KR20140067644A - A scr system comprising temperature compensating structure and method thereof - Google Patents

A scr system comprising temperature compensating structure and method thereof Download PDF

Info

Publication number
KR20140067644A
KR20140067644A KR1020120135160A KR20120135160A KR20140067644A KR 20140067644 A KR20140067644 A KR 20140067644A KR 1020120135160 A KR1020120135160 A KR 1020120135160A KR 20120135160 A KR20120135160 A KR 20120135160A KR 20140067644 A KR20140067644 A KR 20140067644A
Authority
KR
South Korea
Prior art keywords
temperature
exhaust gas
heat exchanger
pipe
reactor
Prior art date
Application number
KR1020120135160A
Other languages
Korean (ko)
Inventor
이수태
송옥렬
강영훈
Original Assignee
주식회사 파나시아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파나시아 filed Critical 주식회사 파나시아
Priority to KR1020120135160A priority Critical patent/KR20140067644A/en
Priority to PCT/KR2013/010534 priority patent/WO2014084540A1/en
Publication of KR20140067644A publication Critical patent/KR20140067644A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/087Other arrangements or adaptations of exhaust conduits having valves upstream of silencing apparatus for by-passing at least part of exhaust directly to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • B01D2259/4575Gas separation or purification devices adapted for specific applications for use in transportation means in aeroplanes or space ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/03By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of low temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a selective catalytic reduction (SCR) denitrification system for the denitrification of exhaust gas, wherein some of the exhaust gas, of which the temperature is high at the front end of a heat exchanger, does not pass through the heat exchanger but bypasses through a temperature compensating bypass pipe so as to be injected into an exhaust pipe at the rear end of the heat exchanger such that the temperature of the exhaust gas which is introduced into a mixing chamber and a reactor can be maintained at an appropriate temperature for denitrification reaction, in the case where the temperature of the exhaust gas is lowered to be an inappropriate temperature for the denitrification reaction by the heat exchanger which recovers the waste heat of the exhaust gas at the front end of the reactor in a denitrification system which removes the nitrogen oxides of the exhaust gas discharged from an engine. In particular, a temperature sensor is mounted on the exhaust pipe at the rear end of the heat exchanger, and a flow control valve is provided to the temperature compensating bypass pipe line so as to be opened or closed under the control of a control unit and to control the flow rate of the exhaust gas which flows through the temperature compensating bypass pipe. Therefore, the control unit controls the flow control valve according to the temperature measured by the temperature sensor such that the flow rate of the exhaust gas which flows through the temperature compensating bypass pipe can be controlled according to the changes in the temperatures of the exhaust gas which is introduced into the mixing chamber or the reactor at the rear end of the heat exchanger.

Description

온도보상 구조를 갖는 탈질시스템 및 그 방법{A SCR System comprising Temperature Compensating Structure and Method thereof}[0001] The present invention relates to a denitrification system having a temperature compensation structure,

본 발명은 배기가스의 탈질을 위한 SCR 탈질시스템 및 그 방법에 관한 것으로, 보다 상세하게는 엔진으로부터 배출되는 배기가스의 질소산화물을 제거하는 탈질시스템에서 반응기 전단에서 배기가스의 폐열을 회수하는 열교환기에 의해 온도가 낮아진 배기가스가 탈질반응에 부적합한 온도가 되는 경우 온도보상 바이패스관을 통해 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 혼합챔버 및 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하며, 특히 열교환기 후단의 배기관에는 온도센서를 설치하고 온도보상 바이패스관 라인에는 제어부의 제어하에 개폐되며 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절하는 유량조절 컨트롤밸브를 포함하여, 제어부가 상기 온도센서에 의해 측정되는 온도에 따라 상기 유량조절 컨트롤밸브를 제어하여 열교환기 후단에서 혼합챔버 또는 반응기에 유입되는 배기가스의 온도변화에 따라 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절할 수 있도록 하는 온도보상 구조를 갖는 탈질시스템 및 그 방법에 관한 것이다. The present invention relates to an SCR denitrification system for denitration of exhaust gas and a method thereof, and more particularly to an SCR denitration system for denitrification of an exhaust gas, and more particularly to a system for removing nitrogen oxides A portion of the exhaust gas having a high temperature upstream of the heat exchanger is bypassed through the temperature compensating bypass pipe without passing through the heat exchanger and injected into the exhaust pipe at the rear end of the heat exchanger, The temperature of the exhaust gas flowing into the reactor can be maintained at a temperature suitable for the denitrification reaction. Particularly, a temperature sensor is installed in the exhaust pipe at the end of the heat exchanger, and a temperature compensation bypass pipe is opened and closed under the control of the control unit. A flow regulator for regulating the flow rate of the exhaust gas The control unit controls the flow rate control valve according to the temperature measured by the temperature sensor so as to flow in the temperature compensation bypass pipe according to the temperature change of the exhaust gas flowing into the mixing chamber or the reactor at the rear end of the heat exchanger The present invention relates to a denitration system having a temperature compensation structure for adjusting a flow rate of an exhaust gas and a method thereof.

화석연료를 엔진에서 연소하여 열원 및 동력을 얻는 과정을 통해 배출되는 배기가스 내에는 불가피하게 광스모그, 산성비 및 호흡기 질환의 원인물질로 밝혀진 질소산화물(NOx) 성분이 포함되어 있어 이로 인한 환경문제가 심각하게 지적되고 있다. 따라서, 최근 이러한 질소산화물(NOx) 성분 배출규제가 강화되고 있으며, 이에 대응하여 여러 가지 배기가스에서의 질소산화물(NOx) 제거 기술이 활용되고 있는데, 그 중 특히 암모니아를 환원제로 하는 SCR(Selective Catalytic Reduction, 선택적 환원촉매법)기술이 다양하게 적용되고 있다. The exhaust gas emitted through the process of burning fossil fuels in the engine to obtain heat source and power contains inevitably nitrogen oxides (NOx), which are inevitably found to be causative substances of light smog, acid rain and respiratory diseases. It is being pointed out seriously. Accordingly, recently, regulations for the emission of NOx have been strengthened. In response to this, various techniques for removing nitrogen oxides (NOx) from exhaust gases have been utilized. Among them, SCR (Selective Catalytic Reduction, Selective Reduction Catalyst Method) are applied in various ways.

이러한 SCR 탈질시스템은 도 1을 참조하면, 엔진(91)으로부터 배출되는 배기가스 중의 질소산화물(NOx)을 탈질시키기 위해 사용되는 환원제 즉, 요소수(요소수가 기화되면 암모니아가 됨)를 분사노즐(951)을 통해 혼합챔버(93) 내에 분사시켜 배기가스와 환원제를 혼합시킨 혼합가스를 SCR촉매(944)를 포함하고 있는 반응기(94)에 유입시켜 상기 반응기(94) 내에서 배기가스와 환원제가 혼합된 혼합가스가 SCR촉매(944)를 통과하면서 배기가스에 포함된 질소산화물(NOx) 성분을 탈질(탈질반응)시켜 최적의 탈질효율을 얻고 질소산화물(NOx) 성분이나 암모니아로 인한 환경오염을 효율적으로 방지하는 구조를 채택하고 있다. 1, the SCR denitration system includes a reducing agent used for denitrifying nitrogen oxides (NOx) in the exhaust gas discharged from the engine 91, that is, urea water (which becomes ammonia when urea water is vaporized) 951 in the mixing chamber 93 to mix the exhaust gas and the reducing agent into the reactor 94 containing the SCR catalyst 944 so that the exhaust gas and the reducing agent (NOx) contained in the exhaust gas is denitrified (denitrified) by passing the mixed gas through the SCR catalyst 944 to obtain an optimum denitrification efficiency and to prevent environmental pollution caused by nitrogen oxides (NOx) and ammonia It has adopted a structure that effectively prevents such a problem.

이때, 위와 같은 종래의 SCR 탈질시스템에서는 엔진(91)으로부터 배출되는 고온의 배기가스의 폐열을 회수할 수 있도록, 도 2에 도시된 바와 같이 엔진(91)과 반응기(94) 사이의 배기관(92) 관로 상에 폐열을 회수하는 열교환기(97)를 배치시키게 된다. 그러나, 이와 같이 엔진(91)과 반응기(94) 사이에 배기가스의 폐열을 회수하는 열교환기(97)를 배치시키는 종래의 구조에서는, 엔진(91)에서 배출된 고온의 배기가스(통상 800~900℃ 내외)가 SCR 탈질시스템의 반응기(94)에 유입되기 전 상기 열교환기(97)를 통과하면서 많은 양의 열을 회수당하게 되므로 경우에 따라 반응기(94) 전단에서 이미 280℃ 내외의 저온의 배기가스로 변하게 된다. 결국, SCR 탈질시스템의 혼합챔버(93) 또는 반응기(94)를 지나면서 환원제 및 SCR촉매(944)와 혼합,접촉하면서 효율적인 탈질반응이 일어나기 위해서는 상기 반응기(94)에 유입되는 배기가스의 온도가 최소 300℃ 이상(적절하게는 350℃ 내외)이 유지되어야 함에도 불구하고, 위와 같은 종래의 탈질시스템 구조에서는 상기 열교환기(97)에 의한 배기가스 온도의 급격한 저하로 인한 많은 문제를 야기시키게 된다. At this time, in the conventional SCR denitration system, as shown in FIG. 2, the exhaust pipe 92 between the engine 91 and the reactor 94 is used to recover the waste heat of the high-temperature exhaust gas discharged from the engine 91 ) Heat exchanger 97 for recovering the waste heat on the pipe. However, in the conventional structure in which the heat exchanger 97 for recovering the waste heat of the exhaust gas is disposed between the engine 91 and the reactor 94 as described above, the high temperature exhaust gas A large amount of heat is recovered while passing through the heat exchanger 97 before flowing into the reactor 94 of the SCR denitration system. And is changed into exhaust gas. The temperature of the exhaust gas flowing into the reactor 94 is lower than the temperature of the exhaust gas flowing through the mixing chamber 93 or the reactor 94 of the SCR denitration system so that efficient denitrification reaction occurs while mixing and contacting with the reducing agent and the SCR catalyst 944. [ Despite the fact that at least 300 ° C (appropriately around 350 ° C or so) should be maintained, the conventional denitrification system as described above causes a lot of problems due to a sudden drop in exhaust gas temperature by the heat exchanger 97.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,SUMMARY OF THE INVENTION The present invention has been made to solve the above problems,

본 발명의 목적은 엔진으로부터 배출되는 배기가스의 질소산화물을 제거하는 탈질시스템에서 반응기 전단에서 배기가스의 폐열을 회수하는 열교환기에 의해 온도가 낮아진 배기가스가 탈질반응에 부적합한 온도가 되는 경우, 온도보상 바이패스관을 통해 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 온도보상 구조를 갖는 탈질시스템 및 그 방법을 제공하는 것이다. SUMMARY OF THE INVENTION It is an object of the present invention to provide an exhaust gas purification system for removing nitrogen oxides of exhaust gas discharged from an engine, in which, when an exhaust gas whose temperature is lowered by a heat exchanger for recovering waste heat of exhaust gas from the upstream side of the reactor becomes a temperature unsuitable for denitrification, A part of the exhaust gas having a high temperature at the front end of the heat exchanger is bypassed through the bypass pipe without passing through the heat exchanger and injected into the exhaust pipe at the end of the heat exchanger so that the temperature of the exhaust gas flowing into the reactor can be maintained at a temperature suitable for the denitration reaction A denitration system having a compensation structure, and a method therefor.

