JP2007002002A - Heat conductive resin composition - Google Patents

Heat conductive resin composition Download PDF

Info

Publication number
JP2007002002A
JP2007002002A JP2005180349A JP2005180349A JP2007002002A JP 2007002002 A JP2007002002 A JP 2007002002A JP 2005180349 A JP2005180349 A JP 2005180349A JP 2005180349 A JP2005180349 A JP 2005180349A JP 2007002002 A JP2007002002 A JP 2007002002A
Authority
JP
Japan
Prior art keywords
resin composition
weight
component
heat conductive
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005180349A
Other languages
Japanese (ja)
Inventor
Kazuya Ito
佳寿也 伊藤
Tsuneo Kamiyahata
恒雄 紙谷畑
Yoshikazu Inada
義和 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Nippon Kagaku Yakin Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Nippon Kagaku Yakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Nippon Kagaku Yakin Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005180349A priority Critical patent/JP2007002002A/en
Publication of JP2007002002A publication Critical patent/JP2007002002A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive resin composition having high heat conductivity and excellent in flexibility and processability. <P>SOLUTION: This heat conductive resin composition contains the following (A) to (D) components. (A) A thermoplastic elastomer: 10-60 wt.%. (B) An alloy having ≥100°C and <300°C solidus temperature: 5-50 wt.%.(C) A simple substance metal powder having ≥300°C melting point, or alloy powder having ≥300°C solidus temperature: 5-30 wt.%. (D) A non-metallic inorganic filler: 10-60 wt.%. Provided that the blending amount of each of the components is a weight fraction based on the total amount of the (A) to (D) components. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、伝熱性樹脂組成物に関する。さらに詳しくは、伝熱性と柔軟性、加工性に優れ、放熱シート、放熱緩衝材及び放熱シール材等として好適な樹脂組成物に関するものである。   The present invention relates to a heat conductive resin composition. More specifically, the present invention relates to a resin composition that is excellent in heat conductivity, flexibility, and workability, and that is suitable as a heat radiation sheet, a heat radiation buffer material, a heat radiation seal material, and the like.

集積回路の処理速度や実装密度は、年々向上しており、その結果として半導体素子等からの発熱量も増大しつつある。このため放熱シートをはじめとする種々の放熱部品に対する要求性能も年々高くなっている。
放熱シート用の材料に要求される、最も基本的な特性は、高い伝熱性と柔軟性である。このため伝熱性の高いフィラーを充填したエラストマーが用いられる場合が多い。
しかしながら、高い伝熱性を得るために、フィラーの充填率を高めると、柔軟性が低下する上、流動性が低下して成形加工性が著しく損なわれる問題があった。
The processing speed and packaging density of integrated circuits are improving year by year, and as a result, the amount of heat generated from semiconductor elements and the like is also increasing. For this reason, performance requirements for various heat radiating components including a heat radiating sheet are also increasing year by year.
The most basic properties required for the material for the heat dissipation sheet are high heat transfer and flexibility. For this reason, an elastomer filled with a highly heat conductive filler is often used.
However, when the filler filling rate is increased in order to obtain high heat conductivity, there is a problem that flexibility is lowered and fluidity is lowered and molding processability is remarkably impaired.

このような問題に対し、エラストマーの通常の加工温度で一部が溶融する合金を利用することで、流動性低下を抑える技術が知られている。
例えば、特許文献1では熱可塑性樹脂/鉛フリーハンダ/(前記鉛フリーハンダを前記熱可塑性樹脂中に細かく分散させることを補助する金属粉末又は金属粉末と金属短繊維の混合物)からなる鉛フリー超高導電性プラスチックが示されている。
また、例えば特許文献2では、熱可塑性樹脂又は熱可塑性エラストマー/融点300℃以下の金属/金属粉末/カーボン系フィラーからなる導電性樹脂組成物が示されている。
In order to solve such a problem, a technique is known that suppresses a decrease in fluidity by using an alloy that partially melts at a normal processing temperature of an elastomer.
For example, in Patent Document 1, a lead-free ultra-compact composed of thermoplastic resin / lead-free solder / (a metal powder or a mixture of metal powder and metal short fiber that assists in finely dispersing the lead-free solder in the thermoplastic resin). A highly conductive plastic is shown.
For example, Patent Document 2 discloses a conductive resin composition composed of a thermoplastic resin or a thermoplastic elastomer / a metal / metal powder having a melting point of 300 ° C. or less / a carbon filler.

しかし、特許文献1は、熱可塑性樹脂としてエラストマーを選んだ場合、高い柔軟性を得にくい問題がある。理由は不明であるが、当該発明によって得られる、組成物全体にわたる高度な金属ネットワークが、柔軟性を著しく損ねるためと推測する。
また、特許文献2は、高い伝熱性を得にくい問題がある。理由は不明であるが、当該発明は高い伝熱性を得ることを目的としておらず、伝熱に有効な金属ネットワークが形成されていないと推測する。
特開平10−237331号公報 特開2002−212443号公報
However, Patent Document 1 has a problem that it is difficult to obtain high flexibility when an elastomer is selected as the thermoplastic resin. The reason is unclear, but it is assumed that the advanced metal network obtained by the invention throughout the composition significantly impairs flexibility.
Further, Patent Document 2 has a problem that it is difficult to obtain high heat transfer properties. The reason is unknown, but the present invention is not intended to obtain high heat transfer properties, and it is assumed that a metal network effective for heat transfer is not formed.
JP-A-10-237331 JP 2002-212443 A

