WO2015046318A1 - Blender and pump with blender - Google Patents

Blender and pump with blender Download PDF

Info

Publication number
WO2015046318A1
WO2015046318A1 PCT/JP2014/075404 JP2014075404W WO2015046318A1 WO 2015046318 A1 WO2015046318 A1 WO 2015046318A1 JP 2014075404 W JP2014075404 W JP 2014075404W WO 2015046318 A1 WO2015046318 A1 WO 2015046318A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
blender
casing
mixing
transferred
Prior art date
Application number
PCT/JP2014/075404
Other languages
French (fr)
Japanese (ja)
Inventor
寛二 前田
Original Assignee
伏虎金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伏虎金属工業株式会社 filed Critical 伏虎金属工業株式会社
Priority to JP2015539308A priority Critical patent/JP6341921B2/en
Publication of WO2015046318A1 publication Critical patent/WO2015046318A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1141Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections having holes in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1142Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections of the corkscrew type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1144Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections with a plurality of blades following a helical path on a shaft or a blade support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1145Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1145Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis
    • B01F27/11451Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis forming open frameworks or cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2123Shafts with both stirring means and feeding or discharging means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • B01F27/721Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle
    • B01F27/723Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with two or more helices in the same receptacle the helices intermeshing to knead the mixture

Definitions

  • the present invention relates to a blender pump capable of transporting an object to be transported and mixing with sub-materials, and a blender used therefor.
  • a continuous candy manufacturing apparatus described in Patent Document 1 is known as a transfer apparatus that transfers and mixes an object to be transferred.
  • the candy manufacturing apparatus disclosed in Patent Document 1 transfers a high-viscosity sugar solution stored in a tank to a supply pipe by a sugar liquid pump, and the sub-material sent out by the sub-material pump in the middle of the supply pipe.
  • the combined sugar solution and the auxiliary material are mixed by an in-line static mixer and then discharged to the concentration tank.
  • the candy manufacturing apparatus described in the patent document described above includes a static mixer
  • this static mixer can be stirred relatively well when a low-viscosity fluid is passed at high speed, and high mixing efficiency can be obtained.
  • it is difficult to generate a turbulent fluid flow in the mixer and there is a problem that the mixing efficiency is greatly reduced.
  • the supply piping from the sugar solution pump to the static mixer is as short as possible, and there is no ideal at all.
  • the sugar liquid pump and the static mixer are separately and independently provided with a supply pipe between them, there is a problem that a large total installation space must be taken.
  • the present invention has been made in view of the above-described conventional problems, and a blender-equipped pump capable of performing transfer and mixing of an object to be transferred and sub-materials in a single unit without taking up a large installation space, and The purpose of this is to provide a blender used for it.
  • a blender according to the present invention is connected to a discharge port of an external pump unit, and has a secondary material input part formed in a cylindrical shape having an input port for taking in a secondary material from the outside.
  • a cylindrical blender casing having one end connected to the auxiliary material charging portion and a discharge port for discharging the transferred object and the secondary material to the outside of the pump;
  • a mixing rotating shaft that is arranged along the cylinder center direction of the blender casing and is rotationally driven by being connected to an external rotation driving source, a stirring plate member provided on an outer peripheral surface of the mixing rotating shaft, and A passage portion formed between the stirring plate member and the inner peripheral surface of the blender casing or on the stirring plate member itself so as to allow the transferred object to pass in the transferred object transfer direction.
  • a stirring plate member of the blender unit wherein the material to be transferred and the sub-material are transferred to the blender casing when the mixing rotation shaft is rotated in a specified rotation direction.
  • the mixing rotary shaft is inclined and arranged so as to be pushed back toward the one end side.
  • the other end portion of the blender casing is connected to a blender bearing portion that can pivotally support one end portion of the mixing rotating shaft in a cantilevered manner, and One end portion is connected to a blender rotary drive source via the blender bearing portion.
  • a single mixing rotating shaft is used as the mixing rotating shaft of the blender section.
  • a protruding portion that protrudes in a direction facing the connection port is provided on a surface on the connection port side of the stirring plate member.
  • the blender-equipped pump includes a pump casing having an intake port for taking in the object to be transferred and a discharge port for discharging the transferred object, and the intake port provided in the pump casing.
  • a chamber is formed in the casing, and the pump casing forms a pump chamber by the pair of pump screws and the storage chamber, and one end portions of the pair of pump screws can be pivoted in a cantilevered manner.
  • a bearing portion for the pump to be supported is connected to one end portion of the pump casing, and one end portion of a pair of rotating shafts arranged coaxially with each pump screw is respectively connected to the free end of each of the pair of pump screws.
  • the stirring blades are provided on the outer peripheral surfaces of the pair of mixing rotary shafts, and are connected to the other end of the pump casing.
  • One end of a blender casing that accommodates the pair of mixing rotating shafts is connected, and a blender casing between the pump screw and the stirring blade is used to introduce auxiliary material from outside the pump into the pump casing.
  • a sub-material input unit having a input port is provided, and a discharge port for discharging the transferred object and the sub-material out of the pump is provided in the blender casing on the floating end side of the mixing rotating shaft. It is what.
  • the stirring blade plate provided on the outer peripheral surface of each of the pair of mixing rotating shafts has a spiral shape opposite to the spiral direction of the pump screw connected to each mixing rotating shaft.
  • the agitation blades of the pair of mixing rotary shafts are arranged so as to be able to rotate in a non-contacting manner so that they can pass through each of the agitation blades.
  • the part is formed so as to penetrate in the transfer direction of the transferred object.
  • the through portion is formed by being cut out from the outermost peripheral surface in the radial direction of the rotation axis of the stirring blade plate toward the rotation axis.
  • the blender is composed of the sub-material input part and the blender part, and the stirring plate member of the blender part is arranged so as to be inclined with respect to the axis of the mixing rotation shaft.
  • the mixing rotation shaft is rotated in a specified rotation direction, the transferred object and the auxiliary material are pushed back toward one end of the blender casing.
  • the transferred object and the auxiliary material can move in the transfer direction through the passage portion, the transferred object and the auxiliary material are efficiently transferred while repeating the pushing back by the stirring blade plate and the passage through the passage portion. Uniform mixing is possible.
  • the mixing rotating shaft of the blender unit is configured independently of the pump unit, and one end of the mixing rotating shaft is connected to the blender rotation drive source via the blender bearing unit. Therefore, the mixing ability of the blender section can be adjusted independently of the transfer ability of the pump section. Thereby, for example, when the transported object and the auxiliary material are not easily mixed, or even when the ability of the blender part is inferior to that of the pump part from the beginning, the rotational speed of the mixing rotating shaft of the blender part is increased. Thus, sufficient mixing can be performed.
  • the projecting portion protruding in the direction facing the connection port is provided on the surface on the connection port side of the stirring plate member, when the stirring plate member rotates and pushes back the transferred object and the auxiliary material. Further, there is no problem that the transferred object and the auxiliary material slide on the surface on the connection port side of the stirring plate member and lose the pushing back force. Therefore, the material to be transferred and the auxiliary material can be mixed without waste using the pushing-back force received from the surface on the connection port side of the stirring plate member.
  • the transferred object and the auxiliary material can be transferred and stirred and mixed with a single device.
  • a stirring blade plate portion is provided on the outer peripheral surface of the rotating shaft for mixing that is coaxially connected to the pump screw, and the auxiliary material feeding portion between the pump screw and the stirring blade plate portion is used for the auxiliary material.
  • a single rotational drive source can transfer and mix the material to be transferred and the auxiliary material.
  • the pump part and the blender part are adjacent to each other, there are no pipes between them, so it is not necessary to clean the pipes after work, which is also suitable for hygiene. It is particularly preferable when handling foodstuffs. At the same time, since it has a compact configuration, it can be installed without taking up much space.
  • each stirring blade plate part of the pair of mixing rotating shafts is provided in a non-contact manner and arranged in a spiral direction opposite to the spiral direction of the pump screw, and each stirring blade plate part has a through portion.
  • the material to be transferred and the sub-material can be mixed efficiently by the pushing back action by the plate surface of the stirring blade plate part and the passing action of the penetration part.
  • a blender-equipped pump having a non-contact pump screw and having both a pump function and a blender function could be provided.
  • the penetration part in the case where the penetration part is formed by cutting away from the outermost peripheral surface in the radial direction of the rotation axis of the stirring blade plate part toward the rotation axis, the penetration part can be easily manufactured by a cutting machine.
  • the through area can be made larger than that of a circular hole.
  • this penetration part is opened facing the internal peripheral surface of a pump casing.
  • FIG. 3 is a partial cross-sectional view taken along line AA in FIG. 2. It is a front view of the state which removed the cover of the pump with a blender. It is a figure which shows the pump screw of the said pump with a blender, Comprising: (a) is a partial enlarged plan view which shows a pair of pump screw and the inner peripheral surface of a pump casing, (b) is a partial enlarged plan view which shows a pair of pump screw. It is.
  • FIG. 4A is a plan view showing an assembly of a pair of pump screws and a blender unit
  • FIG. 4B It is a side view including the partial cross section of the pump with a blender using the blender concerning Embodiment 2 of the present invention.
  • FIG. 4A is a plan view showing an assembly of a pair of pump screws and a blender unit
  • FIG. 4B It is a side view including the partial cross section of the pump with a blender using the blender concerning Embodiment 2 of the present invention.
  • It is a plane sectional view of the blender-equipped pump according to the second embodiment.
  • FIG. It is a side view including the partial cross section of the pump with a blender using the blender concerning Embodiment 4 of the present invention. It is a top view of the pump with a blender concerning the above-mentioned Embodiment 4. It is a top view containing the partial cross section of the pump with a blender concerning the said Embodiment 4.
  • FIG. It is a figure which shows the blender unit used for the blender concerning Embodiment 5 of this invention, Comprising: (a) is the DD sectional view taken on the line in (b), (b) is a side view, (c) is (b) FIG. It is a side view containing the partial cross section of the pump with a blender concerning Embodiment 6 of this invention.
  • Blender-equipped pumps 1, 1a, 1b, 1c Blender-equipped pumps 2, 2b, 2c, 2d, 2e Pump casing 2A Inner peripheral surface 3, 3a Blender casing 3A Inner peripheral surface 4 Body casing 5 Pump bearing 6 Pump chamber 7a, 7b Pump screw DESCRIPTION OF SYMBOLS 11 Conical roller bearing 12 Roller bearing 14 Connection port 18 Intake port 19 Outlet port 23,24,25 Input port 26 Floating end 27 Storage chamber 28a, 28b, 28c, 28d, 28e, 28f, 28g, 28h, 28i Blender unit 28A One end Portion 29 Rotating shaft 34a, 34b, 34c, 34d, 34e, 34f, 34g, 34h, 34i Stirring blade plate 34A Outer peripheral surface 34B Surface 35, 35b, 35c, 35e, 35f Penetration portion (passage portion) 35a, 35d Passage portion 38 Floating end 39 Accommodating chamber 51, 51b, 51c, 51d, 51e Pump portion 52, 52b Submaterial input portion 53
  • Embodiments of the present invention will be described with reference to the drawings. Each embodiment described below is only an example in which the present invention is embodied, and does not limit the technical scope of the present invention.
  • “Embodiment 1”; 1A and 1B are diagrams showing a blender-equipped pump using a blender according to Embodiment 1 of the present invention, where FIG. 1A is a side view, FIG. 1B is a plan view, and FIG. FIG. 3 is a partial cross-sectional view taken along the line AA in FIG. 2, and FIG. 4 is a front view of the pump with a blender removed.
  • the blender-equipped pump 1 includes a cylindrical main body casing 4 in which housing chambers 39 and 27 are formed in a casing, and a pump bearing portion 5 connected to one end of the main body casing 4. And.
  • the main body casing 4 includes a front and rear cylindrical pump casing 2 having a storage chamber 39, and a front and rear cylindrical blender casing 3 having a storage chamber 27 connected to the front end face 2C (the other end) of the pump casing 2. And is composed of.
  • the front end surface 3B (the other end) of the blender casing 3 is sealed with a cover plate 15 fixed with bolts or the like.
  • the entire outer surface of the main casing 4 may be covered with a steam heating type jacket 40 (indicated by a one-dot chain line in FIG. 1B).
  • the pump bearing portion 5 is formed in a box shape from a housing 9 and a cover plate 10, and a rear end surface 2 ⁇ / b> B (one end portion) of the pump casing 2 is connected to the front surface of the cover plate 10. It is fixed with bolts.
  • Conical roller bearings 11 and 11 and roller bearings 12 and 12 are arranged in the housing 9. These roller bearings 11 and 12 support one end portion 8A of the shaft portion 8a of the pump screw 7a in a cantilevered manner.
  • One end portion 8A of the shaft portion 8b of the pump screw 7b is also supported in a cantilevered manner by another conical roller bearing 11 and roller bearing 12.
  • the rear portions of the pump screws 7a and 7b are supported at two points in the housing 9 so as to be freely rotatable.
  • Double mechanical seals 16, 16 are attached to the pump screws 7 a, 7 b in the vicinity of the cover plate 10 in the pump casing 2.
  • a synchronous gear 13a is fixed to the shaft portion 8a of the pump screw 7a.
  • a synchronous gear 13b that meshes with the synchronous gear 13a is fixed to the shaft portion 8b of the pump screw 7b.
  • the shaft portion 8a of the pump screw 7a is connected as a drive shaft to a motor M (an example of a pump rotary drive source) via a connection mechanism 30 such as a speed reduction mechanism.
  • the storage chamber 39 is formed in the pump casing 2 so as to penetrate front and rear in a front view shape.
  • the connection port 14 of the blender casing 3 is coupled to the front end surface 2C (the other end portion) of the pump casing 2 having the discharge port 55.
  • the front end face 3B (the other end) of the blender casing 3 is sealed by a lid 15 that is fixed with a bolt or the like.
  • Stored in the storage chamber 39 are a pump screw 7a that rotates about the axis Xa, and a pump screw 7b that always rotates in a non-contact manner with the pump screw 7a and rotates about the axis Xb.
  • the pump screws 7a and 7b are an example of a pressurizing motion member according to the present invention.
  • An intake port 18 is formed on the upper surface of the pump casing 2 at a position between the rear portions of the pump screws 7a and 7b and the cover plate 10 so as to communicate the inside of the housing chamber 39 with the outside of the casing.
  • a pipe portion 21 having a ferrule joint portion 22 at the upper opening edge is fixed with a bolt or the like, and the upper opening of the pipe portion 21 is provided with, for example, a steam heating type jacket. Hopper etc. are connected.
  • a gap H is provided between the outer peripheral surface 7B of the screw teeth of each pump screw 7a, 7b and the inner peripheral surface 2A of the storage chamber 52 of the pump screw 2. It is always non-contact.
  • spiral screw teeth protrude from outer peripheral surfaces of cylindrical base portions 7A and 7A to which shaft portions 8a and 8b are inserted and fixed.
  • a gap G is provided between the screw tooth side surface 7Sa of the pump screw 7a and the screw tooth side surface 7Sb of the pump screw 7b as shown in FIG. .
  • Each of the gaps H and G is set to a gap width through which gas can pass but a high-viscosity liquid or hard / soft solid of the transferred object Q cannot pass.
  • the gap width of the gap G is, for example, 0.03 to 0.09 mm
  • the gap width of the gap H is, for example, 0.12 to 0.18 mm. And it is within the range of the area
  • the blender-equipped pump 1 When the blender-equipped pump 1 is used for transferring foods, pharmaceuticals, cosmetic materials, etc., from the viewpoint of hygiene and maintenance of properties, at least the pipe portion 21 and the pump casing as parts to which the transferred object Q is in direct contact. 2. It is desirable that the cover plate 10, the pump screws 7a and 7b, the blender casing 3, the blender units 28a and 28b, the cover plate 15, the pipe portion 44, and the like are made of stainless steel parts. That is, the pump casing 51 and the pump screws 7a and 7b constitute a pump unit 51 that is a positive displacement axial flow pump.
  • the accommodation chamber 27 is formed in the blender casing 3 so as to penetrate front and rear in the shape of a front view (see FIG. 4).
  • the free ends 26, 26 of the shaft portions 8a, 8b of the pump screws 7a, 7b are connected to the one end portions 28A of the mixing rotating shafts 29, 29 of the pair of blender units 28a, 28b via the connecting members 32, 32. Connected.
  • These blender units 28 a and 28 b are accommodated in the accommodating chamber 27.
  • the front end portions (other end portions) of the blender units 28a and 28b are floating ends 38 and 38 that are not supported by a bearing or the like.
  • the end surfaces of these floating ends 38 and 38 are covered with end surface covers 31 and 31.
  • a space between the pump screws 7a and 7b and the stirring blades 34a and 34b serves as a secondary material charging portion 52.
  • the secondary material from the outside of the pump is formed on the upper surface of the blender casing 3 in the secondary material charging portion 52.
  • These inlets 23, 24, and 25 are formed with a diameter corresponding to the addition ratio of the auxiliary material to the transferred object Q.
  • the diameter of the middle inlet 23 is the largest, and the inlet 24 near the stirring blade part 34 a and the inlet 25 near the stirring blade part 34 b are formed to be somewhat smaller in diameter than the inlet 23. Yes.
  • a discharge port 19 is formed on the bottom surface of the blender casing 3 below the free ends 38, 38 of the mixing rotary shafts 29, 29 for discharging the mixture of the transferred material Q and the auxiliary material to the outside of the pump.
  • a pipe part 44 having a ferrule part 17 is connected to the lower surface opening edge of the blender casing 3 surrounding the discharge port 19, and a pipe 37 is connected to the ferrule part 17 of the pipe part 44 and fixed by a clamp band 36. Is done.
  • the tip of the pipe 37 is connected to a mixture receiving container or the like.
  • stirring blade plate portion 34a is shown in FIG. 6, but the other stirring blade plate portion 34b (not shown) is also provided.
  • spiral blade-shaped stirring blade portions 34a, 34b are projected outward in the rotational axis radial direction.
  • These stirring blade portions 34a and 34b are both provided in a spiral arrangement opposite to the spiral direction of the pump screws 7a and 7b connected to the mixing rotary shafts 29 and 29.
  • the pair of stirring blades 34a and 34b are formed so as to be able to rotate by screwing in a non-contact manner.
  • the stirring blade portions 34a and 34b Capable of passing the material to be transferred Q are respectively provided in the stirring blade portions 34a and 34b. It is formed penetrating in the direction of the coating arrow F). These penetrating portions 35, 35, 35,... Go from the outermost peripheral surface 34A in the radial direction of the rotation axis of the stirring blades 34a, 34b toward the axis Xa, Xb of the mixing rotation shafts 29, 29. It is formed as a notch cut out.
  • a connecting member 32 used for connecting to the pump screws 7a and 7b is fixed to the ends of the mixing rotary shafts 29 and 29.
  • This connecting member 32 is positioned in the circumferential direction by a pin fitted into a recessed part at the tip end surface of the base 7 ⁇ / b> A, and a pin attached to the pin hole 33.
  • a relatively large gap is provided between the outer peripheral surface 34 ⁇ / b> A of the stirring blade portions 34 a and 34 b and the inner peripheral surface 3 ⁇ / b> A of the blender casing 3.
  • the stirring plate members 34a and 34b are inclined when the mixing rotary shafts 29 and 29 are rotated in the prescribed rotation directions (arrows Ra and Rb) with respect to the axis Xa and Xb of the mixing rotary shaft 29.
  • the material to be transferred and the auxiliary material are set in such a direction that they can be pushed back toward one end of the blender casing 3. That is, the blender casing 3, the mixing rotary shafts 29 and 29, the stirring plate members 34 a and 34 b, and the penetrating portion 35 constitute the blender portion 53, and the auxiliary material charging portion 52 and the blender portion 53 constitute the blender 101, The pump bearing unit 5, the pump unit 51, and the blender 101 constitute a blender-equipped pump 1.
