WO2015046666A1 - Selective catalytic reduction system and selective catalytic reduction method - Google Patents

Selective catalytic reduction system and selective catalytic reduction method Download PDF

Info

Publication number
WO2015046666A1
WO2015046666A1 PCT/KR2013/011296 KR2013011296W WO2015046666A1 WO 2015046666 A1 WO2015046666 A1 WO 2015046666A1 KR 2013011296 W KR2013011296 W KR 2013011296W WO 2015046666 A1 WO2015046666 A1 WO 2015046666A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
exhaust gas
ammonia
decomposition chamber
amount
Prior art date
Application number
PCT/KR2013/011296
Other languages
French (fr)
Korean (ko)
Inventor
이균
이재문
이창희
최낙원
Original Assignee
두산엔진주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산엔진주식회사 filed Critical 두산엔진주식회사
Publication of WO2015046666A1 publication Critical patent/WO2015046666A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Embodiments of the present invention relate to a selective catalytic reduction system and a selective catalytic reduction method for reducing nitrogen oxides contained in exhaust gases by using a selective catalytic reduction reaction.
  • a selective catalytic reduction (SCR) system is a system for reducing nitrogen oxides by purifying exhaust gases generated from diesel engines, boilers, and incinerators.
  • the nitrogen gas contained in the exhaust gas and the reducing agent react with each other while passing the exhaust gas and the reducing agent together in a reactor in which the catalyst is installed therein, and the reduction process is performed with nitrogen and water vapor.
  • the selective catalytic reduction system is used by directly spraying urea (Urea) as a reducing agent to reduce nitrogen oxides or by spraying ammonia (NH 3 ) generated by hydrolysis of urea.
  • Urea urea
  • NH 3 ammonia
  • Embodiment of the present invention is to selectively spray the urea used in the reduction reaction to reduce the nitrogen oxides contained in the exhaust gas as a whole to reduce the amount of energy consumed and the amount of ammonia slip remaining after the reduction reaction (selective catalytic reduction)
  • a system and selective catalytic reduction method are provided.
  • the selective catalytic reduction system is a catalyst for reducing the nitrogen oxide contained in the exhaust gas is installed on the main exhaust passage, the main exhaust passage to which the exhaust gas containing nitrogen oxides (NOx) is moved
  • a reactor comprising a, urea decomposition chamber to decompose urea (Urea) to produce ammonia (NH 3 ), ammonia injection unit for injecting ammonia generated in the urea decomposition chamber to the exhaust gas to be introduced into the reactor, the reactor Urea direct injection unit for directly injecting urea into the exhaust gas to be introduced, urea supply unit for supplying urea to the urea decomposition chamber or urea supply unit for urea injection unit, branched from the main exhaust flow path in front of the reactor and the urea decomposition chamber
  • a branch flow passage connected to the branch flow passage and installed on the branch flow passage to flow the branch flow passage;
  • a blower for regulating the flow rate of the exhaust gas, is provided on the branch flow path and a heating device
  • the control unit calculates the amount of heat required to decompose urea, calculates the amount of heat that the exhaust gas has, and in consideration of the amount of heat of the exhaust gas, urea to be injected through the urea direct injection unit and injection of ammonia to be injected through the ammonia injection unit.
  • the ratio can be determined.
  • the controller may control the operation of the blower, the heating device, and the urea supply unit according to the determined ratio to generate ammonia in the urea decomposition chamber or to directly inject urea into the urea direct injection unit.
  • the ratio of urea to be injected through the urea direct injection unit is the total amount of heat required to decompose the total amount of urea for generating ammonia necessary to reduce nitrogen oxides (NOx) in the reactor to the amount of heat of the exhaust gas flowing into the reactor. It can be divided by.
  • the urea decomposition chamber may generate ammonia by decomposing the remaining urea by limiting the amount of urea injected through the urea direct injection unit in the total amount of urea for producing ammonia required to reduce nitrogen oxides (NOx) in the reactor. have.
  • the selective catalytic reduction system may further include a front branch temperature sensor and a rear branch temperature sensor respectively installed in the branch passages before and after the heating apparatus. And when the blower maintains a constant flow rate of the exhaust gas supplied to the urea decomposition chamber through the branch flow path, the control unit controls the branch flow path according to the information received from the front branch temperature sensor and the rear branch temperature sensor.
  • the exhaust gas supplied to the urea decomposition chamber may control the operation of the heating device to supply the amount of heat required to generate ammonia in the urea decomposition chamber.
  • the selective catalytic reduction system may further include a rear branch temperature sensor installed in the branch flow path behind the heating device and a branch flow meter installed behind the blower. And when the heating device maintains a constant temperature of the exhaust gas supplied to the urea decomposition chamber through the branch flow path, the control unit is the through the branch flow path according to the information received from the branch temperature sensor and the branch flow meter. The operation of the blower can be controlled so that the exhaust gas supplied to the urea decomposition chamber supplies the amount of heat required to produce ammonia in the urea decomposition chamber.
  • the urea supply unit may include a urea tank for storing urea, a urea transfer device for transferring urea stored in the urea tank, and a control valve for controlling the supply amount and supply direction of urea.
  • the selective catalytic reduction system may further include a main mass flow meter installed in the main exhaust flow path and measuring a mass flow rate of the exhaust gas and a main temperature sensor measuring the temperature of the exhaust gas.
  • the selective catalytic reduction method is required to calculate the flow rate of the exhaust gas containing nitrogen oxides (NOx), and to remove the nitrogen oxides containing the exhaust gas through a reduction reaction
  • a part of the exhaust gas is branched and supplied to the urea decomposition chamber, and the amount of heat required to decompose urea in the urea decomposition chamber is increased by raising the branched exhaust gas or adjusting a supply flow rate.
  • the ratio of urea to be directly injected into the exhaust gas can be readjusted.
  • the selective catalytic reduction system and the selective catalytic reduction method optimize the injection of urea used in the reduction reaction to reduce nitrogen oxides contained in the exhaust gas, and the energy consumed as a whole and the ammonia slip remaining after the reduction reaction ( Ammonia slip can be minimized.
  • FIG. 1 is a block diagram showing a selective catalytic reduction system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration for injecting urea into the main exhaust passage of FIG. 1 and a configuration for injecting urea into the urea decomposition chamber.
  • FIG. 3 is a configuration diagram illustrating a modification of FIG. 2.
  • FIG. 4 is a block diagram showing a selective catalytic reduction system according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a selective catalytic reduction method using a selective catalytic reduction system according to embodiments of the present invention.
  • Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
  • SCR selective catalytic reduction
  • the selective catalytic reduction system 101 reduces the nitrogen oxide content of the exhaust gas by removing nitrogen oxide (NOx) contained in the exhaust gas discharged from the engine 900 through a reduction reaction.
  • the engine 900 may be a low speed or medium speed diesel engine used in a ship.
  • the selective catalytic reduction system 101 according to the first embodiment of the present invention is not limited to the exhaust gas discharged from the engine 900 and may be used in various fields such as a plant.
  • the selective catalytic reduction system 101 includes a main exhaust passage 210, a reactor 100, a urea decomposition chamber 300, and an ammonia injection unit 430. , A urea direct injection unit 410, a urea supply unit 500, a branch flow path 220, a blower 610, a heating device 620, and a control unit 700.
  • the selective catalytic reduction system 101 includes a rear branch temperature sensor 811, a front branch temperature sensor 812, a main mass flow meter 851, a main temperature sensor 815, and
  • the mixer may further include a mixer 450.
  • the main exhaust passage 210 serves as a passage through which the exhaust gas containing nitrogen oxides (NOx) moves.
  • the reactor 100 is installed on the main exhaust flow path 210.
  • the reactor 100 includes a catalyst for reducing nitrogen oxides (NOx) contained in the exhaust gas.
  • the catalyst catalyzes the reaction between the nitrogen oxide (NOx) contained in the exhaust gas and the reducing agent to reduce the nitrogen oxide (NOx) to nitrogen and water vapor.
  • ammonia NH 3
  • NH 3 ammonia
  • the catalyst may be made of various materials known to those skilled in the art, such as zeolite, vanadium, platinum and the like.
  • the catalyst may have an active temperature in the range of 250 degrees Celsius to 350 degrees Celsius.
  • the active temperature refers to a temperature at which the catalyst can be stably reduced without poisoning the catalyst. If the catalyst reacts outside the active temperature range, the catalyst is poisoned and the efficiency is lowered.
  • the poisoning substance for poisoning the catalyst may include one or more of ammonium sulfate (NH 4 ) 2 SO 4 ) and ammonium bisulfate (NH 4 HSO 4 ). These catalyst poisoning substances are adsorbed on the catalyst to lower the activity of the catalyst. Since the catalyst poisoning substance decomposes at a relatively high temperature, the catalyst can be regenerated by raising the temperature.
  • the housing of the reactor 100 may be made of stainless steel (stainless steel) material.
  • the urea decomposition chamber 300 decomposes urea (urea, CO (NH 2 ) 2 ) to produce ammonia (NH 3 ) used as a reducing agent to reduce nitrogen oxides (NOx).
  • urea urea, CO (NH 2 ) 2
  • NH 3 ammonia
  • urea urea, CO (NH 2 ) 2
  • isocyanic acid HNCO
  • NH 3 ammonia
  • Isocyanic acid is decomposed again to ammonia. That is, urea may be decomposed to finally produce ammonia.
  • the ammonia injection unit 430 injects ammonia (NH 3 ) generated in the urea decomposition chamber 300 to the exhaust gas to be introduced into the reactor 100.
  • the injected ammonia is mixed with the exhaust gas to reduce the nitrogen oxide contained in the exhaust gas while passing through the catalyst of the reactor 100.
  • the ammonia injection unit 430 includes an ammonia injection nozzle 431 installed in the main exhaust flow path 210, and an ammonia injection flow path 435 connecting the ammonia injection nozzle 431 and the urea decomposition chamber 300. can do.
  • the ammonia injection unit 430 may inject ammonia NH 3 toward the exhaust gas passing through the main exhaust flow path 210 in front of the reactor 100.
  • the front means an upstream side and the rear means a downstream side based on the flow of exhaust gas.
  • the urea direct injection unit 410 directly injects urea to the exhaust gas to be introduced into the reactor 100.
  • the urea direct injection unit 410 may include a urea injection nozzle 411 installed in the main exhaust flow path 210 and a urea injection flow path 415 for supplying urea to the urea injection nozzle 411. have.
  • the urea direct injection unit 410 may directly inject unresolved urea toward the exhaust gas passing through the main exhaust passage 210 in front of the reactor 100.
  • the urea injected from the urea direct injection unit 410 may be mixed with the exhaust gas and decomposed into ammonia by the heat amount of the exhaust gas.
  • the ammonia thus produced like ammonia injected from the ammonia injection unit 430, reduces nitrogen oxide contained in the exhaust gas while passing through the catalyst of the reactor 100.
  • the ammonia injection portion 430 is located closer to the reactor 100 than the urea injection portion 410. That is, the urea injection unit 410 injects urea toward the exhaust gas at a position relatively far from the reactor 100.
  • the urea injected from the urea injection unit 410 is to ensure the time and space to be mixed with the exhaust gas and decomposed into ammonia by the heat of the exhaust gas.
  • the mixer 450 is installed on the main exhaust flow path 210 between the ammonia injection unit 430 and the reactor 100.
  • the mixer 450 evenly mixes the exhaust gas with ammonia, which is a reducing agent, before the exhaust gas enters the reactor 100.
  • the urea supply unit 500 supplies urea to the urea decomposition chamber 300 or supplies urea to the urea direct injection unit 410.
  • the urea supply unit 500 is a urea tank 550 for storing urea, a urea transfer device 530 for transferring urea stored in the urea tank 550, and a control valve for controlling the supply amount and supply direction of urea 510 may be included.
  • the urea supply unit 500 may further include a urea supply passage 515 connected to the urea transfer device 530 to supply urea to the urea decomposition chamber 300.
  • control valve 510 may be installed on the urea supply flow path 515, and the urea injection flow path 415 of the urea direct injection unit 410 may connect the control valve 510 and the urea injection nozzle 411. have.
  • control valve 510 may proportionally control urea to be supplied to the urea direct injection unit 410 and urea to be supplied to the urea decomposition chamber 300.