本発明は、上記の事情に鑑みなされたもので、高い伝熱性を持ち、柔軟性及び加工性にも優れた伝熱性樹脂組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a heat transfer resin composition having high heat transfer properties and excellent flexibility and workability.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、特定の範囲に固相線温度を持つ低融点金属を用いること、及びその添加量を適切に設計すること等で、加工性や柔軟性の低下を抑えながら伝熱性を高められることを見出した。本発明は、かかる知見に基づいて完成したものである。
即ち、本発明は、
1.以下の成分(A)〜(D)を含む伝熱性樹脂組成物。
(A)熱可塑性エラストマー : 10〜60重量%
(B)固相線温度が100℃以上300℃未満の合金 : 5〜50重量%
(C)融点が300℃以上の単体金属粉末又は、固相線温度が300℃以上の合金粉末 : 5〜30重量%
(D)非金属無機質充填剤 : 10〜60重量%
[前記各成分の配合量は、成分(A)〜(D)の合計量に対する重量分率である。]
2.前記(A)熱可塑性エラストマーが、エチレン単位を主とするセグメントを持つ熱可塑性エラストマーである、1に記載の伝熱性樹脂組成物。
3.前記(B)合金が錫−銅合金であり、前記(C)金属粉末又は合金粉末が銅粉である1又は2に記載の伝熱性樹脂組成物。
4.前記(D)非金属無機質充填剤が黒鉛である1〜3のいずれかに記載の伝熱性樹脂組成物。
5.上記1〜4のいずれかに記載の伝熱性樹脂組成物の製造方法であって、前記(B)成分の固相線温度をTb[℃]、前記(C)成分である金属粉末又は合金粉末の融点又は固相線温度をTc[℃]としたときに、前記(A)〜(D)成分をTb[℃]以上Tc[℃]未満の温度で溶融混練する伝熱性樹脂組成物の製造方法。
6.上記1〜4のいずれかに記載の伝熱性樹脂組成物からなる、厚さ0.02mm〜3.0mmのシート。
7.上記1〜4のいずれかに記載の伝熱性樹脂組成物からなる層を一層以上有する、厚さ0.02mm〜3.0mmの積層シート。
を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors use a low melting point metal having a solidus temperature in a specific range, and appropriately design the addition amount thereof. It has been found that heat transfer can be improved while suppressing deterioration of workability and flexibility. The present invention has been completed based on such findings.
That is, the present invention
1. A heat conductive resin composition comprising the following components (A) to (D).
(A) Thermoplastic elastomer: 10 to 60% by weight
(B) Alloy whose solidus temperature is 100 ° C. or higher and lower than 300 ° C .: 5 to 50% by weight
(C) A single metal powder having a melting point of 300 ° C. or higher or an alloy powder having a solidus temperature of 300 ° C. or higher: 5 to 30% by weight
(D) Non-metallic inorganic filler: 10 to 60% by weight
[The blending amount of each component is a weight fraction with respect to the total amount of components (A) to (D). ]
2. 2. The heat transfer resin composition according to 1, wherein the (A) thermoplastic elastomer is a thermoplastic elastomer having a segment mainly composed of ethylene units.
3. The heat transfer resin composition according to 1 or 2, wherein the (B) alloy is a tin-copper alloy, and the (C) metal powder or alloy powder is a copper powder.
4). (D) The heat conductive resin composition in any one of 1-3 whose nonmetallic inorganic filler is graphite.
5. 5. The method for producing a heat conductive resin composition according to any one of 1 to 4, wherein the solid phase temperature of the component (B) is Tb [° C.], and the metal powder or alloy powder is the component (C). Of the component (A) to (D) is melt-kneaded at a temperature not lower than Tb [° C.] and lower than Tc [° C.] when the melting point or the solidus temperature of Tc is [C]. Method.
6). The sheet | seat of thickness 0.02mm-3.0mm consisting of the heat conductive resin composition in any one of said 1-4.
7). A laminated sheet having a thickness of 0.02 mm to 3.0 mm, having one or more layers made of the heat conductive resin composition according to any one of 1 to 4 above.
Is to provide.

本発明によれば、高い伝熱性を持ち、柔軟性及び加工性にも優れた樹脂組成物が得られる。
この高伝熱性樹脂組成物は、放熱シートに特に好適である。
According to the present invention, a resin composition having high heat conductivity and excellent flexibility and workability can be obtained.
This highly heat conductive resin composition is particularly suitable for a heat dissipation sheet.

以下、本発明の伝熱性樹脂組成物を具体的に説明する。
本発明の伝熱性樹脂組成物は、(A)熱可塑性エラストマー、(B)固相線温度が100℃以上300℃未満の合金、(C)融点が300℃以上の単体金属粉末又は、固相線温度が300℃以上の合金粉末、及び(D)非金属無機質充填剤を含む。
本発明の伝熱性樹脂組成物において、(A)〜(D)成分の合計量に対する、上記各成分の配合量[重量%]をそれぞれ[a]〜[d]とすると、以下の関係式(1)〜(4)を満足する。
(1)10≦[a]≦60
(2)5≦[b]≦50
(3)5≦[c]≦30
(4)10≦[d]≦60
Hereinafter, the heat conductive resin composition of the present invention will be specifically described.
The heat transfer resin composition of the present invention comprises (A) a thermoplastic elastomer, (B) an alloy having a solidus temperature of 100 ° C. or higher and lower than 300 ° C., (C) a simple metal powder having a melting point of 300 ° C. or higher, or a solid phase An alloy powder having a line temperature of 300 ° C. or higher and (D) a nonmetallic inorganic filler are included.
In the heat transfer resin composition of the present invention, when the blending amounts [wt%] of the above components with respect to the total amount of the components (A) to (D) are [a] to [d], respectively, the following relational expression ( Satisfy 1) to (4).
(1) 10 ≦ [a] ≦ 60
(2) 5 ≦ [b] ≦ 50
(3) 5 ≦ [c] ≦ 30
(4) 10 ≦ [d] ≦ 60

(A)成分の配合量[a]は10〜60重量%、好ましくは20〜50重量%、より好ましくは30〜40重量%である。
[a]が10重量%以上であると、得られる樹脂組成物は実用的な流動性及び柔軟性を有する。また、[a]が60重量%以下であると、得られる樹脂組成物は実用的な伝熱性を有する。
The blending amount [a] of the component (A) is 10 to 60% by weight, preferably 20 to 50% by weight, more preferably 30 to 40% by weight.
When [a] is 10% by weight or more, the obtained resin composition has practical fluidity and flexibility. Moreover, the resin composition obtained as [a] is 60 weight% or less has practical heat conductivity.

