WO2015046244A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2015046244A1
WO2015046244A1 PCT/JP2014/075275 JP2014075275W WO2015046244A1 WO 2015046244 A1 WO2015046244 A1 WO 2015046244A1 JP 2014075275 W JP2014075275 W JP 2014075275W WO 2015046244 A1 WO2015046244 A1 WO 2015046244A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard coat
resin film
thermoplastic resin
coat layer
Prior art date
Application number
PCT/JP2014/075275
Other languages
French (fr)
Japanese (ja)
Inventor
周作 柴田
岸 敦史
大介 濱本
浩貴 倉本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020167008272A priority Critical patent/KR102248947B1/en
Priority to CN201480053648.3A priority patent/CN105593715B/en
Publication of WO2015046244A1 publication Critical patent/WO2015046244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements

Definitions

  • the present invention relates to an optical laminate.
  • Image display devices such as liquid crystal display (LCD), cathode ray tube display device (CRT), plasma display (PDP), electroluminescence display (ELD), etc. are visible when the surface is damaged by external contact. May decrease.
  • the optical laminated body containing a base material layer and a hard-coat layer is used for the purpose of the surface protection of an image display apparatus.
  • a base layer composed of a (meth) acrylic resin film and a hard coat layer are provided, and a penetrating layer in which components forming each layer are compatibilized is provided between these layers.
  • An optical layered body that suppresses unevenness of interference and improves adhesion for example, Patent Document 1).
  • an image display device is required to reduce surface reflection due to light emitted from the outside and to improve its visibility.
  • surface reflection of an image display device is reduced and visibility is improved by using an optical laminate in which an antireflection layer is formed on a base material layer.
  • the optical laminate having such a configuration include an optical laminate in which a low refractive index layer having a refractive index lower than that of the base material layer is provided on the outermost surface as the antireflection layer (for example, Patent Document 2).
  • the present inventors have discovered that when an optical functional layer such as a low refractive index layer is further provided on the surface of the hard coat layer of the optical laminate having the above-mentioned penetration layer, the surface of the optical functional layer is whitened over time. Furthermore, when the cause of the whitening was examined, it was found that the component derived from the base film bleeds out to the surface of the optical functional layer through the permeation layer and the hard coat layer.
  • an optical functional layer such as a low refractive index layer
  • the present invention is newly discovered in an optical laminate comprising a base material layer, a hard coat layer, and a penetrating layer provided therebetween, and further comprising an optical functional layer on the side where the penetrating layer of the hard coat layer is not provided. It is to improve the above whitening problem.
  • the optical layered body of the present invention includes a base layer formed from a thermoplastic resin film, a hard coat layer formed by applying a hard coat layer forming composition to the thermoplastic resin film, and a base layer. Between the hard coat layer, the hard coat layer forming composition was formed by infiltrating the thermoplastic resin film, and the hard coat layer was formed by coating the optical functional layer forming composition.
  • the optical functional layer includes a component derived from a thermoplastic resin film eluted from the thermoplastic resin film. The component derived from the thermoplastic resin film is present at a higher concentration inside than the surface of the optical functional layer.
  • the thermoplastic resin film is a (meth) acrylic resin film.
  • the component derived from the thermoplastic resin film contains a triazine ultraviolet absorber, a benzotriazole ultraviolet absorber, a benzophenone ultraviolet absorber, a cyanoacrylate ultraviolet absorber, a benzoxazine ultraviolet absorber, and an oxaxine. It is at least one ultraviolet absorber selected from diazole-based ultraviolet absorbers.
  • the composition for forming an optical functional layer includes a curable compound, fine particles having a refractive index of 1.44 or less, and an antifouling agent.
  • the antifouling agent is a fluorine-containing compound.
  • the composition for forming a hard coat layer includes a curable compound having two or more (meth) acryloyl groups.
  • the composition for forming a hard coat layer includes a monomer, an oligomer, and / or a prepolymer as a curable compound, and the total amount of the oligomer and the prepolymer is from 20% by weight to the total amount of the curable compound. 90% by weight.
  • a polarizing film is provided. This polarizing film contains the said optical laminated body.
  • an image display device is provided. The image display device includes the optical laminate.
  • the component derived from the base film mixed up to the optical functional layer through the permeation layer and the hard coat layer is stably held inside the optical functional layer, thereby eliminating the problem of whitening. Can be improved.
  • (A) is a schematic sectional drawing of the optical laminated body by preferable embodiment of this invention
  • (b) is an example of the schematic sectional drawing of the optical laminated body which does not have a osmosis
  • It is a graph which shows distribution of the component derived from the thermoplastic resin film in the low refractive index layer of the optical laminated body of an Example or a comparative example. The horizontal axis represents the measurement distance, and the vertical axis represents the ionic strength derived from the component. The higher the strength, the higher the concentration.
  • the dotted line in a graph shows the ultraviolet absorber added to the thermoplastic resin film, and a continuous line shows the thermoplastic resin component containing a glutarimide unit.
  • FIG. 1A is a schematic cross-sectional view of an optical laminate according to a preferred embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view of an optical laminate having no osmotic layer. It is.
  • the optical laminated body 100 shown to Fig.1 (a) is equipped with the base material layer 10 formed from a thermoplastic resin film, the osmosis
  • the optical functional layer 40 is formed by coating the hard coat layer 30 with an optical functional layer forming composition.
  • the hard coat layer 30 is formed by coating a composition for forming a hard coat layer on a thermoplastic resin film.
  • the osmotic layer 20 is formed by osmosis
  • the base material layer 10 is a portion where the hard coat layer forming composition does not reach (penetrate) in the thermoplastic resin film when the hard coat layer forming composition penetrates into the thermoplastic resin film. .
  • Boundary A shown in FIGS. 1A and 1B is a boundary defined by the hard coat layer forming composition coating surface of the thermoplastic resin film.
  • the boundary A is the boundary between the osmotic layer 20 and the hard coat layer 30 in the optical laminate 100, and the base layer 10 ′ (that is, the thermoplastic resin) in the optical laminate 200 in which the osmotic layer is not formed. Film) and the hard coat layer 30 '.
  • the optical laminate of the present invention is applied to, for example, a polarizing film (also referred to as a polarizing plate).
  • a polarizing film also referred to as a polarizing plate
  • the optical laminate of the present invention is preferably provided on the viewing side of the polarizer and can be suitably used as a protective material for the polarizer.
  • the base material layer is formed from any appropriate thermoplastic resin film. More specifically, when the hard coat layer forming composition is applied to the thermoplastic resin film, the hard coat layer forming composition does not reach (penetrate) in the thermoplastic resin film. Part.
  • thermoplastic resin film examples include (meth) acrylic resin film, cellulose resin film such as triacetyl cellulose, polyolefin resin film such as polyethylene and polypropylene; cycloolefin resin film such as polynorbornene, polyethylene terephthalate And polyester-based resin films such as polybutylene terephthalate.
  • a (meth) acrylic resin film is preferable.
  • the penetration layer can be formed satisfactorily, but the film forming components tend to elute and the problem of whitening tends to occur. Can be obtained more suitably.
  • “(meth) acryl” means acryl and / or methacryl.
  • the light transmittance of the thermoplastic resin film at a wavelength of 380 nm is preferably 15% or less, more preferably 12% or less, and further preferably 9% or less. If the transmittance of light having a wavelength of 380 nm is in such a range, an excellent ultraviolet absorbing ability is exhibited, so that deterioration of ultraviolet rays due to external light or the like of the optical laminate can be prevented.
  • the in-plane retardation Re of the thermoplastic resin film is preferably 10 nm or less, more preferably 7 nm or less, further preferably 5 nm or less, particularly preferably 3 nm or less, and most preferably 1 nm or less. is there.
  • the thickness direction retardation Rth of the thermoplastic resin film is preferably 15 nm or less, more preferably 10 nm or less, further preferably 5 nm or less, particularly preferably 3 nm or less, and most preferably 1 nm or less. . If the in-plane retardation and the thickness direction retardation are within such ranges, the adverse effect on the display characteristics of the image display apparatus due to the phase difference can be remarkably suppressed.
  • nx is the refractive index in the slow axis direction of the thermoplastic resin film
  • ny is the refractive index in the fast axis direction of the thermoplastic resin film
  • nz is the refractive index in the thickness direction of the thermoplastic resin film.
  • d (nm) is the thickness of the thermoplastic resin film.
  • the slow axis refers to the direction in which the in-plane refractive index is maximized
  • the fast axis refers to the direction perpendicular to the slow axis in the plane.
  • Re and Rth are measured using light having a wavelength of 590 nm.
  • the (meth) acrylic resin film includes a (meth) acrylic resin.
  • the (meth) acrylic resin film is obtained, for example, by extruding a molding material containing a resin component containing a (meth) acrylic resin as a main component.
  • a (meth) acrylic resin film having an in-plane retardation and a thickness direction retardation within the above ranges can be obtained using, for example, a (meth) acrylic resin having a glutarimide structure described later. .
  • the moisture permeability of the (meth) acrylic resin film is preferably 200 g / m 2 ⁇ 24 hr or less, and more preferably 80 g / m 2 ⁇ 24 hr or less. According to the present invention, even when a (meth) acrylic resin film having such a high moisture permeability is used, the adhesion between the (meth) acrylic resin film and the hard coat layer is excellent, and interference unevenness is suppressed. An optical laminate can be obtained.
  • the moisture permeability can be measured under the test conditions of 40 ° C. and a relative humidity of 92%, for example, by a method according to JIS Z 0208.
  • any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin.
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer).
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid
  • poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
  • the weight average molecular weight of the (meth) acrylic resin is preferably 10,000 to 500,000. If the weight average molecular weight is too small, the mechanical strength when formed into a film tends to be insufficient. When the weight average molecular weight is too large, the viscosity at the time of melt extrusion is high, the molding processability is lowered, and the productivity of the molded product tends to be lowered.
  • the glass transition temperature of the (meth) acrylic resin is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. When the glass transition temperature is in such a range, a (meth) acrylic resin film excellent in durability and heat resistance can be obtained.
  • the upper limit of the glass transition temperature is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
  • the (meth) acrylic resin preferably has a structural unit that exhibits positive birefringence and a structural unit that exhibits negative birefringence. If these structural units are included, the abundance ratio can be adjusted to control the retardation of the (meth) acrylic resin film, and a (meth) acrylic resin film having a low retardation can be obtained. it can.
  • the structural unit exhibiting positive birefringence include a structural unit constituting a lactone ring, polycarbonate, polyvinyl alcohol, cellulose acetate, polyester, polyarylate, polyimide, polyolefin, etc., and a general formula (1) described later. Examples include structural units.
  • Examples of the structural unit exhibiting negative birefringence include a structural unit derived from a styrene monomer, a maleimide monomer, a structural unit of polymethyl methacrylate, a structural unit represented by the general formula (3) described later, and the like. Can be mentioned.
  • a structural unit that exhibits positive birefringence is a case where a resin having only the structural unit exhibits positive birefringence characteristics (that is, a slow axis appears in the stretching direction of the resin). Means a structural unit.
  • a structural unit that develops negative birefringence is when a resin having only the structural unit exhibits negative birefringence characteristics (that is, when a slow axis appears in a direction perpendicular to the stretching direction of the resin).
  • a (meth) acrylic resin having a lactone ring structure or a glutarimide structure is preferably used as the (meth) acrylic resin.
  • a (meth) acrylic resin having a lactone ring structure or a glutarimide structure is excellent in heat resistance. More preferred is a (meth) acrylic resin having a glutarimide structure. If a (meth) acrylic resin having a glutarimide structure is used, a (meth) acrylic resin film having low moisture permeability and a small retardation and ultraviolet transmittance can be obtained as described above.
  • Examples of (meth) acrylic resins having a glutarimide structure include, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A-2006-328329.
  • the glutarimide resin includes a structural unit represented by the following general formula (1) (hereinafter also referred to as a glutarimide unit) and a structural unit represented by the following general formula (2) (hereinafter referred to as (meta)). Also referred to as an acrylate unit).
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or 3 to 3 carbon atoms.
  • 12 a cycloalkyl group or a substituent containing an aromatic ring having 5 to 15 carbon atoms.
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or 3 to 3 carbon atoms.
  • 12 a cycloalkyl group or a substituent containing an aromatic ring having 5 to 15 carbon atoms.
  • the glutarimide resin may further contain a structural unit represented by the following general formula (3) (hereinafter also referred to as an aromatic vinyl unit) as necessary.
  • R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 is an aryl group having 6 to 10 carbon atoms.
  • R 1 and R 2 are each independently hydrogen or a methyl group
  • R 3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group, and more preferably , R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group.
  • the glutarimide resin may include only a single type as a glutarimide unit, or may include a plurality of types in which R 1 , R 2 , and R 3 in the general formula (1) are different. Good.
  • the glutarimide unit can be formed by imidizing the (meth) acrylic acid ester unit represented by the general formula (2).
  • the glutarimide unit may be an acid anhydride such as maleic anhydride, or a half ester of such an acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms; acrylic acid, methacrylic acid, maleic acid It can also be formed by imidizing an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid and citraconic acid.
  • R 4 and R 5 are each independently hydrogen or a methyl group
  • R 6 is hydrogen or a methyl group
  • R 4 is hydrogen
  • R 5 is a methyl group
  • R 6 is a methyl group
  • the glutarimide resin may contain only a single type as a (meth) acrylic acid ester unit, or a plurality of types in which R 4 , R 5 and R 6 in the general formula (2) are different. May be included.
  • the glutarimide resin preferably contains styrene, ⁇ -methylstyrene, and more preferably styrene as the aromatic vinyl unit represented by the general formula (3).
  • aromatic vinyl unit By having such an aromatic vinyl unit, the positive birefringence of the glutarimide structure can be reduced, and a (meth) acrylic resin film having a lower retardation can be obtained.
  • the glutarimide resin may contain only a single type as an aromatic vinyl unit, or may contain a plurality of types in which R 7 and R 8 are different.
  • the content of the glutarimide unit in the glutarimide resin is preferably changed depending on, for example, the structure of R 3 .
  • the content of the glutarimide unit is preferably 1% by weight to 80% by weight, more preferably 1% by weight to 70% by weight, even more preferably 1% by weight, based on the total structural unit of the glutarimide resin. -60% by weight, particularly preferably 1-50% by weight.
  • a (meth) acrylic resin film having a low retardation excellent in heat resistance can be obtained.
  • the content of the aromatic vinyl unit in the glutarimide resin can be appropriately set according to the purpose and desired characteristics. Depending on the application, the content of the aromatic vinyl unit may be zero.
  • the content thereof is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 80% by weight, based on the glutarimide unit of the glutarimide resin. More preferably, it is 20% by weight to 60% by weight, and particularly preferably 20% by weight to 50% by weight.
  • a (meth) acrylic resin film having a low retardation, excellent heat resistance and mechanical strength can be obtained.
  • the glutarimide resin may be further copolymerized with other structural units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit, if necessary.
