WO2015046256A1 - Resin composition, method for producing same, and use of same - Google Patents

Resin composition, method for producing same, and use of same Download PDF

Info

Publication number
WO2015046256A1
WO2015046256A1 PCT/JP2014/075301 JP2014075301W WO2015046256A1 WO 2015046256 A1 WO2015046256 A1 WO 2015046256A1 JP 2014075301 W JP2014075301 W JP 2014075301W WO 2015046256 A1 WO2015046256 A1 WO 2015046256A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
resin composition
tin
phosphate glass
thermoplastic fluororesin
Prior art date
Application number
PCT/JP2014/075301
Other languages
French (fr)
Japanese (ja)
Inventor
省吾 小寺
淳 渡壁
松本 修治
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015539266A priority Critical patent/JPWO2015046256A1/en
Publication of WO2015046256A1 publication Critical patent/WO2015046256A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/12Polymers

Definitions

  • the present invention relates to a novel resin composition, and further includes a sealing material for a semiconductor device comprising the resin composition, a semiconductor device provided with the sealing material for a semiconductor device in a sealing portion, and the resin composition. It relates to a manufacturing method.
  • a power semiconductor device refers to a semiconductor device that controls and supplies power, and typically has a structure in which a power semiconductor element is sealed in a package. During operation, the power semiconductor device generates heat from the power semiconductor element and becomes high temperature. Therefore, a sealing material used in a power semiconductor device is required to have durability at high temperatures, and to have a low coefficient of linear expansion in order to avoid generation of cracks and separation from a semiconductor element or substrate. .
  • An object of the present invention is to provide a novel resin composition having good durability at a high temperature and a low coefficient of linear expansion, and further, a sealing material for a semiconductor device comprising the resin composition (particularly, It is an object of the present invention to provide a power semiconductor device sealing material), a semiconductor device (particularly, a power semiconductor device) including the sealing material in a sealing portion, and a method for producing the resin composition.
  • thermoplastic fluororesins are excellent in heat resistance, and glass including tin-phosphate glass is excellent in rigidity.
  • good durability at high temperature and low linear expansion coefficient in the resin composition of the present invention cannot be explained from such properties.
  • the following factors can be considered as factors for obtaining good high-temperature durability and low linear expansion coefficient according to the present invention.
  • thermoplastic fluororesin with a tin-phosphate glass having a relatively low softening point.
  • the glass can be fused to form a continuous phase in the thermoplastic fluororesin matrix by heat and shearing force such as a sealing process.
  • the gist of the present invention is the following [1] to [10].
  • [1] A resin composition comprising a thermoplastic fluororesin and lead and alkali metal-free tin-phosphate glass.
  • [2] The resin composition according to [1], wherein the tin-phosphate glass contains 35 to 150 parts by volume with respect to 100 parts by volume of the thermoplastic fluororesin.
  • [3] The above [1] or [2], wherein the tin-phosphate glass contains 5 to 35 mol% P 2 O 5 and 45 to 85 mol% SnO in terms of mol% based on oxide. Resin composition.
  • thermoplastic fluororesin is a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer.
  • the resin composition of the present invention has good durability at high temperatures and a low linear expansion coefficient, and can be suitably used as a sealing material for semiconductor devices, particularly as a sealing material for power semiconductor devices.
  • the semiconductor device provided with the sealing material made of the resin composition of the present invention in the sealing part has excellent resistance in a severely used environment, and excellent characteristics even when the semiconductor device is a power semiconductor device. Can be held.
  • Example 4 is an electron micrograph of a fractured section of the kneaded material of Example 4.
  • 4 is an electron micrograph of a raw material of tin-phosphate glass used in Example 4.
  • FIG. 6 is an electron micrograph of a cut section of a film-like sample of Example 4.
  • the resin composition of the present invention comprises a thermoplastic fluororesin and lead and alkali metal free tin-phosphate glass.
  • the resin composition of the present invention contains a thermoplastic fluororesin.
  • the thermoplastic fluororesin is not particularly limited, and examples thereof include fluoroolefin polymers and copolymers.
  • a thermoplastic fluororesin having a melt flow rate of 1 to 150 g / min can be used, preferably 1 to 50 g / min, more preferably 5 to 40 g / min.
  • the melt flow rate (MFR) is a value measured under conditions of a temperature of 372 ° C. and a load of 5 kgf in accordance with ASTM D3307.
  • Thermoplastic fluororesins include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), Examples include chlorotrifluoroethylene polymer (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), vinylidene fluoride polymer (PVDF), and vinyl fluoride polymer (PVF). Among them, PFA is preferable because it is excellent in heat resistance and particularly advantageous in terms of molding characteristics at high temperature and mechanical characteristics at high temperature.
  • polymers and copolymers may contain units other than the repeating units constituting these polymers and copolymers as long as the effects of the present invention are not impaired.
  • Such other repeating units are preferably 10 mol% or less, more preferably 5 mol% or less, in 100 mol% of all repeating units.
  • thermoplastic fluororesin may be used alone or in combination of two or more.
  • Lead and alkali metal-free tin-phosphate glass means glass that does not substantially contain lead and alkali metals, and lead and alkali metals inevitably mixed in Is acceptable. That is, the tin-phosphate glass in the present invention contains substantially no lead and substantially no alkali metal.
  • substantially means 0.1 mol% or less based on the oxide. That is, the resin composition of the present invention is lead-free, does not contain lead, which is a typical environmentally restricted substance, and is environmentally friendly.
  • the resin composition of the present invention is preferable in terms of guaranteeing the operation of the semiconductor element because it is free of alkali metal and can suppress the occurrence of malfunction of the semiconductor element due to diffusion of alkali ions.
  • the softening point of tin-phosphate glass can be 260 to 400 ° C. from the viewpoint of moldability of the resin composition, preferably 280 to 390 ° C., more preferably 320 to 380 ° C.
  • the tin-phosphate glass preferably contains 5 to 35 mol% P 2 O 5 and 45 to 85 mol% SnO, and may contain ZnO, in terms of mol% on the oxide basis.
  • tin-phosphate glass can have the following composition: P 2 O 5 5 to 35 mol% SnO 45-85 mol% ZnO 0-40 mol% MgO 0-5 mol% CaO 0-10 mol% SrO 0-10 mol% BaO 0-10 mol% B 2 O 3 0-25 mol% Al 2 O 3 0-3 mol% Ga 2 O 3 0-5 mol% In 2 O 3 0-5 mol% WO 3 0-5 mol% SiO 2 0-3 mol%
  • the composition of the tin-phosphate glass the following composition is more preferable.
  • Tin-phosphate glass may be used alone or in combination of two or more.
  • the resin composition of the present invention contains a thermoplastic fluororesin and tin-phosphate glass.
  • the tin-phosphate glass is preferably 35 to 150 parts by volume, more preferably 45 to 130 parts by volume, and more preferably 55 to 120 parts by volume with respect to 100 parts by volume of the thermoplastic fluororesin in the resin composition. It is particularly preferred that Here, the volume part is a value calculated based on a volume of 25 ° C.
  • the proportion of the thermoplastic fluororesin in the resin composition of the present invention is preferably 20 to 70% by volume, and preferably 30 to 67% by volume from the viewpoint of moldability and reliability as a sealing material. Is more preferable, and 35 to 65% by volume is particularly preferable.
  • the resin composition of this invention can contain a filler from the point of improvement of mechanical strength.
  • the filler include inorganic fillers such as silica, alumina, boron nitride, aluminum nitride, talc, calcium carbonate, silicon nitride, silicon carbide, titanium carbide, tungsten carbide, carbon, tungsten oxide, magnesium oxide, and zinc oxide.
  • inorganic fillers such as silica, alumina, boron nitride, aluminum nitride, tungsten oxide, magnesium oxide, or zinc oxide.
  • the shape of the filler is not particularly limited, and examples thereof include particles and fibers.
  • the particles may be flakes, plates, spheres, and the like.
  • the average particle size is 0.1 to 10 ⁇ m because it is easy to uniformly disperse in the composition, is advantageous in terms of workability, and improves mechanical strength. It is preferably 0.1 to 5 ⁇ m.
  • the fiber diameter is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and the aspect ratio is preferably 10 to 1000, More preferably, it is 10 to 100.
  • the numerical value regarding the size of the filler is a value obtained by analyzing an image observed with a scanning electron microscope (SEM).
  • the filler can be used in an amount of 50% by volume or less in the resin composition of the present invention, and 5-40% by volume from the viewpoint of improving the mechanical strength while keeping the coefficient of linear expansion low. 10 to 40% by volume is more preferable.
  • the filler may be used alone or in combination of two or more.
  • the resin composition of the present invention may contain processing aids, stabilizers and the like as long as the effects of the present invention are not impaired.
  • the resin composition of the present invention can be obtained by blending a thermoplastic fluororesin and tin-phosphate glass.
  • an optional component for example, filler
  • the resin composition of the present invention is obtained by blending a thermoplastic fluororesin, tin-phosphate glass, and optionally an optional component.
  • thermoplastic fluororesin and tin-phosphate glass are prepared; the thermoplastic fluororesin and tin-phosphate glass are heated at a temperature equal to or higher than the softening point of tin-phosphate glass. It is preferable to knead. Further, the kneading is preferably performed at a temperature below the decomposition point of the thermoplastic fluororesin.
  • thermoplastic fluororesin and tin-phosphate glass This production method makes it possible to easily integrate the thermoplastic fluororesin and tin-phosphate glass, and to exhibit good durability at high temperatures and a low linear expansion coefficient.
  • the form of the tin-phosphate glass to be kneaded is not particularly limited, and may be particles and the like, and particles are preferable from the viewpoint of workability and uniformity of the obtained resin composition.
  • the average particle diameter is preferably 0.001 to 5 mm, more preferably 0.1 to 1 mm.
  • thermoplastic fluororesin subjected to kneading is not particularly limited, and may be particles, pellets, granules and the like, and pellets and granules are preferable from the viewpoint of workability and uniformity of the obtained resin composition.
  • the average particle size is preferably from 0.1 to 5 mm, more preferably from 0.1 to 1 mm.
  • thermoplastic fluororesin, tin-phosphate glass and optionally optional components may be blended and then mixed under heating. Mixing under heating while sequentially adding each component. May be.
  • the heating temperature can be performed at a temperature equal to or higher than the softening point of tin-phosphate glass, and is usually 260 to 400 ° C., preferably 280 to 390 ° C.
  • the heating temperature is preferably below the decomposition point of the thermoplastic fluororesin. Therefore, the softening point of tin-phosphate glass is preferably below the decomposition point of the thermoplastic fluororesin.
  • the decomposition point of the thermoplastic fluororesin is a 5% weight loss value measured by thermogravimetry (TGA).
  • the kneading time can be appropriately set, for example, 1 to 60 minutes, and preferably 5 to 45 minutes.
  • the resin composition which is a kneaded product thus obtained, can have a uniform structure in which tin-phosphate glass is dispersed in a thermoplastic fluororesin matrix.
  • the resin composition may be subjected to a molding or sealing process without cooling.
  • the resin composition of the present invention can be used as a sealing material for semiconductor devices.
  • the semiconductor device can be sealed by a method such as transfer molding, injection molding, compression molding or the like.
  • the resin composition of the present invention is suitable for sealing by transfer molding.
  • a substrate on which a semiconductor element is mounted is placed in a cavity of a mold, a sealing material is filled in the cavity, the substrate on which the semiconductor element is mounted is sealed, and a semiconductor device is prepared. can do.
  • the heating and material injection speed conditions in transfer molding are, for example, 200 to 370 ° C., preferably 200 to 330 ° C. and 1 to 100 cm 3 / min, preferably 1 to 30 cm 3 / min. It can be sealed without damaging it. If the injection rate is within the above range, the injection pressure is not particularly limited, although it depends on the viscosity of the resin composition (during heating).
  • the resin composition of the present invention can maintain an excellent storage modulus (for example, 0.1 to 1.1 GPa) even at high temperatures (for example, up to 250 ° C.), and is excellent in durability at high temperatures. . Furthermore, since the coefficient of linear expansion is low (for example, 15 to 90 ppm / K) and the difference in coefficient of linear expansion from a semiconductor element or substrate can be reduced, it is suitable as a sealing material for semiconductor devices. Separation of the material from the semiconductor element or package can be suppressed, and a highly reliable semiconductor device can be obtained. Furthermore, since a thermoplastic fluororesin is used, it is excellent in dielectric characteristics and can sufficiently respond even when high frequency characteristics are required. Because of these advantages, the resin composition of the present invention is suitable as a sealing material for semiconductor devices, particularly as a sealing material for power semiconductor devices, but can be used for other purposes.
  • a semiconductor device provided with a sealing portion of a sealing material for a semiconductor device using the resin composition of the present invention will be described. That is, as a method for producing a semiconductor device of the present invention, a semiconductor element is prepared; a thermoplastic fluororesin and tin-phosphate glass are prepared; a thermoplastic fluororesin and tin-phosphate glass are blended, and a resin composition A production method for sealing a semiconductor element with a resin composition is exemplified. A power semiconductor device is preferable as the semiconductor device.
  • the sealing portion included in the semiconductor device of the present invention has excellent heat resistance and hot durability, and can withstand high temperatures such as 250 ° C.
  • Storage modulus (Storage modulus) Using a solid dynamic viscoelasticity measuring apparatus (DVA-220, manufactured by IT Measurement Co., Ltd.), the evaluation sample was subjected to conditions of 50 mm to 250 ° C. under conditions of 20 mm between chucks, a heating rate of 2 ° C./min, and a measurement frequency of 10 Hz. The storage elastic modulus was measured. The evaluation sample was produced by cutting out the sample of each example into a width of 5 mm.
  • DVA-220 solid dynamic viscoelasticity measuring apparatus
  • thermomechanical measuring apparatus TMA (Thermo-mechanical property evaluation)
  • TMA thermomechanical measuring apparatus
  • ppm / K The linear expansion coefficient (ppm / K) was calculated from the temperature change of the dimensional change at 150 ° C. based on the measurement result.
  • the evaluation sample was produced by cutting out the sample of each example into a width of 5 mm.
  • the diameter of the circumscribed circle for each particle was measured.
  • the diameter values are arranged in order from the largest, and two points, a value of 10% from the largest and a value of 10% from the smallest, are obtained, and this range is defined as the particle diameter.
  • the particle diameter was about 0.1 mm or less, the same photograph was taken with a scanning electron microscope (S-4300, manufactured by Hitachi, Ltd.) to determine the particle diameter.
  • the rotation speed was gradually increased from 10 rotations per minute to 150 rotations per minute (in the case of R30CS, 50 rotations per minute), and kneading was performed at the same rotation speed for 15 minutes. Thereafter, the kneaded material is taken out and pressed for 5 minutes at a press temperature of 4 MPa and a pressure of 4 MPa using a flat plate press (manufactured by Toyo Seiki Seisakusho Co., Ltd., Mini Press) to produce a film-like sample having the thickness shown in Table 1. did. The above characteristics were measured for this sample. The results are shown in Table 2.
  • the materials used are as follows. (1) PFA1 Asahi Glass Co., Ltd. tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, (registered trademark) Fluon PFA X-61XP (MFR 41.7 g / min (372 ° C.), decomposition point 510 ° C., pellet (average diameter of about 2 mm, long) 4mm cylindrical))) (2) PFA2 Asahi Glass Co., Ltd.
  • FIG. 1 is an electron micrograph of a fractured section of the kneaded material of Example 4. It can be seen that tin-phosphate glass is dispersed in the matrix of the thermoplastic fluororesin.
  • FIG. 2 is an electron micrograph of the raw material of tin-phosphate glass used in Example 4.
  • 3 is an electron micrograph of a fractured section of the film-like sample of Example 4.
  • FIG. It can be seen that the tin-phosphate glasses are fused together to form a continuous phase.
  • the mechanical strength can be improved by adding more filler.
  • the linear expansion coefficient is 100 ppm / K or more, which is large.
  • the thermoplastic fluororesin is changed from PFA to ETFE or FEP.
  • the example (Example 23) has a smaller coefficient of linear expansion and a lower storage elastic modulus than the comparative example (Example 28).
  • the examples (Examples 24 and 25) have a smaller coefficient of linear expansion and a lower storage elastic modulus than the comparative examples (Examples 26 and 27).
  • Examples 29 and 30 are examples in which a resin composition containing tin-phosphate glass containing an alkali metal such as Na and PFA was prepared.
  • the linear expansion coefficient was smaller than that of the thermoplastic resin alone, but was larger than that of the above-described example (an example using tin-phosphate glass containing no alkali metal). This is probably because the glass phases in Examples 29 and 30 were simply dispersed in the resin composition. The reason for this difference is that the glass contains an alkali metal component, so the difference between the surface tension of the phase formed by the molten glass and the surface tension of the phase formed by the softened resin is large, which is ideal. This is thought to be because a mixed state of typical phases is difficult to form.
  • Example 3 The test pieces prepared in Examples 3, 29 and 30 were immersed in warm water (ion exchange water) at 80 ° C. for 1 week. When the water after the test was measured by ICP emission spectroscopic analysis, no alkali metal was detected in Example 3. On the other hand, in Examples 29 and 30, elution of alkali metal was observed.
  • Example 18 Using the resin composition of Example 18, the semiconductor element is sealed by transfer molding to obtain a semiconductor device. A GaN frequency conversion element is used as the semiconductor element. Measure the operating characteristics and confirm that there are no problems.
  • the resin composition of the present invention has good durability at high temperatures and a low linear expansion coefficient, and can be suitably used as a sealing material for semiconductor devices, particularly as a sealing material for power semiconductor devices.
  • the usefulness above is high.
  • a semiconductor device provided with a sealing material for a semiconductor device made of the resin composition of the present invention in a sealing part is excellent in resistance in a thermally severe use environment, and even when the semiconductor device is a power semiconductor device, Excellent characteristics can be maintained.
  • the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-200170 filed on September 27, 2013 is cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a novel resin composition having good durability at high temperatures and a low linear expansion coefficient. A resin composition comprising a thermoplastic fluororesin and a lead-free and alkali metal-free tin-phosphate glass; a sealing material for semiconductor devices, which comprises the resin composition; a semiconductor device in which the sealing material for semiconductor devices is provided at a sealing part; and a method for producing the resin composition, which comprises kneading a thermoplastic fluororesin and a lead-free and alkali metal-free tin-phosphate glass together at a temperature that is equal to or higher than the softening point of the tin-phosphate glass.