본 발명의 다른 목적은 탈질시스템의 열교환기 후단의 배기관에는 온도센서를 설치하고, 상기 온도보상 바이패스관 라인에는 제어부의 제어하에 개폐되며 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절하는 유량조절 컨트롤밸브를 포함하여, 제어부가 상기 온도센서에 의해 측정되는 온도에 따라 상기 유량조절 컨트롤밸브를 제어하여 열교환기 후단에서 혼합챔버 또는 반응기에 유입되는 배기가스의 온도변화에 따라 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절할 수 있도록 하는 온도보상 구조를 갖는 탈질시스템 및 그 방법을 제공하는 것이다. It is another object of the present invention to provide a temperature compensating bypass line which is provided with a temperature sensor on the exhaust pipe at the rear end of the heat exchanger of the denitration system and which is opened and closed under the control of the control unit and controls the flow rate of the exhaust gas flowing through the temperature compensating bypass pipe The control unit controls the flow rate control valve according to the temperature measured by the temperature sensor so that the temperature compensation bypass valve is controlled according to the temperature change of the exhaust gas flowing into the mixing chamber or the reactor at the rear end of the heat exchanger, The present invention also provides a denitration system having a temperature compensation structure for controlling the flow rate of exhaust gas flowing through the denitration system.

본 발명의 또 다른 목적은 SCR 탈질시스템의 작동의 온/오프를 간헐적으로 반복하는 시스템에 사용되는 반응기를 SCR촉매를 포함하는 반응기본체와 상기 반응기본체를 일정 공간을 두고 둘러싸는 반응기외부케이싱의 이중 구조로 형성하여, SCR 탈질시스템이 작동하지 않는 경우에 있어서도 바이패스관을 통해 흐르는 배기가스가 상기 반응기외부케이싱 내부의 일정 공간을 지나면서 상기 반응기본체 내 SCR촉매를 항상 일정 온도 이상으로 예열시키도록 함으로써, 재작동시 고온의 배기가스가 유입되더라도 일정 온도 이상으로 예열된 SCR촉매가 열충격을 받지 않도록 하여 SCR촉매의 반응률과 교체수명을 연장시킬 수 있는 바이패스와 예열 기능을 갖는 이중 케이싱 구조의 반응기를 포함하는 탈질시스템을 제공하는 것이다. It is still another object of the present invention to provide a reactor for use in a system for intermittently repeating the on / off operation of an SCR denitration system, comprising a reactor body including an SCR catalyst and a double reactor outer casing So that even when the SCR denitration system does not operate, the exhaust gas flowing through the bypass pipe always preheats the SCR catalyst in the reactor main body to a predetermined temperature or higher, passing through a certain space inside the reactor outer casing This makes it possible to prevent the SCR catalyst preheated to a certain temperature or higher from being subjected to thermal shock even when the exhaust gas of high temperature is re-introduced at the same time, thereby improving the reaction rate and the replacement life of the SCR catalyst. And to provide a denitrification system including the same.

상술한 본 발명의 목적을 달성하기 위한 온도보상 구조를 갖는 탈질시스템 및 그 방법은 다음과 같은 구성을 포함한다. The denitration system having the temperature compensation structure and the method for achieving the object of the present invention described above include the following configuration.

본 발명의 일 실시예에 따른 온도보상 구조를 갖는 탈질시스템은 탈질반응이 일어나는 SCR촉매를 포함하는 반응기 전단에서 배기가스에 환원제를 분사하는 혼합챔버의 전단에 배치되어 배기관의 배기가스로부터 폐열을 회수하는 열교환기와; 상기 열교환기 전단의 배기관으로부터 분기되어 열교환기 후단의 배기관에 연결되는 온도보상 바이패스관;을 포함하여, 상기 열교환기에 의해 온도가 낮아진 배기가스가 탈질반응에 부적합한 온도가 되는 경우 상기 온도보상 바이패스관을 통해 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 것을 특징으로 한다. The denitration system having a temperature compensation structure according to an embodiment of the present invention is disposed at the front end of a mixing chamber for injecting a reducing agent into the exhaust gas at the front end of the reactor including the SCR catalyst where denitrification occurs, A heat exchanger And a temperature compensating bypass pipe branched from an exhaust pipe at a front end of the heat exchanger and connected to an exhaust pipe at a rear end of the heat exchanger. When the temperature of the exhaust gas lowered by the heat exchanger becomes a temperature unsuitable for the denitration reaction, A part of the exhaust gas having a high temperature at the front end of the heat exchanger is bypassed through the pipe without passing through the heat exchanger and injected into the exhaust pipe at the rear end of the heat exchanger so that the temperature of the exhaust gas flowing into the reactor can be maintained at a temperature suitable for the denitration reaction do.

본 발명의 다른 실시예에 따르면, 본 발명에 따른 온도보상 구조를 갖는 탈질시스템에 있어서 상기 온도보상 바이패스관 라인에는 제어부의 제어하에 개폐되며 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절하는 유량조절 컨트롤밸브를 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the denitration system having the temperature compensation structure according to the present invention, the temperature compensation bypass pipe line is opened and closed under the control of the control unit and controls the flow rate of the exhaust gas flowing through the temperature compensation bypass pipe And a flow rate control valve.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 온도보상 구조를 갖는 탈질시스템에 있어서 상기 열교환기 후단의 배기관에는 온도센서가 설치되어, 열교환기 후단의 배기가스 온도를 측정하여 제어부에 전송하고 제어부는 전송된 온도값을 토대로 상기 유량조절 컨트롤밸브를 제어하는 것을 특징으로 한다. According to another embodiment of the present invention, in the denitration system having the temperature compensation structure according to the present invention, a temperature sensor is provided in the exhaust pipe at the rear end of the heat exchanger, and the exhaust gas temperature at the rear end of the heat exchanger is measured and transmitted to the control unit And the control unit controls the flow rate control valve based on the transmitted temperature value.

본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 온도보상 구조를 갖는 탈질시스템에 있어서 상기 온도보상 바이패스관은 상기 열교환기 전단의 배기관으로부터 분기되어 상기 반응기 전단에 연결되는 것을 특징으로 한다. According to another embodiment of the present invention, in the denitration system having the temperature compensation structure according to the present invention, the temperature compensation bypass pipe is branched from the exhaust pipe at the front end of the heat exchanger and is connected to the front end of the reactor.

본 발명의 일 실시예에 따른 온도보상 탈질방법은 엔진으로부터 배출되는 배기가스가 혼합챔버 전단에 배치된 열교환기를 지나면서 폐열이 회수되는 폐열회수단계; 상기 열교환기 후단에서 상기 폐열회수단계를 거친 배기가스의 온도를 측정하는 온도측정단계; 상기 온도측정단계에서 측정된 온도가 탈질반응에 부적합한 온도가 되는 경우, 온도보상 바이패스관을 통해 상기 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 온도보상단계;를 포함하는 것을 특징으로 한다. The method for temperature-compensated denitrification according to an embodiment of the present invention includes a waste heat recovery step in which waste heat is recovered while exhaust gas discharged from an engine passes through a heat exchanger disposed at a front end of the mixing chamber; A temperature measuring step of measuring a temperature of the exhaust gas through the waste heat recovering step at a rear end of the heat exchanger; When the temperature measured in the temperature measurement step becomes a temperature unsuitable for the denitrification reaction, a part of the exhaust gas having a high temperature at the front end of the heat exchanger is bypassed through the temperature compensating bypass pipe without passing through the heat exchanger and injected into the exhaust pipe at the rear end of the heat exchanger So that the temperature of the exhaust gas flowing into the reactor can be maintained at a temperature suitable for the denitrification reaction.

본 발명의 다른 실시예에 따르면, 본 발명에 따른 온도보상 탈질방법에 있어서 상기 온도보상단계는 상기 온도측정단계에서 측정된 온도가 탈질반응에 부적합한 온도가 되는 경우 상기 온도보상 바이패스관의 유량조절 컨트롤밸브를 개방하여 상기 열교환기 전단의 온도가 높은 배기가스 일부가 열교환기를 통하지 않고 온도보상 바이패스관을 통해 우회하여 열교환기 후단의 배기관에 주입되도록 하는 바이패스관개방단계와, 상기 바이패스관개방단계를 통한 고온의 배기가스 주입으로 열교환기 후단에서 측정되는 온도가 상승하는 경우 상기 온도보상 바이패스관의 유량조절 컨트롤밸브 개방 정도를 축소시켜 온도보상 바이패스관을 통해 우회하여 열교환기 후단의 배기관에 주입되는 고온의 배기가스의 유량을 조절하는 바이패스관유량조절단계를 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the temperature compensating denitrification method according to the present invention, the temperature compensating step may include a step of adjusting the flow rate of the temperature compensation bypass pipe when the temperature measured in the temperature measuring step becomes a temperature unsuitable for denitrification Opening the control valve so that a part of the exhaust gas having a high temperature upstream of the heat exchanger is bypassed through the temperature compensating bypass pipe without being passed through the heat exchanger to be injected into the exhaust pipe at the rear end of the heat exchanger; When the temperature measured at the rear end of the heat exchanger increases due to the injection of the high temperature exhaust gas through the opening step, the opening degree of the flow control valve of the temperature compensation bypass pipe is reduced and bypassed through the temperature compensation bypass pipe, A bypass pipe flow regulating step of regulating the flow rate of the high-temperature exhaust gas injected into the exhaust pipe And a control unit.

본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다. The present invention can obtain the following effects by the above-described embodiment, the constitution described below, the combination, and the use relationship.

본 발명은 엔진으로부터 배출되는 배기가스의 질소산화물을 제거하는 탈질시스템에서 반응기 전단에서 배기가스의 폐열을 회수하는 열교환기에 의해 온도가 낮아진 배기가스가 탈질반응에 부적합한 온도가 되는 경우, 온도보상 바이패스관을 통해 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 효과를 갖는다. In the present invention, when the exhaust gas whose temperature is lowered by the heat exchanger for recovering the waste heat of the exhaust gas in the denitration system for removing the nitrogen oxide of the exhaust gas discharged from the engine becomes a temperature unsuitable for the denitrification reaction, A part of the exhaust gas having a high temperature at the front end of the heat exchanger is bypassed through the pipe without passing through the heat exchanger and injected into the exhaust pipe at the rear end of the heat exchanger so that the temperature of the exhaust gas flowing into the reactor can be maintained at a temperature suitable for the denitration reaction .