  • other structural units include structures composed of nitrile monomers such as acrylonitrile and methacrylonitrile, and maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. Units are listed. These other structural units may be directly copolymerized or graft copolymerized in the glutarimide resin.
  • the thermoplastic resin film contains an ultraviolet absorber.
  • the ultraviolet absorber any appropriate ultraviolet absorber can be adopted as long as the desired characteristics are obtained.
  • Representative examples of the above UV absorbers include triazine UV absorbers, benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, benzoxazine UV absorbers, and oxadiazole UV absorbers. Agents. These ultraviolet absorbers may be used alone or in combination.
  • the content of the ultraviolet absorber is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the content of the ultraviolet absorber is in such a range, ultraviolet rays can be absorbed effectively and the transparency of the film during film formation does not deteriorate.
  • the content of the ultraviolet absorber is less than 0.1 parts by weight, the ultraviolet blocking effect tends to be insufficient.
  • there is more content of a ultraviolet absorber than 5 weight part there exists a tendency for coloring to become intense or the haze of the film after shaping
  • the thermoplastic resin film may contain any appropriate additive depending on the purpose.
  • additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; Infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; antistatic agents such as anionic, cationic and nonionic surfactants; coloring of inorganic pigments, organic pigments, dyes, etc. Agents; organic fillers and inorganic fillers; resin modifiers; plasticizers; lubricants; retardation reducing agents.
  • the kind, combination, content, and the like of the additive to be contained can be appropriately set according to the purpose and desired characteristics.
  • thermoplastic resin film is not particularly limited.
  • the thermoplastic resin, the ultraviolet absorber, and other polymers and additives as necessary may be arbitrarily selected. It is possible to form a film from a thermoplastic resin composition that has been sufficiently mixed by an appropriate mixing method. Alternatively, a thermoplastic resin, an ultraviolet absorber, and if necessary, other polymers and additives are mixed in separate solutions to form a uniform mixed solution, and then formed into a film. Good.
  • the film raw material is pre-blended with any suitable mixer such as an omni mixer, and then the obtained mixture is extruded and kneaded.
  • the mixer used for extrusion kneading is not particularly limited, and for example, any suitable mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader may be used. Can do.
  • the film forming method examples include any appropriate film forming methods such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method.
  • a melt extrusion method is preferred. Since the melt extrusion method does not use a solvent, it is possible to reduce the manufacturing cost and the burden on the global environment and work environment due to the solvent.
  • melt extrusion method examples include a T-die method and an inflation method.
  • the molding temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
  • a T-die is attached to the tip of a known single-screw extruder or twin-screw extruder, and the film extruded into a film is wound to obtain a roll-shaped film Can do.
  • simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.
  • the thermoplastic resin film may be either an unstretched film or a stretched film as long as the desired retardation is obtained.
  • a stretched film either a uniaxially stretched film or a biaxially stretched film may be used.
  • a biaxially stretched film either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used.
  • the stretching temperature is preferably in the vicinity of the glass transition temperature of the thermoplastic resin composition which is a film raw material, and more preferably, (glass transition temperature ⁇ 30 ° C.) to (glass transition temperature + 30 ° C.) Preferably, it is within the range of (glass transition temperature ⁇ 20 ° C.) to (glass transition temperature + 20 ° C.). If the stretching temperature is less than (glass transition temperature ⁇ 30 ° C.), the haze of the resulting film may increase, or the film may be torn or cracked, resulting in failure to obtain a predetermined stretching ratio.
  • the stretching ratio is preferably 1.1 to 3 times, more preferably 1.3 to 2.5 times.
  • the mechanical properties such as the film elongation, tear propagation strength, and fatigue resistance can be greatly improved.
  • thermoplastic resin film can be subjected to a heat treatment (annealing) or the like after the stretching treatment in order to stabilize its optical isotropy and mechanical properties.
  • Arbitrary appropriate conditions can be employ
  • the thickness of the thermoplastic resin film is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m. There exists a possibility that intensity
  • the surface tension of the thermoplastic resin film is preferably 40 mN / m or more, more preferably 50 mN / m or more, and further preferably 55 mN / m or more.
  • the surface wetting tension is 40 mN / m or more, the adhesion between the thermoplastic resin film and the hard coat layer is further improved.
  • Any suitable surface treatment can be applied to adjust the surface wetting tension. Examples of the surface treatment include corona discharge treatment, plasma treatment, ozone spraying, ultraviolet irradiation, flame treatment, and chemical treatment. Of these, corona discharge treatment and plasma treatment are preferable.
  • the penetration layer is formed by the penetration of the composition for forming a hard coat layer into the thermoplastic resin film as described above.
  • the osmotic layer can correspond to a part of the compatibilized region between the thermoplastic resin forming the thermoplastic resin film and the component forming the hard coat layer.
  • the concentration of the thermoplastic resin forming the thermoplastic resin film is continuously increased from the hard coat layer side to the base material layer side. Interfacial reflection can be suppressed by the fact that the concentration of the thermoplastic resin changes continuously, that is, the interface resulting from the change in the concentration of the thermoplastic resin is not formed, and an optical laminate having little interference unevenness is obtained. Because you can.
  • the lower limit of the thickness of the permeation layer is, for example, 1.2 ⁇ m, preferably 1.5 ⁇ m, more preferably 2.5 ⁇ m, and further preferably 3 ⁇ m.
  • the upper limit of the thickness of the osmotic layer is preferably (thermoplastic resin film thickness ⁇ 70%) ⁇ m, more preferably (thermoplastic resin film thickness ⁇ 40%) ⁇ m, and even more preferably (thermoplastic resin). Film thickness ⁇ 30%) ⁇ m, particularly preferably (thermoplastic resin film ⁇ 20%) ⁇ m. If the thickness of the permeation layer is in such a range, an optical laminate having excellent adhesion between the thermoplastic resin film and the hard coat layer and suppressing interference unevenness can be obtained.
  • the thickness of the osmotic layer is the thickness of the portion where the component for forming the hard coat layer is present in the thermoplastic resin film.
  • the thickness of the osmotic layer can be measured by reflection spectrum of the hard coat layer or observation with an electron microscope such as SEM or TEM. Details of the method for measuring the thickness of the osmotic layer based on the reflection spectrum will be described later as an evaluation method in Examples.
  • the optical layered body of the present invention having the osmotic layer having a thickness within the above range may cause interference unevenness even when a material having a large refractive index difference is selected as a material for forming the thermoplastic resin film and the hard coat layer. Can be prevented.
  • the absolute value of the difference between the refractive index of the base material layer and the refractive index of the hard coat layer can be set to 0.01 to 0.15.
  • the hard coat layer is formed by applying the composition for forming a hard coat layer on the thermoplastic resin film.
  • the composition for forming a hard coat layer includes, for example, a curable compound that can be cured by heat, light (such as ultraviolet rays), or an electron beam.
  • the composition for forming a hard coat layer contains a photocurable curable compound.
  • the curable compound may be any of a monomer, an oligomer and a prepolymer.
  • the hard coat layer forming composition preferably contains a curable compound having two or more (meth) acryloyl groups.
  • the upper limit of the number of (meth) acryloyl groups contained in the curable compound having two or more (meth) acryloyl groups is preferably 100. Since a curable compound having two or more (meth) acryloyl groups is excellent in compatibility with a (meth) acrylic resin, when a (meth) acrylic resin film is used as a thermoplastic resin film, It easily penetrates and diffuses into the (meth) acrylic resin film.
  • “(meth) acryloyl” means methacryloyl and / or acryloyl.
  • curable compound having two or more (meth) acryloyl groups examples include tricyclodecane dimethanol diacrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane triacrylate, Pentaerythritol tetra (meth) acrylate, dimethylolpropanthate tetraacrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol (meth) acrylate, 1,9-nonanediol diacrylate, 1,10-decanediol (Meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, dipropylene glycol diacrylate, isocyanuric acid Examples include li (meth) acrylate, ethoxylated gly,
  • the curable compound having two or more (meth) acryloyl groups preferably has a hydroxyl group. If the composition for forming a hard coat layer contains such a curable compound, the heating temperature at the time of forming the hard coat layer can be set lower, the heating time can be set shorter, and deformation due to heating can be suppressed.
  • the produced optical laminate can be produced efficiently. Moreover, the optical laminated body excellent in the adhesiveness of a thermoplastic resin film (for example, (meth) acrylic-type resin film) and a hard-coat layer can be obtained.
  • the curable compound having a hydroxyl group and two or more (meth) acryloyl groups include pentaerythritol tri (meth) acrylate and dipentaerythritol pentaacrylate.
  • the content of the curable compound having two or more (meth) acryloyl groups is preferably 30% by weight to 100% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. %, More preferably 40% by weight to 95% by weight, and particularly preferably 50% by weight to 95% by weight. If it is such a range, the optical laminated body which was excellent in the adhesiveness of a thermoplastic resin film (for example, (meth) acrylic-type resin film) and a hard-coat layer, and the interference nonuniformity was suppressed can be obtained. . In addition, curing shrinkage of the hard coat layer can be effectively prevented.
  • the hard coat layer forming composition may contain a monofunctional monomer as a curable compound.
  • a monofunctional monomer easily penetrates into a thermoplastic resin film (for example, a (meth) acrylic resin film). Therefore, if the monofunctional monomer is contained, the adhesion between the thermoplastic resin film and the hard coat layer is excellent. And the optical laminated body by which interference nonuniformity was suppressed can be obtained. Further, if the hard coat layer-forming composition contains a monofunctional monomer, the heating temperature at the time of forming the hard coat layer can be set low, the heating time can be set short, and the optical laminate in which deformation due to heating is suppressed. Can be produced efficiently.
  • the content ratio of the monofunctional monomer is preferably 40% by weight or less with respect to the total curable compound in the hard coat layer forming composition, More preferably, it is 30 weight% or less, Most preferably, it is 20 weight% or less. When the content ratio of the monofunctional monomer is more than 40% by weight, desired hardness and scratch resistance may not be obtained.
  • the weight average molecular weight of the monofunctional monomer is preferably 500 or less.
  • a monofunctional monomer easily penetrates and diffuses into a thermoplastic resin film (for example, a (meth) acrylic resin film).
  • monofunctional monomers include ethoxylated o-phenylphenol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isooctyl acrylate, Isostearyl acrylate, cyclohexyl acrylate, isoholonyl acrylate, phenoxyethyl acrylate, benzyl acrylate, 2-hydroxy-3-phenoxy acrylate, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, dimethyl Aminopropylacrylamide, N
  • the monofunctional monomer preferably has a hydroxyl group.
  • the heating temperature at the time of forming the hard coat layer can be set lower, the heating time can be set shorter, and an optical laminate in which deformation due to heating is suppressed can be efficiently produced. it can.
  • the said composition for hard-coat layer formation contains the monofunctional monomer which has a hydroxyl group, the optical which is excellent in the adhesiveness of a thermoplastic resin film (for example, (meth) acrylic-type resin film) and a hard-coat layer. A laminate can be obtained.
  • Examples of such monofunctional monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxy acrylate, 1,4 -Hydroxyalkyl (meth) acrylates such as cyclohexane methanol monoacrylate; N- (2-hydroxyalkyl) (meth) acrylamides such as N- (2-hydroxyethyl) (meth) acrylamide, N-methylol (meth) acrylamide, etc. Can be mentioned. Of these, 4-hydroxybutyl acrylate and N- (2-hydroxyethyl) acrylamide are preferable.
  • the boiling point of the monofunctional monomer is preferably higher than the heating temperature (described later) of the coating layer when forming the hard coat layer.
  • the boiling point of the monofunctional monomer is, for example, preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the monofunctional monomer can be prevented from volatilizing by heating during the formation of the hard coat layer, and the monofunctional monomer can sufficiently penetrate into the thermoplastic resin film (for example, (meth) acrylic resin film). Can be made.
  • the composition for forming a hard coat layer preferably contains urethane (meth) acrylate and / or urethane (meth) acrylate oligomer as the curable compound. If the hard coat layer-forming composition contains urethane (meth) acrylate and / or urethane (meth) acrylate oligomer, a hard coat layer having excellent flexibility and adhesion to a thermoplastic resin film can be formed. .
  • the urethane (meth) acrylate can be obtained, for example, by reacting hydroxy (meth) acrylate obtained from (meth) acrylic acid or (meth) acrylic acid ester and polyol with diisocyanate. Urethane (meth) acrylates and urethane (meth) acrylate oligomers may be used alone or in combination.
  • Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • polyol examples include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1, 6-hexanediol, 1,9-nonanediol, 1,10-decanediol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5-pentanediol, neopentyl hydroxypivalate Glycol ester, tricyclodecane dimethylol, 1,4-cyclohexanediol, spiroglycol, hydrogenated bisphenol A, ethylene oxide added bisphenol A, propylene oxide added bisphenol A, trimethylol ethane, trimethylol Propane, glycerin, 3-methylpentane-1,3,5-triol, pentaeryth
  • diisocyanate for example, various aromatic, aliphatic or alicyclic diisocyanates can be used. Specific examples of the diisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3-dimethyl-4,4. -Diphenyl diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-diphenylmethane diisocyanate, and hydrogenated products thereof.
  • the total content of the urethane (meth) acrylate and urethane (meth) acrylate oligomer is preferably 20% by weight to 90% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the composition for forming a hard coat layer. %, More preferably 25% by weight to 85% by weight, and particularly preferably 30% by weight to 80% by weight. If it is such a range, the hard-coat layer excellent in the balance of hardness, a softness
  • the hard coat layer forming composition may contain a (meth) acrylic prepolymer having a hydroxyl group. If the composition for forming a hard coat layer contains a (meth) acrylic prepolymer having a hydroxyl group, curing shrinkage can be reduced. Moreover, when the (meth) acrylic prepolymer has a hydroxyl group, an optical laminate having excellent adhesion between a thermoplastic resin film (for example, a (meth) acrylic resin film) and a hard coat layer is obtained. be able to.
  • a thermoplastic resin film for example, a (meth) acrylic resin film
  • the (meth) acrylic prepolymer having a hydroxyl group is preferably a polymer polymerized from a hydroxyalkyl (meth) acrylate having a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Examples of the (meth) acrylic prepolymer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, 2 -Polymers polymerized from at least one monomer selected from the group consisting of acryloyloxy-3-hydroxypropyl (meth) acrylate.
  • the (meth) acrylic prepolymer having a hydroxyl group may be used alone or in combination.
  • the content ratio of the (meth) acrylic prepolymer having a hydroxyl group is preferably 5% by weight to 50% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. More preferably, it is 10 to 30% by weight. If it is such a range, the composition for hard-coat layer formation excellent in coating property will be obtained. In addition, curing shrinkage of the formed hard coat layer can be effectively prevented.