(B)成分の配合量[b]は5〜50重量%、好ましくは10〜40重量%、より好ましくは20〜30重量%である。
[b]が5重量%以上であると、得られる樹脂組成物は実用的な流動性を有する。また、[b]が50重量%以下であると、(B)成分が良好に分散した均質な樹脂組成物となる。
The blending amount [b] of the component (B) is 5 to 50% by weight, preferably 10 to 40% by weight, more preferably 20 to 30% by weight.
When [b] is 5% by weight or more, the obtained resin composition has practical fluidity. Further, when [b] is 50% by weight or less, a homogeneous resin composition in which the component (B) is well dispersed is obtained.

(C)成分の配合量[c]は5〜30重量%、好ましくは5〜25重量%、より好ましくは10〜20重量%である。
[c]が5重量%以上であると、(B)成分が良好に分散した均質な樹脂組成物となる。また[c]が30重量%以下であると、得られる樹脂組成物は実用的な流動性を有する。
The amount [c] of component (C) is 5 to 30% by weight, preferably 5 to 25% by weight, and more preferably 10 to 20% by weight.
When [c] is 5% by weight or more, a homogeneous resin composition in which the component (B) is well dispersed is obtained. When [c] is 30% by weight or less, the obtained resin composition has practical fluidity.

(D)成分の配合量[d]は10〜60重量%、好ましくは10〜50重量%、より好ましくは20〜40重量%である。
[d]が10重量%以上であると、得られる樹脂組成物は実用的な伝熱性を有する。また、[d]が60重量%以下であると、得られる樹脂組成物は実用的な流動性及び柔軟性を有する。
The blending amount [d] of the component (D) is 10 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight.
When [d] is 10% by weight or more, the obtained resin composition has practical heat conductivity. Moreover, the resin composition obtained as [d] is 60 weight% or less has practical fluidity | liquidity and a softness | flexibility.

本発明の伝熱性樹脂組成物において、(A)成分の熱可塑性エラストマーとしては、例えば、オレフィン系熱可塑性エラストマー(プロピレン単位を主とするものを除く)、スチレン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、結晶性ポリブタジエン系熱可塑性エラストマー及び塩素化ポリエチレン等が挙げられる。
主鎖が炭素のみからなる重合体で主に構成され、かつプロピレン単位を主としない熱可塑性エラストマーは、本発明の(B)成分や(C)成分による分解等を受けにくく、耐久性の高い樹脂組成物が得られ易い。尚、主鎖末端等、ごく限られた部分では、炭素以外の元素が存在しても良い。
上記熱可塑性エラストマーは市販されており、こうした市販品を用いることができる。
熱可塑性エラストマーは、1種のみでも良く、2種以上を用いても良い。
In the heat transfer resin composition of the present invention, examples of the thermoplastic elastomer of the component (A) include olefin-based thermoplastic elastomers (excluding those mainly composed of propylene units), styrene-based thermoplastic elastomers, and vinyl chloride-based heat. Examples thereof include a plastic elastomer, a crystalline polybutadiene-based thermoplastic elastomer, and chlorinated polyethylene.
The thermoplastic elastomer whose main chain is mainly composed of a polymer composed only of carbon and is not mainly composed of propylene units is not easily decomposed by the components (B) and (C) of the present invention and has high durability. A resin composition is easily obtained. It should be noted that an element other than carbon may be present in a very limited portion such as the main chain end.
The said thermoplastic elastomer is marketed, and such a commercial item can be used.
Only one type of thermoplastic elastomer may be used, or two or more types may be used.

本発明の熱可塑性エラストマーにおいて、エチレン単位を主とするセグメントを持つ熱可塑性エラストマーが特に好ましい。
このような熱可塑性エラストマーとしては、エチレン/α−オレフィン共重合体及び水素添加スチレン−ブタジエン−スチレンブロック共重合体(SEBS)等が挙げられる。
エチレン/α−オレフィン共重合体は、エチレンとα−オレフィンを共重合することで得られる。
α−オレフィンとしては、例えば、プロピレン、ブテン、1−ペンテン、4−メチルペンテン−1、1−ヘキセン、1−オクテン、1−デセン、1−ウンデセン、1−ドデセン、1−エイコセン等が挙げられる。
2種類以上のα−オレフィンをエチレンと共重合しても良い。
In the thermoplastic elastomer of the present invention, a thermoplastic elastomer having a segment mainly composed of ethylene units is particularly preferred.
Examples of such thermoplastic elastomers include ethylene / α-olefin copolymers and hydrogenated styrene-butadiene-styrene block copolymers (SEBS).
The ethylene / α-olefin copolymer is obtained by copolymerizing ethylene and an α-olefin.
Examples of the α-olefin include propylene, butene, 1-pentene, 4-methylpentene-1, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene and 1-eicosene. .
Two or more α-olefins may be copolymerized with ethylene.

尚、エチレンとα−オレフィンの共重合以外の方法で得たものでも、エチレン/α−オレフィン共重合体に相当する化学構造を持つものであれば、本発明の(A)成分として用いることができる。
例えば、ブタジエン、イソプレン等の共役ジエン化合物を(共)重合した後に、水素添加して生成する熱可塑性エラストマー等が挙げられる。
エチレン/α−オレフィン共重合体は、α−オレフィン分率を高める等の手法により結晶性を抑制すると、密度が低くなり、柔軟性は高くなる。
本発明の高伝熱性樹脂組成物においては、用いるエチレン/α−オレフィン共重合体は、ある程度低い密度のものが好ましく、特に密度900kg/m以下のものが好ましい。より好ましくは880kg/m以下である。
In addition, even if what was obtained by methods other than the copolymerization of ethylene and an α-olefin has a chemical structure corresponding to an ethylene / α-olefin copolymer, it can be used as the component (A) of the present invention. it can.
For example, a thermoplastic elastomer produced by (co) polymerizing a conjugated diene compound such as butadiene or isoprene and then hydrogenating it may be used.
When the ethylene / α-olefin copolymer is suppressed in crystallinity by a technique such as increasing the α-olefin fraction, the density decreases and the flexibility increases.
In the high heat transfer resin composition of the present invention, the ethylene / α-olefin copolymer to be used preferably has a low density to some extent, and particularly preferably has a density of 900 kg / m 3 or less. More preferably, it is 880 kg / m 3 or less.