  • control valve 510 may be a proportional control valve or a plurality of solenoid valves.
  • Branch flow path 220 is branched from the main exhaust flow path 210 in front of the reactor 100 is connected to the urea decomposition chamber 300.
  • the blower 610 is installed on the branch flow path 220.
  • the blower 610 adjusts the flow rate of the exhaust gas flowing through the branch flow path 220. That is, the blower 610 adjusts the flow rate of the exhaust gas flowing into the urea decomposition chamber 300 through the branch flow path 220.
  • the heating device 620 is installed on the branch flow path 220 to adjust the temperature of the exhaust gas flowing through the branch flow path 220. That is, the heating device 620 adjusts the temperature of the exhaust gas flowing into the urea decomposition chamber 300 through the branch flow path 220.
  • the heating device 620 may be a burner.
  • the heating device 620 may include a fuel supply device, a control device for controlling a supply fuel amount for heating temperature control, and a stabilizer.
  • the heating device 620 may be a plasma burner having improved performance by using plasma.
  • the selective catalytic reduction system 101 may further include an outside air supply device for supplying outside air to assist combustion of the heating device 620. That is, the outside air supply device may supply oxygen to the heating device 620.
  • the rear branch temperature sensor 811 is installed in the branch flow path 220 behind the heating device 620, and the front branch temperature sensor 812 is installed in the branch flow path in front of the heating device 620.
  • the main mass flow meter 851 is installed in the main exhaust flow path 210 to measure the mass flow rate of the exhaust gas
  • the main temperature sensor 815 is installed in the main exhaust flow path 210 to measure the temperature of the exhaust gas.
  • the main mass flow meter 851 may be installed in the main exhaust flow path 210 before the branch flow path 220 branches.
  • the first embodiment of the present invention is not limited thereto, and the main mass flow meter 851 may be omitted.
  • the mass flow rate of the exhaust gas flowing through the main exhaust flow path 210 may be estimated by mapping the exhaust gas emissions according to the load variation of the engine 900.
  • the control unit 700 calculates the amount of heat required to decompose urea, calculates the amount of heat that the exhaust gas has, and then takes the urea and ammonia injection unit 430 to be injected through the urea direct injection unit 410 in consideration of the amount of heat of the exhaust gas. Determine the injection rate of ammonia to be injected through.
  • the control unit 700 controls the operation of at least one of the blower 610, the heating device 620, and the urea supply unit 500 according to the determined ratio to generate ammonia in the urea decomposition chamber 300 or the urea direct injection unit ( The urea may be directly injected into the exhaust gas flowing through the main exhaust passage 210 through 410.
  • the ratio of urea to be injected through the urea direct injection unit 410 decomposes the total amount of urea to generate ammonia necessary to reduce nitrogen oxides (NOx) in the reactor to the amount of heat of the exhaust gas flowing into the reactor 100. It can be divided by the total calories required.
  • the controller 700 may calculate the amount of heat that the exhaust gas has through the temperature of the exhaust gas and the mass flow rate of the exhaust gas. And it is possible to calculate the amount of heat required to decompose the total amount of urea required to reduce the nitrogen oxides contained in the exhaust gas.
  • the controller 700 determines the injection ratio of urea to be directly injected into the exhaust gas flowing through the main exhaust flow path 210 through the urea direct injection unit 410 by dividing the heat amount of the exhaust gas by the amount of heat required to decompose the total amount of urea.
  • the controller 700 controls the urea supply unit 500 and the urea direct injection unit 410 according to the determined injection ratio to directly inject the urea into the main exhaust flow path 210.
  • control unit 700 limits the amount of urea injected through the urea direct injection unit 410 in the total amount of urea for producing ammonia required to reduce nitrogen oxides (NOx) in the reactor 100 to urea remaining urea
  • the blower 610 and the heating device 620 are controlled to decompose in the decomposition chamber 300 to generate ammonia.
  • control unit 700 controls the blower 610 to maintain a constant flow rate of the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path (220).
  • control unit 700 is the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path 220 in accordance with the information received from the front branch temperature sensor 812 and the rear branch temperature sensor 811 is a urea decomposition chamber (
  • the operation of the heating device 620 is controlled to supply the amount of heat required to generate ammonia in 300. That is, the mass flow rate is fixed in the calorie calculation formula and the temperature difference is controlled by a variable.
  • the amount of fuel consumed by the heating device 620 may be controlled according to the temperature change of the exhaust gas. That is, the amount of fuel consumed by the heating device 620 can be reduced.
  • the urea transfer device 530 of the urea supply unit 500 includes a urea transfer pump 531 for transferring urea and mass flow controllers 536 and 537 for quantitatively controlling the transfer amount of urea. ) May be included.
  • the urea transfer device 530 is one of the urea transfer pump 531, the first mass flow controller 536 for supplying urea to the urea decomposition chamber 300, And a second mass flow controller 537 for supplying urea to be directly injected into the main exhaust passage 210.
  • the first embodiment of the present invention is not limited thereto. 3 shows a modification of the first embodiment of the present invention.
  • the urea transfer device 530 of the urea supply unit 500 supplies urea to the first urea transfer pump 532 and the urea direct injection unit 410 that supplies urea to the urea decomposition chamber 300. It may also include a second urea transfer pump 533 to supply. In this case, the mass flow meters 536 and 537 may be omitted using the quantitative control pump as the first urea transfer pump 532 and the second urea transfer pump 533.
  • the urea supply unit 500 includes a manifold for supplying urea to a plurality of urea decomposition injection nozzles 517 for injecting urea into the urea decomposition chamber 300 and a plurality of urea decomposition injection nozzles 517, respectively. , 516 may be further included.
  • the urea decomposition chamber 300 is relatively small in volume and size in comparison with the main exhaust flow path 210, it is more effective to use a plurality of small-capacity injection nozzles than to use one large-capacity injection nozzle.
  • the selective catalytic reduction system 101 optimally injects urea used for the reduction reaction to reduce the nitrogen oxides contained in the exhaust gas and the reduction reaction as a whole. The remaining amount of ammonia slip can be minimized.
  • the efficiency of energy use may be improved by adjusting the ratio of direct injection urea and ammonia to be used according to the heat amount of the exhaust gas.
  • the amount of fuel consumed by the heating device 620 for providing heat to the urea decomposition chamber 300 can be reduced.
  • the selective catalytic reduction system 102 is a branch flow meter 952 installed behind the blower 610 instead of the front branch temperature sensor 812 of the first embodiment. ). That is, the front branch temperature sensor 812 of the first embodiment may be omitted in the second embodiment.
  • control unit 700 controls the heating device 620 to maintain a constant temperature of the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path (220). That is, the temperature difference is fixed in the calorie calculation formula and the mass flow rate is controlled by the variable.
  • the heating device 620 may constantly increase the temperature of the exhaust gas to the urea decomposition chamber 300 via the branch flow path 220 to 290 degrees Celsius.
  • Decomposition of urea at temperatures below 250 degrees Celsius results in the formation of by-products such as biuret, cyanuric acid, melamine, and ammeline, which are produced by the decomposition of urea, clogging the nozzles. Or obstruct the flow of exhaust gases. Therefore, it is appropriate to maintain the temperature of the urea decomposition chamber 300 at 250 degrees Celsius or more.
  • control unit 700 is the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path 220 in accordance with the information received from the rear branch temperature sensor 811 and the branch flow meter 952 urea decomposition chamber 300 Control the operation of the blower 610 to supply the amount of heat required to produce ammonia in the.
  • the power consumed to operate the blower 610 may be controlled according to the temperature change of the exhaust gas. That is, the power consumed by the blower 610 can be reduced.
  • the selective catalytic reduction system 102 optimally injects urea used for the reduction reaction to reduce the nitrogen oxides contained in the exhaust gas and the reduction reaction as a whole. The remaining amount of ammonia slip can be minimized.
  • the efficiency of energy use may be improved by adjusting the ratio of direct injection urea and ammonia to be used according to the heat amount of the exhaust gas.
  • the power consumed to operate the blower 610 for providing heat to the urea decomposition chamber 300 can be reduced.
  • the flow rate of the exhaust gas is calculated to calculate the urea dosing rate required to reduce the nitrogen oxide contained in the exhaust gas (S100).
  • the total amount of urea required is calculated based on the flow rate of the exhaust gas to calculate the urea dosing rate (S200).
  • the mass flow rate of the exhaust gas is calculated to be 110,000 kg / h
  • the urea dosing rate may be determined 270 kg / h.
  • the amount of heat required to decompose the urea to be supplied according to the urea dosing rate that is, the amount of heat required to decompose the total amount of urea into ammonia is calculated (S300).
  • the amount of heat of the exhaust gas flowing along the main exhaust flow path is calculated (S400). At this time, the heat amount of the exhaust gas can be calculated through the temperature and the flow rate of the exhaust gas.
  • the ratio of direct urea injection to be directly injected into the exhaust gas is determined in consideration of the heat amount of the exhaust gas (S500).
  • the urea direct injection ratio is the ratio of directly injecting urea, not ammonia, into the exhaust gas to reduce the nitrogen oxide content in the total amount of urea to be used according to the urea dosing rate.
  • the urea direct injection ratio may be 51.6%.
  • the urea is directly injected into the exhaust gas according to the urea direct injection ratio.
  • the urea direct injection ratio is 51.6%
  • the urea injected directly is 139.32 kg / h
  • the urea to be divided in a separate urea decomposition chamber is 130.68 kg / h.
  • the ammonia is generated at optimum efficiency by determining an operation rate of the heating device and the blower based on the temperature and flow rate of the fluid supplied to the urea decomposition chamber to generate ammonia according to the ammonia generation rate (S700).
  • the ammonia thus produced is injected into the exhaust gas.
  • a part of the exhaust gas may be branched into a fluid supplied to the urea decomposition chamber.
  • the branched exhaust gas may be heated up or the supply flow rate may be adjusted to provide the amount of heat required to break down the urea in the urea cracking chamber.
  • the amount of heat required for the production of ammonia in the urea decomposition chamber is controlled by adjusting the temperature rise temperature of the heating device while maintaining a constant operating flow rate of the blower, or by maintaining the temperature rising temperature of the heating device constant and adjusting the operating flow rate of the blower. Can provide.
  • the ratio of urea to be directly injected into the exhaust gas may be readjusted ( S900).
  • the efficiency of energy use may be improved by adjusting the ratio of direct injection urea and ammonia to be used according to the heat amount of the exhaust gas.
  • main exhaust flow path 220 branch flow path
  • urea decomposition chamber 410 urea direct injection unit
  • urea transfer device 550 urea tank
  • blower 620 heating device
  • control unit 811 rear branch temperature sensor
  • main mass flow meter 900 engine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An embodiment of the present invention relates to a selective catalytic reduction system. The selective catalytic reduction system comprises: a main exhaust flow path in which an exhaust gas containing a nitrogen oxide moves; a reactor installed in the main flow path and including a catalyst for reducing the nitrogen oxide contained in the exhaust gas; a urea decomposition chamber for decomposing urea and generating ammonia; an ammonia injection part for injecting the ammonia generated from the urea decomposition chamber into the exhaust gas to be introduced into the reactor; a urea direct injection part for directly injecting the urea into the exhaust gas to be introduced into the reactor; a urea supply part for supplying urea to the urea decomposition chamber or supplying urea to the urea direct injection part; a diverging flow path which diverges from the main exhaust flow path in the front of the reactor and is connected to the urea decomposition chamber; a blower, installed in the diverging flow path, for adjusting the flow rate of the exhaust gas flowing in the diverging flow path; a heater, installed in the diverging flow path, for adjusting the temperature of the exhaust gas flowing in the diverging flow path; and a controller for controlling the blower, the heater and the urea supply part.

