뉴클레오타이드, 리보뉴클레오타이드, 변형된 뉴클레오타이드 또는 염기 및/또는 이들의 유사체, 또는 DNA 또는 RNA 폴리머라제에 의해 또는 합성 반응에 의해 중합체 내로 도입될 수 있는 모든 기질 일 수 있다. 뉴클레오타이드 구조에 대한 변형이 존재하는 경우, 이러한 변형은 올리고뉴클레오타이드 중합체의 합성 전에 또는 후에 추가될 수 있다. 뉴클레오타이드 서열은 비-뉴클레오타이드 성분에 의해 중단될 수 있다. 올리고뉴클레오타이드는 합성 후에, 예를 들어 표지와의 결합에 의해 추가로 변형 시킬 수 있다. As used herein, the term “oligonucleotide” generally refers to a nucleotide polymer having less than about 200 lengths, which may include DNA and RNA, and is preferably a DNA molecule. A nucleotide may be any substrate that can be introduced into a polymer by deoxyribonucleotides, ribonucleotides, modified nucleotides or bases and / or analogs thereof, or by DNA or RNA polymerase or by synthetic reactions. If modifications to the nucleotide structure are present, such modifications may be added before or after the synthesis of the oligonucleotide polymer. Nucleotide sequences can be interrupted by non-nucleotide components. Oligonucleotides can be further modified after synthesis, for example by binding to a label.
본 발명의 DNA 앱타머는 전형적으로는 표적 분자의 결합에 대한 시험관내 선택법에 의해 얻을 수 있다. 표적 분자에 특이적으로 결합하는 앱타머를 선택하는 방법은 당분야에서 공지되어 있다. 예를 들어, 유기분자, 뉴클레오타이드, 아미노산, 폴리펩타이드, 세포 표면상의 마커분자, 이온, 금속, 염, 다당류가 각 리간드에 특이적으로 결합할 수 잇는 앱타머를 분리하는 적절한 표적 분자가 될 수 있다. 앱타머의 선별은 SELEX (Systematic Evolution of Ligands of Exponential enrichment) 방법으로 공지된 생체내 또는 시험관내 선택 기술을 이용할 수 있다(Ellington et al., Nature 346, 818-22, 1990; 및 Tuerk et al.m Science 249, 505-10, 1990). 본 명세서에서 “SELEX 방법”이란 임의적으로 합성된 DNA 집합에서 특정 분자에 대해 높은 결합력을 지니는 DNA를 선별하여 증폭시킴으로써 해당 분자의 DNA 결합 서열을 알아내는 방법을 의미한다 (Louis et al., 1992. Nature 355,564-566). 앱타머의 선별 및 제조에 대한 구체적인 방법은 미국 특허 5,582,981, WO 00/20040, 미국특허 5,270,163, Lorsch and Szostak, Biochemistry, 33:973 (1994), Mannironi et al.,Biochemistry 36:9726 (1997), Blind, Proc. Natl. Acad. Sci. USA 96:3606-3610 (1999), Huizenga and Szostak, Biochemistry, 34:656-665 (1995), WO 99/54506, WO 99/27133, WO 97/42317 및 미국특허 5,756,291에 기재되어 있으며, 상기 문헌들은 본 명세서에 참조로써 삽입된다.DNA aptamers of the invention can typically be obtained by in vitro selection methods for binding of target molecules. Methods of selecting aptamers that specifically bind to a target molecule are known in the art. For example, organic molecules, nucleotides, amino acids, polypeptides, marker molecules on the cell surface, ions, metals, salts, polysaccharides can be suitable target molecules that separate aptamers that can specifically bind to each ligand. . Screening of aptamers can utilize in vivo or in vitro selection techniques known as the Systematic Evolution of Ligands of Exponential enrichment (SELEX) method (Ellington et al., Nature 346, 818-22, 1990; and Tuerk et al. m Science 249, 505-10, 1990). As used herein, the term “SELEX method” refers to a method of determining a DNA binding sequence of a molecule by selecting and amplifying a DNA having a high binding strength to a specific molecule in a randomly synthesized DNA set (Louis et al., 1992. Nature 355,564-566). Specific methods for the selection and preparation of aptamers are described in US Pat. No. 5,582,981, WO 00/20040, US Pat. No. 5,270,163, Lorsch and Szostak, Biochemistry, 33: 973 (1994), Mannironi et al., Biochemistry 36: 9726 (1997), Blind, Proc. Natl. Acad. Sci. USA 96: 3606-3610 (1999), Huizenga and Szostak, Biochemistry, 34: 656-665 (1995), WO 99/54506, WO 99/27133, WO 97/42317 and US Pat. No. 5,756,291, supra. Are incorporated herein by reference.
하기 본 발명의 구체적인 일 실시예에 의하면, 본 발명의 DNA 앱타머는 다음 단계를 통해 선별된다; (i) 리스테리아 모노사이토제네스내의 prfA 유전자를 추출하여 발현하는 단계; (ii) PCR 기법을 이용하여 DNA 앱타머를 증폭하고, 열처리 및 스트렙트아비딘 결합을 통해 ssDNA 앱타머를 제조하는 단계; (iii) 리스테리아증 조절 단백질인 PrfA를 고정화 컬럼에 고정한 후 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 선별하는 단계 (도 3 참고); (iv) 선별된 DNA 앱타머의 특이성 분석 단계. According to one specific embodiment of the present invention, the DNA aptamer of the present invention is selected through the following steps; (i) extracting and expressing the prfA gene in Listeria monocytogenes; (ii) amplifying DNA aptamers using PCR techniques and preparing ssDNA aptamers through heat treatment and streptavidin binding; (iii) screening DNA aptamers that specifically bind to PrfA protein after immobilizing PrfA, a listeriosis regulatory protein, on an immobilization column (see FIG. 3); (iv) analyzing specificity of selected DNA aptamers.
이에 대해 좀 더 자세히 설명한다.This is explained in more detail.
(i) 리스테리아 모노사이토제네스내의 prfA 유전자를 추출하여 발현하는 단계(i) extracting and expressing the prfA gene in Listeria monocytogenes
리스테리아증 병원성 조절 단백질인 PrfA를 확보하기 위해, 리스테리아 모노사이토제네스 (listeria monocytogenes)에서 Genomic DNA를 추출하고, PrfA 단백질을 코딩하는 유전자를 증폭한다. 미국 국립생물정보센터 (National Center for Biotechnology Information, NCBI)의 데이터베이스에 알려져 있는 prfA gene의 서열 정보를 이용하여 primer를 제작하고 PCR 기법을 이용하여 증폭한다. 증폭된 prfA 유전자는 단백질 발현 벡터 pGEX-4T-1와 동일한 제한효소를 처리하고, ligation하여 E. coli BL21에 형질전환한다. 재조합된 형질전환체는 LB broth에서 배양하고, IPTG를 처리하여 병원성 조절 단백질을 코딩하는 PrfA 단백질의 과발현을 유도한다. 과발현된 PrfA 단백질은 pGEX 4T-1 내에 존재하는 fusion protein인 Glutathione-S-Transferase (GST) 단백질을 이용하여 정제함으로써 순수 PrfA 단백질을 확보한다. In order to secure PrfA, which is a listeriosis pathogenic regulatory protein, genomic DNA is extracted from listeria monocytogenes and amplified genes encoding PrfA protein. Primers are prepared using the sequence information of prfA gene, which is known from the National Center for Biotechnology Information (NCBI) database, and amplified using PCR technique. The amplified prfA gene is treated with the same restriction enzyme as the protein expression vector pGEX-4T-1, ligation and transformed into E. coli BL21. Recombinant transformants are cultured in LB broth and treated with IPTG to induce overexpression of PrfA protein encoding pathogenic regulatory proteins. The overexpressed PrfA protein is purified using Glutathione-S-Transferase (GST) protein, a fusion protein present in pGEX 4T-1, to obtain pure PrfA protein.
(ii) PCR 기법을 이용하여 DNA 앱타머를 증폭하고, 열처리 및 스트렙트아비딘 결합을 통해 ssDNA 앱타머를 제조하는 단계(ii) amplifying DNA aptamers using PCR techniques and preparing ssDNA aptamers through heat treatment and streptavidin binding
PCR 기법을 이용하여 랜덤 dsDNA 라이브러리를 증폭한다. 증폭된 랜덤 dsDNA 라이브러리에서 ssDNA만을 확보하는 방법이다. ssDNA 앱타머를 선별하는 방법은 예를 들면, PCR 수행시 역방향 프라이머에 바이오틴 (biotin)을 부착시켜 dsDNA를 증폭하고, 증폭 산물을 열처리 하여 단일 가닥으로 떨어지도록 유도한 후, 스트렙트아비딘을 처리하여 바이오틴-스트렙트아비딘 복합체를 형성하여 복합체를 선택적으로 제거함으로써 ssDNA 앱타머만을 선별할 수 있게 된다. 수득한 ssDNA 앱타머는 acrylamide gel에 전기영동하여 확인할 수 있다 (도 1 참고). 제조한 ssDNA 앱타머는 SELEX 방법에 사용하기 위해 가열하여 변성시킨 후 상온에서 천천히 반응하면서 3차원 구조의 형성을 유도시킨다. Amplify the random dsDNA library using PCR technique. This method secures only ssDNA from the amplified random dsDNA library. The method for screening ssDNA aptamer, for example, amplifies dsDNA by attaching biotin to a reverse primer during PCR, induces the amplification product to fall to a single strand, and then treats streptavidin. Only the ssDNA aptamer can be selected by forming a biotin-streptavidin complex to selectively remove the complex. The obtained ssDNA aptamer can be confirmed by electrophoresis on acrylamide gel (see Fig. 1). The prepared ssDNA aptamer is heated for denaturation for use in the SELEX method and then slowly reacts at room temperature to induce the formation of a three-dimensional structure.
(iii) 리스테리아증 조절 단백질인 PrfA을 고정화 컬럼에 고정한 후 PrfA에 특이적으로 결합하는 DNA 앱타머를 선별하는 단계 (도 3 참고) (iii) screening DNA aptamers that specifically bind to PrfA after immobilizing PrfA, a listeriosis regulator protein, on an immobilization column (see FIG. 3 ).
상기에서 준비한 ssDNA 앱타머와 PrfA 단백질은 서로 접촉을 유도하여 반응시킨 후, 결합하지 않는 ssDNA 앱타머는 세척하여 제거하고 특이적으로 PrfA 단백질에 결합하는 ssDNA 만을 용출시킨다. 이 단계에서 PrfA 외 다른 조건, 예를 들어 단백질 고정화 resin 및 buffer 성분 등에 결합하는 ssDNA를 제거하는 Negative SELEX 단계를 포함 할 수 있다. The ssDNA aptamer and PrfA protein prepared above react with each other by inducing contact with each other, and the ssDNA aptamer which does not bind is washed and removed, and only ssDNA that specifically binds to PrfA protein is eluted. This step may include a Negative SELEX step to remove ssDNA that binds to conditions other than PrfA, such as protein immobilization resin and buffer components.
본 발명의 방법에서는 리스테리아증 조절 단백질 PrfA에 특이적으로 결합하는 DNA 앱타머가 최대로 용출되는 최적의 SELEX 라운드를 선택하기 위해 용출된 ssDNA를 나노드랍 스펙트로포토미터 (Nano-Drop spectrophotometer, Thermo Scientific.)를 이용하여 정량할 수 있다. In the method of the present invention, the eluted ssDNA was selected from the nano-Drop spectrophotometer (Thermo Scientific.) To select an optimal SELEX round in which DNA aptamers specifically binding to the listeriosis control protein PrfA were eluted. Can be quantified using.
(iv) 선별된 DNA 앱타머의 특이성 분석 단계 (iv) specificity analysis of selected DNA aptamers
본 발명의 방법에서 최적 SELEX 라운드 중 PrfA 단백질 특이 결합 DNA 앱타머 선별을 위하여 앱타머 서열을 각각 확보하여 확보된 서열간의 유사도를 확인한다. 예를 들면, 확보된 서열을 Cluster X 프로그램을 이용하여 서열간의 상동성을 분석할 수 있다.In the method of the present invention, each of the aptamer sequences is secured for the selection of the PrfA protein-specific binding DNA aptamer during the optimal SELEX round to confirm the similarity between the obtained sequences. For example, the acquired sequences can be analyzed for homology between the sequences using the Cluster X program.
본 발명의 DNA 앱타머는 PrfA 단백질에 결합하는 어떠한 DNA 앱타머도 포함할 수 있으나, 바람직하게는 서열목적 7 내지 19 중 어느 하나에 개시된 염기서열을 갖는 올리고뉴클레오타이드일 수 있다. The DNA aptamer of the present invention may include any DNA aptamer that binds to the PrfA protein, but preferably may be an oligonucleotide having a nucleotide sequence disclosed in any one of SEQ ID NOS: 7-19.
