WO2015046446A1 - Diagnosing device - Google Patents

Diagnosing device Download PDF

Info

Publication number
WO2015046446A1
WO2015046446A1 PCT/JP2014/075669 JP2014075669W WO2015046446A1 WO 2015046446 A1 WO2015046446 A1 WO 2015046446A1 JP 2014075669 W JP2014075669 W JP 2014075669W WO 2015046446 A1 WO2015046446 A1 WO 2015046446A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
particulate matter
estimated
regeneration
filter
Prior art date
Application number
PCT/JP2014/075669
Other languages
French (fr)
Japanese (ja)
Inventor
哲史 塙
正 内山
英和 藤江
輝男 中田
直人 村澤
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2015046446A1 publication Critical patent/WO2015046446A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diagnostic device, and more particularly, to a diagnosis of an exhaust purification filter provided in an exhaust system of an internal combustion engine.
  • Diesel Particulate Filter that collects particulate matter (Particulate Matter: PM) mainly contained in exhaust as an exhaust purification filter provided in exhaust systems such as diesel engines )It has been known.
  • a resistance type PM sensor detects the amount of PM by utilizing the fact that the resistance value between electrodes changes due to conductive PM adhering between a pair of electrodes.
  • the electrical resistance of the PM adhering between the electrodes changes when affected by the exhaust temperature or the exhaust flow rate, there is a possibility that an accurate PM amount cannot be detected. For this reason, there is a problem that the diagnosis method based on the sensor value of the resistance PM sensor cannot accurately determine the failure of the DPF.
  • the disclosed device aims to determine a DPF failure with high accuracy.
  • the disclosed apparatus includes a filter that collects particulate matter in exhaust gas discharged from an internal combustion engine, and an amount of particulate matter provided from a current value that is provided downstream of the filter and flows through the particulate matter attached between electrodes. And a sensor capable of regenerating to burn off the particulate matter when the amount of particulate matter attached between the electrodes reaches a predetermined amount, and calculating the actual interval from the end of regeneration of the sensor to the start of the next regeneration Real interval calculation means, slip amount estimation means for estimating the slip amount of particulate matter discharged from the internal combustion engine and passing through the filter, exhaust state quantity of the internal combustion engine, and estimated slip quantity Based on the multiple regression equation included as an input value, the accumulation state of the particulate matter adhering between the electrodes is estimated, and from the end of regeneration of the sensor based on the accumulation state And estimating interval calculating means for calculating an estimated interval to the start playback, by comparing the actual interval and the estimated interval, and a determining means for determining at least failure of the
  • FIG. 1 is a schematic overall configuration diagram showing an intake / exhaust system of an engine to which a diagnostic device according to an embodiment of the present invention is applied.
  • A is a typical perspective view showing the principal part of the resistance type PM sensor of this embodiment
  • B is a figure showing the sensor reproduction signal of a resistance type PM sensor.
  • It is a functional block diagram which shows ECU40 of this embodiment. It is a figure explaining an example of failure diagnosis of this embodiment. It is a figure explaining an example of failure diagnosis of this embodiment. It is a figure explaining an example of failure diagnosis of this embodiment. It is a figure explaining an example of failure diagnosis of this embodiment.
  • a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b.
  • An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.
  • an air cleaner 13, a MAF sensor 31, a supercharger compressor 14 a, an intercooler 15, an intake air temperature sensor 32, an intake oxygen concentration sensor 33, a boost pressure sensor 34, and the like are provided in order from the intake upstream side.
  • a turbocharger turbine 14b, an exhaust oxygen concentration sensor 35, an air-fuel ratio sensor 36, an exhaust temperature sensor 37, an exhaust aftertreatment device 50, and the like are provided in order from the exhaust upstream side.
  • reference numeral 38 denotes an engine rotation sensor
  • reference numeral 39 denotes an accelerator opening sensor.
  • the exhaust aftertreatment device 50 is configured by arranging an oxidation catalyst (Diesel Oxidation Catalyst: DOC) 51 and a DPF 52 in order from the exhaust upstream side in the catalyst case 50a.
  • An exhaust pipe injection device 53 is provided on the exhaust upstream side of the DOC 51, and a resistance PM sensor 20 that detects the amount of PM in the exhaust gas that has passed through the DPF 52 is provided on the downstream side of the DPF 52.
  • the exhaust pipe injection device 53 injects unburned fuel (mainly HC) into the exhaust passage 12 in accordance with an instruction signal output from an electronic control unit (hereinafter, ECU) 40. In addition, when using the post injection by the multistage injection of the engine 10, this in-pipe injection device 53 may be omitted.
  • ECU electronice control unit
  • the DOC 51 is formed, for example, by carrying a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure.
  • a ceramic carrier such as a cordierite honeycomb structure.
  • the DPF 52 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells.
  • the DPF 52 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the amount of accumulated PM reaches a predetermined amount, so-called forced filter regeneration is performed to remove the PM.
  • the forced regeneration of the filter is performed by supplying unburned fuel (HC) to the DOC 51 by the in-pipe injection device 53 or post injection, and raising the exhaust temperature flowing into the DPF 52 to the PM combustion temperature (for example, about 600 ° C.). Is called.
  • HC unburned fuel
  • the resistance PM sensor 20 includes a pair of comb-like electrodes 22 to which a voltage is applied on an insulating substrate 21, and the resistance value between the electrodes 22 is conductive. The amount of PM is detected by utilizing the change due to adhesion of PM. Further, the resistance type PM sensor 20 includes a heater (not shown). As shown in FIG. 2B, when a predetermined amount of PM deposited between the electrodes 22 accumulates, the heater is heated by the heater and removed by combustion. Sensor regeneration is performed. This sensor regeneration signal (start signal / end signal) is output to the electrically connected ECU 40.
  • the ECU 40 performs various controls of the engine 10, the exhaust pipe injection device 53, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.
  • the ECU 40 includes an actual regeneration interval calculation unit 41, an engine exhaust PM amount calculation unit 42, a PM slip amount calculation unit 43, an estimated regeneration interval calculation unit 44, and a DPF diagnosis unit 45.
  • an actual regeneration interval calculation unit 41 As a part of functional elements. Each of these functional elements will be described as being included in the ECU 40 which is an integral hardware, but any one of them can be provided in separate hardware.
  • the actual playback interval calculation unit 41 is an example of the actual interval calculation means of the present invention, and is a period from the end of playback of the resistive PM sensor 20 to the start of the next playback (hereinafter, this period is referred to as actual playback interval INT act ) Is calculated.
  • the actual playback interval INT act is calculated based on the playback start signal and playback end signal input from the resistance type PM sensor 20.
  • the engine exhaust PM amount calculating unit 42 constitutes a part of the slip amount estimating means of the present invention, and calculates the PM amount discharged from the engine 10 in real time (hereinafter referred to as engine exhaust PM amount MEG_out ).