Description

선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법Selective Catalytic Reduction System and Selective Catalytic Reduction Method
본 발명의 실시예는 선택적 촉매 환원 반응을 이용하여 배기 가스가 함유한 질소산화물을 저감시키기 위한 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법에 관한 것이다.Embodiments of the present invention relate to a selective catalytic reduction system and a selective catalytic reduction method for reducing nitrogen oxides contained in exhaust gases by using a selective catalytic reduction reaction.
일반적으로 선택적 촉매 환원(selective catalytic reduction, SCR) 시스템은 디젤 엔진, 보일러, 소각기 등에서 발생된 배기 가스를 정화하여 질소산화물을 저감시키기 위한 시스템이다.In general, a selective catalytic reduction (SCR) system is a system for reducing nitrogen oxides by purifying exhaust gases generated from diesel engines, boilers, and incinerators.
선택적 촉매 환원 시스템은 촉매가 내부에 설치된 반응기에 배기 가스와 환원제를 함께 통과시키면서 배기 가스에 함유된 질소산화물과 환원제를 반응시켜 질소와 수증기로 환원 처리한다.In the selective catalytic reduction system, the nitrogen gas contained in the exhaust gas and the reducing agent react with each other while passing the exhaust gas and the reducing agent together in a reactor in which the catalyst is installed therein, and the reduction process is performed with nitrogen and water vapor.
선택적 촉매 환원 시스템은 질소산화물을 저감시키기 위한 환원제로 우레아(Urea)를 직접 분사하여 사용하거나 우레아를 가수분해시켜 생성된 암모니아(NH3)를 분사하여 사용하고 있다.The selective catalytic reduction system is used by directly spraying urea (Urea) as a reducing agent to reduce nitrogen oxides or by spraying ammonia (NH 3 ) generated by hydrolysis of urea.
하지만, 우레아가 섭씨 250도 미만의 온도를 갖는 배기 가스에 직접 분사되면, 우레아가 분해되면서 생성되는 뷰렛(biuret), 시아누르산(cyanuric acid), 멜라민(melamine), 및 아멜린(ammeline) 등과 같은 부산물에 의해 노즐이 막히거나 배기 가스의 흐름을 방해하는 문제점이 있다. However, when urea is directly injected into an exhaust gas having a temperature of less than 250 degrees Celsius, biuret, cyanuric acid, melamine, and ammeline, which are produced as the urea decomposes, etc. There is a problem that the nozzle is clogged by the same by-product or obstructs the flow of exhaust gas.
또한, 우레아를 가수분해시켜 암모니아를 생성하기 위해서는 가수분해 챔버의 내부 온도를 전기 히터 또는 버너를 이용하여 가수분해 반응 온도까지 상승시켜야 하므로, 가수분해에 별도로 많은 에너지가 소모되는 문제점이 있다.In addition, in order to hydrolyze the urea to generate ammonia, since the internal temperature of the hydrolysis chamber must be raised to the hydrolysis reaction temperature by using an electric heater or a burner, a large amount of energy is separately consumed for hydrolysis.
본 발명의 실시예는 환원 반응에 사용되는 우레아를 최적 분사하여 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지와 환원 반응 후 남는 암모니아 슬립(ammonia slip)량을 최소화할 수 있는 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법을 제공한다.Embodiment of the present invention is to selectively spray the urea used in the reduction reaction to reduce the nitrogen oxides contained in the exhaust gas as a whole to reduce the amount of energy consumed and the amount of ammonia slip remaining after the reduction reaction (selective catalytic reduction) A system and selective catalytic reduction method are provided.
본 발명의 실시예에 따르면, 선택적 촉매 환원 시스템은 질소산화물(NOx)을 함유한 배기 가스가 이동하는 메인 배기 유로, 상기 메인 배기 유로 상에 설치되어 배기 가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기, 우레아(Urea)를 분해하여 암모니아(NH3)를 생성하는 우레아 분해 챔버, 상기 우레아 분해 챔버에서 생성된 암모니아를 상기 반응기에 유입될 배기 가스에 분사하는 암모니아 분사부, 상기 반응기에 유입될 배기 가스에 우레아를 직분사하는 우레아 직분사부, 상기 우레아 분해 챔버에 우레아를 공급하거나 상기 우레아 직분사부에 우레아를 공급하는 우레아 공급부, 상기 반응기 전방의 상기 메인 배기 유로에서 분기되어 상기 우레아 분해 챔버와 연결된 분기 유로, 상기 분기 유로 상에 설치되어 상기 분기 유로를 흐르는 배기 가스의 유량을 조절하는 블로워, 상기 분기 유로 상에 설치되어 상기 분기 유로를 흐르는 배기 가스의 온도를 조절하는 가열 장치, 및 상기 블로워와 상기 가열 장치 그리고 상기 우레아 공급부를 제어하는 제어부를 포함한다.According to an embodiment of the present invention, the selective catalytic reduction system is a catalyst for reducing the nitrogen oxide contained in the exhaust gas is installed on the main exhaust passage, the main exhaust passage to which the exhaust gas containing nitrogen oxides (NOx) is moved A reactor comprising a, urea decomposition chamber to decompose urea (Urea) to produce ammonia (NH 3 ), ammonia injection unit for injecting ammonia generated in the urea decomposition chamber to the exhaust gas to be introduced into the reactor, the reactor Urea direct injection unit for directly injecting urea into the exhaust gas to be introduced, urea supply unit for supplying urea to the urea decomposition chamber or urea supply unit for urea injection unit, branched from the main exhaust flow path in front of the reactor and the urea decomposition chamber A branch flow passage connected to the branch flow passage and installed on the branch flow passage to flow the branch flow passage; A blower for regulating the flow rate of the exhaust gas, is provided on the branch flow path and a heating device, and a control unit for controlling parts of the heating device and the urea supply and the blower to control the temperature of the exhaust gas flowing in the branch channel.
상기 제어부는 우레아를 분해하는데 필요한 열량을 산출하고 배기 가스가 갖는 열량을 산출한 후, 상기 배기 가스의 열량을 고려하여 상기 우레아 직분사부를 통해 분사할 우레아와 상기 암모니아 분사부를 통해 분사할 암모니아의 분사 비율을 결정할 수 있다. 그리고 상기 제어부는 상기 결정된 비율에 따라 상기 블로워, 상기 가열 장치, 및 상기 우레아 공급부의 동작을 제어하여 상기 우레아 분해 챔버에서 암모니아를 생성하거나 상기 우레아 직분사부로 우레아를 직분사할 수 있다.The control unit calculates the amount of heat required to decompose urea, calculates the amount of heat that the exhaust gas has, and in consideration of the amount of heat of the exhaust gas, urea to be injected through the urea direct injection unit and injection of ammonia to be injected through the ammonia injection unit. The ratio can be determined. The controller may control the operation of the blower, the heating device, and the urea supply unit according to the determined ratio to generate ammonia in the urea decomposition chamber or to directly inject urea into the urea direct injection unit.
상기 우레아 직분사부를 통해 분사할 우레아의 비율은 상기 반응기에 유입되는 배기 가스가 갖는 열량을 상기 반응기에서 질소산화물(NOx)을 환원시키기 위해 필요한 암모니아를 생성하기 위한 우레아의 총량을 분해하는데 필요한 총 열량으로 나눈 값일 수 있다.The ratio of urea to be injected through the urea direct injection unit is the total amount of heat required to decompose the total amount of urea for generating ammonia necessary to reduce nitrogen oxides (NOx) in the reactor to the amount of heat of the exhaust gas flowing into the reactor. It can be divided by.
상기 우레아 분해 챔버는 상기 반응기에서 질소산화물(NOx)을 환원시키기 위해 필요한 암모니아를 생성하기 위한 우레아의 총량에서 상기 우레아 직분사부를 통해 분사한 우레아의 양을 제한 나머지 우레아를 분해하여 암모니아를 생성할 수 있다.The urea decomposition chamber may generate ammonia by decomposing the remaining urea by limiting the amount of urea injected through the urea direct injection unit in the total amount of urea for producing ammonia required to reduce nitrogen oxides (NOx) in the reactor. have.
상기한 선택적 촉매 환원 시스템은 상기 가열 장치 전후방의 상기 분기 유로에 각각 설치된 전방 분기 온도 센서 및 후방 분기 온도 센서를 더 포함할 수 있다. 그리고 상기 블로워가 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스의 유량을 일정하게 유지할 때, 상기 제어부는 상기 전방 분기 온도 센서 및 상기 후방 분기 온도 센서에서 전달받은 정보에 따라 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스가 상기 우레아 분해 챔버에서 암모니아를 생성하는데 필요한 열량을 공급하도록 상기 가열 장치의 가동을 제어할 수 있다.The selective catalytic reduction system may further include a front branch temperature sensor and a rear branch temperature sensor respectively installed in the branch passages before and after the heating apparatus. And when the blower maintains a constant flow rate of the exhaust gas supplied to the urea decomposition chamber through the branch flow path, the control unit controls the branch flow path according to the information received from the front branch temperature sensor and the rear branch temperature sensor. The exhaust gas supplied to the urea decomposition chamber may control the operation of the heating device to supply the amount of heat required to generate ammonia in the urea decomposition chamber.
한편, 상기한 선택적 촉매 환원 시스템은 상기 가열 장치 후방의 상기 분기 유로에 설치된 후방 분기 온도 센서 및 상기 블로워 후방에 설치된 분기 유량계를 더 포함할 수 있다. 그리고 상기 가열 장치가 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스의 온도를 일정하게 유지할 때, 상기 제어부는 상기 분기 온도 센서 및 상기 분기 유량계에서 전달받은 정보에 따라 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스가 상기 우레아 분해 챔버에서 암모니아를 생성하는데 필요한 열량을 공급하도록 상기 블로워의 가동을 제어할 수 있다.Meanwhile, the selective catalytic reduction system may further include a rear branch temperature sensor installed in the branch flow path behind the heating device and a branch flow meter installed behind the blower. And when the heating device maintains a constant temperature of the exhaust gas supplied to the urea decomposition chamber through the branch flow path, the control unit is the through the branch flow path according to the information received from the branch temperature sensor and the branch flow meter. The operation of the blower can be controlled so that the exhaust gas supplied to the urea decomposition chamber supplies the amount of heat required to produce ammonia in the urea decomposition chamber.
상기 우레아 공급부는 우레아를 저장하는 우레아 탱크와, 상기 우레아 탱크에 저장된 우레아를 이송시키는 우레아 이송 장치, 그리고 우레아의 공급량 및 공급 방향을 제어하는 컨트롤 밸브를 포함할 수 있다.The urea supply unit may include a urea tank for storing urea, a urea transfer device for transferring urea stored in the urea tank, and a control valve for controlling the supply amount and supply direction of urea.
상기한 선택적 촉매 환원 시스템에서, 상기 메인 배기 유로에 설치되어 배기 가스의 질량 유량을 측정하는 메인 질량 유량계와 배기 가스의 온도를 측정하는 메인 온도 센서를 더 포함할 수 있다.The selective catalytic reduction system may further include a main mass flow meter installed in the main exhaust flow path and measuring a mass flow rate of the exhaust gas and a main temperature sensor measuring the temperature of the exhaust gas.
또한, 본 발명의 실시예에 따르면, 선택적 촉매 환원 방법은 질소산화물(NOx)을 함유한 배기 가스의 유량을 산출하는 단계와, 상기 배기 가스가 함유한 질소산화물을 환원 반응을 통해 제거하기 위해 필요한 우레아의 총량을 산출하는 단계와, 상기 우레아의 총량을 암모니아로 분해하기 위해 필요한 총 열량을 산출하는 단계와, 상기 배기 가스가 갖는 열량을 산출하는 단계와, 상기 배기 가스가 갖는 열량을 고려하여 상기 배기 가스에 직접 분사할 우레아의 비율을 결정한 후 해당량의 우레아를 상기 배기 가스에 직접 분사하는 단계, 그리고 상기 우레아의 총량에서 상기 직접 분사할 우레아의 양을 제한 나머지 우레아를 별도의 우레아 분해 챔버에서 분해하여 암모니아를 생성하고 상기 우레아 분해 챔버에서 생성된 암모니아를 상기 배기 가스에 분사는 단계를 포함한다.In addition, according to an embodiment of the present invention, the selective catalytic reduction method is required to calculate the flow rate of the exhaust gas containing nitrogen oxides (NOx), and to remove the nitrogen oxides containing the exhaust gas through a reduction reaction Calculating a total amount of urea, calculating a total amount of heat required to decompose the total amount of urea into ammonia, calculating a heat amount of the exhaust gas, and considering the amount of heat of the exhaust gas, Determining the proportion of urea to be injected directly into the exhaust gas and then directly injecting a corresponding amount of urea into the exhaust gas, and limiting the amount of urea to be directly injected from the total amount of the urea, remaining urea in a separate urea decomposition chamber Decompose to produce ammonia and spray the ammonia produced in the urea decomposition chamber to the exhaust gas Includes the steps.
상기한 선택적 촉매 환원 방법에서는 배기 가스의 일부를 분기시켜 상기 우레아 분해 챔버에 공급하며, 상기 분기된 배기 가스를 승온 시키거나 공급 유량을 조절하여 상기 우레아 분해 챔버에서 우레아를 분해하는데 필요한 열량을 제공할 수 있다.In the selective catalytic reduction method, a part of the exhaust gas is branched and supplied to the urea decomposition chamber, and the amount of heat required to decompose urea in the urea decomposition chamber is increased by raising the branched exhaust gas or adjusting a supply flow rate. Can be.
상기한 선택적 촉매 환원 방법에서는 배기 가스가 함유한 질소산화물의 저감 효율과 환원 반응 후 암모니아 슬립량을 측정한 값이 기준값에 미달하면 배기 가스에 직접 분사할 우레아의 비율을 재조정할 수 있다.In the selective catalytic reduction method described above, when the reduction efficiency of the nitrogen oxide contained in the exhaust gas and the measured value of the ammonia slip after the reduction reaction are less than the reference value, the ratio of urea to be directly injected into the exhaust gas can be readjusted.
본 발명의 실시예에 따르면, 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법은 환원 반응에 사용되는 우레아를 최적 분사하여 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지와 환원 반응 후 남는 암모니아 슬립(ammonia slip)량을 최소화할 수 있다.According to an embodiment of the present invention, the selective catalytic reduction system and the selective catalytic reduction method optimize the injection of urea used in the reduction reaction to reduce nitrogen oxides contained in the exhaust gas, and the energy consumed as a whole and the ammonia slip remaining after the reduction reaction ( Ammonia slip can be minimized.