본 발명의 DNA 앱타머는 리스테리아증 조절 단백질인 PrfA에 특이적으로 결합하는 특성을 유지하면서, 상기 서열 목록 7 내지 19 중 어느 하나의 염기서열과 실질적인 동일성을 나타내는 염기서열을 갖는 올리고뉴클레오타이드도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘 (Smith and Waterman, Adv. Appl. Math. 2:482(1981) Needleman and Wunsch, J. Mol. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res.16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) and Pearson et al., Meth. Mol. Biol. 24:307-31(1994))을 이용하여 얼라인된 서열을 분석한 경우에, 최소 90%의 동일성, 보다 바람직하게는 최소 95%의 동일성, 가장 바람직하게는 최소 98%의 동일성을 나타내는 뉴클레오타이드 서열을 의미한다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열 (추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제 (즉, 갭)를 포함할 수 있다.DNA aptamer of the present invention is to include an oligonucleotide having a nucleotide sequence showing a substantial identity to the base sequence of any one of SEQ ID NO: 7 to 19, while maintaining the property of binding specifically to PrfA, a listeriosis regulator protein Interpreted The substantial identity above aligns the nucleotide sequence of the present invention with any other sequence to the maximum correspondence, and the algorithm commonly used in the art (Smith and Waterman, Adv. Appl. Math. 2: 482 (1981) ) Needleman and Wunsch, J. Mol. Bio. 48: 443 (1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31 (1988); Higgins and Sharp, Gene 73: 237-44 (1988) Higgins and Sharp, CABIOS 5: 151-3 (1989); Corpet et al., Nuc.Acids Res. 16: 10881-90 (1988); Huang et al., Comp.Appl. BioSci. 8: 155-65 (1992) and Pearson et al., Meth. Mol. Biol. 24: 307-31 (1994)), when analyzing aligned sequences, at least 90% identity, more preferably at least 95% Means a nucleotide sequence that exhibits identicality, most preferably at least 98% identity. The "% sequence homology" for a polynucleotide is determined by comparing the comparison regions with two optimally arranged sequences, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
본 발명의 방법에서는 리스테리아증 조절 단백질 PrfA와 이에 특이적으로 결합하는 DNA 앱타머의 결합력을 정량적으로 제공하기 위해 SPR (surface plasmon resonance)를 이용할 수 있다. 예를들면, SPR 기반 결합력 측정이 가능한 장비인 Biacore 3000을 이용하여 통상적으로 사용되는 CM5 칩에 EDC/NHS를 처리하고 Ethanolamine을 반응하여 활성화되지 않은 골드 표면을 코딩한다. 이후 아민기를 가지는 PrfA 단백질을 고정시킨 후, 각각의 확보한 앱타머를 흘려 반응을 유도하면서 PrfA 단백질과의 결합력을 측정할 수 있다. In the method of the present invention, surface plasmon resonance (SPR) may be used to quantitatively provide the binding force of the listeriosis regulatory protein PrfA and the DNA aptamer specifically binding thereto. For example, the Biacore 3000, a device capable of measuring SPR-based binding forces, is used to process EDC / NHS on a commonly used CM5 chip and react with Ethanolamine to encode an unactivated gold surface. After fixing the PrfA protein having an amine group, it is possible to measure the binding force with the PrfA protein while inducing the reaction by flowing the each aptamer secured.
한편, 상기의 실험을 통해 PrfA 단백질과 높은 친화력을 가지고 결합하는 본 발명의 서열목록 7 서열 내지 19 서열에 속하는 DNA 앱타머는 본 명세서 도 7에 도시된 2차 구조를 형성할 수 있다. On the other hand, the DNA aptamer belonging to SEQ ID NO: 7 sequence 19 of the present invention that binds with a high affinity to the PrfA protein through the above experiment can form a secondary structure shown in FIG.
본 발명은 또한 리스테리아 모노사이토제네스 PrfA 특이 결합 DNA 앱타머 기반 리스테리아증 진단 및 리스테리아 모노사이토제네스 검출을 위한 조성물 및 방법을 제공한다. 본 발명에서 PrfA 단백질의 검출은 본 발명에서 제안하는 DNA 앱타머와 PrfA 단백질의 결합 복합체를 검출하는 방법에 기초한다. 결합 복합체의 검출을 용이하게 하기 위해 DNA 앱타머를 발색물질, 예를들어 플로오레세인 (fluorescein), Cy3 또는 Cy5와 같은 형광물질 일 수 있으며, 나노입자 (nanoparticle); 방사성 물질 또는 화학물질, 예를들어 비오틴(biotin)으로 표지 하거나 1차 아민 (primary amine), 티올 (thiol) group을 가지도록 변형된 뉴클레오타이드를 DNA 앱타머에 포함시킬 수 있다. 본 발명의 DNA 앱타머는 예를 들어, 바이오티닐화 (biotinylated) 될 수 있고, 이는 스트렙트아디빈 (streptavidin)이 코팅된 기판상에 성공적으로 고정시킬 수 있다. 기판상에 고정화된 본 발명의 DNA 앱타머는 PrfA 단백질과 결합하여 이를 capture할 수 있으며, 이와 같이 capturing된 PrfA 단백질은 다시 PrfA 단백질과 특이적으로 결합하는 DNA 앱타머를 이용하여 capture 유무를 시각화 할 수 있다. The invention also provides compositions and methods for diagnosing Listeria monocytogenes PrfA specific binding DNA aptamer based Listeriasis and detecting Listeria monocytogenes. In the present invention, the detection of the PrfA protein is based on the method for detecting the binding complex of the DNA aptamer and the PrfA protein proposed in the present invention. In order to facilitate detection of the binding complex, the DNA aptamer may be a coloring material, for example, a fluorescent material such as fluorescein, Cy3, or Cy5, and may include nanoparticles; Nucleotides modified with radioactive substances or chemicals such as biotin or modified to have primary amines, thiol groups can be included in the DNA aptamers. The DNA aptamers of the invention can be biotinylated, for example, which can be successfully immobilized on a streptavidin coated substrate. The DNA aptamer of the present invention immobilized on a substrate can bind to and capture the PrfA protein, and the captured PrfA protein can be visualized by using a DNA aptamer that specifically binds to the PrfA protein. have.
본 발명은 또한 다음의 단계를 포함하는 리스테리아 모노사이토제네스의 병PrfA 단백질의 검출 방법에 관한 것이다: (a) PrfA 단백질을 함유하는 것으로 예상되는 시료와 상기 DNA 앱타머를 반응하는 단계; (b) 단백질 PrfA 단백질과 결합된 상기 DNA 앱타머를 확인하는 단계. 본 발명의 DNA 앱타머는 리스테리아 모노사이토제네스, 바람직하게는 리스테리아 모노사이토제네스에서 PrfA 단백질에 특이적으로 결합하는 성질을 가지므로 리스테리아 모노사이토제네스의 조기 검출이 가능하다.The present invention also relates to a method for detecting diseased PrfA protein of Listeria monocytogenes comprising the steps of: (a) reacting the DNA aptamer with a sample expected to contain PrfA protein; (b) identifying the DNA aptamer bound to the protein PrfA protein. Since the DNA aptamer of the present invention has a property of specifically binding to PrfA protein in Listeria monocytogenes, preferably Listeria monocytogenes, early detection of Listeria monocytogenes is possible.
본 발명은 상기 DNA 앱타머를 유효성분으로 포함하는 리스테리아증 진단용 센서를 제공한다. 상기 센서에서 DNA 앱타머는 칩 또는 기판상에 고정화 할 수 있으며, 구체적으로 DNA 앱타머가 기판상에 고정화된 마이크로어레이 형태일 수 있다. 본 발명의 마이크로어레이에 있어서, "마이크로어레이"란 기판 상에 올리고뉴클레오티드 그룹이 높은 밀도로 고정화되어 있는 것으로서, 상기 올리고뉴클레오티드 그룹은 각각 일정한 영역에 고정화되어 있는 마이크로어레이를 의미한다. 이러한 마이크로어레이는 당업계에 잘 알려져 있다. 마이크로어레이에 관한 예를 들면, 미국특허 제5,445,934호 및 제5,744,305호에 개시되어 있으며, 이들 특허의 내용은 참조에 의하여 본 명세서에 포함되며, 본 명세서에서 상기용어 “마이크로어레이”는 기판의 특정 영역에 DNA 핵산 물질이 고밀도로 부착된 어레이 (배열)을 의미한 다. 본 명세서에서 용어 마이크로어레이의 “기판”은 적합한 견고성 또는 반-견고성을 갖는 지지체로, 본 명세서에서 “기판”은 결합의 배경 수준이 낮게 유지되는 조건하에 DNA 앱타머가 부착될 수 있는 임의의 기판을 말한다. 예컨대, 유리, 막 (membrane), 슬라이드, 필터, 칩, 웨이퍼, 파이버, 자기성 비드 또는 비자기성 비드, 겔, 튜빙, 플레이트, 고분자, 미소입자 및 모세관을 포함하나 이에 한정되지 않는다. 본 발명의 DNA 앱타머는 상기 기판상에 배열되고 고정화된다. 이와 같은 고정화는 화학적 결합방법 또는 UV와 같은 공유 결합적 방법에 의해 실시된다. 예를들어, DNA 올리고뉴클레오타이드는 에폭시 화합물 또는 알데이드기를 포함하도록 변형된 유리 표면에 결합 될 수 있고, 또한 폴리라이신 코팅 표면에서 UV에 의해 결합될 수 있다. 또한, 상기 DNA 올리고뉴클레오타이드는 링커 (예: 에틸렌 글리콜 올리고머 및 디아민)를 통해 기판에 결합될 수 있다. 본 발명의 DNA 앱타머는 예를 들어, 비오티닐화될 수 있고, 이는 스트랩트아비딘이 코딩된 기판상에 성공적으로 결합될 수 있다. 본 발명에서의 센서는 시료중의 리스테리아 모노사이토제네스 PrfA 단백질 검출에 사용하기 위한 센서는 리스테리아증의 진단에 이용될 수 있고, 진단을 위한 센서칩 및 센서를 사용하기 위한 사용설명서 또는 라벨을 추가로 포함 할 수 있다. The present invention provides a sensor for diagnosing Listeriosis comprising the DNA aptamer as an active ingredient. In the sensor, the DNA aptamer may be immobilized on a chip or a substrate, and specifically, the DNA aptamer may be in the form of a microarray immobilized on a substrate. In the microarray of the present invention, "microarray" refers to a microarray in which oligonucleotide groups are immobilized at a high density on a substrate, and the oligonucleotide groups are immobilized in a predetermined region, respectively. Such microarrays are well known in the art. For example, microarrays are disclosed in US Pat. Nos. 5,445,934 and 5,744,305, the contents of which are incorporated herein by reference, wherein the term “microarray” is used herein to refer to specific regions of the substrate. Refers to an array (array) to which DNA nucleic acid material is attached at a high density. As used herein, the term “substrate” of a microarray is a support having suitable rigidity or semi-rigidity, where “substrate” refers to any substrate to which a DNA aptamer can be attached under conditions where the background level of binding is kept low. Say. Examples include, but are not limited to, glass, membranes, slides, filters, chips, wafers, fibers, magnetic beads or nonmagnetic beads, gels, tubing, plates, polymers, microparticles, and capillaries. The DNA aptamer of the invention is arranged and immobilized on the substrate. This immobilization is carried out by chemical bonding methods or by covalent binding methods such as UV. For example, DNA oligonucleotides can be bound to glass surfaces that have been modified to include epoxy compounds or aldehyde groups, and can also be bound by UV at the polylysine coating surface. In addition, the DNA oligonucleotide may be bound to the substrate via a linker (eg, ethylene glycol oligomer and diamine). The DNA aptamers of the present invention can be biotinylated, for example, which can be successfully bound onto a substrate that has been encoded with strapavidin. The sensor of the present invention is a sensor for use in detecting Listeria monocytogenes PrfA protein in a sample can be used for the diagnosis of Listeriosis, and the use of a sensor chip for the diagnosis and the instructions or labels for using the sensor further May contain
본 발명은 리스테리아증 진단에 필요한 정보를 제공하기 위해 환자 및 리스테리아 감염이 의심되는 생물학적 시료에서 리스테리아 모노사이토제네스의 PrfA 단백질의 존재 여부를 검출하는 진단용 키트를 제공한다 (도 8 참고). 구체적으로 상기 용어 “생물학적 시료”는 혈액, 타액, 누액, 요액, 활약, 점액, 세포, 조직,및 기타 다른 조직 및 체액을 포함할 수 있으며, 세포 배양 상등액, 파열된 진핵세포 및 세균 발현계 뿐만 아니라, 환경 내에 수질 시료 및 식품 등도 포함하지만, 이에 제한되지는 않는다. The present invention provides a diagnostic kit for detecting the presence of PrfA protein of Listeria monocytogenes in patients and biological samples suspected of Listeria infection to provide information necessary for diagnosing Listeria (see FIG. 8). Specifically, the term “biological sample” may include blood, saliva, tear fluid, urea, vigor, mucus, cells, tissues, and other tissues and body fluids, as well as cell culture supernatants, ruptured eukaryotic cells, and bacterial expression systems. It also includes, but is not limited to, water samples and food in the environment.