  • the engine exhaust PM amount M EG_out is calculated from, for example, a model equation including the oxygen concentration O 2 of the intake / exhaust system, the air-fuel ratio ⁇ , the exhaust temperature T exh and the like detected by the various sensors 31 to 39 as input values.
  • the engine exhaust PM amount M EG_out may be obtained by reading a value corresponding to the engine operating state detected by the sensors 38, 39, etc., from a PM exhaust amount map (not shown) created in advance by experiments or the like. .
  • the PM slip amount calculation unit 43 constitutes a part of the slip amount estimation means of the present invention, and calculates the PM amount passing through the DPF 52 (hereinafter referred to as PM slip amount M DPF_slp ) in real time. More specifically, the ECU 40 stores the PM slip rate SLP % when the PM collection capability of the DPF 52 obtained in advance by experiments or the like is assumed to be normal.
  • the PM slip ratio SLP % is preferably set based on the state immediately before the DPF 52 fails due to melting or the like. This makes it possible to reliably detect a failure of the DPF 52 immediately before the PM slip amount exceeds the exhaust gas reference value or the like in failure diagnosis described later.
  • the estimated regeneration interval calculating unit 44 is an example of the estimated interval calculating means of the present invention, and estimates from the end of regeneration of the resistive PM sensor 20 to the start of the next regeneration, assuming that the PM collection capability of the DPF 52 is normal. A period (hereinafter, this period is referred to as an estimated reproduction interval INT est ) is calculated.
  • the estimated regeneration interval INT est is calculated based on a model formula created in advance by multiple regression analysis using the exhaust gas temperature, the exhaust gas flow rate, and the PM slip amount (exit PM amount of the DPF 52). A detailed calculation procedure will be described below.
  • the resistance value (corresponding current value) between the electrodes 22 and the PM deposition amount (mainly soot) between the electrodes 22 are constant. That is, as shown in Equation 1 below, the PM deposit amount M soot_reg between the electrodes 22 obtained by multiplying the PM slip amount MDPF_slp by a predetermined correction coefficient CF during the regeneration interval T_reg It becomes constant at the start of playback.
  • Equation 1 is replaced with Equation 2 below.
  • Equation 3 Since the PM deposition amount ratio M norm between the electrodes 22 is 1 (100%) at the start of sensor regeneration, it can be expressed by the following Equation 3.
  • the correction coefficient CC uses the exhaust temperature T exh , the exhaust flow rate Q exh, and the PM slip amount M DPF_slp as input values. It is defined as a multiple regression function of Equation 5.
  • the PM accumulation amount ratio M norm obtained by integrating the value obtained by multiplying the PM slip amount M DPF_slp by the correction coefficient CC from the end of sensor regeneration is 1 (100%) at the start of sensor regeneration (when PM deposition between the electrodes 22 is completed).
  • the estimated regeneration interval calculation unit 44 starts the calculation of the PM deposition amount ratio M norm based on the above formulas 5 and 6 from the end of the sensor regeneration. Then, the estimated regeneration interval INT est is calculated by measuring the period from the end of sensor regeneration until the calculated value of the PM accumulation amount ratio M norm becomes 1 by a timer (not shown) built in the ECU 40. It is configured.
  • the exhaust gas temperature T exh is acquired from the exhaust gas temperature sensor 37, and the exhaust gas flow rate Q exh is calculated from the detection value of the MAF sensor 31, the fuel injection amount of the engine 10, or the like, or an exhaust gas flow rate not shown. Obtained directly from the sensor.
  • the DPF diagnosis unit 45 is an example of a determination unit of the present invention, and includes an actual reproduction interval INT act input from the actual reproduction interval calculation unit 41 and an estimated reproduction interval INT est input from the estimated reproduction interval calculation unit 44. Based on the above, the failure or normality of the DPF 52 is determined. Hereinafter, a specific determination method will be described with reference to FIGS.
  • the determination method shown in FIG. 4 directly compares the actual reproduction interval INT act and the estimated reproduction interval INT est .
  • the DPF 52 is determined as a failure.
  • the actual reproduction interval INT act is the same as or longer than the estimated reproduction interval INT est (INT act ⁇ INT est )
  • the DPF 52 is determined to be normal.
  • the determination method shown in FIG. 5 aims at shortening the diagnosis time and increasing the number of diagnoses.
  • the DPF 52 is determined to be normal.
  • the DPF 52 is determined to be a failure. As a result, when the deterioration of the DPF 52 is significant, it is possible to detect a failure of the DPF 52 at an early stage without waiting for the calculation of the estimated regeneration interval INT est to end.
  • the determination method shown in FIG. 6 uses a ratio between the actual reproduction interval INT act and the estimated reproduction interval INT est .
  • this determination method when the ratio% INT obtained by dividing the actual reproduction interval INT act by the estimated reproduction interval INT est exceeds a predetermined upper limit threshold T MAX% , the DPF 52 is determined to be a failure.
  • the upper threshold value T MAX% is preferably set, for example, based on a state immediately before the PM slip amount passing through the DPF 52 does not satisfy the exhaust gas reference value due to melting damage or the like (normal product immediately before failure).
  • the actual regeneration interval INT act calculated from the sensor regeneration signal of the resistive PM sensor 20 without using the PM amount detection value of the resistive PM sensor 20 and the exhaust temperature in advance.
  • the failure or normality of the DPF 52 is determined based on the estimated regeneration interval INT est calculated from the model formulas (Formulas 5 and 6) created by multiple regression analysis of the exhaust flow rate and the PM slip amount. Therefore, according to the diagnostic device of the present embodiment, the diagnostic accuracy of the DPF 52 can be effectively improved without being affected by the exhaust temperature and the exhaust flow rate.
  • the model formula for calculating the estimated regeneration interval INT est is configured to include the exhaust flow rate, the exhaust temperature, and the PM slip amount as input values. Therefore, according to the diagnosis device of the present embodiment, compared with a technique for diagnosing the DPF by simply comparing the actual regeneration interval and the threshold value, the operation history of the engine 10 between the regeneration intervals is taken into consideration. Diagnosis can be performed.
  • the DPF 52 is determined to be normal. That is, when the DPF 52 is normal, the determination can be made early without waiting for the calculation of the actual regeneration interval to end. Therefore, according to the diagnostic apparatus of this embodiment, it is possible to effectively shorten the diagnosis time and increase the number of diagnoses.
  • the diagnosis device of the present embodiment if the calculation of the estimated reproduction interval does not end even after a predetermined time has elapsed after the calculation of the actual reproduction interval, the DPF 52 is determined to be faulty. That is, when the deterioration of the DPF 52 is significant, it is possible to determine a failure without waiting for the calculation of the estimated regeneration interval to end. Therefore, according to the diagnostic apparatus of the present embodiment, it is possible to detect a failure of the DPF 52 at an early stage.
  • the DPF 52 and the DOC 51 have been described as being provided separately, they may be integrated.
  • the engine 10 is not limited to a diesel engine, and can be widely applied to other internal combustion engines such as a gasoline engine.