Description

樹脂組成物、その製造方法及びその使用Resin composition, production method thereof and use thereof
 本発明は、新規な樹脂組成物に関し、さらには、この樹脂組成物からなる半導体装置用封止材、この半導体装置用封止材を封止部に備えた半導体装置、及びこの樹脂組成物の製造方法に関する。 The present invention relates to a novel resin composition, and further includes a sealing material for a semiconductor device comprising the resin composition, a semiconductor device provided with the sealing material for a semiconductor device in a sealing portion, and the resin composition. It relates to a manufacturing method.
 自動車やトラック、船舶、鉄道車両等に搭載される電力制御・変換用装置として、パワー半導体装置の需要が拡大している。パワー半導体装置は、電力の制御及び供給を行う半導体装置をいい、典型的には、パワー半導体素子がパッケージ内に封止された構造を有する。パワー半導体装置は、動作中に、パワー半導体素子から熱が発生し高温になる。そのため、パワー半導体装置に用いられる封止材には、高温での耐久性が求められ、かつクラックの発生、半導体素子や基板等との剥離を回避するために線膨張係数が小さいことが求められる。 Demand for power semiconductor devices is expanding as devices for power control and conversion installed in automobiles, trucks, ships, railway vehicles, and the like. A power semiconductor device refers to a semiconductor device that controls and supplies power, and typically has a structure in which a power semiconductor element is sealed in a package. During operation, the power semiconductor device generates heat from the power semiconductor element and becomes high temperature. Therefore, a sealing material used in a power semiconductor device is required to have durability at high temperatures, and to have a low coefficient of linear expansion in order to avoid generation of cracks and separation from a semiconductor element or substrate. .
 このような要求に応えるべく、ガラス材料を配合した封止材が提案されている(特許文献1及び2参照)。しかしながら、近年は、パワー半導体装置の大電力化を背景に、熱的な使用環境等も一層厳しくなっており、さらなる改善が求められている。 In order to meet such requirements, sealing materials containing glass materials have been proposed (see Patent Documents 1 and 2). However, in recent years, against the backdrop of increasing the power consumption of power semiconductor devices, the thermal usage environment has become more severe, and further improvements are required.
日本特開2011-184670号公報Japanese Unexamined Patent Publication No. 2011-184670 日本特開2013-14736号公報Japanese Unexamined Patent Publication No. 2013-14736
 本発明は、良好な高温での耐久性及び低線膨張係数を有する、新規な樹脂組成物を提供することを目的とし、さらには、この樹脂組成物からなる半導体装置用封止材(特に、パワー半導体装置用封止材)、この封止材を封止部に備えた半導体装置(特に、パワー半導体装置)、及びこの樹脂組成物の製造方法を提供することを目的とする。 An object of the present invention is to provide a novel resin composition having good durability at a high temperature and a low coefficient of linear expansion, and further, a sealing material for a semiconductor device comprising the resin composition (particularly, It is an object of the present invention to provide a power semiconductor device sealing material), a semiconductor device (particularly, a power semiconductor device) including the sealing material in a sealing portion, and a method for producing the resin composition.
 本発明者らは、鋭意検討した結果、熱可塑性フッ素樹脂に、鉛及びアルカリ金属フリーのスズ-リン酸ガラス(以下、単に「スズ-リン酸ガラス」ともいう)を組み合わせることにより、良好な高温での耐久性及び低線膨張係数がもたらされることを見出し、本発明を完成させた。
 一般的に、熱可塑性フッ素樹脂は耐熱性に優れ、スズ-リン酸ガラスを含めガラスは剛性に優れるものである。しかしながら、本発明の樹脂組成物における良好な高温での耐久性及び低線膨張係数は、このような性質から説明できるものではない。
 本発明によって、良好な高温での耐久性及び低線膨張係数が得られる要因としては、以下が考えられる。
 まず、本発明においては、熱可塑性フッ素樹脂に、比較的軟化点が低いスズ-リン酸ガラスを組み合わせることによって、両者を容易に一体化できることが挙げられる。さらに、本発明においては、封止プロセス等の熱や剪断力によって、熱可塑性フッ素樹脂のマトリックス中で、ガラス同士が融着し連続相を形成できることが挙げられる。
As a result of intensive studies, the present inventors have found that a combination of a thermoplastic fluororesin and lead- and alkali metal-free tin-phosphate glass (hereinafter, also simply referred to as “tin-phosphate glass”) has a good high temperature. And the present invention has been completed.
In general, thermoplastic fluororesins are excellent in heat resistance, and glass including tin-phosphate glass is excellent in rigidity. However, good durability at high temperature and low linear expansion coefficient in the resin composition of the present invention cannot be explained from such properties.
The following factors can be considered as factors for obtaining good high-temperature durability and low linear expansion coefficient according to the present invention.
First, in the present invention, it is mentioned that both can be easily integrated by combining a thermoplastic fluororesin with a tin-phosphate glass having a relatively low softening point. Furthermore, in the present invention, it is mentioned that the glass can be fused to form a continuous phase in the thermoplastic fluororesin matrix by heat and shearing force such as a sealing process.
 本発明は、下記の[1]~[10]を要旨とする。
[1]熱可塑性フッ素樹脂、並びに鉛及びアルカリ金属フリーのスズ-リン酸ガラスを含む、ことを特徴とする、樹脂組成物。
[2]熱可塑性フッ素樹脂100体積部に対して、スズ-リン酸ガラスが35~150体積部を含む、前記[1]に記載の樹脂組成物。
[3]スズ-リン酸ガラスが、酸化物基準のモル%表示で、5~35モル%のP及び45~85モル%のSnOを含む、前記[1]又は[2]に記載の樹脂組成物。
[4]スズ-リン酸ガラスが、酸化物基準のモル%表示で、以下を含む、前記[1]~[3]のいずれか1項に記載の樹脂組成物。
 P     5~35モル%、
 SnO      45~85モル%、
 ZnO      0~40モル%、
 MgO      0~5モル%、
 CaO      0~10モル%、
 SrO      0~10モル%、
 BaO      0~10モル%、
 B     0~25モル%、
 Al    0~3モル%、
 Ga    0~5モル%、
 In    0~5モル%、
 WO      0~5モル%、
 SiO     0~3モル%、
[5]熱可塑性フッ素樹脂が、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体である、前記[1]~[4]のいずれか1項に記載の樹脂組成物。
[6]スズ-リン酸ガラスが、熱可塑性フッ素樹脂の分解点より低い軟化点を有する、前記[1]~[5]のいずれか1項に記載の樹脂組成物。
[7]前記[1]~[6]のいずれか1項に記載の樹脂組成物からなる半導体装置用封止材。
[8]前記[7]に記載の半導体装置用封止材を封止部に備えた半導体装置。
[9]熱可塑性フッ素樹脂、並びに鉛及びアルカリ金属フリーのスズ-リン酸ガラスを、スズ-リン酸ガラスの軟化点以上の温度で混練する、前記[1]~[6]のいずれか1項に記載の樹脂組成物の製造方法。
[10]混練を熱可塑性フッ素樹脂の分解点以下で行なう、前記[9]に記載の製造方法。
The gist of the present invention is the following [1] to [10].
[1] A resin composition comprising a thermoplastic fluororesin and lead and alkali metal-free tin-phosphate glass.
[2] The resin composition according to [1], wherein the tin-phosphate glass contains 35 to 150 parts by volume with respect to 100 parts by volume of the thermoplastic fluororesin.
[3] The above [1] or [2], wherein the tin-phosphate glass contains 5 to 35 mol% P 2 O 5 and 45 to 85 mol% SnO in terms of mol% based on oxide. Resin composition.
[4] The resin composition according to any one of [1] to [3], wherein the tin-phosphate glass contains the following in terms of mol% based on oxide.
P 2 O 5 5 to 35 mol%,
SnO 45-85 mol%,
ZnO 0-40 mol%,
MgO 0-5 mol%,
CaO 0-10 mol%,
SrO 0-10 mol%,
BaO 0-10 mol%,
B 2 O 3 0-25 mol%,
Al 2 O 3 0-3 mol%,
Ga 2 O 3 0-5 mol%,
In 2 O 3 0-5 mol%,
WO 3 0-5 mol%,
SiO 2 0-3 mol%,
[5] The resin composition according to any one of [1] to [4], wherein the thermoplastic fluororesin is a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer.
[6] The resin composition according to any one of [1] to [5], wherein the tin-phosphate glass has a softening point lower than a decomposition point of the thermoplastic fluororesin.
[7] A sealing material for a semiconductor device comprising the resin composition according to any one of [1] to [6].
[8] A semiconductor device comprising the sealing member for a semiconductor device according to [7] above in a sealing portion.
[9] Any one of [1] to [6] above, wherein a thermoplastic fluororesin and lead and alkali metal-free tin-phosphate glass are kneaded at a temperature equal to or higher than a softening point of tin-phosphate glass. The manufacturing method of the resin composition as described in any one of.
[10] The production method according to [9], wherein the kneading is performed at or below the decomposition point of the thermoplastic fluororesin.
 本発明の樹脂組成物は、良好な高温での耐久性及び低線膨張係数を有し、半導体装置用封止材、特に、パワー半導体装置用封止材として好適に使用することができる。本発明の樹脂組成物からなる封止材を封止部に備えた半導体装置は、熱的に厳しい使用環境での耐性に優れており、半導体装置がパワー半導体装置の場合にも、優れた特性を保持することができる。 The resin composition of the present invention has good durability at high temperatures and a low linear expansion coefficient, and can be suitably used as a sealing material for semiconductor devices, particularly as a sealing material for power semiconductor devices. The semiconductor device provided with the sealing material made of the resin composition of the present invention in the sealing part has excellent resistance in a severely used environment, and excellent characteristics even when the semiconductor device is a power semiconductor device. Can be held.