  • molten candy material having a relative viscosity of 50 Pa ⁇ s (@ 100 ° C.) is used as the high-viscosity transfer object Q.
  • the molten candy material is a sugar liquid obtained by heating and boiling raw materials such as sugar and starch syrup.
  • the auxiliary material is input from the input ports 23, 24 and 25.
  • heated buttered butter is press-fitted by pump power or the like from the charging port 23, and heated and melted chocolate is press-fitted by pump power or the like from the charging port 24. It shall be press-fitted with pump power.
  • the pump screw 7a when the pump screw 7a is rotated in one direction (the direction of arrow Ra in FIG. 7B) by the rotational drive of the motor M, the pump screw 7b to which power is transmitted via the synchronous gears 13a and 13b is reversed (see FIG. 7 (b) in the direction of arrow Rb).
  • the rotational speed of the pump screws 7a and 7b is, for example, 100 to 1000 rpm.
  • the transferred object Q in the hopper enters the pump chamber 6 from the hopper through the pipe portion 21 and the intake port 18 of the pump casing 2.
  • the transferred object Q that has fallen into the pump chamber 6 is pumped in the direction of the black arrow F by the pump action of the pump screws 7a and 7b, and passes through the connection port 14 of the blender casing 3 from the discharge port 55 of the pump casing 2. Then, it is transferred toward the blender units 28a and 28b in the blender casing 3.
  • the transported material Q was joined together with the melted butter pressed from the charging port 23 of the auxiliary material charging unit 52, the molten chocolate pressed from the charging port 24, and the molten fat and oil pressed from the charging port 25. Thereafter, both arrive at the blender units 28a and 28b.
  • the combined product Q, melted butter, melted chocolate, and melted fat and oil are on the upstream side (connection port 14) of the stirring blade portions 34 a and 34 b of the blender units 28 a and 28 b. And is moved in the push-back direction or the rotational axis circumferential direction as indicated by arrows ga and gb.
  • a part of the merged material passes through the through portions 35, 35, 35,...
  • the arrow f without contacting the plate surfaces of the stirring blade plates 34 a, 34 b, and the next stage plate. Reach the plane. Then, the merged material pushed back on the plate surface and the merged material that has passed through the through portions 35, 35, 35,...
  • the mixing action by such pushing back movement and passing movement is repeated, and the transferred object Q and the auxiliary material are efficiently and reliably mixed to form a mixture.
  • the pushing back force by the plate surfaces of the stirring blade portions 34a, 34b is not so large, the gap between the stirring blade plates 34a, 34b, and the inner peripheral surface of the stirring blade plates 34a, 34b and the blender casing 3 Since the gap between 3A is sufficiently large, the mixture can move in the blender units 28a and 28b by the transfer force generated by the pumping action of the pump screws 7a and 7b, and is discharged from the discharge port 19 after being sufficiently mixed.
  • the mixture discharged from the discharge port 19 is accommodated in a receiving container, then molded in a mold, and allowed to cool to become a candy product.
  • the transferred object Q which is a fluid, has a gap G between the pump screws 7a and 7b, and the pump screw 7a or 7b and the storage chamber 52. Since it cannot pass through the gap H with the inner peripheral surface 2A, it is pumped under the pump action of the pump screws 7a, 7b. At this time, since the pump screws 7a and 7b and the inner peripheral surface 2A of the pump casing 2 are not in contact with each other, no shear force is applied to the transferred object Q without generating metal wear powder. That is, food, medical products, etc. can be transported without alteration.
  • the transferred object Q discharged from the pump screws 7a and 7b through the discharge port 55 can reach the blender units 28a and 28b after joining with the auxiliary material from the input ports 23 to 25.
  • the combined product is efficiently stirred and mixed by the blender units 28a and 28b. That is, it is possible to perform both the transfer of the transfer object Q and the auxiliary material and the stirring and mixing with one unit.
  • the blender part 53 is arrange
  • the pump unit 51 and the blender unit 53 have a side-by-side integrated structure, the apparatus can be installed without taking up a large space.
  • the stirring blade plates 34a and 34b of the blender units 28a and 28b are arranged in a spiral direction opposite to the spiral direction of the pump screws 7a and 7b, the stirring blade plate portion 34a. , 34b and the passing action of the penetrating portion 35, the combined product can be mixed efficiently.
  • the penetration part 35 is a notch part notched from 34 A of outer peripheral surfaces, it can manufacture easily using a cutting machine and can take a large penetration area compared with penetration parts, such as a circular hole. Thereby, since the passing amount of the mixture becomes large, the amount of stirring can be increased, and the mixing efficiency can be further increased.
  • the penetration part notched toward the rotating shaft center was illustrated from the outer peripheral surface of the rotating shaft radial direction outermost part of the stirring blade board part, this invention is not limited to it.
  • the through-hole formed through the stirring blade plate in the transfer direction of the object to be transferred is a through-hole (round hole, long hole) not connected to the outer peripheral surface of the stirring blade plate portion. It may be a circular hole, a polygonal hole or the like). Even if it is such a through-hole, if it is formed large, a sufficient mixture passing effect can be obtained.
  • the blender-equipped pump 1a is different from the configuration of the blender-equipped pump 1 according to the first embodiment in that the end portions 28A, 28A of the blender units 28a, 28b are separated from the free ends 26, 26 of the pump screws 7a, 7b. That is, the blender portion 53a is used instead of the blender portion 53, and the new blender bearing portion 54 is connected to the end surface 3B (the other end portion) of the blender casing 3 of the blender portion 53a.
  • the floating ends 26 and 26 of the pump screws 7a and 7b are fixed to the other end portions of the shaft portions 8a and 8b by bolts 60 and 60, respectively.
  • the blender 101a is composed of the auxiliary material charging part 52 and the blender part 53a
  • the blender set 110 is composed of the blender 101a and the blender bearing part 54
  • the blender is composed of the pump bearing part 5, the pump part 51 and the blender set 110.
  • the attached pump 1a is configured.
  • the above-described blender bearing portion 54 has a structure substantially the same as that of the pump bearing portion 5 described in the first embodiment and is used by being arranged in the front-rear reverse direction.
  • One end portion of the housing 57 corresponding to the housing 9 of the pump bearing portion 5 is connected to the end surface 3B of the blender casing 3 via the cover plate 10.
  • the connecting members 61 and 61 at the other ends of the mixing rotating shafts 29 and 29 of the blender units 28a and 28b are connected to the shaft portions 58a and 58b by bolts 56 and 56, respectively.
  • These shaft portions 58 a and 58 b correspond to the shaft portions 8 a and 8 b in the pump bearing portion 5.
  • the other end portions 28B and 28B of the shaft portions 58a and 58b which are one end portions of the mixing rotary shafts 29 and 29, are cantilevered by the conical roller bearings 11 and 11 and the roller bearings 12 and 12 of the blender bearing portion 54. It is supported in a rotatable manner.
  • the blender units 28a and 28b are configured to rotate in opposite directions without contact.
  • the other end portion of one shaft portion 58b is connected to a motor M1 (an example of a blender rotation drive source) rotation drive shaft via a coupling mechanism 59.
  • One end portion 28A of each mixing rotary shaft 29, 29 of the blender unit 28a, 28b is a free end. That is, the pump screws 7a and 7b and the blender units 28a and 28b are rotationally driven independently of each other by the motor M and the motor M1.
  • the pump screws 7a and 7b of the pump unit 51 and the blender units 28a and 28b of the blender unit 53c are rotationally driven independently of each other.
  • the mixing ability of the blender unit 53a can be adjusted regardless of the ability. Thereby, for example, even when the transported object and the sub-material are not easily mixed, or even when the ability of the blender unit 53a is inferior to that of the pump unit 51 from the beginning, the rotation of the mixing rotation shaft 29 of the blender unit 53a. By increasing the number, sufficient stirring and mixing can be performed.
  • the spiral arrangement of the stirring blade plate provided on the outer peripheral surface of the mixing rotating shaft is opposite to the spiral direction of the pump screw.
  • the spiral arrangement of the stirring blade plate portion on the mixing rotating shaft is the spiral direction of the pump screw. It may be in the same direction or in the opposite direction. It is only necessary to select the direction of rotation of the mixing rotating shaft so that the stirring blade can push back the mixture.
  • Embodiment 3 In the second embodiment, the example of the blender 101a using the two blender units 28a and 28b separated from the pump screws 7a and 7b is shown. However, the present invention is not limited thereto.
  • a blender 101b as shown in FIG. 10 is also included in the present invention.
  • the blender 101b employs a blender portion 53b having one blender unit 28b and a casing 3a that accommodates the blender unit 28b. Therefore, the casing 3a is formed in a circular cylindrical shape having an outer diameter smaller than that of the casing 3 of the first embodiment.
  • the casing part 62 of the submaterial input part 52b formed in the one end part of the casing 3a is formed in the cone shape diameter-expanded toward one end part.
  • the shaft portion 58c connected to the mixing rotary shaft 29 of the blender unit 28b is cantilevered by ball bearings 63, 63 having the other end portion 28B disposed in the housing 57a of the blender bearing portion 54a for a single shaft. It is supported.
  • the other end portion of the shaft portion 58c is connected to the rotation drive shaft 65 of the motor M1 through the coupling 64.
  • the blender 101b is composed of the sub-material input part 52b and the blender part 53b
  • the blender set 110a is composed of the blender 101b and the blender bearing part 54a.
  • Such a blender set 110a can be easily traded as a product.
  • the discharge port of the pump unit (not shown) can be easily connected to the connection port 14 of the auxiliary material input unit 52b of the blender set 110a, the blender-equipped pump is immediately assembled and used after the blender set 110a is obtained. be able to.
  • FIGS. 11 to 13 the same components as those in the second and third embodiments shown in FIGS. 8 to 10 are denoted by the same reference numerals, and detailed description thereof may be omitted.
  • the discharge port 55 of the pump casing 2 of the pump unit 51 used in the first and second embodiments is connected to the connection port 14 of the auxiliary material charging unit 52b in the blender 101b.
  • a housing 9 of the pump bearing portion 5 is connected to one end of the pump casing 2, and the shaft portion 8 a that is pivotally supported by the pump bearing portion 5 is connected to the rotational drive shaft of the motor M via the connection mechanism 30.
  • the pump bearing portion 5, the pump portion 51 and the blender set 110 a constitute a blender-equipped pump 1 b.
  • the blender-equipped pump 1b having one blender unit 28b rotating around the axis Xc, which is also a cylindrical center, a simpler and more compact configuration can be realized.
  • the mixing rotation shaft 29 is driven separately from the pump unit 51, the number of rotations of the mixing rotation shaft 29 should be increased even if the mixing rotation shaft 29 has a low mixing ability.
  • a blender unit 28c as shown in FIGS. 14 (a) to 14 (c) is used instead of the blender unit 28a or the blender unit 28b having the plate-like stirring blade portions 34a and 34b.
  • a plurality of protruding portions 66 are formed on the stirring blade plate portion 34b.
  • the protruding portion 66 protrudes in a direction (direction facing the connection port) opposite to the transferred object transfer direction (arrow F direction) on the back surface (surface 34B on the connection port side of the blender casing) of the stirring blade plate portion 34b.
  • the protrusions 66 and the through portions 35 are alternately formed along the outer peripheral direction of the stirring blade plate portion 34b.
  • the material to be transferred and the auxiliary material can be mixed without waste using the push-back force received from the connection port side surface 34B of the stirring plate member 34b.
  • the above-mentioned protrusion part 66 can also be provided in the stirring blade board part 34a whose spiral direction is opposite to the stirring blade board part 34b.
  • the pump units 51 and 51a are exemplified as a positive displacement axial flow pump provided with the pump screw 7a and / or the pump screw 7b.
  • the present invention is not limited to this, and any material can be used as long as it can pressurize the object to be transferred and pump it to the blender section.
  • a blender-equipped pump 1c as shown in FIGS. 15 and 16 is also included in the present invention.
  • the same components as those in the fourth embodiment shown in FIGS. 11 to 13 are denoted by the same reference numerals, and detailed description thereof may be omitted.
  • This blender-equipped pump 1c is connected to a pump part 51b having a pipe part 67 in which a discharge port 55 is formed, a pipe part 68 connected to the pipe part 67 using the clamp band 36, and the like.
  • the blender 101b includes a secondary material charging portion 52b, a blender portion 53b, and a blender bearing portion 54a. That is, the pump part 51b is connected to the blender set 110a.
  • the pump portion 51b is not an axial pump but a positive displacement gear pump.
  • the pump portion 51b has a pair of pump chambers 69, 69 formed in a pump casing 2b, and a driven gear attached to a shaft 70 that is rotatably supported by the pump casing 2b in one pump chamber 69.
  • the drive gear 73 and the driven gear 71 constitute the pressurizing motion member of the present invention.
  • the blender-equipped pump 1c using the pump portion 51b as described above has pipe portions 67 and 68, and thus has a large installation space compared to the aforementioned blender-equipped pump 1b.
  • the transferred material discharged from the discharge port 55 of the pump unit 51b is added with a secondary material in the secondary material input unit 52b of the blender 101b and then uniaxially in the blender unit 53b, as in the blender-equipped pump 1b. It can be efficiently stirred and mixed by the blender unit 28b.
  • the pump part 51c instead of the pump part 51b of the gear pump (FIGS. 15, 16, and 17A), the pump part 51c, as shown in FIGS. 17B to 17D, It is also possible to use 51d and 51e.
  • 17 (b) is a vane pump having a pump casing 2c, and a rotor 75 formed with a plurality of receiving grooves 77, 77, 77,... Is rotated in a pump chamber 74 of the pump casing 2c. By rotating around the shaft 76, the object to be transferred is sucked from the intake port 18, pressurized, and discharged from the discharge port 55.
  • a vane 78 is housed in each housing groove 77 so as to be able to appear and retract.
  • This pump part 51c is a positive displacement type, and the rotor 75 and the vanes 78, 78, 78,... Constitute the pressurizing motion member of the present invention.
  • the pump unit 51d in FIG. 17C is a rotary pump having a pump casing 2d, and the rotor 80 fixed to the rotary drive shaft 81 is rotationally driven in the pump chamber 79 of the pump casing 2d at a position eccentric from the rotor shaft center.
  • the inside of the pump chamber 79 is divided into an intake port 18 side and a discharge port 55 side by a gate valve 82 that comes in and out of the pump chamber 79 in contact with the outer peripheral surface of the rotor 80.
  • the discharge port 55 is provided with a check valve 83 for preventing a reverse flow of the discharged transferred object.
  • the pump portion 51d is also of a positive displacement type, and the rotor 80 and the gate valve 82 constitute the pressurizing motion member of the present invention.
  • the pump unit 51e shown in FIG. 17D is a centrifugal pump having a spiral pump casing 2e, and the centrifugal force generated by the rotation of the impeller 86 attached to the rotary drive shaft 85 in the pump chamber 84 of the pump casing 2e.
  • the transferred object is sucked from the intake 18 and pressurized and discharged from the discharge port 55.
  • This pump part 51e is a non-displacement type, and the impeller 86 comprises the pressurization motion member of this invention.
  • a so-called Moineau Pump that is a positive displacement type can be used as the pump unit of the present invention.
  • the cavity formed between the stator and the rotor is moved in the axial direction by rotating a helical shaft-shaped rotor housed in the stator. It is designed to transport the transferred object.
  • a swash plate type variable displacement piston pump or the like can be used as the pump unit of the present invention.
  • the blender units 28a, 28b, and 28c having the stirring blade portions 34a and 34b of the mixing rotating shaft 29 and the through-holes 35 formed thereon are exemplified. It is not limited to these.
  • the blender units 28d to 28i as shown in FIGS. 18A to 18F can be used for the blender casing 3a or the blender casing 3.
  • the blender unit 28 d is provided with a continuous spiral stirring blade plate portion 34 c on the outer peripheral surface of the mixing rotary shaft 29.
  • a gap is formed between the outer edge of the stirring blade plate 34c in the radial direction and the inner peripheral surface 3A of the blender casing 3a through which the transferred object can flow.
  • the blender unit 28d is rotationally driven in a specified rotational direction (arrow Rc direction) by driving a motor M1 (not shown). Then, when the object to be transferred and the auxiliary material are transferred from the discharge port of the pump unit (not shown) to the one end portion 28A side of the blender unit 28d (in the direction of arrow F), they strike the rotating stirring blade plate 34c and move in the direction of arrow g. Pushed back. On the other hand, a part of the transferred object passes through the passage portion 35a (in the direction of arrow f). By repeating these operations, the object to be transferred and the auxiliary material are efficiently mixed and stirred, and then discharged from the discharge port 19 of the blender casing 3a.
  • the blender unit 28 e is provided with a continuous spiral stirring blade plate portion 34 d on the outer peripheral surface of the mixing rotary shaft 29.
  • the stirring blade plate portion 34d through portions (passage portions; the same applies hereinafter) 35b, 35b, 35b,.
  • This blender unit 28e is rotationally driven in the specified rotational direction (in the direction of arrow Rc: in this case, the clockwise direction as viewed in the direction of arrow F from the one end portion 28A) by driving of the motor M1 (not shown), By repeating the operation of pushing back the auxiliary material in the direction of arrow g and the operation of passing the auxiliary material in the direction of arrow f by the penetrating portion 35b, the transferred object and the auxiliary material can be mixed and stirred efficiently.
  • the blender unit 28 f has a stirring blade plate 34 e continuously formed in a spiral band shape and is disposed around the rotating shaft 29 for mixing, and is connected to connecting rods 41, 41, 41. ,...
  • the mixing rotary shaft 29 are fixed to the mixing rotary shaft 29. And the clearance gap between the stirring blade part 34e and the rotating shaft 29 for mixing is the penetration part 35c. Also in the blender unit 28f, the operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g and the operation of passing the material in the direction of the arrow f by the penetrating portion 35c are repeated by the rotational drive of the mixing rotating shaft 29 as described above. Thus, the object to be transferred and the auxiliary material can be mixed and stirred efficiently.
  • the blender unit 28g has a large number of stirring blade portions 34f, 34f, 34f,... On the outer peripheral surface of the cylindrical large diameter portion of the mixing rotating shaft 29. It is provided continuously.
  • Each stirring blade portion 34 f is arranged to be inclined with respect to the axis of the mixing rotary shaft 29. The inclination of each stirring blade plate part 34f is such that when the mixing rotary shaft 29 is rotated in a specified rotational direction (arrow Rc direction), the one end of the blender casing 3a (or 3) removes the transferred object and the auxiliary material. The inclination is set so that it can be pushed back toward the side.
  • a passage portion 35d is provided between a certain stirring blade plate portion 34f and the stirring blade plate portion 34f located adjacent to the circumferential direction of the mixing rotation shaft 29. Also in this blender unit 28g, the operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g by the rotational drive of the mixing rotary shaft 29 and the operation of passing in the direction of the arrow f by the passage portion 35d are repeated. Thus, the object to be transferred and the auxiliary material can be mixed and stirred efficiently.
  • the other end portion of the stirring blade plate portion 34g formed in a spiral band shape is connected to the mixing rotary shaft 29, and the one end portion 28A serves as a free end. Yes.
  • the axial center part of the stirring blade part 34g is hollow, and this hollow part is made into the penetration part 35e.
  • the operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g and the operation of passing the material in the direction of the arrow f by the penetrating part 35e are repeated by the rotational drive of the mixing rotating shaft 29 as described above.
  • the transferred object and the auxiliary material can be efficiently stirred and mixed.
  • the blender unit 28i is further provided with a stirring blade plate portion 34i having a smaller diameter spiral band along the axial hole portion of the stirring blade plate portion 34h formed in a spiral band shape.
  • the shaft hole portion of the stirring blade portion 34i is a through portion 35f.
  • the high-viscosity transfer object Q used for transfer by the blender-equipped pump of the present invention and stirring and mixing by the blender in addition to the above-mentioned molten candy material, for example, foods such as starch syrup and miso, cosmetics such as cream, Examples include industrial materials such as molten synthetic resins, and medical materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rotary Pumps (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