Abstract

The purpose of the present invention is to precisely determine diesel particulate filter failure. A diagnosing device comprises: a diesel particulate filter (52) that collects particulate matter discharged from an engine (10); a resistance-type particulate matter sensor (20) that detects the amount of particulate matter and for which regeneration is possible by burning off the particulate matter when the particulate matter deposited between electrodes (22) reaches a prescribed amount; an actual regeneration interval calculating unit (41) that calculates the actual interval from the completion of the regeneration of the resistance-type particulate matter sensor (20) until the start of the next regeneration; a particulate matter slippage calculating unit (42, 43) that estimates the amount of particulate matter slippage passing through the diesel particulate filter (52); an estimated regeneration interval calculating unit that calculates, on the basis of a multiple regression equation that includes the exhaust state function and particulate matter slippage as input values, the estimated interval from the completion of the regeneration of the resistance-type particulate matter sensor (20) until the start of the next regeneration by estimating the amount of particulate matter deposited between the electrodes (22); and a diesel particulate filter diagnosing unit (45) that determines whether the diesel particulate filter (52) has failed or is normal by comparing the actual interval with the estimated interval.

Description

診断装置Diagnostic equipment
 本発明は、診断装置に関し、特に、内燃機関の排気系に設けられる排気浄化フィルタの診断に関する。 The present invention relates to a diagnostic device, and more particularly, to a diagnosis of an exhaust purification filter provided in an exhaust system of an internal combustion engine.
 ディーゼルエンジン等の排気系に設けられる排気浄化フィルタとして、排気中に含まれる主に煤等の粒子状物質(Particulate Matter:PM)を捕集するディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter:DPF)が知られている。 Diesel Particulate Filter (DPF) that collects particulate matter (Particulate Matter: PM) mainly contained in exhaust as an exhaust purification filter provided in exhaust systems such as diesel engines )It has been known.
 DPFのPM捕集能力が溶損等により劣化すると、DPFで捕集されずにスリップしたPMが大気に放出されて、排ガス規制値を満たさなくなる可能性がある。そのため、DPFの故障を車載状態(On-Board)で診断する要請がある。 If the PM collection capability of the DPF deteriorates due to melting damage, etc., the PM that has slipped without being collected by the DPF may be released to the atmosphere, and the exhaust gas regulation value may not be satisfied. Therefore, there is a request for diagnosing a DPF failure in an on-board state.
 DPFの故障を判定する技術としては、例えば、DPFの下流側に抵抗型PMセンサを設けて、センサ値と基準閾値と比較する手法が知られている(例えば、特許文献1参照)。 As a technique for determining a failure of the DPF, for example, a method of providing a resistance PM sensor on the downstream side of the DPF and comparing the sensor value with a reference threshold is known (for example, see Patent Document 1).
特開2009-144577号公報JP 2009-1444577 A
 一般的に、抵抗型PMセンサは、一対の電極間に付着する導電性のPMによって、電極間の抵抗値が変化することを利用してPM量を検出している。しかしながら、抵抗型PMセンサでは、排気温度や排気流量の影響を受けると電極間に付着したPMの電気抵抗が変化するため、正確なPM量を検出できない可能性がある。そのため、抵抗型PMセンサのセンサ値に基づいた診断手法では、DPFの故障を正確に判定できない課題がある。 Generally, a resistance type PM sensor detects the amount of PM by utilizing the fact that the resistance value between electrodes changes due to conductive PM adhering between a pair of electrodes. However, in the resistance type PM sensor, if the electrical resistance of the PM adhering between the electrodes changes when affected by the exhaust temperature or the exhaust flow rate, there is a possibility that an accurate PM amount cannot be detected. For this reason, there is a problem that the diagnosis method based on the sensor value of the resistance PM sensor cannot accurately determine the failure of the DPF.
 開示の装置は、DPFの故障を高精度に判定することを目的とする。 The disclosed device aims to determine a DPF failure with high accuracy.
 開示の装置は、内燃機関から排出される排気中の粒子状物質を捕集するフィルタと、前記フィルタの下流側に設けられ、電極間に付着した粒子状物質を流れる電流値から粒子状物質量を検出すると共に、電極間に付着した粒子状物質が所定量に達すると当該粒子状物質を燃焼除去する再生が可能なセンサと、前記センサの再生終了から次の再生開始までの実インターバルを演算する実インターバル演算手段と、前記内燃機関から排出されて当該フィルタを通過する粒子状物質のスリップ量を推定するスリップ量推定手段と、前記内燃機関の排気状態量及び、推定される前記スリップ量を入力値として含む重回帰式に基づいて前記電極間に付着する粒子状物質の堆積状態を推定すると共に、当該堆積状態に基づいて前記センサの再生終了から次の再生開始までの推定インターバルを演算する推定インターバル演算手段と、前記実インターバルと前記推定インターバルとを比較して、前記フィルタの少なくとも故障を判定する判定手段と、を備える。 The disclosed apparatus includes a filter that collects particulate matter in exhaust gas discharged from an internal combustion engine, and an amount of particulate matter provided from a current value that is provided downstream of the filter and flows through the particulate matter attached between electrodes. And a sensor capable of regenerating to burn off the particulate matter when the amount of particulate matter attached between the electrodes reaches a predetermined amount, and calculating the actual interval from the end of regeneration of the sensor to the start of the next regeneration Real interval calculation means, slip amount estimation means for estimating the slip amount of particulate matter discharged from the internal combustion engine and passing through the filter, exhaust state quantity of the internal combustion engine, and estimated slip quantity Based on the multiple regression equation included as an input value, the accumulation state of the particulate matter adhering between the electrodes is estimated, and from the end of regeneration of the sensor based on the accumulation state And estimating interval calculating means for calculating an estimated interval to the start playback, by comparing the actual interval and the estimated interval, and a determining means for determining at least failure of the filter.
 開示の装置によれば、DPFの故障を高精度に判定することができる。 According to the disclosed apparatus, it is possible to determine a DPF failure with high accuracy.
本発明の一実施形態に係る診断装置が適用されたエンジンの吸排気系を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an intake / exhaust system of an engine to which a diagnostic device according to an embodiment of the present invention is applied. (A)は、本実施形態の抵抗型PMセンサの要部を示す模式的な斜視図、(B)は、抵抗型PMセンサのセンサ再生信号を示す図である。(A) is a typical perspective view showing the principal part of the resistance type PM sensor of this embodiment, (B) is a figure showing the sensor reproduction signal of a resistance type PM sensor. 本実施形態のECU40を示す機能ブロック図である。It is a functional block diagram which shows ECU40 of this embodiment. 本実施形態の故障診断の一例を説明する図である。It is a figure explaining an example of failure diagnosis of this embodiment. 本実施形態の故障診断の一例を説明する図である。It is a figure explaining an example of failure diagnosis of this embodiment. 本実施形態の故障診断の一例を説明する図である。It is a figure explaining an example of failure diagnosis of this embodiment.
 以下、添付図面に基づいて、本発明の一実施形態に係る診断装置を説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, a diagnostic apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10には、吸気マニホールド10aと排気マニホールド10bとが設けられている。吸気マニホールド10aには新気を導入する吸気通路11が接続され、排気マニホールド10bには排気を大気に放出する排気通路12が接続されている。 As shown in FIG. 1, a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an intake manifold 10a and an exhaust manifold 10b. An intake passage 11 for introducing fresh air is connected to the intake manifold 10a, and an exhaust passage 12 for releasing exhaust gas to the atmosphere is connected to the exhaust manifold 10b.