例4の混練物の割断面の電子顕微鏡写真である。4 is an electron micrograph of a fractured section of the kneaded material of Example 4. 例4に用いたスズ-リン酸ガラスの原料の電子顕微鏡写真である。4 is an electron micrograph of a raw material of tin-phosphate glass used in Example 4. FIG. 例4のフィルム状の試料の割断面の電子顕微鏡写真である。6 is an electron micrograph of a cut section of a film-like sample of Example 4. FIG.
[樹脂組成物]
 本発明の樹脂組成物は、熱可塑性フッ素樹脂、並びに鉛及びアルカリ金属フリーのスズ-リン酸ガラスを含む。
[Resin composition]
The resin composition of the present invention comprises a thermoplastic fluororesin and lead and alkali metal free tin-phosphate glass.
(熱可塑性フッ素樹脂)
 本発明の樹脂組成物は、熱可塑性フッ素樹脂を含む。熱可塑性フッ素樹脂は特に限定されず、フルオロオレフィンの重合体及び共重合体が挙げられる。熱可塑性フッ素樹脂は、メルトフローレートが1~150g/分のものを使用することができ、1~50g/分のものが好ましく、5~40g/分のものがより好ましい。ここで、メルトフローレート(MFR)は、ASTM D3307に準拠し、温度372℃、荷重5kgfの条件で測定した値である。
(Thermoplastic fluororesin)
The resin composition of the present invention contains a thermoplastic fluororesin. The thermoplastic fluororesin is not particularly limited, and examples thereof include fluoroolefin polymers and copolymers. A thermoplastic fluororesin having a melt flow rate of 1 to 150 g / min can be used, preferably 1 to 50 g / min, more preferably 5 to 40 g / min. Here, the melt flow rate (MFR) is a value measured under conditions of a temperature of 372 ° C. and a load of 5 kgf in accordance with ASTM D3307.
 熱可塑性フッ素樹脂としては、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/エチレン共重合体(ETFE)、クロロトリフルオロエチレン重合体(PCTFE)、クロロトリフルオロエチレン/エチレン共重合体(ECTFE)、フッ化ビニリデン重合体(PVDF)、フッ化ビニル重合体(PVF)等が挙げられる。中でも、耐熱性に優れ、特に高温における成形特性、及び高温における機械的特性の点で有利であることからPFAが好ましい。
 これらの具体的に例示した重合体及び共重合体には、本発明の効果が損なわれない範囲で、これらの重合体及び共重合体を構成する繰り返し単位以外の単位が含まれていてもよい。このような他の繰り返し単位は、全繰り返し単位100モル%中、10モル%以下であることが好ましく、5モル%以下であることがより好ましい。
Thermoplastic fluororesins include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), Examples include chlorotrifluoroethylene polymer (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), vinylidene fluoride polymer (PVDF), and vinyl fluoride polymer (PVF). Among them, PFA is preferable because it is excellent in heat resistance and particularly advantageous in terms of molding characteristics at high temperature and mechanical characteristics at high temperature.
These specifically exemplified polymers and copolymers may contain units other than the repeating units constituting these polymers and copolymers as long as the effects of the present invention are not impaired. . Such other repeating units are preferably 10 mol% or less, more preferably 5 mol% or less, in 100 mol% of all repeating units.
 熱可塑性フッ素樹脂は、単独で用いても、2種以上を併用してもよい。 The thermoplastic fluororesin may be used alone or in combination of two or more.
(鉛及びアルカリ金属フリーのスズ-リン酸ガラス)
 鉛及びアルカリ金属フリーのスズ-リン酸ガラス(以下、「スズ-リン酸ガラス」ともいう)は、実質的に鉛及びアルカリ金属を含有しないガラスを意味し、不可避的に混入する鉛及びアルカリ金属は許容される。すなわち、本発明におけるスズ-リン酸ガラスは、実質的に鉛を含有せず、かつ、実質的にアルカリ金属を含有しない。ここで、「実質的に」とは、酸化物基準で0.1モル%以下を意味する。すなわち、本発明の樹脂組成物は、鉛フリーであり、代表的環境規制物質である鉛を含有せず、環境にやさしい。また、本発明の樹脂組成物は、アルカリ金属フリーであり、アルカリイオンの拡散による半導体素子の動作不良発生を抑制できることから、半導体素子の動作保証の点で好ましい。
(Lead and alkali metal free tin-phosphate glass)
Lead and alkali metal-free tin-phosphate glass (hereinafter also referred to as “tin-phosphate glass”) means glass that does not substantially contain lead and alkali metals, and lead and alkali metals inevitably mixed in Is acceptable. That is, the tin-phosphate glass in the present invention contains substantially no lead and substantially no alkali metal. Here, “substantially” means 0.1 mol% or less based on the oxide. That is, the resin composition of the present invention is lead-free, does not contain lead, which is a typical environmentally restricted substance, and is environmentally friendly. The resin composition of the present invention is preferable in terms of guaranteeing the operation of the semiconductor element because it is free of alkali metal and can suppress the occurrence of malfunction of the semiconductor element due to diffusion of alkali ions.
 スズ-リン酸ガラスの軟化点は、樹脂組成物の成形性の点から、260~400℃とすることができ、280~390℃が好ましく、320~380℃がより好ましい。ここで、ガラスの軟化点とは、ガラスの粘度が107.6dPa・s(logη=7.6)となる温度である。 The softening point of tin-phosphate glass can be 260 to 400 ° C. from the viewpoint of moldability of the resin composition, preferably 280 to 390 ° C., more preferably 320 to 380 ° C. Here, the softening point of the glass is a temperature at which the viscosity of the glass is 10 7.6 dPa · s (log η = 7.6).
 スズ-リン酸ガラスは、酸化物基準のモル%表示で、5~35モル%のP及び45~85モル%のSnOを含有することが好ましく、ZnOを含んでいてもよい。例えば、スズ-リン酸ガラスは、以下の組成を有することができる。
 P     5~35モル%
 SnO      45~85モル%
 ZnO      0~40モル%
 MgO      0~5モル%
 CaO      0~10モル%
 SrO      0~10モル%
 BaO      0~10モル%
 B     0~25モル%
 Al    0~3モル%
 Ga    0~5モル%
 In    0~5モル%
 WO      0~5モル%
 SiO     0~3モル%
The tin-phosphate glass preferably contains 5 to 35 mol% P 2 O 5 and 45 to 85 mol% SnO, and may contain ZnO, in terms of mol% on the oxide basis. For example, tin-phosphate glass can have the following composition:
P 2 O 5 5 to 35 mol%
SnO 45-85 mol%
ZnO 0-40 mol%
MgO 0-5 mol%
CaO 0-10 mol%
SrO 0-10 mol%
BaO 0-10 mol%
B 2 O 3 0-25 mol%
Al 2 O 3 0-3 mol%
Ga 2 O 3 0-5 mol%
In 2 O 3 0-5 mol%
WO 3 0-5 mol%
SiO 2 0-3 mol%
 スズ-リン酸ガラスの組成としては、以下の組成がより好ましい。
 P     15~35モル%
 SnO      45~85モル%
 ZnO      0~30モル%
 MgO      0~5モル%
 CaO      0~10モル%
 SrO      0~10モル%
 BaO      0~10モル%
 B     0~5モル%
 Al    0~3モル%
 Ga    0~3モル%
 In    0~3モル%
 WO      0~5モル%
 SiO     0~3モル%
As the composition of the tin-phosphate glass, the following composition is more preferable.
P 2 O 5 15-35 mol%
SnO 45-85 mol%
ZnO 0-30 mol%
MgO 0-5 mol%
CaO 0-10 mol%
SrO 0-10 mol%
BaO 0-10 mol%
B 2 O 3 0-5 mol%
Al 2 O 3 0-3 mol%
Ga 2 O 3 0-3 mol%
In 2 O 3 0-3 mol%
WO 3 0-5 mol%
SiO 2 0-3 mol%
 スズ-リン酸ガラスは、単独で用いても、2種以上を併用してもよい。 Tin-phosphate glass may be used alone or in combination of two or more.
 本発明の樹脂組成物は、熱可塑性フッ素樹脂とスズ-リン酸ガラスを含む。樹脂組成物中における熱可塑性フッ素樹脂100体積部に対して、スズ-リン酸ガラスが35~150体積部であることが好ましく、45~130体積部であることがより好ましく、55~120体積部であることが特に好ましい。ここで、体積部は、25℃の体積を基準に算出した値である。 The resin composition of the present invention contains a thermoplastic fluororesin and tin-phosphate glass. The tin-phosphate glass is preferably 35 to 150 parts by volume, more preferably 45 to 130 parts by volume, and more preferably 55 to 120 parts by volume with respect to 100 parts by volume of the thermoplastic fluororesin in the resin composition. It is particularly preferred that Here, the volume part is a value calculated based on a volume of 25 ° C.
 本発明の樹脂組成物中に占める熱可塑性フッ素樹脂の割合は、成形性、封止材としての信頼性の点から、20~70体積%であることが好ましく、30~67体積%であることがより好ましく、35~65体積%が特に好ましい。 The proportion of the thermoplastic fluororesin in the resin composition of the present invention is preferably 20 to 70% by volume, and preferably 30 to 67% by volume from the viewpoint of moldability and reliability as a sealing material. Is more preferable, and 35 to 65% by volume is particularly preferable.
(フィラー)
 本発明の樹脂組成物は、機械的強度の改善の点から、フィラーを含むことができる。フィラーとしては、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、タルク、炭酸カルシウム、窒化ケイ素、炭化ケイ素、炭化チタン、炭化タングステン、カーボン、酸化タングステン、酸化マグネシウム、酸化亜鉛等の無機フィラーが挙げられる。放熱性の点では、アルミナ、窒化ホウ素、窒化アルミニウム、酸化タングステン、酸化マグネシウム、又は酸化亜鉛が好ましく、窒化アルミニウムがより好ましい。
(Filler)
The resin composition of this invention can contain a filler from the point of improvement of mechanical strength. Examples of the filler include inorganic fillers such as silica, alumina, boron nitride, aluminum nitride, talc, calcium carbonate, silicon nitride, silicon carbide, titanium carbide, tungsten carbide, carbon, tungsten oxide, magnesium oxide, and zinc oxide. In terms of heat dissipation, alumina, boron nitride, aluminum nitride, tungsten oxide, magnesium oxide, or zinc oxide is preferable, and aluminum nitride is more preferable.
 フィラーの形状は特に限定されず、粒子状、繊維状等が挙げられ、粒子状は、リン片状、板状、球状等であってよい。フィラーが粒子状である場合、その平均粒子径は、組成物中に均質に分散しやすく、作業性の点で有利であるとともに、機械的強度を改善する点から、0.1~10μmであることが好ましく、0.1~5μmであることがより好ましい。フィラーが繊維状である場合、その繊維径は、0.1~10μmであることが好ましく、0.1~5μmであることがより好ましく、また、アスペクト比は10~1000であることが好ましく、10~100であることがより好ましい。ここで、フィラーの大きさに関する数値は、走査型電子顕微鏡(SEM)で観察した画像を解析して得た値である。 The shape of the filler is not particularly limited, and examples thereof include particles and fibers. The particles may be flakes, plates, spheres, and the like. When the filler is in the form of particles, the average particle size is 0.1 to 10 μm because it is easy to uniformly disperse in the composition, is advantageous in terms of workability, and improves mechanical strength. It is preferably 0.1 to 5 μm. When the filler is fibrous, the fiber diameter is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and the aspect ratio is preferably 10 to 1000, More preferably, it is 10 to 100. Here, the numerical value regarding the size of the filler is a value obtained by analyzing an image observed with a scanning electron microscope (SEM).