  • the composition for forming a hard coat layer contains a monomer and an oligomer and / or a prepolymer as the curable compound, the sum of the oligomer and the prepolymer relative to the total amount of the curable compound (the total amount of the monomer, the oligomer and the prepolymer)
  • the amount is preferably 20% to 90% by weight, more preferably 25% to 85% by weight, and still more preferably 30% to 80% by weight.
  • the monomer compounding ratio in the curable compound increases, the bleed-out amount of the component derived from the thermoplastic resin film tends to increase.
  • adhesiveness may worsen when the monomer compounding ratio in a curable compound becomes small.
  • the hard coat layer forming composition preferably contains any appropriate photopolymerization initiator.
  • the photopolymerization initiator include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, benzoinpropyl ether, benzyldimethyl Ketals, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone compounds, etc. Can be mentioned.
  • the surface of the hard coat layer opposite to the base material layer has an uneven structure. If the surface of the hard coat layer has a concavo-convex structure, antiglare properties can be imparted to the optical laminate.
  • Examples of a method for forming such a concavo-convex structure include a method in which fine particles are contained in the hard coat layer forming composition.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • Examples of the inorganic fine particles include silicon oxide fine particles, titanium oxide fine particles, aluminum oxide fine particles, zinc oxide fine particles, tin oxide fine particles, calcium carbonate fine particles, barium sulfate fine particles, talc fine particles, kaolin fine particles, and calcium sulfate fine particles.
  • organic fine particles examples include polymethyl methacrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, and polyester resin powder. , Polyamide resin powder, polyimide resin powder, polyfluorinated ethylene resin powder, and the like. These fine particles may be used alone or in combination.
  • any appropriate shape can be adopted as the shape of the fine particles. It is preferably a substantially spherical shape, more preferably a substantially spherical shape having an aspect ratio of 1.5 or less.
  • the weight average particle diameter of the fine particles is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 20 ⁇ m.
  • the weight average particle diameter of the fine particles can be measured by, for example, a Coulter count method.
  • the content ratio of the fine particles is preferably 1% by weight to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. 60% by weight, more preferably 2% to 50% by weight.
  • the hard coat layer forming composition may further contain any appropriate additive.
  • additives include leveling agents, anti-blocking agents, dispersion stabilizers, thixotropic agents, antioxidants, UV absorbers, antifoaming agents, thickeners, dispersants, surfactants, catalysts, fillers, and lubricants. And antistatic agents.
  • the hard coat layer forming composition may or may not contain a solvent.
  • the solvent include dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, acetone, methyl ethyl ketone (MEK).
  • a hard coat layer forming composition containing no solvent or a hard coat layer forming composition containing only a poor solvent of a thermoplastic resin film forming material as a solvent can be used.
  • the composition can permeate a thermoplastic resin film, preferably a (meth) acrylic resin film, to form a permeation layer having a desired thickness.
  • the thickness of the hard coat layer is preferably 1 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m.
  • thermoplastic resin eluted from the thermoplastic resin film into the hard coat layer forming composition may be present.
  • concentration of the thermoplastic resin is preferably continuously reduced from the penetrating layer side surface toward the optical functional layer side surface.
  • the concentration of the thermoplastic resin continuously changes, that is, the interface due to the change in the concentration of the thermoplastic resin is not formed, the interface reflection can be suppressed, and the interference unevenness is reduced. It is possible to obtain an optical layered body with less.
  • the optical functional layer is formed by applying the optical functional layer forming composition to the hard coat layer.
  • the optical functional layer contains a component derived from a thermoplastic resin film that is eluted from the thermoplastic resin film into the composition for forming a hard coat layer and mixed through the hard coat layer.
  • the component derived from the thermoplastic resin film is present in the optical functional layer at a higher concentration inside than on the surface thereof.
  • the concentration distribution of the component derived from the thermoplastic resin film in the optical functional layer is measured by using a time-of-flight secondary ion mass spectrometer (TOF-SIMS), for example, as described in the examples.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the component derived from the thermoplastic resin film mixed in the optical functional layer examples include additives added to the film, low molecular weight thermoplastic resins, and the like. Of these, UV absorption selected from triazine UV absorbers, benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, benzoxazine UV absorbers, and oxadiazole UV absorbers.
  • the agent has a high transferability to the hard coat layer forming composition and easily causes whitening problems.
  • the problem of whitening can be improved by stably holding the components derived from the thermoplastic resin film that can cause whitening inside the optical functional layer.
  • the optical layered body of the present invention is substantially free from whitening problems even after two weeks have passed since manufacture.
  • the optical functional layer is preferably antifouling because it can be disposed on the outermost surface of the display screen of the image display device.
  • the water contact angle of the optical functional layer is, for example, 90 ° or more, preferably 95 ° or more, more preferably 100 ° or more, and further preferably 105 ° or more.
  • the hexadecane contact angle of the optical functional layer is preferably 35 ° or more, more preferably 40 ° or more, and further preferably 45 ° or more.
  • the optical functional layer examples include a low refractive index layer, a high refractive index layer, an antiglare layer, and an antistatic layer.
  • the optical functional layer is a low refractive index layer
  • the low refractive index layer can function as an antireflection layer.
  • the refractive index of the low refractive index layer is lower than the refractive index of the hard coat layer.
  • the refractive index of the low refractive index layer is preferably 1.20 to 1.45, more preferably 1.23 to 1.42. Further, the difference between the refractive index of the low refractive index layer and the refractive index of the hard coat layer may be, for example, 0.08 to 0.33.
  • the refractive index means a refractive index at a wavelength of 590 nm.
  • the optical functional layer forming composition typically includes a curable compound and an antifouling agent.
  • the optical functional layer is a low refractive index layer
  • the optical functional layer forming composition (low refractive index layer forming composition) further includes low refractive index fine particles having a refractive index of 1.44 or less.
  • the curable compound can be cured by, for example, heat, light (such as ultraviolet rays), or an electron beam.
  • the composition for forming an optical functional layer contains a photocurable curable compound.
  • the curable compound may be any of a monomer, an oligomer and a prepolymer.
  • the composition for forming an optical functional layer preferably contains a curable compound having two or more (meth) acryloyl groups.
  • a curable compound having two or more (meth) acryloyl groups When both the hard coat layer forming composition and the optical functional layer forming composition have two or more (meth) acryloyl groups, the adhesion between the hard coat layer and the optical functional layer can be improved.
  • the curable compound having two or more (meth) acryloyl groups the same compounds as those described in the section D for the composition for forming a hard coat layer can be used alone or in combination of two or more.
  • the curable compound having two or more (meth) acryloyl groups preferably has a hydroxyl group. If the composition for optical function layer formation contains such a sclerosing
  • the content ratio of the curable compound having two or more (meth) acryloyl groups is preferably 50% by weight to 100% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the composition for forming an optical functional layer. %, More preferably 60% by weight to 100% by weight, and particularly preferably 70% by weight to 100% by weight. If it is such a range, the optical laminated body excellent in the adhesiveness of a hard-coat layer and an optical function layer can be obtained. In addition, curing shrinkage of the optical functional layer can be effectively prevented.
  • Examples of other monomers, oligomers and prepolymers that can be contained in the composition for forming an optical functional layer include those described in the section D for the composition for forming a hard coat layer.
  • a fluorine-containing compound can be preferably used as the antifouling agent.
  • the fluorine-containing compound imparts antifouling properties to the optical functional layer and can also contribute to lowering the refractive index of the optical functional layer.
  • a silicone-based antifouling agent is used in the outermost surface layer of an image display device to impart antifouling properties as well as scratch resistance and the like.
  • a fluorine-based antifouling agent is used. By using this, the component derived from the thermoplastic resin film can be stably held inside the optical functional layer.
  • the fluorine-containing compound used in the present invention may not contain silicon, for example, it does not contain a siloxane bond.
  • the fluorine-containing compound preferably has a fluoroalkyl group, a fluoroalkenyl group or a fluoroalkylene group each having 1 to 10 carbon atoms in the molecule, more preferably a perfluoroalkyl group or a perfluoroalkenyl group each having 1 to 10 carbon atoms. Group or perfluoroalkylene group. According to the fluorine-containing compound having these groups, bleeding out of the component derived from the thermoplastic resin film can be suppressed and stably held inside the optical functional layer.
  • the fluorine-containing compound may further have an ether bond.
  • the number of ether bonds is preferably 1 or more, more preferably 2 to 30, and particularly preferably 4 to 20. If the number of ether bonds is within such a range, excellent antifouling properties can be obtained.
  • the fluorine-containing compound comprises a perfluoroalkyl group such as a trifluoromethyl group, a tetrafluoroethylene group, a perfluoroisopropyl group, and / or a perfluoroalkenyl group such as a heptadecafluorononenyl group and an ether bond.
  • a perfluoroalkyl group such as a trifluoromethyl group, a tetrafluoroethylene group, a perfluoroisopropyl group, and / or a perfluoroalkenyl group such as a heptadecafluorononenyl group and an ether bond.
  • the fluorine-containing compound may have a perfluoroalkylene oxide group such as a tetrafluoroethylene oxide group or a difluoromethylene oxide group.
  • the fluorine-containing compound is, for example, poly (perfluoroalkylene oxide) such as poly (difluoromethylene oxide), poly (tetrafluoroethylene oxide), poly (tetrafluoroethylene oxide-co-difluoromethylene oxide), etc. It can be.
  • the fluorine-containing compound may further have any appropriate reactive group as required.
  • the reactive group is typically a (meth) acryloyl group.
  • the fluorine-containing compound is fixed in the optical functional layer, and movement in the layer can be restricted. As a result, contact between the fluorine-containing compound and the component derived from the thermoplastic resin film is reduced, and aggregation and precipitation of the component derived from the thermoplastic resin film due to the contact can be suppressed.
  • the weight average molecular weight of the fluorine-containing compound is preferably relatively small or relatively large. Specifically, the weight average molecular weight is preferably 300 to 8,000 or 50,000 or more, more preferably 500 to 5,000 or 100,000 to 500,000. In the case of a fluorine-containing compound having a relatively small molecular weight, it is excellent in transferability to the surface, so that a thin layer of the compound can be suitably formed on the surface of the optical functional layer, thereby bleeding the component derived from the thermoplastic resin film. It is presumed that out can be suppressed.
  • the compounding amount of the fluorine-containing compound is preferably 0.5% by weight to 30% by weight, more preferably 1% by weight to 25% by weight, based on the total solid content in the composition for forming an optical functional layer. More preferably, it is 1.5 wt% to 20 wt%.
  • the optical functional layer forming composition preferably contains any appropriate photopolymerization initiator. Further, it may further contain a solvent and any appropriate additive as required. Specific examples of the photopolymerization initiator, the solvent and the additive include the same ones that can be used for the composition for forming a hard coat layer.
  • the refractive index of the low refractive index fine particles is preferably 1.20 to 1.44, more preferably 1.23 to 1.40.
  • Examples of the low refractive index fine particles include fine particles having voids or fine particles formed of a low refractive index material.
  • Examples of the fine particles having voids include hollow fine particles and porous fine particles.
  • Examples of the material for forming fine particles having voids include metals, metal oxides, and resins.
  • hollow silica fine particles can be preferably used.
  • a lipophilic group or a reactive group may be introduced on the surface using a silane coupling agent.
  • the material for forming the fine particles formed of the low refractive index material is not limited as long as the refractive index is satisfied, and examples thereof include metal fluorides such as magnesium fluoride, aluminum fluoride, calcium fluoride, and lithium fluoride. It is done.
  • the average particle size (average primary particle size) of the low refractive index fine particles is, for example, 1 nm to 100 nm. If the average particle size is within the range, both transparency and dispersibility can be achieved.
  • the blending amount of the low refractive index fine particles is preferably 30% by weight to 250% by weight and more preferably 45% by weight to 200% by weight with respect to the total amount of the curable compound (total amount of monomer, oligomer and prepolymer). %, More preferably 60% to 150% by weight.
  • the thickness of the optical functional layer can be set to any appropriate value depending on the purpose and the like.
  • the thickness thereof is, for example, 10 nm to 200 nm, preferably 20 nm to 120 nm.
  • the manufacturing method of the optical laminated body of this invention apply
  • the hard coat layer is formed by curing the first coating layer after heating.
  • the optical functional layer is preferably formed by curing the second coating layer.
  • the formation and curing process of the second coating layer is usually performed after the curing process of the first coating layer.
  • the second coating layer is formed on the heated first coating layer, and the first and first coating layers are formed. You may perform the hardening process of 2 coating layers simultaneously.
  • Arbitrary appropriate methods can be employ
  • Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, and a comma coating method.
  • the heating temperature of the first coating layer may be set to an appropriate temperature according to the composition of the hard coat layer forming composition, and preferably set to be equal to or lower than the glass transition temperature of the resin contained in the thermoplastic resin film. Is done. When heated at a temperature not higher than the glass transition temperature of the resin contained in the thermoplastic resin film, an optical laminate in which deformation due to heating is suppressed can be obtained.
  • the heating temperature of the first coating layer is, for example, 80 ° C. to 140 ° C. When heated at such a temperature, the monomer, oligomer and / or prepolymer in the composition for forming a hard coat layer can penetrate and diffuse well into the thermoplastic resin film.
  • the permeation layer described in the above section C is formed by the hard coat layer forming composition and the thermoplastic resin film forming material that has permeated through the heating and subsequent curing treatment.
  • the composition for hard-coat layer formation contains a solvent
  • coated composition for hard-coat layer formation can be dried by the said heating.
  • the thickness of the permeation layer can be increased by setting the heating temperature high within the above range, for example.
  • the heating temperature may be set according to the content ratio of the curable compound having two or more (meth) acryloyl groups and the monofunctional monomer contained in the composition for forming a hard coat layer. .
  • the curing process is performed by ultraviolet irradiation.
  • the integrated light quantity of ultraviolet irradiation is preferably 200 mJ to 400 mJ.
  • Refractive index Measurement was performed using an Abbe refractometer (trade name: DR-M2 / 1550) manufactured by Atago Co., Ltd., selecting monobromonaphthalene as an intermediate solution.
  • Thickness of osmotic layer A black acrylic plate (Mitsubishi Rayon Co., Ltd., thickness) is formed on the base layer side of the laminate having the configuration of [base layer / penetration layer / hard coat layer] prepared in Examples and Comparative Examples. 2 mm) was attached via an acrylic adhesive having a thickness of 20 ⁇ m.
  • the reflection spectrum of the hard coat layer was measured under the following conditions using an instantaneous multi-photometry system (trade name: MCPD3700, manufactured by Otsuka Electronics Co., Ltd.). From the peak position of the FFT spectrum, (hard coat layer + penetration layer) The thickness of was evaluated. In addition, the value measured by said (1) was used for the refractive index.
  • Reflection spectrum measurement conditions Reference: Mirror Algorithm: FFT method Calculation wavelength: 450 nm to 850 nm ⁇ Detection conditions Exposure time: 20 ms Lamp gain: Normal Integration count: 10 times / FFT method Film thickness range: 2 to 15 ⁇ m Film thickness resolution: 24nm Moreover, the thickness of the hard coat layer was evaluated by the reflection spectrum measurement for the following laminate. Stacked body: Example 1 except that a PET base material (trade name: U48-3, refractive index: 1.60) manufactured by Toray Industries, Inc. was used as the base film, and the heating temperature of the coating layer was set to 60 ° C. Obtained similarly.