 吸気通路11には、吸気上流側から順に、エアクリーナ13、MAFセンサ31、過給機のコンプレッサ14a、インタークーラ15、吸気温度センサ32、吸気酸素濃度センサ33、ブースト圧センサ34等が設けられている。排気通路12には、排気上流側から順に、過給機のタービン14b、排気酸素濃度センサ35、空燃比センサ36、排気温度センサ37、排気後処理装置50等が設けられている。なお、図1中において、符号38はエンジン回転センサ、符号39はアクセル開度センサを示している。 In the intake passage 11, an air cleaner 13, a MAF sensor 31, a supercharger compressor 14 a, an intercooler 15, an intake air temperature sensor 32, an intake oxygen concentration sensor 33, a boost pressure sensor 34, and the like are provided in order from the intake upstream side. Yes. In the exhaust passage 12, a turbocharger turbine 14b, an exhaust oxygen concentration sensor 35, an air-fuel ratio sensor 36, an exhaust temperature sensor 37, an exhaust aftertreatment device 50, and the like are provided in order from the exhaust upstream side. In FIG. 1, reference numeral 38 denotes an engine rotation sensor, and reference numeral 39 denotes an accelerator opening sensor.
 排気後処理装置50は、触媒ケース50a内に排気上流側から順に、酸化触媒(Diesel Oxidation Catalyst:DOC)51と、DPF52とを配置して構成されている。また、DOC51の排気上流側には排気管内噴射装置53、DPF52の下流側には、DPF52を通過した排気中のPM量を検出する抵抗型PMセンサ20が設けられている。 The exhaust aftertreatment device 50 is configured by arranging an oxidation catalyst (Diesel Oxidation Catalyst: DOC) 51 and a DPF 52 in order from the exhaust upstream side in the catalyst case 50a. An exhaust pipe injection device 53 is provided on the exhaust upstream side of the DOC 51, and a resistance PM sensor 20 that detects the amount of PM in the exhaust gas that has passed through the DPF 52 is provided on the downstream side of the DPF 52.
 排気管内噴射装置53は、電子制御ユニット(以下、ECU)40から出力される指示信号に応じて、排気通路12内に未燃燃料(主にHC)を噴射する。なお、エンジン10の多段噴射によるポスト噴射を用いる場合は、この排気管内噴射装置53を省略してもよい。 The exhaust pipe injection device 53 injects unburned fuel (mainly HC) into the exhaust passage 12 in accordance with an instruction signal output from an electronic control unit (hereinafter, ECU) 40. In addition, when using the post injection by the multistage injection of the engine 10, this in-pipe injection device 53 may be omitted.
 DOC51は、例えば、コーディエライトハニカム構造体等のセラミック製担体表面に触媒成分を担持して形成されている。DOC51は、排気管内噴射装置53又はポスト噴射によってHCが供給されると、これを酸化して排気温度を上昇させる。 The DOC 51 is formed, for example, by carrying a catalyst component on the surface of a ceramic carrier such as a cordierite honeycomb structure. When HC is supplied by the exhaust pipe injection device 53 or the post injection, the DOC 51 oxidizes this and raises the exhaust temperature.
 DPF52は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。DPF52は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管内噴射装置53又はポスト噴射によってDOC51に未燃燃料(HC)を供給し、DPF52に流入する排気温度をPM燃焼温度(例えば、約600℃)まで昇温することで行われる。 The DPF 52 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. The DPF 52 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the amount of accumulated PM reaches a predetermined amount, so-called forced filter regeneration is performed to remove the PM. The forced regeneration of the filter is performed by supplying unburned fuel (HC) to the DOC 51 by the in-pipe injection device 53 or post injection, and raising the exhaust temperature flowing into the DPF 52 to the PM combustion temperature (for example, about 600 ° C.). Is called.
 抵抗型PMセンサ20は、図2(A)に示すように、絶縁基板21上に電圧が印加される櫛歯状の一対の電極22を備えており、電極22間の抵抗値が導電性のPMの付着により変化することを利用してPM量を検出する。また、抵抗型PMセンサ20は、図示しないヒータを備えており、図2(B)に示すように、電極22間に付着したPMが所定量まで堆積すると、これをヒータで加熱して燃焼除去するセンサ再生が行われる。このセンサ再生信号(開始信号・終了信号)は、電気的に接続されたECU40に出力される。 As shown in FIG. 2A, the resistance PM sensor 20 includes a pair of comb-like electrodes 22 to which a voltage is applied on an insulating substrate 21, and the resistance value between the electrodes 22 is conductive. The amount of PM is detected by utilizing the change due to adhesion of PM. Further, the resistance type PM sensor 20 includes a heater (not shown). As shown in FIG. 2B, when a predetermined amount of PM deposited between the electrodes 22 accumulates, the heater is heated by the heater and removed by combustion. Sensor regeneration is performed. This sensor regeneration signal (start signal / end signal) is output to the electrically connected ECU 40.
 ECU40は、エンジン10や排気管内噴射装置53等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。 The ECU 40 performs various controls of the engine 10, the exhaust pipe injection device 53, and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like.
 また、ECU40は、図3に示すように、実再生インターバル演算部41と、エンジン排出PM量演算部42と、PMスリップ量演算部43と、推定再生インターバル演算部44と、DPF診断部45とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU40に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。 Further, as shown in FIG. 3, the ECU 40 includes an actual regeneration interval calculation unit 41, an engine exhaust PM amount calculation unit 42, a PM slip amount calculation unit 43, an estimated regeneration interval calculation unit 44, and a DPF diagnosis unit 45. As a part of functional elements. Each of these functional elements will be described as being included in the ECU 40 which is an integral hardware, but any one of them can be provided in separate hardware.
 実再生インターバル演算部41は、本発明の実インターバル演算手段の一例であって、抵抗型PMセンサ20の再生終了から次の再生開始までの期間(以下、この期間を実再生インターバルINTactという)を演算する。実再生インターバルINTactは、抵抗型PMセンサ20から入力される再生開始信号及び再生終了信号に基づいて演算される。 The actual playback interval calculation unit 41 is an example of the actual interval calculation means of the present invention, and is a period from the end of playback of the resistive PM sensor 20 to the start of the next playback (hereinafter, this period is referred to as actual playback interval INT act ) Is calculated. The actual playback interval INT act is calculated based on the playback start signal and playback end signal input from the resistance type PM sensor 20.
 エンジン排出PM量演算部42は、本発明のスリップ量推定手段の一部を構成するもので、エンジン10から排出されるPM量をリアルタイムで演算する(以下、エンジン排出PM量MEG_outという)。エンジン排出PM量MEG_outは、例えば、各種センサ31~39等で検出される吸排気系の酸素濃度O2、空燃比λ、排気温度Texh等を入力値として含むモデル式等から演算される。なお、エンジン排出PM量MEG_outは、予め実験等により作成したPM排出量マップ(不図示)から、センサ38,39等で検出されるエンジン運転状態に対応する値を読み取ることで求めてもよい。 The engine exhaust PM amount calculating unit 42 constitutes a part of the slip amount estimating means of the present invention, and calculates the PM amount discharged from the engine 10 in real time (hereinafter referred to as engine exhaust PM amount MEG_out ). The engine exhaust PM amount M EG_out is calculated from, for example, a model equation including the oxygen concentration O 2 of the intake / exhaust system, the air-fuel ratio λ, the exhaust temperature T exh and the like detected by the various sensors 31 to 39 as input values. The engine exhaust PM amount M EG_out may be obtained by reading a value corresponding to the engine operating state detected by the sensors 38, 39, etc., from a PM exhaust amount map (not shown) created in advance by experiments or the like. .