본 발명은 DNA 앱타머를 유효성분으로 하는 리스테리아증 조기 진단용 키트의 진단 방법을 제공한다: (a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제 1 앱타머에, 타겟물질을 함유하는 시료 및 상기 타겟물질에 특이적으로 결합하며 표지 물질이 부착되어 있는 제 2 앱타머를 첨가하여 반응시키는 단계; 및 (b) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계. 본 발명에서, “고체상”은 앱타머가 고정되는 고체상태의 지지체로서, 앱타머가 고정될 수 있는 한 그 모양이나 물질이 제한되지 않는다. 본 발명의 실시예에서는 membrane 상에 고정하였으며, 육안으로 쉽게 분석하기 위하여 육안으로 확인 가능한 발색을 하는 나노입자를 사용하였으나, 발색인자가 나노입자에 한정되지 않음은 당업계에서 통상의 지식을 가진자에 있어서 자명할 것이다. 또한 분석방법 수행의 편의를 위하여 멀티 웰 타입의 마이크로 플레이트가 일반적으로 사용 될 수 있으나, 센서칩, 플라스틱, 폴리프로필렌, 또는 세파로즈나 아가로스와 같은 비드로 채워진 컬럼과 같이 다른 형상도 사용 될 수 있다. 예컨대 형광물질을 표지물질로서 사용한 경우 타겟물질의 존재 시 발광 또는 색변화가 발생하는바, 이를 측정함으로써 타겟물질을 검출 할 수 있다. 예시적으로 형광염료를 탐지할 수 있는 이미지 스캐너 등을 통하여 반응을 일으킨 웰을 스캔하여 타겟물질의 검출 여부를 확인할 수 있고, 이미지를 소프트웨어를 통해 진하기 정도를 측정함으로써 검출량을 측정 할 수 있다. The present invention provides a diagnostic method for a kit for early diagnosis of Listeriosis using DNA aptamer as an active ingredient: (a) containing a target substance in a first aptamer fixed to a solid phase and specifically binding to the target substance Reacting by adding a second aptamer specifically bound to the sample and the target material and to which a labeling substance is attached; And (b) analyzing the label to detect the target. In the present invention, the "solid phase" is a solid support in which the aptamer is fixed, and the shape or material is not limited as long as the aptamer can be fixed. In the embodiment of the present invention was fixed on the membrane, in order to easily analyze with the naked eye was used nanoparticles that can be identified with the naked eye, but the color factor is not limited to nanoparticles having ordinary skill in the art. Will be self-evident. Also, multi-well type microplates can be generally used for the convenience of performing analytical methods, but other shapes such as sensor chips, plastics, polypropylene, or columns filled with beads such as Sepharose or Agarose can also be used. have. For example, when a fluorescent material is used as a label, emission or color change occurs in the presence of the target material, and thus the target material can be detected by measuring the same. For example, an image scanner capable of detecting a fluorescent dye may be scanned to determine whether a target substance is detected by scanning a well that caused a reaction, and the amount of detection may be measured by measuring the degree of thickening of the image through software.
한편, 본 발명에 따른 방법은 휴대성을 높이기 위하여, 키트의 형태로 제공될 수 있다. 즉, 본 발명은 다른 관점에서, 타겟 물질에 특이적으로 결합하는 제 1 앱타머가 고체상에 고정되어 있는 고체상, 및 상기 타겟물질에 특이적으로 결합하는 제 2 앱타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트에 관한 것이다. 이때, 상기 제 2 앱타머를 함유하는 검출시약은 별도의 용기에 담기어 제공되거나 샌드위치 결합을 수행할 반응부에 담기어 제공될 수 있다. 상기에 더하여 상기 검출키트는 검출용 완충용액 등을 포함 할 수 있으며, 아울러 바람직하게는 상기 검출시약과 검출하고자 하는 시료액을 혼합시킬 수 있는 도구를 추가로 포함할 수 있다. 본 발명에 따른 최적 리스테리아 모노사이토제네스 PrfA 단백질 결합 DNA 앱타머는 리스테리아증의 진단을 위한 의료분야 및 환경 및 식품산업 분야에서 리스테리아 조기 검출에 활용할 수 있다. On the other hand, the method according to the invention may be provided in the form of a kit, in order to increase portability. That is, in another aspect, the present invention includes a detection reagent containing a solid phase in which a first aptamer specifically binding to a target material is immobilized on a solid phase, and a second aptamer specifically binding to the target material. The present invention relates to a kit for detecting a target substance. In this case, the detection reagent containing the second aptamer may be provided in a separate container or in a reaction part to perform sandwich bonding. In addition to the above, the detection kit may include a detection buffer solution and the like, and may further include a tool for mixing the detection reagent and a sample solution to be detected. The optimal Listeria monocytogenes PrfA protein binding DNA aptamer according to the present invention can be utilized for early detection of Listeria in the medical field and the environment and food industry for the diagnosis of Listeriosis.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
<실시예 1><Example 1>
리스테리아 모노사이토제네스 prfA 유전자 선정, 클로닝 및 재조합 PrfA 단백질의 발현 및 정제 Listeria monocytogenes prfA gene selection, cloning and expression and purification of recombinant PrfA protein
<1-1> 리스테리아 모노사이토제네스 prfA 유전자의 선정<1-1> Selection of Listeria monocytogenes prfA gene
리스테리아 모노사이토제네스를 조기에 검출하고 리스테리아증의 조기 진단을 위한 표적 단백질을 선정하기 위하여 리스테리아증 유발 관련 유전자에 대해 문헌 조사를 실시하였다. 리스테리아증의 진단을 위한 병원성 유전자는 prfA, inlA, inlB, actA 등의 유전자들이 관여를 하고 있으며 특히, prfA 유전자는 리스테리아의 감염시 정족수 인식을 통한 발병 여부를 조절하는 기능을 한다. 따라서 리스테리아 모노사이토제네스 PrfA 단백질을 선정하여 검출시 발병 전에 리스테리아증을 조기 진단할 수 있는 장점을 가지고 있다. 우선, 리스테리아 모노사이토제네스 prfA 유전자로부터 발현되는 리스테리아 모노사이토제네스 PrfA 단백질을 확보하기 위하여 미국 국립생물정보센터 (National Center for Biotechnology Information, NCBI)의 데이터베이스에서 제공하는 리스테리아 모노사이토제네스의 prfA 유전자 서열 정보를 얻었다 (GenBank: EU294523.1). In order to detect Listeria monocytogenes early and to select a target protein for early diagnosis of Listeriosis, a literature search was conducted on the list of genes related to Listeriosis. The pathogenic genes for diagnosing listeria are involved in genes such as prfA, inlA, inlB, and actA. In particular, the prfA gene controls the onset of sperm recognition during infection of Listeria. Therefore, the Listeria monocytogenes PrfA protein is selected and has an advantage of early diagnosis of Listeriosis before onset. First, to obtain Listeria monocytogenes PrfA protein expressed from Listeria monocytogenes prfA gene, the prfA gene sequence information of Listeria monocytogenes provided by a database of the National Center for Biotechnology Information (NCBI) is used. (GenBank: EU294523.1).
<1-2> 리스테리아 모노사이토제네스 prfA 유전자의 클로닝(cloning)<1-2> Cloning of Listeria monocytogenes prfA gene
활성형의 재조합 리스테리아 모노사이토제네스 PrfA 단백질의 확보를 위하여 재조합 균주 제작을 위하여 일차적인 단계로 리스테리아 모노사이토제네스 prfA 유전자를 포함하는 재조합 발현 벡터를 제작하였다. 먼저, 리스테리아 모노사이토제네스 prfA 유전자의 증폭을 위하여 유전자 서열을 포함하며 제한 효소 자리를 가지는 프라이머 (primer) 한 쌍을 바이오니아 (Bioneer, Korea)에 의뢰하여 제작하였다 [정방향 프라이머 : 5‘-ATTGTCGACAGATGAACGCTCAAGCAGAA-3’, (서열번호 1), 역방향 프라이머 : 5‘-ATAGCGGCCGCATTTAATTTTCCCCAAGTA-3’, (서열번호 2)]. 제작한 프라이머를 이용하여 리스테리아 모노사이토제네스 prfA 유전자를 증폭하였으며 반응 조성은 주형 DNA 1~2㎕, 10X PCR 완충용액 5㎕, 각 2.5 mM dNTP 혼합물 4㎕, 25 uM 정방향 프라이머 2㎕, 25uM 역방향 프라이머 2㎕, Ex Taq 중합효소(TaKaRa, Japan) 0.3㎕ (1unit/㎕)와 35.7 ~ 34.7㎕의 물로 이루어져 있다. PCR 반응 조건은 우선 94℃에서 5분간 변성시키고, 94℃에서 30 초, 65℃에서 30 초, 그리고 72℃에서 30초간 반응을 30 주기 반복한 후, 72℃에서 5 분간 추가로 신장시키는 반응을 이용하였다. 이후, 증폭된 리스테리아 모노사이토제네스 prfA 유전자와 pGEX 4T-1 벡터를 동일한 제한효소 (SalI / NotI)를 처리하여 자른 후, 라이게이션하여 재조합 발현벡터를 제조하였다. 재조합 발현벡터는 E. coli BL21 숙주에 전기천공법(electorporation)을 이용하여 형질전환을 유도하여, 엠피실린 (ampicillin)과 클로람페니콜 (chloramphenicol) 항생제에 저항성 있는 콜로니를 선별함으로써 재조합 리스테리아 모노사이토제네스 prfA 유전자를 가지는 발현벡터를 확보하였다. In order to secure an active recombinant Listeria monocytogenes PrfA protein, a recombinant expression vector including a Listeria monocytogenes prfA gene was constructed as a first step for the production of recombinant strains. First, for amplification of the Listeria monocytogenes prfA gene, a pair of primers containing a gene sequence and a restriction enzyme site were prepared by Bioneer, Korea. [Forward primer: 5'-ATTGTCGACAGATGAACGCTCAAGCAGAA-3 ', (SEQ ID NO: 1), reverse primer: 5'-ATAGCGGCCGCATTTAATTTTCCCCAAGTA-3', (SEQ ID NO: 2)]. Using the prepared primers, the Listeria monocytogenes prfA gene was amplified and the reaction composition was 1 to 2 µl of template DNA, 5 µl of 10X PCR buffer, 4 µl of each 2.5 mM dNTP mixture, 2 µl of 25 uM forward primer and 25 µM reverse primer. 2 μl, Ex Taq polymerase (TaKaRa, Japan) 0.3 μl (1 unit / μl) and 35.7 to 34.7 μl of water. PCR reaction conditions were first denatured at 94 ° C. for 5 minutes, repeated 30 cycles at 94 ° C. for 30 seconds, 65 ° C. for 30 seconds, and 72 ° C. for 30 seconds, and then further extended at 72 ° C. for 5 minutes. Was used. Thereafter, the amplified Listeria monocytogenes prfA gene and pGEX 4T-1 vector were cut with the same restriction enzyme (SalI / NotI), and then ligated to prepare a recombinant expression vector. Recombinant expression vector induces transformation in E. coli BL21 hosts by electroporation, and selects colonies that are resistant to ampicillin and chloramphenicol antibiotics to select recombinant Listeria monocytogenes prfA gene. An expression vector having was obtained.