 There is demand for a pump with a blender capable of transporting and mixing a material to be transported and an auxiliary material using a single unit without taking up a large installation space. As shown in fig. 2, this pump (1) with a blender is provided with: a pair of pump screws (7a, 7b) which are not in contact with each other; a main body casing (4) forming a pump chamber (6) from the pump screws (7a, 7b) and a housing chamber (39); and a bearing part (5) linked to the main body casing (4). An inlet (18) for the material to be transported is provided to the main body casing (4) between the bearing part (5) and the pump chamber (6). Rotating shafts (29, 29) for mixing are connected to the loose ends (26, 26) of the pump screws (7a, 7b). Stirring blade plate parts (34a, 34b) are provided on the outer peripheral surfaces of the rotating shafts (29, 29) for mixing. Auxiliary material insertion ports (23, 24, 25) are provided in the main body casing (4) in front of the stirring blade plate parts (34a, 34b). A discharge port (19) is provided in the pump casing (4) on the side towards the rotating shafts (29, 29) for mixing. The pump (1) with a blender has the blender (101).

Description

ブレンダおよびブレンダ付きポンプBlender and blender pump
 本発明は、被移送物の移送および副材料との混合を一台で行なえるブレンダ付きポンプおよびそれに用いられるブレンダに関するものである。 The present invention relates to a blender pump capable of transporting an object to be transported and mixing with sub-materials, and a blender used therefor.
 従来、被移送物を移送して混合する移送装置としては、例えば特許文献1に記載された連続式のキャンディー製造装置が知られている。この特許文献1に開示のキャンディー製造装置は、タンクに貯留された高粘度の糖液を糖液ポンプにより供給配管に移送し、この供給配管の途中で、副材料ポンプにより送り出された副材料を合流させ、合流した糖液と副材料をインラインのスタティックミキサで混合したのちに、濃縮タンクへ払い出すようにしたものである。 Conventionally, for example, a continuous candy manufacturing apparatus described in Patent Document 1 is known as a transfer apparatus that transfers and mixes an object to be transferred. The candy manufacturing apparatus disclosed in Patent Document 1 transfers a high-viscosity sugar solution stored in a tank to a supply pipe by a sugar liquid pump, and the sub-material sent out by the sub-material pump in the middle of the supply pipe. The combined sugar solution and the auxiliary material are mixed by an in-line static mixer and then discharged to the concentration tank.
特開平7-289168号公報Japanese Patent Laid-Open No. 7-289168
 ところで、先述した特許文献記載のキャンディー製造装置はスタティックミキサを備えているが、このスタティックミキサは、低粘度の流体を高速で通過させる場合は比較的よく撹拌できて高い混合効率が得られる。しかしながら、高粘度の流体を通過させるときはミキサ内で流体の乱流を生じにくいことから、混合効率が大きく落ちるという難点がある。
 一方で、特に食材などを取り扱うには、作業後の洗浄や衛生面から、食材などと接する面積が小さいことが望ましい。従って、糖液ポンプからスタティックミキサまでの供給配管は極力短いことが好ましく、理想は全く無いことである。また、糖液ポンプとスタティックミキサが別個独立に配置されており、それらの間に供給配管も存在することから、トータルの設置スペースを大きく取らなければならないという不具合もある。
By the way, although the candy manufacturing apparatus described in the patent document described above includes a static mixer, this static mixer can be stirred relatively well when a low-viscosity fluid is passed at high speed, and high mixing efficiency can be obtained. However, when passing a highly viscous fluid, it is difficult to generate a turbulent fluid flow in the mixer, and there is a problem that the mixing efficiency is greatly reduced.
On the other hand, in order to handle foodstuffs in particular, it is desirable that the area in contact with the foodstuffs is small in terms of cleaning and hygiene after work. Therefore, it is preferable that the supply piping from the sugar solution pump to the static mixer is as short as possible, and there is no ideal at all. In addition, since the sugar liquid pump and the static mixer are separately and independently provided with a supply pipe between them, there is a problem that a large total installation space must be taken.
 本発明は、上記した従来の問題点に鑑みてなされたものであって、大きな設置スペースも取ることなく、被移送物および副材料の移送と混合を一台で行なうことのできるブレンダ付きポンプおよびそれに用いられるブレンダの提供を目的とするものである。 The present invention has been made in view of the above-described conventional problems, and a blender-equipped pump capable of performing transfer and mixing of an object to be transferred and sub-materials in a single unit without taking up a large installation space, and The purpose of this is to provide a blender used for it.
 上記目的を達成するために、本発明に係るブレンダは、外部のポンプ部の吐出口に連結されるとともに外部からの副材料を取り入れるための投入口を有する筒状に形成された副材料投入部と、前記副材料投入部に一端部が連結されるとともに被移送物および副材料をポンプ外へ排出するための排出口が他端部に形成された筒状のブレンダケーシング、前記ブレンダケーシング内に当該ブレンダケーシングの筒心方向に沿って配備されるとともに外部の回転駆動源と連結されて回転駆動される混合用回転軸、前記混合用回転軸の外周面に設けられた撹拌用板部材、ならびに、前記撹拌用板部材と前記ブレンダケーシングの内周面との間または前記撹拌用板部材自体に、被移送物を被移送物移送方向に通過可能に形成された通路部を、備えて成るブレンダ部と、から構成されていて、前記ブレンダ部の撹拌用板部材は、前記混合用回転軸が規定の回転方向に回動されるときに前記被移送物および前記副材料を前記ブレンダケーシングの一端部側に向けて押し戻すように、前記混合用回転軸の軸心に対し傾斜して配置されていることを特徴とするものである。 In order to achieve the above object, a blender according to the present invention is connected to a discharge port of an external pump unit, and has a secondary material input part formed in a cylindrical shape having an input port for taking in a secondary material from the outside. A cylindrical blender casing having one end connected to the auxiliary material charging portion and a discharge port for discharging the transferred object and the secondary material to the outside of the pump; A mixing rotating shaft that is arranged along the cylinder center direction of the blender casing and is rotationally driven by being connected to an external rotation driving source, a stirring plate member provided on an outer peripheral surface of the mixing rotating shaft, and A passage portion formed between the stirring plate member and the inner peripheral surface of the blender casing or on the stirring plate member itself so as to allow the transferred object to pass in the transferred object transfer direction. A stirring plate member of the blender unit, wherein the material to be transferred and the sub-material are transferred to the blender casing when the mixing rotation shaft is rotated in a specified rotation direction. The mixing rotary shaft is inclined and arranged so as to be pushed back toward the one end side.
 また、前記構成において、前記ブレンダケーシングの他端部が、前記混合用回転軸の片端部を片持ち状で回動自在に支承するブレンダ用軸受部に連結されるとともに、前記混合用回転軸の片端部が前記ブレンダ用軸受部を介してブレンダ用回転駆動源に接続されていることを特徴とするものである。 In the above configuration, the other end portion of the blender casing is connected to a blender bearing portion that can pivotally support one end portion of the mixing rotating shaft in a cantilevered manner, and One end portion is connected to a blender rotary drive source via the blender bearing portion.
 更に、前記の各構成において、前記ブレンダ部の混合用回転軸として、1本の混合用回転軸が用いられることを特徴とするものである。 Furthermore, in each of the above-described configurations, a single mixing rotating shaft is used as the mixing rotating shaft of the blender section.
 また、前記の各構成において、前記撹拌用板部材における接続口側の面に、前記接続口を向く方向に突出した突出部が設けられていることを特徴とするものである。 Further, in each of the above-described configurations, a protruding portion that protrudes in a direction facing the connection port is provided on a surface on the connection port side of the stirring plate member.
 また、本発明に係るブレンダ付きポンプは、被移送物を取り入れるための取入口および被移送物を吐出するための吐出口を有するポンプケーシング、ならびに、前記ポンプケーシング内に配備されるとともに前記取入口からの被移送物を加圧して前記吐出口へ送り出す加圧運動部材、を有するポンプ部を備え、前記ポンプ部のポンプケーシングの吐出口が、上記のブレンダにおける副材料投入部の接続口に連結されていることを特徴とするものである。 In addition, the blender-equipped pump according to the present invention includes a pump casing having an intake port for taking in the object to be transferred and a discharge port for discharging the transferred object, and the intake port provided in the pump casing. A pump unit having a pressurizing motion member that pressurizes an object to be transferred from the pump and sends it to the discharge port, and the discharge port of the pump casing of the pump unit is connected to the connection port of the auxiliary material input unit in the blender It is characterized by being.
 請求項5に記載のブレンダ付きポンプにおいて、前記ポンプ部が、互いに非接触で螺合して回転する加圧運動部材である一対のポンプスクリューと、前記一対のポンプスクリューを非接触で収容する収容室がケーシング内に形成されていて前記一対のポンプスクリューと前記収容室とによりポンプ室を形成するポンプケーシングと、から構成され、前記一対のポンプスクリューの片端部を片持ち状で回動自在に支承するポンプ用軸受部が前記ポンプケーシングの一端部に連結され、前記一対のポンプスクリューのそれぞれの遊動端に、各ポンプスクリューと同軸心に配置された一対の混合用回転軸の一端部がそれぞれ連結され、前記一対の混合用回転軸の外周面にそれぞれ前記撹拌用羽根板部が設けられ、前記ポンプケーシングの他端部に、前記一対の混合用回転軸を収容するブレンダケーシングの一端部が連結され、前記ポンプスクリューと前記撹拌用羽根板部の間のブレンダケーシングに、ポンプ外からの副材料をポンプケーシング内に取り入れるための投入口を有する副材料投入部が設けられ、前記混合用回転軸の遊動端側のブレンダケーシングに、被移送物および副材料をポンプ外へ排出するための排出口が設けられていることを特徴とするものである。 6. The blender-equipped pump according to claim 5, wherein the pump portion accommodates the pair of pump screws that are pressurizing motion members that rotate in a non-contact screwing manner and the pair of pump screws in a non-contact manner. A chamber is formed in the casing, and the pump casing forms a pump chamber by the pair of pump screws and the storage chamber, and one end portions of the pair of pump screws can be pivoted in a cantilevered manner. A bearing portion for the pump to be supported is connected to one end portion of the pump casing, and one end portion of a pair of rotating shafts arranged coaxially with each pump screw is respectively connected to the free end of each of the pair of pump screws. The stirring blades are provided on the outer peripheral surfaces of the pair of mixing rotary shafts, and are connected to the other end of the pump casing. One end of a blender casing that accommodates the pair of mixing rotating shafts is connected, and a blender casing between the pump screw and the stirring blade is used to introduce auxiliary material from outside the pump into the pump casing. A sub-material input unit having a input port is provided, and a discharge port for discharging the transferred object and the sub-material out of the pump is provided in the blender casing on the floating end side of the mixing rotating shaft. It is what.
 更に、前記構成において、前記一対の混合用回転軸のそれぞれの外周面に設けられる撹拌用羽根板部が、各混合用回転軸に連結されているポンプスクリューの螺旋方向とは逆向きの螺旋状に配置して設けられ、前記一対の混合用回転軸の撹拌用羽根板部が互いに非接触で螺合して回転可能に配置され、各撹拌用羽根板部に、被移送物通過可能な貫通部が被移送物移送方向に貫通して形成されていることを特徴とするものである。 Further, in the above configuration, the stirring blade plate provided on the outer peripheral surface of each of the pair of mixing rotating shafts has a spiral shape opposite to the spiral direction of the pump screw connected to each mixing rotating shaft. The agitation blades of the pair of mixing rotary shafts are arranged so as to be able to rotate in a non-contacting manner so that they can pass through each of the agitation blades. The part is formed so as to penetrate in the transfer direction of the transferred object.
 また、前記構成において、前記貫通部が、前記撹拌用羽根板部の回転軸半径方向最外の外周面から回転軸心向きに切り欠かれて形成されていることを特徴とするものである。 Further, in the above configuration, the through portion is formed by being cut out from the outermost peripheral surface in the radial direction of the rotation axis of the stirring blade plate toward the rotation axis.
 本発明に係るブレンダによれば、副材料投入部とブレンダ部とから構成されており、ブレンダ部の撹拌用板部材が、混合用回転軸の軸心に対し傾斜して配置されているので、混合用回転軸が規定の回転方向に回動されるときに被移送物および副材料をブレンダケーシングの一端部側に向けて押し戻す。加えて、被移送物および副材料は通路部を通って移送方向に移動できるので、撹拌用羽根板部による押し戻しと通路部での通過とを繰り返しながら、被移送物と副材料とを効率よく均一に混合することができる。 According to the blender according to the present invention, it is composed of the sub-material input part and the blender part, and the stirring plate member of the blender part is arranged so as to be inclined with respect to the axis of the mixing rotation shaft. When the mixing rotation shaft is rotated in a specified rotation direction, the transferred object and the auxiliary material are pushed back toward one end of the blender casing. In addition, since the transferred object and the auxiliary material can move in the transfer direction through the passage portion, the transferred object and the auxiliary material are efficiently transferred while repeating the pushing back by the stirring blade plate and the passage through the passage portion. Uniform mixing is possible.
 また、ブレンダ部の混合用回転軸がポンプ部とは別個独立に構成され、混合用回転軸の片端部がブレンダ用軸受部を介してブレンダ用回転駆動源と接続されているものでは、ポンプ部の加圧運動部材とブレンダ部の混合用回転軸とが別個独立に駆動されるので、ポンプ部の移送能力とは無関係にブレンダ部の混合能力を調整できる。これにより、例えば被移送物と副材料が混ざりにくい場合や、当初からポンプ部と比べてブレンダ部の能力が劣っている場合であっても、ブレンダ部の混合用回転軸の回転数を高めることにより、十分な混合を行なうことができる。 In addition, the mixing rotating shaft of the blender unit is configured independently of the pump unit, and one end of the mixing rotating shaft is connected to the blender rotation drive source via the blender bearing unit. Therefore, the mixing ability of the blender section can be adjusted independently of the transfer ability of the pump section. Thereby, for example, when the transported object and the auxiliary material are not easily mixed, or even when the ability of the blender part is inferior to that of the pump part from the beginning, the rotational speed of the mixing rotating shaft of the blender part is increased. Thus, sufficient mixing can be performed.
 更に、ブレンダ部で1本の混合用回転軸が用いられるものでは、いっそう簡素でコンパクトな構成を実現することができる。特に、混合用回転軸がポンプ部と別個独立に駆動される場合は、1本では混合能力が低い混合用回転軸であっても、混合用回転軸の回転数を上げることにより、十分な混合能力を得ることができる。 Furthermore, if a single rotating shaft for mixing is used in the blender section, a simpler and more compact configuration can be realized. In particular, when the mixing rotary shaft is driven separately from the pump unit, sufficient mixing can be achieved by increasing the number of rotations of the mixing rotary shaft even if the mixing rotary shaft has a low mixing capacity. Ability can be gained.
 また、撹拌用板部材における接続口側の面に、接続口を向く方向に突出した突出部が設けられているものでは、撹拌用板部材が回転して被移送物および副材料を押し戻す際に、被移送物および副材料が撹拌用板部材の接続口側の面上を滑って押戻し力を損失させるという不具合を生じさせない。従って、撹拌用板部材の接続口側の面から受ける押戻し力を無駄なく使って被移送物および副材料の混合を行なうことができる。 Further, in the case where the projecting portion protruding in the direction facing the connection port is provided on the surface on the connection port side of the stirring plate member, when the stirring plate member rotates and pushes back the transferred object and the auxiliary material. Further, there is no problem that the transferred object and the auxiliary material slide on the surface on the connection port side of the stirring plate member and lose the pushing back force. Therefore, the material to be transferred and the auxiliary material can be mixed without waste using the pushing-back force received from the surface on the connection port side of the stirring plate member.
 また、ポンプ部のポンプケーシングの吐出口がブレンダにおける副材料投入部の接続口に連結されたブレンダ付きポンプでは、一台の装置で被移送物および副材料の移送と撹拌混合を行なうことができる。 Moreover, in the pump with a blender in which the discharge port of the pump casing of the pump unit is connected to the connection port of the auxiliary material input unit in the blender, the transferred object and the auxiliary material can be transferred and stirred and mixed with a single device. .
 そして、ポンプスクリューと同軸心で連結された混合用回転軸回転軸の外周面に撹拌用羽根板部が設けられ、ポンプスクリューと撹拌用羽根板部の間の副材料投入部に副材料用の投入口が設けられ、混合用回転軸の遊動端側のブレンダケーシングに排出口が設けられているブレンダ付きポンプでは、一台の回転駆動源で被移送物および副材料の移送と混合を行なえるのは無論のこと、ポンプ部とブレンダ部が隣り合わせの一体構造であるから、それらの間に配管類は存在しないので、作業後の配管類の洗浄を行なう必要がなく衛生面でも好適であり、特に食材などを取り扱ううえで好ましい。同時にコンパクトな構成であるから、スペースを大きく取ることなく設置することができる。 Further, a stirring blade plate portion is provided on the outer peripheral surface of the rotating shaft for mixing that is coaxially connected to the pump screw, and the auxiliary material feeding portion between the pump screw and the stirring blade plate portion is used for the auxiliary material. In a blender-equipped pump in which an inlet is provided and an outlet is provided in the blender casing on the floating end side of the rotating shaft for mixing, a single rotational drive source can transfer and mix the material to be transferred and the auxiliary material. Of course, since the pump part and the blender part are adjacent to each other, there are no pipes between them, so it is not necessary to clean the pipes after work, which is also suitable for hygiene. It is particularly preferable when handling foodstuffs. At the same time, since it has a compact configuration, it can be installed without taking up much space.
 更に、一対の混合用回転軸のそれぞれの撹拌用羽根板部が互いに非接触でポンプスクリューの螺旋方向とは逆向きの螺旋状に配置して設けられ、各撹拌用羽根板部に貫通部が形成されているものでは、撹拌用羽根板部の板面による押し戻し作用と貫通部の通過作用とにより、被移送物と副材料を効率よく混合することができる。すなわち、非接触式のポンプスクリューを有するものでポンプ機能とブレンダ機能の双方を合わせ持つブレンダ付きポンプを提供できたのである。 Furthermore, each stirring blade plate part of the pair of mixing rotating shafts is provided in a non-contact manner and arranged in a spiral direction opposite to the spiral direction of the pump screw, and each stirring blade plate part has a through portion. In what is formed, the material to be transferred and the sub-material can be mixed efficiently by the pushing back action by the plate surface of the stirring blade plate part and the passing action of the penetration part. In other words, a blender-equipped pump having a non-contact pump screw and having both a pump function and a blender function could be provided.
 また、貫通部が、前記撹拌用羽根板部の回転軸半径方向最外の外周面から回転軸心向きに切り欠かれて形成されているものでは、貫通部を切削機械で容易に製作できるうえ、円孔などと比べて貫通面積を大きく取ることができる。また、この貫通部はポンプケーシングの内周面に対面して開口している。これにより、通過通路が大きくなり、混合物の通過量が多くなることから、撹拌量を多くでき、混合効率を更に高めることができる。 In addition, in the case where the penetration part is formed by cutting away from the outermost peripheral surface in the radial direction of the rotation axis of the stirring blade plate part toward the rotation axis, the penetration part can be easily manufactured by a cutting machine. The through area can be made larger than that of a circular hole. Moreover, this penetration part is opened facing the internal peripheral surface of a pump casing. Thereby, since a passage passage becomes large and the passage amount of the mixture increases, the amount of stirring can be increased, and the mixing efficiency can be further increased.