 フィラーは、本発明の樹脂組成物中に占める割合が50体積%以下となる量で使用することができ、線膨張係数を低く抑えつつ、機械的強度を改善する点から、5~40体積%が好ましく、10~40体積%がより好ましい。 The filler can be used in an amount of 50% by volume or less in the resin composition of the present invention, and 5-40% by volume from the viewpoint of improving the mechanical strength while keeping the coefficient of linear expansion low. 10 to 40% by volume is more preferable.
 フィラーは、単独で用いても、2種以上を併用してもよい。 The filler may be used alone or in combination of two or more.
 本発明の樹脂組成物には、本発明の効果を損なわない範囲で、加工助剤、安定剤等を含んでいてもよい。 The resin composition of the present invention may contain processing aids, stabilizers and the like as long as the effects of the present invention are not impaired.
[樹脂組成物の製造方法]
 本発明の樹脂組成物は、熱可塑性フッ素樹脂及びスズ-リン酸ガラスを配合することにより得られる。任意成分(例えば、フィラー)を用いる場合に、本発明の樹脂組成物は、熱可塑性フッ素樹脂、スズ-リン酸ガラス、及び場合により任意成分を配合することにより得られる。本発明の樹脂組成物の製造方法としては、熱可塑性フッ素樹脂及びスズ-リン酸ガラスを、スズ-リン酸ガラスの軟化点以上の温度で混練することが好ましい。すなわち本発明の樹脂組成物の製造方法としては、熱可塑性フッ素樹脂及びスズ-リン酸ガラスを準備し;熱可塑性フッ素樹脂及びスズ-リン酸ガラスをスズ-リン酸ガラスの軟化点以上の温度で混練することが好ましい。さらに混練は熱可塑性フッ素樹脂の分解点以下で行なうことが好ましい。
[Method for Producing Resin Composition]
The resin composition of the present invention can be obtained by blending a thermoplastic fluororesin and tin-phosphate glass. When an optional component (for example, filler) is used, the resin composition of the present invention is obtained by blending a thermoplastic fluororesin, tin-phosphate glass, and optionally an optional component. As a method for producing the resin composition of the present invention, it is preferable to knead the thermoplastic fluororesin and tin-phosphate glass at a temperature equal to or higher than the softening point of tin-phosphate glass. That is, as a method for producing the resin composition of the present invention, a thermoplastic fluororesin and tin-phosphate glass are prepared; the thermoplastic fluororesin and tin-phosphate glass are heated at a temperature equal to or higher than the softening point of tin-phosphate glass. It is preferable to knead. Further, the kneading is preferably performed at a temperature below the decomposition point of the thermoplastic fluororesin.
 この製造方法により、熱可塑性フッ素樹脂及びスズ-リン酸ガラスを容易に一体化させることができ、良好な高温での耐久性及び低線膨張係数を発揮させることができる。 This production method makes it possible to easily integrate the thermoplastic fluororesin and tin-phosphate glass, and to exhibit good durability at high temperatures and a low linear expansion coefficient.
 混練に付すスズ-リン酸ガラスの形態は、特に限定されず、粒子等であることができ、作業性及び得られる樹脂組成物の均一性の点から、粒子が好ましい。平均粒子径は0.001~5mmが好ましく、0.1~1mmがより好ましい。 The form of the tin-phosphate glass to be kneaded is not particularly limited, and may be particles and the like, and particles are preferable from the viewpoint of workability and uniformity of the obtained resin composition. The average particle diameter is preferably 0.001 to 5 mm, more preferably 0.1 to 1 mm.
 混練に付す熱可塑性フッ素樹脂の形態は、特に限定されず、粒子、ペレット、顆粒等であることができ、作業性及び得られる樹脂組成物の均一性の点から、ペレット、顆粒が好ましい。平均粒子径は0.1~5mmが好ましく、0.1~1mmがより好ましい。 The form of the thermoplastic fluororesin subjected to kneading is not particularly limited, and may be particles, pellets, granules and the like, and pellets and granules are preferable from the viewpoint of workability and uniformity of the obtained resin composition. The average particle size is preferably from 0.1 to 5 mm, more preferably from 0.1 to 1 mm.
 混練は、熱可塑性フッ素樹脂、スズ-リン酸ガラス及び場合により任意成分(例えば、フィラー)を配合してから、加熱下で混合してもよく、各成分を逐次添加しながら、加熱下に混合してもよい。 For kneading, a thermoplastic fluororesin, tin-phosphate glass and optionally optional components (for example, fillers) may be blended and then mixed under heating. Mixing under heating while sequentially adding each component. May be.
 加熱温度は、スズ-リン酸ガラスの軟化点以上の温度で行うことができ、通常、260~400℃であり、280~390℃が好ましい。加熱温度は、熱可塑性フッ素樹脂の分解点以下であることが好ましい。そのため、スズ-リン酸ガラスの軟化点が、熱可塑性フッ素樹脂の分解点以下であることが好ましい。ここで、熱可塑性フッ素樹脂の分解点は、熱重量測定(TGA)により測定した5%重量減少値とする。 The heating temperature can be performed at a temperature equal to or higher than the softening point of tin-phosphate glass, and is usually 260 to 400 ° C., preferably 280 to 390 ° C. The heating temperature is preferably below the decomposition point of the thermoplastic fluororesin. Therefore, the softening point of tin-phosphate glass is preferably below the decomposition point of the thermoplastic fluororesin. Here, the decomposition point of the thermoplastic fluororesin is a 5% weight loss value measured by thermogravimetry (TGA).
 混練時間は適宜、設定することができ、例えば、1~60分とすることができ、5~45分が好ましい。 The kneading time can be appropriately set, for example, 1 to 60 minutes, and preferably 5 to 45 minutes.
 混練後、室温まで冷却して、押出し等により、ペレット、タブレット等にすることができる。このようにして得られた混練物である樹脂組成物は、熱可塑性フッ素樹脂のマトリックスに、スズ-リン酸ガラスが分散した均一な構造とすることができる。あるいは、混練後、冷却せずに、樹脂組成物を成形や封止プロセスに付してもよい。 After kneading, it can be cooled to room temperature and formed into pellets, tablets, etc. by extrusion or the like. The resin composition, which is a kneaded product thus obtained, can have a uniform structure in which tin-phosphate glass is dispersed in a thermoplastic fluororesin matrix. Alternatively, after kneading, the resin composition may be subjected to a molding or sealing process without cooling.
[半導体装置用封止材]
 本発明の樹脂組成物は、半導体装置用封止材として用いることが可能である。本発明の樹脂組成物を用いて、トランスファー成形、注入成形、圧縮成形等の方法により、半導体装置の封止を行なうことができる。
[Sealant for semiconductor devices]
The resin composition of the present invention can be used as a sealing material for semiconductor devices. Using the resin composition of the present invention, the semiconductor device can be sealed by a method such as transfer molding, injection molding, compression molding or the like.
 本発明の樹脂組成物は、トランスファー成形による封止に好適である。トランスファー成形による封止は、例えば、金型のキャビティ内に半導体素子を実装した基板を配置し、封止材をキャビティ内に充填させ、半導体素子を実装した基板を封止し、半導体装置を調製することができる。
 トランスファー成形における加熱・材料の注入速度条件は、例えば、200~370℃、好ましくは200~330℃で、1~100cm/分、好ましくは1~30cm/分とすると、半導体素子の配線等にダメージを与えることなく封止できる。注入速度が上記の範囲内であれば、注入圧力については樹脂組成物の粘度(加熱時)に依存するものの、特に制約を受けない。
The resin composition of the present invention is suitable for sealing by transfer molding. For sealing by transfer molding, for example, a substrate on which a semiconductor element is mounted is placed in a cavity of a mold, a sealing material is filled in the cavity, the substrate on which the semiconductor element is mounted is sealed, and a semiconductor device is prepared. can do.
The heating and material injection speed conditions in transfer molding are, for example, 200 to 370 ° C., preferably 200 to 330 ° C. and 1 to 100 cm 3 / min, preferably 1 to 30 cm 3 / min. It can be sealed without damaging it. If the injection rate is within the above range, the injection pressure is not particularly limited, although it depends on the viscosity of the resin composition (during heating).
 本発明の樹脂組成物は、高温(例えば、250℃まで)下でも優れた貯蔵弾性率(例えば、0.1~1.1GPa)を維持することができ、高温での耐久性に優れている。
 さらに、線膨張係数が低く(例えば、15~90ppm/K)、半導体素子や基板等との線膨張係数の差を小さくすることができるため、半導体装置用封止材として好適であり、封止材と半導体素子やパッケージとの剥離を抑制し、信頼性の高い半導体装置を得ることができる。
 さらに、熱可塑性フッ素樹脂を使用しているため、誘電特性に優れ、高周波特性が要求される場合にも十分に応えることができる。
 このような利点から、本発明の樹脂組成物は、半導体装置用封止材、中でもパワー半導体装置用封止材として好適であるが、これらの用途以外にも使用することができる。
The resin composition of the present invention can maintain an excellent storage modulus (for example, 0.1 to 1.1 GPa) even at high temperatures (for example, up to 250 ° C.), and is excellent in durability at high temperatures. .
Furthermore, since the coefficient of linear expansion is low (for example, 15 to 90 ppm / K) and the difference in coefficient of linear expansion from a semiconductor element or substrate can be reduced, it is suitable as a sealing material for semiconductor devices. Separation of the material from the semiconductor element or package can be suppressed, and a highly reliable semiconductor device can be obtained.