 PMスリップ量演算部43は、本発明のスリップ量推定手段の一部を構成するもので、DPF52を通過するPM量(以下、PMスリップ量MDPF_slpという)をリアルタイムで演算する。より詳しくは、ECU40には、予め実験等により求めたDPF52のPM捕集能力を正常と仮定した場合のPMスリップ率SLP%が記憶されている。PMスリップ量MDPF_slpは、エンジン排出PM量MEG_outにPMスリップ率SLP%を乗算することで得られる(MDPF_slp=MEG_out・MDPF_slp)。なお、PMスリップ率SLP%は、DPF52が溶損等により故障する直前の状態を基準に設定することが好ましい。これにより、後述する故障診断において、PMスリップ量が排ガス基準値等を超える直前で、DPF52の故障を確実に検知することが可能になる。 The PM slip amount calculation unit 43 constitutes a part of the slip amount estimation means of the present invention, and calculates the PM amount passing through the DPF 52 (hereinafter referred to as PM slip amount M DPF_slp ) in real time. More specifically, the ECU 40 stores the PM slip rate SLP % when the PM collection capability of the DPF 52 obtained in advance by experiments or the like is assumed to be normal. The PM slip amount M DPF_slp is obtained by multiplying the engine exhaust PM amount M EG_out by the PM slip rate SLP % (M DPF_slp = M EG_out · M DPF_slp ). The PM slip ratio SLP % is preferably set based on the state immediately before the DPF 52 fails due to melting or the like. This makes it possible to reliably detect a failure of the DPF 52 immediately before the PM slip amount exceeds the exhaust gas reference value or the like in failure diagnosis described later.
 推定再生インターバル演算部44は、本発明の推定インターバル演算手段の一例であって、DPF52のPM捕集能力を正常と仮定して、抵抗型PMセンサ20の再生終了から次の再生開始までの推定期間(以下、この期間を推定再生インターバルINTestという)を演算する。推定再生インターバルINTestは、排気温度、排気流量及び、PMスリップ量(DPF52の出口PM量)を用いて、予め重回帰分析により作成したモデル式に基づいて演算される。以下、詳細な演算手順を説明する。 The estimated regeneration interval calculating unit 44 is an example of the estimated interval calculating means of the present invention, and estimates from the end of regeneration of the resistive PM sensor 20 to the start of the next regeneration, assuming that the PM collection capability of the DPF 52 is normal. A period (hereinafter, this period is referred to as an estimated reproduction interval INT est ) is calculated. The estimated regeneration interval INT est is calculated based on a model formula created in advance by multiple regression analysis using the exhaust gas temperature, the exhaust gas flow rate, and the PM slip amount (exit PM amount of the DPF 52). A detailed calculation procedure will be described below.
 センサ再生開始時において、電極22間の抵抗値(相当する電流値)及び、電極22間のPM堆積量(主に煤)は一定となる。すなわち、以下の数式1に示すように、PMスリップ量MDPF_slpに所定の補正係数CFを乗算した値を再生インターバルT_reg間で積算して得られる電極22間のPM堆積量Msoot_regは、センサ再生開始時に一定となる。 At the start of sensor regeneration, the resistance value (corresponding current value) between the electrodes 22 and the PM deposition amount (mainly soot) between the electrodes 22 are constant. That is, as shown in Equation 1 below, the PM deposit amount M soot_reg between the electrodes 22 obtained by multiplying the PM slip amount MDPF_slp by a predetermined correction coefficient CF during the regeneration interval T_reg It becomes constant at the start of playback.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 エンジン10の定常運転時は、PMスリップ量MDPF_slp及び、補正係数CFが変化しないため、数式1は以下の数式2に置きかえられる。 During the steady operation of the engine 10, the PM slip amount MDPF_slp and the correction coefficient CF do not change, and therefore Equation 1 is replaced with Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 電極22間のPM堆積量割合Mnormは、センサ再生開始時に1(100%)になるので、以下の数式3で表すことができる。 Since the PM deposition amount ratio M norm between the electrodes 22 is 1 (100%) at the start of sensor regeneration, it can be expressed by the following Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数式3において、補正係数CFとPMスリップ量MDPF_slpとの比を所定の補正係数CCと仮定して正規化すると、以下の数式4が得られる。 In Expression 3, when the ratio between the correction coefficient CF and the PM slip amount MDPF_slp is normalized assuming a predetermined correction coefficient CC, the following Expression 4 is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 予め実験等により排気温度、排気流量、PMスリップ量を計測して重回帰分析を行うと、補正係数CCは、排気温度Texh、排気流量Qexh及び、PMスリップ量MDPF_slpを入力値とする数式5の重回帰関数として定義される。 When the exhaust temperature, exhaust flow rate, and PM slip amount are measured in advance by experiments and a multiple regression analysis is performed, the correction coefficient CC uses the exhaust temperature T exh , the exhaust flow rate Q exh, and the PM slip amount M DPF_slp as input values. It is defined as a multiple regression function of Equation 5.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以下の数式6に示すように、エンジン10の過渡運転状態で、センサ再生終了時からPMスリップ量MDPF_slpに補正係数CCを乗算した値を積算して得られるPM堆積量割合Mnormは、次のセンサ再生開始時(電極22間のPM堆積完了時)に1(100%)となる。 As shown in Equation 6 below, in the transient operation state of the engine 10, the PM accumulation amount ratio M norm obtained by integrating the value obtained by multiplying the PM slip amount M DPF_slp by the correction coefficient CC from the end of sensor regeneration is 1 (100%) at the start of sensor regeneration (when PM deposition between the electrodes 22 is completed).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 推定再生インターバル演算部44は、センサ再生終了時から上述の数式5,6に基づいてPM堆積量割合Mnormの演算を開始する。そして、センサ再生終了時からPM堆積量割合Mnormの演算値が1になるまでの期間をECU40に内蔵されたタイマ(不図示)で計時することで、推定再生インターバルINTestを演算するように構成されている。なお、数式5において、排気温度Texhは、排気温度センサ37から取得され、排気流量Qexhは、MAFセンサ31の検出値及びエンジン10の燃料噴射量等から演算するか、あるいは図示しない排気流量センサから直接的に取得される。 The estimated regeneration interval calculation unit 44 starts the calculation of the PM deposition amount ratio M norm based on the above formulas 5 and 6 from the end of the sensor regeneration. Then, the estimated regeneration interval INT est is calculated by measuring the period from the end of sensor regeneration until the calculated value of the PM accumulation amount ratio M norm becomes 1 by a timer (not shown) built in the ECU 40. It is configured. In Equation 5, the exhaust gas temperature T exh is acquired from the exhaust gas temperature sensor 37, and the exhaust gas flow rate Q exh is calculated from the detection value of the MAF sensor 31, the fuel injection amount of the engine 10, or the like, or an exhaust gas flow rate not shown. Obtained directly from the sensor.
 DPF診断部45は、本発明の判定手段の一例であって、実再生インターバル演算部41から入力される実再生インターバルINTactと、推定再生インターバル演算部44から入力される推定再生インターバルINTestとに基づいて、DPF52の故障又は正常を判定する。以下、具体的な判定手法を図4,5に基づいて説明する。 The DPF diagnosis unit 45 is an example of a determination unit of the present invention, and includes an actual reproduction interval INT act input from the actual reproduction interval calculation unit 41 and an estimated reproduction interval INT est input from the estimated reproduction interval calculation unit 44. Based on the above, the failure or normality of the DPF 52 is determined. Hereinafter, a specific determination method will be described with reference to FIGS.
 図4に示す判定手法は、実再生インターバルINTactと推定再生インターバルINTestとを直接比較するものである。この判定手法では、実再生インターバルINTactが推定再生インターバルINTestよりも短い場合に(INTact<INTest)、DPF52を故障と判定する。一方、実再生インターバルINTactが推定再生インターバルINTestと同じか、もしくは長い場合に(INTact≧INTest)、DPF52を正常と判定する。 The determination method shown in FIG. 4 directly compares the actual reproduction interval INT act and the estimated reproduction interval INT est . In this determination method, when the actual reproduction interval INT act is shorter than the estimated reproduction interval INT est (INT act <INT est ), the DPF 52 is determined as a failure. On the other hand, when the actual reproduction interval INT act is the same as or longer than the estimated reproduction interval INT est (INT act ≧ INT est ), the DPF 52 is determined to be normal.