<1-3> 재조합 리스테리아 모노사이토제네스 PrfA 단백질 발현 벡터를 이용한 리스테리아 모노사이토제네스 PrfA 단백질의 발현 및 정제<1-3> Expression and Purification of Listeria monocytogenes PrfA Protein Using Recombinant Listeria monocytogenes PrfA Protein Expression Vector
prfA 유전자가 포함된 재조합 발현 벡터내에 Lac 오페론 시스템을 이용하여 PrfA 단백질의 과발현을 유도하였다. 계대 할 때의 배양 조건은 10 ㎖의 LB broth, 1 mM IPTG (isopropylthio-β-D-galactoside)를 첨가하였다. 반응 조건으로는 10 ㎖의 LB broth에 형질전환된 E. coli BL21를 100 ㎕씩 접종하고 18℃에서 10 시간동안 배양하여 OD600이 0.5에 이르렀을 때에 IPTG가 각 0 mM, 0.1 mM, 1 mM이 되도록 IPTG induction하여 20시간 동안 18℃에서 배양하였다. 세포 배양액은 4℃에서 13,000rpm으로 10분간 원심분리하여 균체만을 따로 분리하였다. 원심분리를 통해 얻은 균체는 10 mM Tris-HCl (pH 8.0)에 재현탁한 후 다시 원심분리하여 균체를 세척하였다. 이후, 초음파분쇄기를 이용하여 균체를 파괴한 후, 4℃에서 13,000rpm으로 10분간 원심분리하여 soluble protein 과 insoluble protein으로 분리하였다. 각각의 결과는 10 % SDS-PAGE gel을 이용하여 확인하였다 (도 1 참고). Overexpression of PrfA protein was induced by using the Lac operon system in a recombinant expression vector containing a prfA gene. Culture conditions at the time of passage were added 10 ml LB broth, 1 mM IPTG (isopropylthio-β-D-galactoside). As the reaction conditions, 100 μl of transformed E. coli BL21 was inoculated into 10 ml of LB broth, and incubated at 18 ° C. for 10 hours. When the OD 600 reached 0.5, IPTG was 0 mM, 0.1 mM, and 1 mM, respectively. IPTG induction to be incubated for 20 hours at 18 ℃. The cell culture was centrifuged at 13,000 rpm for 10 minutes at 4 ° C to separate only cells. The cells obtained through centrifugation were resuspended in 10 mM Tris-HCl (pH 8.0) and centrifuged again to wash the cells. Thereafter, the cells were disrupted using an ultrasonic grinder, and then centrifuged at 13,000 rpm for 10 minutes at 4 ° C to separate soluble proteins and insoluble proteins. Each result was confirmed using a 10% SDS-PAGE gel (see Fig. 1).
<1-4> GST system을 이용한 PrfA 단백질의 정제 및 투석<1-4> Purification and Dialysis of PrfA Protein Using GST System
다양하게 발현된 단백질 중 PrfA 단백질을 순수분리하기 위하여 재조합 발현 벡터인 pGEX 4T-1의 tagging system인 GST 단백질을 이용하여 GST 융합 PrfA 단백질의 순수 분리를 수행하였다. 정제는 GST와 공유결합을 이루는 특성을 지닌 글루타티온 세파로오스 4B (glutathione sepharose 4B, GE Healthcare)을 이용하였다. 글루타티온 세파로오스 4B를 1X PBS 500 ㎕로 세척하고 원심분리 (4℃, 13,000rpm)를 10분간 수행하여 상층을 제거하였다. 세척된 글루타티온 세파로오스 4B를 GST 융합 PrfA protein과 결합시키고 원심분리 (4℃, 13,000rpm)를 10분간 수행하여 상층의 비결합 단백질들을 제거하였다. 순수 분리된 GST 융합 PrfA protein은 환원된 글루타티온 용액 (reduced glutathione) 100 ㎕를 이용하여 글루타티온 세파로오스 4B와 GST 융합 PrfA protein을 분리하였다. 분리한 리스테리아 모노사이토제네스의 PrfA protein에서 환원된 글루타티온 용액을 제거하고, PrfA 단백질을 장기 보관하기 위하여 1X PBS로 투석을 진행하였다. 투석의 반응 조성으로는 Slide-A-Lyzer dialysis cassette (Thermo scientific, USA)에 주사기를 사용하여 확보한 PrfA 단백질 용액을 주입하였고, 1 ℓ의 1X PBS 완충용액 3회 분을 가지고 진행하였다. 반응 조건으로는 stirrer (Cole-parmer instrument, USA)를 이용하여 1X PBS 완충용액 1 ℓ, 4℃에서 Slide-A-Lyzer dialysis cassette를 1시간동안 교반하는 반응을 총 3회 진행하였다. 이후, 주사기를 사용하여 Slide-A-Lyzer dialysis cassette의 PrfA 단백질을 추출하여 확보하였다. 확보된 PrfA 단백질은 brad-ford assay를 이용하여 단백질의 농도를 측정하였다. 측정된 PrfA 단백질을 10% SDS-PAGE를 이용하여 확인하였다.In order to purely separate PrfA protein among variously expressed proteins, pure separation of GST fusion PrfA protein was performed using GST protein, a tagging system of the recombinant expression vector pGEX 4T-1. Purification was performed using glutathione sepharose 4B (GE Healthcare) having covalent bonds with GST. Glutathione Sepharose 4B was washed with 500 μl of 1 × PBS and centrifuged (4 ° C., 13,000 rpm) for 10 minutes to remove the upper layer. The washed glutathione Sepharose 4B was combined with the GST fusion PrfA protein and centrifuged (4 ° C., 13,000 rpm) for 10 minutes to remove unbound proteins from the upper layer. For purely isolated GST fusion PrfA protein, glutathione Sepharose 4B and GST fusion PrfA protein were separated using 100 μl of reduced glutathione. The reduced glutathione solution was removed from the isolated PrfA protein of Listeria monocytogenes, and dialyzed with 1X PBS for long term storage of the PrfA protein. The reaction composition of dialysis was injected with a PrfA protein solution obtained by using a syringe into a Slide-A-Lyzer dialysis cassette (Thermo scientific, USA), and proceeded with 1 L of 1X PBS buffer three times. As a reaction condition, a reaction of stirring a Slide-A-Lyzer dialysis cassette for 1 hour at 1 L of 1X PBS buffer at 4 ° C. using a stirrer (Cole-parmer instrument, USA) was performed three times. Then, the PrfA protein of the Slide-A-Lyzer dialysis cassette was extracted and secured using a syringe. The obtained PrfA protein was measured for protein concentration using a brad-ford assay. The measured PrfA protein was confirmed using 10% SDS-PAGE.
<실시예 2><Example 2>
DNA 앱타머 풀의 제작Construction of DNA Aptamer Pools
<2-1> Primer 및 DNA 앱타머 풀의 합성<2-1> Synthesis of Primer and DNA Aptamer Pools
PrfA 단백질에 특이적으로 결합하는 PrfA 단백질 특이 결합 DNA 앱타머를 제작하기 위하여 양 말단에 앱타머 풀을 쉽게 증폭하기 위한 부위로서 5`-ATACCAGCTTATTCAATT 의 부위와 3`-AGATTGCACTTACTATCT 를 구성하고 중심에는 40개의 연속 무작위 뉴클레오타이드를 dA : dG : dC : dT = 1.5 : 1.15 : 1.25 : 1의 비율로 가지는 76 bp의 주형 DNA (5`-ATACCAGCTTATTCAATT-N40-AGATTGCACTTACTATCT- 3; 서열번호 3)’과 이를 DNA 라이브러리로 증폭할 수 있는 정방향 프라이머와 단일 가닥 DNA를 회수하기 위한 목적으로 사용할 바이오티닐화된 역방향 프라이머를 바이오니아 (Bioneer, Korea)에 주문 제작하였다 [정방향 프라이머 : 5`-ATACCAGCTTATTCAATT-3`(서열번호 4), 역방향 프라이머: 5`-AGATTGCACTTACTATCT -3 (서열번호 5), 바이오티닐화된 (biotinylated) 역방향 프라이머 : 5`-바이오틴-AGATTGCACTTACTATCT-3 (서열번호 6)].To construct a PrfA protein specific binding DNA aptamer that specifically binds to the PrfA protein, the site of 5`-ATACCAGCTTATTCAATT and 3`-AGATTGCACTTACTATCT are composed of 40 sites at the center to easily amplify the aptamer pool at both ends. 76 bp of template DNA (5′-ATACCAGCTTATTCAATT-N40-AGATTGCACTTACTATCT-3; SEQ ID NO: 3) having a continuous random nucleotide in the ratio dA: dG: dC: dT = 1.5: 1.15: 1.25: 1 A biotinylated reverse primer to be used for the purpose of recovering amplified forward primer and single-stranded DNA was ordered to Bioneer, Korea. [Forward primer: 5`-ATACCAGCTTATTCAATT-3` (SEQ ID NO: 4) , Reverse primer: 5′-AGATTGCACTTACTATCT-3 (SEQ ID NO: 5), biotinylated reverse primer: 5′-biotin-AGATTGCACTTACTATCT-3 (SEQ ID NO: 6)].
<2-2> PCR 기법을 활용한 DNA 앱타머 풀의 증폭<2-2> Amplification of DNA Aptamer Pool Using PCR Technique
합성한 프라이머 및 40개의 연속 무작위 서열을 가지는 임의의 DNA 라이브러리를 PCR (Bioneer, Korea)을 이용하여 증폭하였다. 76bp의 DNA 라이브러리의 증폭을 위한 PCR 반응 조성으로는 10X PCR 완충용액 5 ㎕, 각 2.5 mM dNTP mixture 4 ㎕, 10 pM 정방향 프라이머 (서열번호 4) 2 ㎕, 바이오티닐화된 역방향 프라이머 (서열번호 6) 2 ㎕, 주형 DNA 라이브러리 (서열번호 3) 1 ∼ 2 ㎕, Ex Taq 중합효소 (TaKaRa, Japan) 0.3 ㎕ (1unit/㎕)와 증류수 34.7 ∼ 35.7 ㎕로 구성하였다. PCR 반응 조건은 먼저 94℃에서 5분간 변성시킨 후에, 94℃에서 30초, 52℃에서 30초, 그리고 72℃에서 30초간 반응을 20주기 반복한 후, 72℃에서 5분간 추가로 신장시키는 반응을 이용하였다. PCR 반응 후 3 ㎕를 취하여, 2% 아가로스 젤을 이용하여 정확한 크기인 76 bp에서 밴드가 나타나는지 확인하였다. 확인된 DNA는 PCR 정제 키트 (Qiagen, USA)를 이용하여 DNA 앱타머 풀을 회수하였다. 회수한 앱타머 풀은 10% 아크릴아마이드 겔을 이용하여 정확한 크기의 밴드가 나타나는지 확인하였다 (도면 2, lane 1 참고).Any DNA library having synthesized primers and 40 consecutive random sequences was amplified using PCR (Bioneer, Korea). PCR reaction composition for amplification of 76 bp DNA library includes 5 μl of 10X PCR buffer, 4 μl of each 2.5 mM dNTP mixture, 2 μl of 10 pM forward primer (SEQ ID NO: 4), and a biotinylated reverse primer (SEQ ID NO: 6). ) 2 μl, template DNA library (SEQ ID NO: 3) 1-2 μl, Ex Taq polymerase (TaKaRa, Japan) 0.3 μl (1 unit / μl) and distilled water 34.7-35.7 μl. PCR reaction conditions were first denatured at 94 ° C. for 5 minutes, followed by 20 cycles of reaction for 30 seconds at 94 ° C., 30 seconds at 52 ° C., and 30 seconds at 72 ° C., followed by further extension at 72 ° C. for 5 minutes. Was used. After the PCR reaction, 3 μl was taken to confirm that the band appeared at the correct size of 76 bp using 2% agarose gel. Confirmed DNA was recovered from the DNA aptamer pool using a PCR purification kit (Qiagen, USA). The recovered aptamer pool was confirmed by using a 10% acrylamide gel to show the band of the correct size (see Figure 2, lane 1).
<2-3> 가열-냉각 (heating-cooling) 기법을 활용한 ssDNA 제작 <2-3> ssDNA Fabrication Using Heating-cooling Technique
PCR 기법과 PCR 정제 키트를 이용하여 회수한 DNA 라이브러리 50 ㎕에 증류수 50 ㎕를 첨가하여 부피를 100 ㎕로 조정한 후, 가열-냉각 (heatingcoolong) 기법을 이용하여 dsDNA를 ssDNA로 변성(denaturation)하였다. 실험 방법을 구체적으로 표현하자면 상기 실시예에서 획득한 dsDNA를 85℃에서 5분 동안 반응하여 dsDNA를 ssDNA로 변성시킨 후, 반응 종료 후 즉시 반응액을 4℃로 냉각시켜 ssDNA를 제작하였다.50 μl of distilled water was added to 50 μl of the DNA library recovered using the PCR technique and the PCR purification kit, and then the volume was adjusted to 100 μl. Then, the dsDNA was denatured to ssDNA using a heating-cooling technique. . Specifically, the dsDNA obtained in Example was reacted at 85 ° C. for 5 minutes to denature the dsDNA to ssDNA, and immediately after the reaction was completed, the reaction solution was cooled to 4 ° C. to prepare ssDNA.