本発明の伝熱性樹脂組成物において、(B)成分、即ち、固相線温度が100℃以上300℃未満の合金としては、例えば、市販されている種々のハンダを用いることができる。市販ハンダの多くは、固相線温度が表示されているが、以下の方法で測定することもできる。
まず、合金が完全に溶融するまで加熱した後に、完全に固化するまで徐々に冷却する。冷却過程での温度変化を熱電対等で測定し、熱分析曲線を作成する。この曲線から得られる、最も低温側の変態点が、固相線温度にあたる。固相線温度が100℃以上300℃未満の合金として好適なのは、錫を主成分とする合金である。副成分として好適な金属としては、例えば、銅、ニッケル、銀、ビスマス、亜鉛、インジウム、アルミニウム、マグネシウム等が挙げられる。副成分は2種以上であっても良い。
In the heat transfer resin composition of the present invention, as the component (B), that is, an alloy having a solidus temperature of 100 ° C. or higher and lower than 300 ° C., for example, various commercially available solders can be used. Many commercially available solders display the solidus temperature, but can also be measured by the following method.
First, the alloy is heated until it is completely melted, and then gradually cooled until it is completely solidified. The temperature change during the cooling process is measured with a thermocouple or the like, and a thermal analysis curve is created. The lowest temperature transformation point obtained from this curve corresponds to the solidus temperature. An alloy having a solidus temperature of 100 ° C. or higher and lower than 300 ° C. is preferably an alloy containing tin as a main component. Examples of the metal suitable as the accessory component include copper, nickel, silver, bismuth, zinc, indium, aluminum, and magnesium. Two or more subcomponents may be used.

本発明の伝熱性樹脂組成物において、(C)成分である融点が300℃以上の単体金属粉末又は、固相線温度が300℃以上の合金粉末としては、例えば、銅粉、ニッケル粉、亜鉛粉、銀粉、ステンレス粉等が挙げられる。組成や粒径の異なる2種以上の金属粉末を混合しても良い。
尚、粉末の平均粒径は10〜500μmが好ましく、20〜100μmが特に好ましい。
本発明の(B)成分と(C)成分の組み合わせにおいて、錫−銅合金と銅粉の組み合わせが特に好ましい。理由は第一に、低価格で伝熱性に優れる銅粉を(C)成分に用いることで、伝熱性の高い樹脂組成物を低コストで得やすいためである。第二に、錫−銅合金は、銅粉との親和性に優れるため、(B)成分の凝集等のない均質な樹脂組成物を得やすいためである。
In the heat conductive resin composition of the present invention, as the single metal powder having a melting point of 300 ° C. or higher or the alloy powder having a solidus temperature of 300 ° C. or higher as the component (C), for example, copper powder, nickel powder, zinc Examples include powder, silver powder, and stainless steel powder. Two or more metal powders having different compositions and particle sizes may be mixed.
In addition, 10-500 micrometers is preferable and, as for the average particle diameter of powder, 20-100 micrometers is especially preferable.
In the combination of the (B) component and the (C) component of the present invention, a combination of a tin-copper alloy and copper powder is particularly preferable. The first reason is that a resin composition having high heat conductivity can be easily obtained at low cost by using, as the component (C), copper powder that is inexpensive and excellent in heat conductivity. Secondly, the tin-copper alloy is excellent in affinity with copper powder, so that it is easy to obtain a homogeneous resin composition free from aggregation of the component (B).

本発明の伝熱性樹脂組成物において、(D)成分、即ち、非金属無機質充填剤としては、例えば、アルミナやマグネシア等の酸化物系充填剤、窒化アルミニウムや立方晶窒化ホウ素等の窒化物系充填剤、シリカやガラス繊維等のガラス系充填剤、及び黒鉛や炭素繊維等の炭素系充填剤が挙げられる。粒径や組成の異なる2種以上の充填剤を混合しても良い。また分散性を高める目的等で、有機物コート等表面処理しても良い。
本発明の非金属無機質充填剤においては、黒鉛が特に好ましい、理由は伝熱性に優れ、多くの熱可塑性エラストマーに分散しやすいためである。
In the heat transfer resin composition of the present invention, as the component (D), that is, the nonmetallic inorganic filler, for example, an oxide-based filler such as alumina or magnesia, or a nitride-based material such as aluminum nitride or cubic boron nitride. Examples of the filler include glass-based fillers such as silica and glass fibers, and carbon-based fillers such as graphite and carbon fibers. Two or more fillers having different particle sizes and compositions may be mixed. Further, for the purpose of improving dispersibility, surface treatment such as organic coating may be performed.
In the non-metallic inorganic filler of the present invention, graphite is particularly preferable because it has excellent heat conductivity and is easily dispersed in many thermoplastic elastomers.

本発明の伝熱性樹脂組成物には、発明の目的を損ねない範囲で常用の樹脂添加剤を加えることができる。例えば可塑剤、粘着性付与剤、離型剤、補強剤、難燃剤、酸化防止剤、金属不活性化剤、相溶化剤等が挙げられる。   Conventional resin additives can be added to the heat-transfer resin composition of the present invention within a range not impairing the object of the invention. Examples thereof include a plasticizer, a tackifier, a release agent, a reinforcing agent, a flame retardant, an antioxidant, a metal deactivator, and a compatibilizer.