Furthermore, since a thermoplastic fluororesin is used, it is excellent in dielectric characteristics and can sufficiently respond even when high frequency characteristics are required.
Because of these advantages, the resin composition of the present invention is suitable as a sealing material for semiconductor devices, particularly as a sealing material for power semiconductor devices, but can be used for other purposes.
[半導体装置]
 本発明の樹脂組成物を用いた半導体装置用封止材を、封止部に備えた半導体装置について説明する。すなわち、本発明の半導体装置の製造方法としては、半導体素子を準備し;熱可塑性フッ素樹脂及びスズ-リン酸ガラスを準備し;熱可塑性フッ素樹脂及びスズ-リン酸ガラスを配合して樹脂組成物を得て;樹脂組成物で半導体素子を封止する製造方法が例示される。半導体装置としてはパワー半導体装置が好ましい。
 本発明の半導体装置が具備する封止部は、耐熱性及び熱間耐久性に優れ、250℃等の高温にも耐え得る。
[Semiconductor device]
A semiconductor device provided with a sealing portion of a sealing material for a semiconductor device using the resin composition of the present invention will be described. That is, as a method for producing a semiconductor device of the present invention, a semiconductor element is prepared; a thermoplastic fluororesin and tin-phosphate glass are prepared; a thermoplastic fluororesin and tin-phosphate glass are blended, and a resin composition A production method for sealing a semiconductor element with a resin composition is exemplified. A power semiconductor device is preferable as the semiconductor device.
The sealing portion included in the semiconductor device of the present invention has excellent heat resistance and hot durability, and can withstand high temperatures such as 250 ° C.
 以下、実施例により本発明をさらに詳しく説明する。ただし本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
 以下に、実施例における測定方法、及び評価方法を示す。
(引張強度特性)
 25℃の試験室中で、万能試験機(オリエンテック社製テンシロン)を用いて、評価サンプルについて、引張速度10mm/分、チャック間距離25mmの条件で、引張変形時の強度特性を測定した。評価サンプルは、各例の試料をASTM1822に準拠し、L号ダンベル形状に切り出すことにより作製した。
The measurement methods and evaluation methods in the examples are shown below.
(Tensile strength characteristics)
In a 25 ° C. test room, using a universal testing machine (Tensilon manufactured by Orientec Corp.), the strength characteristics at the time of tensile deformation were measured for the evaluation sample under the conditions of a tensile speed of 10 mm / min and a distance between chucks of 25 mm. The evaluation sample was prepared by cutting the sample of each example into a L-number dumbbell shape in accordance with ASTM1822.
(貯蔵弾性率)
 固体動的粘弾性測定装置(アイティー計測社製 DVA-220)を用いて、評価サンプルについて、チャック間20mm、昇温速度2℃/分、測定周波数10Hzの条件で、50℃から250℃までの貯蔵弾性率を測定した。評価サンプルは、各例の試料を5mm幅に切り出すことにより作製した。
(Storage modulus)
Using a solid dynamic viscoelasticity measuring apparatus (DVA-220, manufactured by IT Measurement Co., Ltd.), the evaluation sample was subjected to conditions of 50 mm to 250 ° C. under conditions of 20 mm between chucks, a heating rate of 2 ° C./min, and a measurement frequency of 10 Hz. The storage elastic modulus was measured. The evaluation sample was produced by cutting out the sample of each example into a width of 5 mm.
(TMA(熱機械特性評価))
 熱機械測定装置(ティー・エイ・インスツルメント社製、TMA(Q400))を用いて、評価サンプルについて、10℃/分の昇温速度、0.25MPaの荷重を加えた状態で、評価サンプルの寸法変化を測定し、その結果をもとに、150℃における寸法変化の温度変化から、線膨張係数(ppm/K)を算出した。評価サンプルは、各例の試料を5mm幅に切り出すことにより作製した。
(TMA (Thermo-mechanical property evaluation))
Using a thermomechanical measuring apparatus (TMA (Q400), manufactured by T.A. Instruments Co., Ltd.), the evaluation sample was subjected to a heating rate of 10 ° C./min and a load of 0.25 MPa was applied. The linear expansion coefficient (ppm / K) was calculated from the temperature change of the dimensional change at 150 ° C. based on the measurement result. The evaluation sample was produced by cutting out the sample of each example into a width of 5 mm.
(DSC(示差走査熱量測定))
 示差走査熱量測定装置(ティー・エイ・インスツルメント社製、DSC Q20)を用いて、5℃/分の走査速度で熱分析を行った。昇温時の吸熱ピークから融点(Tm)を求めた。また、降温時の発熱ピークから凝固点(Tc)を求めた。
(粒子径)
 粒子径が約0.1mm以上の場合には、光学顕微鏡で撮影した写真から目視で判別した。具体的には、粒子群を試料台の上に散布し、粒子の輪郭が明瞭に判別できるように倍率と視野を調整し、写真撮影を行った。写真の画像から50個以上の粒子を選び出し、各粒子について外接する円の直径を測定した。この直径の値を大きい方から順に並べ、大きい方から10%の値、及び、小さい方から10%の値の2点を求め、この範囲を粒子径とした。
 粒子径が約0.1mm以下の場合には、走査型電子顕微鏡(日立社製 S-4300)で同様に写真撮影を行い、粒子径を求めた。
(DSC (differential scanning calorimetry))
Thermal analysis was performed at a scanning speed of 5 ° C./min using a differential scanning calorimeter (DS Instruments Q20, manufactured by TA Instruments). The melting point (Tm) was determined from the endothermic peak when the temperature was raised. Further, the freezing point (Tc) was determined from the exothermic peak at the time of cooling.
(Particle size)
When the particle diameter was about 0.1 mm or more, it was visually discriminated from a photograph taken with an optical microscope. Specifically, a group of particles was dispersed on a sample stage, and the magnification and field of view were adjusted so that the outline of the particles could be clearly identified, and a photograph was taken. 50 or more particles were selected from the photograph image, and the diameter of the circumscribed circle for each particle was measured. The diameter values are arranged in order from the largest, and two points, a value of 10% from the largest and a value of 10% from the smallest, are obtained, and this range is defined as the particle diameter.
When the particle diameter was about 0.1 mm or less, the same photograph was taken with a scanning electron microscope (S-4300, manufactured by Hitachi, Ltd.) to determine the particle diameter.
〔調製方法〕
 各例の試料の調製方法を以下に示す。例1、5~7、及び26~30が比較例であり、例2~4、8~22、及び23~25が実施例である。
 プラストミル(東洋精機製作所社製)に、高剪断混練ユニット付きミキサーユニット(KF-15V:内容積15ml)又は汎用ミキサーユニット(R30CS:内容積30ml)を装着し、340℃まで昇温させた。次いで、表1に示す量で、混練ユニットに、熱可塑性フッ素樹脂、スズ-リン酸ガラス及び場合により無機フィラーを投入した。回転数を毎分10回転から徐々に毎分150回転(R30CSの場合は毎分50回転)まで上げ、同回転数で15分間、混練した。その後、混練物を取り出し、平板プレス装置(東洋精機製作所社製、Mini Press)を用いて、表1のプレス温度、圧力4MPaで5分間プレスし、表1に示す厚みのフィルム状の試料を作製した。この試料について、上記の特性を測定した。結果を表2に示す。
[Preparation method]
The preparation method of the sample of each example is shown below. Examples 1, 5 to 7, and 26 to 30 are comparative examples, and Examples 2 to 4, 8 to 22, and 23 to 25 are examples.
A plast mill (manufactured by Toyo Seiki Seisakusho) was equipped with a mixer unit with a high shear kneading unit (KF-15V: internal volume 15 ml) or a general-purpose mixer unit (R30CS: internal volume 30 ml), and the temperature was raised to 340 ° C. Next, a thermoplastic fluororesin, tin-phosphate glass and possibly an inorganic filler were added to the kneading unit in the amounts shown in Table 1. The rotation speed was gradually increased from 10 rotations per minute to 150 rotations per minute (in the case of R30CS, 50 rotations per minute), and kneading was performed at the same rotation speed for 15 minutes. Thereafter, the kneaded material is taken out and pressed for 5 minutes at a press temperature of 4 MPa and a pressure of 4 MPa using a flat plate press (manufactured by Toyo Seiki Seisakusho Co., Ltd., Mini Press) to produce a film-like sample having the thickness shown in Table 1. did. The above characteristics were measured for this sample. The results are shown in Table 2.
 使用した材料は、以下のとおりである。
(1)PFA1
 旭硝子社製 テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、(登録商標)Fluon PFA X-61XP(MFR41.7g/分(372℃)、分解点510℃、ペレット(平均直径約2mm、長さ約4mmの円筒状))
(2)PFA2
 旭硝子社製 テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、(登録商標)Fluon PFA X-62XP(MFR35.9g/分(372℃)、分解点510℃、ペレット(平均直径約2mm、長さ約4mmの円筒状))
(3)ETFE
 旭硝子社製 テトラフルオロエチレン/エチレン共重合体
 (登録商標)Fluon ETFE C-88AP(MFR100g/分、分解点420℃、ペレット(平均直径約2mm、長さ約4mmの円筒状))
(4)FEP100
 デュポン社製(登録商標)テフロン FEP 100(MFR6.6g/分、分解点500℃、ペレット(平均直径約2mm、長さ約2mmの円筒状))
(5)FEP9494
 デュポン社製(登録商標)テフロン FEP 9494(MFR30g/分、分解点500℃、ペレット(平均直径約2mm、長さ約2mmの円筒状))
(6)スズ-リン酸ガラス1
 P:30モル%、SnO:46モル%、ZnO:20.5モル%、CaO:3モル%、Ga:0.5モル%(軟化点327℃、破砕状、粒子径:0.5~1mm)
(7)スズ-リン酸ガラス2
 P:33.2モル%、SnO:60モル%、ZnO:4.8モル%、Al:2モル%(軟化点344℃、破砕状、粒子径:10~15μm)
(8)Na含有スズ-リン酸ガラス3
 P:32.8モル%、SnO:5.4モル%、ZnO:40モル%、Al:2モル%、NaO:8.1モル%、LiO:6.9モル%、KO:4.8モル%(軟化点380℃、破砕状、粒子径:0.5~1mm)
(9)Na含有スズ-リン酸ガラス4
 P:33モル%、SnO:30モル%、ZnO:17モル%、NaO:20モル%(軟化点330℃、破砕状、粒子径:0.5~1mm)
(10)AlN
 トクヤマ社製 高純度窒素化アルミニウム粉末、(登録商標)シェイパル Hグレード(比表面積:2.50~2.68m/g、粒子径:1.07~1.17μm)
(11)BMF80-B
 河合石灰工業社製 リン片状ベーマイト、(登録商標)セラシュール BMF80」(を500℃で焼成したα-アルミナ(リン片状、粒子径:0.5~6μm)
(12)YFA02050
 キンセイマテック社製 α-アルミナ、(登録商標)セラフ 02050(リン片状、平均粒子径(カタログ値):2.0μm、アスペクト比:50)
The materials used are as follows.
(1) PFA1