本発明の実施形態1に係るブレンダを用いたブレンダ付きポンプを示す図であって、(a)は側面図、(b)は平面図である。It is a figure which shows the pump with a blender using the blender concerning Embodiment 1 of this invention, Comprising: (a) is a side view, (b) is a top view. 前記ブレンダ付きポンプの一部断面を含む内部平面構成図である。It is an internal plane block diagram containing the partial cross section of the pump with a blender. 図2におけるA-A線矢視部分断面図である。FIG. 3 is a partial cross-sectional view taken along line AA in FIG. 2. 前記ブレンダ付きポンプの蓋体を外した状態の正面図である。It is a front view of the state which removed the cover of the pump with a blender. 前記ブレンダ付きポンプのポンプスクリューを示す図であって、(a)は一対のポンプスクリューとポンプケーシングの内周面を示す部分拡大平面図、(b)は一対のポンプスクリューを示す部分拡大平面図である。It is a figure which shows the pump screw of the said pump with a blender, Comprising: (a) is a partial enlarged plan view which shows a pair of pump screw and the inner peripheral surface of a pump casing, (b) is a partial enlarged plan view which shows a pair of pump screw. It is. 前記ブレンダ付きポンプのブレンダユニットの一方を示す図であって、(a)は一部側断面を含む側面図、(b)は(a)におけるB-B線矢視図である。It is a figure which shows one of the blender units of the said pump with a blender, Comprising: (a) is a side view including a partial side cross section, (b) is a BB line arrow view in (a). 前記ブレンダ付きポンプの動作を説明するための図であって、(a)は一対のポンプスクリューおよびブレンダユニットのアセンブリを示す平面図、b)は(a)におけるC-C線矢視図である。4A and 4B are views for explaining the operation of the blender-equipped pump, in which FIG. 4A is a plan view showing an assembly of a pair of pump screws and a blender unit, and FIG. . 本発明の実施形態2に係るブレンダを用いたブレンダ付きポンプの一部断面を含む側面図である。It is a side view including the partial cross section of the pump with a blender using the blender concerning Embodiment 2 of the present invention. 前記実施形態2に係るブレンダ付きポンプの平断面図である。It is a plane sectional view of the blender-equipped pump according to the second embodiment. 本発明の実施形態3に係るブレンダを備えるブレンダセットの平面図である。It is a top view of a blender set provided with a blender concerning Embodiment 3 of the present invention. 本発明の実施形態4に係るブレンダを用いたブレンダ付きポンプの一部断面を含む側面図である。It is a side view including the partial cross section of the pump with a blender using the blender concerning Embodiment 4 of the present invention. 前記実施形態4に係るブレンダ付きポンプの平面図である。It is a top view of the pump with a blender concerning the above-mentioned Embodiment 4. 前記実施形態4に係るブレンダ付きポンプの一部断面を含む平面図である。It is a top view containing the partial cross section of the pump with a blender concerning the said Embodiment 4. FIG. 本発明の実施形態5に係るブレンダに用いられるブレンダユニットを示す図であって、(a)は(b)におけるD-D線矢視図、(b)は側面図、(c)は(b)におけるE-E線矢視図である。It is a figure which shows the blender unit used for the blender concerning Embodiment 5 of this invention, Comprising: (a) is the DD sectional view taken on the line in (b), (b) is a side view, (c) is (b) FIG. 本発明の実施形態6に係るブレンダ付きポンプの一部断面を含む側面図である。It is a side view containing the partial cross section of the pump with a blender concerning Embodiment 6 of this invention. 前記実施形態6に係るブレンダ付きポンプの平面図である。It is a top view of the pump with a blender concerning the above-mentioned Embodiment 6. 本発明に係るブレンダ付きポンプに用いられるポンプ部の種々の別例を、(a)から(d)にそれぞれ示す一部断面を含む側面図である。It is a side view including the partial cross section which each shows various other examples of the pump part used for the pump with a blender concerning the present invention from (a) to (d). 本発明に係るブレンダ付きポンプに用いられるブレンダユニットの種々の別例を、(a)から(f)にそれぞれ示す一部断面を含む側面図である。It is a side view including the partial cross section which each shows various other examples of the blender unit used for the pump with a blender concerning the present invention from (a) to (f).
1,1a,1b,1c ブレンダ付きポンプ
2,2b,2c,2d,2e ポンプケーシング
2A 内周面
3,3a ブレンダケーシング
3A 内周面
4 本体ケーシング
5 ポンプ用軸受部
6 ポンプ室
7a,7b ポンプスクリュー
11 円錐コロ軸受
12 コロ軸受
14 接続口
18 取入口
19 排出口
23,24,25 投入口
26 遊動端
27 収容室
28a,28b,28c,28d,28e,28f,28g,28h,28i ブレンダユニット
28A 一端部
29 混合用回転軸
34a,34b,34c,34d,34e,34f,34g,34h,34i 撹拌用羽根板部
34A 外周面
34B 面
35,35b,35c,35e,35f 貫通部(通路部)
35a,35d 通路部
38 遊動端
39 収容室
51,51b,51c,51d,51e ポンプ部
52,52b 副材料投入部
53,53a,53b ブレンダ部
54,54a ブレンダ用軸受部
55 吐出口
63 ボール軸受
64 カップリング
65 回転駆動軸
66 突出部
71 従動歯車
73 駆動歯車
75 ロータ
78 ベーン
80 ロータ
82 仕切弁
86 羽根車
101,101a,101b ブレンダ
110,110a ブレンダセット
F 矢印
f 矢印
g,ga,gb 矢印
M モータ
M1 モータ
Q 被移送物
Rc 矢印
Xa,Xb, Xc 軸心
1, 1a, 1b, 1c Blender-equipped pumps 2, 2b, 2c, 2d, 2e Pump casing 2A Inner peripheral surface 3, 3a Blender casing 3A Inner peripheral surface 4 Body casing 5 Pump bearing 6 Pump chamber 7a, 7b Pump screw DESCRIPTION OF SYMBOLS 11 Conical roller bearing 12 Roller bearing 14 Connection port 18 Intake port 19 Outlet port 23,24,25 Input port 26 Floating end 27 Storage chamber 28a, 28b, 28c, 28d, 28e, 28f, 28g, 28h, 28i Blender unit 28A One end Portion 29 Rotating shaft 34a, 34b, 34c, 34d, 34e, 34f, 34g, 34h, 34i Stirring blade plate 34A Outer peripheral surface 34B Surface 35, 35b, 35c, 35e, 35f Penetration portion (passage portion)
35a, 35d Passage portion 38 Floating end 39 Accommodating chamber 51, 51b, 51c, 51d, 51e Pump portion 52, 52b Submaterial input portion 53, 53a, 53b Blender portion 54, 54a Blender bearing portion 55 Discharge port 63 Ball bearing 64 Coupling 65 Rotating drive shaft 66 Protruding portion 71 Driven gear 73 Drive gear 75 Rotor 78 Vane 80 Rotor 82 Gate valve 86 Impeller 101, 101a, 101b Blender 110, 110a Blender set F Arrow f Arrow g, ga, gb Arrow M Motor M1 Motor Q Transfer object Rc Arrow Xa, Xb, Xc
 本発明の実施形態を図面に基づいて説明する。尚、以下に述べる各実施形態は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。
「実施形態1」;
 図1は本発明の実施形態1に係るブレンダを用いたブレンダ付きポンプを示す図であって、(a)は側面図、(b)は平面図、図2は前記ブレンダ付きポンプの一部断面を含む内部平面構成図、図3は図2におけるA-A線矢視部分断面図、図4は前記ブレンダ付きポンプの蓋体を外した状態の正面図である。
 各図において、この実施形態に係るブレンダ付きポンプ1は、ケーシング内に収容室39,27が形成された筒状の本体ケーシング4と、本体ケーシング4の一端部に連結されたポンプ用軸受部5と、を備えている。前記の本体ケーシング4は、収容室39を有する前後筒状のポンプケーシング2と、ポンプケーシング2の前側の端面2C(他端部)に連結されて収容室27を有する前後筒状のブレンダケーシング3と、から構成されている。このブレンダケーシング3の前側の端面3B(他端部)は、ボルトなどで固定された蓋板15で封止されている。高温の被移送物Qを取り扱う場合、本体ケーシング4の外面全体が、スチーム加熱式のジャケット40(図1(b)中の1点鎖線で示される)で被覆されることがある。
Embodiments of the present invention will be described with reference to the drawings. Each embodiment described below is only an example in which the present invention is embodied, and does not limit the technical scope of the present invention.
Embodiment 1”;
1A and 1B are diagrams showing a blender-equipped pump using a blender according to Embodiment 1 of the present invention, where FIG. 1A is a side view, FIG. 1B is a plan view, and FIG. FIG. 3 is a partial cross-sectional view taken along the line AA in FIG. 2, and FIG. 4 is a front view of the pump with a blender removed.
In each figure, the blender-equipped pump 1 according to this embodiment includes a cylindrical main body casing 4 in which housing chambers 39 and 27 are formed in a casing, and a pump bearing portion 5 connected to one end of the main body casing 4. And. The main body casing 4 includes a front and rear cylindrical pump casing 2 having a storage chamber 39, and a front and rear cylindrical blender casing 3 having a storage chamber 27 connected to the front end face 2C (the other end) of the pump casing 2. And is composed of. The front end surface 3B (the other end) of the blender casing 3 is sealed with a cover plate 15 fixed with bolts or the like. When handling a high-temperature transferred object Q, the entire outer surface of the main casing 4 may be covered with a steam heating type jacket 40 (indicated by a one-dot chain line in FIG. 1B).
 前記のポンプ用軸受部5は、ハウジング9とカバー板10とから箱体状に構成されており、カバー板10の前面に、ポンプケーシング2の後側の端面2B(一端部)が連結されてボルトなどで固定されている。ハウジング9内には円錐コロ軸受11,11とコロ軸受12,12が配備されている。これらのコロ軸受11,12はポンプスクリュー7aの軸部8aの片端部8Aを片持ち状に回動自在に支承している。ポンプスクリュー7bの軸部8bの片端部8Aも別の円錐コロ軸受11とコロ軸受12により片持ち状に回動自在に支承されている。すなわち、ポンプスクリュー7a,7bの後部側は、ハウジング9内でそれぞれ回転自由に二点支持されている。ポンプケーシング2内でカバー板10の近傍位置のポンプスクリュー7a,7bには、ダブルメカニカルシール16,16が装着されている。そして、ポンプスクリュー7aの軸部8aには、同期歯車13aが固着されている。ポンプスクリュー7bの軸部8bには、前記の同期歯車13aと噛合する同期歯車13bが固着されている。これら同期歯車13aと同期歯車13bとの同期噛合により、一対のポンプスクリュー7a,7bは、いかなる回転角度でも互いに接触しないで噛み合うように同期回転する。この場合、ポンプスクリュー7aの軸部8aが、駆動軸として、減速機構などの連結機構30を介してモータM(ポンプ用回転駆動源の例)に連結されている。 The pump bearing portion 5 is formed in a box shape from a housing 9 and a cover plate 10, and a rear end surface 2 </ b> B (one end portion) of the pump casing 2 is connected to the front surface of the cover plate 10. It is fixed with bolts. Conical roller bearings 11 and 11 and roller bearings 12 and 12 are arranged in the housing 9. These roller bearings 11 and 12 support one end portion 8A of the shaft portion 8a of the pump screw 7a in a cantilevered manner. One end portion 8A of the shaft portion 8b of the pump screw 7b is also supported in a cantilevered manner by another conical roller bearing 11 and roller bearing 12. That is, the rear portions of the pump screws 7a and 7b are supported at two points in the housing 9 so as to be freely rotatable. Double mechanical seals 16, 16 are attached to the pump screws 7 a, 7 b in the vicinity of the cover plate 10 in the pump casing 2. A synchronous gear 13a is fixed to the shaft portion 8a of the pump screw 7a. A synchronous gear 13b that meshes with the synchronous gear 13a is fixed to the shaft portion 8b of the pump screw 7b. By the synchronous meshing of the synchronous gear 13a and the synchronous gear 13b, the pair of pump screws 7a and 7b rotate synchronously so as to mesh with each other without contacting each other at any rotation angle. In this case, the shaft portion 8a of the pump screw 7a is connected as a drive shaft to a motor M (an example of a pump rotary drive source) via a connection mechanism 30 such as a speed reduction mechanism.
 前記の収容室39は、ポンプケーシング2に正面視繭形状で前後貫通して形成されている。そして、ブレンダケーシング3の接続口14が、吐出口55を有するポンプケーシング2の前側の端面2C(他端部)に連結されている。ブレンダケーシング3の前側の端面3B(他端部)は、ボルトなどで固定される蓋体15によって封止されている。収容室39内には、軸心Xa回りに回転するポンプスクリュー7aと、このポンプスクリュー7aと常に非接触で螺合して軸心Xb回りに回転するポンプスクリュー7bと、が格納される。ポンプスクリュー7a,7bは本発明に係る加圧運動部材の一例である。これらポンプスクリュー7aの螺旋方向とポンプスクリュー7bの螺旋方向は逆向きである。ポンプスクリュー7a,7bの後部とカバー板10間の位置でポンプケーシング2の上面には、収容室39内とケーシング上方外部とを連通する取入口18が形成されている。この取入口18を囲むポンプケーシング2の上面位置には、上面開口縁にフェルール継手部22を有する管部21がボルトなどで固定され、管部21の上面開口には、例えばスチーム加熱式ジャケット付きのホッパーなどが接続される。 The storage chamber 39 is formed in the pump casing 2 so as to penetrate front and rear in a front view shape. The connection port 14 of the blender casing 3 is coupled to the front end surface 2C (the other end portion) of the pump casing 2 having the discharge port 55. The front end face 3B (the other end) of the blender casing 3 is sealed by a lid 15 that is fixed with a bolt or the like. Stored in the storage chamber 39 are a pump screw 7a that rotates about the axis Xa, and a pump screw 7b that always rotates in a non-contact manner with the pump screw 7a and rotates about the axis Xb. The pump screws 7a and 7b are an example of a pressurizing motion member according to the present invention. The spiral direction of the pump screw 7a and the spiral direction of the pump screw 7b are opposite to each other. An intake port 18 is formed on the upper surface of the pump casing 2 at a position between the rear portions of the pump screws 7a and 7b and the cover plate 10 so as to communicate the inside of the housing chamber 39 with the outside of the casing. At the upper surface position of the pump casing 2 surrounding the intake port 18, a pipe portion 21 having a ferrule joint portion 22 at the upper opening edge is fixed with a bolt or the like, and the upper opening of the pipe portion 21 is provided with, for example, a steam heating type jacket. Hopper etc. are connected.
 そして、各ポンプスクリュー7a,7bのスクリュー歯の外周面7Bとポンプスクリュー2の収容室52の内周面2Aとの間には、図5(a)に示すように、隙間Hが設けられて常時非接触になっている。一対のポンプスクリュー7a,7bは、軸部8a,8bが挿し通されて固定される円筒状の基部7A,7Aの外周面に螺旋状のスクリュー歯が突設されている。また、ポンプスクリュー7aのスクリュー歯の側面7Saとポンプスクリュー7bのスクリュー歯の側面7Sbとの間には、図5(b)に示すように、隙間Gが設けられて常時非接触になっている。一対のポンプスクリュー7a,7bが如何なる回転角度の位置にあっても、これらの隙間G,Hは常に存在する。前記した隙間H,Gはいずれも、気体は通過可能であるが被移送物Qの高粘度液や硬・軟質固形物は通過できない隙間幅に設定されている。この場合、隙間Gの隙間幅は例えば0.03~0.09mmであり、隙間Hの隙間幅は例えば0.12~0.18mmである。そして、これら一対のポンプスクリュー7a,7bにより被移送物Qを移送し得るポンプ作用が引き起こされるのは、図2中に示した領域Pの範囲内である。尚、ブレンダ付きポンプ1が食品、医薬品、化粧料材料などの移送用である場合は、衛生面および性質保持の観点から、被移送物Qが直に接する部品として、少なくとも管部21、ポンプケーシング2、カバー板10、ポンプスクリュー7a,7b、ブレンダケーシング3、ブレンダユニット28a,28b、蓋板15、管部44などを、ステンレス製部品で構成することが望ましい。すなわち、ポンプケーシング2およびポンプスクリュー7a,7bから、容積式の軸流ポンプであるポンプ部51が構成される。 As shown in FIG. 5A, a gap H is provided between the outer peripheral surface 7B of the screw teeth of each pump screw 7a, 7b and the inner peripheral surface 2A of the storage chamber 52 of the pump screw 2. It is always non-contact. In the pair of pump screws 7a and 7b, spiral screw teeth protrude from outer peripheral surfaces of cylindrical base portions 7A and 7A to which shaft portions 8a and 8b are inserted and fixed. Further, a gap G is provided between the screw tooth side surface 7Sa of the pump screw 7a and the screw tooth side surface 7Sb of the pump screw 7b as shown in FIG. . These gaps G and H are always present regardless of the rotational angle of the pair of pump screws 7a and 7b. Each of the gaps H and G is set to a gap width through which gas can pass but a high-viscosity liquid or hard / soft solid of the transferred object Q cannot pass. In this case, the gap width of the gap G is, for example, 0.03 to 0.09 mm, and the gap width of the gap H is, for example, 0.12 to 0.18 mm. And it is within the range of the area | region P shown in FIG. 2 that the pump action which can transfer the to-be-transferred object Q by these pair of pump screws 7a and 7b is caused. When the blender-equipped pump 1 is used for transferring foods, pharmaceuticals, cosmetic materials, etc., from the viewpoint of hygiene and maintenance of properties, at least the pipe portion 21 and the pump casing as parts to which the transferred object Q is in direct contact. 2. It is desirable that the cover plate 10, the pump screws 7a and 7b, the blender casing 3, the blender units 28a and 28b, the cover plate 15, the pipe portion 44, and the like are made of stainless steel parts. That is, the pump casing 51 and the pump screws 7a and 7b constitute a pump unit 51 that is a positive displacement axial flow pump.
 前記の収容室27は、ブレンダケーシング3に正面視繭形状で前後貫通して形成されている(図4参照)。そして、ポンプスクリュー7a,7bの軸部8a,8bの遊動端26,26が、連結部材32,32を介して、一対のブレンダユニット28a,28bの混合用回転軸29,29の一端部28Aと連結される。これらのブレンダユニット28a,28bは収容室27内に収容される。ブレンダユニット28a,28bの前端部(他端部)は、軸受などに支承されていない遊動端38,38となっている。これらの遊動端38,38の端面は、端面カバー31,31で蓋止される。一方、ポンプスクリュー7a,7bと撹拌用羽根板部34a,34bの間は副材料投入部52になっており、この副材料投入部52におけるブレンダケーシング3の上面には、ポンプ外からの副材料をブレンダケーシング3内に取り入れるための3つの投入口23,24,25が形成されている。これらの投入口23,24,25は、被移送物Qに対する副材料の添加比率に応じた口径で形成されている。因みに、真ん中の投入口23の口径が最も大きくされ、撹拌用羽根板部34a寄りの投入口24と撹拌用羽根板部34b寄りの投入口25は、投入口23よりもいくぶん小径に形成されている。他方、混合用回転軸29,29の遊動端38,38の下方位置でブレンダケーシング3の底面には、被移送物Qと副材料との混合物をポンプ外へ吐出するための排出口19が形成されている。この排出口19を囲むブレンダケーシング3の下面位置には、下面開口縁にフェルール部17を有する管部44が接続され、管部44のフェルール部17に配管37が接続されてクランプバンド36により固定される。配管37の先端は混合物受け容器などに接続される。 The accommodation chamber 27 is formed in the blender casing 3 so as to penetrate front and rear in the shape of a front view (see FIG. 4). The free ends 26, 26 of the shaft portions 8a, 8b of the pump screws 7a, 7b are connected to the one end portions 28A of the mixing rotating shafts 29, 29 of the pair of blender units 28a, 28b via the connecting members 32, 32. Connected. These blender units 28 a and 28 b are accommodated in the accommodating chamber 27. The front end portions (other end portions) of the blender units 28a and 28b are floating ends 38 and 38 that are not supported by a bearing or the like. The end surfaces of these floating ends 38 and 38 are covered with end surface covers 31 and 31. On the other hand, a space between the pump screws 7a and 7b and the stirring blades 34a and 34b serves as a secondary material charging portion 52. The secondary material from the outside of the pump is formed on the upper surface of the blender casing 3 in the secondary material charging portion 52. Are formed in the blender casing 3. These inlets 23, 24, and 25 are formed with a diameter corresponding to the addition ratio of the auxiliary material to the transferred object Q. Incidentally, the diameter of the middle inlet 23 is the largest, and the inlet 24 near the stirring blade part 34 a and the inlet 25 near the stirring blade part 34 b are formed to be somewhat smaller in diameter than the inlet 23. Yes. On the other hand, a discharge port 19 is formed on the bottom surface of the blender casing 3 below the free ends 38, 38 of the mixing rotary shafts 29, 29 for discharging the mixture of the transferred material Q and the auxiliary material to the outside of the pump. Has been. A pipe part 44 having a ferrule part 17 is connected to the lower surface opening edge of the blender casing 3 surrounding the discharge port 19, and a pipe 37 is connected to the ferrule part 17 of the pipe part 44 and fixed by a clamp band 36. Is done. The tip of the pipe 37 is connected to a mixture receiving container or the like.
 観察し易くするために、一方の撹拌用羽根板部34aのみを図6に示しているが、他方の撹拌用羽根板部34b(図示省略)も備えている。一対の混合用回転軸29,29の外周面には、らせん板状の撹拌用羽根板部34a,34bが回転軸半径方向外向きに突設されている。これらの撹拌用羽根板部34a,34bはいずれも、混合用回転軸29,29に連結されたポンプスクリュー7a,7bの螺旋方向とは逆向きの螺旋状配置で設けられている。これら一対の撹拌用羽根板部34a,34bは互いに非接触で螺合して回転できるように形成されている。そして、撹拌用羽根板部34a,34bには、それぞれ、被移送物Qを通過可能な複数の貫通部(通路部の例)35,35,35,・・・が被移送物移送方向(黒塗矢印F方向)に貫通して形成されている。これらの貫通部35,35,35,・・・は、撹拌用羽根板部34a,34bの回転軸半径方向最外の外周面34Aから混合用回転軸29,29の軸心Xa,Xbに向かって切り欠かれた切欠き部として形成されている。混合用回転軸29,29の末端には、ポンプスクリュー7a,7bとの連結に用いられる連結部材32が固着されている。この連結部材32はその凸部32Aが基部7A先端面の凹部品に嵌め込まれ更にピン穴33に装着されたピンによって周方向の位置決めがされる。撹拌用羽根板部34a,34bの外周面34Aとブレンダケーシング3の内周面3Aとの間には、比較的大きな隙間が設けられている。また、撹拌用板部材34a,34bは、混合用回転軸29の軸心Xa,Xbに対する傾きが、混合用回転軸29,29が規定の回転方向(矢印Ra,Rb)に回動されるときに被移送物および副材料をブレンダケーシング3の一端部側に向けて押し戻せる向きに設定されている。すなわち、ブレンダケーシング3、混合用回転軸29,29、撹拌用板部材34a,34b、および貫通部35からブレンダ部53が構成され、副材料投入部52およびブレンダ部53からブレンダ101が構成され、ポンプ用軸受部5、ポンプ部51およびブレンダ101からブレンダ付きポンプ1が構成される。 For ease of observation, only one stirring blade plate portion 34a is shown in FIG. 6, but the other stirring blade plate portion 34b (not shown) is also provided. On the outer peripheral surfaces of the pair of mixing rotating shafts 29, 29, spiral blade-shaped stirring blade portions 34a, 34b are projected outward in the rotational axis radial direction. These stirring blade portions 34a and 34b are both provided in a spiral arrangement opposite to the spiral direction of the pump screws 7a and 7b connected to the mixing rotary shafts 29 and 29. The pair of stirring blades 34a and 34b are formed so as to be able to rotate by screwing in a non-contact manner. In addition, a plurality of through portions (examples of passage portions) 35, 35, 35,... Capable of passing the material to be transferred Q are respectively provided in the stirring blade portions 34a and 34b. It is formed penetrating in the direction of the coating arrow F). These penetrating portions 35, 35, 35,... Go from the outermost peripheral surface 34A in the radial direction of the rotation axis of the stirring blades 34a, 34b toward the axis Xa, Xb of the mixing rotation shafts 29, 29. It is formed as a notch cut out. A connecting member 32 used for connecting to the pump screws 7a and 7b is fixed to the ends of the mixing rotary shafts 29 and 29. This connecting member 32 is positioned in the circumferential direction by a pin fitted into a recessed part at the tip end surface of the base 7 </ b> A, and a pin attached to the pin hole 33. A relatively large gap is provided between the outer peripheral surface 34 </ b> A of the stirring blade portions 34 a and 34 b and the inner peripheral surface 3 </ b> A of the blender casing 3. Further, the stirring plate members 34a and 34b are inclined when the mixing rotary shafts 29 and 29 are rotated in the prescribed rotation directions (arrows Ra and Rb) with respect to the axis Xa and Xb of the mixing rotary shaft 29. The material to be transferred and the auxiliary material are set in such a direction that they can be pushed back toward one end of the blender casing 3. That is, the blender casing 3, the mixing rotary shafts 29 and 29, the stirring plate members 34 a and 34 b, and the penetrating portion 35 constitute the blender portion 53, and the auxiliary material charging portion 52 and the blender portion 53 constitute the blender 101, The pump bearing unit 5, the pump unit 51, and the blender 101 constitute a blender-equipped pump 1.
 上記のように構成されたブレンダ付きポンプ1の作用を次に説明する。ここでは、高粘度の被移送物Qとして、相対粘度が50Pa・s(@100℃)の「溶融キャンディー材料」を用いた例を示す。溶融キャンディー材料は、例えば砂糖、水飴などの原材料を加熱して煮詰めた糖液である。そして、副材料は投入口23,24,25から投入される。例えば、投入口23からは加熱溶融させたバターがポンプ動力などで圧入され、投入口24からは加熱溶融させたチョコレートがポンプ動力などで圧入され、投入口25からは加熱溶融させた油脂分がポンプ動力などで圧入されるものとする。 Next, the operation of the blender-equipped pump 1 configured as described above will be described. Here, an example is shown in which a “molten candy material” having a relative viscosity of 50 Pa · s (@ 100 ° C.) is used as the high-viscosity transfer object Q. The molten candy material is a sugar liquid obtained by heating and boiling raw materials such as sugar and starch syrup. Then, the auxiliary material is input from the input ports 23, 24 and 25. For example, heated buttered butter is press-fitted by pump power or the like from the charging port 23, and heated and melted chocolate is press-fitted by pump power or the like from the charging port 24. It shall be press-fitted with pump power.