本発明の組成物は、公知の溶融混練法によって製造できる。例えば、(A)〜(D)成分、及び必要に応じて用いられる他の添加剤成分を所定の割合でドライブレンドした後、市販の二軸混練押出機に供給する方法が挙げられる。
混練中の樹脂温度は、(B)成分の固相線温度をTb[℃]、(C)成分の融点又は固相線温度をTc[℃]としたとき、Tb以上Tc未満の温度が良い。
このような温度に制御して混練すると、溶融した(B)成分が(C)成分を取り巻く形で安定化し、良好な分散状態を得やすい。
特に好ましいのは、TbとTcの差が100K以上になるよう(B)成分と(C)成分を選んだ上で、混練中の樹脂温度を(Tb+20)℃〜(Tc−20)℃に制御することである。
The composition of the present invention can be produced by a known melt-kneading method. For example, there is a method in which the components (A) to (D) and other additive components used as necessary are dry blended at a predetermined ratio and then supplied to a commercially available twin-screw kneading extruder.
The resin temperature during kneading is preferably Tb or more and less than Tc when the solidus temperature of component (B) is Tb [° C.] and the melting point or solidus temperature of component (C) is Tc [° C.]. .
When kneaded while controlling at such a temperature, the melted component (B) is stabilized in a form surrounding the component (C), and a good dispersion state is easily obtained.
It is particularly preferable that the resin temperature during kneading is controlled to (Tb + 20) ° C. to (Tc−20) ° C. after selecting the components (B) and (C) so that the difference between Tb and Tc is 100K or more. It is to be.

本発明の組成物は、高い伝熱性を持ち、柔軟性や加工性にも優れる。このため、放熱シート用の材料に特に好適である。
本発明の伝熱性樹脂組成物は、プレス成形、押出成形等、公知の一般的な手法でシートに加工することができる。
本発明のシートの厚さは、0.02〜3.0mm、好ましくは0.05〜2.0mm、より好ましくは0.1〜1.0mmである。
得られたシートは、単独でも放熱シートとして用いられるが、他のシート状物、例えば、紙、不織布、織布、金属箔、樹脂フィルム等と積層して用いても良い。
本発明の積層シートは、本発明の伝熱性樹脂組成物からなる層を一層以上有し、厚さが0.02〜3.0mm、好ましくは0.05〜2.0mm、より好ましくは0.1〜1.0mmの積層シートである。
The composition of the present invention has high heat conductivity and is excellent in flexibility and workability. For this reason, it is particularly suitable for a material for a heat dissipation sheet.
The heat conductive resin composition of the present invention can be processed into a sheet by a known general technique such as press molding or extrusion molding.
The thickness of the sheet | seat of this invention is 0.02-3.0 mm, Preferably it is 0.05-2.0 mm, More preferably, it is 0.1-1.0 mm.
The obtained sheet may be used alone or as a heat dissipation sheet, but may be used by laminating with other sheet-like materials such as paper, nonwoven fabric, woven fabric, metal foil, and resin film.
The laminated sheet of the present invention has one or more layers made of the heat conductive resin composition of the present invention, and has a thickness of 0.02 to 3.0 mm, preferably 0.05 to 2.0 mm, more preferably 0.00. 1 to 1.0 mm laminated sheet.

以下、本発明を実施例によってさらに具体的に説明する。
実施例1
(A)〜(D)成分として、それぞれ下記(A1)〜(D1)を用い、さらに添加剤として下記(X)〜(Z)を用いた。
(A1):タフマーIT103〔エチレン系熱可塑性エラストマー、三井化学(株)製〕
(B1):M705〔鉛フリーハンダ、千住金属工業(株)製、固相線温度217℃〕
(C1):MD−1〔銅粉、三井金属鉱業(株)製、融点1083℃〕
(D1):PAG−5〔黒鉛、日本黒鉛工業(株)製〕
(X):Irganox MD1024〔金属不活性化剤、チバ・スペシャルティケミカルズ社製〕
(Y):Irganox1076〔酸化防止剤、チバ・スペシャルティケミカルズ社製〕
(Z):Irganox1010〔酸化防止剤、チバ・スペシャルティケミカルズ社製〕
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
The following (A1) to (D1) were used as components (A) to (D), respectively, and the following (X) to (Z) were used as additives.
(A1): Toughmer IT103 [Ethylene thermoplastic elastomer, manufactured by Mitsui Chemicals, Inc.]
(B1): M705 [Lead-free solder, manufactured by Senju Metal Industry Co., Ltd., solidus temperature 217 ° C.]
(C1): MD-1 [copper powder, manufactured by Mitsui Mining & Smelting Co., Ltd., melting point 1083 ° C.]
(D1): PAG-5 [graphite, manufactured by Nippon Graphite Industry Co., Ltd.]
(X): Irganox MD1024 [metal deactivator, manufactured by Ciba Specialty Chemicals]
(Y): Irganox 1076 [Antioxidant, manufactured by Ciba Specialty Chemicals]
(Z): Irganox 1010 [Antioxidant, manufactured by Ciba Specialty Chemicals]

(A1)〜(D1)を、その合計重量に対する各成分の分率が30.7重量%、26.9重量%、18.5重量%、23.9重量%になるよう、それぞれ量りとった。
さらに(X)〜(Z)を、量りとった(A1)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、東芝機械(株)TEM37BS(二軸混練押出機)を用いて混練した。バレルとダイスの設定温度は250℃とし、原料は8kg/hrの速度で投入した。ダイスから出た組成物のストランドを水冷し、ペレット状にカットした。得られた樹脂組成物は、合金の凝集等が見られず、良好であった。得られた樹脂組成物から、70mm角×2mm厚の平板を250℃でプレス成形した。得られた平板を用いて、下記の要領で熱伝導率を測定した。また40mm角×0.4mm厚のシートを250℃でプレス成形し、下記の要領で貯蔵弾性率を測定した。さらに、ペレットを用いて溶融粘度を測定した。
(A1) to (D1) were weighed so that the fraction of each component with respect to the total weight was 30.7 wt%, 26.9 wt%, 18.5 wt%, and 23.9 wt%. .
Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A1). All the raw materials weighed out were dry blended and kneaded using a Toshiba Machine Co., Ltd. TEM37BS (biaxial kneading extruder). The set temperature of the barrel and the die was 250 ° C., and the raw material was charged at a rate of 8 kg / hr. The strand of the composition coming out of the die was cooled with water and cut into pellets. The obtained resin composition was good with no agglomeration of alloys or the like. A 70 mm square × 2 mm thick flat plate was press-molded at 250 ° C. from the obtained resin composition. Using the obtained flat plate, the thermal conductivity was measured in the following manner. Further, a 40 mm square × 0.4 mm thick sheet was press-molded at 250 ° C., and the storage elastic modulus was measured in the following manner. Furthermore, melt viscosity was measured using pellets.