  • the thickness of only the hard coat layer is measured from the peak position of the FFT spectrum obtained from the laminate.
  • the thickness of the hard coat layer was 6 ⁇ m.
  • the base film A thus obtained had a light transmittance of 8.5% at a wavelength of 380 nm, an in-plane retardation Re of 0.4 nm, and a thickness direction retardation Rth of 0.78 nm.
  • the moisture permeability of the obtained base film A was 61 g / m 2 ⁇ 24 hr.
  • the light transmittance was measured by measuring a transmittance spectrum in a wavelength range of 200 nm to 800 nm using a spectrophotometer (device name: U-4100) manufactured by Hitachi High-Tech Co., Ltd., and reading the transmittance at a wavelength of 380 nm. .
  • the phase difference value was measured at a wavelength of 590 nm and 23 ° C. using a trade name “KOBRA21-ADH” manufactured by Oji Scientific Instruments.
  • the moisture permeability was measured by a method according to JIS K 0208 under conditions of a temperature of 40 ° C. and a relative humidity of 92%.
  • silica-based hollow fine particle dispersed sol manufactured by Catalyst Kasei Kogyo Co., Ltd., trade name: Thruria 1420, average particle diameter 60 nm, concentration 20.5 wt%, dispersion medium: Isopropanol and particle refractive index of 1.30
  • Thruria 1420 average particle diameter 60 nm
  • concentration 20.5 wt% dispersion medium
  • Isopropanol and particle refractive index of 1.30 were used.
  • 1.88 g of ⁇ -methacryloxypropyltrimethoxysilane was mixed with 100 g of this sol.
  • Example 1 60 parts of urethane acrylic oligomer (manufactured by Daicel-Cytec, trade name: KRM7804), 40 parts of pentaerythritol triacrylate (PETA) (trade name: Viscoat # 300, manufactured by Osaka Organic Chemical Industry Co., Ltd.), leveling agent (manufactured by DIC, product) Name: PC4100) 0.5 part and photopolymerization initiator (Ciba Japan Co., Ltd., trade name: Irgacure 907) 3 parts are mixed and diluted with methyl isobutyl ketone so that the solid content concentration is 50%. A composition for forming a hard coat layer was prepared.
  • the obtained composition for forming a hard coat layer is applied to form a first coating layer, and the first coating layer is heated at 100 ° C. for 1 minute. did.
  • Pentaerythritol triacrylate (trade name: Biscoat # 300, manufactured by Osaka Organic Chemical Industry Co., Ltd., 50 parts), 246 parts of silica-based hollow fine particle dispersion sol obtained in Production Example 2 (50 parts as solid content), tetrafunctional Fluorine-containing compound (manufactured by Solvay Specialty Polymers Japan Ltd., trade name: MT70, solid content 80%, weight average molecular weight of main chain is 2,000, terminal tetrafunctional poly having a total weight average molecular weight of 3,000 (Tetrafluoroethylene oxide-co-difluoromethylene oxide)) 3.75 parts (3 parts as a solid content) and 5 parts of a photopolymerization initiator (Ciba Japan, trade name: Irgacure 2959) were mixed to obtain a solid content.
  • the composition for low refractive index layer formation was prepared by diluting with methyl isobutyl ketone so that the concentration was 2%.
  • the composition for forming a low refractive index layer was applied to the surface of the hard coat layer of the laminate having the structure of [base layer / penetration layer / hard coat layer] obtained above so that the thickness after drying was 100 nm.
  • a second coating layer was formed and heated at 60 ° C. for 1 minute. Thereafter, the second coating layer is irradiated with ultraviolet rays having an integrated light amount of 300 mJ / cm 2 with a high-pressure mercury lamp to cure the second coating layer, and [base layer / penetration layer / hard coat layer / low refractive index).
  • Optical layered body 1 having the configuration of [Layer] was obtained.
  • Example 2 Except that the blending amount of pentaerythritol triacrylate was 40 parts and the blending amount of the fluorine-containing compound was 12.5 parts (10 parts as a solid content), a composition for forming a low refractive index layer was prepared. In the same manner as in Example 1, an optical laminate 2 was obtained.
  • the blended amount of pentaerythritol triacrylate is 40 parts, and, as a fluorine-containing compound, the terminal chain tetrafunctional poly (tetrahydrofuran) having a weight average molecular weight of 1,500 in the main chain and an overall weight average molecular weight of 3,000.
  • An optical layered body 3 was obtained in the same manner as in Example 1 except that the forming composition was prepared.
  • Example 4 A polyfunctional fluorine-based polymer having a weight average molecular weight of 150,000 as a fluorine-containing compound (trade name: AR110, refractive index: 1.38) having a blending amount of pentaerythritol triacrylate of 40 parts and a fluorine-containing compound.
  • the optical laminate 4 was prepared in the same manner as in Example 1 except that a composition for forming a low refractive index layer was prepared using a blending amount of 66.7 parts (solid content 15%) (solid content 10 parts).
  • Example 5 A polyfunctional fluorine-based polymer having a weight average molecular weight of 150,000 as a fluorine-containing compound (trade name: AR110, refractive index: 1.38), the blending amount of pentaerythritol triacrylate being 30 parts.
  • the optical laminate 5 was prepared in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using a blending amount of 133.4 parts (solid content 15%) (20 parts as solids). Got.
  • the optical layered body 6 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using the same amount.
  • An optical layered body 7 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared by using an amount.
  • Example 8> A polyfunctional silicone compound (trade name: X-, manufactured by Shin-Etsu Chemical Co., Ltd.) containing 40 parts of pentaerythritol triacrylate and having an acrylic group and an alkoxysilyl group in the side chain instead of a fluorine-containing compound.
  • Example 9 A polyfunctional silicone compound (trade name: X-, manufactured by Shin-Etsu Chemical Co., Ltd.) containing 40 parts of pentaerythritol triacrylate and having an acrylic group and an alkoxysilyl group in the side chain instead of a fluorine-containing compound.
  • Example 10 Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Example 1 except that a hard coat layer-forming composition was prepared by mixing 3 parts of the product, trade name: Irgacure 907) and diluting with methyl isobutyl ketone so that the solid content concentration was 50%. In the same manner, an optical laminate 10 was obtained.
  • DPHA dipentaerythritol hexaacrylate
  • A-DPH leveling agent
  • PC4100 photopolymerization initiator
  • Example 11 Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Example 2 except that a hard coat layer-forming composition was prepared by mixing 3 parts of the product, trade name: Irgacure 907) and diluting with methyl isobutyl ketone so that the solid content concentration was 50%. In the same manner, an optical laminate 11 was obtained.
  • DPHA dipentaerythritol hexaacrylate
  • A-DPH leveling agent
  • PC4100 photopolymerization initiator
  • Example 12 Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Example 4 except that a hard coat layer-forming composition was prepared by mixing 3 parts of the product, trade name: Irgacure 907) and diluting with methyl isobutyl ketone so that the solid concentration was 50%. In the same manner, an optical laminate 12 was obtained.
  • DPHA dipentaerythritol hexaacrylate
  • A-DPH leveling agent
  • PC4100 photopolymerization initiator
  • ⁇ Comparative Example 1> The compounding amount of pentaerythritol triacrylate is 40 parts, and the polyfunctional fluorine-modified silicone compound (trade name: X-40-2729, refractive index: 1.42) manufactured by Shin-Etsu Chemical Co., Ltd. is used as the fluorine-containing compound.
  • An optical laminate C1 was obtained in the same manner as in Example 1, except that a composition for forming a low refractive index layer was prepared using 10 parts by weight.
  • ⁇ Comparative example 2> The blending amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-174DX) is blended in 10 parts.
  • An optical laminate C2 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared.
  • ⁇ Comparative example 4> The compounding amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-164A) is used in an amount of 10 parts.
  • An optical laminate C4 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared.
  • ⁇ Comparative Example 5> The blending amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-164B) is blended in 10 parts.
  • An optical laminate C5 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using the same.
  • An optical laminate C7 was obtained in the same manner as in Example 1 except that the layer forming composition was prepared.
  • DPHA dipentaerythritol hexaacrylate
  • A-DPH leveling agent
  • PC4100 photopolymerization initiator
  • Irgacure 907 3 parts of the product, trade name: Irgacure 907 were mixed and diluted with methyl isobutyl ketone so that the solid concentration was 50% to prepare a composition for forming a hard coat layer.
  • an optical laminate C8 was obtained.
  • Table 1 shows the evaluation results of the optical laminates obtained in the above examples and comparative examples.
  • the results of examining the distribution of components derived from the (meth) acrylic resin film in the low refractive index layer of the optical layered body obtained in Example 1 and Comparative Examples 1 and 2 (72 hours after production) are shown in FIG. 3 shows.
  • the optical laminate of the present invention has a marked improvement in the problem of whitening. From the graph of FIG. 3, it can be seen that in the optical laminate of Example 1, components derived from the thermoplastic resin film are present at a higher concentration inside than the surface of the low refractive index layer.
  • the precipitate generated on the surface of the low refractive index layer of the optical laminate of the comparative example was analyzed, the precipitate was obtained by adding a resin component containing a triazine-based ultraviolet absorber and a glutarimide structural unit added to the base film A. Included.
  • the whitening of the comparative example 1 was lighter. This shows that whitening can also be reduced by reducing the compounding ratio of the monomers in the hard coat layer forming composition.
  • the optical layered body of the present invention can be suitably used for an image display device.
  • the optical layered body of the present invention can be suitably used as a front plate of an image display device or a protective material for a polarizer, and particularly suitably used as a front plate of a liquid crystal display device (in particular, a three-dimensional liquid crystal display device). obtain.

Abstract

With respect to an optical laminate which is provided with a base layer, a hard coat layer and a permeation layer provided between the base layer and the hard coat layer and is additionally provided with an optical function layer on a surface of the hard coat layer, said surface not being provided with the permeation layer, a newly found problem of whitening is improved. An optical laminate which is provided with: a base layer that is formed of a thermoplastic resin film; a hard coat layer that is formed by applying a hard coat layer-forming composition to the thermoplastic resin film; a permeation layer that is formed between the base layer and the hard coat layer by permeation of the hard coat layer-forming composition into the thermoplastic resin film; and an optical function layer that is formed by applying an optical function layer-forming composition to the hard coat layer. The optical function layer contains a thermoplastic resin film-derived component dissolved from the thermoplastic resin film, and the thermoplastic resin film-derived component is present at a higher concentration in the inner portion of the optical function layer than in the surface thereof.

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 液晶ディスプレイ(LCD)、陰極線管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)等の画像表示装置は、外部からの接触によりその表面に傷がつくと、表示画像の視認性が低下する場合がある。このため、画像表示装置の表面保護を目的として、基材層とハードコート層とを含む光学積層体が用いられている。係る構成の光学積層体としては、例えば、(メタ)アクリル系樹脂フィルムからなる基材層とハードコート層とを含み、これらの層の間に各層の形成成分が相溶化した浸透層を設けることによって干渉ムラを抑制するとともに密着性を向上させた光学積層体が挙げられる(例えば、特許文献1)。 Image display devices such as liquid crystal display (LCD), cathode ray tube display device (CRT), plasma display (PDP), electroluminescence display (ELD), etc. are visible when the surface is damaged by external contact. May decrease. For this reason, the optical laminated body containing a base material layer and a hard-coat layer is used for the purpose of the surface protection of an image display apparatus. As an optical laminated body of such a configuration, for example, a base layer composed of a (meth) acrylic resin film and a hard coat layer are provided, and a penetrating layer in which components forming each layer are compatibilized is provided between these layers. An optical layered body that suppresses unevenness of interference and improves adhesion (for example, Patent Document 1).
 また一般に、画像表示装置は、外部から照射された光による表面反射を少なくし、その視認性を高めることが要求される。これに対して、基材層上に反射防止層を形成した光学積層体を用いて、画像表示装置の表面反射を低減させ、視認性を向上させることが行われている。係る構成の光学積層体としては、例えば、反射防止層として、基材層よりも低い屈折率を有する低屈折率層を最表面に設けた光学積層体が挙げられる(例えば、特許文献2)。 In general, an image display device is required to reduce surface reflection due to light emitted from the outside and to improve its visibility. On the other hand, surface reflection of an image display device is reduced and visibility is improved by using an optical laminate in which an antireflection layer is formed on a base material layer. Examples of the optical laminate having such a configuration include an optical laminate in which a low refractive index layer having a refractive index lower than that of the base material layer is provided on the outermost surface as the antireflection layer (for example, Patent Document 2).
特開2012-234163号公報JP 2012-234163 A 特開2010-85983号公報JP 2010-85983 A
 本発明者らは、上記浸透層を備える光学積層体のハードコート層表面に、低屈折率層等の光学機能層をさらに設けると、光学機能層表面が経時的に白化することを発見した。さらに、当該白化の原因について検討したところ、基材フィルム由来の成分が浸透層およびハードコート層を経由して光学機能層表面にブリードアウトするためであることが判明した。 The present inventors have discovered that when an optical functional layer such as a low refractive index layer is further provided on the surface of the hard coat layer of the optical laminate having the above-mentioned penetration layer, the surface of the optical functional layer is whitened over time. Furthermore, when the cause of the whitening was examined, it was found that the component derived from the base film bleeds out to the surface of the optical functional layer through the permeation layer and the hard coat layer.
 本発明は、基材層とハードコート層とこれらの間に設けられた浸透層とを備え、ハードコート層の浸透層が設けられない側に光学機能層をさらに備える光学積層体において新たに発見された上記白化の問題を改善することにある。 The present invention is newly discovered in an optical laminate comprising a base material layer, a hard coat layer, and a penetrating layer provided therebetween, and further comprising an optical functional layer on the side where the penetrating layer of the hard coat layer is not provided. It is to improve the above whitening problem.