 先ず、モータMの回転駆動により、ポンプスクリュー7aが一方向(図7(b)の矢印Ra方向)に回転すると、同期歯車13a,13bを介して動力伝達されたポンプスクリュー7bが逆方向(図7(b)の矢印Rb方向)に同期回転する。ポンプスクリュー7a,7bの回転速度は、例えば100~1000rpmである。すると、ホッパー内の被移送物Qはホッパーから管部21およびポンプケーシング2の取入口18を経てポンプ室6内に入る。そして、ポンプ室6内に落下した被移送物Qは、ポンプスクリュー7a,7bのポンプ作用によって黒塗矢印F方向に圧送され、ポンプケーシング2の吐出口55からブレンダケーシング3の接続口14を経て、ブレンダケーシング3内のブレンダユニット28a,28bに向けて移送されていく。ここで、被移送物Qは、いずれも副材料投入部52の投入口23から圧入された溶融バター、投入口24から圧入された溶融チョコレート、投入口25から圧入された溶融油脂分と合流したのち、共にブレンダユニット28a,28bに到達する。 First, when the pump screw 7a is rotated in one direction (the direction of arrow Ra in FIG. 7B) by the rotational drive of the motor M, the pump screw 7b to which power is transmitted via the synchronous gears 13a and 13b is reversed (see FIG. 7 (b) in the direction of arrow Rb). The rotational speed of the pump screws 7a and 7b is, for example, 100 to 1000 rpm. Then, the transferred object Q in the hopper enters the pump chamber 6 from the hopper through the pipe portion 21 and the intake port 18 of the pump casing 2. The transferred object Q that has fallen into the pump chamber 6 is pumped in the direction of the black arrow F by the pump action of the pump screws 7a and 7b, and passes through the connection port 14 of the blender casing 3 from the discharge port 55 of the pump casing 2. Then, it is transferred toward the blender units 28a and 28b in the blender casing 3. Here, the transported material Q was joined together with the melted butter pressed from the charging port 23 of the auxiliary material charging unit 52, the molten chocolate pressed from the charging port 24, and the molten fat and oil pressed from the charging port 25. Thereafter, both arrive at the blender units 28a and 28b.
 そして、被移送物Q、溶融バター、溶融チョコレート、および溶融油脂分の合流物は、図7に示すように、ブレンダユニット28a,28bの撹拌用羽根板部34a,34bの上流側(接続口14側)の板面で押圧されて、矢印ga,gbで示されるような押し戻し方向ないし回転軸周方向に移動する。一方、前記合流物の一部は、撹拌用羽根板部34a,34bの板面に当たることなく、貫通部35,35,35,・・・を矢印fのように通過して次の段の板面に到達する。そして、前記のように板面で押し戻された合流物と、貫通部35,35,35,・・・を通過した合流物とが、ぶつかって混合される。このような押し戻し移動と通過移動による混合作用が繰り返されて被移送物Qおよび副材料が効率よく確実に混合されて混合物となる。尚、撹拌用羽根板部34a,34bの板面による押し戻し力はさほど大きくなく、撹拌用羽根板部34a,34b間の隙間、および撹拌用羽根板部34a,34bとブレンダケーシング3の内周面3A間の隙間も十分に大きいので、前記混合物はポンプスクリュー7a,7bのポンプ作用による移送力によって、ブレンダユニット28a,28b内を移動でき、十分に混合されたのちに排出口19から払い出される。排出口19から払い出された混合物は受け容器に収容されたのちに型内で成形され、放冷されてキャンディー製品となる。 As shown in FIG. 7, the combined product Q, melted butter, melted chocolate, and melted fat and oil are on the upstream side (connection port 14) of the stirring blade portions 34 a and 34 b of the blender units 28 a and 28 b. And is moved in the push-back direction or the rotational axis circumferential direction as indicated by arrows ga and gb. On the other hand, a part of the merged material passes through the through portions 35, 35, 35,... As shown by the arrow f without contacting the plate surfaces of the stirring blade plates 34 a, 34 b, and the next stage plate. Reach the plane. Then, the merged material pushed back on the plate surface and the merged material that has passed through the through portions 35, 35, 35,... The mixing action by such pushing back movement and passing movement is repeated, and the transferred object Q and the auxiliary material are efficiently and reliably mixed to form a mixture. The pushing back force by the plate surfaces of the stirring blade portions 34a, 34b is not so large, the gap between the stirring blade plates 34a, 34b, and the inner peripheral surface of the stirring blade plates 34a, 34b and the blender casing 3 Since the gap between 3A is sufficiently large, the mixture can move in the blender units 28a and 28b by the transfer force generated by the pumping action of the pump screws 7a and 7b, and is discharged from the discharge port 19 after being sufficiently mixed. The mixture discharged from the discharge port 19 is accommodated in a receiving container, then molded in a mold, and allowed to cool to become a candy product.
 以上に述べたように、この実施形態のブレンダ付きポンプ1によれば、流動物である被移送物Qが、ポンプスクリュー7a,7b間の隙間G、およびポンプスクリュー7aまたは7bと収容室52の内周面2Aとの隙間Hを通過できないので、ポンプスクリュー7a,7bによるポンプ作用を受けて圧送される。この際、ポンプスクリュー7a,7b、ポンプケーシング2の内周面2Aは非接触なので、金属摩耗粉を発生させることなく被移送物Qに剪断力を与えない。すなわち、食品、医療品などを変質させることなく移送することができる。そして、ポンプスクリュー7a,7bから吐出口55を経て吐出された被移送物Qは投入口23~25からの副材料と合流したのちに、ブレンダユニット28a,28bに到達することができる。前記の合流物はブレンダユニット28a,28bで効率よく撹拌混合される。すなわち、一台で被移送物Qおよび副材料の移送と撹拌混合の両方を行なうことができる。
 また、本体ケーシング4内において、ポンプ部51に隣接してブレンダ部53が配置されているので、それらの間に配管類は存在しない。従って、装置使用後の配管洗浄を行なう必要が無くて衛生面でも好適であり、特に食材などを取り扱ううえで好ましい。加えて、ポンプ部51とブレンダ部53とが隣り合わせの一体構造であるから、コンパクトな構成となり、スペースを大きく取ることなく装置の設置ができる。
As described above, according to the blender-equipped pump 1 of this embodiment, the transferred object Q, which is a fluid, has a gap G between the pump screws 7a and 7b, and the pump screw 7a or 7b and the storage chamber 52. Since it cannot pass through the gap H with the inner peripheral surface 2A, it is pumped under the pump action of the pump screws 7a, 7b. At this time, since the pump screws 7a and 7b and the inner peripheral surface 2A of the pump casing 2 are not in contact with each other, no shear force is applied to the transferred object Q without generating metal wear powder. That is, food, medical products, etc. can be transported without alteration. The transferred object Q discharged from the pump screws 7a and 7b through the discharge port 55 can reach the blender units 28a and 28b after joining with the auxiliary material from the input ports 23 to 25. The combined product is efficiently stirred and mixed by the blender units 28a and 28b. That is, it is possible to perform both the transfer of the transfer object Q and the auxiliary material and the stirring and mixing with one unit.
Moreover, since the blender part 53 is arrange | positioned adjacent to the pump part 51 in the main body casing 4, piping does not exist among them. Therefore, it is not necessary to clean the pipe after using the apparatus, which is preferable in terms of hygiene, and is particularly preferable when handling foodstuffs. In addition, since the pump unit 51 and the blender unit 53 have a side-by-side integrated structure, the apparatus can be installed without taking up a large space.
 また、上記のように、ブレンダユニット28a,28bの撹拌用羽根板部34a,34bがポンプスクリュー7a,7bの螺旋方向とは逆向きの螺旋状に配置されているので、撹拌用羽根板部34a,34bの板面による押し戻し作用と貫通部35の通過作用とにより、合流物を効率よく混合することができる。そして、貫通部35は外周面34Aから切り欠かれた切欠き部であるので、切削機械を用いて容易に製作できるうえ、円孔などの貫通部と比べて貫通面積を大きくとることができる。これにより、混合物の通過量が大きくなることから、撹拌量を多くでき、混合効率を更に高めることができる。 Further, as described above, since the stirring blade plates 34a and 34b of the blender units 28a and 28b are arranged in a spiral direction opposite to the spiral direction of the pump screws 7a and 7b, the stirring blade plate portion 34a. , 34b and the passing action of the penetrating portion 35, the combined product can be mixed efficiently. And since the penetration part 35 is a notch part notched from 34 A of outer peripheral surfaces, it can manufacture easily using a cutting machine and can take a large penetration area compared with penetration parts, such as a circular hole. Thereby, since the passing amount of the mixture becomes large, the amount of stirring can be increased, and the mixing efficiency can be further increased.
 尚、上記の実施形態1では、撹拌用羽根板部の回転軸半径方向最外の外周面から回転軸心向かって切り欠かれた貫通部を例示したが、本発明はそれに限定されない。撹拌用羽根板部に被移送物移送方向に貫通して形成される貫通部としては、前記の切欠き部以外に、撹拌用羽根板部の外周面とつながっていない貫通孔(円孔、長円孔、多角孔その他)であってもよい。このような貫通孔であっても、大きめに形成しておけば、十分な混合物通過効果を得ることができる。
 また、上記の実施形態1では、2本のポンプスクリュー7a,7bの他端部の双方に一対のブレンダユニット28a,28bを接続した例を示したが、ポンプスクリュー7a,7bのうちのいずれか一方のみに1本のブレンダユニットを接続して成るブレンダ付きポンプも、本発明に含まれる。
In addition, in said Embodiment 1, although the penetration part notched toward the rotating shaft center was illustrated from the outer peripheral surface of the rotating shaft radial direction outermost part of the stirring blade board part, this invention is not limited to it. In addition to the above-mentioned notch, the through-hole formed through the stirring blade plate in the transfer direction of the object to be transferred is a through-hole (round hole, long hole) not connected to the outer peripheral surface of the stirring blade plate portion. It may be a circular hole, a polygonal hole or the like). Even if it is such a through-hole, if it is formed large, a sufficient mixture passing effect can be obtained.
In the first embodiment, the example in which the pair of blender units 28a and 28b are connected to both the other end portions of the two pump screws 7a and 7b is shown. However, any one of the pump screws 7a and 7b is used. A blender pump in which only one blender unit is connected to only one is also included in the present invention.
「実施形態2」;
 そして、上記の実施形態1では、一対のポンプスクリュー7a,7bの遊動端26,26にそれぞれブレンダユニット28a,28bの一端部28A,28Aを連結し、ブレンダユニット28a,28bの他端部を遊動端38,38とした例を示したが、本発明はそれにも限定されない。例えば、図8および図9に示すようなブレンダ付きポンプ1aも本発明に含まれる。尚、図8および図9において、図1~図7に示した実施形態1と同じ構成要素には同一の符号を付して、詳しい説明を省略することがある。
 このブレンダ付きポンプ1aが、実施形態1に係るブレンダ付きポンプ1の構成と異なるところは、ポンプスクリュー7a,7bの遊動端26,26からブレンダユニット28a,28bの一端部28A,28Aが切り離されたこと、ブレンダ部53に替えてブレンダ部53aが用いられること、および、新たなブレンダ用軸受部54がブレンダ部53aのブレンダケーシング3の端面3B(他端部)に連結されていることである。ポンプスクリュー7a,7bの遊動端26,26は、ボルト60,60によりそれぞれ軸部8a,8bの他端部に固定されている。すなわち、副材料投入部52およびブレンダ部53aからブレンダ101aが構成され、このブレンダ101aおよびブレンダ用軸受部54からブレンダセット110が構成され、ポンプ用軸受部5、ポンプ部51およびブレンダセット110からブレンダ付きポンプ1aが構成される。
Embodiment 2”;
In the first embodiment, the free ends 26 and 26 of the pair of pump screws 7a and 7b are connected to the one end portions 28A and 28A of the blender units 28a and 28b, respectively, and the other end portions of the blender units 28a and 28b are idle. Although the example which made the end 38 and 38 was shown, this invention is not limited to it. For example, a blender-equipped pump 1a as shown in FIGS. 8 and 9 is also included in the present invention. 8 and 9, the same components as those in the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof may be omitted.
The blender-equipped pump 1a is different from the configuration of the blender-equipped pump 1 according to the first embodiment in that the end portions 28A, 28A of the blender units 28a, 28b are separated from the free ends 26, 26 of the pump screws 7a, 7b. That is, the blender portion 53a is used instead of the blender portion 53, and the new blender bearing portion 54 is connected to the end surface 3B (the other end portion) of the blender casing 3 of the blender portion 53a. The floating ends 26 and 26 of the pump screws 7a and 7b are fixed to the other end portions of the shaft portions 8a and 8b by bolts 60 and 60, respectively. That is, the blender 101a is composed of the auxiliary material charging part 52 and the blender part 53a, the blender set 110 is composed of the blender 101a and the blender bearing part 54, and the blender is composed of the pump bearing part 5, the pump part 51 and the blender set 110. The attached pump 1a is configured.
 前記のブレンダ用軸受部54は、実施形態1で述べたポンプ用軸受部5とほぼ同じ構造のものが前後逆向きに配置して用いられる。そして、ポンプ用軸受部5のハウジング9に相当するハウジング57の一端部が、ブレンダケーシング3の端面3Bにカバー板10を介して連結されている。ブレンダユニット28a,28bの各混合用回転軸29,29の他端部の連結部材61,61は、それぞれボルト56,56により軸部58a,58bと連結されている。これらの軸部58a,58bは、ポンプ用軸受部5における軸部8a,8bに相当する。すなわち、混合用回転軸29,29の片端部である、軸部58a,58bの他端部28B,28Bが、ブレンダ用軸受部54の円錐コロ軸受11,11およびコロ軸受12,12により片持ち状で回動自在に支承されている。ブレンダユニット28a,28bは、非接触で互いに反対方向に回転するようになっている。この場合、一方の軸部58bの他端部が連結機構59を介してモータM1(ブレンダ用回転駆動源の例)回転駆動軸と接続されている。ブレンダユニット28a,28bの各混合用回転軸29,29の一端部28Aはそれぞれ遊動端となっている。すなわち、ポンプスクリュー7a,7bとブレンダユニット28a,28bとは、モータMとモータM1とにより互いに独立して回転駆動される。 The above-described blender bearing portion 54 has a structure substantially the same as that of the pump bearing portion 5 described in the first embodiment and is used by being arranged in the front-rear reverse direction. One end portion of the housing 57 corresponding to the housing 9 of the pump bearing portion 5 is connected to the end surface 3B of the blender casing 3 via the cover plate 10. The connecting members 61 and 61 at the other ends of the mixing rotating shafts 29 and 29 of the blender units 28a and 28b are connected to the shaft portions 58a and 58b by bolts 56 and 56, respectively. These shaft portions 58 a and 58 b correspond to the shaft portions 8 a and 8 b in the pump bearing portion 5. That is, the other end portions 28B and 28B of the shaft portions 58a and 58b, which are one end portions of the mixing rotary shafts 29 and 29, are cantilevered by the conical roller bearings 11 and 11 and the roller bearings 12 and 12 of the blender bearing portion 54. It is supported in a rotatable manner. The blender units 28a and 28b are configured to rotate in opposite directions without contact. In this case, the other end portion of one shaft portion 58b is connected to a motor M1 (an example of a blender rotation drive source) rotation drive shaft via a coupling mechanism 59. One end portion 28A of each mixing rotary shaft 29, 29 of the blender unit 28a, 28b is a free end. That is, the pump screws 7a and 7b and the blender units 28a and 28b are rotationally driven independently of each other by the motor M and the motor M1.
 前記したようなブレンダ付きポンプ1aによれば、ポンプ部51のポンプスクリュー7a,7bと、ブレンダ部53cのブレンダユニット28a,28bと、が互いに独立して回転駆動されるので、ポンプ部51の移送能力とは無関係にブレンダ部53aの混合能力を調整できる。これにより、例えば被移送物と副材料が混ざりにくい場合や、当初からポンプ部51と比べてブレンダ部53aの能力が劣っている場合であっても、ブレンダ部53aの混合用回転軸29の回転数を大きくすることにより、十分な撹拌混合を行なうことができる。 According to the blender-equipped pump 1a as described above, the pump screws 7a and 7b of the pump unit 51 and the blender units 28a and 28b of the blender unit 53c are rotationally driven independently of each other. The mixing ability of the blender unit 53a can be adjusted regardless of the ability. Thereby, for example, even when the transported object and the sub-material are not easily mixed, or even when the ability of the blender unit 53a is inferior to that of the pump unit 51 from the beginning, the rotation of the mixing rotation shaft 29 of the blender unit 53a. By increasing the number, sufficient stirring and mixing can be performed.
 尚、実施形態1ではポンプスクリューとブレンダユニットが連結されているので、混合用回転軸の外周面に設けられた撹拌用羽根板部の螺旋配置が、ポンプスクリューの螺旋方向とは逆向きにされているが、この実施形態2を含め、ポンプスクリューとブレンダユニットとが互いに独立して回転駆動されるものでは、混合用回転軸における撹拌用羽根板部の螺旋配置は、ポンプスクリューの螺旋方向と同じ向きであっても逆向きであっても構わない。撹拌用羽根板部が混合物を押し戻せるような、混合用回転軸の回転方向を選定すればよいだけである。 In the first embodiment, since the pump screw and the blender unit are connected, the spiral arrangement of the stirring blade plate provided on the outer peripheral surface of the mixing rotating shaft is opposite to the spiral direction of the pump screw. However, including the second embodiment, in which the pump screw and the blender unit are rotationally driven independently of each other, the spiral arrangement of the stirring blade plate portion on the mixing rotating shaft is the spiral direction of the pump screw. It may be in the same direction or in the opposite direction. It is only necessary to select the direction of rotation of the mixing rotating shaft so that the stirring blade can push back the mixture.
「実施形態3」;
 上記の実施形態2では、ポンプスクリュー7a,7bから切り離された2本のブレンダユニット28a,28bを用いたブレンダ101aの例を示したが、本発明はそれに限定されない。図10に示すようなブレンダ101bも本発明に含まれる。このブレンダ101bでは、1本のブレンダユニット28bと、このブレンダユニット28bを収容するケーシング3aとを有するブレンダ部53bが採用されている。従って、ケーシング3aは、実施形態1のケーシング3よりも外径が小さな円形筒状に形成されている。これに伴って、ケーシング3aの一端部に形成されている副材料投入部52bのケーシング部62は、一端部に向かって拡径する円錐状に形成されている。また、ブレンダユニット28bの混合用回転軸29と連結されている軸部58cは、その他端部28Bが一軸用のブレンダ軸受部54aのハウジング57a内に配備されているボール軸受63,63により片持ち支持されている。軸部58cの他端部はカップリング64を介してモータM1の回転駆動軸65に連結されている。すなわち、ブレンダ101bは副材料投入部52bおよびブレンダ部53bから構成され、このブレンダ101bおよびブレンダ軸受部54aからブレンダセット110aが構成される。このようなブレンダセット110aは商品として簡便に取り引きされ得る。更には、ブレンダセット110aの副材料投入部52bの接続口14に、図外のポンプ部の吐出口を簡単に連結し得るので、ブレンダセット110aの入手後に、直ちにブレンダ付きポンプを組み立てて使用することができる。
Embodiment 3”;
In the second embodiment, the example of the blender 101a using the two blender units 28a and 28b separated from the pump screws 7a and 7b is shown. However, the present invention is not limited thereto. A blender 101b as shown in FIG. 10 is also included in the present invention. The blender 101b employs a blender portion 53b having one blender unit 28b and a casing 3a that accommodates the blender unit 28b. Therefore, the casing 3a is formed in a circular cylindrical shape having an outer diameter smaller than that of the casing 3 of the first embodiment. In connection with this, the casing part 62 of the submaterial input part 52b formed in the one end part of the casing 3a is formed in the cone shape diameter-expanded toward one end part. Further, the shaft portion 58c connected to the mixing rotary shaft 29 of the blender unit 28b is cantilevered by ball bearings 63, 63 having the other end portion 28B disposed in the housing 57a of the blender bearing portion 54a for a single shaft. It is supported. The other end portion of the shaft portion 58c is connected to the rotation drive shaft 65 of the motor M1 through the coupling 64. That is, the blender 101b is composed of the sub-material input part 52b and the blender part 53b, and the blender set 110a is composed of the blender 101b and the blender bearing part 54a. Such a blender set 110a can be easily traded as a product. Furthermore, since the discharge port of the pump unit (not shown) can be easily connected to the connection port 14 of the auxiliary material input unit 52b of the blender set 110a, the blender-equipped pump is immediately assembled and used after the blender set 110a is obtained. be able to.
「実施形態4」;
 上記の実施形態3で述べたブレンダ101bを有するブレンダセット110aにポンプ部を接続して成るブレンダ付きポンプも本発明に含まれる。そのようなブレンダ付きポンプを図11~図13に示す。尚、図11~図13のブレンダ付きポンプ1bにおいて、図8~図10に示した実施形態2,3と同じ構成要素には同一の符号を付して、詳しい説明を省略することがある。
 このブレンダ付きポンプ1bでは、ブレンダ101bにおける副材料投入部52bの接続口14に、実施形態1,2で用いたポンプ部51のポンプケーシング2の吐出口55が連結されている。ポンプケーシング2の一端部にはポンプ用軸受部5のハウジング9が連結されており、ポンプ用軸受部5で軸支された軸部8aは連結機構30を介してモータMの回転駆動軸と連結されている。すなわち、ポンプ用軸受部5、ポンプ部51およびブレンダセット110aから、ブレンダ付きポンプ1bが構成される。
Embodiment 4”;
The blender-equipped pump formed by connecting the pump unit to the blender set 110a having the blender 101b described in the third embodiment is also included in the present invention. Such a blender pump is shown in FIGS. In the blender-equipped pump 1b shown in FIGS. 11 to 13, the same components as those in the second and third embodiments shown in FIGS. 8 to 10 are denoted by the same reference numerals, and detailed description thereof may be omitted.
In the blender-equipped pump 1b, the discharge port 55 of the pump casing 2 of the pump unit 51 used in the first and second embodiments is connected to the connection port 14 of the auxiliary material charging unit 52b in the blender 101b. A housing 9 of the pump bearing portion 5 is connected to one end of the pump casing 2, and the shaft portion 8 a that is pivotally supported by the pump bearing portion 5 is connected to the rotational drive shaft of the motor M via the connection mechanism 30. Has been. That is, the pump bearing portion 5, the pump portion 51 and the blender set 110 a constitute a blender-equipped pump 1 b.