본 발명은 탈질시스템의 열교환기 후단의 배기관에는 온도센서를 설치하고, 상기 온도보상 바이패스관 라인에는 제어부의 제어하에 개폐되며 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절하는 유량조절 컨트롤밸브를 포함하여, 제어부가 상기 온도센서에 의해 측정되는 온도에 따라 상기 유량조절 컨트롤밸브를 제어하여 열교환기 후단에서 혼합챔버 또는 반응기에 유입되는 배기가스의 온도변화에 따라 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절할 수 있도록 하는 효과를 갖는다. In the present invention, a temperature sensor is provided in an exhaust pipe at a rear end of a heat exchanger of the denitration system, and a flow rate control valve for opening and closing the temperature compensation bypass pipe under the control of the control unit, The control unit controls the flow rate control valve according to the temperature measured by the temperature sensor so that the exhaust gas flowing through the temperature compensation bypass pipe in accordance with the temperature change of the exhaust gas flowing into the mixing chamber or the reactor at the rear end of the heat exchanger So that the flow rate of the gas can be controlled.

본 발명은 SCR 탈질시스템의 작동의 온/오프를 간헐적으로 반복하는 시스템에 사용되는 반응기를 SCR촉매를 포함하는 반응기본체와 상기 반응기본체를 일정 공간을 두고 둘러싸는 반응기외부케이싱의 이중 구조로 형성하여, SCR 탈질시스템이 작동하지 않는 경우에 있어서도 바이패스관을 통해 흐르는 배기가스가 상기 반응기외부케이싱 내부의 일정 공간을 지나면서 상기 반응기본체 내 SCR촉매를 항상 일정 온도 이상으로 예열시키도록 함으로써, 재작동시 고온의 배기가스가 유입되더라도 일정 온도 이상으로 예열된 SCR촉매가 열충격을 받지 않도록 하여 SCR촉매의 반응률과 교체수명을 연장시킬 수 있는 효과를 갖는다. The present invention is characterized in that a reactor used in a system for intermittently repeating on / off operation of an SCR denitration system is formed into a double structure of a reactor body including an SCR catalyst and a reactor outer casing enclosing the reactor body in a predetermined space Even when the SCR denitrification system does not operate, the exhaust gas flowing through the bypass pipe always preheats the SCR catalyst in the reactor main body to a predetermined temperature or higher, passing through a certain space inside the reactor outer casing, The SCR catalyst preheated to a predetermined temperature or higher even when a high temperature exhaust gas is introduced is prevented from being subjected to a thermal shock, so that the reaction rate and the replacement life of the SCR catalyst can be prolonged.

도 1은 종래 SCR 탈질시스템의 구조를 도시한 개략도
도 2는 종래 SCR 탈질시스템에서 혼합챔버 전단에 열교환기가 설치되는 구조를 도시한 개략도
도 3은 본 발명의 일 실시예에 따른 온도보상 구조를 갖는 탈질시스템의 개략도
도 4는 도 3에서 온도센서와 유량조절 컨트롤밸브가 설치된 구조를 도시한 개략도
도 5는 도 4의 탈질시스템이 작동하는 과정을 도시한 참고도
도 6은 본 발명의 일 실시예에 따른 온도보상 탈질방법의 블럭도
도 7은 종래 SCR 탈질시스템의 구조를 도시한 개략도
도 8은 본 발명의 다른 실시예에 따른 이중 케이싱 구조의 반응기의 사시도
도 9는 도 8의 이중 케이싱 구조의 반응기의 단면도
도 10은 바이패스관을 통해 배기가스가 바이패스되는 과정을 도시한 참고도
도 11은 반응기를 통해 배기가스가 처리되는 과정을 도시한 참고도
1 is a schematic view showing the structure of a conventional SCR denitration system
2 is a schematic view showing a structure in which a heat exchanger is installed at a front end of a mixing chamber in a conventional SCR denitration system
3 is a schematic diagram of a denitration system having a temperature compensation structure according to an embodiment of the present invention
Fig. 4 is a schematic view showing a structure in which a temperature sensor and a flow rate control valve are installed in Fig. 3
FIG. 5 is a view showing a process of operating the denitration system of FIG.
6 is a block diagram of a temperature compensated denitrification method according to an embodiment of the present invention.
7 is a schematic view showing a structure of a conventional SCR denitration system
8 is a perspective view of a reactor having a double casing structure according to another embodiment of the present invention.
Fig. 9 is a cross-sectional view of the reactor of the double casing structure of Fig. 8
10 is a view showing a process of bypassing exhaust gas through a bypass pipe
11 is a view showing a process of processing exhaust gas through a reactor

이하에서는 본 발명에 따른 온도보상 구조를 갖는 탈질시스템 및 그 방법의 바람직한 실시예들을 첨부된 도면을 참조하여 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하도록 한다.
Hereinafter, preferred embodiments of a denitration system having the temperature compensation structure and a method thereof according to the present invention will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 3 내지 5를 참조하면, 본 발명의 일 실시예에 따른 온도보상 구조를 갖는 SCR(Selective Catalytic Reduction, 선택적 환원촉매법) 탈질시스템은 탈질반응이 일어나는 SCR촉매(451)를 포함하는 반응기(45) 전단에서 배기가스에 환원제를 분사하는 혼합챔버(44)의 전단에 배치되어 배기관(42)의 배기가스로부터 폐열을 회수하는 열교환기(43)와; 상기 열교환기(43) 전단의 배기관(42)으로부터 분기되어 열교환기(43) 후단의 배기관(42)에 연결되는 온도보상 바이패스관(47);을 포함하여, 상기 열교환기(43)에 의해 온도가 낮아진 배기가스가 탈질반응에 부적합한 온도가 되는 경우 상기 온도보상 바이패스관(47)을 통해 열교환기(43) 전단의 온도가 높은 배기가스 일부를 열교환기(43)를 통하지 않고 우회시켜 열교환기(43) 후단의 배기관(42)에 주입함으로써 혼합챔버(44) 및 반응기(45)에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 것을 특징으로 한다. 3 to 5, a selective catalytic reduction (SCR) denitrification system having a temperature compensation structure according to an embodiment of the present invention includes a reactor 451 including an SCR catalyst 451 where denitrification occurs A heat exchanger 43 disposed at the front end of the mixing chamber 44 for injecting the reducing agent into the exhaust gas at the front end thereof to recover the waste heat from the exhaust gas of the exhaust pipe 42; And a temperature compensation bypass pipe 47 branched from the exhaust pipe 42 at the front end of the heat exchanger 43 and connected to the exhaust pipe 42 at the rear end of the heat exchanger 43. The heat exchanger 43 When the temperature of the exhaust gas becomes lower than the temperature of the exhaust gas, the part of the exhaust gas having a high temperature at the front end of the heat exchanger 43 is bypassed through the temperature compensating bypass pipe 47 without passing through the heat exchanger 43, The temperature of the exhaust gas flowing into the mixing chamber 44 and the reactor 45 can be maintained at a temperature suitable for the denitration reaction by injecting the exhaust gas into the exhaust pipe 42 at the rear end of the unit 43. [

앞서 종래기술에서 설명한 바와 같이, 배기가스에서의 질소산화물(NOx) 제거를 위해 특히 요소(암모니아)를 환원제로 하는 SCR(Selective Catalytic Reduction, 선택적 환원촉매법) 탈질시스템은 엔진(91)에서 배출되는 배기가스 중의 질소산화물(NOx)을 탈질시키기 위해 배기가스가 흐르는 혼합챔버(93) 내로 환원제 즉, 요소수(요소수가 기화되면 암모니아가 됨)를 분사노즐(951)을 통해 분사시켜 배기가스와 환원제가 혼합된 혼합가스를 생성한 후, 해당 혼합가스를 SCR촉매(944)를 포함하고 있는 반응기(94)에 유입시켜 상기 반응기(94) 내에서 배기가스와 환원제가 혼합된 혼합가스가 SCR촉매(944)를 통과하면서 배기가스에 포함된 질소산화물(NOx) 성분을 탈질(탈질반응)시켜 최적의 탈질효율을 얻고 질소산화물(NOx) 성분이나 암모니아로 인한 환경오염을 효율적으로 방지하는 구조를 채택하고 있다. 한편, 위와 같은 종래의 SCR 탈질시스템은 엔진(91)으로부터 배출되는 고온의 배기가스의 폐열을 회수할 수 있도록, 도 2에 도시된 바와 같이 엔진(91)과 반응기(94) 사이의 배기관(92) 관로 상에 폐열을 회수하는 열교환기(97)를 배치시키게 된다. 그러나, 이와 같이 엔진(91)과 반응기(94) 사이에 배기가스의 폐열을 회수하는 열교환기(97)를 배치시키는 종래의 구조에서는, 엔진(91)에서 배출된 고온의 배기가스(통상 800~900℃ 내외)가 SCR 탈질시스템의 반응기(94)에 유입되기 전 상기 열교환기(97)를 통과하면서 많은 양의 열을 회수당하게 되므로 경우에 따라 반응기(94) 전단에서 이미 280℃ 내외의 저온의 배기가스로 변하게 된다. 결국, SCR 탈질시스템의 혼합챔버(93) 또는 반응기(94)를 지나면서 환원제 및 SCR촉매(944)와 혼합,접촉하면서 효율적인 탈질반응이 일어나기 위해서는 상기 반응기(94)에 유입되는 배기가스의 온도가 최소 300℃ 이상(적절하게는 350℃ 내외)이 유지되어야 함에도 불구하고, 위와 같은 종래의 탈질시스템 구조에서는 상기 열교환기(97)에 의한 배기가스 온도의 급격한 저하로 인한 많은 문제를 야기시키게 된다. As described in the prior art, SCR (Selective Catalytic Reduction, selective reduction catalyst method) denitration system using nitrogen as a reducing agent, especially for removing nitrogen oxide (NOx) from the exhaust gas, is discharged from the engine 91 That is, urea water (which becomes ammonia when urea water is vaporized) is injected into the mixing chamber 93 through which the exhaust gas flows to denit nitrogen oxide (NOx) in the exhaust gas through the injection nozzle 951 to remove the exhaust gas and the reducing agent The mixed gas is introduced into the reactor 94 containing the SCR catalyst 944 so that a mixed gas of the exhaust gas and the reducing agent in the reactor 94 is supplied to the SCR catalyst 94 944) to denitrify (denitrification) the nitrogen oxide (NOx) component contained in the exhaust gas to obtain optimal denitrification efficiency and effectively prevent environmental pollution due to nitrogen oxides (NOx) and ammonia It has adopted a structure. The conventional SCR denitration system as described above is configured to exhaust the exhaust gas 92 between the engine 91 and the reactor 94 so as to recover the waste heat of the exhaust gas of high temperature discharged from the engine 91 ) Heat exchanger 97 for recovering the waste heat on the pipe. However, in the conventional structure in which the heat exchanger 97 for recovering the waste heat of the exhaust gas is disposed between the engine 91 and the reactor 94 as described above, the high temperature exhaust gas A large amount of heat is recovered while passing through the heat exchanger 97 before flowing into the reactor 94 of the SCR denitration system. And is changed into exhaust gas. The temperature of the exhaust gas flowing into the reactor 94 is lower than the temperature of the exhaust gas flowing through the mixing chamber 93 or the reactor 94 of the SCR denitration system so that efficient denitrification reaction occurs while mixing and contacting with the reducing agent and the SCR catalyst 944. [ Despite the fact that at least 300 ° C (appropriately around 350 ° C or so) should be maintained, the conventional denitrification system as described above causes a lot of problems due to a sudden drop in exhaust gas temperature by the heat exchanger 97.