 本発明の光学積層体は、熱可塑性樹脂フィルムから形成される基材層と、熱可塑性樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層と、基材層とハードコート層との間に、ハードコート層形成用組成物が熱可塑性樹脂フィルムに浸透して形成された浸透層と、ハードコート層に光学機能層形成用組成物を塗工して形成された光学機能層と、を備える。該光学機能層は、熱可塑性樹脂フィルムから溶出した熱可塑性樹脂フィルム由来の成分を含む。熱可塑性樹脂フィルム由来の成分は、光学機能層の表面よりも内部においてより高い濃度で存在する。
 1つの実施形態において、上記熱可塑性樹脂フィルムが、(メタ)アクリル系樹脂フィルムである。
 1つの実施形態において、上記熱可塑性樹脂フィルム由来の成分が、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤およびオキサジアゾール系紫外線吸収剤から選択される少なくとも1つの紫外線吸収剤である。
 1つの実施形態において、上記光学機能層形成用組成物が、硬化性化合物と屈折率が1.44以下である微粒子と防汚剤とを含む。
 1つの実施形態において、上記防汚剤が、フッ素含有化合物である。
 1つの実施形態において、上記ハードコート層形成用組成物が、2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む。
 1つの実施形態において、上記ハードコート層形成用組成物が、硬化性化合物としてモノマーとオリゴマーおよび/またはプレポリマーとを含み、硬化性化合物の総量に対するオリゴマーおよびプレポリマーの合計量が20重量%~90重量%である。
 本発明の別の局面によれば、偏光フィルムが提供される。該偏光フィルムは、上記光学積層体を含む。
 本発明のさらに別の局面によれば、画像表示装置が提供される。該画像表示装置は、上記光学積層体を含む。
The optical layered body of the present invention includes a base layer formed from a thermoplastic resin film, a hard coat layer formed by applying a hard coat layer forming composition to the thermoplastic resin film, and a base layer. Between the hard coat layer, the hard coat layer forming composition was formed by infiltrating the thermoplastic resin film, and the hard coat layer was formed by coating the optical functional layer forming composition. An optical functional layer. The optical functional layer includes a component derived from a thermoplastic resin film eluted from the thermoplastic resin film. The component derived from the thermoplastic resin film is present at a higher concentration inside than the surface of the optical functional layer.
In one embodiment, the thermoplastic resin film is a (meth) acrylic resin film.
In one embodiment, the component derived from the thermoplastic resin film contains a triazine ultraviolet absorber, a benzotriazole ultraviolet absorber, a benzophenone ultraviolet absorber, a cyanoacrylate ultraviolet absorber, a benzoxazine ultraviolet absorber, and an oxaxine. It is at least one ultraviolet absorber selected from diazole-based ultraviolet absorbers.
In one embodiment, the composition for forming an optical functional layer includes a curable compound, fine particles having a refractive index of 1.44 or less, and an antifouling agent.
In one embodiment, the antifouling agent is a fluorine-containing compound.
In one embodiment, the composition for forming a hard coat layer includes a curable compound having two or more (meth) acryloyl groups.
In one embodiment, the composition for forming a hard coat layer includes a monomer, an oligomer, and / or a prepolymer as a curable compound, and the total amount of the oligomer and the prepolymer is from 20% by weight to the total amount of the curable compound. 90% by weight.
According to another aspect of the present invention, a polarizing film is provided. This polarizing film contains the said optical laminated body.
According to still another aspect of the present invention, an image display device is provided. The image display device includes the optical laminate.
 本発明の光学積層体によれば、浸透層およびハードコート層を経由して光学機能層まで混入した基材フィルム由来の成分を光学機能層の内部で安定に保持することにより、白化の問題を改善することができる。 According to the optical layered body of the present invention, the component derived from the base film mixed up to the optical functional layer through the permeation layer and the hard coat layer is stably held inside the optical functional layer, thereby eliminating the problem of whitening. Can be improved.
(a)は本発明の好ましい実施形態による光学積層体の概略断面図であり、(b)は浸透層を有さない光学積層体の概略断面図の一例である。(A) is a schematic sectional drawing of the optical laminated body by preferable embodiment of this invention, (b) is an example of the schematic sectional drawing of the optical laminated body which does not have a osmosis | permeation layer. 実施例または比較例の光学積層体に対する精密斜め切削を説明する概略図である。図中の太線で示した部分が測定箇所に対応する。It is the schematic explaining the precision diagonal cutting with respect to the optical laminated body of an Example or a comparative example. The portion indicated by the bold line in the figure corresponds to the measurement location. 実施例または比較例の光学積層体の低屈折率層における熱可塑性樹脂フィルム由来の成分の分布を示すグラフである。横軸は測定距離を示し、縦軸は該成分由来のイオン強度を示し、該強度が高いほど高濃度であることを意味する。なお、グラフ中の点線は熱可塑性樹脂フィルムに添加された紫外線吸収剤を示し、実線はグルタルイミド単位を含む熱可塑性樹脂成分を示す。It is a graph which shows distribution of the component derived from the thermoplastic resin film in the low refractive index layer of the optical laminated body of an Example or a comparative example. The horizontal axis represents the measurement distance, and the vertical axis represents the ionic strength derived from the component. The higher the strength, the higher the concentration. In addition, the dotted line in a graph shows the ultraviolet absorber added to the thermoplastic resin film, and a continuous line shows the thermoplastic resin component containing a glutarimide unit.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.光学積層体の全体構成
 図1(a)は、本発明の好ましい実施形態による光学積層体の概略断面図であり、図1(b)は、浸透層を有さない光学積層体の概略断面図である。図1(a)に示す光学積層体100は、熱可塑性樹脂フィルムから形成される基材層10と、浸透層20と、ハードコート層30と、光学機能層40とをこの順に備える。光学機能層40は、ハードコート層30に光学機能層形成用組成物を塗工して形成される。ハードコート層30は、熱可塑性樹脂フィルムにハードコート層形成用組成物を塗工して形成される。浸透層20は、ハードコート層形成用組成物が熱可塑性樹脂フィルムに浸透して形成される。すなわち、浸透層20とは、熱可塑性樹脂フィルムにおいて、ハードコート層成分が存在している部分である。基材層10は、このようにハードコート層形成用組成物が熱可塑性樹脂フィルムに浸透した際に、熱可塑性樹脂フィルムにおいてハードコート層形成用組成物が到達(浸透)しなかった部分である。一方、図1(b)に示す光学積層体200は、浸透層が形成されていない。図1(a)および(b)に示す境界Aは、熱可塑性樹脂フィルムのハードコート層形成用組成物塗工面により規定される境界である。したがって、境界Aは、光学積層体100においては浸透層20とハードコート層30との境界であり、浸透層が形成されていない光学積層体200においては基材層10’(すなわち、熱可塑性樹脂フィルム)とハードコート層30’との境界である。
Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.
A. 1A is a schematic cross-sectional view of an optical laminate according to a preferred embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view of an optical laminate having no osmotic layer. It is. The optical laminated body 100 shown to Fig.1 (a) is equipped with the base material layer 10 formed from a thermoplastic resin film, the osmosis | permeation layer 20, the hard-coat layer 30, and the optical function layer 40 in this order. The optical functional layer 40 is formed by coating the hard coat layer 30 with an optical functional layer forming composition. The hard coat layer 30 is formed by coating a composition for forming a hard coat layer on a thermoplastic resin film. The osmotic layer 20 is formed by osmosis | permeating the composition for hard-coat layer formation to a thermoplastic resin film. That is, the osmotic layer 20 is a portion where a hard coat layer component is present in the thermoplastic resin film. The base material layer 10 is a portion where the hard coat layer forming composition does not reach (penetrate) in the thermoplastic resin film when the hard coat layer forming composition penetrates into the thermoplastic resin film. . On the other hand, in the optical laminated body 200 shown in FIG. Boundary A shown in FIGS. 1A and 1B is a boundary defined by the hard coat layer forming composition coating surface of the thermoplastic resin film. Therefore, the boundary A is the boundary between the osmotic layer 20 and the hard coat layer 30 in the optical laminate 100, and the base layer 10 ′ (that is, the thermoplastic resin) in the optical laminate 200 in which the osmotic layer is not formed. Film) and the hard coat layer 30 '.
 本発明の光学積層体は、例えば、偏光フィルム(偏光板とも称される)に適用される。具体的には、本発明の光学積層体は、偏光フィルムにおいて、好ましくは偏光子の視認側に設けられ、偏光子の保護材料として好適に用いられ得る。 The optical laminate of the present invention is applied to, for example, a polarizing film (also referred to as a polarizing plate). Specifically, in the polarizing film, the optical laminate of the present invention is preferably provided on the viewing side of the polarizer and can be suitably used as a protective material for the polarizer.
B.基材層
 基材層は、任意の適切な熱可塑性樹脂フィルムから形成される。より詳細には、基材層は、熱可塑性樹脂フィルムにハードコート層形成用組成物を塗工した際に、熱可塑性樹脂フィルムにおいて、当該ハードコート層形成用組成物が到達(浸透)しなかった部分である。
B. Base material layer The base material layer is formed from any appropriate thermoplastic resin film. More specifically, when the hard coat layer forming composition is applied to the thermoplastic resin film, the hard coat layer forming composition does not reach (penetrate) in the thermoplastic resin film. Part.
 熱可塑性樹脂フィルムの具体例としては、(メタ)アクリル系樹脂フィルム、トリアセチルセルロース等のセルロース系樹脂フィルム、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂フィルム;ポリノルボルネンなどのシクロオレフィン系樹脂フィルム、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂フィルムが挙げられる。なかでも、(メタ)アクリル系樹脂フィルムが好ましい。(メタ)アクリル系樹脂フィルムを基材フィルムとして用いると、浸透層が良好に形成され得る一方で、フィルムの形成成分が溶出しやすく、白化の問題が生じやすい傾向にあるので、本発明の効果がより好適に得られ得る。なお、本明細書において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。 Specific examples of the thermoplastic resin film include (meth) acrylic resin film, cellulose resin film such as triacetyl cellulose, polyolefin resin film such as polyethylene and polypropylene; cycloolefin resin film such as polynorbornene, polyethylene terephthalate And polyester-based resin films such as polybutylene terephthalate. Of these, a (meth) acrylic resin film is preferable. When the (meth) acrylic resin film is used as the base film, the penetration layer can be formed satisfactorily, but the film forming components tend to elute and the problem of whitening tends to occur. Can be obtained more suitably. In the present specification, “(meth) acryl” means acryl and / or methacryl.
 上記熱可塑性樹脂フィルムの波長380nmにおける光の透過率は、好ましくは15%以下であり、より好ましくは12%以下であり、さらに好ましくは9%以下である。波長380nmの光の透過率がこのような範囲であれば、優れた紫外線吸収能が発現するので、光学積層体の外光等による紫外線劣化が防止され得る。 The light transmittance of the thermoplastic resin film at a wavelength of 380 nm is preferably 15% or less, more preferably 12% or less, and further preferably 9% or less. If the transmittance of light having a wavelength of 380 nm is in such a range, an excellent ultraviolet absorbing ability is exhibited, so that deterioration of ultraviolet rays due to external light or the like of the optical laminate can be prevented.
 上記熱可塑性樹脂フィルムの面内位相差Reは、好ましくは10nm以下であり、より好ましくは7nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。熱可塑性樹脂フィルムの厚み方向位相差Rthは、好ましくは15nm以下であり、より好ましくは10nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。面内位相差および厚み方向位相差がこのような範囲であれば、位相差に起因する画像表示装置の表示特性への悪影響が顕著に抑制され得る。より具体的には、干渉ムラや3Dディスプレイ用液晶表示装置に用いる場合の3D像の歪みが顕著に抑制され得る。なお、面内位相差Reおよび厚み方向位相差Rthは、それぞれ、以下の式で求められる:
     Re=(nx-ny)×d
     Rth=(nx-nz)×d
ここで、nxは熱可塑性樹脂フィルムの遅相軸方向の屈折率であり、nyは熱可塑性樹脂フィルムの進相軸方向の屈折率であり、nzは熱可塑性樹脂フィルムの厚み方向の屈折率であり、d(nm)は熱可塑性樹脂フィルムの厚みである。遅相軸は、フィルム面内の屈折率が最大になる方向をいい、進相軸は、面内で遅相軸に垂直な方向をいう。代表的には、ReおよびRthは、波長590nmの光を用いて測定される。
The in-plane retardation Re of the thermoplastic resin film is preferably 10 nm or less, more preferably 7 nm or less, further preferably 5 nm or less, particularly preferably 3 nm or less, and most preferably 1 nm or less. is there. The thickness direction retardation Rth of the thermoplastic resin film is preferably 15 nm or less, more preferably 10 nm or less, further preferably 5 nm or less, particularly preferably 3 nm or less, and most preferably 1 nm or less. . If the in-plane retardation and the thickness direction retardation are within such ranges, the adverse effect on the display characteristics of the image display apparatus due to the phase difference can be remarkably suppressed. More specifically, interference unevenness and 3D image distortion when used in a liquid crystal display device for 3D display can be significantly suppressed. The in-plane retardation Re and the thickness direction retardation Rth can be obtained by the following equations, respectively:
Re = (nx−ny) × d
Rth = (nx−nz) × d
Here, nx is the refractive index in the slow axis direction of the thermoplastic resin film, ny is the refractive index in the fast axis direction of the thermoplastic resin film, and nz is the refractive index in the thickness direction of the thermoplastic resin film. Yes, d (nm) is the thickness of the thermoplastic resin film. The slow axis refers to the direction in which the in-plane refractive index is maximized, and the fast axis refers to the direction perpendicular to the slow axis in the plane. Typically, Re and Rth are measured using light having a wavelength of 590 nm.
 上記(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂を含む。(メタ)アクリル系樹脂フィルムは、例えば、(メタ)アクリル系樹脂を主成分として含む樹脂成分を含有する成形材料を、押出し成形して得られる。具体例としては、上記範囲の面内位相差および厚み方向位相差を有する(メタ)アクリル系樹脂フィルムは、例えば、後述のグルタルイミド構造を有する(メタ)アクリル系樹脂を用いて得ることができる。 The (meth) acrylic resin film includes a (meth) acrylic resin. The (meth) acrylic resin film is obtained, for example, by extruding a molding material containing a resin component containing a (meth) acrylic resin as a main component. As a specific example, a (meth) acrylic resin film having an in-plane retardation and a thickness direction retardation within the above ranges can be obtained using, for example, a (meth) acrylic resin having a glutarimide structure described later. .
 上記(メタ)アクリル系樹脂フィルムの透湿度は、好ましくは200g/m・24hr以下であり、より好ましくは80g/m・24hr以下である。本発明によれば、このように透湿度の高い(メタ)アクリル系樹脂フィルムを用いても、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。なお、透湿度は、例えば、JIS Z 0208に準じた方法により、40℃、相対湿度92%の試験条件で測定することができる。 The moisture permeability of the (meth) acrylic resin film is preferably 200 g / m 2 · 24 hr or less, and more preferably 80 g / m 2 · 24 hr or less. According to the present invention, even when a (meth) acrylic resin film having such a high moisture permeability is used, the adhesion between the (meth) acrylic resin film and the hard coat layer is excellent, and interference unevenness is suppressed. An optical laminate can be obtained. The moisture permeability can be measured under the test conditions of 40 ° C. and a relative humidity of 92%, for example, by a method according to JIS Z 0208.
 上記(メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが挙げられる。より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が挙げられる。 Any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin. For example, poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer). Preferably, poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
 上記(メタ)アクリル系樹脂の重量平均分子量は、好ましくは10000~500000である。重量平均分子量が小さすぎると、フィルムにした場合の機械的強度が不足する傾向がある。重量平均分子量が大きすぎると、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する傾向がある。 The weight average molecular weight of the (meth) acrylic resin is preferably 10,000 to 500,000. If the weight average molecular weight is too small, the mechanical strength when formed into a film tends to be insufficient. When the weight average molecular weight is too large, the viscosity at the time of melt extrusion is high, the molding processability is lowered, and the productivity of the molded product tends to be lowered.