 前記したような、筒心でもある軸心Xc回りに回転する1本のブレンダユニット28bを有するブレンダ付きポンプ1bによれば、いっそう簡素でコンパクトな構成を実現することができる。特に、混合用回転軸29がポンプ部51と別個独立に駆動される場合は、1本では混合能力が低い混合用回転軸29であっても、混合用回転軸29の回転数を大きくすることにより、実用に耐える十分な混合能力を得ることができる。 As described above, according to the blender-equipped pump 1b having one blender unit 28b rotating around the axis Xc, which is also a cylindrical center, a simpler and more compact configuration can be realized. In particular, when the mixing rotation shaft 29 is driven separately from the pump unit 51, the number of rotations of the mixing rotation shaft 29 should be increased even if the mixing rotation shaft 29 has a low mixing ability. Thus, it is possible to obtain a sufficient mixing capacity that can withstand practical use.
「実施形態5」;
 他方で、上記した板状の撹拌用羽根板部34a,34bを有するブレンダユニット28aまたはブレンダユニット28bに替えて、図14(a)~図14(c)に示すようなブレンダユニット28cを用いることも可能である。このブレンダユニット28cでは、撹拌用羽根板部34bに複数の突出部66が形成されている。突出部66は、撹拌用羽根板部34bの背面(ブレンダケーシングにおける接続口側の面34B)に被移送物移送方向(矢印F方向)とは反対の方向(接続口を向いた方向)に突出して形成されている。この例では、突出部66と貫通部35とが撹拌用羽根板部34bの外周方向に沿って交互に形成されている。
Embodiment 5”;
On the other hand, a blender unit 28c as shown in FIGS. 14 (a) to 14 (c) is used instead of the blender unit 28a or the blender unit 28b having the plate-like stirring blade portions 34a and 34b. Is also possible. In the blender unit 28c, a plurality of protruding portions 66 are formed on the stirring blade plate portion 34b. The protruding portion 66 protrudes in a direction (direction facing the connection port) opposite to the transferred object transfer direction (arrow F direction) on the back surface (surface 34B on the connection port side of the blender casing) of the stirring blade plate portion 34b. Is formed. In this example, the protrusions 66 and the through portions 35 are alternately formed along the outer peripheral direction of the stirring blade plate portion 34b.
 前記したような突出部66を有するブレンダユニット28cを用いたブレンダ付きポンプでは、ブレンダユニット28cが規定方向(矢印Rc)に回転駆動すると、撹拌用板部材34bが回転して被移送物および副材料を押し戻す際に、突出部66,66,66が撹拌用板部材34bの接続口側の面34Bに接している被移送物および副材料を滑らせることなく随動させる。これにより、被移送物および副材料が撹拌用板部材34bの接続口側の面34B上を滑って押戻し力を損失させるという不具合を生じない。従って、撹拌用板部材34bの接続口側の面34Bから受ける押戻し力を無駄なく用いて被移送物および副材料の混合を行なうことができる。尚、前記した突出部66は、螺旋方向が撹拌用羽根板部34bと反対向きである撹拌用羽根板部34aに設けることも可能である。 In the blender-equipped pump using the blender unit 28c having the projecting portion 66 as described above, when the blender unit 28c is rotationally driven in a specified direction (arrow Rc), the stirring plate member 34b is rotated and the transferred object and the auxiliary material are rotated. When pushing back, the protrusions 66, 66, 66 allow the object to be transferred and the auxiliary material that are in contact with the surface 34B on the connection port side of the stirring plate member 34b to move without sliding. Thereby, the malfunction that a to-be-transferred object and a submaterial slide on the surface 34B by the side of the connection port of the board member 34b for stirring loses pushing-back force does not arise. Therefore, the material to be transferred and the auxiliary material can be mixed without waste using the push-back force received from the connection port side surface 34B of the stirring plate member 34b. In addition, the above-mentioned protrusion part 66 can also be provided in the stirring blade board part 34a whose spiral direction is opposite to the stirring blade board part 34b.
「実施形態6」;
 これまでに述べた実施形態1~5では、ポンプ部51,51aがポンプスクリュー7aおよび/またはポンプスクリュー7bを備えた容積式の軸流ポンプで構成されたものを例示したが、本発明はそれらに限定されるものでなく、被移送物を加圧してブレンダ部に圧送できるものであれば適用可能である。例えば、図15および図16に示すようなブレンダ付きポンプ1cも本発明に含まれる。尚、図15および図16に示されるブレンダ付きポンプ1cにおいて、図11~図13に示した実施形態4と同じ構成要素には同一の符号を付して、詳しい説明を省略することがある。
 このブレンダ付きポンプ1cは、吐出口55が形成されている管部67を有するポンプ部51b、クランプバンド36などを用いて前記の管部67と連結される管部68、管部68と連結されるブレンダ101bの副材料投入部52b、ブレンダ部53b、およびブレンダ軸受部54aから構成されている。すなわち、ポンプ部51bがブレンダセット110aに連結されている。そして、ポンプ部51bは、図17(a)にも示されるように、軸流ポンプではないが容積式のギヤポンプである。このポンプ部51bは、ポンプケーシング2b内に1対のポンプ室69,69が形成され、一方のポンプ室69内でポンプケーシング2bに回動自在に軸支された軸70に取り付けられた従動歯車71と、他方のポンプ室69内でポンプケーシング2bに回動自在に軸支された回転駆動軸72に取り付けられた駆動歯車73とを備えている。そして、従動歯車71と噛み合う駆動歯車72の回転駆動により、管部44の取入口18から吸い込まれた被移送物が加圧されて吐出口55から吐出されるようになっている。すなわち、ポンプ部51bでは、駆動歯車73および従動歯車71が本発明の加圧運動部材を構成する。
Embodiment 6”;
In the first to fifth embodiments described so far, the pump units 51 and 51a are exemplified as a positive displacement axial flow pump provided with the pump screw 7a and / or the pump screw 7b. The present invention is not limited to this, and any material can be used as long as it can pressurize the object to be transferred and pump it to the blender section. For example, a blender-equipped pump 1c as shown in FIGS. 15 and 16 is also included in the present invention. In the blender-equipped pump 1c shown in FIGS. 15 and 16, the same components as those in the fourth embodiment shown in FIGS. 11 to 13 are denoted by the same reference numerals, and detailed description thereof may be omitted.
This blender-equipped pump 1c is connected to a pump part 51b having a pipe part 67 in which a discharge port 55 is formed, a pipe part 68 connected to the pipe part 67 using the clamp band 36, and the like. The blender 101b includes a secondary material charging portion 52b, a blender portion 53b, and a blender bearing portion 54a. That is, the pump part 51b is connected to the blender set 110a. As shown in FIG. 17A, the pump portion 51b is not an axial pump but a positive displacement gear pump. The pump portion 51b has a pair of pump chambers 69, 69 formed in a pump casing 2b, and a driven gear attached to a shaft 70 that is rotatably supported by the pump casing 2b in one pump chamber 69. 71 and a drive gear 73 attached to a rotary drive shaft 72 rotatably supported on the pump casing 2b in the other pump chamber 69. Then, by the rotational drive of the drive gear 72 meshing with the driven gear 71, the transferred object sucked from the intake port 18 of the pipe portion 44 is pressurized and discharged from the discharge port 55. That is, in the pump part 51b, the drive gear 73 and the driven gear 71 constitute the pressurizing motion member of the present invention.
 前記したようなポンプ部51bを用いたブレンダ付きポンプ1cは、管部67,68を有しているぶん、既述したブレンダ付きポンプ1bと比べると大きな設置スペースを取らざるを得ない。しかしながら、ポンプ部51bの吐出口55から吐出された被移送物は、ブレンダ付きポンプ1bと同様に、ブレンダ101bの副材料投入部52bで副材料が添加されたのち、ブレンダ部53bで1軸のブレンダユニット28bにより効率よく撹拌混合され得る。 The blender-equipped pump 1c using the pump portion 51b as described above has pipe portions 67 and 68, and thus has a large installation space compared to the aforementioned blender-equipped pump 1b. However, the transferred material discharged from the discharge port 55 of the pump unit 51b is added with a secondary material in the secondary material input unit 52b of the blender 101b and then uniaxially in the blender unit 53b, as in the blender-equipped pump 1b. It can be efficiently stirred and mixed by the blender unit 28b.
 尚、前記の実施形態6において、ギヤポンプのポンプ部51b(図15,図16および図17(a))に替えて、図17(b)~図17(d)に示すようなポンプ部51c,51d,51eを用いることも可能である。
 図17(b)のポンプ部51cはポンプケーシング2cを有するベーンポンプであり、複数の収容溝77,77,77、・・・が形成されたロータ75がポンプケーシング2cのポンプ室74内で回転駆動軸76回りに回転することにより、被移送物が取入口18より吸入されて加圧され吐出口55から吐出されるようになっている。各収容溝77にはそれぞれベーン78が出没自在に収容されている。このポンプ部51cは容積式であり、ロータ75およびベーン78,78,78、・・・が本発明の加圧運動部材を構成している。
In the sixth embodiment, instead of the pump part 51b of the gear pump (FIGS. 15, 16, and 17A), the pump part 51c, as shown in FIGS. 17B to 17D, It is also possible to use 51d and 51e.
17 (b) is a vane pump having a pump casing 2c, and a rotor 75 formed with a plurality of receiving grooves 77, 77, 77,... Is rotated in a pump chamber 74 of the pump casing 2c. By rotating around the shaft 76, the object to be transferred is sucked from the intake port 18, pressurized, and discharged from the discharge port 55. A vane 78 is housed in each housing groove 77 so as to be able to appear and retract. This pump part 51c is a positive displacement type, and the rotor 75 and the vanes 78, 78, 78,... Constitute the pressurizing motion member of the present invention.
 図17(c)のポンプ部51dはポンプケーシング2dを有するロータリーポンプであり、ロータ軸心から偏心した位置で回転駆動軸81に固定されたロータ80がポンプケーシング2dのポンプ室79内で回転駆動軸81回りに偏心旋回することにより、被移送物が取入口18より吸入されて加圧され吐出口55から吐出されるようになっている。ポンプ室79内は、ロータ80の外周面に接してポンプ室79から出し入れされる仕切弁82により、取入口18側と吐出口55側とに区画されている。吐出口55には、吐出された被移送物の逆流を防ぐための逆止弁83が設けられている。このポンプ部51dも容積式であり、ロータ80および仕切弁82が本発明の加圧運動部材を構成している。 The pump unit 51d in FIG. 17C is a rotary pump having a pump casing 2d, and the rotor 80 fixed to the rotary drive shaft 81 is rotationally driven in the pump chamber 79 of the pump casing 2d at a position eccentric from the rotor shaft center. By rotating eccentrically around the shaft 81, the object to be transferred is sucked from the intake port 18 and pressurized and discharged from the discharge port 55. The inside of the pump chamber 79 is divided into an intake port 18 side and a discharge port 55 side by a gate valve 82 that comes in and out of the pump chamber 79 in contact with the outer peripheral surface of the rotor 80. The discharge port 55 is provided with a check valve 83 for preventing a reverse flow of the discharged transferred object. The pump portion 51d is also of a positive displacement type, and the rotor 80 and the gate valve 82 constitute the pressurizing motion member of the present invention.
 図17(d)のポンプ部51eは渦巻き形のポンプケーシング2eを有する遠心ポンプであり、ポンプケーシング2eのポンプ室84内で、回転駆動軸85に取り付けられた羽根車86の回転による遠心力により、被移送物が取入口18より吸入されて加圧され吐出口55から吐出されるようになっている。このポンプ部51eは非容積式であり、羽根車86が本発明の加圧運動部材を構成している。
 更には、上記したポンプ部51~51eに替えて、例えば容積式である所謂モーノポンプ(Moineau Pump)を、本発明のポンプ部として用いることも可能である。このモーノポンプは、周知であるために図示は省略するが、ステータ内に収容された螺旋軸状のロータを回転させてステータとロータの間に生じたキャビティを軸心方向に移動させることによりキャビティ内の被移送物を搬送するようになっている。あるいは、斜板式可変容量ピストンポンプなどを、本発明のポンプ部として使用することも可能である。
The pump unit 51e shown in FIG. 17D is a centrifugal pump having a spiral pump casing 2e, and the centrifugal force generated by the rotation of the impeller 86 attached to the rotary drive shaft 85 in the pump chamber 84 of the pump casing 2e. The transferred object is sucked from the intake 18 and pressurized and discharged from the discharge port 55. This pump part 51e is a non-displacement type, and the impeller 86 comprises the pressurization motion member of this invention.
Furthermore, instead of the above-described pump units 51 to 51e, for example, a so-called Moineau Pump that is a positive displacement type can be used as the pump unit of the present invention. Although this MONO pump is well known and is not shown in the drawings, the cavity formed between the stator and the rotor is moved in the axial direction by rotating a helical shaft-shaped rotor housed in the stator. It is designed to transport the transferred object. Alternatively, a swash plate type variable displacement piston pump or the like can be used as the pump unit of the present invention.
 また、上記の実施形態1~6では、混合用回転軸29の撹拌用羽根部34a,34bおよびこれらに形成された貫通部35を有するブレンダユニット28a,28b,28cを例示したが、本発明はこれらに限定されない。例えば、図18(a)~図18(f)に示すようなブレンダユニット28d~28iをブレンダケーシング3aまたはブレンダケーシング3に用いることも可能である。
 まず、ブレンダユニット28dは、図18(a)に示すように、連続した螺旋状の撹拌用羽根板部34cが混合用回転軸29の外周面に設けられている。撹拌用羽根板部34cの半径方向の外縁部とブレンダケーシング3aの内周面3Aとの間には、被移送物が流通可能な隙間が設けられている。この隙間が通路部35aとして用いられる。このブレンダユニット28dは、図外のモータM1の駆動により規定回転方向(矢印Rc方向)に回転駆動される。そして、被移送物および副材料が図外のポンプ部の吐出口からブレンダユニット28dの一端部28A側に移送されてくると(矢印F方向)、回転する撹拌用羽根板部34cに当たって矢印g方向に押し戻される。一方で、一部の被移送物は通路部35aを通過する(矢印f方向)。これらの動作が繰り返されることにより、被移送物と副材料とが効率よく混合撹拌されたのちにブレンダケーシング3aの排出口19から排出されるのである。
In the first to sixth embodiments, the blender units 28a, 28b, and 28c having the stirring blade portions 34a and 34b of the mixing rotating shaft 29 and the through-holes 35 formed thereon are exemplified. It is not limited to these. For example, the blender units 28d to 28i as shown in FIGS. 18A to 18F can be used for the blender casing 3a or the blender casing 3.
First, as shown in FIG. 18A, the blender unit 28 d is provided with a continuous spiral stirring blade plate portion 34 c on the outer peripheral surface of the mixing rotary shaft 29. A gap is formed between the outer edge of the stirring blade plate 34c in the radial direction and the inner peripheral surface 3A of the blender casing 3a through which the transferred object can flow. This gap is used as the passage portion 35a. The blender unit 28d is rotationally driven in a specified rotational direction (arrow Rc direction) by driving a motor M1 (not shown). Then, when the object to be transferred and the auxiliary material are transferred from the discharge port of the pump unit (not shown) to the one end portion 28A side of the blender unit 28d (in the direction of arrow F), they strike the rotating stirring blade plate 34c and move in the direction of arrow g. Pushed back. On the other hand, a part of the transferred object passes through the passage portion 35a (in the direction of arrow f). By repeating these operations, the object to be transferred and the auxiliary material are efficiently mixed and stirred, and then discharged from the discharge port 19 of the blender casing 3a.
 ブレンダユニット28eは、図18(b)に示すように、連続した螺旋状の撹拌用羽根板部34dが混合用回転軸29の外周面に設けられている。撹拌用羽根板部34dには、被移送物が通過可能な貫通部(通路部;以下同じ)35b,35b,35b,・・・が形成されている。このブレンダユニット28eは、図外のモータM1の駆動により規定回転方向(矢印Rc方向:この場合は、一端部28A側から矢印F方向に見て時計回りの方向)に回転駆動され、被移送物および副材料を矢印g方向へ押し戻す動作と、貫通部35bで矢印f方向へ通過させる動作とが繰り返されることにより、被移送物と副材料とが効率よく混合撹拌され得る。
 ブレンダユニット28fは、図18(c)に示すように、螺旋帯状に連続して形成された撹拌用羽根板部34eが混合用回転軸29の周囲に中空配置され、連結棒41,41,41,・・・を介して混合用回転軸29に固定されている。そして、撹拌用羽根板部34eと混合用回転軸29との間の隙間が貫通部35cとなっている。このブレンダユニット28fでも、上記と同様に混合用回転軸29の回転駆動により、被移送物および副材料を矢印g方向へ押し戻す動作と、貫通部35cで矢印f方向へ通過させる動作とが繰り返されることにより、被移送物と副材料とが効率よく混合撹拌され得る。
As shown in FIG. 18B, the blender unit 28 e is provided with a continuous spiral stirring blade plate portion 34 d on the outer peripheral surface of the mixing rotary shaft 29. In the stirring blade plate portion 34d, through portions (passage portions; the same applies hereinafter) 35b, 35b, 35b,. This blender unit 28e is rotationally driven in the specified rotational direction (in the direction of arrow Rc: in this case, the clockwise direction as viewed in the direction of arrow F from the one end portion 28A) by driving of the motor M1 (not shown), By repeating the operation of pushing back the auxiliary material in the direction of arrow g and the operation of passing the auxiliary material in the direction of arrow f by the penetrating portion 35b, the transferred object and the auxiliary material can be mixed and stirred efficiently.
As shown in FIG. 18 (c), the blender unit 28 f has a stirring blade plate 34 e continuously formed in a spiral band shape and is disposed around the rotating shaft 29 for mixing, and is connected to connecting rods 41, 41, 41. ,... Are fixed to the mixing rotary shaft 29. And the clearance gap between the stirring blade part 34e and the rotating shaft 29 for mixing is the penetration part 35c. Also in the blender unit 28f, the operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g and the operation of passing the material in the direction of the arrow f by the penetrating portion 35c are repeated by the rotational drive of the mixing rotating shaft 29 as described above. Thus, the object to be transferred and the auxiliary material can be mixed and stirred efficiently.
 ブレンダユニット28gは、図18(d)に示すように、混合用回転軸29の円柱状の大径部の外周面に、多数の撹拌用羽根板部34f,34f,34f,・・・が非連続で設けられている。各撹拌用羽根板部34fは混合用回転軸29の軸心に対し傾斜して配置されている。各撹拌用羽根板部34fの傾きは、混合用回転軸29が規定の回転方向(矢印Rc方向)に回動されるときに被移送物および副材料をブレンダケーシング3a(または3)の一端部側に向けて押し戻し得るような傾きに設定されている。そして、或る撹拌用羽根板部34fと、混合用回転軸29の周方向の隣に位置する撹拌用羽根板部34fとの間は、それぞれ通路部35dとなっている。このブレンダユニット28gでも、上記と同様に混合用回転軸29の回転駆動により、被移送物および副材料を矢印g方向へ押し戻す動作と、通路部35dで矢印f方向へ通過させる動作とが繰り返されることにより、被移送物と副材料とが効率よく混合撹拌され得る。 As shown in FIG. 18D, the blender unit 28g has a large number of stirring blade portions 34f, 34f, 34f,... On the outer peripheral surface of the cylindrical large diameter portion of the mixing rotating shaft 29. It is provided continuously. Each stirring blade portion 34 f is arranged to be inclined with respect to the axis of the mixing rotary shaft 29. The inclination of each stirring blade plate part 34f is such that when the mixing rotary shaft 29 is rotated in a specified rotational direction (arrow Rc direction), the one end of the blender casing 3a (or 3) removes the transferred object and the auxiliary material. The inclination is set so that it can be pushed back toward the side. A passage portion 35d is provided between a certain stirring blade plate portion 34f and the stirring blade plate portion 34f located adjacent to the circumferential direction of the mixing rotation shaft 29. Also in this blender unit 28g, the operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g by the rotational drive of the mixing rotary shaft 29 and the operation of passing in the direction of the arrow f by the passage portion 35d are repeated. Thus, the object to be transferred and the auxiliary material can be mixed and stirred efficiently.
 ブレンダユニット28hは、図18(e)に示すように、螺旋帯状に形成された撹拌用羽根板部34gの他端部が混合用回転軸29に連結され、一端部28Aは遊動端となっている。そして、撹拌用羽根板部34gの軸心部は中空になっており、この中空部分が貫通部35eとされている。このブレンダユニット28hでも、上記と同様に混合用回転軸29の回転駆動により、被移送物および副材料を矢印g方向へ押し戻す動作と、貫通部35eで矢印f方向へ通過させる動作とが繰り返されることにより、被移送物と副材料とが効率よく撹拌混合され得る。
 ブレンダユニット28iは、図18(f)に示すように、螺旋帯状に形成された撹拌用羽根板部34hの軸心穴部分に沿って、更に小径の螺旋帯状の撹拌用羽根板部34iが添えて設けられ、撹拌用羽根板部34iの軸心穴部分が貫通部35fとされている。このようなブレンダユニット28iでも、上記と同様に混合用回転軸29の回転駆動により、被移送物および副材料を矢印g方向へ押し戻す動作と、貫通部35fで矢印f方向へ通過させる動作とが繰り返されることにより、被移送物と副材料とが効率よく撹拌混合され得る。
In the blender unit 28h, as shown in FIG. 18 (e), the other end portion of the stirring blade plate portion 34g formed in a spiral band shape is connected to the mixing rotary shaft 29, and the one end portion 28A serves as a free end. Yes. And the axial center part of the stirring blade part 34g is hollow, and this hollow part is made into the penetration part 35e. Also in the blender unit 28h, the operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g and the operation of passing the material in the direction of the arrow f by the penetrating part 35e are repeated by the rotational drive of the mixing rotating shaft 29 as described above. Thus, the transferred object and the auxiliary material can be efficiently stirred and mixed.
As shown in FIG. 18 (f), the blender unit 28i is further provided with a stirring blade plate portion 34i having a smaller diameter spiral band along the axial hole portion of the stirring blade plate portion 34h formed in a spiral band shape. The shaft hole portion of the stirring blade portion 34i is a through portion 35f. In such a blender unit 28i as well, an operation of pushing back the object to be transferred and the auxiliary material in the direction of the arrow g by the rotational drive of the mixing rotary shaft 29 and an operation of passing through the through portion 35f in the direction of the arrow f are performed. By being repeated, the transferred object and the auxiliary material can be efficiently stirred and mixed.
 尚、本発明のブレンダ付きポンプによる移送およびブレンダによる撹拌混合に用いられる高粘度の被移送物Qとしては、上記した溶融キャンディー材料以外に、例えば水飴、味噌などの食品、クリームなどの化粧料、溶融合成樹脂などの工業材料、あるいは医療用材料なども挙げられる。 In addition, as the high-viscosity transfer object Q used for transfer by the blender-equipped pump of the present invention and stirring and mixing by the blender, in addition to the above-mentioned molten candy material, for example, foods such as starch syrup and miso, cosmetics such as cream, Examples include industrial materials such as molten synthetic resins, and medical materials.