도 1은 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템을 나타낸 구성도이다.1 is a block diagram showing a selective catalytic reduction system according to a first embodiment of the present invention.
도 2는 도 1의 메인 배기 유로에 우레아를 분사하기 위한 구성과 우레아 분해 챔버에 우레아를 분사하기 위한 구성을 나타낸 구성도이다.FIG. 2 is a diagram illustrating a configuration for injecting urea into the main exhaust passage of FIG. 1 and a configuration for injecting urea into the urea decomposition chamber.
도 3은 도 2의 변형례를 나타낸 구성도이다.3 is a configuration diagram illustrating a modification of FIG. 2.
도 4는 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템을 나타낸 구성도이다.4 is a block diagram showing a selective catalytic reduction system according to a second embodiment of the present invention.
도 5는 본 발명의 실시예들에 따른 선택적 촉매 환원 시스템을 이용한 선택적 촉매 환원 방법을 나타낸 순서도이다.5 is a flowchart illustrating a selective catalytic reduction method using a selective catalytic reduction system according to embodiments of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
또한, 여러 실시예들에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1 실시예에서 설명하고, 그 외의 제2 실시예에서는 제1 실시예와 다른 구성에 대해서만 설명하기로 한다.In addition, in various embodiments, components having the same configuration will be described in the first embodiment by using the same reference numerals, and in the second embodiment, only the configuration different from the first embodiment will be described. Shall be.
도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.It is noted that the figures are schematic and not drawn to scale. The relative dimensions and ratios of the parts in the figures have been exaggerated or reduced in size for clarity and convenience in the figures and any dimensions are merely exemplary and not limiting. And the same reference numerals are used to refer to similar features in the same structure, element or part shown in more than one figure.
본 발명의 실시예는 본 발명의 이상적인 실시예를 구체적으로 나타낸다. 그 결과, 도해의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.Embodiments of the invention specifically illustrate ideal embodiments of the invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
이하, 도 1을 참조하여 본 발명의 제1 실시예에 따른 선택적 촉매 환원 반응(selective catalytic reduction, SCR) 시스템(101)을 설명한다.Hereinafter, a selective catalytic reduction (SCR) system 101 according to a first embodiment of the present invention will be described with reference to FIG. 1.
본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 엔진(900)에서 배출된 배기 가스가 함유한 질소산화물(NOx)을 환원 반응을 통해 제거하여 배기 가스의 질소산화물 함유량을 저감시킨다. 여기서, 엔진(900)은 선박에 사용되는 저속 또는 중속 디젤 엔진일 수 있다.The selective catalytic reduction system 101 according to the first embodiment of the present invention reduces the nitrogen oxide content of the exhaust gas by removing nitrogen oxide (NOx) contained in the exhaust gas discharged from the engine 900 through a reduction reaction. . Here, the engine 900 may be a low speed or medium speed diesel engine used in a ship.
하지만, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)이 엔진(900)에서 배출된 배기 가스에 한정되어 사용되는 것은 아니며, 플랜트 등 다양한 분야에서도 사용될 수 있다.However, the selective catalytic reduction system 101 according to the first embodiment of the present invention is not limited to the exhaust gas discharged from the engine 900 and may be used in various fields such as a plant.
도 1에 도시한 바와 같이, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 메인 배기 유로(210), 반응기(100), 우레아 분해 챔버(300), 암모니아 분사부(430), 우레아 직분사부(410), 우레아 공급부(500), 분기 유로(220), 블로워(610), 가열 장치(620), 및 제어부(700)을 포함한다.As shown in FIG. 1, the selective catalytic reduction system 101 according to the first embodiment of the present invention includes a main exhaust passage 210, a reactor 100, a urea decomposition chamber 300, and an ammonia injection unit 430. , A urea direct injection unit 410, a urea supply unit 500, a branch flow path 220, a blower 610, a heating device 620, and a control unit 700.
또한, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 후방 분기 온도 센서(811), 전방 분기 온도 센서(812), 메인 질량 유량계(851), 메인 온도 센서(815), 및 믹서(mixer, 450)를 더 포함할 수 있다.In addition, the selective catalytic reduction system 101 according to the first embodiment of the present invention includes a rear branch temperature sensor 811, a front branch temperature sensor 812, a main mass flow meter 851, a main temperature sensor 815, and The mixer may further include a mixer 450.
메인 배기 유로(210)는 질소산화물(NOx)을 함유한 배기 가스가 이동하는 통로가 된다.The main exhaust passage 210 serves as a passage through which the exhaust gas containing nitrogen oxides (NOx) moves.
반응기(100)는 메인 배기 유로(210) 상에 설치된다. 반응기(100)는 배기 가스가 함유한 질소산화물(NOx)을 저감시키기 위한 촉매를 포함한다. 촉매는 배기 가스에 함유된 질소산화물(NOx)과 환원제의 반응을 촉진시켜 질소산화물(NOx)을 질소와 수증기로 환원 처리한다. 이때, 질소산화물(NOx)과 반응하여 환원시킬 최종적인 환원제로 암모니아(NH3)가 사용될 수 있다.The reactor 100 is installed on the main exhaust flow path 210. The reactor 100 includes a catalyst for reducing nitrogen oxides (NOx) contained in the exhaust gas. The catalyst catalyzes the reaction between the nitrogen oxide (NOx) contained in the exhaust gas and the reducing agent to reduce the nitrogen oxide (NOx) to nitrogen and water vapor. At this time, ammonia (NH 3 ) may be used as the final reducing agent to be reduced by reacting with nitrogen oxide (NOx).
촉매는 제올라이트(Zeolite), 바나듐(Vanadium), 및 백금(Platinum) 등과 같이 해당 기술 분야의 종사자에게 공지된 다양한 소재로 만들어질 수 있다. 일례로, 촉매는 섭씨 250도 내지 섭씨 350도 범위 내의 활성 온도를 가질 수 있다. 여기서, 활성 온도는 촉매가 피독되지 않고 안정적으로 질소산화물을 환원시킬 수 있는 온도를 말한다. 촉매가 활성 온도 범위 밖에서 반응하면, 촉매가 피독되면서 효율이 저하된다. 구체적으로, 촉매를 피독시키는 피독 물질은 황산암모늄(Ammonium sulfate, (NH4)2SO4)과 아황산수소암모늄(Ammonium bisulfate, NH4HSO4) 중 하나 이상을 포함할 수 있다. 이러한 촉매 피독 물질은 촉매에 흡착되어 촉매의 활성을 저하시킨다. 촉매 피독 물질은 상대적으로 높은 온도에서 분해되므로, 촉매를 승온시키면 피독된 촉매를 재생할 수 있다.The catalyst may be made of various materials known to those skilled in the art, such as zeolite, vanadium, platinum and the like. In one example, the catalyst may have an active temperature in the range of 250 degrees Celsius to 350 degrees Celsius. Here, the active temperature refers to a temperature at which the catalyst can be stably reduced without poisoning the catalyst. If the catalyst reacts outside the active temperature range, the catalyst is poisoned and the efficiency is lowered. Specifically, the poisoning substance for poisoning the catalyst may include one or more of ammonium sulfate (NH 4 ) 2 SO 4 ) and ammonium bisulfate (NH 4 HSO 4 ). These catalyst poisoning substances are adsorbed on the catalyst to lower the activity of the catalyst. Since the catalyst poisoning substance decomposes at a relatively high temperature, the catalyst can be regenerated by raising the temperature.
또한, 반응기(100)의 하우징은, 일례로, 스테인레스 스틸(stainless steel)을 소재로 만들어질 수 있다.In addition, the housing of the reactor 100, for example, may be made of stainless steel (stainless steel) material.
우레아 분해 챔버(300)는 우레아(urea, CO(NH2)2)를 분해하여 질소산화물(NOx)을 환원시킬 환원제로 사용되는 암모니아(NH3)를 생성한다.The urea decomposition chamber 300 decomposes urea (urea, CO (NH 2 ) 2 ) to produce ammonia (NH 3 ) used as a reducing agent to reduce nitrogen oxides (NOx).
우레아 분해 챔버(300)에서 우레아(urea, CO(NH2)2)가 분해되면, 암모니아(NH3)와 함께 이소시안산(Isocyanic acid, HNCO)이 생성된다. 그리고 이소시안산은 다시 분해되어 암모니아가 된다. 즉, 우레아가 분해되어 최종적으로 암모니아가 생성될 수 있다.When urea (urea, CO (NH 2 ) 2 ) is decomposed in the urea decomposition chamber 300, isocyanic acid (HNCO) is generated together with ammonia (NH 3 ). Isocyanic acid is decomposed again to ammonia. That is, urea may be decomposed to finally produce ammonia.
암모니아 분사부(430)는 우레아 분해 챔버(300)에서 생성된 암모니아(NH3)를 반응기(100)에 유입될 배기 가스에 분사한다. 분사된 암모니아는 배기 가스와 혼합되어 반응기(100)의 촉매를 거치면서 배기 가스에 함유된 질소산화물을 환원시킨다.The ammonia injection unit 430 injects ammonia (NH 3 ) generated in the urea decomposition chamber 300 to the exhaust gas to be introduced into the reactor 100. The injected ammonia is mixed with the exhaust gas to reduce the nitrogen oxide contained in the exhaust gas while passing through the catalyst of the reactor 100.
구체적으로, 암모니아 분사부(430)는 메인 배기 유로(210)에 설치된 암모니아 분사 노즐(431)과, 암모니아 분사 노즐(431)과 우레아 분해 챔버(300)를 연결하는 암모니아 분사 유로(435)를 포함할 수 있다.Specifically, the ammonia injection unit 430 includes an ammonia injection nozzle 431 installed in the main exhaust flow path 210, and an ammonia injection flow path 435 connecting the ammonia injection nozzle 431 and the urea decomposition chamber 300. can do.
즉, 암모니아 분사부(430)는 반응기(100) 전방의 메인 배기 유로(210)를 지나는 배기 가스를 향해 암모니아(NH3)를 분사할 수 있다.That is, the ammonia injection unit 430 may inject ammonia NH 3 toward the exhaust gas passing through the main exhaust flow path 210 in front of the reactor 100.
본 명세서에서 전방은 배기 가스의 흐름을 기준으로 상류 측을 의미하며 후방은 하류 측을 의미한다.In the present specification, the front means an upstream side and the rear means a downstream side based on the flow of exhaust gas.
우레아 직분사부(410)는 반응기(100)에 유입될 배기 가스에 우레아를 직접 분사한다.The urea direct injection unit 410 directly injects urea to the exhaust gas to be introduced into the reactor 100.
구체적으로, 우레아 직분사부(410)는 메인 배기 유로(210)에 설치된 우레아 분사 노즐(411)과, 우레아 분사 노즐(411)에 우레아(urea)를 공급하는 우레아 분사 유로(415)를 포함할 수 있다.Specifically, the urea direct injection unit 410 may include a urea injection nozzle 411 installed in the main exhaust flow path 210 and a urea injection flow path 415 for supplying urea to the urea injection nozzle 411. have.
즉, 우레아 직분사부(410)는 반응기(100) 전방의 메인 배기 유로(210)를 지나는 배기 가스를 향해 분해되지 않은 우레아(urea)를 직접 분사할 수 있다.That is, the urea direct injection unit 410 may directly inject unresolved urea toward the exhaust gas passing through the main exhaust passage 210 in front of the reactor 100.
우레아 직분사부(410)에서 분사된 우레아는 배기 가스와 혼합되며, 배기 가스가 갖는 열량에 의해 암모니아로 분해될 수 있다. 이렇게 생성된 암모니아는, 암모니아 분사부(430)에서 분사된 암모니아와 마찬가지로, 반응기(100)의 촉매를 거치면서 배기 가스에 함유된 질소산화물을 환원시킨다.The urea injected from the urea direct injection unit 410 may be mixed with the exhaust gas and decomposed into ammonia by the heat amount of the exhaust gas. The ammonia thus produced, like ammonia injected from the ammonia injection unit 430, reduces nitrogen oxide contained in the exhaust gas while passing through the catalyst of the reactor 100.
본 발명의 제1 실시예에서, 암모니아 분사부(430)는 우레아 분사부(410) 보다 상대적으로 반응기(100)에 인접하게 위치한다. 즉, 우레아 분사부(410)가 상대적으로 반응기(100)로부터 멀리 떨어진 위치에서 배기 가스를 향해 우레아를 분사한다. 우레아 분사부(410)에서 분사된 우레아가 배기 가스와 혼합된 후 배기 가스의 열량에 의해 암모니아로 분해되기까지의 시간적 공간적 여유를 확보하기 위함이다.In the first embodiment of the present invention, the ammonia injection portion 430 is located closer to the reactor 100 than the urea injection portion 410. That is, the urea injection unit 410 injects urea toward the exhaust gas at a position relatively far from the reactor 100. The urea injected from the urea injection unit 410 is to ensure the time and space to be mixed with the exhaust gas and decomposed into ammonia by the heat of the exhaust gas.
믹서(mixer, 450)는 암모니아 분사부(430)와 반응기(100) 사이의 메인 배기 유로(210) 상에 설치된다. 믹서(450)는 배기 가스가 반응기(100)에 유입되기 전에 환원제인 암모니아와 배기 가스를 고르게 혼합시킨다.The mixer 450 is installed on the main exhaust flow path 210 between the ammonia injection unit 430 and the reactor 100. The mixer 450 evenly mixes the exhaust gas with ammonia, which is a reducing agent, before the exhaust gas enters the reactor 100.
우레아 공급부(500)는 우레아 분해 챔버(300)에 우레아를 공급하거나 우레아 직분사부(410)에 우레아를 공급한다.The urea supply unit 500 supplies urea to the urea decomposition chamber 300 or supplies urea to the urea direct injection unit 410.
구체적으로, 우레아 공급부(500)는 우레아를 저장하는 우레아 탱크(550)와, 우레아 탱크(550)에 저장된 우레아를 이송시키는 우레아 이송 장치(530), 그리고 우레아의 공급량 및 공급 방향을 제어하는 컨트롤 밸브(510)를 포함할 수 있다.Specifically, the urea supply unit 500 is a urea tank 550 for storing urea, a urea transfer device 530 for transferring urea stored in the urea tank 550, and a control valve for controlling the supply amount and supply direction of urea 510 may be included.
또한, 우레아 공급부(500)는 우레아 이송 장치(530)가 우레아를 우레아 분해 챔버(300)에 공급할 수 있도록 연결된 우레아 공급 유로(515)를 더 포함할 수 있다. In addition, the urea supply unit 500 may further include a urea supply passage 515 connected to the urea transfer device 530 to supply urea to the urea decomposition chamber 300.