 上記(メタ)アクリル系樹脂のガラス転移温度は、好ましくは110℃以上であり、より好ましくは120℃以上である。ガラス転移温度がこのような範囲であれば、耐久性および耐熱性に優れた(メタ)アクリル系樹脂フィルムが得られ得る。ガラス転移温度の上限は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。 The glass transition temperature of the (meth) acrylic resin is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. When the glass transition temperature is in such a range, a (meth) acrylic resin film excellent in durability and heat resistance can be obtained. The upper limit of the glass transition temperature is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
 上記(メタ)アクリル系樹脂は、好ましくは、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する。これらの構造単位を有していれば、その存在比を調整して、(メタ)アクリル系樹脂フィルムの位相差を制御することができ、低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。正の複屈折を発現する構造単位としては、例えば、ラクトン環、ポリカーボネート、ポリビニルアルコール、酢酸セルロース、ポリエステル、ポリアリレート、ポリイミド、ポリオレフィン等を構成する構造単位、後述の一般式(1)で示される構造単位が挙げられる。負の複屈折を発現する構造単位としては、例えば、スチレン系モノマー、マレイミド系モノマー等を由来とする構造単位、ポリメチルメタクリレートの構造単位、後述の一般式(3)で示される構造単位等が挙げられる。本明細書において、正の複屈折を発現する構造単位とは、当該構造単位のみを有する樹脂が正の複屈折特性を示す場合(すなわち、樹脂の延伸方向に遅相軸が発現する場合)の構造単位を意味する。また、負の複屈折を発現する構造単位とは、当該構造単位のみを有する樹脂が負の複屈折特性を示す場合(すなわち、樹脂の延伸方向と垂直な方向に遅相軸が発現する場合)の構造単位を意味する。 The (meth) acrylic resin preferably has a structural unit that exhibits positive birefringence and a structural unit that exhibits negative birefringence. If these structural units are included, the abundance ratio can be adjusted to control the retardation of the (meth) acrylic resin film, and a (meth) acrylic resin film having a low retardation can be obtained. it can. Examples of the structural unit exhibiting positive birefringence include a structural unit constituting a lactone ring, polycarbonate, polyvinyl alcohol, cellulose acetate, polyester, polyarylate, polyimide, polyolefin, etc., and a general formula (1) described later. Examples include structural units. Examples of the structural unit exhibiting negative birefringence include a structural unit derived from a styrene monomer, a maleimide monomer, a structural unit of polymethyl methacrylate, a structural unit represented by the general formula (3) described later, and the like. Can be mentioned. In the present specification, a structural unit that exhibits positive birefringence is a case where a resin having only the structural unit exhibits positive birefringence characteristics (that is, a slow axis appears in the stretching direction of the resin). Means a structural unit. In addition, a structural unit that develops negative birefringence is when a resin having only the structural unit exhibits negative birefringence characteristics (that is, when a slow axis appears in a direction perpendicular to the stretching direction of the resin). Means a structural unit of
 上記(メタ)アクリル系樹脂として、ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂が好ましく用いられる。ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂は耐熱性に優れる。より好ましくは、グルタルイミド構造を有する(メタ)アクリル系樹脂である。グルタルイミド構造を有する(メタ)アクリル系樹脂を用いれば、上記のように、低透湿、かつ、位相差および紫外線透過率の小さい(メタ)アクリル系樹脂フィルムを得ることができる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報、特開2009-161744号公報に記載されている。これらの記載は、本明細書に参考として援用される。 As the (meth) acrylic resin, a (meth) acrylic resin having a lactone ring structure or a glutarimide structure is preferably used. A (meth) acrylic resin having a lactone ring structure or a glutarimide structure is excellent in heat resistance. More preferred is a (meth) acrylic resin having a glutarimide structure. If a (meth) acrylic resin having a glutarimide structure is used, a (meth) acrylic resin film having low moisture permeability and a small retardation and ultraviolet transmittance can be obtained as described above. Examples of (meth) acrylic resins having a glutarimide structure (hereinafter also referred to as glutarimide resins) include, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A-2006-328329. JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, JP-A-2006-337569, JP-A-2007-009182, JP-A-2009- No. 161744. These descriptions are incorporated herein by reference.
 好ましくは、上記グルタルイミド樹脂は、下記一般式(1)で表される構造単位(以下、グルタルイミド単位とも称する)と、下記一般式(2)で表される構造単位(以下、(メタ)アクリル酸エステル単位とも称する)とを含む。
Figure JPOXMLDOC01-appb-C000001
 
式(1)において、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数5~15の芳香環を含む置換基である。式(2)において、RおよびRは、それぞれ独立して、水素または炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数5~15の芳香環を含む置換基である。
Preferably, the glutarimide resin includes a structural unit represented by the following general formula (1) (hereinafter also referred to as a glutarimide unit) and a structural unit represented by the following general formula (2) (hereinafter referred to as (meta)). Also referred to as an acrylate unit).
Figure JPOXMLDOC01-appb-C000001

In the formula (1), R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or 3 to 3 carbon atoms. 12 a cycloalkyl group or a substituent containing an aromatic ring having 5 to 15 carbon atoms. In the formula (2), R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or 3 to 3 carbon atoms. 12 a cycloalkyl group or a substituent containing an aromatic ring having 5 to 15 carbon atoms.
 グルタルイミド樹脂は、必要に応じて、下記一般式(3)で表される構造単位(以下、芳香族ビニル単位とも称する)をさらに含んでいてもよい。
Figure JPOXMLDOC01-appb-C000002
式(3)において、Rは、水素または炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である。
The glutarimide resin may further contain a structural unit represented by the following general formula (3) (hereinafter also referred to as an aromatic vinyl unit) as necessary.
Figure JPOXMLDOC01-appb-C000002
In the formula (3), R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 is an aryl group having 6 to 10 carbon atoms.
 上記一般式(1)において、好ましくは、RおよびRは、それぞれ独立して、水素またはメチル基であり、Rは水素、メチル基、ブチル基、またはシクロヘキシル基であり、さらに好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。 In the general formula (1), preferably, R 1 and R 2 are each independently hydrogen or a methyl group, R 3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group, and more preferably , R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group.
 上記グルタルイミド樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、およびRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may include only a single type as a glutarimide unit, or may include a plurality of types in which R 1 , R 2 , and R 3 in the general formula (1) are different. Good.
 グルタルイミド単位は、上記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより、形成することができる。また、グルタルイミド単位は、無水マレイン酸等の酸無水物、または、このような酸無水物と炭素数1~20の直鎖または分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β-エチレン性不飽和カルボン酸等をイミド化することによっても、形成することができる。 The glutarimide unit can be formed by imidizing the (meth) acrylic acid ester unit represented by the general formula (2). The glutarimide unit may be an acid anhydride such as maleic anhydride, or a half ester of such an acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms; acrylic acid, methacrylic acid, maleic acid It can also be formed by imidizing an α, β-ethylenically unsaturated carboxylic acid such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid and citraconic acid.
 上記一般式(2)において、好ましくは、RおよびRは、それぞれ独立して、水素またはメチル基であり、Rは水素またはメチル基であり、さらに好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。 In the general formula (2), preferably, R 4 and R 5 are each independently hydrogen or a methyl group, R 6 is hydrogen or a methyl group, and more preferably, R 4 is hydrogen. , R 5 is a methyl group, and R 6 is a methyl group.
 上記グルタルイミド樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、R、およびRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may contain only a single type as a (meth) acrylic acid ester unit, or a plurality of types in which R 4 , R 5 and R 6 in the general formula (2) are different. May be included.
 上記グルタルイミド樹脂は、上記一般式(3)で表される芳香族ビニル単位として、好ましくはスチレン、α-メチルスチレン等を含み、さらに好ましくはスチレンを含む。このような芳香族ビニル単位を有することにより、グルタルイミド構造の正の複屈折性を低減し、より低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。 The glutarimide resin preferably contains styrene, α-methylstyrene, and more preferably styrene as the aromatic vinyl unit represented by the general formula (3). By having such an aromatic vinyl unit, the positive birefringence of the glutarimide structure can be reduced, and a (meth) acrylic resin film having a lower retardation can be obtained.
 上記グルタルイミド樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、RおよびRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may contain only a single type as an aromatic vinyl unit, or may contain a plurality of types in which R 7 and R 8 are different.
 上記グルタルイミド樹脂における上記グルタルイミド単位の含有量は、例えばRの構造等に依存して変化させることが好ましい。グルタルイミド単位の含有量は、グルタルイミド樹脂の総構造単位を基準として、好ましくは1重量%~80重量%であり、より好ましくは1重量%~70重量%であり、さらに好ましくは1重量%~60重量%であり、特に好ましくは1重量%~50重量%である。グルタルイミド単位の含有量がこのような範囲であれば、耐熱性に優れた低位相差の(メタ)アクリル系樹脂フィルムが得られ得る。 The content of the glutarimide unit in the glutarimide resin is preferably changed depending on, for example, the structure of R 3 . The content of the glutarimide unit is preferably 1% by weight to 80% by weight, more preferably 1% by weight to 70% by weight, even more preferably 1% by weight, based on the total structural unit of the glutarimide resin. -60% by weight, particularly preferably 1-50% by weight. When the content of the glutarimide unit is in such a range, a (meth) acrylic resin film having a low retardation excellent in heat resistance can be obtained.
 上記グルタルイミド樹脂における上記芳香族ビニル単位の含有量は、目的や所望の特性に応じて適切に設定され得る。用途によっては、芳香族ビニル単位の含有量は0であってもよい。芳香族ビニル単位が含まれる場合、その含有量は、グルタルイミド樹脂のグルタルイミド単位を基準として、好ましくは10重量%~80重量%であり、より好ましくは20重量%~80重量%であり、さらに好ましくは20重量%~60重量%であり、特に好ましくは20重量%~50重量%である。芳香族ビニル単位の含有量がこのような範囲であれば、低位相差、かつ、耐熱性および機械的強度に優れた(メタ)アクリル系樹脂フィルムが得られ得る。 The content of the aromatic vinyl unit in the glutarimide resin can be appropriately set according to the purpose and desired characteristics. Depending on the application, the content of the aromatic vinyl unit may be zero. When the aromatic vinyl unit is contained, the content thereof is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 80% by weight, based on the glutarimide unit of the glutarimide resin. More preferably, it is 20% by weight to 60% by weight, and particularly preferably 20% by weight to 50% by weight. When the content of the aromatic vinyl unit is within such a range, a (meth) acrylic resin film having a low retardation, excellent heat resistance and mechanical strength can be obtained.
 上記グルタルイミド樹脂には、必要に応じて、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の構造単位がさらに共重合されていてもよい。その他の構造単位としては、例えば、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体から構成される構造単位が挙げられる。これらのその他の構造単位は、上記グルタルイミド樹脂中に、直接共重合していてもよいし、グラフト共重合していてもよい。 The glutarimide resin may be further copolymerized with other structural units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit, if necessary. Examples of other structural units include structures composed of nitrile monomers such as acrylonitrile and methacrylonitrile, and maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. Units are listed. These other structural units may be directly copolymerized or graft copolymerized in the glutarimide resin.
 上記熱可塑性樹脂フィルムは、紫外線吸収剤を含む。紫外線吸収剤としては、上記所望の特性が得られる限りにおいて、任意の適切な紫外線吸収剤が採用され得る。上記紫外線吸収剤の代表例としては、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤、およびオキサジアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は、単独で用いてもよく、複数を組み合わせて用いてもよい。 The thermoplastic resin film contains an ultraviolet absorber. As the ultraviolet absorber, any appropriate ultraviolet absorber can be adopted as long as the desired characteristics are obtained. Representative examples of the above UV absorbers include triazine UV absorbers, benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, benzoxazine UV absorbers, and oxadiazole UV absorbers. Agents. These ultraviolet absorbers may be used alone or in combination.
 上記紫外線吸収剤の含有量は、熱可塑性樹脂100重量部に対して、好ましくは0.1重量部~5重量部であり、より好ましくは0.2重量部~3重量部である。紫外線吸収剤の含有量がこのような範囲であれば、紫外線を効果的に吸収することができ、かつ、フィルム成形時のフィルムの透明性が低下することがない。紫外線吸収剤の含有量が0.1重量部より少ない場合、紫外線の遮断効果が不十分となる傾向がある。紫外線吸収剤の含有量が5重量部より多い場合、着色が激しくなったり、成形後のフィルムのヘイズが高くなり、透明性が悪化したりする傾向がある。 The content of the ultraviolet absorber is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the thermoplastic resin. When the content of the ultraviolet absorber is in such a range, ultraviolet rays can be absorbed effectively and the transparency of the film during film formation does not deteriorate. When the content of the ultraviolet absorber is less than 0.1 parts by weight, the ultraviolet blocking effect tends to be insufficient. When there is more content of a ultraviolet absorber than 5 weight part, there exists a tendency for coloring to become intense or the haze of the film after shaping | molding becomes high, and transparency deteriorates.
 上記熱可塑性樹脂フィルムは、目的に応じて任意の適切な添加剤を含有し得る。添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;可塑剤;滑剤;位相差低減剤等が挙げられる。含有される添加剤の種類、組み合わせ、含有量等は、目的や所望の特性に応じて適切に設定され得る。 The thermoplastic resin film may contain any appropriate additive depending on the purpose. Examples of additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; Infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; antistatic agents such as anionic, cationic and nonionic surfactants; coloring of inorganic pigments, organic pigments, dyes, etc. Agents; organic fillers and inorganic fillers; resin modifiers; plasticizers; lubricants; retardation reducing agents. The kind, combination, content, and the like of the additive to be contained can be appropriately set according to the purpose and desired characteristics.
 上記熱可塑性樹脂フィルムの製造方法としては、特に限定されるものではないが、例えば、熱可塑性樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、任意の適切な混合方法で充分に混合し、予め熱可塑性樹脂組成物としてから、これをフィルム成形することができる。あるいは、熱可塑性樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、それぞれ別々の溶液にしてから混合して均一な混合液とした後、フィルム成形してもよい。 The method for producing the thermoplastic resin film is not particularly limited. For example, the thermoplastic resin, the ultraviolet absorber, and other polymers and additives as necessary may be arbitrarily selected. It is possible to form a film from a thermoplastic resin composition that has been sufficiently mixed by an appropriate mixing method. Alternatively, a thermoplastic resin, an ultraviolet absorber, and if necessary, other polymers and additives are mixed in separate solutions to form a uniform mixed solution, and then formed into a film. Good.