 図5に示す判定手法は、診断時間の短縮化及び、診断回数の増加を目的とするものである。図5(A)では、推定再生インターバルINTestの演算が終了してから所定の閾値時間が経過しても、次のセンサ再生開始信号が入力されない場合は、DPF52を正常と判定する。これにより、DPF52が正常な場合に、実再生インターバルINTactの演算終了を待つことなく、DPF52の正常な状態を早期に判定することが可能になる。 The determination method shown in FIG. 5 aims at shortening the diagnosis time and increasing the number of diagnoses. In FIG. 5A, if the next sensor regeneration start signal is not input even after a predetermined threshold time has elapsed after the calculation of the estimated regeneration interval INT est , the DPF 52 is determined to be normal. Thus, when the DPF 52 is normal, it is possible to determine the normal state of the DPF 52 at an early stage without waiting for the completion of the calculation of the actual reproduction interval INT act .
 図5(B)では、実再生インターバルINTactの演算が終了してから所定の閾値時間が経過しても、推定再生インターバルINTestの演算が終了しない場合は、DPF52を故障と判定する。これにより、DPF52の劣化が著しい場合に、推定再生インターバルINTestの演算終了を待つことなく、DPF52の故障を早期に検知することが可能になる。 In FIG. 5B, if the calculation of the estimated reproduction interval INT est is not completed even after a predetermined threshold time has elapsed after the calculation of the actual reproduction interval INT act , the DPF 52 is determined to be a failure. As a result, when the deterioration of the DPF 52 is significant, it is possible to detect a failure of the DPF 52 at an early stage without waiting for the calculation of the estimated regeneration interval INT est to end.
 図6に示す判定手法は、実再生インターバルINTactと推定再生インターバルINTestとの比を用いるものである。この判定手法では、実再生インターバルINTactを推定再生インターバルINTestで除算した比率%INTが、予め定めた上限閾値TMAX%を超えると、DPF52を故障と判定する。上限閾値TMAX%は、例えば、溶損等によりDPF52を通過するPMスリップ量が排ガス基準値を満たさなくなる直前の状態(故障直前の正常品)を基準に設定されることが好ましい。 The determination method shown in FIG. 6 uses a ratio between the actual reproduction interval INT act and the estimated reproduction interval INT est . In this determination method, when the ratio% INT obtained by dividing the actual reproduction interval INT act by the estimated reproduction interval INT est exceeds a predetermined upper limit threshold T MAX% , the DPF 52 is determined to be a failure. The upper threshold value T MAX% is preferably set, for example, based on a state immediately before the PM slip amount passing through the DPF 52 does not satisfy the exhaust gas reference value due to melting damage or the like (normal product immediately before failure).
 次に、本実施形態に係る診断装置による作用効果を説明する。 Next, operational effects of the diagnostic apparatus according to the present embodiment will be described.
 従来、DPFの故障を診断する技術として、DPFの下流側に設けた抵抗型PMセンサのPM量検出値と閾値とを比較する手法が知られている。しかしながら、電極間に付着したPMの電気抵抗は、排気温度や排気流量の影響により変化するため、抵抗型PMセンサのPM量検出値に基づいた診断手法では、DPFの劣化を正確に判定できない課題がある。 Conventionally, as a technique for diagnosing a DPF failure, a method of comparing a PM amount detection value of a resistance type PM sensor provided on the downstream side of the DPF with a threshold value is known. However, since the electrical resistance of PM adhering between the electrodes changes due to the influence of the exhaust temperature and the exhaust flow rate, the diagnosis method based on the detected PM amount of the resistance PM sensor cannot accurately determine the deterioration of the DPF. There is.
 これに対し、本実施形態の診断装置では、抵抗型PMセンサ20のPM量検出値を用いることなく、抵抗型PMセンサ20のセンサ再生信号から演算される実再生インターバルINTactと、予め排気温度、排気流量及び、PMスリップ量を重回帰分析して作成したモデル式(数式5,6)から演算される推定再生インターバルINTestとに基づいて、DPF52の故障又は正常を判定している。したがって、本実施形態の診断装置によれば、排気温度や排気流量の影響を受けることなく、DPF52の診断精度を効果的に向上することができる。 On the other hand, in the diagnostic device of the present embodiment, the actual regeneration interval INT act calculated from the sensor regeneration signal of the resistive PM sensor 20 without using the PM amount detection value of the resistive PM sensor 20 and the exhaust temperature in advance. The failure or normality of the DPF 52 is determined based on the estimated regeneration interval INT est calculated from the model formulas (Formulas 5 and 6) created by multiple regression analysis of the exhaust flow rate and the PM slip amount. Therefore, according to the diagnostic device of the present embodiment, the diagnostic accuracy of the DPF 52 can be effectively improved without being affected by the exhaust temperature and the exhaust flow rate.
 また、本実施形態の診断装置では、推定再生インターバルINTestを演算するモデル式は、排気流量、排気温度、PMスリップ量を入力値として含むように構成されている。したがって、本実施形態の診断装置によれば、実再生インターバルと閾値とを単純に比較してDPFを診断する技術に比べて、再生インターバル間におけるエンジン10の運転履歴を考慮に入れた高精度な診断を行うことが可能になる。 In the diagnostic apparatus of the present embodiment, the model formula for calculating the estimated regeneration interval INT est is configured to include the exhaust flow rate, the exhaust temperature, and the PM slip amount as input values. Therefore, according to the diagnosis device of the present embodiment, compared with a technique for diagnosing the DPF by simply comparing the actual regeneration interval and the threshold value, the operation history of the engine 10 between the regeneration intervals is taken into consideration. Diagnosis can be performed.
 また、本実施形態の診断装置では、推定再生インターバルの演算が終了してから所定時間が経過しても、次のセンサ再生開始信号が入力されない場合は、DPF52を正常と判定する。すなわち、DPF52が正常な場合は、実再生インターバルの演算終了を待つことなく、早期に判定できるように構成されている。したがって、本実施形態の診断装置によれば、診断時間の短縮化及び、診断回数の増加を効果的に図ることができる。 Further, in the diagnosis apparatus of the present embodiment, if the next sensor regeneration start signal is not input even after a predetermined time has elapsed after the calculation of the estimated regeneration interval, the DPF 52 is determined to be normal. That is, when the DPF 52 is normal, the determination can be made early without waiting for the calculation of the actual regeneration interval to end. Therefore, according to the diagnostic apparatus of this embodiment, it is possible to effectively shorten the diagnosis time and increase the number of diagnoses.
 また、本実施形態の診断装置では、実再生インターバルの演算が終了してから所定時間が経過しても、推定再生インターバルの演算が終了しない場合は、DPF52を故障と判定する。すなわち、DPF52の劣化が著しい場合は、推定再生インターバルの演算終了を待つことなく、故障を判定できるように構成されている。したがって、本実施形態の診断装置によれば、DPF52の故障を早期に検知することが可能になる。 Further, in the diagnosis device of the present embodiment, if the calculation of the estimated reproduction interval does not end even after a predetermined time has elapsed after the calculation of the actual reproduction interval, the DPF 52 is determined to be faulty. That is, when the deterioration of the DPF 52 is significant, it is possible to determine a failure without waiting for the calculation of the estimated regeneration interval to end. Therefore, according to the diagnostic apparatus of the present embodiment, it is possible to detect a failure of the DPF 52 at an early stage.
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、DPF52とDOC51とは別体に設けられるものとして説明したが、これらを一体化してもよい。また、エンジン10はディーゼルエンジンに限定されず、ガソリンエンジン等の他の内燃機関にも広く適用することが可能である。 For example, although the DPF 52 and the DOC 51 have been described as being provided separately, they may be integrated. Further, the engine 10 is not limited to a diesel engine, and can be widely applied to other internal combustion engines such as a gasoline engine.
 10 エンジン
 20 抵抗型PMセンサ
 22 電極
 40 ECU
 41 実再生インターバル演算部
 42 エンジン排出PM量演算部
 43 PMスリップ量演算部
 44 推定再生インターバル演算部
 45 DPF診断部
 51 DOC
 52 DPF
 53 排気管内噴射装置
10 Engine 20 Resistance PM Sensor 22 Electrode 40 ECU
41 Actual regeneration interval computation unit 42 Engine exhaust PM amount computation unit 43 PM slip amount computation unit 44 Estimated regeneration interval computation unit 45 DPF diagnosis unit 51 DOC
52 DPF
53 Exhaust pipe injection device