즉, 컨트롤 밸브(510)는 우레아 공급 유로(515) 상에 설치될 수 있으며, 우레아 직분사부(410)의 우레아 분사 유로(415)는 컨트롤 밸브(510)와 우레아 분사 노즐(411)을 연결할 수 있다.That is, the control valve 510 may be installed on the urea supply flow path 515, and the urea injection flow path 415 of the urea direct injection unit 410 may connect the control valve 510 and the urea injection nozzle 411. have.
또한, 컨트롤 밸브(510)는 우레아 직분사부(410)에 공급할 우레아와 우레아 분해 챔버(300)에 공급할 우레아를 비례 제어할 수 있다.In addition, the control valve 510 may proportionally control urea to be supplied to the urea direct injection unit 410 and urea to be supplied to the urea decomposition chamber 300.
일례로, 컨트롤 밸브(510)는 비례 제어 밸브이거나 복수의 전자 밸브(Solenoid Valve)로 만들어질 수 있다.For example, the control valve 510 may be a proportional control valve or a plurality of solenoid valves.
분기 유로(220)는 반응기(100) 전방의 메인 배기 유로(210)에서 분기되어 우레아 분해 챔버(300)와 연결된다. Branch flow path 220 is branched from the main exhaust flow path 210 in front of the reactor 100 is connected to the urea decomposition chamber 300.
블로워(610)는 분기 유로(220) 상에 설치된다. 블로워(610)는 분기 유로(220)를 흐르는 배기 가스의 유량을 조절한다. 즉, 블로워(610)는 분기 유로(220)를 통해 우레아 분해 챔버(300)에 유입되는 배기 가스의 유량을 조절한다.The blower 610 is installed on the branch flow path 220. The blower 610 adjusts the flow rate of the exhaust gas flowing through the branch flow path 220. That is, the blower 610 adjusts the flow rate of the exhaust gas flowing into the urea decomposition chamber 300 through the branch flow path 220.
가열 장치(620)는 분기 유로(220) 상에 설치되어 분기 유로(220)를 흐르는 배기 가스의 온도를 조절한다. 즉, 가열 장치(620)는 분기 유로(220)를 통해 우레아 분해 챔버(300)에 유입되는 배기 가스의 온도를 조절한다.The heating device 620 is installed on the branch flow path 220 to adjust the temperature of the exhaust gas flowing through the branch flow path 220. That is, the heating device 620 adjusts the temperature of the exhaust gas flowing into the urea decomposition chamber 300 through the branch flow path 220.
또한, 본 발명의 제1 실시예에서, 가열 장치(620)는 버너(burner)일 수 있다. 구체적으로, 가열 장치(620)는 연료 공급 장치와, 가열 온도 제어를 위해 공급 연료량을 제어하는 제어 장치, 그리고 안정 장치 등을 포함할 수 있다.In addition, in the first embodiment of the present invention, the heating device 620 may be a burner. In detail, the heating device 620 may include a fuel supply device, a control device for controlling a supply fuel amount for heating temperature control, and a stabilizer.
또한, 가열 장치(620)는 플라스마(plasma)를 이용하여 성능을 향상시킨 플라스마 버너일 수 있다.In addition, the heating device 620 may be a plasma burner having improved performance by using plasma.
또한, 도 1에 도시하지는 않았으나, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 가열 장치(620)의 연소를 돕기 위해 외기를 공급하는 외기 공급 장치를 더 포함할 수 있다. 즉, 외기 공급 장치는 가열 장치(620)에 산소를 공급할 수 있다.In addition, although not shown in FIG. 1, the selective catalytic reduction system 101 according to the first embodiment of the present invention may further include an outside air supply device for supplying outside air to assist combustion of the heating device 620. That is, the outside air supply device may supply oxygen to the heating device 620.
후방 분기 온도 센서(811)는 가열 장치(620) 후방의 분기 유로(220)에 설치되고, 전방 분기 온도 센서(812)는 가열 장치(620) 전방의 분기 유로에 설치된다.The rear branch temperature sensor 811 is installed in the branch flow path 220 behind the heating device 620, and the front branch temperature sensor 812 is installed in the branch flow path in front of the heating device 620.
메인 질량 유량계(851)는 메인 배기 유로(210)에 설치되어 배기 가스의 질량 유량을 측정하고, 메인 온도 센서(815)는 메인 배기 유로(210)에 설치되어 배기 가스의 온도를 측정한다.The main mass flow meter 851 is installed in the main exhaust flow path 210 to measure the mass flow rate of the exhaust gas, and the main temperature sensor 815 is installed in the main exhaust flow path 210 to measure the temperature of the exhaust gas.
이때, 메인 질량 유량계(851)는 분기 유로(220)가 분기 되기 전의 메인 배기 유로(210)에 설치될 수 있다. 하지만, 본 발명의 제1 실시예가 이에 한정되는 것은 아니며, 메인 질량 유량계(851)는 생략될 수도 있다. 메인 질량 유량계(851)가 생략될 경우, 엔진(900)의 부하 변동에 따른 배기 가스 배출량을 맵핑(mapping)하여 메인 배기 유로(210)를 흐르는 배기 가스의 질량 유량을 추정할 수 있다.In this case, the main mass flow meter 851 may be installed in the main exhaust flow path 210 before the branch flow path 220 branches. However, the first embodiment of the present invention is not limited thereto, and the main mass flow meter 851 may be omitted. When the main mass flow meter 851 is omitted, the mass flow rate of the exhaust gas flowing through the main exhaust flow path 210 may be estimated by mapping the exhaust gas emissions according to the load variation of the engine 900.
제어부(700)는 우레아를 분해하는데 필요한 열량을 산출하고 배기 가스가 갖는 열량을 산출한 후, 배기 가스의 열량을 고려하여 우레아 직분사부(410)를 통해 분사할 우레아와 암모니아 분사부(430)를 통해 분사할 암모니아의 분사 비율을 결정한다.The control unit 700 calculates the amount of heat required to decompose urea, calculates the amount of heat that the exhaust gas has, and then takes the urea and ammonia injection unit 430 to be injected through the urea direct injection unit 410 in consideration of the amount of heat of the exhaust gas. Determine the injection rate of ammonia to be injected through.
그리고 제어부(700)는 결정된 비율에 따라 블로워(610)와, 가열 장치(620), 그리고 우레아 공급부(500) 중 하나 이상의 동작을 제어하여 우레아 분해 챔버(300)에서 암모니아를 생성하거나 우레아 직분사부(410)로 메인 배기 유로(210)를 흐르는 배기 가스에 우레아를 직분사할 수 있다.The control unit 700 controls the operation of at least one of the blower 610, the heating device 620, and the urea supply unit 500 according to the determined ratio to generate ammonia in the urea decomposition chamber 300 or the urea direct injection unit ( The urea may be directly injected into the exhaust gas flowing through the main exhaust passage 210 through 410.
우레아 직분사부(410)를 통해 분사할 우레아의 비율은 반응기(100)에 유입되는 배기 가스가 갖는 열량을 반응기에서 질소산화물(NOx)을 환원시키기 위해 필요한 암모니아를 생성하기 위한 우레아의 총량을 분해하는데 필요한 총 열량으로 나눈 값이 될 수 있다.The ratio of urea to be injected through the urea direct injection unit 410 decomposes the total amount of urea to generate ammonia necessary to reduce nitrogen oxides (NOx) in the reactor to the amount of heat of the exhaust gas flowing into the reactor 100. It can be divided by the total calories required.
구체적으로, 제어부(700)는 배기 가스의 온도와 배기 가스의 질량 유량을 통해 배기 가스가 갖는 열량을 산출할 수 있다. 그리고 배기 가스가 함유한 질소산화물을 환원시키기 위해 필요한 우레아의 총량을 분해하기 위해 필요한 열량을 산출할 수 있다.Specifically, the controller 700 may calculate the amount of heat that the exhaust gas has through the temperature of the exhaust gas and the mass flow rate of the exhaust gas. And it is possible to calculate the amount of heat required to decompose the total amount of urea required to reduce the nitrogen oxides contained in the exhaust gas.
제어부(700)는 배기 가스의 열량을 우레아의 총량을 분해하는데 필요한 열량으로 나누어 우레아 직분사부(410)를 통해 메인 배기 유로(210)를 흐르는 배기 가스에 직접 분사할 우레아의 분사 비율을 결정한다. 그리고 제어부(700)는 결정된 분사 비율에 따라 우레아 공급부(500) 및 우레아 직분사부(410)를 제어하여 우레아를 메인 배기 유로(210)에 직분사한다.The controller 700 determines the injection ratio of urea to be directly injected into the exhaust gas flowing through the main exhaust flow path 210 through the urea direct injection unit 410 by dividing the heat amount of the exhaust gas by the amount of heat required to decompose the total amount of urea. The controller 700 controls the urea supply unit 500 and the urea direct injection unit 410 according to the determined injection ratio to directly inject the urea into the main exhaust flow path 210.
또한, 제어부(700)는 반응기(100)에서 질소산화물(NOx)을 환원시키기 위해 필요한 암모니아를 생성하기 위한 우레아의 총량에서 우레아 직분사부(410)를 통해 분사한 우레아의 양을 제한 나머지 우레아를 우레아 분해 챔버(300)에서 분해하여 암모니아가 생성되도록 블로워(610)와 가열 장치(620)를 제어한다.In addition, the control unit 700 limits the amount of urea injected through the urea direct injection unit 410 in the total amount of urea for producing ammonia required to reduce nitrogen oxides (NOx) in the reactor 100 to urea remaining urea The blower 610 and the heating device 620 are controlled to decompose in the decomposition chamber 300 to generate ammonia.
특히, 본 발명의 제1 실시예에서, 제어부(700)는 블로워(610)가 분기 유로(220)를 통해 우레아 분해 챔버(300)에 공급되는 배기 가스의 유량을 일정하게 유지하도록 제어한다.In particular, in the first embodiment of the present invention, the control unit 700 controls the blower 610 to maintain a constant flow rate of the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path (220).
그리고 제어부(700)는 전방 분기 온도 센서(812) 및 후방 분기 온도 센서(811)에서 전달받은 정보에 따라 분기 유로(220)를 통해 우레아 분해 챔버(300)에 공급되는 배기 가스가 우레아 분해 챔버(300)에서 암모니아를 생성하는데 필요한 열량을 공급하도록 가열 장치(620)의 가동을 제어한다. 즉, 열량 계산 공식에서 질량 유량을 고정하고 온도 차이를 변수로 제어한다.And the control unit 700 is the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path 220 in accordance with the information received from the front branch temperature sensor 812 and the rear branch temperature sensor 811 is a urea decomposition chamber ( The operation of the heating device 620 is controlled to supply the amount of heat required to generate ammonia in 300. That is, the mass flow rate is fixed in the calorie calculation formula and the temperature difference is controlled by a variable.
이와 같이, 본 발명의 제1 실시예에 따를 경우, 배기 가스의 온도 변화에 따라 가열 장치(620)에 소모되는 연료량을 제어할 수 있다. 즉, 가열 장치(620)가 소모하는 연료량을 저감시킬 수 있다.As described above, according to the first embodiment of the present invention, the amount of fuel consumed by the heating device 620 may be controlled according to the temperature change of the exhaust gas. That is, the amount of fuel consumed by the heating device 620 can be reduced.
또한, 도 2에 도시한 바와 같이, 우레아 공급부(500)의 우레아 이송 장치(530)는 우레아를 이송시키기 위한 우레아 이송 펌프(531)와 우레아의 이송량을 정량 제어하기 위한 질량 유량 제어기(536, 537)를 포함할 수 있다.In addition, as shown in FIG. 2, the urea transfer device 530 of the urea supply unit 500 includes a urea transfer pump 531 for transferring urea and mass flow controllers 536 and 537 for quantitatively controlling the transfer amount of urea. ) May be included.
구체적으로, 본 발명의 제1 실시예에서는, 우레아 이송 장치(530)가 하나의 우레아 이송 펌프(531)와, 우레아 분해 챔버(300)에 우레아를 공급하기 위한 제1 질량 유량 제어기(536), 그리고 메인 배기 유로(210)에 직분사할 우레아를 공급하기 위한 제2 질량 유량 제어기(537)를 포함할 수 있다.Specifically, in the first embodiment of the present invention, the urea transfer device 530 is one of the urea transfer pump 531, the first mass flow controller 536 for supplying urea to the urea decomposition chamber 300, And a second mass flow controller 537 for supplying urea to be directly injected into the main exhaust passage 210.
하지만, 본 발명의 제1 실시예가 이에 한정되는 것은 아니다. 도 3은 본 발명의 제1 실시예의 변형례를 나타낸다. 도 3에 도시한 바와 같이, 우레아 공급부(500)의 우레아 이송 장치(530)는 우레아 분해 챔버(300)에 우레아를 공급하는 제1 우레아 이송 펌프(532)와 우레아 직분사부(410)에 우레아를 공급하는 제2 우레아 이송 펌프(533)를 포함할 수도 있다. 이때, 제1 우레아 이송 펌프(532) 및 제2 우레이 이송 펌프(533)로 정량 제어 펌프를 사용하여 질량 유량기(536, 537)를 생략할 수 있다.However, the first embodiment of the present invention is not limited thereto. 3 shows a modification of the first embodiment of the present invention. As shown in FIG. 3, the urea transfer device 530 of the urea supply unit 500 supplies urea to the first urea transfer pump 532 and the urea direct injection unit 410 that supplies urea to the urea decomposition chamber 300. It may also include a second urea transfer pump 533 to supply. In this case, the mass flow meters 536 and 537 may be omitted using the quantitative control pump as the first urea transfer pump 532 and the second urea transfer pump 533.
또한, 우레아 공급부(500)는 우레아 분해 챔버(300)에 우레아를 분사하는 복수의 우레아 분해용 분사 노즐(517)과 복수의 우레아 분해용 분사 노즐(517)에 각각 우레아를 공급하는 매니폴드(manifold, 516)를 더 포함할 수 있다.In addition, the urea supply unit 500 includes a manifold for supplying urea to a plurality of urea decomposition injection nozzles 517 for injecting urea into the urea decomposition chamber 300 and a plurality of urea decomposition injection nozzles 517, respectively. , 516 may be further included.
우레아 분해 챔버(300)는 메인 배기 유로(210)와 대비하여 상대적으로 체적과 크기가 소형이므로, 하나의 대용량 분사 노즐을 사용하는 것 보다 복수개의 소용량 분사 노즐을 사용하는 것이 효과적이다.Since the urea decomposition chamber 300 is relatively small in volume and size in comparison with the main exhaust flow path 210, it is more effective to use a plurality of small-capacity injection nozzles than to use one large-capacity injection nozzle.