熱伝導率は、TPA−501〔京都電子工業(株)〕を用いて測定した。測定条件は、センサー直径を7mm、測定モードを“Slab Sheets”とした。
貯蔵弾性率は、DMS6100〔セイコーインスツル(株)製〕を用い、0.4mm厚のプレス成形シートから、長さ40mm、幅10mmの短冊状試験片を切り出して測定に供した。測定温度は23℃、周波数は0.1Hzとした。
溶融粘度は、キャピログラフ1C〔東洋精機工業(株)〕を用いて測定した。測定条件は、温度260℃、バレル内径9.55mm、毛管内径1mm、毛管長さ40mm、プランジャー速度20mm/minとした。
得られた結果を、表1に示す。
The thermal conductivity was measured using TPA-501 [Kyoto Electronics Industry Co., Ltd.]. The measurement conditions were a sensor diameter of 7 mm and a measurement mode of “Slab Sheets”.
The storage elastic modulus was obtained by cutting out a strip-shaped test piece having a length of 40 mm and a width of 10 mm from a press-formed sheet having a thickness of 0.4 mm using DMS6100 (manufactured by Seiko Instruments Inc.). The measurement temperature was 23 ° C. and the frequency was 0.1 Hz.
The melt viscosity was measured using Capillograph 1C [Toyo Seiki Kogyo Co., Ltd.]. The measurement conditions were a temperature of 260 ° C., a barrel inner diameter of 9.55 mm, a capillary inner diameter of 1 mm, a capillary length of 40 mm, and a plunger speed of 20 mm / min.
The obtained results are shown in Table 1.

Figure 2007002002
Figure 2007002002

実施例1の樹脂組成物は、熱伝導率が高く、低い貯蔵弾性率、即ち高い柔軟性を持ち、流動性も高いことが判明した。   The resin composition of Example 1 was found to have high thermal conductivity, low storage elastic modulus, that is, high flexibility and high fluidity.

実施例2
(A)成分として下記(A2)を用いた。
(A2):タフテックH1141〔SEBS、旭化成(株)製〕
(A2)及び(B1)〜(D1)を、その合計重量に対する各成分の分率が32.0重量%、26.4重量%、18.2重量%、23.4重量%になるよう、それぞれ量りとった。さらに(X)〜(Z)を、量りとった(A2)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造し、プレス成形後、熱伝導率、貯蔵弾性率及び溶融粘度を測定した。得られた結果を、表1に示す。
実施例2の樹脂組成物は、実施例1と同じく高い熱伝導率を示し、柔軟性、流動性も高いことが判明した。
Example 2
The following (A2) was used as the component (A).
(A2): Tuftec H1141 [SEBS, manufactured by Asahi Kasei Corporation]
In (A2) and (B1) to (D1), the fraction of each component with respect to the total weight is 32.0 wt%, 26.4 wt%, 18.2 wt%, 23.4 wt%, Weighed each. Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A2). All raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. After press molding, the thermal conductivity, storage elastic modulus and melt viscosity were measured. The obtained results are shown in Table 1.
The resin composition of Example 2 was found to exhibit high thermal conductivity as in Example 1, and high flexibility and fluidity.

実施例3
(A)成分として下記(A3)を用いた。
(A3):デンカレオマーG8053〔塩化ビニル系熱可塑性エラストマー、電気化学工業(株)製〕
(A3)及び(B1)〜(D1)を、その合計重量に対する各成分の分率が38.4重量%、23.9重量%、16.5重量%、21.2重量%になるよう、それぞれ量りとった。さらに(X)〜(Z)を、量りとった(A3)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造し、プレス成形後、熱伝導率、貯蔵弾性率及び溶融粘度を測定した。得られた結果を、表1に示す。
実施例3の樹脂組成物は、実施例1と同じく高い熱伝導率を示し、柔軟性、流動性も高いことが判明した。
Example 3
The following (A3) was used as the component (A).
(A3): DENCALEOMER G8053 [vinyl chloride thermoplastic elastomer, manufactured by Denki Kagaku Kogyo Co., Ltd.]
In (A3) and (B1) to (D1), the fraction of each component with respect to the total weight is 38.4 wt%, 23.9 wt%, 16.5 wt%, 21.2 wt%, Weighed each. Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A3). All raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. After press molding, the thermal conductivity, storage elastic modulus and melt viscosity were measured. The obtained results are shown in Table 1.
It was found that the resin composition of Example 3 showed high thermal conductivity as in Example 1, and had high flexibility and fluidity.

実施例4
(D)成分として下記(D2)を用いた。
(D2):トーヤルナイト・スーパーFLA〔窒化アルミニウム粉末、東洋アルミニウム(株)製〕
(A1)〜(C1)及び(D2)を、その合計重量に対する各成分の分率が23.1重量%、13.7重量%、8.3重量%、54.9重量%になるよう、それぞれ量りとった。さらに(X)〜(Z)を、量りとった(A1)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造し、プレス成形後、熱伝導率、貯蔵弾性率及び溶融粘度を測定した。得られた結果を、表1に示す。
実施例4の樹脂組成物は、実施例1に比べると熱伝導率が少し低いものの、高い熱伝導率との両立が難しい絶縁性を有する(体積抵抗率20GΩm)。
Example 4
The following (D2) was used as the component (D).
(D2): TOYALNITE SUPER FLA [aluminum nitride powder, manufactured by Toyo Aluminum Co., Ltd.]
In (A1) to (C1) and (D2), the fraction of each component with respect to the total weight is 23.1% by weight, 13.7% by weight, 8.3% by weight, 54.9% by weight, Weighed each. Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A1). All raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. After press molding, the thermal conductivity, storage elastic modulus and melt viscosity were measured. The obtained results are shown in Table 1.
Although the resin composition of Example 4 has a little lower thermal conductivity than that of Example 1, it has insulating properties that make it difficult to achieve a high thermal conductivity (volume resistivity 20 GΩm).