따라서, 본 발명에 따른 온도보상 구조를 갖는 탈질시스템은, 엔진에서 배출되는 배기가스가 혼합챔버(44) 및/또는 반응기(45) 전단에서 배기가스의 폐열을 회수하기 위해 설치되는 열교환기(43)를 지나면서 온도가 낮아져 혼합챔버(44) 및/또는 반응기(45)에 유입되지 전에 이미 배기가스 온도가 탈질반응에 부적합한 온도(즉, 탈질반응에 적절한 300~350℃ 내외보다 낮은 온도)가 되는 경우에는, 별도의 온도보상 바이패스관(47)을 통해 열교환기(43) 전단의 온도가 높은 배기가스 일부를 열교환기(43)를 통하지 않고 우회시켜 열교환기(43) 후단의 배기관(42)으로 주입함으로써 혼합챔버(44) 및 반응기(45)에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 한다. Accordingly, the denitration system having the temperature compensation structure according to the present invention is characterized in that the exhaust gas discharged from the engine is supplied to the heat exchanger (43) installed to recover the waste heat of the exhaust gas in the mixing chamber (44) and / The temperature at which the exhaust gas temperature is already inadequate for the denitrification reaction (that is, a temperature lower than about 300 to 350 ° C. suitable for the denitrification reaction) before flowing into the mixing chamber 44 and / or the reactor 45 A part of the exhaust gas having a high temperature at the front end of the heat exchanger 43 is bypassed through the separate temperature compensation bypass pipe 47 without passing through the heat exchanger 43 and the exhaust pipe 42 at the rear end of the heat exchanger 43 So that the temperature of the exhaust gas flowing into the mixing chamber 44 and the reactor 45 can be maintained at a temperature suitable for the denitration reaction.

즉, 도 3을 참조하면, 본 발명의 일 실시예에 따른 온도보상 구조를 갖는 탈질시스템에서도 역시 엔진(41)으로부터 배출되는 고온의 배기가스(통상, 800~900℃ 내외)는 배기가스의 폐열을 회수하기 위해 배기관(42)의 관로 상에 설치된 열교환기(43)를 지나면서 온도가 낮아지게 되는데, 만약 상기 열교환기(43)를 지나면서 열을 회수 당한 배기가스의 온도가 혼합챔버(44)에 유입되기 전에 이미 탈질반응에 부적합한 온도(즉, 탈질반응에 적절한 300~350℃ 내외보다 낮은 온도)가 되는 경우에는, 상기 열교환기(43) 전단에서 배기관(42)으로부터 분기되어 상기 열교환기(43)를 거치지 않고 열교환기(43) 후단의 배기관(42)에 연결되는 온도보상 바이패스관(47)을 통해 상기 열교환기(43) 전단의 배기관(42)에 있는 고온의 배기가스 일부를 우회시켜 온도보상 바이패스관(47)을 통해 우회되면서 열을 회수당하지 않고 고온의 온도를 유지하는 배기가스가 상기 열교환기(43) 후단의 배기관(42)으로 직접 주입될 수 있게 함으로써, 온도가 낮아진 혼합챔버(44) 전단의 배기관(42)의 배기가스 온도를 상기 온도보상 바이패스관(47)을 통해 주입되는 고온의 배기가스를 혼합하여 탈질반응에 적절한 350℃ 내외의 온도로 유지되도록 온도보상을 하게 된다. 3, in the denitration system having the temperature compensation structure according to the embodiment of the present invention, the high-temperature exhaust gas discharged from the engine 41 (usually about 800 to 900 ° C.) The temperature of the exhaust gas recovered through the heat exchanger 43 is lower than the temperature of the exhaust gas flowing through the heat exchanger 43. [ The exhaust gas is branched from the exhaust pipe 42 at the front end of the heat exchanger 43 and is introduced into the heat exchanger 43 at the front end of the heat exchanger 43 when the temperature is inadequate for the denitrification reaction A part of the high temperature exhaust gas in the exhaust pipe 42 at the front end of the heat exchanger 43 is supplied through the temperature compensating bypass pipe 47 connected to the exhaust pipe 42 at the rear end of the heat exchanger 43, Bypassing the temperature compensation bypass pipe 47, The exhaust gas that keeps the high temperature without passing through the heat exchanger 43 can be directly injected into the exhaust pipe 42 at the rear end of the heat exchanger 43 so that the temperature of the exhaust pipe 42 Is mixed with the high temperature exhaust gas injected through the temperature compensating bypass pipe 47 to perform temperature compensation so as to be maintained at a temperature of about 350 ° C suitable for the denitrification reaction.

따라서, 본 발명에서는 상기 열교환기(43)의 전단과 후단 사이를 별도로 연결시키는 상기 온도보상 바이패스관(47)을 형성하고 이를 통해 필요에 따라 고온의 배기가스를 상기 열교환기(43)를 통하지 않고 열교환기(43) 후단의 배기관(42)으로 우회시키는 구조를 통해, 상기 열교환기(43)에 의한 과도한 배기가스의 온도 저하를 방지하고 항상 탈질반응에 효율적인 온도로 유지된 배기가스가 혼합챔버(44) 및/또는 반응기(45)에 유입될 수 있게 된다. Therefore, in the present invention, the temperature-compensating bypass pipe 47 for separately connecting the front end and the rear end of the heat exchanger 43 is formed, through which the high-temperature exhaust gas passes through the heat exchanger 43 The exhaust gas is prevented from excessively lowering the temperature of the exhaust gas by the heat exchanger 43 and the temperature of the exhaust gas maintained at an effective temperature for the denitration reaction at all times is lowered to the exhaust chamber 42 at the rear end of the heat exchanger 43, (44) and / or the reactor (45).

한편, 도 4를 참조하면, 본 발명에 따른 온도보상 구조를 갖는 탈질시스템에서는 추가적으로 상기 열교환기(43) 후단의 배기관(42)에는 온도센서(421)를 포함하고, 상기 온도보상 바이패스관(47)의 라인 상에는 제어부(48)의 제어하에 개폐되며 온도보상 바이패스관(47)을 흐르는 배기가스의 유량을 조절하는 유량조절 컨트롤밸브(471)를 포함할 수 있다. 4, in the denitration system having the temperature compensation structure according to the present invention, a temperature sensor 421 is additionally provided in the exhaust pipe 42 at the rear end of the heat exchanger 43, 47 may include a flow control valve 471 which is opened and closed under the control of the control unit 48 and regulates the flow rate of the exhaust gas flowing through the temperature compensation bypass pipe 47.

즉, 상기 온도센서(421)는 상기 열교환기(43) 후단의 배기관(42)에 설치되어 열교환기(43) 후단의 배기관(42)을 흐르는 배기가스의 온도를 측정하여 그 측정값을 제어부(48)에 전송하는 기능을 수행하는 구성으로, 상기 온도센서(421)에서 측정되어 전송되는 열교환기(43) 후단의 배기관(42)의 배기가스 온도는 후술할 바와 같이 제어부(48)의 제어하에 상기 온도보상 바이패스관(47)의 개폐 및/또는 개폐량을 조절하여 상기 온도보상 바이패스관(47)을 통한 배기가스의 우회 또는 그 양을 제어하는데 활용되게 된다. That is, the temperature sensor 421 is installed in the exhaust pipe 42 at the rear end of the heat exchanger 43 to measure the temperature of the exhaust gas flowing through the exhaust pipe 42 at the rear end of the heat exchanger 43, The exhaust gas temperature of the exhaust pipe 42 at the rear end of the heat exchanger 43 measured and transmitted by the temperature sensor 421 is controlled under the control of the control unit 48 The temperature compensating bypass pipe 47 is controlled to open and close and / or open and close the exhaust pipe to control the bypass or the amount of the exhaust gas through the temperature compensating bypass pipe 47.

상기 유량조절 컨트롤밸브(471)는 상기 제어부(48)의 제어하에 전자적으로 개폐 및 개폐의 정도가 제어되면서 상기 온도보상 바이패스관(47)을 흐르는 배기가스의 이동여부 및 그 유량을 제어하게 되는 구성이다. The flow rate control valve 471 controls the degree of electron opening and closing and the opening and closing of the flow rate control valve 471 under the control of the controller 48 to control the flow of the exhaust gas flowing through the temperature compensation bypass pipe 47 and the flow rate thereof .

이하에서는, 도 5를 참조하여 상기 온도센서(421) 및 유량조절 바이패스관()을 활용한 배기가스의 온도보상 바이패스관(47)을 통한 우회 및 그 양에 대한 제어과정에 대해 설명하도록 한다. Hereinafter, with reference to FIG. 5, a description will be given of the process of bypassing and controlling the amount of exhaust gas through the temperature compensation bypass pipe 47 using the temperature sensor 421 and the flow rate control bypass pipe () do.

먼저, 도 5의 (1)에 도시된 바와 같이, 엔진(41)으로부터 배출되는 배기가스가 상기 열교환기(43)를 거치면서 폐열이 회수된 후에 상기 혼합챔버(44) 및 반응기(45)를 거치게 되는 과정을 계속하는 상태(이때, 상기 온도보상 바이패스관(47)의 관로는 운용되지 않고 폐쇄되어 있음)에서, 상기 열교환기(43) 후단의 배기관(42)에 설치된 온도센서(421)를 통해 측정된 배기가스의 온도가 280℃ 내외로 탈질반응에 부적절한 저온 상태로 측정되는 경우, First, as shown in (1) of FIG. 5, exhaust gas discharged from the engine 41 passes through the heat exchanger 43, and then the mixed chamber 44 and the reactor 45 A temperature sensor 421 provided in the exhaust pipe 42 at the downstream end of the heat exchanger 43 is connected to the temperature compensating bypass pipe 47 in a state in which the process of passing the temperature compensating bypass pipe 47 is continued, When the temperature of the exhaust gas measured at about 280 ° C is in a low temperature state inappropriate for denitrification,

본 발명의 탈질시스템의 운용을 담당하는 제어부(48)는 상기 온도센서(421)에서 전송된 온도 측정치를 토대로, 도 5의 (2)에 도시된 바와 같이 열교환기(43)의 전단과 후단의 배기관(42)을 열교환기(43)를 거치지 않고 우회하여 연결시키는 상기 온도보상 바이패스관(47)의 유량조절 컨트롤밸브(471)의 개방 신호를 전송하여 상기 유량조절 컨트롤밸브(471)가 개방됨으로 인해, 상기 열교환기(43) 전단의 배기관(42)에 있던 고온의 배기가스의 일부가 상기 온도보상 바이패스관(47)을 통해 열교환기(43)를 거치지 않고 직접 열교환기(43) 후단의 배기관(42)으로 주입되도록 한다. 5 (2), the control unit 48, which is responsible for the operation of the denitration system of the present invention, calculates the temperature of the upstream and downstream sides of the heat exchanger 43 based on the temperature measurement values transmitted from the temperature sensor 421 The flow control valve 471 is opened by transmitting an opening signal of the flow control valve 471 of the temperature compensating bypass pipe 47 which bypasses the exhaust pipe 42 without passing through the heat exchanger 43, A part of the high temperature exhaust gas in the exhaust pipe 42 at the upstream end of the heat exchanger 43 is directly supplied to the downstream end of the heat exchanger 43 through the temperature compensating bypass pipe 47 without passing through the heat exchanger 43 So that the exhaust gas is introduced into the exhaust pipe 42.