<2-4> ssDNA의 선별 및 회수<2-4> Screening and Recovery of ssDNA
가열-냉각 기법을 이용하여 확보된 ssDNA 산물 중 바이오틴(biotin)이 결합되어 있는 ssDNA 와 잔여 primer를 제거하고 순수한 정방향의 ssDNA 만을 확보하기 위하여, 상시 실시예에서 획득한 100 ul의 반응액에 스트렙트아비딘 아가로스 레진 (Streptavidin agarose resin, Thermo Scientific, USA)을 50 ㎕를 첨가하여 상온에서 1시간동안 반응시켰다. 반응액은 4℃, 13,000rpm의 원심분리기를 이용하여 10분간 원심 분리한 후, 상층액만 회수하여 동일 부피의 PCI (phenol : chloroform : isoamylalcohol = 25 : 24 : 1) 용액을 처리한 후 4℃에서 13,000 rpm으로 15분간 원심 분리하여 상층액만을 회수하였다. 상층액에 1/100 부피의 tRNA (sigma aldrich, USA), 1/10 부피의 3 M 아세트산 나트륨 (sodium acetate, pH 4.5)와 3 부피의 100% 에탄올을 첨가하여 -70℃에서 1시간 이상 반응시켰다. 반응 후에는 4℃에서 13,000 rpm으로 20분간 원심분리하여 ssDNA만을 회수하였다. 회수한 ssDNA는 65℃에서 건조시킨 후, 50 ㎕의 증류수에 녹였다. 회수한 ssDNA 중 10 ㎕를 취하여 10% 아크릴아마이드 겔을 이용하여 dsDNA와 비교하여 정확한 크기의 밴드가 나타나는지 확인하였다 (도 2, lane 2참고).In order to remove only the ssDNA and biotin-bound ssDNA from the ssDNA products obtained by using the heat-cooling technique and to secure only pure forward ssDNA, the strept was added to 100 ul of the reaction solution obtained in the present example. 50 μl of avidin agarose resin (Streptavidin agarose resin, Thermo Scientific, USA) was added and reacted at room temperature for 1 hour. The reaction solution was centrifuged for 10 minutes using a centrifugal separator at 4 ° C and 13,000rpm, and then only the supernatant was recovered and treated with the same volume of PCI (phenol: chloroform: isoamylalcohol = 25: 24: 1) solution and then 4 ° C. The supernatant was recovered by centrifugation at 13,000 rpm for 15 minutes at. 1/100 volume of tRNA (sigma aldrich, USA), 1/10 volume of 3 M sodium acetate (pH 4.5) and 3 volumes of 100% ethanol were added to the supernatant for at least 1 hour at -70 ° C. I was. After the reaction was centrifuged for 20 minutes at 13,000 rpm at 4 ℃ to recover only ssDNA. The recovered ssDNA was dried at 65 ° C. and then dissolved in 50 μl of distilled water. 10 μl of the recovered ssDNA was taken, and 10% acrylamide gel was used to confirm that the band of the correct size appeared compared to dsDNA (see FIG. 2 and lane 2).
<실시예 3><Example 3>
SELEX 기법을 이용한 PrfA 단백질과 특이적으로 결합하는 DNA 앱타머의 선별Screening of DNA Aptamers Specific to PrfA Proteins Using SELEX Technique
<3-1> SELEX에 이용되는 각 용액의 조성<3-1> Composition of each solution used in SELEX
SELEX에 이용한 각 용액은 GST bulk kit (GE healthcare, UK)를 이용하였으며, 조성은 다음과 같았다. 즉, 1 X 앱타머 선별 용액: 10 mM PBS (pH 7.4), 2 X 앱타머 선별 용액: 20 mM PBS (pH 7.4), 세척 용액: 1 X 앱타머 선별 용액, DNA 앱타머 용출 용액: 50 mM Tris-HCl (pH 8.0), 10 mM glutathione.Each solution used in SELEX was used a GST bulk kit (GE healthcare, UK), the composition was as follows. Namely, 1 X aptamer selection solution: 10 mM PBS (pH 7.4), 2 X aptamer selection solution: 20 mM PBS (pH 7.4), washing solution: 1 X aptamer selection solution, DNA aptamer elution solution: 50 mM Tris-HCl (pH 8.0), 10 mM glutathione.
<3-2> SELEX에 이용될 ssDNA 앱타머의 구조 제작<3-2> Construction of ssDNA Aptamer for SELEX
상기의 실시예 2의 <2-4> 항목에서 설명된 방법을 통해 제작, 확보한 ssDNA 40 ul에 증류수 10 ul를 첨가하고, 2X DNA 앱타머 선별 용액 50 ul를 첨가하여 전체 반응 부피를 100 ul로 조정한 후 85℃에서 5 분간 끓여 변성 시킨 후, 상온에서 서서히 식혀 ssDNA 앱타머의 안정한 3차원 구조를 형성하였다. 10 ul of distilled water was added to 40 ul of ssDNA prepared and secured through the method described in <2-4> of Example 2, and 50 ul of 2X DNA aptamer selection solution was added to increase the total reaction volume to 100 ul. After adjusting to boil for 5 minutes at 85 ℃ denatured, and then cooled slowly at room temperature to form a stable three-dimensional structure of the ssDNA aptamer.
<3-3> 글루타티온 세파로오스 (glutathoione sepharose) 4B를 이용한 PrfA 단백질과 특이적으로 결합하는 DNA 앱타머의 선별<3-3> Screening of DNA aptamer specifically binding to PrfA protein using glutathione sepharose 4B
상기 실시예 1을 통해설명된 방법을 통해 획득한 GST 융합 IpaH 단백질 10㎕ 를 상기 실시예 3.2. 항목에서 설명된 방법을 통해 획득한 ssDNA 앱타머 풀과 혼합한 후, 1 X 앱타머 선별용액으로 전체 반응 부피를 100 ㎕로 조정하였으며, 이후 4℃에서 12시간 이상 반응시켰다. 글루타티온 세파로오스 4B를 활성화하기 위하여 글루타티온 세파로오스 4B 200㎕에 1 X PBS 1 ㎖을 넣고 4℃에서 20분 동안 교반하며 반응시켜 활성화시킨 후, 4 ℃에서 13,000 rpm으로 10분 동안 원심분리하여 상층액을 제거했다. 상기 과정을 2 회 반복한 후 GST 융합 PrfA 단백질과 ssDNA 앱타머 풀을 반응시킨 반응액을 활성화된 글루타티온 세파로오스 4B와 4℃에서 1시간 동안 교반하며 반응시켰다. 이후, 4℃에서 13,000 rpm으로 10분 동안 원심분리하여 상층액을 제거한 후, 1 X PBS 1㎖을 넣어 세척하는 과정을 3회 반복하여 GST 융합 PrfA 단백질과 결합하지 못한 ssDNA 앱타머를 제거하였다. 글루타티온 세파로오스 4B로부터 GST 융합 PrfA 단백질과 이에 특이적으로 결합하는 DNA 앱타머를 용출하기 위하여 DNA 앱타머 용출 용액 (50 mM Tris-HCl (pH 8.0), 10 mM glutathione) 100 ㎕를 넣어 4℃에서 30분 동안 교반하며 반응시켰으며, 이후, 4℃에서 13,000 rpm으로 10분 동안 원심분리하여 상층의 용출 용액을 얻었다. 상기 과정을 2회 반복하여 상층의 용출 용액을 획득하였다. GST 융합 PrfA 단백질과 이에 특이적으로 결합하는 DNA 앱타머간의 결합물에 서 GST 융합 PrfA 단백질을 제거하기 위하여, 용출 용액에 동일 부피의 PCI 용액을 처리한 후 4℃에서 13,000 rpm으로 15분간 원심 분리하여 상층액만을 회수하였다.10 μl of a GST fusion IpaH protein obtained through the method described in Example 1 was prepared in Example 3.2. After mixing with the ssDNA aptamer pool obtained through the method described in the section, the total reaction volume was adjusted to 100 μl with 1 X aptamer selection solution, and then reacted at 4 ° C. for at least 12 hours. In order to activate glutathione sepharose 4B, 200 ml of glutathione sepharose 4B was added with 1 ml of 1 X PBS, stirred at 4 ° C. for 20 minutes, and reacted, followed by centrifugation at 4 ° C. at 13,000 rpm for 10 minutes. The supernatant was removed. After repeating the above procedure twice, the reaction solution of the GST fusion PrfA protein and the ssDNA aptamer pool was reacted with activated glutathione Sepharose 4B at 4 ° C. for 1 hour with stirring. Thereafter, the supernatant was removed by centrifugation at 13,000 rpm for 10 minutes at 4 ° C., followed by three times of washing with 1 ml of 1 × PBS to remove ssDNA aptamer that did not bind with GST fusion PrfA protein. In order to elute the GST fusion PrfA protein and the DNA aptamer specifically binding thereto from glutathione Sepharose 4B, 100 μl of DNA aptamer elution solution (50 mM Tris-HCl (pH 8.0), 10 mM glutathione) was added at 4 ° C. The reaction was stirred for 30 minutes at, followed by centrifugation at 13,000 rpm for 10 minutes at 4 ° C. to obtain an upper elution solution. This procedure was repeated twice to obtain an eluting solution of the upper layer. In order to remove the GST fusion PrfA protein from the binding between the GST fusion PrfA protein and the DNA aptamer specifically binding to it, the same volume of PCI solution was treated in the elution solution, followed by centrifugation at 13,000 rpm for 15 minutes at 4 ° C. To recover only the supernatant.
이후, GST 융합 PrfA와 특이적으로 결합하는 DNA 앱타머 만을 회수하기 위하여 PCI 법을 통하여 회수된 상층액에 1/100 부피의 tRNA, 1/10 부피의 3M 아세트산 나트륨 (pH 4.5)와 3배 부피의 100% 에탄올을 첨가하여 -70℃에서 1시간 이상 반응시켰고, 반응액을 4℃에서 13,000 rpm으로 20분간 원심 분리하였다. 이를 통하여 PrfA 단백질과 특이적으로 결합하는 DNA 앱타머만을 회수할 수 있었으며, 회수된 DNA 앱타머는 65℃에서 건조시킨 후, 50 ㎕의 증류수에 녹였다.Subsequently, in order to recover only DNA aptamer specifically binding to GST fusion PrfA, 1/100 volume of tRNA, 1/10 volume of 3M sodium acetate (pH 4.5) and 3 volume in the supernatant recovered by PCI method 100% ethanol was added and reacted at -70 ° C for at least 1 hour, and the reaction solution was centrifuged at 13,000 rpm for 20 minutes at 4 ° C. Through this, only the DNA aptamer specifically binding to the PrfA protein could be recovered. The recovered DNA aptamer was dried at 65 ° C. and dissolved in 50 μl of distilled water.
<3-4> 네가티브 선별 (Negative selection)을 통한 비특이적 DNA 앱타머 제거<3-4> Nonspecific DNA Aptamer Removal Through Negative Selection
PrfA 단백질이 아닌 GST 단백질과 글루타티온 세파로오스 4B에 결합하여 선별된 비특이적인 DNA 앱타머를 제거하기 위하여 SELEX 6회와 7회 사이에 PrfA 단백질 없이 GST 단백질만 고정되어 있는 글루타티온 세파로오스 4B에 DNA 앱타머 용액을 결합하는 네가티브 선별 (negative selection)을 진행하였다. 1 X 앱타머 선별 용액을 이용하여 활성화된 글루타티온 세파로오스 4B에 GST 단백질을 고정시킨 후, 상온에서 냉각시켜 구조를 형성한 ssDNA 앱타머 풀을 반응시켰으며, 글루타티온 세파로오스 4B와 GST 단백질에 결합하지 않은 상층의 ssDNA 앱타머 용액을 8회 SELEX에 이용하였다. 이후 3.3.과 같은 방법으로 SELEX를 총 10회까지 진행하였으며, SELEX의 결합 조건은 횟수가 증가할수록 ssDNA 앱타머 풀과 GST 융합 PrfA 단백질의 반응 시간을 줄였으며, 횟수가 거듭될수록 반응 조건을 엄격하게 하여 표적물질인 PrfA 단백질과 더욱 특이적으로 결합하는 앱타머를 얻고자 하였다. To remove nonspecific DNA aptamers that bind to GST protein and glutathione sepharose 4B, but not the PrfA protein, DNA on glutathione sepharose 4B with only GST protein fixed without PrfA protein between SELEX 6 and 7 times. Negative selection was performed to bind the aptamer solution. After fixing the GST protein to activated glutathione sepharose 4B using 1 X aptamer selection solution, the mixture was cooled to room temperature to react with the ssDNA aptamer pool that formed the structure, and the glutathione sepharose 4B and GST protein were reacted. The unbound upper ssDNA aptamer solution was used for 8 SELEX. Thereafter, SELEX was carried out up to 10 times in the same manner as in 3.3.The binding conditions of SELEX decreased the reaction time of ssDNA aptamer pool and GST fusion PrfA protein as the number of times increased. To obtain an aptamer that binds more specifically to the target material PrfA protein.