Claims (8)

  1.  外部のポンプ部の吐出口に連結されるとともに外部からの副材料を取り入れるための投入口を有する筒状の副材料投入部と、
     前記副材料投入部に一端部が連結されるとともに被移送物および副材料をポンプ外へ排出するための排出口が他端部に形成された筒状のブレンダケーシング、前記ブレンダケーシング内に当該ブレンダケーシングの筒心方向に沿って配備されるとともに外部の回転駆動源と連結されて回転駆動される混合用回転軸、前記混合用回転軸の外周面に設けられた撹拌用板部材、ならびに、前記撹拌用板部材と前記ブレンダケーシングの内周面との間または前記撹拌用板部材自体に、被移送物を被移送物移送方向に通過可能に形成された通路部を、備えて成るブレンダ部と、から構成されていて、
     前記ブレンダ部の撹拌用板部材は、前記混合用回転軸が規定の回転方向に回動されるときに前記被移送物および前記副材料を前記ブレンダケーシングの一端部側に向けて押し戻すように、前記混合用回転軸の軸心に対し傾斜して配置されていることを特徴とするブレンダ。
    A cylindrical secondary material input unit connected to the discharge port of the external pump unit and having an input port for taking in external secondary material,
    A cylindrical blender casing having one end connected to the auxiliary material charging portion and a discharge port for discharging the transferred object and the auxiliary material to the outside of the pump, and the other blender casing. A mixing rotating shaft that is arranged along the cylinder center direction of the casing and is rotationally driven by being connected to an external rotation driving source, a stirring plate member provided on an outer peripheral surface of the mixing rotating shaft, and the above A blender portion comprising a passage portion formed between the stirring plate member and the inner peripheral surface of the blender casing or in the stirring plate member itself so as to allow the material to be transferred to pass in the direction to which the material is transferred; Consists of
    The agitating plate member of the blender unit is configured to push back the transferred object and the auxiliary material toward one end side of the blender casing when the mixing rotation shaft is rotated in a predetermined rotation direction. A blender, wherein the blender is disposed to be inclined with respect to the axis of the mixing rotating shaft.
  2.  前記ブレンダケーシングの他端部が、前記混合用回転軸の片端部を片持ち状で回動自在に支承するブレンダ用軸受部に連結されるとともに、前記混合用回転軸の片端部が前記ブレンダ用軸受部を介してブレンダ用回転駆動源に接続されていることを特徴とする請求項1に記載のブレンダ。 The other end portion of the blender casing is connected to a blender bearing portion that rotatably supports one end portion of the mixing rotating shaft in a cantilevered manner, and one end portion of the mixing rotating shaft is used for the blender. The blender according to claim 1, wherein the blender is connected to a rotational drive source for the blender via a bearing portion.
  3.  前記ブレンダ部の混合用回転軸として、1本の混合用回転軸が用いられることを特徴とする請求項1または請求項2に記載のブレンダ。 The blender according to claim 1 or 2, wherein a single mixing rotation shaft is used as the mixing rotation shaft of the blender section.
  4.  前記撹拌用板部材における接続口側の面に、前記接続口を向く方向に突出した突出部が設けられていることを特徴とする請求項1から請求項3までのいずれか一項に記載のブレンダ。 The protrusion part which protruded in the direction which faces the said connection port is provided in the surface at the side of the connection port in the said stirring board member, The Claim 1 characterized by the above-mentioned. Brenda.
  5.  被移送物を取り入れるための取入口および被移送物を吐出するための吐出口を有するポンプケーシング、ならびに、前記ポンプケーシング内に配備されるとともに前記取入口からの被移送物を加圧して前記吐出口へ送り出す加圧運動部材、を有するポンプ部を備え、
     前記ポンプ部のポンプケーシングの吐出口が、請求項1から請求項4までのいずれか一項に記載のブレンダにおける副材料投入部の接続口に連結されていることを特徴とするブレンダ付きポンプ。
    A pump casing having an inlet for taking in the object to be transferred and an outlet for discharging the object to be transferred; and a pump casing which is disposed in the pump casing and pressurizes the object to be transferred from the inlet. A pressurizing motion member that is sent to the outlet,
    The pump with a blender, wherein the discharge port of the pump casing of the pump unit is connected to the connection port of the auxiliary material charging unit in the blender according to any one of claims 1 to 4.
  6.  前記ポンプ部が、互いに非接触で螺合して回転する加圧運動部材である一対のポンプスクリューと、前記一対のポンプスクリューを非接触で収容する収容室がケーシング内に形成されていて前記一対のポンプスクリューと前記収容室とによりポンプ室を形成するポンプケーシングと、から構成され、前記一対のポンプスクリューの片端部を片持ち状で回動自在に支承するポンプ用軸受部が前記ポンプケーシングの一端部に連結され、前記一対のポンプスクリューのそれぞれの遊動端に、各ポンプスクリューと同軸心に配置された一対の混合用回転軸の一端部がそれぞれ連結され、前記一対の混合用回転軸の外周面にそれぞれ前記撹拌用羽根板部が設けられ、前記ポンプケーシングの他端部に、前記一対の混合用回転軸を収容するブレンダケーシングの一端部が連結され、前記ポンプスクリューと前記撹拌用羽根板部の間のブレンダケーシングに、ポンプ外からの副材料をポンプケーシング内に取り入れるための投入口を有する副材料投入部が設けられ、前記混合用回転軸の遊動端側のブレンダケーシングに、被移送物および副材料をポンプ外へ排出するための排出口が設けられていることを特徴とする請求項5に記載のブレンダ付きポンプ。 A pair of pump screws, each of which is a pressurizing motion member that is screwed and rotated in a non-contact manner, and a storage chamber that accommodates the pair of pump screws in a non-contact manner are formed in the casing. A pump casing which forms a pump chamber by the pump screw and the storage chamber, and a bearing portion for the pump which rotatably supports one end portion of the pair of pump screws in a cantilevered manner. One end of a pair of mixing rotary shafts connected coaxially with each pump screw is connected to each free end of the pair of pump screws. Each of the stirring blades is provided on the outer peripheral surface, and the other end of the pump casing accommodates the pair of mixing rotating shafts. One end of the sing is connected, and a secondary material charging part having a charging port for taking in the secondary material from outside the pump is provided in the blender casing between the pump screw and the stirring blade plate part. 6. The blender pump according to claim 5, wherein a discharge port for discharging the transferred object and the auxiliary material to the outside of the pump is provided in the blender casing on the floating end side of the mixing rotating shaft. .
  7.  前記一対の混合用回転軸のそれぞれの外周面に設けられる撹拌用羽根板部が、各混合用回転軸に連結されているポンプスクリューの螺旋方向とは逆向きの螺旋状に配置して設けられ、前記一対の混合用回転軸の撹拌用羽根板部が互いに非接触で螺合して回転可能に配置され、各撹拌用羽根板部に、被移送物通過可能な貫通部が被移送物移送方向に貫通して形成されていることを特徴とする請求項6に記載のブレンダ付きポンプ。 Stirring blades provided on the outer peripheral surfaces of the pair of mixing rotary shafts are arranged in a spiral shape opposite to the spiral direction of the pump screw connected to each mixing rotary shaft. The stirring blades of the pair of mixing rotating shafts are screwed in a non-contact manner so that they can rotate, and through each of the stirring blades has a through-portion through which a material to be transferred can be transferred. The blender-equipped pump according to claim 6, wherein the blender pump is formed so as to penetrate in a direction.
  8.  前記貫通部が、前記撹拌用羽根板部の回転軸半径方向最外の外周面から回転軸心向きに切り欠かれて形成されていることを特徴とする請求項7に記載のブレンダ付きポンプ。 8. The blender-equipped pump according to claim 7, wherein the penetrating portion is formed by cutting away from the outermost circumferential surface in the radial direction of the rotation axis of the stirring blade plate toward the rotation axis.
PCT/JP2014/075404 2013-09-26 2014-09-25 Blender and pump with blender WO2015046318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539308A JP6341921B2 (en) 2013-09-26 2014-09-25 Blender pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199440 2013-09-26
JP2013-199440 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015046318A1 true WO2015046318A1 (en) 2015-04-02