한편, 상기 온도보상 바이패스관(47) 관로의 개방으로 인한 고온의 배기가스의 주입으로 인해 상기 열교환기(43) 후단의 배기관(42)에 설치된 온도센서(421)를 통해 측정된 배기가스의 온도가 점차 상승하게 되는 경우, 상기 제어부(48)는 그 전송된 측정치를 토대로 도 5의 (3)에 도시된 바와 같이 상기 온도보상 바이패스관(47)의 유량조절 컨트롤밸브(471)의 개방 정도를 점차 축소시키는 제어신호를 전송하여 상기 유량조절 컨트롤밸브(471)의 개방 정도가 축소되면서 상기 온도보상 바이패스관(47)을 지나 열교환기(43) 후단의 배기관(42)으로 직접 주입되는 고온의 배기가스의 유량을 점진적으로 감소시켜 열교환기(43) 후단의 배기관(42)의 배기가스 온도가 탈질반응에 적합한 350℃ 내외로 유지될 수 있게 제어하게 된다(만약, 열교환기(43) 후단의 배기관(42)의 배기가스 온도가 350℃를 과도하게 초과하는 경우에는 상기 유량조절 컨트롤밸브(471)를 완전히 폐쇄시키게 된다). 이와 같이, 본 발명에 따른 온도보상 구조를 갖는 탈질시스템은 배기관(42)의 라인 상에 폐열회수를 위해 위치하는 열교환기(43)의 전단과 후단 사이를 별도로 연결시키는 상기 온도보상 바이패스관(47)을 통해 필요에 따라(제어부의 제어하에) 고온의 배기가스 일부를 상기 열교환기(43)를 통하지 않고 열교환기(43) 후단의 배기관(42)으로 직접 우회시킬 수 있는 구조를 통해, 상기 열교환기(43)에 의한 배기관(42) 내 과도한 배기가스의 온도 저하를 방지하고 항상 탈질반응에 효율적인 온도로 유지된 배기가스가 혼합챔버(44) 및/또는 반응기(45)에 유입될 수 있게 된다.
The temperature of the exhaust gas measured through the temperature sensor 421 provided in the exhaust pipe 42 at the rear end of the heat exchanger 43 due to the injection of the high temperature exhaust gas due to the opening of the pipe of the temperature compensation bypass pipe 47, When the temperature gradually increases, the control unit 48 controls the opening of the flow rate control valve 471 of the temperature compensation bypass pipe 47, as shown in (3) of FIG. 5, The opening degree of the flow control valve 471 is reduced and the refrigerant is directly injected into the exhaust pipe 42 at the rear end of the heat exchanger 43 through the temperature compensation bypass pipe 47 The flow rate of the exhaust gas at a high temperature is gradually decreased to control the exhaust gas temperature of the exhaust pipe 42 at the rear end of the heat exchanger 43 to be maintained at around 350 ° C suitable for the denitrification reaction (if the heat exchanger 43 is used, The rear end of the exhaust pipe 42 When the gas temperature excessively exceed 350 ℃ is thereby completely closing the flow rate control valve control portion 471). As described above, the denitration system having the temperature compensation structure according to the present invention includes the temperature compensating bypass pipe (not shown) for separately connecting the front end and the rear end of the heat exchanger 43 positioned for recovering the waste heat on the line of the exhaust pipe 42 Through a structure in which a part of the exhaust gas at a high temperature can be bypassed directly to the exhaust pipe 42 at the rear end of the heat exchanger 43 without passing through the heat exchanger 43 as needed (under the control of the control unit) The temperature of exhaust gas in the exhaust pipe 42 due to the heat exchanger 43 can be prevented from being lowered and the exhaust gas maintained at an effective temperature for denitration reaction can be introduced into the mixing chamber 44 and / do.

이하에서는, 도 6을 참조하여 앞서 본 발명의 온도보상 구조를 갖는 탈질시스템을 이용한 온도보상 탈질방법에 대해 설명하도록 한다. Hereinafter, a temperature compensation denitrification method using the denitration system having the temperature compensation structure of the present invention will be described with reference to FIG.

본 발명의 일 실시예에 따른 온도보상 탈질방법은 엔진(41)으로부터 배출되는 배기가스가 혼합챔버(44) 전단에 배치된 열교환기(43)를 지나면서 폐열이 회수되는 폐열회수단계(S1); 상기 열교환기(43) 후단에서 상기 폐열회수단계(S1)를 거친 배기가스의 온도를 측정하는 온도측정단계(S2); 상기 온도측정단계(S2)에서 측정된 온도가 탈질반응에 부적합한 온도가 되는 경우, 온도보상 바이패스관(47)을 통해 상기 열교환기(43) 전단의 온도가 높은 배기가스 일부를 열교환기(43)를 통하지 않고 우회시켜 열교환기(43) 후단의 배기관(42)에 주입함으로써 반응기(45)에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 온도보상단계(S3);를 포함하는 것을 특징으로 한다. The temperature compensated denitrification method according to an embodiment of the present invention includes a waste heat recovering step S1 in which exhaust gas discharged from an engine 41 passes through a heat exchanger 43 disposed in front of a mixing chamber 44 and waste heat is recovered, ; A temperature measuring step (S2) of measuring the temperature of the exhaust gas through the heat recovery step (S1) at the rear end of the heat exchanger (43); When the temperature measured in the temperature measuring step S2 becomes a temperature unsuitable for the denitrification reaction, a part of the exhaust gas having a high temperature at the upstream side of the heat exchanger 43 is supplied to the heat exchanger 43 (S3) so that the temperature of the exhaust gas flowing into the reactor (45) can be kept at a temperature suitable for the denitrification reaction by injecting it into the exhaust pipe (42) at the rear end of the heat exchanger (43) .

상기 폐열회수단계(S1)는 엔진(41)으로부터 배출되는 배기가스가 혼합챔버(44) 전단에 배치된 열교환기(43)를 지나면서 폐열이 회수되는 과정으로, 도 5의 (1)에 도시된 바와 같이, 엔진(41)으로부터 배출되는 배기가스가 상기 열교환기(43)를 거치면서 폐열이 회수된 후에 상기 혼합챔버(44) 및 반응기(45)를 거치게 되는 과정을 계속하는 상태(이때, 상기 온도보상 바이패스관(47)의 관로는 운용되지 않고 폐쇄되어 있음)를 의미한다. The waste heat recovering step S1 is a process in which waste heat is recovered while the exhaust gas discharged from the engine 41 passes through a heat exchanger 43 disposed in front of the mixing chamber 44, The exhaust gas discharged from the engine 41 is passed through the heat exchanger 43 and the waste heat is recovered and then the process of passing through the mixing chamber 44 and the reactor 45 is continued, The conduit of the temperature compensation bypass pipe 47 is closed and not operated).

상기 온도측정단계(S2)는 상기 열교환기(43) 후단에서 상기 폐열회수단계(S1)를 거친 배기가스의 온도를 측정하는 과정이다. The temperature measurement step S2 is a step of measuring the temperature of the exhaust gas passing through the heat recovery step S1 at the rear end of the heat exchanger 43. [

상기 온도보상단계(S3)는 보다 구체적으로 상기 온도측정단계(S2)에서 측정된 온도가 탈질반응에 부적합한 온도가 되는 경우 상기 온도보상 바이패스관의 유량조절 컨트롤밸브를 개방하여 상기 열교환기 전단의 온도가 높은 배기가스 일부가 열교환기를 통하지 않고 온도보상 바이패스관을 통해 우회하여 열교환기 후단의 배기관에 주입되도록 하는 바이패스관개방단계(S31)와, 상기 바이패스관개방단계(S31)를 통한 고온의 배기가스 주입으로 열교환기 후단에서 측정되는 온도가 상승하는 경우 상기 온도보상 바이패스관의 유량조절 컨트롤밸브 개방 정도를 축소시켜 온도보상 바이패스관을 통해 우회하여 열교환기 후단의 배기관에 주입되는 고온의 배기가스의 유량을 조절하는 바이패스관유량조절단계(S32)로 진행되게 된다. More specifically, when the temperature measured in the temperature measurement step (S2) becomes a temperature unsuitable for the denitrification reaction, the flow rate control valve of the temperature compensation bypass pipe is opened to control the temperature of the upstream side of the heat exchanger A bypass pipe opening step S31 for bypassing a part of the exhaust gas having a high temperature bypassing the heat exchanger through the temperature compensating bypass pipe to be injected into the exhaust pipe at the rear end of the heat exchanger, When the temperature measured at the rear end of the heat exchanger increases due to injection of high temperature exhaust gas, the opening degree of the flow control valve of the temperature compensating bypass pipe is reduced and is bypassed through the temperature compensating bypass pipe and injected into the exhaust pipe at the rear end of the heat exchanger The flow proceeds to the bypass pipe flow rate adjusting step S32 for adjusting the flow rate of the high-temperature exhaust gas.

상기 바이패스관개방단계(S31)는 상기 열교환기(43) 후단의 배기관(42)에 설치된 온도센서(421)를 통해 측정된 배기가스의 온도가 280℃ 내외로 탈질반응에 부적절한 저온 상태로 측정되는 경우에 있어, 본 발명의 탈질시스템의 운용을 담당하는 제어부(48)가 상기 온도센서(421)에서 전송된 온도 측정치를 토대로, 도 5의 (2)에 도시된 바와 같이 열교환기(43)의 전단과 후단의 배기관(42)을 열교환기(43)를 거치지 않고 우회하여 연결시키는 상기 온도보상 바이패스관(47)의 유량조절 컨트롤밸브(471)의 개방 신호를 전송하여 상기 유량조절 컨트롤밸브(471)가 개방됨으로 인해, 상기 열교환기(43) 전단의 배기관(42)에 있던 고온의 배기가스의 일부가 상기 온도보상 바이패스관(47)을 통해 열교환기(43)를 거치지 않고 직접 열교환기(43) 후단의 배기관(42)으로 주입되도록 한다. In the bypass pipe opening step S31, the temperature of the exhaust gas measured through the temperature sensor 421 provided in the exhaust pipe 42 at the rear end of the heat exchanger 43 is measured to be in a low temperature state The control unit 48 responsible for the operation of the denitrification system of the present invention controls the heat exchanger 43 as shown in FIG. 5 (2) based on the temperature measurement value transmitted from the temperature sensor 421, Of the flow control valve 471 of the temperature compensating bypass pipe 47 for bypassing the front end and the rear end of the exhaust pipe 42 without passing through the heat exchanger 43, A part of the high temperature exhaust gas in the exhaust pipe 42 at the upstream end of the heat exchanger 43 is directly passed through the temperature compensating bypass pipe 47 without passing through the heat exchanger 43, To be injected into the exhaust pipe 42 at the rear end of the pipe 43 The.