実施例5
(A1)〜(D1)を用い、その合計重量に対する各成分の分率が30.7重量%、26.9重量%、18.5重量%、23.9重量%になるよう、それぞれ量りとった。さらに下記(W)を、量りとった(A1)に対して50重量%、(X)〜(Z)を、量りとった(A1)に対して0.1重量%ずつ量りとった。
(W):CR−733S〔難燃剤、大八化学工業(株)製〕
量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造し、プレス成形後、熱伝導率、貯蔵弾性率及び溶融粘度を測定した。得られた結果を、表1に示す。
実施例5の樹脂組成物は、実施例1に比べると熱伝導率が少し低いものの、UL−94に準拠した燃焼試験の結果、(1.6mm)V−0の難燃性を持つことが判明した。
Example 5
Using (A1) to (D1), weigh each component so that the fraction of each component is 30.7 wt%, 26.9 wt%, 18.5 wt%, and 23.9 wt% with respect to the total weight. It was. Further, the following (W) was weighed by 50% by weight with respect to the measured (A1), and (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A1).
(W): CR-733S [Flame retardant, manufactured by Daihachi Chemical Industry Co., Ltd.]
All raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. After press molding, the thermal conductivity, storage elastic modulus and melt viscosity were measured. The obtained results are shown in Table 1.
Although the resin composition of Example 5 has a little lower thermal conductivity than that of Example 1, as a result of a combustion test based on UL-94, it has flame retardancy of (1.6 mm) V-0. found.

比較例1
(A1)、(C1)及び(D1)を、その合計重量に対する各成分の分率が29.1重量%、48.3重量%、22.6重量%になるよう、それぞれ量りとった。さらに(X)〜(Z)を、量りとった(A1)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造し、プレス成形後、熱伝導率、貯蔵弾性率及び溶融粘度を測定した。得られた結果を、表1に示す。
比較例1の樹脂組成物は、実施例1の半分以下の熱伝導率であり、流動性も低いことが判明した。これは(B)成分を含まないため、(B)成分が(C)成分を介して適度な連結構造をとるといった、効果的な伝熱経路を形成していないためと考えられる。また(A)成分と並んで溶融流動に寄与する(B)成分を含まないため流動性も低い。
Comparative Example 1
(A1), (C1) and (D1) were weighed so that the fraction of each component with respect to the total weight was 29.1 wt%, 48.3 wt% and 22.6 wt%. Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A1). All raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. After press molding, the thermal conductivity, storage elastic modulus and melt viscosity were measured. The obtained results are shown in Table 1.
The resin composition of Comparative Example 1 was found to have a thermal conductivity less than half that of Example 1 and low fluidity. This is presumably because the component (B) does not contain an effective heat transfer path such that the component (B) has an appropriate connection structure via the component (C) because it does not contain the component (B). Moreover, since (B) component which contributes to a melt flow along with (A) component is not included, fluidity | liquidity is also low.

比較例2
(A1)〜(D1)を、その合計重量に対する各成分の分率が25.6重量%、56.8重量%、17.2重量%、0.4重量%になるよう、それぞれ量りとった。さらに(X)〜(Z)を、量りとった(A1)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造し、プレス成形後、熱伝導率、貯蔵弾性率及び溶融粘度を測定した。得られた結果を、表1に示す。
比較例2の樹脂組成物は、特許文献2、即ち、特開2002−212443号公報の発明に属する組成物であるが、熱伝導率が低いことが判明した。また貯蔵弾性率が高い、即ち柔軟性が低いことも判明した。
Comparative Example 2
(A1) to (D1) were weighed so that the fraction of each component with respect to the total weight was 25.6 wt%, 56.8 wt%, 17.2 wt%, and 0.4 wt%. . Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A1). All raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. After press molding, the thermal conductivity, storage elastic modulus and melt viscosity were measured. The obtained results are shown in Table 1.
The resin composition of Comparative Example 2 is a composition belonging to the invention of Patent Document 2, that is, Japanese Patent Application Laid-Open No. 2002-212443, but it has been found that the thermal conductivity is low. It has also been found that the storage modulus is high, that is, the flexibility is low.

比較例3
(A1)〜(D1)を、その合計重量に対する各成分の分率が14.9重量%、53.6重量%、6.5重量%、25.0重量%になるよう、それぞれ量りとった。さらに(X)〜(Z)を、量りとった(A1)に対して0.1重量%ずつ量りとった。量りとったすべての原料をドライブレンドし、実施例1と同様にして、樹脂組成物を製造した。しかし合金の凝集が著しく、均質な組成物を得ることができなかった。(B)成分が過多であり、(B)成分の分散安定化が充分になされなかったと考えられる。
Comparative Example 3
(A1) to (D1) were weighed so that the fraction of each component with respect to the total weight would be 14.9 wt%, 53.6 wt%, 6.5 wt% and 25.0 wt%. . Further, (X) to (Z) were weighed by 0.1% by weight with respect to the weighed (A1). All the raw materials weighed out were dry blended, and a resin composition was produced in the same manner as in Example 1. However, the agglomeration of the alloy was remarkable and a homogeneous composition could not be obtained. It is considered that the component (B) is excessive and the (B) component has not been sufficiently dispersed and stabilized.

本発明の伝熱性樹脂組成物は、放熱シート、電子部品向けの放熱緩衝材、熱交換器向けの放熱シール材等に好適に用いられる。
The heat-transfer resin composition of the present invention is suitably used for a heat-dissipating sheet, a heat-dissipating buffer material for electronic components, a heat-dissipating seal material for a heat exchanger, and the like.