이와 같은 구성에 의하여, 본 발명의 제1 실시예에 따른 선택적 촉매 환원 시스템(101)은 환원 반응에 사용되는 우레아를 최적 분사하여 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지와 환원 반응 후 남는 암모니아 슬립(ammonia slip)량을 최소화할 수 있다.By such a configuration, the selective catalytic reduction system 101 according to the first embodiment of the present invention optimally injects urea used for the reduction reaction to reduce the nitrogen oxides contained in the exhaust gas and the reduction reaction as a whole. The remaining amount of ammonia slip can be minimized.
구체적으로, 배기 가스를 정화하는 과정에서 배기 가스가 갖는 열량에 따라 사용하는 직분사되는 우레아와 암모니아의 비율을 조절하여 에너지의 이용 효율을 향상시킬 수 있다.Specifically, in the process of purifying exhaust gas, the efficiency of energy use may be improved by adjusting the ratio of direct injection urea and ammonia to be used according to the heat amount of the exhaust gas.
또한, 우레아 분해 챔버(300)에 열량을 제공하기 위한 가열 장치(620)에 소모되는 연료량을 저감시킬 수 있다.In addition, the amount of fuel consumed by the heating device 620 for providing heat to the urea decomposition chamber 300 can be reduced.
이하, 도 4를 참조하여 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)를 설명한다.Hereinafter, the selective catalytic reduction system 102 according to the second embodiment of the present invention will be described with reference to FIG. 4.
도 4에 도시한 바와 같이, 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)은, 제1 실시예의 전방 분기 온도 센서(812) 대신, 블로워(610) 후방에 설치된 분기 유량계(952)를 포함한다. 즉, 제1 실시예의 전방 분기 온도 센서(812)는 제2 실시예에서 생략될 수 있다.As shown in FIG. 4, the selective catalytic reduction system 102 according to the second embodiment of the present invention is a branch flow meter 952 installed behind the blower 610 instead of the front branch temperature sensor 812 of the first embodiment. ). That is, the front branch temperature sensor 812 of the first embodiment may be omitted in the second embodiment.
본 발명의 제2 실시예에서, 제어부(700)는 가열 장치(620)가 분기 유로(220)를 통해 우레아 분해 챔버(300)에 공급되는 배기 가스의 온도를 일정하게 유지하도록 제어한다. 즉, 열량 계산 공식에서 온도 차이를 고정하고 질량 유량을 변수로 제어한다.In the second embodiment of the present invention, the control unit 700 controls the heating device 620 to maintain a constant temperature of the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path (220). That is, the temperature difference is fixed in the calorie calculation formula and the mass flow rate is controlled by the variable.
일례로, 가열 장치(620)는 분기 유로(220)를 거쳐 우레아 분해 챔버(300)로 향하는 배기 가스의 온도를 섭씨 290도로 일정하게 승온 시킬 수 있다.In one example, the heating device 620 may constantly increase the temperature of the exhaust gas to the urea decomposition chamber 300 via the branch flow path 220 to 290 degrees Celsius.
섭씨 250도 미만의 온도에서 우레아를 분해하면, 우레아가 분해되면서 생성되는 뷰렛(biuret), 시아누르산(cyanuric acid), 멜라민(melamine), 및 아멜린(ammeline) 등과 같은 부산물 생성되어 노즐을 막거나 배기 가스의 흐름을 방해할 수 있다. 따라서, 우레아 분해 챔버(300)의 온도는 섭씨 250도 이상으로 유지하는 것이 적절하다.Decomposition of urea at temperatures below 250 degrees Celsius results in the formation of by-products such as biuret, cyanuric acid, melamine, and ammeline, which are produced by the decomposition of urea, clogging the nozzles. Or obstruct the flow of exhaust gases. Therefore, it is appropriate to maintain the temperature of the urea decomposition chamber 300 at 250 degrees Celsius or more.
그리고 제어부(700)는 후방 분기 온도 센서(811) 및 분기 유량계(952)에서 전달받은 정보에 따라 분기 유로(220)를 통해 우레아 분해 챔버(300)에 공급되는 배기 가스가 우레아 분해 챔버(300)에서 암모니아를 생성하는데 필요한 열량을 공급하도록 블로워(610)의 가동을 제어한다.And the control unit 700 is the exhaust gas supplied to the urea decomposition chamber 300 through the branch flow path 220 in accordance with the information received from the rear branch temperature sensor 811 and the branch flow meter 952 urea decomposition chamber 300 Control the operation of the blower 610 to supply the amount of heat required to produce ammonia in the.
이와 같이, 본 발명의 제2 실시예에 따를 경우, 배기 가스의 온도 변화에 따라 블로워(610)의 가동에 소모되는 전력을 제어할 수 있다. 즉, 블로워(610)가 소모하는 전력을 저감시킬 수 있다.As described above, according to the second embodiment of the present invention, the power consumed to operate the blower 610 may be controlled according to the temperature change of the exhaust gas. That is, the power consumed by the blower 610 can be reduced.
이와 같은 구성에 의하여, 본 발명의 제2 실시예에 따른 선택적 촉매 환원 시스템(102)은 환원 반응에 사용되는 우레아를 최적 분사하여 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지와 환원 반응 후 남는 암모니아 슬립(ammonia slip)량을 최소화할 수 있다.By such a configuration, the selective catalytic reduction system 102 according to the second embodiment of the present invention optimally injects urea used for the reduction reaction to reduce the nitrogen oxides contained in the exhaust gas and the reduction reaction as a whole. The remaining amount of ammonia slip can be minimized.
구체적으로, 배기 가스를 정화하는 과정에서 배기 가스가 갖는 열량에 따라 사용하는 직분사되는 우레아와 암모니아의 비율을 조절하여 에너지의 이용 효율을 향상시킬 수 있다.Specifically, in the process of purifying exhaust gas, the efficiency of energy use may be improved by adjusting the ratio of direct injection urea and ammonia to be used according to the heat amount of the exhaust gas.
또한, 우레아 분해 챔버(300)에 열량을 제공하기 위한 블로워(610)의 가동에 소모되는 전력을 저감시킬 수 있다.In addition, the power consumed to operate the blower 610 for providing heat to the urea decomposition chamber 300 can be reduced.
이하, 도 5를 참조하며, 본 발명의 제1 실시예 및 제2 실시예에 따른 선택적 촉매 환원 시스템(101, 102)을 이용한 선택적 촉매 환원 방법을 설명한다.Hereinafter, referring to FIG. 5, a selective catalytic reduction method using the selective catalytic reduction systems 101 and 102 according to the first and second embodiments of the present invention will be described.
먼저, 도 5에 도시한 바와 같이, 배기 가스가 함유한 질소산화물을 저감하기 위해 필요한 우레아 도징률(dosing rate)를 계산하기 위해 배기 가스의 유량을 산출한다(S100). 그리고 배기 가스의 유량을 기준으로 필요한 우레아의 총량을 산출하여 우레아 도징률을 계산한다(S200). 일례로, 배기 가스의 질량 유량이 110,000 kg/h으로 산출되면, 우레아 도징률이 270 kg/h 결정될 수 있다.First, as shown in FIG. 5, the flow rate of the exhaust gas is calculated to calculate the urea dosing rate required to reduce the nitrogen oxide contained in the exhaust gas (S100). The total amount of urea required is calculated based on the flow rate of the exhaust gas to calculate the urea dosing rate (S200). As an example, if the mass flow rate of the exhaust gas is calculated to be 110,000 kg / h, the urea dosing rate may be determined 270 kg / h.
다음, 우레아 도징률에 따라 공급되어야 할 우레아를 분해시키기 위해 필요한 열량, 즉 우레아의 총량을 암모니아로 분해하기 위해 필요한 열량을 산출한다(S300). 그리고 메인 배기 유로를 따라 흐르는 배기 가스의 열량을 산출한다(S400). 이때, 배기 가스의 열량은 배기 가스의 온도와 유량을 통해 산출할 수 있다. Next, the amount of heat required to decompose the urea to be supplied according to the urea dosing rate, that is, the amount of heat required to decompose the total amount of urea into ammonia is calculated (S300). Then, the amount of heat of the exhaust gas flowing along the main exhaust flow path is calculated (S400). At this time, the heat amount of the exhaust gas can be calculated through the temperature and the flow rate of the exhaust gas.
다음, 배기 가스가 갖는 열량을 고려하여 배기 가스에 직접 분사할 우레아 직분사 비율을 결정한다(S500).Next, the ratio of direct urea injection to be directly injected into the exhaust gas is determined in consideration of the heat amount of the exhaust gas (S500).
우레아 직분사 비율은 우레아 도징률에 따라 사용되어야 할 우레아의 총량 중에 질소산화물의 함유량을 저감시킬 배기 가스에 암모니아가 아닌 우레아를 직접 분사하는 비율이다.The urea direct injection ratio is the ratio of directly injecting urea, not ammonia, into the exhaust gas to reduce the nitrogen oxide content in the total amount of urea to be used according to the urea dosing rate.
일례로, 우레아의 총량을 분해하기 위한 열량이 190,531 kcal/h으로 산출되고, 배기 가스가 갖는 열량이 98,260 kcal/h으로 산출되면, 우레아 직분사 비율은 51.6%가 될 수 있다.For example, if the amount of heat for decomposing the total amount of urea is calculated to be 190,531 kcal / h, and the amount of heat of the exhaust gas is calculated to be 98,260 kcal / h, the urea direct injection ratio may be 51.6%.
그리고 우레아 직분사 비율에 따라 우레아를 배기 가스에 직접 분사한다.The urea is directly injected into the exhaust gas according to the urea direct injection ratio.
다음, 우레아 직분사 비율에 따라 직접 분사되는 우레아를 제외하고 남은 우레아를 별도의 우레아 분해 챔버에서 분해하여 생성해야 할 암모니아 생성 비율을 결정한다(S600).Next, to determine the ammonia generation rate to be generated by decomposing the remaining urea in a separate urea decomposition chamber except for the urea directly injected according to the urea direct injection ratio (S600).
일례로, 우레아 직분사 비율이 51.6%일 때, 직접 분사되는 우레아는 139.32 kg/h가 되고 별도의 우레아 분해 챔버에서 분해야 할 우레아는 130.68 kg/h가 된다.For example, when the urea direct injection ratio is 51.6%, the urea injected directly is 139.32 kg / h and the urea to be divided in a separate urea decomposition chamber is 130.68 kg / h.
그리고 암모니아 생성 비율에 따라 암모니아를 생성하기 위해 우레아 분해 챔버에 공급되는 유체의 온도와 유량을 가열 장치와 블로워의 가동률을 결정하여 암모니아를 최적 효율로 생성한다(S700). 이와 같이 생성된 암모니아는 배기 가스에 분사된다.The ammonia is generated at optimum efficiency by determining an operation rate of the heating device and the blower based on the temperature and flow rate of the fluid supplied to the urea decomposition chamber to generate ammonia according to the ammonia generation rate (S700). The ammonia thus produced is injected into the exhaust gas.
여기서, 우레아 분해 챔버에 공급되는 유체로 배기 가스의 일부를 분기시켜 사용할 수 있다. 분기된 배기 가스를 승온 시키거나 공급 유량을 조절하여 우레아 분해 챔버에서 우레아를 분해하는데 필요한 열량을 제공할 수 있다.Here, a part of the exhaust gas may be branched into a fluid supplied to the urea decomposition chamber. The branched exhaust gas may be heated up or the supply flow rate may be adjusted to provide the amount of heat required to break down the urea in the urea cracking chamber.
이때, 우레아 분해 챔버에서 암모니아 생성을 위해 필요한 열량은 블로워의 가동 유량을 일정하게 유지하면서 가열 장치의 승온 온도를 조절하거나, 가열 장치의 승온 온도를 일정하게 유지하고 블로워의 가동 유량을 조절하는 방법으로 제공할 수 있다.At this time, the amount of heat required for the production of ammonia in the urea decomposition chamber is controlled by adjusting the temperature rise temperature of the heating device while maintaining a constant operating flow rate of the blower, or by maintaining the temperature rising temperature of the heating device constant and adjusting the operating flow rate of the blower. Can provide.
또한, 배기 가스가 함유한 질소산화물의 저감 효율과 환원 반응 후 암모니아 슬립량을 모니터링(S800)하여, 모니터링에 따른 측정값이 기준값에 미달하면 배기 가스에 직접 분사할 우레아의 비율 재조정할 수 있다(S900).In addition, by monitoring the reduction efficiency of the nitrogen oxides contained in the exhaust gas and the amount of ammonia slip after the reduction reaction (S800), when the measured value is less than the reference value, the ratio of urea to be directly injected into the exhaust gas may be readjusted ( S900).
이와 같은 선택적 촉매 환원 방법에 의하여, 환원 반응에 사용되는 우레아를 최적 분사하여 배기 가스가 함유한 질소산화물을 저감시키는데 전체적으로 소모되는 에너지와 환원 반응 후 남는 암모니아 슬립(ammonia slip)량을 최소화할 수 있다.By this selective catalytic reduction method, it is possible to minimize the amount of energy consumed to reduce nitrogen oxides contained in the exhaust gas and the amount of ammonia slip remaining after the reduction reaction by optimally injecting urea used in the reduction reaction. .
구체적으로, 배기 가스를 정화하는 과정에서 배기 가스가 갖는 열량에 따라 사용하는 직분사되는 우레아와 암모니아의 비율을 조절하여 에너지의 이용 효율을 향상시킬 수 있다.Specifically, in the process of purifying exhaust gas, the efficiency of energy use may be improved by adjusting the ratio of direct injection urea and ammonia to be used according to the heat amount of the exhaust gas.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains can understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. will be.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명은 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is represented by the following detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be interpreted as being included in the scope of the present invention.
< 부호의 설명 > <Explanation of Codes>
100: 반응기100: reactor
101, 102: 선택적 촉매 환원 시스템101, 102: selective catalytic reduction system
210: 메인 배기 유로 220: 분기 유로210: main exhaust flow path 220: branch flow path
300: 우레아 분해 챔버 410: 우레아 직분사부300: urea decomposition chamber 410: urea direct injection unit
430: 암모니아 분사부 450: 믹서430: ammonia injection unit 450: mixer
500: 우레아 공급부 510: 컨트롤 밸브500: urea supply part 510: control valve
530: 우레아 이송 장치 550: 우레아 탱크530: urea transfer device 550: urea tank
610: 블로워 620: 가열 장치610: blower 620: heating device
700: 제어부 811: 후방 분기 온도 센서700: control unit 811: rear branch temperature sensor
812: 전방 분기 온도 센서 815: 메인 온도 센서812: forward branch temperature sensor 815: main temperature sensor
851: 메인 질량 유량계 900: 엔진851: main mass flow meter 900: engine
952: 분기 유량계952: branch flow meter