상기 바이패스관유량조절단계(S32)는 상기 온도보상 바이패스관(47) 관로의 개방으로 인한 고온의 배기가스의 주입으로 인해 상기 열교환기(43) 후단의 배기관(42)에 설치된 온도센서(421)를 통해 측정된 배기가스의 온도가 점차 상승하게 되는 경우, 상기 제어부(48)가 그 전송된 측정치를 토대로 도 5의 (3)에 도시된 바와 같이 상기 온도보상 바이패스관(47)의 유량조절 컨트롤밸브(471)의 개방 정도를 점차 축소시키는 제어신호를 전송하여 상기 유량조절 컨트롤밸브(471)의 개방 정도가 축소되면서 상기 온도보상 바이패스관(47)을 지나 열교환기(43) 후단의 배기관(42)으로 직접 주입되는 고온의 배기가스의 유량을 점진적으로 감소시켜 열교환기(43) 후단의 배기관(42)의 배기가스 온도가 탈질반응에 적합한 350℃ 내외로 유지될 수 있게 제어하게 된다(만약, 열교환기(43) 후단의 배기관(42)의 배기가스 온도가 350℃를 과도하게 초과하는 경우에는 상기 유량조절 컨트롤밸브(471)를 완전히 폐쇄시키게 된다).
The bypass pipe flow rate adjustment step S32 may include a temperature sensor installed in the exhaust pipe 42 at the rear end of the heat exchanger 43 due to the injection of the high temperature exhaust gas due to the opening of the pipe of the temperature compensation bypass pipe 47 The temperature of the exhaust gas measured through the temperature compensating bypass pipe 47 is gradually increased as the temperature of the exhaust gas measured through the temperature compensating bypass pipe 47 is increased gradually as shown in (3) of FIG. 5, A control signal for gradually decreasing the opening degree of the flow control valve 471 is transmitted to reduce the degree of opening of the flow control valve 471 and pass through the temperature compensation bypass pipe 47 to the rear end of the heat exchanger 43 Temperature exhaust gas directly injected into the exhaust pipe 42 of the heat exchanger 43 is gradually reduced to control the exhaust gas temperature of the exhaust pipe 42 at the rear end of the heat exchanger 43 to be maintained at about 350 ° C. (If the heat bridge Exchanger 43. When the exhaust gas temperature of the exhaust pipe 42 of the rear end excessively exceed 350 ℃ is thereby completely closing the flow rate control valve control portion 471).

한편, 도 8 내지 11을 참조하면, (선박용)엔진으로부터 배출되는 배기가스를 처리하기 위해 사용되는 본 발명의 다른 실시예에 따른 SCR(Selective Catalytic Reduction, 선택적 환원촉매법) 탈질시스템은 탈질시스템 내 반응기가 유입부(7511)와 유출부(7512)를 통해 배기가스가 지나면서 접촉하여 탈질반응이 일어나는 SCR촉매(7513)를 포함하는 반응기본체(751)와; 상기 반응기본체(751)를 둘러싸며 내부에 일정 공간을 형성하고, 상기 유입부(7511) 앞에서 배기가스를 우회시켜 상기 유출부(7512) 뒤에 연결시키는 바이패스관(77)과 연결되는 바이패스유입부(7521)와 바이패스유출부(7522)를 포함하는 반응기외부케이싱(752);을 포함하여, SCR탈질시스템이 작동하지 않는 경우에도 상기 바이패스관(77)을 통해 흐르는 배기가스가 상기 반응기외부케이싱(752) 내부의 일정 공간을 지나면서 상기 반응기본체(751) 내 SCR촉매(7513)를 항상 일정 온도 이상으로 예열시킬 수 있도록 하는 것을 특징으로 한다. 8 to 11, an SCR (Selective Catalytic Reduction, selective reduction catalyst method) denitration system according to another embodiment of the present invention, which is used for treating exhaust gas discharged from an engine, A reactor body 751 including an SCR catalyst 7513 in which a denitration reaction occurs when the reactor contacts the exhaust gas passing through the inlet portion 7511 and the outlet portion 7512 through the exhaust gas; A bypass pipe 77 which surrounds the reactor body 751 and is connected to a bypass pipe 77 which forms a predetermined space inside the reactor body 751 and bypasses the exhaust gas in front of the inlet 7511 and connects the exhaust gas to the outlet 7512, The exhaust gas flowing through the bypass pipe 77 is discharged to the outside of the reactor 752 even when the SCR denitration system does not operate, including the reactor outer casing 752 including the outlet 7521 and the bypass outlet 7522. [ The SCR catalyst 7513 in the reactor main body 751 can be preheated to a temperature exceeding a predetermined temperature by passing through a certain space in the outer casing 752.

도 7을 참조하면, 종래에 배기가스에서의 질소산화물(NOx) 제거를 위해 특히 요소(암모니아)를 환원제로 하는 SCR(Selective Catalytic Reduction, 선택적 환원촉매법) 탈질시스템은 엔진(91)에서 배출되는 배기가스 중의 질소산화물(NOx)을 탈질시키기 위해 배기가스가 흐르는 혼합챔버(93) 내로 환원제 즉, 요소수(요소수가 기화되면 암모니아가 됨)를 분사노즐(951)을 통해 분사시켜 배기가스와 환원제가 혼합된 혼합가스를 생성한 후, 해당 혼합가스를 SCR촉매(944)를 포함하고 있는 반응기(94)에 유입시켜 상기 반응기(94) 내에서 배기가스와 환원제가 혼합된 혼합가스가 SCR촉매(944)를 통과하면서 배기가스에 포함된 질소산화물(NOx) 성분을 탈질(탈질반응)시켜 최적의 탈질효율을 얻고 질소산화물(NOx) 성분이나 암모니아로 인한 환경오염을 효율적으로 방지하는 구조를 채택하고 있다. 그러나, 이러한 종래의 SCR 탈질시스템에서도 간헐적으로 SCR 탈질시스템을 사용하는 시스템 특히, 선박에 설치된 SCR 탈질시스템의 경우, SCR 탈질시스템을 사용하지(작동하지) 않는 경우에는 도 7에 도시하고 있는 바와 같이 엔진(91)으로부터 나오는 배기가스를 바이패스라인(96)을 통해 SCR 탈질시스템을 거치지 않도록 우회시켜 배출시키는 구조를 취하고 있다. 그러나, 이와 같은 종래의 SCR 탈질시스템에서 SCR 탈질시스템(특히, SCR촉매(944)를 포함하는 반응기(94))을 작동시키지 않고 바이패스라인(96)을 통해 배기가스를 우회시키는 경우에는, 상기 반응기(94) 내에 포함된 SCR촉매(944)가 상온의 낮은 온도로 떨어진 상태로 유지되게 되는데 이때, 다시 SCR 탈질시스템을 사용(작동)하게 되는 경우에는, 상온의 낮은 온도로 떨어진 상태로 유지되던 SCR촉매(944)에 갑자기 고온(통상 400℃ 정도)의 배기가스가 전달됨으로 인한 열충격을 SCR촉매(944)가 받게 되고 이러한 반복적인 동작의 온/오프가 계속됨으로 인한 SCR촉매(944)의 반응률 저감 및 SCR촉매(944)의 교체 수명을 단축시키는 문제를 발생시키게 된다. Referring to FIG. 7, a selective catalytic reduction (SCR) denitrification system using nitrogen as an oxidant (ammonia) as a reducing agent in order to remove nitrogen oxides (NOx) from the exhaust gas is discharged from the engine 91 That is, urea water (which becomes ammonia when urea water is vaporized) is injected into the mixing chamber 93 through which the exhaust gas flows to denit nitrogen oxide (NOx) in the exhaust gas through the injection nozzle 951 to remove the exhaust gas and the reducing agent The mixed gas is introduced into the reactor 94 containing the SCR catalyst 944 so that a mixed gas of the exhaust gas and the reducing agent in the reactor 94 is supplied to the SCR catalyst 94 (NOx) contained in exhaust gas is denitrified (denitrification reaction) to obtain optimal denitrification efficiency and effectively prevents environmental pollution caused by nitrogen oxide (NOx) component and ammonia It has been chosen. However, even in such a conventional SCR denitrification system, in the case of using an SCR denitrification system intermittently, particularly in the case of an SCR denitrification system installed in a ship, when the SCR denitrification system is not used (operated) The exhaust gas discharged from the engine 91 is bypassed through the bypass line 96 to bypass the SCR denitration system and discharged. However, in such a conventional SCR denitration system, when the exhaust gas is bypassed through the bypass line 96 without operating the SCR denitration system (in particular, the reactor 94 including the SCR catalyst 944) The SCR catalyst 944 contained in the reactor 94 is maintained at a low temperature of room temperature. In this case, when the SCR denitrification system is operated (operated) again, The reaction rate of the SCR catalyst 944 due to the thermal shock due to the sudden high temperature (usually about 400 ° C) of the exhaust gas being delivered to the SCR catalyst 944 is received by the SCR catalyst 944 and the on / And the problem of shortening the replacement life of the SCR catalyst 944 is caused.

따라서, 본 발명에서의 이중 케이싱 구조의 반응기는 위와 같은 종래의 SCR 탈질시스템에서 반복적으로 SCR 탈질시스템의 작동의 온/오프가 반복되는 경우에 있어서의 저온 상태로 온도가 떨어지는 SCR촉매가 갑작스럽게 받는 열충격으로 인한 문제들을 근본적으로 방지할 수 있도록, 도 8 및 9에 도시된 바와 같이 SCR촉매(7513)를 포함하는 반응기 자체를 반응기본체(751)와 반응기외부케이싱(752)을 포함하는 이중 케이싱 구조로 형성함과 아울러 SCR탈질시스템이 작동하지 않는 경우에 상기 바이패스관(77)을 통해 우회하는 배기가스가 상기 반응기외부케이싱(752) 내부의 일정 공간을 지나면서 상기 반응기본체(751) 내 SCR촉매(7513)를 항상 일정 온도 이상으로 예열시킬 수 있도록 하는 구조로 형성하게 된다. Therefore, the reactor of the double casing structure according to the present invention is characterized in that, in the conventional SCR denitration system, when the SCR denitration system is repeatedly turned on / off repeatedly, In order to fundamentally prevent problems due to thermal shock, the reactor itself including the SCR catalyst 7513, as shown in Figs. 8 and 9, is divided into a double casing structure 752 including a reactor body 751 and a reactor outer casing 752 The exhaust gas bypassing the bypass pipe 77 passes through a certain space inside the reactor outer casing 752 and flows into the reactor main body 751 through the SCR So that the catalyst 7513 can always be preheated to a predetermined temperature or higher.

즉, 도 8 및 9을 참조하면, 본 발명의 탈질시스템에 포함되는 반응기는 SCR 탈질시스템이 작동하는 경우에 유입부(7511)와 유출부(7512)를 통해 배기가스가 지나면서 접촉하여 탈질반응이 일어나는 SCR촉매(7513)를 포함하는 반응기본체(751)와; 상기 반응기본체(751)를 둘러싸며 내부에 일정 공간을 형성하고, SCR 탈질시스템이 작동하지 않는 경우에 상기 유입부(7511) 앞에서 배기가스를 우회시켜 상기 유출부(7512) 뒤에 연결시키는 바이패스관(77)과 연결되는 바이패스유입부(7521)와 바이패스유출부(7522)를 포함하는 반응기외부케이싱(752);을 포함하는 이중 케이싱 구조를 형성하게 된다. 8 and 9, the reactor included in the denitration system of the present invention is a reactor in which the exhaust gas passes through the inlet portion 7511 and the outlet portion 7512 when the SCR denitration system operates, A reactor body 751 comprising an SCR catalyst 7513 that takes place; Which bypasses the exhaust gas in front of the inlet portion 7511 and connects to the outlet portion 7512 in the case where the SCR denitration system does not operate when the reactor main body 751 is surrounded by a certain space, And a reactor outer casing 752 including a bypass inlet 7521 and a bypass outlet 7522 that are connected to the outlet 77 of the reactor.