Claims (5)

  1.  内燃機関から排出される排気中の粒子状物質を捕集するフィルタと、
     前記フィルタの下流側に設けられ、電極間に付着した粒子状物質を流れる電流値から粒子状物質量を検出すると共に、電極間に付着した粒子状物質が所定量に達すると当該粒子状物質を燃焼除去する再生が可能なセンサと、
     前記センサの再生終了から次の再生開始までの実インターバルを演算する実インターバル演算手段と、
     前記内燃機関から排出されて当該フィルタを通過する粒子状物質のスリップ量を推定するスリップ量推定手段と、
     前記内燃機関の排気状態量及び、推定される前記スリップ量を入力値として含む重回帰式に基づいて前記電極間に付着する粒子状物質の堆積状態を推定すると共に、当該堆積状態に基づいて前記センサの再生終了から次の再生開始までの推定インターバルを演算する推定インターバル演算手段と、
     前記実インターバルと前記推定インターバルとを比較して、前記フィルタの少なくとも故障を判定する判定手段と、を備える
     診断装置。
    A filter that collects particulate matter in the exhaust discharged from the internal combustion engine;
    Provided on the downstream side of the filter, the amount of particulate matter is detected from the current value flowing through the particulate matter attached between the electrodes, and when the amount of particulate matter attached between the electrodes reaches a predetermined amount, the particulate matter is removed. A recyclable sensor that burns away,
    An actual interval calculating means for calculating an actual interval from the end of reproduction of the sensor to the start of the next reproduction;
    Slip amount estimating means for estimating a slip amount of particulate matter discharged from the internal combustion engine and passing through the filter;
    The accumulated state of the particulate matter adhering between the electrodes is estimated based on a multiple regression equation including the exhaust state amount of the internal combustion engine and the estimated slip amount as an input value, and based on the accumulated state, the An estimated interval calculation means for calculating an estimated interval from the end of regeneration of the sensor to the start of the next regeneration;
    And a determination unit that compares the actual interval with the estimated interval to determine at least a failure of the filter.
  2.  前記判定手段は、
     前記実インターバルが前記推定インターバル未満の場合に、前記フィルタを故障と判定し、前記実インターバルが前記推定インターバル以上の場合に、前記フィルタを正常と判定する
     請求項1に記載の診断装置。
    The determination means includes
    The diagnostic device according to claim 1, wherein when the actual interval is less than the estimated interval, the filter is determined as a failure, and when the actual interval is equal to or greater than the estimated interval, the filter is determined as normal.
  3.  前記判定手段は、
     前記推定インターバルの演算が終了してから所定の閾値時間が経過しても、前記フィルタの再生が開始されない場合は、前記フィルタを正常と判定する
     請求項1又は2に記載の診断装置。
    The determination means includes
    The diagnostic device according to claim 1 or 2, wherein if the regeneration of the filter is not started even after a predetermined threshold time has elapsed after the calculation of the estimation interval, the filter is determined to be normal.
  4.  前記判定手段は、
     前記実インターバルの演算が終了してから所定の閾値時間が経過しても、前記推定インターバルの演算が終了しない場合は、前記フィルタを故障と判定する
     請求項1から3の何れか一項に記載の診断装置。
    The determination means includes
    The filter is determined to be a failure if the calculation of the estimated interval does not end even after a predetermined threshold time has elapsed after the calculation of the actual interval. Diagnostic equipment.
  5.  前記判定手段は、
     前記実インターバルと前記推定インターバルとの比が所定の上限閾値を超えると、前記フィルタを故障と判定する
     請求項1から3の何れか一項に記載の診断装置。
    The determination means includes
    The diagnostic device according to any one of claims 1 to 3, wherein when the ratio between the actual interval and the estimated interval exceeds a predetermined upper limit threshold, the filter is determined to be a failure.
PCT/JP2014/075669 2013-09-27 2014-09-26 Diagnosing device WO2015046446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013201198A JP6201578B2 (en) 2013-09-27 2013-09-27 Diagnostic equipment
JP2013-201198 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046446A1 true WO2015046446A1 (en) 2015-04-02