Claims (11)

  1. 질소산화물(NOx)을 함유한 배기 가스가 이동하는 메인 배기 유로;A main exhaust flow path through which exhaust gas containing nitrogen oxides (NOx) moves;
    상기 메인 배기 유로 상에 설치되어 배기 가스가 함유한 질소산화물을 저감시키기 위한 촉매를 포함하는 반응기;A reactor installed on the main exhaust passage and including a catalyst for reducing nitrogen oxides contained in the exhaust gas;
    우레아(Urea)를 분해하여 암모니아(NH3)를 생성하는 우레아 분해 챔버;A urea decomposition chamber that decomposes urea to produce ammonia (NH 3 );
    상기 우레아 분해 챔버에서 생성된 암모니아를 상기 반응기에 유입될 배기 가스에 분사하는 암모니아 분사부;An ammonia injection unit for injecting ammonia generated in the urea decomposition chamber to exhaust gas to be introduced into the reactor;
    상기 반응기에 유입될 배기 가스에 우레아를 직분사하는 우레아 직분사부;A urea direct injection unit for directly injecting urea into the exhaust gas to be introduced into the reactor;
    상기 우레아 분해 챔버에 우레아를 공급하거나 상기 우레아 직분사부에 우레아를 공급하는 우레아 공급부;A urea supply unit supplying urea to the urea decomposition chamber or supplying urea to the urea direct injection unit;
    상기 반응기 전방의 상기 메인 배기 유로에서 분기되어 상기 우레아 분해 챔버와 연결된 분기 유로;A branch passage branched from the main exhaust passage in front of the reactor and connected to the urea decomposition chamber;
    상기 분기 유로 상에 설치되어 상기 분기 유로를 흐르는 배기 가스의 유량을 조절하는 블로워;A blower installed on the branch passage to adjust a flow rate of the exhaust gas flowing through the branch passage;
    상기 분기 유로 상에 설치되어 상기 분기 유로를 흐르는 배기 가스의 온도를 조절하는 가열 장치; 및A heating device installed on the branch flow path to adjust a temperature of exhaust gas flowing through the branch flow path; And
    상기 블로워와 상기 가열 장치 그리고 상기 우레아 공급부를 제어하는 제어부Control unit for controlling the blower, the heating device and the urea supply unit
    를 포함하는 선택적 촉매 환원 시스템.Selective catalytic reduction system comprising a.
  2. 제1항에서,In claim 1,
    상기 제어부는 우레아를 분해하는데 필요한 열량을 산출하고 배기 가스가 갖는 열량을 산출한 후, 상기 배기 가스의 열량을 고려하여 상기 우레아 직분사부를 통해 분사할 우레아와 상기 암모니아 분사부를 통해 분사할 암모니아의 분사 비율을 결정하고,The control unit calculates the amount of heat required to decompose urea, calculates the amount of heat that the exhaust gas has, and in consideration of the amount of heat of the exhaust gas, urea to be injected through the urea direct injection unit and injection of ammonia to be injected through the ammonia injection unit. Determine the ratio,
    상기 제어부는 상기 결정된 비율에 따라 상기 블로워와, 상기 가열 장치, 그리고 상기 우레아 공급부의 동작을 제어하여 상기 우레아 분해 챔버에서 암모니아를 생성하거나 상기 우레아 직분사부로 우레아를 직분사하는 선택적 촉매 환원 시스템.And the control unit controls the operation of the blower, the heating device, and the urea supply unit according to the determined ratio to generate ammonia in the urea decomposition chamber or directly spray urea to the urea direct injection unit.
  3. 제2항에서,In claim 2,
    상기 우레아 직분사부를 통해 분사할 우레아의 비율은 상기 반응기에 유입되는 배기 가스가 갖는 열량을 상기 반응기에서 질소산화물(NOx)을 환원시키기 위해 필요한 암모니아를 생성하기 위한 우레아의 총량을 분해하는데 필요한 총 열량으로 나눈 값인 선택적 촉매 환원 시스템.The ratio of urea to be injected through the urea direct injection unit is the total amount of heat required to decompose the total amount of urea for generating ammonia necessary to reduce nitrogen oxides (NOx) in the reactor to the amount of heat of the exhaust gas flowing into the reactor. Selective catalytic reduction system divided by.
  4. 제3항에서,In claim 3,
    상기 우레아 분해 챔버는 상기 반응기에서 질소산화물(NOx)을 환원시키기 위해 필요한 암모니아를 생성하기 위한 우레아의 총량에서 상기 우레아 직분사부를 통해 분사한 우레아의 양을 제한 나머지 우레아를 분해하여 암모니아를 생성하는 선택적 촉매 환원 시스템.The urea decomposition chamber limits the amount of urea injected through the urea direct injection unit in the total amount of urea for producing ammonia required to reduce nitrogen oxides (NOx) in the reactor to selectively decompose the remaining urea to produce ammonia. Catalytic reduction system.
  5. 제4항에서,In claim 4,
    상기 가열 장치 전후방의 상기 분기 유로에 각각 설치된 전방 분기 온도 센서 및 후방 분기 온도 센서를 더 포함하며,Further comprising a front branch temperature sensor and a rear branch temperature sensor respectively installed in the branch flow paths in front of and behind the heating device,
    상기 블로워가 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스의 유량을 일정하게 유지할 때,When the blower maintains a constant flow rate of the exhaust gas supplied to the urea decomposition chamber through the branch flow path,
    상기 제어부는 상기 전방 분기 온도 센서 및 상기 후방 분기 온도 센서에서 전달받은 정보에 따라 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스가 상기 우레아 분해 챔버에서 암모니아를 생성하는데 필요한 열량을 공급하도록 상기 가열 장치의 가동을 제어하는 선택적 촉매 환원 시스템.The control unit is configured to supply the amount of heat required to generate ammonia in the urea decomposition chamber by the exhaust gas supplied to the urea decomposition chamber through the branch flow path according to the information received from the front branch temperature sensor and the rear branch temperature sensor. Selective catalytic reduction system to control the operation of the heating device.
  6. 제4항에서,In claim 4,
    상기 가열 장치 후방의 상기 분기 유로에 설치된 후방 분기 온도 센서 및 상기 블로워 후방에 설치된 분기 유량계를 더 포함하며,Further comprising a rear branch temperature sensor installed in the branch flow path behind the heating device and a branch flow meter installed behind the blower,
    상기 가열 장치가 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스의 온도를 일정하게 유지할 때,When the heating device maintains a constant temperature of the exhaust gas supplied to the urea decomposition chamber through the branch passage,
    상기 제어부는 상기 분기 온도 센서 및 상기 분기 유량계에서 전달받은 정보에 따라 상기 분기 유로를 통해 상기 우레아 분해 챔버에 공급되는 배기 가스가 상기 우레아 분해 챔버에서 암모니아를 생성하는데 필요한 열량을 공급하도록 상기 블로워의 가동을 제어하는 선택적 촉매 환원 시스템.The control unit operates the blower so that the exhaust gas supplied to the urea decomposition chamber through the branch flow path supplies the amount of heat required to generate ammonia in the urea decomposition chamber according to the information received from the branch temperature sensor and the branch flow meter. Selective catalytic reduction system to control the.
  7. 제1항에서,In claim 1,
    상기 우레아 공급부는 우레아를 저장하는 우레아 탱크와, 상기 우레아 탱크에 저장된 우레아를 이송시키는 우레아 이송 장치, 그리고 우레아의 공급량 및 공급 방향을 제어하는 컨트롤 밸브를 포함하는 선택적 촉매 환원 시스템.The urea supply unit selective catalytic reduction system including a urea tank for storing urea, a urea transfer device for transferring the urea stored in the urea tank, and a control valve for controlling the supply amount and supply direction of the urea.
  8. 제1항 내지 제7항 중 어느 한 항에서,The method according to any one of claims 1 to 7,
    상기 메인 배기 유로에 설치되어 배기 가스의 질량 유량을 측정하는 메인 질량 유량계와 배기 가스의 온도를 측정하는 메인 온도 센서를 더 포함하는 선택적 촉매 환원 시스템.And a main mass flow meter installed in the main exhaust flow path and measuring a mass flow rate of the exhaust gas and a main temperature sensor measuring the temperature of the exhaust gas.
  9. 질소산화물(NOx)을 함유한 배기 가스의 유량을 산출하는 단계;Calculating a flow rate of the exhaust gas containing nitrogen oxides (NOx);
    상기 배기 가스가 함유한 질소산화물을 환원 반응을 통해 제거하기 위해 필요한 우레아의 총량을 산출하는 단계;Calculating a total amount of urea required to remove nitrogen oxides contained in the exhaust gas through a reduction reaction;
    상기 우레아의 총량을 암모니아로 분해하기 위해 필요한 총 열량을 산출하는 단계;Calculating a total amount of heat required to decompose the total amount of urea into ammonia;
    상기 배기 가스가 갖는 열량을 산출하는 단계;Calculating a heat amount of the exhaust gas;
    상기 배기 가스가 갖는 열량을 고려하여 상기 배기 가스에 직접 분사할 우레아의 비율을 결정한 후 해당량의 우레아를 상기 배기 가스에 직접 분사하는 단계; 및Determining a ratio of urea to be directly injected into the exhaust gas in consideration of the heat amount of the exhaust gas, and then directly injecting a corresponding amount of urea into the exhaust gas; And
    상기 우레아의 총량에서 상기 직접 분사할 우레아의 양을 제한 나머지 우레아를 별도의 우레아 분해 챔버에서 분해하여 암모니아를 생성하고, 상기 우레아 분해 챔버에서 생성된 암모니아를 상기 배기 가스에 분사는 단계Limiting the amount of urea to be directly injected from the total amount of urea, dissolving the remaining urea in a separate urea decomposition chamber to generate ammonia, and injecting the ammonia generated in the urea decomposition chamber to the exhaust gas.
    를 포함하는 선택적 촉매 환원 방법.Selective catalytic reduction method comprising a.
  10. 제9항에서,In claim 9,
    배기 가스의 일부를 분기시켜 상기 우레아 분해 챔버에 공급하며,Branching a portion of the exhaust gas and supplying it to the urea decomposition chamber,
    상기 분기된 배기 가스를 승온 시키거나 공급 유량을 조절하여 상기 우레아 분해 챔버에서 우레아를 분해하는데 필요한 열량을 제공하는 선택적 촉매 환원 방법.And selectively heating the branched exhaust gas or adjusting a feed flow rate to provide the amount of heat required to decompose urea in the urea decomposition chamber.
  11. 제9항에서,In claim 9,
    배기 가스가 함유한 질소산화물의 저감 효율과 환원 반응 후 암모니아 슬립량을 측정한 값이 기준값에 미달하면 배기 가스에 직접 분사할 우레아의 비율을 재조정하는 선택적 촉매 환원 방법.Selective catalytic reduction method that readjusts the ratio of urea to be directly injected into the exhaust gas when the measured reduction efficiency of the nitrogen oxide contained in the exhaust gas and the measured amount of ammonia slip after the reduction reaction are less than the reference value.
PCT/KR2013/011296 2013-09-30 2013-12-06 Selective catalytic reduction system and selective catalytic reduction method WO2015046666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0115873 2013-09-30
KR20130115873A KR101497828B1 (en) 2013-09-30 2013-09-30 System for selective catalytic reuction and method for selective catalytic reuction