따라서, 선박에 설치된 SCR 탈질시스템에 있어서 항구에 접안하거나 정박하여 화물을 싣고 내리는 과정에서와 같이 SCR 탈질시스템이 작동하는 경우에는 상기 반응기본체(751)의 유입부(7511)를 통해 유입되는 배기가스가 상기 반응기본체(751) 내에 실장된(장착된) SCR촉매(7513)를 거쳐 지나면서 SCR 촉매()와 접촉하여 탈질반응을 통해 배기가스 내에 포함된 질소산화물(NOx) 성분이 제거된 후 반응기본체(751)의 유출부(7512)를 통해 최종 배출되게 되는데, 이때에 상기 반응기본체(751) 내에 실장된 SCR촉매(7513)는 고온의 배기가스와 직접 접촉하면서 고온의 온도상태를 유지하게 된다. Therefore, when the SCR denitrification system operates as in the process of loading or unloading the cargo in the port of the SCR denitration system installed in the ship, the exhaust gas flowing through the inlet portion 7511 of the reactor main body 751 Passes through the SCR catalyst 7513 mounted in the reactor main body 751 and comes into contact with the SCR catalyst so that the NO x component contained in the exhaust gas is removed through the denitration reaction, The SCR catalyst 7513 mounted in the reactor main body 751 maintains a high temperature state in direct contact with the exhaust gas at a high temperature at this time .

한편, 선박에 설치된 SCR 탈질시스템에 있어서 선박이 환경규제를 받지 않는 공해상을 운항하는 경우 등과 같은 경우에 있어서 SCR 탈질시스템이 작동하지 않는 경우에 있어서는 엔진에서 배출되는 배기가스가 상기 바이패스관(77)을 따라 우회하면서 SCR 탈질시스템, 보다 구체적으로는 SCR촉매(7513)를 포함하는 반응기 내를 거치지 않고 바로 배출되게 되는데, 이때 본 발명에 따른 이중 케이싱 구조를 갖는 반응기에서는 상기 바이패스관(77)의 관로를 상기 반응기외부케이싱(752)과 연결시켜 상기 바이패스관(77)을 흐르는 배기가스가 상기 반응기외부케이싱(752) 내로 유입될 수 있도록 하는 바이패스유입부(7521)와 상기 반응기외부케이싱(752) 내 일정 공간을 따라 흐른 배기가스가 다시 상기 바이패스관(77)으로 배출될 수 있도록 하는 바이패스유출부(7522)를 포함함으로써, 도 10에 도시된 바와 같이 상기 바이패스관(77)을 따라 우회하던 고온(통상 400℃ 내외)의 배기가스는 상기 바이패스유입부(7521)를 통해 상기 반응기외부케이싱(752) 내부 공간으로 유입되어 반응기외부케이싱(752)의 내부 공간을 따라 흐르면서 반응기외부케이싱(752) 내에 포함된 상기 반응기본체(751) 및 그 내부에 포함된 SCR촉매(7513)를 가열시키게 된다. 따라서, SCR 탈질시스템이 작동하지 않아(즉, 고온의 배기가스가 직접 반응기본체(751) 내로 유입되지 않아) 직접적으로 고온의 배기가스와 접촉하지 않게 되는 SCR촉매(7513)라 하더라도 위와 같이 상기 반응기본체(751) 외부를 가열시키는 고온의 배기가스로 인해 SCR촉매(7513)의 온도가 상온의 낮은 온도의 상태로 떨어지지 않게 되고 항상 일정한 온도 이상의 고온 상태를 유지할 수 있게 된다. 상기 반응기외부케이싱(752)의 내부 공간을 따라 흐르던 배기가스는 상기 바이패스유출부(7522)를 통해 다시 상기 바이패스관(77)으로 흘러 최종 배출되게 된다. On the other hand, in the case where the SCR denitrification system installed on the ship is operated in a case where the ship is operating on a high seas where the environment is not regulated by the environment, the exhaust gas discharged from the engine is supplied to the bypass pipe 77 The SCR catalyst 7513 is directly discharged without passing through the reactor including the SCR denitration system, more specifically, the SCR catalyst 7513. At this time, in the reactor having the dual casing structure according to the present invention, A bypass inlet 7521 for connecting a duct of the reactor outer casing 752 to the reactor outer casing 752 to allow exhaust gas flowing through the bypass pipe 77 to flow into the reactor outer casing 752, A bypass outlet 7522 for allowing the exhaust gas flowing along the predetermined space in the bypass pipe 752 to be discharged again to the bypass pipe 77 The exhaust gas at a high temperature (usually around 400 ° C.) bypassed along the bypass pipe 77 is exhausted through the bypass inlet 7521 to the inside of the reactor outer casing 752 And flows along the inner space of the reactor outer casing 752 to heat the reactor body 751 contained in the reactor outer casing 752 and the SCR catalyst 7513 contained therein. Therefore, even when the SCR catalyst 7513 is not directly in contact with the exhaust gas at a high temperature since the SCR denitration system does not operate (that is, the high temperature exhaust gas does not directly flow into the reactor main body 751) The temperature of the SCR catalyst 7513 does not drop to the low temperature state of the room temperature due to the high temperature exhaust gas which heats the outside of the main body 751, and the high temperature state at a constant temperature or more can be maintained at all times. Exhaust gas flowing along the inner space of the reactor outer casing 752 flows back to the bypass pipe 77 through the bypass outlet portion 7522 and is finally discharged.

이와 같이, 선박에 설치된 SCR 탈질시스템에 있어서 SCR 탈질시스템이 작동하지 않는 경우에 있어서도 위와 같이 상기 바이패스관(77) 및 상기 반응기외부케이싱(752) 내부 공간을 따라 우회하는 고온의 배기가스에 의해 항상 일정한 온도 이상의 고온 상태로 예열되는 상기 SCR촉매(7513)는, 다시 SCR 탈질시스템이 작동하는 경우에 있어서 도 11에 도시된 바와 같이 고온의 배기가스가 다시 직접 상기 반응기본체(751) 내로 유입되어 상기 SCR촉매(7513)를 직접적으로 거치게 되더라도 (종래와 같이 저온상태였던 SCR촉매가 갑자기 고온의 배기가스와 접촉하면서 열충격을 받는 것이 아니라)일정 온도 이상으로 예열되어 있던 상기 SCR촉매(7513)는 급작스런 열충격을 받지 않게 되므로, 종래와 같이 반복되는 열충격으로 인한 SCR촉매의 반응률 저감 및 교체수명 단축의 문제는 근본적으로 방지되게 된다. In this way, even when the SCR denitrification system does not operate in the SCR denitration system installed on the ship, by the high-temperature exhaust gas bypassing along the inner spaces of the bypass pipe 77 and the reactor outer casing 752, The SCR catalyst 7513, which is always preheated to a high temperature state above a certain temperature, flows into the reactor main body 751 again at a high temperature as shown in FIG. 11 when the SCR denitration system is operated again Even though the SCR catalyst 7513 directly passes through the SCR catalyst 7513, which has been preheated to a certain temperature or higher (instead of being exposed to a thermal shock while abruptly contacting the SCR catalyst at a low temperature in the conventional manner) It is possible to reduce the reaction rate of the SCR catalyst and shorten the replacement life due to repeated thermal shocks The problem is fundamentally prevented.

또한, 도 8 및 9에 도시된 바와 같이, 상기 반응기에서 상기 바이패스유입부(7521)는 상기 반응기외부케이싱(752)의 하단에 연결되고, 상기 바이패스유출부(7522)는 상기 반응기외부케이싱(752)의 상단에 연결되어, 상기 바이패스관(77)을 통해 반응기외부케이싱(752) 내부의 일정 공간으로 유입된 고온의 배기가스가 반응기외부케이싱(752) 내부에 포함된 상기 반응기본체(751)를 전체적으로 둘러싸고 지나면서 반응기본체(751) 내 SCR촉매(7513)를 예열시킬 수 있도록 한다. 즉, 상기 반응기외부케이싱(752) 내부로 배기가스가 유입된다 하더라도 반응기외부케이싱(752) 내부 공간 중 일정 부분만을 거쳐 바로 배출되게 되면 상기 반응기외부케이싱(752) 내부에 포함된 반응기본체(751) 및 SCR촉매(7513)의 예열 기능이 저감될 수 있는바, 위와 같이 상기 바이패스유입부(7521)는 상기 반응기외부케이싱(752)의 하단에 연결시키고 상기 바이패스유출부(7522)는 상기 반응기외부케이싱(752)의 상단에 연결시킴으로써, 상기 바이패스유입부(7521)를 통해 반응기외부케이싱(752)의 하단에서 내부로 유입되는 고온의 배기가스는 상기 반응기외부케이싱(752)의 가장 아래 부분에서부터 상기 바이패스유출부(7522)가 연결되어 있는 반응기외부케이싱(752)의 가장 윗 부분까지 전체적으로 반응기외부케이싱(752) 내부 공간을 지나게 되므로, 그에 따라 상기 반응기외부케이싱(752) 내부에 포함된 상기 반응기본체(751) 및 그 내부의 SCR촉매(7513)를 전체적으로 둘러싸고 지나면서 상기 SCR촉매(7513)를 보다 효과적으로 고온 상태로 예열(가열)시킬 수 있게 된다.
8 and 9, in the reactor, the bypass inlet 7521 is connected to the lower end of the reactor outer casing 752, and the bypass outlet 7522 is connected to the reactor outer casing Temperature exhaust gas flowing into a certain space inside the reactor outer casing 752 through the bypass pipe 77 is connected to the upper end of the reactor main body 752, 751 to allow the SCR catalyst 7513 in the reactor body 751 to be preheated. That is, even if the exhaust gas flows into the reactor outer casing 752, the reactor main body 751 included in the outer casing 752 of the reactor, if discharged directly through only a certain portion of the inner space of the reactor outer casing 752, The bypass inlet 7521 is connected to the lower end of the reactor outer casing 752 and the bypass outlet 7522 is connected to the reactor 7522. [ The high temperature exhaust gas flowing into the reactor outer casing 752 from the lower end of the reactor outer casing 752 through the bypass inlet 7521 is connected to the upper end of the outer casing 752, To the uppermost portion of the reactor outer casing 752 to which the bypass outlet portion 7522 is connected, passes through the inner space of the outer casing 752 as a whole, The SCR catalyst 7513 can be preheated (heated) to a higher temperature state more effectively by totally surrounding the reactor body 751 included in the reactor outer casing 752 and the SCR catalyst 7513 therein .

이상에서, 출원인은 본 발명의 바람직한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다. While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, Should be interpreted as belonging to the scope.