Asahi Glass Co., Ltd. tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, (registered trademark) Fluon PFA X-61XP (MFR 41.7 g / min (372 ° C.), decomposition point 510 ° C., pellet (average diameter of about 2 mm, long) 4mm cylindrical)))
(2) PFA2
Asahi Glass Co., Ltd. tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, (registered trademark) Fluon PFA X-62XP (MFR 35.9 g / min (372 ° C.), decomposition point 510 ° C., pellet (average diameter about 2 mm, long) 4mm cylindrical)))
(3) ETFE
Asahi Glass Tetrafluoroethylene / ethylene copolymer (registered trademark) Fluon ETFE C-88AP (MFR 100 g / min, decomposition point 420 ° C., pellet (cylindrical shape with an average diameter of about 2 mm and a length of about 4 mm))
(4) FEP100
DuPont (registered trademark) Teflon FEP 100 (MFR 6.6 g / min, decomposition point 500 ° C., pellet (cylindrical shape having an average diameter of about 2 mm and a length of about 2 mm))
(5) FEP 9494
DuPont (registered trademark) Teflon FEP 9494 (MFR 30 g / min, decomposition point 500 ° C., pellet (cylindrical shape having an average diameter of about 2 mm and a length of about 2 mm))
(6) Tin-phosphate glass 1
P 2 O 5: 30 mol%, SnO: 46 mol%, ZnO: 20.5 mol%, CaO: 3 mol%, Ga 2 O 3: 0.5 mol% (softening point 327 ° C., crushed, particle size : 0.5-1mm)
(7) Tin-phosphate glass 2
P 2 O 5 : 33.2 mol%, SnO: 60 mol%, ZnO: 4.8 mol%, Al 2 O 3 : 2 mol% (softening point 344 ° C., crushed, particle size: 10 to 15 μm)
(8) Na-containing tin-phosphate glass 3
P 2 O 5: 32.8 mol%, SnO: 5.4 mol%, ZnO: 40 mol%, Al 2 O 3: 2 mol%, Na 2 O: 8.1 mol%, Li 2 O: 6. 9 mol%, K 2 O: 4.8 mol% (softening point 380 ° C., crushed, particle size: 0.5 to 1 mm)
(9) Na-containing tin-phosphate glass 4
P 2 O 5 : 33 mol%, SnO: 30 mol%, ZnO: 17 mol%, Na 2 O: 20 mol% (softening point 330 ° C., crushed, particle size: 0.5 to 1 mm)
(10) AlN
Tokuyama high purity aluminum nitride powder, (registered trademark) Shapepal H grade (specific surface area: 2.50 to 2.68 m 2 / g, particle size: 1.07 to 1.17 μm)
(11) BMF80-B
Kawai Lime Kogyo Co., Ltd., flake boehmite, (registered trademark) Cerasur BMF80 ”(α-alumina (phosphorus flake, particle size: 0.5-6 μm) calcined at 500 ° C.)
(12) YFA02050
Α-alumina manufactured by Kinsei Matech Co., Ltd. (registered trademark) Seraph 02050 (in the form of flakes, average particle diameter (catalog value): 2.0 μm, aspect ratio: 50)
 図1は、例4の混練物の割断面の電子顕微鏡写真である。熱可塑性フッ素樹脂のマトリックスに、スズ-リン酸ガラスが分散していることがわかる。
 図2は、例4に用いたスズ-リン酸ガラスの原料の電子顕微鏡写真である。
 図3は、例4のフィルム状の試料の割断面の電子顕微鏡写真である。スズ-リン酸ガラス同士が融着し、連続相を形成していることがわかる。
FIG. 1 is an electron micrograph of a fractured section of the kneaded material of Example 4. It can be seen that tin-phosphate glass is dispersed in the matrix of the thermoplastic fluororesin.
FIG. 2 is an electron micrograph of the raw material of tin-phosphate glass used in Example 4.
3 is an electron micrograph of a fractured section of the film-like sample of Example 4. FIG. It can be seen that the tin-phosphate glasses are fused together to form a continuous phase.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、熱可塑性フッ素樹脂のみからなる例1、7、及び26~28では、250℃での貯蔵弾性率の低下が著しく、線膨張係数221ppm/K、167ppm/K、406ppm/K、391ppm/K、及び390ppm/Kと大きかった。
 一方、熱可塑性フッ素樹脂に、スズ-リン酸ガラスを配合した例2~4、8、17、及び20~22は、線膨張係数は100ppm/K未満で小さく、また、例2~4、8、及び20~21に示されるように、貯蔵弾性率の低下は小さく、高温での耐久性に優れている。
 さらに、例9~16、及び18~19に示されるように、さらにフィラーを加えることにより、機械的強度を改善することができる。しかしながら、フィラーを配合しても、スズ-リン酸ガラスを欠く場合、例5~6に示されるように、線膨張係数が100ppm/K以上であり、大きいことがわかる。
 例23~28は、熱可塑性フッ素樹脂をPFAからETFE又はFEPへ変更したものである。樹脂がETFEの場合は、実施例(例23)は比較例(例28)と比較して線膨張係数は小さく、貯蔵弾性率の低下も小さくなっている。また、樹脂がFEPの場合は、実施例(例24、例25)は比較例(例26、例27)と比較して線膨張係数は小さく、貯蔵弾性率の低下も小さくなっている。
 例29及び例30は、Na等のアルカリ金属を含むスズ-リン酸ガラスとPFAとを含む樹脂組成物を作製した例である。その線膨脹係数は、熱可塑性樹脂のみの場合よりは小さな値を示したが、上記の実施例(アルカリ金属を含まないスズ-リン酸ガラスを用いた例)よりは大きな値を示した。これは例29及び30では樹脂組成物中でガラス相が、単に分散した構造となっているためと考えられる。このような差が生じる原因としては、ガラスがアルカリ金属成分を含むため、溶融したガラスが形成する相の表面張力と、軟化した樹脂が形成する相の表面張力と、の差が大きくなり、理想的な相同士の混合状態が形成されにくいためと考えられる。
[溶出試験]
 例3、29及び30で作製した試験片を、80℃の温水(イオン交換水)に1週間浸漬した。試験後の水をICP発光分光分析で測定したところ、例3ではアルカリ金属は検出されなかった。一方、例29及び30ではアルカリ金属の溶出が見られた。
As shown in Table 2, in Examples 1, 7, and 26 to 28 consisting only of the thermoplastic fluororesin, the storage elastic modulus decreased remarkably at 250 ° C., and the linear expansion coefficients were 221 ppm / K, 167 ppm / K, 406 ppm. / K, 391 ppm / K, and 390 ppm / K.
On the other hand, Examples 2 to 4, 8, 17, and 20 to 22 in which tin-phosphate glass was blended with a thermoplastic fluororesin had a small linear expansion coefficient of less than 100 ppm / K, and Examples 2 to 4, 8 And 20 to 21, the decrease in storage modulus is small and the durability at high temperature is excellent.
Furthermore, as shown in Examples 9 to 16 and 18 to 19, the mechanical strength can be improved by adding more filler. However, even when the filler is blended, when the tin-phosphate glass is lacking, as shown in Examples 5 to 6, the linear expansion coefficient is 100 ppm / K or more, which is large.
In Examples 23 to 28, the thermoplastic fluororesin is changed from PFA to ETFE or FEP. When the resin is ETFE, the example (Example 23) has a smaller coefficient of linear expansion and a lower storage elastic modulus than the comparative example (Example 28). Further, when the resin is FEP, the examples (Examples 24 and 25) have a smaller coefficient of linear expansion and a lower storage elastic modulus than the comparative examples (Examples 26 and 27).
Examples 29 and 30 are examples in which a resin composition containing tin-phosphate glass containing an alkali metal such as Na and PFA was prepared. The linear expansion coefficient was smaller than that of the thermoplastic resin alone, but was larger than that of the above-described example (an example using tin-phosphate glass containing no alkali metal). This is probably because the glass phases in Examples 29 and 30 were simply dispersed in the resin composition. The reason for this difference is that the glass contains an alkali metal component, so the difference between the surface tension of the phase formed by the molten glass and the surface tension of the phase formed by the softened resin is large, which is ideal. This is thought to be because a mixed state of typical phases is difficult to form.
[Dissolution test]
The test pieces prepared in Examples 3, 29 and 30 were immersed in warm water (ion exchange water) at 80 ° C. for 1 week. When the water after the test was measured by ICP emission spectroscopic analysis, no alkali metal was detected in Example 3. On the other hand, in Examples 29 and 30, elution of alkali metal was observed.
[半導体装置]
 例18の樹脂組成物を用いて、トランスファー成形により半導体素子を封止して、半導体装置を得る。半導体素子としては、GaN製周波数変換素子を用いる。動作特性を測定し、問題が無いことを確認する。
[Semiconductor device]
Using the resin composition of Example 18, the semiconductor element is sealed by transfer molding to obtain a semiconductor device. A GaN frequency conversion element is used as the semiconductor element. Measure the operating characteristics and confirm that there are no problems.
 本発明の樹脂組成物は、良好な高温での耐久性及び低線膨張係数を有し、半導体装置用封止材、特に、パワー半導体装置用封止材として好適に使用することができ、産業上の有用性が高い。本発明の樹脂組成物からなる半導体装置用封止材を封止部に備えた半導体装置は、熱的に厳しい使用環境での耐性に優れており、半導体装置がパワー半導体装置の場合にも、優れた特性を保持することができる。
 なお、2013年9月27日に出願された日本特許出願2013-201970号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The resin composition of the present invention has good durability at high temperatures and a low linear expansion coefficient, and can be suitably used as a sealing material for semiconductor devices, particularly as a sealing material for power semiconductor devices. The usefulness above is high. A semiconductor device provided with a sealing material for a semiconductor device made of the resin composition of the present invention in a sealing part is excellent in resistance in a thermally severe use environment, and even when the semiconductor device is a power semiconductor device, Excellent characteristics can be maintained.
In addition, the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-200170 filed on September 27, 2013 is cited here as disclosure of the specification of the present invention. Incorporated.