 上記熱可塑性樹脂組成物を製造するには、例えば、オムニミキサー等、任意の適切な混合機で上記のフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いられる混合機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、任意の適切な混合機を用いることができる。 In order to produce the thermoplastic resin composition, for example, the film raw material is pre-blended with any suitable mixer such as an omni mixer, and then the obtained mixture is extruded and kneaded. In this case, the mixer used for extrusion kneading is not particularly limited, and for example, any suitable mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader may be used. Can do.
 上記フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法等、任意の適切なフィルム成形法が挙げられる。溶融押出法が好ましい。溶融押出法は溶剤を使用しないので、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。 Examples of the film forming method include any appropriate film forming methods such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. A melt extrusion method is preferred. Since the melt extrusion method does not use a solvent, it is possible to reduce the manufacturing cost and the burden on the global environment and work environment due to the solvent.
 上記溶融押出法としては、例えば、Tダイ法、インフレーション法等が挙げられる。成形温度は、好ましくは150~350℃、より好ましくは200~300℃である。 Examples of the melt extrusion method include a T-die method and an inflation method. The molding temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
 上記Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻取って、ロール状のフィルムを得ることができる。この際、巻取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸等を行うこともできる。 When film-forming by the above T-die method, a T-die is attached to the tip of a known single-screw extruder or twin-screw extruder, and the film extruded into a film is wound to obtain a roll-shaped film Can do. At this time, it is possible to perform uniaxial stretching by appropriately adjusting the temperature of the winding roll and adding stretching in the extrusion direction. Also, simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.
 上記熱可塑性樹脂フィルムは、上記所望の位相差が得られる限りにおいて、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。 The thermoplastic resin film may be either an unstretched film or a stretched film as long as the desired retardation is obtained. In the case of a stretched film, either a uniaxially stretched film or a biaxially stretched film may be used. In the case of a biaxially stretched film, either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used.
 上記延伸温度は、フィルム原料である熱可塑性樹脂組成物のガラス転移温度近傍であることが好ましく、具体的には、好ましくは(ガラス転移温度-30℃)~(ガラス転移温度+30℃)、より好ましくは(ガラス転移温度-20℃)~(ガラス転移温度+20℃)の範囲内である。延伸温度が(ガラス転移温度-30℃)未満であると、得られるフィルムのヘイズが大きくなり、あるいは、フィルムが裂けたり、割れたりして所定の延伸倍率が得られないおそれがある。逆に、延伸温度が(ガラス転移温度+30℃)を超えると、得られるフィルムの厚みムラが大きくなったり、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質が十分に改善できなかったりする傾向がある。さらに、フィルムがロールに粘着するといったトラブルが発生しやすくなる傾向がある。 The stretching temperature is preferably in the vicinity of the glass transition temperature of the thermoplastic resin composition which is a film raw material, and more preferably, (glass transition temperature−30 ° C.) to (glass transition temperature + 30 ° C.) Preferably, it is within the range of (glass transition temperature−20 ° C.) to (glass transition temperature + 20 ° C.). If the stretching temperature is less than (glass transition temperature −30 ° C.), the haze of the resulting film may increase, or the film may be torn or cracked, resulting in failure to obtain a predetermined stretching ratio. On the other hand, when the stretching temperature exceeds (glass transition temperature + 30 ° C.), the thickness unevenness of the resulting film becomes large, and the mechanical properties such as elongation, tear propagation strength, and fatigue resistance cannot be sufficiently improved. There is a tendency to. Furthermore, there is a tendency that troubles such as the film sticking to the roll tend to occur.
 上記延伸倍率は、好ましくは1.1~3倍、より好ましくは1.3~2.5倍である。延伸倍率がこのような範囲であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。結果として、厚みムラが小さく、複屈折が実質的にゼロであり(したがって、位相差が小さく)、さらに、ヘイズが小さいフィルムを製造することができる。 The stretching ratio is preferably 1.1 to 3 times, more preferably 1.3 to 2.5 times. When the draw ratio is in such a range, the mechanical properties such as the film elongation, tear propagation strength, and fatigue resistance can be greatly improved. As a result, it is possible to produce a film with small thickness unevenness, substantially zero birefringence (and therefore a small phase difference), and a small haze.
 上記熱可塑性樹脂フィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)等を行うことができる。熱処理の条件は、任意の適切な条件を採用し得る。 The thermoplastic resin film can be subjected to a heat treatment (annealing) or the like after the stretching treatment in order to stabilize its optical isotropy and mechanical properties. Arbitrary appropriate conditions can be employ | adopted for the conditions of heat processing.
 上記熱可塑性樹脂フィルムの厚みは、好ましくは10μm~200μmであり、より好ましくは20μm~100μmである。厚みが10μm未満であると、強度が低下するおそれがある。厚みが200μmを超えると、透明性が低下するおそれがある。 The thickness of the thermoplastic resin film is preferably 10 μm to 200 μm, more preferably 20 μm to 100 μm. There exists a possibility that intensity | strength may fall that thickness is less than 10 micrometers. If the thickness exceeds 200 μm, the transparency may decrease.
 上記熱可塑性樹脂フィルムの表面の濡れ張力は、好ましくは40mN/m以上、より好ましくは50mN/m以上、さらに好ましくは55mN/m以上である。表面の濡れ張力が40mN/m以上であると、熱可塑性樹脂フィルムとハードコート層との密着性がさらに向上する。表面の濡れ張力を調整するために、任意の適切な表面処理を施すことができる。表面処理としては、例えば、コロナ放電処理、プラズマ処理、オゾン吹き付け、紫外線照射、火炎処理、化学薬品処理が挙げられる。これらの中でも、好ましくは、コロナ放電処理、プラズマ処理である。 The surface tension of the thermoplastic resin film is preferably 40 mN / m or more, more preferably 50 mN / m or more, and further preferably 55 mN / m or more. When the surface wetting tension is 40 mN / m or more, the adhesion between the thermoplastic resin film and the hard coat layer is further improved. Any suitable surface treatment can be applied to adjust the surface wetting tension. Examples of the surface treatment include corona discharge treatment, plasma treatment, ozone spraying, ultraviolet irradiation, flame treatment, and chemical treatment. Of these, corona discharge treatment and plasma treatment are preferable.
C.浸透層
 浸透層は、上記のとおり、熱可塑性樹脂フィルムにハードコート層形成用組成物が浸透することにより形成される。言い換えれば、浸透層は熱可塑性樹脂フィルムを形成する熱可塑性樹脂とハードコート層を形成する成分との相溶化領域の一部に対応し得る。
C. Penetration layer The penetration layer is formed by the penetration of the composition for forming a hard coat layer into the thermoplastic resin film as described above. In other words, the osmotic layer can correspond to a part of the compatibilized region between the thermoplastic resin forming the thermoplastic resin film and the component forming the hard coat layer.
 上記浸透層において、熱可塑性樹脂フィルムを形成する熱可塑性樹脂の濃度が、ハードコート層側から基材層側にかけて連続的に高くなることが好ましい。熱可塑性樹脂の濃度が連続的に変化すること、すなわち熱可塑性樹脂の濃度変化に起因する界面が形成されていないことにより界面反射を抑制することができ、干渉ムラの少ない光学積層体を得ることができるからである。 In the penetration layer, it is preferable that the concentration of the thermoplastic resin forming the thermoplastic resin film is continuously increased from the hard coat layer side to the base material layer side. Interfacial reflection can be suppressed by the fact that the concentration of the thermoplastic resin changes continuously, that is, the interface resulting from the change in the concentration of the thermoplastic resin is not formed, and an optical laminate having little interference unevenness is obtained. Because you can.
 上記浸透層の厚みの下限は、例えば1.2μmであり、好ましくは1.5μmであり、より好ましくは2.5μmであり、さらに好ましくは3μmである。浸透層の厚みの上限は、好ましくは(熱可塑性樹脂フィルムの厚み×70%)μmであり、より好ましくは(熱可塑性樹脂フィルムの厚み×40%)μmであり、さらに好ましくは(熱可塑性樹脂フィルムの厚み×30%)μmであり、特に好ましくは(熱可塑性樹脂フィルム×20%)μmである。浸透層の厚みがこのような範囲であれば、熱可塑性樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。なお、浸透層の厚みとは、熱可塑性樹脂フィルムにおいてハードコート層の形成成分が存在している部分の厚みであり、図1を参照して説明すると、熱可塑性樹脂フィルムにおいてハードコート層の形成成分が存在している部分(浸透層)と存在していない部分(基材層)との境界Bと、境界Aとの距離である。浸透層の厚みは、ハードコート層の反射スペクトル、またはSEM、TEM等の電子顕微鏡による観察により測定することができる。反射スペクトルによる浸透層の厚みの測定方法の詳細は、実施例における評価方法として後述する。 The lower limit of the thickness of the permeation layer is, for example, 1.2 μm, preferably 1.5 μm, more preferably 2.5 μm, and further preferably 3 μm. The upper limit of the thickness of the osmotic layer is preferably (thermoplastic resin film thickness × 70%) μm, more preferably (thermoplastic resin film thickness × 40%) μm, and even more preferably (thermoplastic resin). Film thickness × 30%) μm, particularly preferably (thermoplastic resin film × 20%) μm. If the thickness of the permeation layer is in such a range, an optical laminate having excellent adhesion between the thermoplastic resin film and the hard coat layer and suppressing interference unevenness can be obtained. The thickness of the osmotic layer is the thickness of the portion where the component for forming the hard coat layer is present in the thermoplastic resin film. With reference to FIG. 1, the formation of the hard coat layer in the thermoplastic resin film is described. The distance between the boundary A and the boundary A between the portion where the component is present (penetrating layer) and the portion where the component is not present (base material layer). The thickness of the osmotic layer can be measured by reflection spectrum of the hard coat layer or observation with an electron microscope such as SEM or TEM. Details of the method for measuring the thickness of the osmotic layer based on the reflection spectrum will be described later as an evaluation method in Examples.
 1つの実施形態において、上記範囲内の厚みの浸透層を備える本発明の光学積層体は、熱可塑性樹脂フィルムおよびハードコート層の形成材料として屈折率差の大きい材料を選択しても、干渉ムラの発生を防止することができる。例えば、基材層の屈折率とハードコート層の屈折率との差の絶対値を0.01~0.15とすることができる。もちろん、当該屈折率の差の絶対値を0.01未満に設定することも可能である。 In one embodiment, the optical layered body of the present invention having the osmotic layer having a thickness within the above range may cause interference unevenness even when a material having a large refractive index difference is selected as a material for forming the thermoplastic resin film and the hard coat layer. Can be prevented. For example, the absolute value of the difference between the refractive index of the base material layer and the refractive index of the hard coat layer can be set to 0.01 to 0.15. Of course, it is also possible to set the absolute value of the difference in refractive index to less than 0.01.
D.ハードコート層
 ハードコート層は、上記のとおり、上記熱可塑性樹脂フィルム上にハードコート層形成用組成物を塗工して形成される。ハードコート層形成用組成物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る硬化性化合物を含む。好ましくは、ハードコート層形成用組成物は、光硬化型の硬化性化合物を含む。硬化性化合物は、モノマー、オリゴマーおよびプレポリマーのいずれであってもよい。
D. Hard coat layer As described above, the hard coat layer is formed by applying the composition for forming a hard coat layer on the thermoplastic resin film. The composition for forming a hard coat layer includes, for example, a curable compound that can be cured by heat, light (such as ultraviolet rays), or an electron beam. Preferably, the composition for forming a hard coat layer contains a photocurable curable compound. The curable compound may be any of a monomer, an oligomer and a prepolymer.
 上記ハードコート層形成用組成物は、好ましくは、2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む。当該2個以上の(メタ)アクリロイル基を有する硬化性化合物に含まれる(メタ)アクリロイル基の個数の上限は、好ましくは100個である。2個以上の(メタ)アクリロイル基を有する硬化性化合物は、(メタ)アクリル系樹脂との相溶性に優れるので、熱可塑性樹脂フィルムとして(メタ)アクリル系樹脂フィルムを用いると、塗工時に(メタ)アクリル系樹脂フィルムに容易に浸透および拡散する。なお、本明細書において、「(メタ)アクリロイル」は、メタクリロイルおよび/またはアクリロイルを意味する。 The hard coat layer forming composition preferably contains a curable compound having two or more (meth) acryloyl groups. The upper limit of the number of (meth) acryloyl groups contained in the curable compound having two or more (meth) acryloyl groups is preferably 100. Since a curable compound having two or more (meth) acryloyl groups is excellent in compatibility with a (meth) acrylic resin, when a (meth) acrylic resin film is used as a thermoplastic resin film, It easily penetrates and diffuses into the (meth) acrylic resin film. In the present specification, “(meth) acryloyl” means methacryloyl and / or acryloyl.
 上記2個以上の(メタ)アクリロイル基を有する硬化性化合物としては、例えば、トリシクロデカンジメタノールジアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパントテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジアクリレート、イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレートおよびこれらのオリゴマーまたはプレポリマー等が挙げられる。2個以上の(メタ)アクリロイル基を有する硬化性化合物は、単独で用いてもよく、複数を組み合わせて用いてもよい。なお、本明細書において、「(メタ)アクリレート」とはアクリレートおよび/またはメタクリレートを意味する。 Examples of the curable compound having two or more (meth) acryloyl groups include tricyclodecane dimethanol diacrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane triacrylate, Pentaerythritol tetra (meth) acrylate, dimethylolpropanthate tetraacrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol (meth) acrylate, 1,9-nonanediol diacrylate, 1,10-decanediol (Meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, dipropylene glycol diacrylate, isocyanuric acid Examples include li (meth) acrylate, ethoxylated glycerin triacrylate, ethoxylated pentaerythritol tetraacrylate, and oligomers or prepolymers thereof. The curable compound having two or more (meth) acryloyl groups may be used alone or in combination. In the present specification, “(meth) acrylate” means acrylate and / or methacrylate.
 上記2個以上の(メタ)アクリロイル基を有する硬化性化合物は、好ましくは水酸基を有する。上記ハードコート層形成用組成物が、このような硬化性化合物を含んでいれば、ハードコート層形成時の加熱温度をより低く、加熱時間をより短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。また、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)とハードコート層との密着性に優れる光学積層体を得ることができる。水酸基および2個以上の(メタ)アクリロイル基を有する硬化性化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。 The curable compound having two or more (meth) acryloyl groups preferably has a hydroxyl group. If the composition for forming a hard coat layer contains such a curable compound, the heating temperature at the time of forming the hard coat layer can be set lower, the heating time can be set shorter, and deformation due to heating can be suppressed. The produced optical laminate can be produced efficiently. Moreover, the optical laminated body excellent in the adhesiveness of a thermoplastic resin film (for example, (meth) acrylic-type resin film) and a hard-coat layer can be obtained. Examples of the curable compound having a hydroxyl group and two or more (meth) acryloyl groups include pentaerythritol tri (meth) acrylate and dipentaerythritol pentaacrylate.