Family

ID=52743452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075404 WO2015046318A1 (en) 2013-09-26 2014-09-25 Blender and pump with blender

Country Status (2)

Country Link
JP (1) JP6341921B2 (en)
WO (1) WO2015046318A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196466A1 (en) * 2016-01-20 2017-07-26 FRISTAM Pumpen Schaumburg GmbH Displacement pump
CN107964858A (en) * 2017-11-30 2018-04-27 长安大学 A kind of prefabricated block molding equipment of asphalt
IT201800009944A1 (en) 2018-10-31 2020-05-01 Nova Rotors Srl "VOLUMETRIC PUMP"
WO2021161067A1 (en) * 2020-02-12 2021-08-19 Nova Rotors Srl Positive displacement pump
CN115770537A (en) * 2022-12-06 2023-03-10 烟台科立化工设备有限公司 Tubular reactor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1197523A (en) * 1967-03-21 1970-07-08 Vyzk Ustav Organ Syntez Apparatus for the Dispersion of Suspensions of Solid Particles
JPS5735736U (en) * 1980-07-31 1982-02-25
JPS5824492U (en) * 1981-08-12 1983-02-16 陳 聰海 Fluid mixing transport device
JPS58151433U (en) * 1982-03-31 1983-10-11 株式会社マリンプロジエクト Mixing stirring type screw conveyor
JPH05413A (en) * 1990-07-11 1993-01-08 Nippon Shokubai Co Ltd Manufacture of fiber reinforced thermosetting resin molding material
JPH09239255A (en) * 1996-03-07 1997-09-16 Chichibu Eng Kk Powder mixer
JPH09263723A (en) * 1996-03-28 1997-10-07 The Inctec Inc Production of offset ink
JPH10151334A (en) * 1996-11-22 1998-06-09 Nippon Spindle Mfg Co Ltd Kneading rotor for kneader
JPH10264148A (en) * 1996-12-24 1998-10-06 Kobe Steel Ltd Double-screw kneader
JP2005054691A (en) * 2003-08-05 2005-03-03 Futsuko Kinzoku Kogyo Kk Two-shaft screw pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611941Y2 (en) * 1976-03-05 1981-03-18
JPH09309612A (en) * 1996-05-17 1997-12-02 Nippon Conveyor Kk Agitating-kneading device
JP2002187192A (en) * 2000-12-22 2002-07-02 Mitsubishi Chemicals Corp Extrusion molding machine
JP4252016B2 (en) * 2004-06-21 2009-04-08 株式会社神戸製鋼所 Extruder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1197523A (en) * 1967-03-21 1970-07-08 Vyzk Ustav Organ Syntez Apparatus for the Dispersion of Suspensions of Solid Particles
JPS5735736U (en) * 1980-07-31 1982-02-25
JPS5824492U (en) * 1981-08-12 1983-02-16 陳 聰海 Fluid mixing transport device
JPS58151433U (en) * 1982-03-31 1983-10-11 株式会社マリンプロジエクト Mixing stirring type screw conveyor
JPH05413A (en) * 1990-07-11 1993-01-08 Nippon Shokubai Co Ltd Manufacture of fiber reinforced thermosetting resin molding material
JPH09239255A (en) * 1996-03-07 1997-09-16 Chichibu Eng Kk Powder mixer
JPH09263723A (en) * 1996-03-28 1997-10-07 The Inctec Inc Production of offset ink
JPH10151334A (en) * 1996-11-22 1998-06-09 Nippon Spindle Mfg Co Ltd Kneading rotor for kneader
JPH10264148A (en) * 1996-12-24 1998-10-06 Kobe Steel Ltd Double-screw kneader
JP2005054691A (en) * 2003-08-05 2005-03-03 Futsuko Kinzoku Kogyo Kk Two-shaft screw pump

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196466A1 (en) * 2016-01-20 2017-07-26 FRISTAM Pumpen Schaumburg GmbH Displacement pump
CN106989009A (en) * 2016-01-20 2017-07-28 弗里斯坦泵业绍姆堡股份有限公司 Displacement pump
CN106989009B (en) * 2016-01-20 2018-08-07 弗里斯坦泵业绍姆堡股份有限公司 positive displacement pump
CN107964858A (en) * 2017-11-30 2018-04-27 长安大学 A kind of prefabricated block molding equipment of asphalt
IT201800009944A1 (en) 2018-10-31 2020-05-01 Nova Rotors Srl "VOLUMETRIC PUMP"
WO2021161067A1 (en) * 2020-02-12 2021-08-19 Nova Rotors Srl Positive displacement pump
US12038004B2 (en) 2020-02-12 2024-07-16 Nova Rotors Srl Positive displacement pump with bearings, a keying device, and gears
CN115770537A (en) * 2022-12-06 2023-03-10 烟台科立化工设备有限公司 Tubular reactor
CN115770537B (en) * 2022-12-06 2023-12-05 烟台科立化工设备有限公司 Tubular reactor

Also Published As

Publication number Publication date
JP6341921B2 (en) 2018-06-13
JPWO2015046318A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015046318A1 (en) Blender and pump with blender
EP2374528B1 (en) Apparatus for powder particle agitation
US20140078858A1 (en) Method and Apparatus for Improved Mixing of Solid, Liquid, or Gaseous Materials and Combinations Thereof
US9377021B1 (en) Replaceable rotor pads for use with positive displacement pump
US8087914B1 (en) Positive displacement pump with improved rotor design
EP2827721B1 (en) Arrangement and method for mixing of particulate filling into consumer ice mass
US8821141B2 (en) Positive displacement rotary pumps with improved cooling
CN102574672A (en) Beverage cartridge
KR20150081317A (en) Rotary piston pump having direct drive
JP4256330B2 (en) Closed kneading machine and kneading rotor used therefor
US6402360B1 (en) Internal batch mixing machines and rotors
US20140271313A1 (en) Toothed-Lobed Gear Pump
KR20160061074A (en) a filling machine of processed food
CA2869344A1 (en) Metering pump made of plastic
JP4072477B2 (en) Twin screw pump
BR112015012372B1 (en) PROGRESSIVE CAVITY AND CASING WHEEL PUMP
WO2015178425A1 (en) Integrated refining device having mill function and blade shearing function
JP6799233B2 (en) 2-axis screw pump
RU92489U1 (en) TWO SCREW PUMP FOR PUMPING HIGH VISCOUS MULTI-PHASE MEDIA
JP2010013951A (en) Two-shaft screw pump
JP6799234B2 (en) Pump system
US20120219442A1 (en) Pump device for ice cream or yogurt machine
JP2020148163A (en) Two-axis screw pump
US20140348669A1 (en) Pump Device for Ice Cream or Yogurt Machine
KR101649026B1 (en) High pressure quantitative compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848938

Country of ref document: EP

Kind code of ref document: A1