Family

ID=52743571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075669 WO2015046446A1 (en) 2013-09-27 2014-09-26 Diagnosing device

Country Status (2)

Country Link
JP (1) JP6201578B2 (en)
WO (1) WO2015046446A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562356A (en) * 2021-02-24 2022-05-31 长城汽车股份有限公司 Detection method of vehicle particulate matter sensor, diagnostic instrument and vehicle
CN114856758A (en) * 2018-04-24 2022-08-05 株式会社久保田 Exhaust gas treatment device for diesel engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179467A (en) * 2010-03-03 2011-09-15 Toyota Motor Corp Failure diagnostic device for particulate filter
JP2012122399A (en) * 2010-12-08 2012-06-28 Denso Corp Failure detection device of particulate filter
JP2013068197A (en) * 2011-09-26 2013-04-18 Denso Corp Detection system
JP2013083241A (en) * 2011-10-06 2013-05-09 Hyundai Motor Co Ltd Exhaust gas treatment method
JP2014185541A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Filter abnormality detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179467A (en) * 2010-03-03 2011-09-15 Toyota Motor Corp Failure diagnostic device for particulate filter
JP2012122399A (en) * 2010-12-08 2012-06-28 Denso Corp Failure detection device of particulate filter
JP2013068197A (en) * 2011-09-26 2013-04-18 Denso Corp Detection system
JP2013083241A (en) * 2011-10-06 2013-05-09 Hyundai Motor Co Ltd Exhaust gas treatment method
JP2014185541A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Filter abnormality detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856758A (en) * 2018-04-24 2022-08-05 株式会社久保田 Exhaust gas treatment device for diesel engine
CN114562356A (en) * 2021-02-24 2022-05-31 长城汽车股份有限公司 Detection method of vehicle particulate matter sensor, diagnostic instrument and vehicle
CN114562356B (en) * 2021-02-24 2023-03-24 长城汽车股份有限公司 Detection method of vehicle particulate matter sensor, diagnostic instrument and vehicle

Also Published As

Publication number Publication date
JP6201578B2 (en) 2017-09-27
JP2015068203A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6201577B2 (en) Diagnostic equipment
US7357822B2 (en) Filter control apparatus
JP5115873B2 (en) Particulate filter failure detection device
WO2015041289A1 (en) Diagnostic device
JP5833864B2 (en) Exhaust gas treatment method and exhaust gas treatment control system for internal combustion engine
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP6197377B2 (en) Exhaust purification device
US20100242443A1 (en) Exhaust aftertreatment device
JP2004076589A (en) Filter control method and device
JP6213118B2 (en) Diagnostic equipment
JP2004270522A (en) Exhaust emission control device for engine
WO2014115622A1 (en) Exhaust purification device for internal combustion engine
WO2015053323A1 (en) Exhaust purification system
JP6201578B2 (en) Diagnostic equipment
WO2016140215A1 (en) Sensor
JP6367735B2 (en) Particulate matter quantity estimation system
WO2015053322A1 (en) Exhaust purification system
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
JP2015007386A (en) Abnormality detection device
JP2015055167A (en) Exhaust emission control device
JP6500506B2 (en) Sensor
JP2010270617A (en) Exhaust emission control system and method for controlling the same
JP2015059478A (en) Exhaust purification system of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850043

Country of ref document: EP

Kind code of ref document: A1