41: 엔진 42: 배기관
421: 온도센서 43: 열교환기
44: 혼합챔버 45: 반응기
451: SCR촉매 47: 온도보상 바이패스관
471: 유량조절 컨트롤밸브 48: 제어부
751: 반응기본체 7511: 유입부
7512: 유출부 7513: SCR촉매
752: 반응기외부케이싱
7521: 바이패스유입부 7522: 바이패스유출부
77: 바이패스관
*종래 기술에 관련된 부호
91: 엔진 92: 배기관
93: 혼합챔버 94: 반응기
944: SCR촉매 951: 분사노즐
97: 열교환기 96: 바이패스라인
41: engine 42: exhaust pipe
421: Temperature sensor 43: Heat exchanger
44: mixing chamber 45: reactor
451: SCR catalyst 47: temperature compensation bypass pipe
471: Flow control valve 48: Control
751: Reactor main body 7511:
7512: Outlet 7513: SCR catalyst
752: reactor outer casing
7521: Bypass inlet 7522: Bypass outlet
77: Bypass tube
* Prior art related codes
91: engine 92: exhaust pipe
93: mixing chamber 94: reactor
944: SCR catalyst 951: injection nozzle
97: heat exchanger 96: bypass line

Claims (6)

탈질반응이 일어나는 SCR촉매를 포함하는 반응기 전단에서 배기가스에 환원제를 분사하는 혼합챔버의 전단에 배치되어 배기관의 배기가스로부터 폐열을 회수하는 열교환기와;
상기 열교환기 전단의 배기관으로부터 분기되어 열교환기 후단의 배기관에 연결되는 온도보상 바이패스관;을 포함하여, 상기 열교환기에 의해 온도가 낮아진 배기가스가 탈질반응에 부적합한 온도가 되는 경우 상기 온도보상 바이패스관을 통해 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 온도보상 구조를 갖는 탈질시스템.
A heat exchanger disposed at a front end of a mixing chamber for injecting a reducing agent into the exhaust gas at a front end of the reactor including an SCR catalyst where a denitration reaction takes place to recover waste heat from the exhaust gas of the exhaust pipe;
And a temperature compensating bypass pipe branched from an exhaust pipe at a front end of the heat exchanger and connected to an exhaust pipe at a rear end of the heat exchanger. When the temperature of the exhaust gas lowered by the heat exchanger becomes a temperature unsuitable for the denitration reaction, A part of the exhaust gas having a high temperature at the front end of the heat exchanger is bypassed without passing through the heat exchanger and injected into the exhaust pipe at the rear end of the heat exchanger through the pipe to allow the temperature of the exhaust gas flowing into the reactor to maintain a temperature suitable for the denitrification reaction .
제 1 항에 있어서,
상기 온도보상 바이패스관 라인에는 제어부의 제어하에 개폐되며 온도보상 바이패스관을 흐르는 배기가스의 유량을 조절하는 유량조절 컨트롤밸브를 포함하는 것을 특징으로 하는 온도보상 구조를 갖는 탈질시스템.
The method according to claim 1,
Wherein the temperature compensation bypass line includes a flow rate control valve that is opened and closed under the control of the control unit and controls the flow rate of the exhaust gas flowing through the temperature compensation bypass pipe.
제 2 항에 있어서,
상기 열교환기 후단의 배기관에는 온도센서가 설치되어, 열교환기 후단의 배기가스 온도를 측정하여 제어부에 전송하고 제어부는 전송된 온도값을 토대로 상기 유량조절 컨트롤밸브를 제어하는 것을 특징으로 하는 온도보상 구조를 갖는 탈질시스템.
3. The method of claim 2,
Wherein a temperature sensor is provided on an exhaust pipe at a rear end of the heat exchanger to measure an exhaust gas temperature at a rear end of the heat exchanger and to transmit the measured temperature to a control unit and the control unit controls the flow control valve based on the transferred temperature value. .
제 3 항에 있어서,
상기 온도보상 바이패스관은 상기 열교환기 전단의 배기관으로부터 분기되어 상기 반응기 전단에 연결되는 것을 특징으로 하는 온도보상 구조를 갖는 탈질시스템.
The method of claim 3,
Wherein the temperature compensation bypass pipe is branched from an exhaust pipe at a front end of the heat exchanger and is connected to a front end of the reactor.
엔진으로부터 배출되는 배기가스가 혼합챔버 전단에 배치된 열교환기를 지나면서 폐열이 회수되는 폐열회수단계;
상기 열교환기 후단에서 상기 폐열회수단계를 거친 배기가스의 온도를 측정하는 온도측정단계;
상기 온도측정단계에서 측정된 온도가 탈질반응에 부적합한 온도가 되는 경우, 온도보상 바이패스관을 통해 상기 열교환기 전단의 온도가 높은 배기가스 일부를 열교환기를 통하지 않고 우회시켜 열교환기 후단의 배기관에 주입함으로써 반응기에 유입되는 배기가스의 온도가 탈질반응에 적합한 온도를 유지할 수 있도록 하는 온도보상단계;를 포함하는 것을 특징으로 하는 온도보상 탈질방법.
A waste heat recovering step of recovering waste heat while exhaust gas discharged from the engine passes through a heat exchanger disposed at a front end of the mixing chamber;
A temperature measuring step of measuring a temperature of the exhaust gas through the waste heat recovering step at a rear end of the heat exchanger;
When the temperature measured in the temperature measurement step becomes a temperature unsuitable for the denitrification reaction, a part of the exhaust gas having a high temperature at the front end of the heat exchanger is bypassed through the temperature compensating bypass pipe without passing through the heat exchanger and injected into the exhaust pipe at the rear end of the heat exchanger So that the temperature of the exhaust gas flowing into the reactor can be maintained at a temperature suitable for the denitrification reaction.
제 5 항에 있어서,
상기 온도보상단계는 상기 온도측정단계에서 측정된 온도가 탈질반응에 부적합한 온도가 되는 경우 상기 온도보상 바이패스관의 유량조절 컨트롤밸브를 개방하여 상기 열교환기 전단의 온도가 높은 배기가스 일부가 열교환기를 통하지 않고 온도보상 바이패스관을 통해 우회하여 열교환기 후단의 배기관에 주입되도록 하는 바이패스관개방단계와, 상기 바이패스관개방단계를 통한 고온의 배기가스 주입으로 열교환기 후단에서 측정되는 온도가 상승하는 경우 상기 온도보상 바이패스관의 유량조절 컨트롤밸브 개방 정도를 축소시켜 온도보상 바이패스관을 통해 우회하여 열교환기 후단의 배기관에 주입되는 고온의 배기가스의 유량을 조절하는 바이패스관유량조절단계를 포함하는 것을 특징으로 하는 온도보상 탈질방법.
6. The method of claim 5,
The temperature compensating step may include opening the flow control valve of the temperature compensating bypass pipe to allow a part of the exhaust gas having a high temperature at the upstream end of the heat exchanger to flow through the heat exchanger when the temperature measured in the temperature measuring step becomes a temperature unsuitable for denitrification. A bypass pipe opening step of bypassing the bypass pipe through the temperature compensating bypass pipe and injecting the exhaust gas into the exhaust pipe at the rear end of the heat exchanger without passing through the temperature compensating bypass pipe, A bypass pipe flow control step of bypassing through the temperature compensation bypass pipe to reduce the opening degree of the flow regulation control valve of the temperature compensation bypass pipe and regulating the flow rate of the high temperature exhaust gas injected into the exhaust pipe at the rear end of the heat exchanger, Wherein the temperature-compensated denitrification method comprises:
KR1020120135160A 2012-11-27 2012-11-27 A scr system comprising temperature compensating structure and method thereof KR20140067644A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120135160A KR20140067644A (en) 2012-11-27 2012-11-27 A scr system comprising temperature compensating structure and method thereof
PCT/KR2013/010534 WO2014084540A1 (en) 2012-11-27 2013-11-20 Denitrification system having temperature compensation structure and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120135160A KR20140067644A (en) 2012-11-27 2012-11-27 A scr system comprising temperature compensating structure and method thereof

Publications (1)

Publication Number Publication Date
KR20140067644A true KR20140067644A (en) 2014-06-05

Family

ID=50828114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120135160A KR20140067644A (en) 2012-11-27 2012-11-27 A scr system comprising temperature compensating structure and method thereof

Country Status (2)

Country Link
KR (1) KR20140067644A (en)
WO (1) WO2014084540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673159A (en) * 2016-02-02 2016-06-15 潍柴动力股份有限公司 Engine exhaust system and engine applying same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026297A (en) * 2018-08-29 2018-12-18 华电电力科学研究院有限公司 A kind of efficient control system of internal combustion engine nitrogen oxides and its working method
CN114307639B (en) * 2022-01-13 2023-01-24 北京和荣工程技术有限公司 Adjustable multipurpose coupling body integrating SCR (selective catalytic reduction) and preheater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121939A (en) * 1996-10-16 1998-05-12 Toyota Motor Corp Exhaust emission control device for diesel engine
KR100788982B1 (en) * 2006-04-05 2007-12-27 주식회사 파나시아 Exhaust Gas of High Temperature Denitrifing System For A Co-Generation System and Denitrifing Method using the System
KR20100032546A (en) * 2008-09-18 2010-03-26 에스케이에너지 주식회사 Device for lowering temperature of exhaust gas
KR101637257B1 (en) * 2010-06-29 2016-07-07 현대자동차 주식회사 Heat exchanger for exhaust heat withdrawal of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673159A (en) * 2016-02-02 2016-06-15 潍柴动力股份有限公司 Engine exhaust system and engine applying same

Also Published As

Publication number Publication date
WO2014084540A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
EP3015670B1 (en) Selective catalytic reduction and catalytic regeneration system
KR102309224B1 (en) Method for purifying diesel engine exhaust gases
KR101722834B1 (en) Scr system and control method thereof
KR20150096328A (en) Combustion engine
US20090133383A1 (en) Selective NOx catalytic reduction system including an ammonia sensor
KR101236782B1 (en) A smoke reduction apparatus of a exhaust gas
KR101497831B1 (en) Power plant with selective catalytic reuction system
KR20140067644A (en) A scr system comprising temperature compensating structure and method thereof
KR101254915B1 (en) Power plant for ship with selective catalytic reuction system and auxiliary power generation system
KR101387560B1 (en) Internal combustion system for ship and exhaust gas purification system suitable for the same
CN109891064B (en) Exhaust gas aftertreatment system
CN110314524A (en) Nitrous oxide suppressive SNCR denitration system and method for denitration based on novel double-reactor
CN107109990B (en) Selective catalytic reduction system and power plant comprising same
KR101357177B1 (en) A reactor with double-casing structure having by-pass and pre-heating function
US9084968B2 (en) After treatment device of engine
KR102367278B1 (en) Selective catalytic reduction system
KR101398569B1 (en) Application and control method of aftertreatment system for vehicle of engine to reduce ammonia slip with aoc having changable exhaust gas path
KR20170099118A (en) Scr system
KR20160102694A (en) Heating system and method for selective catalytic reduction apparatus
KR102466788B1 (en) Selective catalytic reduction system
KR102527190B1 (en) Gas heating system
KR102164367B1 (en) Selective Catalytic Reduction System for Energy Savings During the Catalyst Regeneration
KR20190036772A (en) Selective catalytic reduction system
KR102175645B1 (en) Selective catalytic reduction system of low pressure and control method thereof
KR102265181B1 (en) Method for controlling of SCR system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application