Claims (10)

  1.  熱可塑性フッ素樹脂、並びに鉛及びアルカリ金属フリーのスズ-リン酸ガラスを含むことを特徴とする、樹脂組成物。 A resin composition comprising a thermoplastic fluororesin and lead- and alkali metal-free tin-phosphate glass.
  2.  熱可塑性フッ素樹脂100体積部に対して、スズ-リン酸ガラスを35~150体積部を含む、請求項1記載の樹脂組成物。 The resin composition according to claim 1, comprising 35 to 150 parts by volume of tin-phosphate glass with respect to 100 parts by volume of the thermoplastic fluororesin.
  3.  スズ-リン酸ガラスが、酸化物基準のモル%表示で、5~35モル%のP及び45~85モル%のSnOを含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the tin-phosphate glass contains 5 to 35 mol% P 2 O 5 and 45 to 85 mol% SnO in terms of mol% based on oxide.
  4.  スズ-リン酸ガラスが、酸化物基準のモル%表示で以下を含む、請求項1~3のいずれか1項に記載の樹脂組成物。
     P     5~35モル%、
     SnO      45~85モル%、
     ZnO      0~40モル%、
     MgO      0~5モル%、
     CaO      0~10モル%、
     SrO      0~10モル%、
     BaO      0~10モル%、
     B     0~25モル%、
     Al    0~3モル%、
     Ga    0~5モル%、
     In    0~5モル%、
     WO      0~5モル%、
     SiO     0~3モル%、
    The resin composition according to any one of claims 1 to 3, wherein the tin-phosphate glass contains the following in terms of mol% based on oxide.
    P 2 O 5 5 to 35 mol%,
    SnO 45-85 mol%,
    ZnO 0-40 mol%,
    MgO 0-5 mol%,
    CaO 0-10 mol%,
    SrO 0-10 mol%,
    BaO 0-10 mol%,
    B 2 O 3 0-25 mol%,
    Al 2 O 3 0-3 mol%,
    Ga 2 O 3 0-5 mol%,
    In 2 O 3 0-5 mol%,
    WO 3 0-5 mol%,
    SiO 2 0-3 mol%,
  5.  熱可塑性フッ素樹脂が、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体である、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the thermoplastic fluororesin is a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer.
  6.  スズ-リン酸ガラスが、熱可塑性フッ素樹脂の分解点より低い軟化点を有する、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the tin-phosphate glass has a softening point lower than a decomposition point of the thermoplastic fluororesin.
  7.  請求項1~6のいずれか1項に記載の樹脂組成物からなる半導体装置用封止材。 A semiconductor device sealing material comprising the resin composition according to any one of claims 1 to 6.
  8.  請求項7に記載の半導体装置用封止材を封止部に備えた半導体装置。 8. A semiconductor device comprising the sealing member according to claim 7 in a sealing portion.
  9.  熱可塑性フッ素樹脂、並びに鉛及びアルカリ金属フリーのスズ-リン酸ガラスを、スズ-リン酸ガラスの軟化点以上の温度で混練する、請求項1~6のいずれか1項に記載の樹脂組成物の製造方法。 The resin composition according to any one of claims 1 to 6, wherein the thermoplastic fluororesin and lead and alkali metal-free tin-phosphate glass are kneaded at a temperature equal to or higher than a softening point of tin-phosphate glass. Manufacturing method.
  10.  混練を熱可塑性フッ素樹脂の分解点以下で行なう、請求項9に記載の製造方法。 The production method according to claim 9, wherein the kneading is performed at a temperature below the decomposition point of the thermoplastic fluororesin.
PCT/JP2014/075301 2013-09-27 2014-09-24 Resin composition, method for producing same, and use of same WO2015046256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539266A JPWO2015046256A1 (en) 2013-09-27 2014-09-24 Resin composition, production method thereof and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201970 2013-09-27
JP2013201970 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046256A1 true WO2015046256A1 (en) 2015-04-02