Publications (1)

Publication Number Publication Date
WO2015046666A1 true WO2015046666A1 (en) 2015-04-02

Family

ID=52743779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011296 WO2015046666A1 (en) 2013-09-30 2013-12-06 Selective catalytic reduction system and selective catalytic reduction method

Country Status (2)

Country Link
KR (1) KR101497828B1 (en)
WO (1) WO2015046666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973187A (en) * 2019-03-29 2019-07-05 无锡威孚力达催化净化器有限责任公司 Marine diesel post-processes control method and control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182935B1 (en) 2015-03-13 2020-11-25 현대중공업 주식회사 Low Pressure Selective Catalytic Reduction System
KR102063677B1 (en) 2015-12-23 2020-01-09 에이치에스디엔진 주식회사 Power plant with selective catalytic reduction system
KR102042876B1 (en) * 2015-12-29 2019-11-13 에이치에스디엔진 주식회사 Reducing agent supplying system and method for controlling thereof
KR102059951B1 (en) 2018-04-18 2019-12-27 최정선 Reducing agent supply device for SCR system
US10669908B1 (en) 2018-12-03 2020-06-02 Wellhead Power Solutions, Llc Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system
KR102550062B1 (en) * 2018-12-21 2023-06-30 에이치에스디엔진 주식회사 Selective catalytic reduction system and control method therefore
KR20220133720A (en) * 2021-03-25 2022-10-05 에스엠씨케미칼(주) Ammonia vaporization accelerating device, denitrification device using the same, and incinerator system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064061A (en) * 2007-12-14 2009-06-18 현대자동차주식회사 System for control urea injection of selective catalytic reduction system on vehicle exhaust line and method thereof
KR100924591B1 (en) * 2009-07-08 2009-10-30 한국기계연구원 Emission purification system using solid urea and selective catalytic reduction catalyst
KR100999571B1 (en) * 2008-11-12 2010-12-08 한국기계연구원 Soild urea reactor and NOx purification system using Soild urea and Selective Catalytic Reduction Catalyst
KR101185413B1 (en) * 2012-04-03 2012-09-24 한국기계연구원 Nox emission purification system using solid ammonium salt and selective catalytic reduction catalyst
US20130000283A1 (en) * 2011-07-01 2013-01-03 Kia Motors Corporation System for purifying exhaust gas and exhaust system having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929261B2 (en) * 2008-09-22 2012-05-09 日立オートモティブシステムズ株式会社 Engine control device
JP2011144766A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
JP2013007335A (en) * 2011-06-24 2013-01-10 Ihi Corp Denitrification apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064061A (en) * 2007-12-14 2009-06-18 현대자동차주식회사 System for control urea injection of selective catalytic reduction system on vehicle exhaust line and method thereof
KR100999571B1 (en) * 2008-11-12 2010-12-08 한국기계연구원 Soild urea reactor and NOx purification system using Soild urea and Selective Catalytic Reduction Catalyst
KR100924591B1 (en) * 2009-07-08 2009-10-30 한국기계연구원 Emission purification system using solid urea and selective catalytic reduction catalyst
US20130000283A1 (en) * 2011-07-01 2013-01-03 Kia Motors Corporation System for purifying exhaust gas and exhaust system having the same
KR101185413B1 (en) * 2012-04-03 2012-09-24 한국기계연구원 Nox emission purification system using solid ammonium salt and selective catalytic reduction catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973187A (en) * 2019-03-29 2019-07-05 无锡威孚力达催化净化器有限责任公司 Marine diesel post-processes control method and control device

Also Published As

Publication number Publication date
KR101497828B1 (en) 2015-03-02

Similar Documents

Publication Publication Date Title
WO2015046666A1 (en) Selective catalytic reduction system and selective catalytic reduction method
WO2014208839A1 (en) Selective catalytic reduction and catalytic regeneration system
WO2014208841A1 (en) Reducing agent pyrolysis system for selective catalytic reduction apparatus
KR101417296B1 (en) Power plant for ship with selective catalytic reuction system for internal combustion engine
US7673446B2 (en) Dual path exhaust emission control system
WO2020242013A1 (en) Apparatus for treating exhaust gas of thermal plant
KR20160109977A (en) Scr system and control method thereof
WO2014084542A1 (en) Reductant supply device and reductant supply method in denitrification system
WO2017204589A1 (en) Selective catalytic reduction system and power apparatus having same
KR101497831B1 (en) Power plant with selective catalytic reuction system
WO2020122619A1 (en) Porous structure-embedded diluted urea solution spray apparatus capable of precise concentration control
WO2016195195A1 (en) Burner system
WO2015182812A1 (en) Motive power apparatus including selective catalyst reducing system
CN105050693A (en) Nox measuring system and method
WO2016108616A1 (en) Selective catalytic reduction system and power apparatus comprising same
WO2018080179A1 (en) Exhaust gas post-processing system
WO2016171481A1 (en) Power apparatus including reducing agent supply control system and reducing agent supply control method
WO2015053432A1 (en) Selective catalytic reduction system
KR102107906B1 (en) Selective catalytic reduction system and power plant with the same
WO2016108518A1 (en) Selective catalyst reduction system and method for diagnosing performance thereof
KR101662431B1 (en) Power plant with selective catalytic reuction system
KR20140067644A (en) A scr system comprising temperature compensating structure and method thereof
KR101636208B1 (en) Power plant with selective catalytic reuction system
JPH06285336A (en) Supplying method for reductant for denitration of waste gas
WO2017209454A1 (en) System for decomposing reducing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894707

Country of ref document: EP

Kind code of ref document: A1