Claims (7)

以下の成分(A)〜(D)を含む伝熱性樹脂組成物。
(A)熱可塑性エラストマー : 10〜60重量%
(B)固相線温度が100℃以上300℃未満の合金 : 5〜50重量%
(C)融点が300℃以上の単体金属粉末又は、固相線温度が300℃以上の合金粉末 : 5〜30重量%
(D)非金属無機質充填剤 : 10〜60重量%
[前記各成分の配合量は、成分(A)〜(D)の合計量に対する重量分率である。]
A heat conductive resin composition comprising the following components (A) to (D).
(A) Thermoplastic elastomer: 10 to 60% by weight
(B) Alloy whose solidus temperature is 100 ° C. or higher and lower than 300 ° C .: 5 to 50% by weight
(C) A single metal powder having a melting point of 300 ° C. or higher or an alloy powder having a solidus temperature of 300 ° C. or higher: 5 to 30% by weight
(D) Non-metallic inorganic filler: 10 to 60% by weight
[The blending amount of each component is a weight fraction with respect to the total amount of components (A) to (D). ]
前記(A)熱可塑性エラストマーが、エチレン単位を主とするセグメントを持つ熱可塑性エラストマーである、請求項1に記載の伝熱性樹脂組成物。   The heat transfer resin composition according to claim 1, wherein the (A) thermoplastic elastomer is a thermoplastic elastomer having a segment mainly composed of ethylene units. 前記(B)合金が錫−銅合金であり、前記(C)金属粉末又は合金粉末が銅粉である請求項1又は2に記載の伝熱性樹脂組成物。   The heat conductive resin composition according to claim 1 or 2, wherein the (B) alloy is a tin-copper alloy, and the (C) metal powder or alloy powder is a copper powder. 前記(D)非金属無機質充填剤が黒鉛である請求項1〜3のいずれかに記載の伝熱性樹脂組成物。   The heat transfer resin composition according to any one of claims 1 to 3, wherein the (D) non-metallic inorganic filler is graphite. 請求項1〜4のいずれかに記載の伝熱性樹脂組成物の製造方法であって、
前記(B)成分の固相線温度をTb[℃]、前記(C)成分である金属粉末又は合金粉末の融点又は固相線温度をTc[℃]としたときに、前記(A)〜(D)成分をTb[℃]以上Tc[℃]未満の温度で溶融混練する伝熱性樹脂組成物の製造方法。
It is a manufacturing method of the heat conductive resin composition in any one of Claims 1-4,
When the solidus temperature of the component (B) is Tb [° C.] and the melting point or solidus temperature of the metal powder or alloy powder as the component (C) is Tc [° C.] (D) The manufacturing method of the heat conductive resin composition which melt-kneads a component at the temperature below Tc [degreeC] more than Tb [degreeC].
請求項1〜4のいずれかに記載の伝熱性樹脂組成物からなる、厚さ0.02mm〜3.0mmのシート。   The sheet | seat of thickness 0.02mm -3.0mm which consists of a heat conductive resin composition in any one of Claims 1-4. 請求項1〜4のいずれかに記載の伝熱性樹脂組成物からなる層を一層以上有する、厚さ0.02mm〜3.0mmの積層シート。
A laminated sheet having a thickness of 0.02 mm to 3.0 mm, having one or more layers made of the heat conductive resin composition according to claim 1.
JP2005180349A 2005-06-21 2005-06-21 Heat conductive resin composition Withdrawn JP2007002002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180349A JP2007002002A (en) 2005-06-21 2005-06-21 Heat conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180349A JP2007002002A (en) 2005-06-21 2005-06-21 Heat conductive resin composition

Publications (1)

Publication Number Publication Date
JP2007002002A true JP2007002002A (en) 2007-01-11

Family

ID=37687909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180349A Withdrawn JP2007002002A (en) 2005-06-21 2005-06-21 Heat conductive resin composition

Country Status (1)

Country Link
JP (1) JP2007002002A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528538A (en) * 2014-07-07 2017-09-28 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Thermal interface material with ion scavenger
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528538A (en) * 2014-07-07 2017-09-28 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Thermal interface material with ion scavenger
US10155894B2 (en) 2014-07-07 2018-12-18 Honeywell International Inc. Thermal interface material with ion scavenger
US10428257B2 (en) 2014-07-07 2019-10-01 Honeywell International Inc. Thermal interface material with ion scavenger
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
US10781349B2 (en) 2016-03-08 2020-09-22 Honeywell International Inc. Thermal interface material including crosslinker and multiple fillers
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Similar Documents

Publication Publication Date Title
JP2007002002A (en) Heat conductive resin composition
EP2193171B1 (en) Thermoplastic composition and method for making&#39; thereof
EP2049586B1 (en) Improved thermal conductive polymeric ptc compositions
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
EP3549974B1 (en) Thermally conductive sheet
JP2015168783A (en) Highly thermal conductive resin composition
KR20100075227A (en) Thermally conductive insulating resin composition and plastic article
JP2003113272A (en) Thermoplastic elastomer composition and radiating sheet
JP2006328155A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
JP2008260830A (en) Heat-conductive resin composition
JP5290539B2 (en) RUBBER COMPOSITION, RUBBER MOLDED BODY, HEAT-RELEASING SHEET AND METHOD FOR PRODUCING THE SAME
CN102522173B (en) Resistance positive temperature degree effect conducing composite material and over-current protecting element
JPWO2020045260A1 (en) Resin composition and molded product
EP1197972A1 (en) Heat-softening heat-radiation sheet
CN107418197B (en) Heat-conducting nylon engineering plastic and preparation method thereof
JP2016017086A (en) Electrically insulating thermally conductive resin composition and method for producing the same
JP2017043673A (en) Resin composition and sheet thereof
TW200301769A (en) Electroconductive resin composition
JP6944708B2 (en) Thermally conductive elastomer composition and thermally conductive molded article
JP5722284B2 (en) Resin composition and sheet
CN110746732A (en) Resin composition and sheet containing resin composition
JP2005307059A (en) Poly(4-methyl-1-pentene) resin film
CN114539788A (en) High-enthalpy flexible phase-change composite material film and preparation method thereof
JP2006278445A (en) Thermally conductive sheet
JP4511858B2 (en) Phase change heat conductive molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100209