<실시예 4><Example 4>
GST 융합 PrfA 단백질과 특이적으로 결합하는 최적 DNA 앱타머 선별을 위한 SELEX 라운드의 선별 및 최종 앱타머 후보군 확보 Selex round screening and final aptamer candidates for optimal DNA aptamer screening specifically binding to GST fusion PrfA protein
<4-1> 정량분석을 통한 PrfA 단백질 특이 결합 DNA 앱타머 제작을 위한 최적 SELEX 라운드의 선별<4-1> Selection of Optimal SELEX Rounds for the Preparation of PrfA Protein Specific Binding DNA Aptamers by Quantitative Analysis
SELEX를 10 라운드까지 마친 후 SELEX 진행 여부 및 각 라운드에서 용리된 ssDNA 앱타머의 친화성을 정량적으로 확인하기 위하여 각 라운드에서 회수된 리스테리아 모노사이토제네스의 병원성 조절인자인 PrfA 단백질에 결합한 ssDNA의 농도를 나노드랍 스펙트로포토미터 (Nano-drop spectrophotometer, Thermo Scientific)을 이용하여 측정하였다. 각 라운드에서 용리된 ssDNA 앱타머 농도를 측정한 결과, 9 라운드의 농도가 877.0 ng/㎕로 가장 높았으며, 10 라운드의 농도는 467.8 ng/㎕로 9 라운드의 결과에 비해 농도가 떨어지는 것을 확인할 수 있었으며, 이를 통하여 리스테리아 모노사이토제네스의 병원성 조절 단백질 PrfA에 가장 특이적으로 결합하는 최적 앱타머 풀은 9 라운드 풀임을 확인할 수 있었다 (도 4 참고).In order to quantitatively confirm SELEX progression and the affinity of the ssDNA aptamer eluted in each round after completing SELEX, the concentration of ssDNA bound to PrfA protein, a pathogenic regulator of Listeria monocytogenes recovered in each round, was measured. Measurement was performed using a Nano-drop spectrophotometer (Thermo Scientific). As a result of measuring the concentration of ssDNA aptamer eluted in each round, the highest concentration of 87 rounds was 877.0 ng / μl, and the concentration of 10 rounds was 467.8 ng / μl. Through this, it was confirmed that the optimal aptamer pool that specifically binds to the pathogenic regulatory protein PrfA of Listeria monocytogenes is a 9 round pool (see FIG. 4).
<4-2> 리스테리아 모노사이토제네스 PrfA 단백질과 특이적으로 결합하는 DNA 앱타머 후보군 확보<4-2> Securing DNA Aptamer Candidates Specificly Binding to Listeria Monocytogenes PrfA Protein
나노드랍 스펙트로포토미터를 통해 리스테리아 모노사이토제네스 PrfA 단백질과 결합 효율이 가장 높은 것으로 판단되는 9 라운드의 ssDNA 앱타머 풀에 대해 정방향 프라이머: 5'-ATACCAGCTTATTCAATT-3' (서열번호 4)와 역방향 프라이머: 5'-AGATTGCACTTACTATCT-3' (서열번호 5)를 이용한 PCR 수행으로 dsDNA를 획득하였다. 이렇게 획득한 dsDNA는 T-블런트 클로닝 키트 (Solgent, Korea)를 이용하여 클로닝을 수행하였다. 클로닝은 T-벡터 (10 ng/㎕) 1㎕와 PCR 산물 (20 ng/㎕) 4㎕, 6X T-블런트 버퍼 1 ul를 섞어서 25℃에서 5분 동안 반응시키는 조건을 이용하였다. TA 클로닝한 ligate 10㎕는 100㎕의 DH5α와 섞은 후 42℃에서 1분 30초 동안 열충격 (heat shock)을 준 후 바로 얼음에서 반응시켰다. 여기에 900㎕의 SOC (2% 트립톤, 0.5% 효모 추출물, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM 글루코오스) 배지를 첨가한 후, 37℃에서 1시간 동안 배양하였다. 배양 후, 200㎕의 용액을 취하여 앰피실린 (ampicillin, 50㎍/㎖), 카나마이신 (kanamycin, 50㎍/㎖), X-gal(50㎍/㎖), IPTG (5㎍/㎖)이 포함되어 있는 LB 배양 플레이트(LB plate)에 스프레딩하고 37℃에서 15시간 동안 배양한 후, 42개의 흰색 콜로니만을 선별하여 솔젠트(Solgent, Korea)에 의뢰하여 앱타머의 염기서열을 결정하였다. 서열 분석을 통하여 중복되지 않은 서열 13개의 리스테리아 모노사이토제네스 병원성 조절 PrfA 단백질에 결합하는 DNA 앱타머를 확보할 수 있었다. 아래 표 1은 글루타티온 세파로오스 4B를 활용한 PrfA 단백질 결합 DNA 앱타머 선별 SELEX 기법을 이용하여 획득한 PrfA 단백질 결합 DNA 앱타머 후보군 13개에 대한 서열을 구체적으로 나타낸 것이다. Forward primers: 5'-ATACCAGCTTATTCAATT-3 '(SEQ ID NO: 4) and reverse primers for the 9 rounds of ssDNA aptamer pool which is determined to have the highest binding efficiency with Listeria monocytogenes PrfA protein via nanodrop spectrophotometer: DsDNA was obtained by PCR using 5′-AGATTGCACTTACTATCT-3 ′ (SEQ ID NO: 5). The dsDNA thus obtained was cloned using a T-blunt cloning kit (Solgent, Korea). Cloning was performed by mixing 1 μl of T-vector (10 ng / μl), 4 μl of PCR product (20 ng / μl), and 1 μl of 6 × T-blunt buffer and reacting at 25 ° C. for 5 minutes. 10 μl of the ligate TA cloned was mixed with 100 μl of DH5α and subjected to a heat shock at 42 ° C. for 1 minute and 30 seconds. 900 μl of SOC (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl 2, 10 mM MgSO 4, 20 mM glucose) medium was added thereto, followed by incubation at 37 ° C. for 1 hour. It was. After incubation, 200 μl of solution was taken to contain ampicillin (ampicillin, 50 μg / ml), kanamycin (kanamycin, 50 μg / ml), X-gal (50 μg / ml), and IPTG (5 μg / ml). After spreading to the LB culture plate (LB plate) and incubated for 15 hours at 37 ℃, only 42 white colonies were selected and asked to Solgent (Solgent, Korea) to determine the base sequence of the aptamer. Through sequence analysis, DNA aptamers that bind to 13 non-overlapping sequences of Listeria monocytogenes pathogenic regulatory PrfA protein could be obtained. Table 1 below shows the sequences for 13 PrfA protein binding DNA aptamer candidate groups obtained using the PrfA protein binding DNA aptamer selection SELEX technique using glutathione Sepharose 4B.
표 1
클론 명칭 서열번호 선별된 서열 서열크기(bp) 동일서열수
LMPA-1 서열번호 7 TGCCGTACTTGCTGATGCAGGGACCTGCCTAGGGGACGAT 40 7
LMPA-2 서열번호 8 TGCCGTACTTGCTGGTGCAGGGACCTGCCTAGGGGACGAT 40 1
LMPA-3 서열번호 9 TGCCGTACTTGGCGATGCAGGGACCTGCCTAGGGGACGAT 40 1
LMPA-4 서열번호 10 GCCGTGCTTGCTGATGCAGGGACCTGCCTAGGGGACGAT 39 1
LMPA-5 서열번호 11 TACGTCGGGCAGGCAGGGACCCTCGAGGTCTTCGCGTTGC 40 1
LMPA-6 서열번호 12 TCAGGGCAGGTCGGGTGTGTGGAACTGGCTGTCCCCGTTG 40 1
LMPA-7 서열번호 13 GCCTTGGTGGTGCAGGCTTGTGGATACACCTTGTTCCGAT 40 21
LMPA-8 서열번호 14 GTCTTGGTGGTGCAGGCTTGTGGATACACCTTGTTCCGAT 40 1
LMPA-9 서열번호 15 GCCTTGGTGGTGCAGGCTTGTGGGTACACCTTGTTCCGAT 40 1
LMPA-10 서열번호 16 GCCTTGGTGGTGCAGGCTTGTGGATACACTTTGTTCCGAT 40 1
LMPA-11 서열번호 17 GCCTTGGTGGTGCAGGCTTGTGGATACACCTTGTTCCGTT 40 1
LMPA-12 서열번호 18 CACCTATTCGGATGCTAGGTTTTGACGACCGGATGCTAG 39 4
LMPA-13 서열번호 19 GGCAGGGACATGGAACAAGGTTAATCAATAGCCATGTGGG 40 1
Table 1
Clone name SEQ ID NO: Selected sequence Sequence size (bp) Same sequence number
LMPA-1 SEQ ID NO: 7 TGCCGTACTTGCTGATGCAGGGACCTGCCTAGGGGACGAT 40 7
LMPA-2 SEQ ID NO: 8 TGCCGTACTTGCTGGTGCAGGGACCTGCCTAGGGGACGAT 40 One
LMPA-3 SEQ ID NO: 9 TGCCGTACTTGGCGATGCAGGGACCTGCCTAGGGGACGAT 40 One
LMPA-4 SEQ ID NO: 10 GCCGTGCTTGCTGATGCAGGGACCTGCCTAGGGGACGAT 39 One
LMPA-5 SEQ ID NO: 11 TACGTCGGGCAGGCAGGGACCCTCGAGGTCTTCGCGTTGC 40 One
LMPA-6 SEQ ID NO: 12 TCAGGGCAGGTCGGGTGTGTGGAACTGGCTGTCCCCGTTG 40 One
LMPA-7 SEQ ID NO: 13 GCCTTGGTGGTGCAGGCTTGTGGATACACCTTGTTCCGAT 40 21
LMPA-8 SEQ ID NO: 14 GTCTTGGTGGTGCAGGCTTGTGGATACACCTTGTTCCGAT 40 One
LMPA-9 SEQ ID NO: 15 GCCTTGGTGGTGCAGGCTTGTGGGTACACCTTGTTCCGAT 40 One
LMPA-10 SEQ ID NO: 16 GCCTTGGTGGTGCAGGCTTGTGGATACACTTTGTTCCGAT 40 One
LMPA-11 SEQ ID NO: 17 GCCTTGGTGGTGCAGGCTTGTGGATACACCTTGTTCCGTT 40 One
LMPA-12 SEQ ID NO: 18 CACCTATTCGGATGCTAGGTTTTGACGACCGGATGCTAG 39 4
LMPA-13 SEQ ID NO: 19 GGCAGGGACATGGAACAAGGTTAATCAATAGCCATGTGGG 40 One
<실시예 5>Example 5
SPR (surface plasmon resonance)을 이용한 리스테리아 모노사이토제네스 PrfA 단백질과 PrfA 단백질 결합 앱타머 후보군 간의 친화도 테스트 Affinity test between Listeria monocytogenes PrfA protein and PrfA protein binding aptamer candidate using surface plasmon resonance (SPR)
<5-1> 리스테리아 모노사이토제네스 PrfA 단백질과 이에 특이적으로 결합하는 DNA 앱타머 후보군들 간의 친화도 정량화를 위한 SPR 기반 PrfA 단백질 코팅 센서칩 제작<5-1> Fabrication of SPR-based PrfA protein-coated sensor chip for quantification of affinity between Listeria monocytogenes PrfA protein and DNA aptamer candidate groups specifically binding to it
PrfA 단백질과 상기 실시예 4 항목에서 설명된 방법으로 획득한 앱타머 후보군들간의 친화도를 정량하기위하여, 본 발명자들은 SPR 검출 시스템 기기인 BIAcore 3000을 이용하여 표면 플라즈몬 공명 (Surface Plasmon Resonance, SPR) 실험을 실시하였다. PrfA 단백질과 앱타머 후보군과의 친화도를 정량하기위하여 표면이 카르복실기로 코팅된 센서 칩 CM5 (GE Healthcare, UK)을 이용하였다. 우선 센서 칩 CM5에 0.05 M Nhydroxysuccinimide (NHS)와 0.2 M Nethyl-N'-(dimethylaminopropyl) carbodiimide (EDC) 혼합액을 10 ㎕/min의 속도로 7분 동안 흘려 센서칩 표면의 카르복실기를 반응성이 더 좋은 N-히드록시석신이미드 에스테르 (N-Hydroxy- succinimide ester; NHS-에스테르)로 활성화시켰다. NHS-에스테르로 활성화된 센서칩 CM5의 표면에 PrfA 단백질을 고정하기위하여 10 mM 아세트산 나트륨 (pH 3.5) 완충액에 70 ㎍/㎖의 농도로 녹아 있는 PrfA 단백질 용액을 10 ㎕/min의 속도로 7분 동안 처리하여 칩 표면을 PrfA 단백질로 코팅하였다 (도 5 참고). 이후 GST 융합 PrfA 단백질이 고정된 센서 칩에 1 M 에탄올아민 하이드로클로라이드 (pH 8.5)를 10 ㎕/min의 속도로 7분 동안 흘려줌으로써 센서 칩 표면에 남아 있는 카르복실 반응기를 불활성화시켰다. 이를 통하여 다른 시약 및 DNA 앱타머가 칩 표면에 직접 결합하는 것을 방지하였으며, 각 실험 후 센서칩은 1 M NaCl, 50 mM NaOH로 재생시켰다. 결합 속도 변수는 BIA 평가프로그램(BIACORE)으로 수득하여 정량하였다.In order to quantify the affinity between the PrfA protein and the aptamer candidate groups obtained by the method described in Example 4 above, the inventors have used the Surface Plasmon Resonance (SPR) using BIAcore 3000, an SPR detection system device. The experiment was conducted. In order to quantify the affinity between the PrfA protein and the aptamer candidate group, a sensor chip CM5 (GE Healthcare, UK) coated with a carboxyl group was used. First, 0.05 M Nhydroxysuccinimide (NHS) and 0.2 M Nethyl-N '-(dimethylaminopropyl) carbodiimide (EDC) mixed solution were flowed into the sensor chip CM5 for 10 minutes at a rate of 10 μl / min to make the carboxyl group on the surface of the sensor chip more reactive. Activated with hydroxysuccinimide ester (N-Hydroxy-succinimide ester; NHS-ester). In order to fix the PrfA protein on the surface of the sensor chip CM5 activated with NHS-ester, a solution of PrfA protein dissolved in 70 mM / ml in 10 mM sodium acetate (pH 3.5) buffer at a rate of 10 µl / min was used for 7 minutes. Were treated to coat the chip surface with PrfA protein (see FIG. 5). Thereafter, 1M ethanolamine hydrochloride (pH 8.5) was flowed into the sensor chip to which the GST fusion PrfA protein was fixed at a rate of 10 μl / min for 7 minutes to inactivate the carboxyl reactor remaining on the surface of the sensor chip. This prevented other reagents and DNA aptamers from directly binding to the chip surface. After each experiment, the sensor chip was regenerated with 1 M NaCl and 50 mM NaOH. Binding rate variables were obtained and quantified by the BIA Assessment Program (BIACORE).