Family

ID=52743391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075301 WO2015046256A1 (en) 2013-09-27 2014-09-24 Resin composition, method for producing same, and use of same

Country Status (2)

Country Link
JP (1) JPWO2015046256A1 (en)
WO (1) WO2015046256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058214A (en) * 2020-09-30 2022-04-11 信越化学工業株式会社 Production method of optical fiber preform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064524A (en) * 1999-08-27 2001-03-13 Asahi Glass Co Ltd Water-resistant low-melting-point glass having flame retarding function and flame retarding resin composition
JP2001181517A (en) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd Sheet-like molded article and laminate
JP2002100238A (en) * 2000-09-26 2002-04-05 Asahi Glass Co Ltd Sheet-like molding and laminate
WO2010044413A1 (en) * 2008-10-17 2010-04-22 旭ファイバーグラス株式会社 Low-melting glass, resin composition comprising same, and resin molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064524A (en) * 1999-08-27 2001-03-13 Asahi Glass Co Ltd Water-resistant low-melting-point glass having flame retarding function and flame retarding resin composition
JP2001181517A (en) * 1999-12-27 2001-07-03 Asahi Glass Co Ltd Sheet-like molded article and laminate
JP2002100238A (en) * 2000-09-26 2002-04-05 Asahi Glass Co Ltd Sheet-like molding and laminate
WO2010044413A1 (en) * 2008-10-17 2010-04-22 旭ファイバーグラス株式会社 Low-melting glass, resin composition comprising same, and resin molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058214A (en) * 2020-09-30 2022-04-11 信越化学工業株式会社 Production method of optical fiber preform

Also Published As

Publication number Publication date
JPWO2015046256A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
TWI392702B (en) Fluoropolymer molding process and fluoropolymer molded product
CN107109011B (en) Melt-processible fluoropolymer composition having excellent thermal conductivity, molded article made therefrom, and method for making same
JP2015168783A (en) Highly thermal conductive resin composition
JP3588539B2 (en) Polyphenylene sulfide resin composition and resin-encapsulated semiconductor device using the same
JP2010132866A (en) Thermal conductive sheet, method for producing the thermal conductive sheet, and heat dissipator using the thermal conductive sheet
CN112585210B (en) Resin composition and molded article
WO2019198771A1 (en) Resin composition, molding and application therefor
JP2007320267A (en) Fluororesin molding method and fluororesin molding
WO2013046923A1 (en) Fluororesin molded article
KR102646023B1 (en) Spherical alumina particle mixture and method for producing the same, and resin composite composition and resin composite containing the spherical alumina particle mixture
WO2020179662A1 (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
US20220002608A1 (en) Thermally Conductive Resin Sheet, Laminated Heat Dissipation Sheet, Heat Dissipation Circuit Board, and Power Semiconductor Device
JP2007002002A (en) Heat conductive resin composition
JP2018095691A (en) Thermal conductive sheet and heat dissipation device using the thermal conductive sheet
TW202130732A (en) Dispersion liquid, method for producing dispersion liquid, and molded article
WO2015046256A1 (en) Resin composition, method for producing same, and use of same
US9346936B2 (en) Fluororesin composition and its molded product
JP5722284B2 (en) Resin composition and sheet
JP2017043673A (en) Resin composition and sheet thereof
WO2022203031A1 (en) Thermally conductive resin composition, thermally conductive resin sheet, multilayer heat dissipation sheet, heat-dissipating circuit board, and power semiconductor device
JP2005169830A (en) Molding method of heat radiating polyarylene sulfide resin composition and heat radiating molded product
JP2005248076A (en) Polymer composition and molding of the same
JP7469673B2 (en) Resin composition for extrusion molding, sheet, and method for producing sheet
JP2017509762A (en) Thermally conductive composition
TW202330865A (en) Composition, method of producing composition, and method of producing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848095

Country of ref document: EP

Kind code of ref document: A1