<5-2> 리스테리아 모노사이토제네스 PrfA 단백질 결합 DNA 앱타머 후보군의 친화력 측정<5-2> Affinity of Listeria monocytogenes PrfA protein binding DNA aptamer candidate group
PrfA 단백질과 가장 높은 친화력을 가지는 앱타머를 선별하기 위하여 확보된 PrfA 단백질 결합 DNA 앱타머 후보군을 HBS-EP 버퍼 (GE Healthcare, UK)에 각 300 nM, 500 nM, 1000 nM, 2000 nM 농도로 녹여 준비하였다. 기 제작 준비된 PrfA 결합 DNA 앱타머는 아무것도 결합시키지 않은 센서 칩 (채널 1), PrfA 단백질이 고정된 센서 칩 (채널 2)에 다양한 농도 (각 300 nM, 500 nM, 1000 nM, 2000 nM)의 PrfA 결합 DNA 앱타머 후보군을 주입함으로써 PrfA 단백질과 이에 특이적으로 결합하는 DNA 앱타머 후보군간의 친화도를 정량화하였다. 각 PrfA 단백질과 특이적으로 결합하는 DNA 앱타머 후보군의 해리상수 (K d, dissociation) 수득 결과 GST 융합 PrfA 단백질 결합 DNA 앱타머 후보군 중 LMPA-9 앱타머의 해리상수가 2.94 X 10-9 M으로 표적하는 PrfA 단백질에 대해 가장 높은 친화도 값을 가지고 있음을 확인 할 수 있었다 (표 2 참고).PrfA protein-binding DNA aptamer candidates obtained for screening aptamers having the highest affinity with PrfA protein were dissolved in HBS-EP buffer (GE Healthcare, UK) at concentrations of 300 nM, 500 nM, 1000 nM and 2000 nM, respectively. Ready. The prepared PrfA binding DNA aptamer is bound to PrfA of various concentrations (300 nM, 500 nM, 1000 nM, 2000 nM) to a sensor chip (channel 1) to which nothing is bound, and a sensor chip (channel 2) to which PrfA protein is fixed. Affinity between the PrfA protein and the DNA aptamer candidate group specifically binding thereto was quantified by injecting the DNA aptamer candidate group. Results of dissociation ( K d , dissociation) of DNA aptamer candidates that specifically bind to each PrfA protein As a result, the dissociation constant of LMPA-9 aptamer of GST fusion PrfA protein binding DNA aptamer candidate group was 2.94 X 10 -9 M. It was confirmed that it has the highest affinity value for the target PrfA protein (see Table 2).
표 2
클론 명칭 K d (nM) 클론 명칭 K d (nM)
LMPA-1 53.4 ± 13.6 LMPA-8 38.2 ± 12.4
LMPA-2 35.8 ± 12.2 LMPA1-9 2.94 ± 0.22
LMPA-3 58.7 ± 19.8 LMPA-10 53.7 ± 15.1
LMPA-4 60.6 ± 5.8 LMPA-11 52.0 ± 21.5
LMPA-5 11.4 ± 2.3 LMPA-12 4.25 ± 0.16
LMPA-6 144 ± 38.5 LMPA-13 63.3 ± 9.2
LMPA-7 4.81 ± 0.71
TABLE 2
Clone name K d (nM) Clone name K d (nM)
LMPA-1 53.4 ± 13.6 LMPA-8 38.2 ± 12.4
LMPA-2 35.8 ± 12.2 LMPA1-9 2.94 ± 0.22
LMPA-3 58.7 ± 19.8 LMPA-10 53.7 ± 15.1
LMPA-4 60.6 ± 5.8 LMPA-11 52.0 ± 21.5
LMPA-5 11.4 ± 2.3 LMPA-12 4.25 ± 0.16
LMPA-6 144 ± 38.5 LMPA-13 63.3 ± 9.2
LMPA-7 4.81 ± 0.71
<실시예 6><Example 6>
PrfA 단백질 결합 DNA 앱타머의 구조 결정Structural Determination of PrfA Protein Binding DNA Aptamers
리스테리아 모노사이토제네스의 병원성 조절 단백질인 PrfA 특이 결합 DNA 앱타머 후보군 중 PrfA 단백질과 특히 높은 친화성을 보인 LMPA-5, LMPA-7, LMPA-9, LMPA-12의 구조를 Rensselear polytechnic institute에서 제공하는 DNA mfold 프로그램을 활용하여 이미지화 할 수 있었다 (도 7 참고). Rensselear polytechnic institute provides the structure of LMPA-5, LMPA-7, LMPA-9, and LMPA-12, among the PrfA-specific binding DNA aptamer candidates of Listeria monocytogenes, with high affinity to the PrfA protein. Imaging was possible using the DNA mfold program (see FIG. 7).
<실시예 7><Example 7>
리스테리아 모노사이토제네스 PrfA 단백질 특이 결합 DNA 앱타머의 산업적 활용을 위한 검출 및 진단 방법 연구Detection and diagnostic methods for industrial applications of Listeria monocytogenes PrfA protein-specific binding DNA aptamers
상기의 실시예를 통해 제작, 확보한 리스테리아 모노사이토제네스 병원성 조절용 PrfA 단백질 특이 결합 DNA 앱타머의 산업적 활용을 위하여 리스테리아 모노사이토제네스가 감염된 환경에서의 PrfA 단백질 특이 결합 DNA 앱타머를 이용한 검출 방법 및 리스테리아 모노사이토제네스가 감염된 동물이나 사람에서의 리스테리아증을 진단하기 위한 응용 가능성을 확인하고자 하였다. 이를 위하여 다양한 시료에서의 리스테리아 모노사이토제네스의 검출 능력을 확인하기 위한 간이 키트를 개발하였다. Detection method and Listeria using PrfA protein specific binding DNA aptamer in an environment infected with Listeria monocytogenes for industrial use of Listeria monocytogenes pathogenicity-regulated PrfA protein specific binding DNA aptamer prepared and obtained by the above examples The purpose of this study was to identify the potential application of monocytogenes in diagnosing Listeriosis in animals or humans. For this purpose, a simple kit was developed to confirm the detection capability of Listeria monocytogenes in various samples.
<7-1> PrfA 단백질 결합 DNA 앱타머기반 검출 및 진단 방법 연구를 위한 membrane 제작<7-1> Membrane Fabrication for PrfA Protein Binding DNA Aptamer-based Detection and Diagnosis
상기의 실시예를 통해 선별 확보된 PrfA 단백질 특이 결합 앱타머를 기반으로 PrfA 단백질 존재 시료에서 리스테리아 모노사이토제네스의 검출 및 리스테리아증 진단방법을 개발하기 위하여 본 명세서에서는 Rapid test kit 형태로 보고된 검출 및 진단 방법을 이용하였다. 앱타머 기반의 리스테리아 검출 및 진단키트 제작을 위하여 먼저 결과를 나타내 줄 수 있는 membrane을 제작하였다. membrane은 sample을 반응시킬 sample pad와 sample이 membrane과의 반응이 일어날 수 있도록 sample pad의 용액을 끌어당겨 membrane 상에 line이 형성 될 수 있도록 해주는 absorbing pad로 구성되어 있으며, 또한 sample의 존재 여부를 판단해줄 capture line과 control line으로 구성하였다. control line은 시료에 PrfA 단백질이 존재하지 않더라도 반응이 일어났음을 확인해 줄 수 있도록 스트렙트아비딘을 고정시켜 sample과 바이오티닐화된 앱타머, 나노입자 복합체가 결합하여 control line을 형성할 수 있도록 제작하였다. 또한, membrane의 control line 앞부분에 PrfA 단백질 특이 결합 앱타머 LMPA-9를 고정하였다. 시료에 PrfA 단백질이 존재한다면 capture line에서 band가 나타날 수 있도록 고안하였다. 관련 그림은 도 8에 상세히 나타내었다. Based on the PrfA protein specific binding aptamer screened and secured through the above examples, in order to detect Listeria monocytogenes in the PrfA protein present sample and to develop a method for diagnosing Listeriosis, the present invention is reported in the form of Rapid test kit. Diagnostic method was used. For the production of aptamer-based Listeria detection and diagnostic kits, a membrane was produced to show the results. The membrane is composed of a sample pad to react the sample and an absorbing pad to draw a solution of the sample pad so that the sample can react with the membrane to form a line on the membrane. It consists of capture line and control line. The control line was prepared to fix the streptavidin to confirm that the reaction occurred even if the PrfA protein was not present in the sample to form a control line by combining the sample with the biotinylated aptamer and nanoparticle complexes. . In addition, PrfA protein-specific binding aptamer LMPA-9 was fixed in front of the control line of the membrane. If PrfA protein is present in the sample, the band is designed to appear in the capture line. The relevant figure is shown in detail in FIG. 8.
<7-2> 리스테리아 모노사이토제네스 PrfA 단백질 결합 DNA 앱타머 후보군의 친화력 측정<7-2> Affinity of Listeria monocytogenes PrfA protein binding DNA aptamer candidate group
PrfA 단백질 특이 결합 앱타머를 활용한 리스테리아 간이 검출 또는 진단 키트는 스트렙트아비딘-바이오틴 결합을 이용하여 리스테리아 모노사이토제네스의 검출에 활용하는 것으로 실시예 5에서 PrfA 단백질과 높은 친화력을 보이는 LMPA-9 에 3‘ 말단에는 바이오틴을 표지하고, 5’말단에는 아민기를 표지하여 바이오니아에 의뢰하여 합성하였다. 이후, 양쪽 말단이 변형된 LMPA-9 은 3’말단에 표지된 바이오틴을 이용하여 상기의 과정을 통해 확보한 스트렙트아비딘이 코팅되어 있는 membrane에 고정시킨다. 그리고 LMPA-12와 리스테리아 모노사이토제네스가 감염되었을 것이라고 생각하는 시료와 색을 나타낼 수 있는 나노입자를 혼합시킨 후 LMPA-9가 고정된 membrane의 Sample pad에 떨어뜨린다. 시료내에 리스테리아 모노사이토제네스가 존재하는 경우 Capture line과 Control line에서 선이 형성되어 두 개의 선으로 나타나게 되며(도 8 (c) 참조), 리스테리아 모노사이토제네스가 시료에 존재하지 않을 경우 Control line 하나의 선만 나타나는 것을 확인하였다(도 8 (b) 참조). 아래 표는 시료내의 PrfA 단백질이 존재할 때와 PrfA 단백질이 존재하지 않을 때의 결과를 비교한 것이다. The Listeria simple detection or diagnostic kit using PrfA protein specific binding aptamer is used for the detection of Listeria monocytogenes using streptavidin-biotin binding to LMPA-9 having high affinity with PrfA protein in Example 5. Biotin was labeled at the 3 'end, and an amine group was labeled at the 5' end. Then, LMPA-9 modified at both ends is fixed to the membrane coated with streptavidin obtained through the above process using biotin labeled at the 3 ′ end. After mixing LMPA-12 and Listeria monocytogenes with a sample that can be colored and nanoparticles that can be colored, drop them onto the sample pad of the LMPA-9 immobilized membrane. If Listeria monocytogenes is present in the sample, a line is formed in the capture line and the control line and appears as two lines (see FIG. 8 (c)). It was confirmed that only lines appeared (see FIG. 8 (b)). The table below compares the results with and without the PrfA protein in the sample.
표 3
시료 Control line Capture line
시료를 넣지 않은 경우 - -
PrfA 단백질 비존재 시료 + -
PrfA 단백질 존재 시료 + +
TABLE 3
sample Control line Capture line
If no sample is loaded - -
PrfA Protein Free Sample + -
Sample with PrfA Protein + +
상기의 실험을 통하여 제작한 리스테리아 모노사이토제네스 검출 키트가 정상적으로 만들어진 것을 확인할 수 있었다. It was confirmed that the Listeria monocytogenes detection kit produced through the above experiment was normally made.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (12)

  1. 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 PrfA 단백질 특이적 DNA 앱타머(aptamer).PrfA protein specific DNA aptamer that specifically binds to PrfA protein of Listeria monocytogenes .
  2. 제1항에 있어서,The method of claim 1,
    상기 DNA 앱타머는 서열번호 7 내지 서열번호 19의 염기서열로 이루어진 군 중 선택된 어느 하나의 염기서열과 90% 이상의 동일성을 갖는 염기서열을 갖는 올리고뉴클레오타이드(oligonucleotide)인 것을 특징으로 하는 DNA 앱타머. The DNA aptamer is an DNA aptamer, characterized in that the oligonucleotide (oligonucleotide) having a nucleotide sequence having at least 90% identity with any one selected from the group consisting of the nucleotide sequence of SEQ ID NO: 7 to SEQ ID NO: 19.
  3. 제1항에 있어서, The method of claim 1,
    상기 DNA 앱타머는 서열번호 7 내지 서열번호 19의 염기서열로 이루어진 군 중 선택된 어느 하나의 염기서열을 갖는 올리고뉴클레오타이드(oligonucleotide)인 것을 특징으로 하는 DNA 앱타머. The DNA aptamer is an DNA aptamer, characterized in that the oligonucleotide (oligonucleotide) having any one selected from the group consisting of the nucleotide sequence of SEQ ID NO: 7 to SEQ ID NO: 19.
  4. 제1항 내지 제3항의 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 DNA 앰타머는 표지물질을 더 포함하여 구성되는 것을 특징으로 하는 DNA 앱타머.The DNA aptamer is DNA aptamer, characterized in that further comprises a labeling material.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 DNA 앱타머는 형광물질, 아민기, 바이오틴 및 티올기로 이루어진 군에서 선택된 어느 하나의 표지물질이 상기 DNA 앱타머의 5’말단 또는 3'말단에 표지되는 것을 특징으로 하는 DNA 앱타머.The DNA aptamer is a DNA aptamer, characterized in that any one of the labeling material selected from the group consisting of fluorescent material, amine group, biotin and thiol group is labeled at the 5 'end or 3' end of the DNA aptamer.
  6. 제1항 내지 제3항의 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 DNA 앱타머는 상기 DNA 앱타머를 구성하는 하나 이상의 뉴클레오타이드의 리보스 2' 위치의 하이드록시기가 수소원자, 불소원자, -OR, -OCOR 및 아미노기로 이루어진 군 중 어느 하나로 치환된 것을 특징으로 하는 DNA 앱타머.The DNA aptamer DNA app, characterized in that the hydroxyl group of the ribose 2 'position of one or more nucleotides constituting the DNA aptamer is substituted with any one of a group consisting of a hydrogen atom, a fluorine atom, -OR, -OCOR and an amino group Tamer.
  7. 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 유효성분으로 포함하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 조성물. Listeria monocytogenes detection ( Listeria monocytogenes ) comprising a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes detection or Listeriosis diagnostic composition.
  8. 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머를 유효성분으로 포함하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 키트. Listeria monocytogenes detection or listeriosis diagnostic kit comprising as an active ingredient aptamer specifically binding to PrfA protein of Listeria monocytogenes ( Listeria monocytogenes ).
  9. 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머가 기판에 집적되어 PrfA 단백질을 포함하는 시료에 특이적으로 반응하는 것을 특징으로 하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 바이오칩.Biochip for detecting Listeria monocytogenes or diagnosing Listeriosis, characterized in that the DNA aptamer specifically binding to the PrfA protein of Listeria monocytogenes is integrated on the substrate and reacts specifically to the sample containing the PrfA protein. .
  10. 제9항에 있어서,The method of claim 9,
    상기 기판은 종이, 플라스틱, 유리, 금속 및 실리콘으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리스테리아 모노사이토제네스 검출 또는 리스테리아증 진단용 바이오칩.The substrate is Listia monocytogenes detection or Listeriosis diagnostic biochip, characterized in that selected from the group consisting of paper, plastic, glass, metal and silicon.
  11. (a) 생체로부터 분리된 생물학적 시료를 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머에 접촉시키는 단계; 및 (a) contacting a biological sample isolated from the living body with a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ; And
    (b) 상기 생물학적 시료와 상기 DNA 앱타머 간의 PrfA 단백질 특이적 결합반응을 통해 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 존부를 확인하는 단계;를 포함하는 리스테리아 모노사이토제네스 (Listeria monocytogenes)검출 방법(b) confirming the presence of Listeria monocytogenes through a PrfA protein specific binding reaction between the biological sample and the DNA aptamer; Listeria monocytogenes detection method comprising a
  12. (a) 생체로부터 분리된 생물학적 시료를 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 PrfA 단백질에 특이적으로 결합하는 DNA 앱타머에 접촉시키는 단계; 및 (a) contacting a biological sample isolated from the living body with a DNA aptamer that specifically binds to the PrfA protein of Listeria monocytogenes ; And
    (b) 상기 생물학적 시료와 상기 DNA 앱타머 간의 PrfA 단백질 특이적 결합반응을 통해 리스테리아 모노사이토제네스 (Listeria monocytogenes)의 존부를 확인하는 단계;를 포함하는 리스테리아증(Listeriosis)의 진단에 필요한 정보를 제공하는 방법. (b) confirming the presence of Listeria monocytogenes through a PrfA protein specific binding reaction between the biological sample and the DNA aptamer; providing information necessary for diagnosing Listeriosis, including How to.
PCT/KR2014/007044 2013-09-26 2014-07-31 Dna aptamer specifically binding to virulence regulatory factor prfa protein of listeria and use thereof WO2015046737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130114291A KR101541221B1 (en) 2013-09-26 2013-09-26 DNA aptamer specifically binding to PrfA protein of Listeria monocytogenes and uses thereof
KR10-2013-0114291 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015046737A1 true WO2015046737A1 (en) 2015-04-02

Family

ID=52743823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007044 WO2015046737A1 (en) 2013-09-26 2014-07-31 Dna aptamer specifically binding to virulence regulatory factor prfa protein of listeria and use thereof

Country Status (2)

Country Link
KR (1) KR101541221B1 (en)
WO (1) WO2015046737A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108432B1 (en) * 2018-12-12 2020-05-08 주식회사 세니젠 Primer sets for simultaneous detection of Listeria monocytogenes and Listeria innocua, polymerase chain reaction kit thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100101248A (en) * 2009-03-09 2010-09-17 이기성 Specific protein domain for the detection of listeria contamination and its antibody manufacture method and also their utilization
KR20100129709A (en) * 2009-06-01 2010-12-09 성균관대학교산학협력단 Nucleic acid aptamer capable of specifically binding to pancreatic cancer cell or tissue and use thereof
KR20120092938A (en) * 2011-02-14 2012-08-22 충북대학교 산학협력단 Dna aptamer specifically binding to alpha-fetoprotein and its use
KR20120133408A (en) * 2011-05-31 2012-12-11 충북대학교 산학협력단 DNA Aptamer Specifically Binding to Surface of Living Cell of Listeria monocytogenes and Uses Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100101248A (en) * 2009-03-09 2010-09-17 이기성 Specific protein domain for the detection of listeria contamination and its antibody manufacture method and also their utilization
KR20100129709A (en) * 2009-06-01 2010-12-09 성균관대학교산학협력단 Nucleic acid aptamer capable of specifically binding to pancreatic cancer cell or tissue and use thereof
KR20120092938A (en) * 2011-02-14 2012-08-22 충북대학교 산학협력단 Dna aptamer specifically binding to alpha-fetoprotein and its use
KR20120133408A (en) * 2011-05-31 2012-12-11 충북대학교 산학협력단 DNA Aptamer Specifically Binding to Surface of Living Cell of Listeria monocytogenes and Uses Thereof

Also Published As

Publication number Publication date
KR20150034345A (en) 2015-04-03
KR101541221B1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
CN102625838B (en) For generating sample that rRNA eliminates or for from the method for sample separation rRNA, composition and test kit
US7645582B2 (en) Aptamers that bind to listeria surface proteins
JP2008220376A (en) Nucleic acid sequence derived from salmonella typhi genome and use thereof particularly for in vitro diagnosis of existence of genus salmonella bacteria in foodstuff
CN106544434B (en) Method for detecting Listeria monocytogenes by combining multi-cross amplification with gold nano biosensing
CN112094847A (en) Aptamer for detecting helicobacter pylori, screening detection method and application
EP3103884B1 (en) Nucleic acid detection or quantification method using mask oligonucleotide, and device for same
KR101891406B1 (en) DNA Aptamer Specifically Binding to Surface of Living Cell of Salmonella typhimurium and Uses Thereof
WO2009087685A2 (en) Method for detection of hepatitis nucleic acid and uses thereof
KR20190017698A (en) Kit For Detecting Tuberculosis and Method of Detecting Tuberculosis Using the Same
KR101438531B1 (en) Single-stranded nucleic acid aptamers specifically binding to E.coli and method for detecting E.coli using the same
WO2015046737A1 (en) Dna aptamer specifically binding to virulence regulatory factor prfa protein of listeria and use thereof
KR101362725B1 (en) DNA Aptamer Specifically Binding to Surface of Living Cell of Vibrio parahemolyticus and Uses Thereof
KR20120092938A (en) Dna aptamer specifically binding to alpha-fetoprotein and its use
WO1994020613A1 (en) Detection of malaria
WO2005030027A2 (en) Salmonella detection identification
JP4336814B2 (en) Target nucleic acid detection method using zinc finger protein
KR101274118B1 (en) DNA Aptamer Specifically Binding to Surface of Living Cell of Listeria monocytogenes and Uses Thereof
KR101372362B1 (en) DNA Aptamer Specifically Binding to Invasion Plasmid Antigen H Protein from Shigella sonnei and Its Use
CN105154438B (en) To Hafnia alvei G5907, G5908, G5913, nucleotide special G5916 and its application
KR100785418B1 (en) Method for simultaneousdetectionofhepatitis b virus hepatitis c virus and human immunodeficiency virus
CN105112406B (en) To Hafnia alvei G5897, G5898, G5900 special nucleotide and its application
KR101651212B1 (en) DNA Aptamer Capable of Specifically Binding to Surface of Living Cell of Shigella sonnei and Uses Thereof
KR20110116644A (en) Method of providing information for diagnosis of tuberculosis and diagnostic kit comprising thereof
WO2016072653A1 (en) Dna aptamer specifically binding to surface of live cells of vibrio fischeri, and use thereof
CN105255871B (en) The nucleotide special to aeromonas hydrophila O7, O8, O9 and O10 and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847732

Country of ref document: EP

Kind code of ref document: A1