 上記2個以上の(メタ)アクリロイル基を有する硬化性化合物の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは30重量%~100重量%であり、より好ましくは40重量%~95重量%であり、特に好ましくは50重量%~95重量%である。このような範囲であれば、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)とハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。また、ハードコート層の硬化収縮を有効に防止できる。 The content of the curable compound having two or more (meth) acryloyl groups is preferably 30% by weight to 100% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. %, More preferably 40% by weight to 95% by weight, and particularly preferably 50% by weight to 95% by weight. If it is such a range, the optical laminated body which was excellent in the adhesiveness of a thermoplastic resin film (for example, (meth) acrylic-type resin film) and a hard-coat layer, and the interference nonuniformity was suppressed can be obtained. . In addition, curing shrinkage of the hard coat layer can be effectively prevented.
 上記ハードコート層形成用組成物は、硬化性化合物として、単官能モノマーを含んでいてもよい。単官能モノマーは、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)に容易に浸透するので、単官能モノマーを含んでいれば、熱可塑性樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。また、ハードコート層形成用組成物が単官能モノマーを含んでいれば、ハードコート層形成時の加熱温度を低く、加熱時間を短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。上記ハードコート層形成用組成物が単官能モノマーを含む場合、単官能モノマーの含有割合は、ハードコート層形成用組成物中の全硬化性化合物に対して、好ましくは40重量%以下であり、より好ましくは30重量%以下であり、特に好ましくは20重量%以下である。単官能モノマーの含有割合が40重量%より多い場合、所望の硬度および耐擦傷性が得られないおそれがある。 The hard coat layer forming composition may contain a monofunctional monomer as a curable compound. A monofunctional monomer easily penetrates into a thermoplastic resin film (for example, a (meth) acrylic resin film). Therefore, if the monofunctional monomer is contained, the adhesion between the thermoplastic resin film and the hard coat layer is excellent. And the optical laminated body by which interference nonuniformity was suppressed can be obtained. Further, if the hard coat layer-forming composition contains a monofunctional monomer, the heating temperature at the time of forming the hard coat layer can be set low, the heating time can be set short, and the optical laminate in which deformation due to heating is suppressed. Can be produced efficiently. When the hard coat layer forming composition contains a monofunctional monomer, the content ratio of the monofunctional monomer is preferably 40% by weight or less with respect to the total curable compound in the hard coat layer forming composition, More preferably, it is 30 weight% or less, Most preferably, it is 20 weight% or less. When the content ratio of the monofunctional monomer is more than 40% by weight, desired hardness and scratch resistance may not be obtained.
 上記単官能モノマーの重量平均分子量は、好ましくは500以下である。このような単官能モノマーであれば、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)に容易に浸透および拡散する。このような単官能モノマーとしては、例えば、エトキシ化o-フェニルフェノール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソホロニルアクリレート、フェノキシエチルアクリレート、ベンジルアクリレート、2-ヒドロキシ-3-フェノキシアクリレート、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジメチルアミノプロピルアクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド等が挙げられる。 The weight average molecular weight of the monofunctional monomer is preferably 500 or less. Such a monofunctional monomer easily penetrates and diffuses into a thermoplastic resin film (for example, a (meth) acrylic resin film). Examples of such monofunctional monomers include ethoxylated o-phenylphenol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isooctyl acrylate, Isostearyl acrylate, cyclohexyl acrylate, isoholonyl acrylate, phenoxyethyl acrylate, benzyl acrylate, 2-hydroxy-3-phenoxy acrylate, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, dimethyl Aminopropylacrylamide, N- (2-hydroxyethyl) (meth) acrylamide, etc. That.
 上記単官能モノマーは、好ましくは水酸基を有する。このような単官能モノマーであれば、ハードコート層形成時の加熱温度をより低く、加熱時間をより短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。また、上記ハードコート層形成用組成物が、水酸基を有する単官能モノマーを含んでいれば、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)とハードコート層との密着性に優れる光学積層体を得ることができる。このような単官能モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシアクリレート、1,4-シクロヘキサンメタノールモノアクリレート等のヒドロキシアルキル(メタ)アクリレート;N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等のN-(2-ヒドロキシアルキル)(メタ)アクリルアミド等が挙げられる。なかでも好ましくは、4-ヒドロキシブチルアクリレート、N-(2-ヒドロキシエチル)アクリルアミドである。 The monofunctional monomer preferably has a hydroxyl group. With such a monofunctional monomer, the heating temperature at the time of forming the hard coat layer can be set lower, the heating time can be set shorter, and an optical laminate in which deformation due to heating is suppressed can be efficiently produced. it can. Moreover, if the said composition for hard-coat layer formation contains the monofunctional monomer which has a hydroxyl group, the optical which is excellent in the adhesiveness of a thermoplastic resin film (for example, (meth) acrylic-type resin film) and a hard-coat layer. A laminate can be obtained. Examples of such monofunctional monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxy acrylate, 1,4 -Hydroxyalkyl (meth) acrylates such as cyclohexane methanol monoacrylate; N- (2-hydroxyalkyl) (meth) acrylamides such as N- (2-hydroxyethyl) (meth) acrylamide, N-methylol (meth) acrylamide, etc. Can be mentioned. Of these, 4-hydroxybutyl acrylate and N- (2-hydroxyethyl) acrylamide are preferable.
 上記単官能モノマーの沸点は、ハードコート層形成時における塗布層の加熱温度(後述)より高いことが好ましい。上記単官能モノマーの沸点は、例えば、好ましくは150℃以上であり、より好ましくは180℃以上であり、特に好ましくは200℃以上である。このような範囲であれば、ハードコート層形成時における加熱により単官能モノマーが揮発することを防止でき、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)に単官能モノマーを十分に浸透させることができる。 The boiling point of the monofunctional monomer is preferably higher than the heating temperature (described later) of the coating layer when forming the hard coat layer. The boiling point of the monofunctional monomer is, for example, preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher. Within such a range, the monofunctional monomer can be prevented from volatilizing by heating during the formation of the hard coat layer, and the monofunctional monomer can sufficiently penetrate into the thermoplastic resin film (for example, (meth) acrylic resin film). Can be made.
 ハードコート層形成用組成物は、好ましくは、硬化性化合物としてウレタン(メタ)アクリレートおよび/またはウレタン(メタ)アクリレートのオリゴマーを含む。ハードコート層形成用組成物がウレタン(メタ)アクリレートおよび/またはウレタン(メタ)アクリレートのオリゴマーを含んでいれば、柔軟性および熱可塑性樹脂フィルムに対する密着性に優れるハードコート層を形成することができる。上記ウレタン(メタ)アクリレートは、例えば、(メタ)アクリル酸または(メタ)アクリル酸エステルとポリオールとから得られるヒドロキシ(メタ)アクリレートを、ジイソシアネートと反応させることにより得ることができる。ウレタン(メタ)アクリレートおよびウレタン(メタ)アクリレートのオリゴマーは、単独で用いてもよく、複数を組み合わせて用いてもよい。 The composition for forming a hard coat layer preferably contains urethane (meth) acrylate and / or urethane (meth) acrylate oligomer as the curable compound. If the hard coat layer-forming composition contains urethane (meth) acrylate and / or urethane (meth) acrylate oligomer, a hard coat layer having excellent flexibility and adhesion to a thermoplastic resin film can be formed. . The urethane (meth) acrylate can be obtained, for example, by reacting hydroxy (meth) acrylate obtained from (meth) acrylic acid or (meth) acrylic acid ester and polyol with diisocyanate. Urethane (meth) acrylates and urethane (meth) acrylate oligomers may be used alone or in combination.
 上記(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
 上記ポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、トリシクロデカンジメチロール、1,4-シクロヘキサンジオール、スピログリコール、水添ビスフェノールA、エチレンオキサイド付加ビスフェノールA、プロピレンオキサイド付加ビスフェノールA、トリメチロールエタン、トリメチロールプロパン、グリセリン、3-メチルペンタン-1,3,5-トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類等が挙げられる。 Examples of the polyol include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1, 6-hexanediol, 1,9-nonanediol, 1,10-decanediol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5-pentanediol, neopentyl hydroxypivalate Glycol ester, tricyclodecane dimethylol, 1,4-cyclohexanediol, spiroglycol, hydrogenated bisphenol A, ethylene oxide added bisphenol A, propylene oxide added bisphenol A, trimethylol ethane, trimethylol Propane, glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, dipentaerythritol, tripentaerythritol, glucose, etc. can be mentioned.
 上記ジイソシアネートとしては、例えば、芳香族、脂肪族または脂環族の各種のジイソシアネート類を使用することができる。上記ジイソシアネートの具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、4,4-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、3,3-ジメチル-4,4-ジフェニルジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、およびこれらの水添物等が挙げられる。 As the diisocyanate, for example, various aromatic, aliphatic or alicyclic diisocyanates can be used. Specific examples of the diisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3-dimethyl-4,4. -Diphenyl diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-diphenylmethane diisocyanate, and hydrogenated products thereof.
 上記ウレタン(メタ)アクリレートおよびウレタン(メタ)アクリレートのオリゴマーの合計含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは20重量%~90重量%であり、さらに好ましくは25重量%~85重量%であり、特に好ましくは30重量%~80重量%である。このような範囲であれば、硬度、柔軟性および密着性のバランスに優れるハードコート層を形成することができる。 The total content of the urethane (meth) acrylate and urethane (meth) acrylate oligomer is preferably 20% by weight to 90% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the composition for forming a hard coat layer. %, More preferably 25% by weight to 85% by weight, and particularly preferably 30% by weight to 80% by weight. If it is such a range, the hard-coat layer excellent in the balance of hardness, a softness | flexibility, and adhesiveness can be formed.
 上記ハードコート層形成用組成物は、水酸基を有する(メタ)アクリル系プレポリマーを含んでいてもよい。ハードコート層形成用組成物が水酸基を有する(メタ)アクリル系プレポリマーを含んでいれば、硬化収縮を低減することができる。また、当該(メタ)アクリル系プレポリマーが水酸基を有していることにより、熱可塑性樹脂フィルム(例えば、(メタ)アクリル系樹脂フィルム)とハードコート層との密着性に優れる光学積層体を得ることができる。水酸基を有する(メタ)アクリル系プレポリマーは、好ましくは、炭素原子数1~10の直鎖状または分枝状アルキル基を有するヒドロキシアルキル(メタ)アクリレートから重合されるポリマーである。水酸基を有する(メタ)アクリル系プレポリマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピル(メタ)アクリレート、2-アクリロイルオキシ-3-ヒドロキシプロピル(メタ)アクリレートからなる群から選択される少なくとも一つのモノマーから重合されたポリマーが挙げられる。水酸基を有する(メタ)アクリル系プレポリマーは、単独で用いてもよく、複数を組み合わせて用いてもよい。 The hard coat layer forming composition may contain a (meth) acrylic prepolymer having a hydroxyl group. If the composition for forming a hard coat layer contains a (meth) acrylic prepolymer having a hydroxyl group, curing shrinkage can be reduced. Moreover, when the (meth) acrylic prepolymer has a hydroxyl group, an optical laminate having excellent adhesion between a thermoplastic resin film (for example, a (meth) acrylic resin film) and a hard coat layer is obtained. be able to. The (meth) acrylic prepolymer having a hydroxyl group is preferably a polymer polymerized from a hydroxyalkyl (meth) acrylate having a linear or branched alkyl group having 1 to 10 carbon atoms. Examples of the (meth) acrylic prepolymer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, 2 -Polymers polymerized from at least one monomer selected from the group consisting of acryloyloxy-3-hydroxypropyl (meth) acrylate. The (meth) acrylic prepolymer having a hydroxyl group may be used alone or in combination.
 上記水酸基を有する(メタ)アクリル系プレポリマーの含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは5重量%~50重量%であり、より好ましくは10重量%~30重量%である。このような範囲であれば、塗工性に優れたハードコート層形成用組成物が得られる。また、形成されたハードコート層の硬化収縮を有効に防止できる。 The content ratio of the (meth) acrylic prepolymer having a hydroxyl group is preferably 5% by weight to 50% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. More preferably, it is 10 to 30% by weight. If it is such a range, the composition for hard-coat layer formation excellent in coating property will be obtained. In addition, curing shrinkage of the formed hard coat layer can be effectively prevented.
 ハードコート層形成用組成物が、硬化性化合物として、モノマーとオリゴマーおよび/またはプレポリマーとを含む場合、硬化性化合物の総量(モノマー、オリゴマーおよびプレポリマーの合計量)に対するオリゴマーおよびプレポリマーの合計量は、好ましくは20重量~90重量%、より好ましくは25重量%~85重量%、さらに好ましくは30重量%~80重量%である。硬化性化合物中のモノマー配合比が大きくなると、熱可塑性樹脂フィルム由来の成分のブリードアウト量が増大する傾向がある。また、硬化性化合物中のモノマー配合比が小さくなると密着性が悪くなるおそれがある。 When the composition for forming a hard coat layer contains a monomer and an oligomer and / or a prepolymer as the curable compound, the sum of the oligomer and the prepolymer relative to the total amount of the curable compound (the total amount of the monomer, the oligomer and the prepolymer) The amount is preferably 20% to 90% by weight, more preferably 25% to 85% by weight, and still more preferably 30% to 80% by weight. When the monomer compounding ratio in the curable compound increases, the bleed-out amount of the component derived from the thermoplastic resin film tends to increase. Moreover, there exists a possibility that adhesiveness may worsen when the monomer compounding ratio in a curable compound becomes small.
 上記ハードコート層形成用組成物は、好ましくは、任意の適切な光重合開始剤を含む。光重合開始剤としては、例えば、2,2-ジメトキシ-2-フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントン、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン系化合物等が挙げられる。 The hard coat layer forming composition preferably contains any appropriate photopolymerization initiator. Examples of the photopolymerization initiator include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, benzoinpropyl ether, benzyldimethyl Ketals, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone compounds, etc. Can be mentioned.
 1つの実施形態においては、ハードコート層の基材層とは反対側の表面は、凹凸構造を有する。ハードコート層の表面が凹凸構造であれば、光学積層体に防眩性を付与することができる。このような凹凸構造を形成する方法としては、例えば、ハードコート層形成用組成物に微粒子を含有させる方法が挙げられる。微粒子は無機微粒子であってもよく、有機微粒子であってもよい。無機微粒子としては、例えば、酸化ケイ素微粒子、酸化チタン微粒子、酸化アルミニウム微粒子、酸化亜鉛微粒子、酸化錫微粒子、炭酸カルシウム微粒子、硫酸バリウム微粒子、タルク微粒子、カオリン微粒子、硫酸カルシウム微粒子等が挙げられる。有機微粒子としては、例えば、ポリメタクリル酸メチル樹脂粉末(PMMA微粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等が挙げられる。これらの微粒子は、単独で用いてもよく、複数を組み合わせて用いてもよい。 In one embodiment, the surface of the hard coat layer opposite to the base material layer has an uneven structure. If the surface of the hard coat layer has a concavo-convex structure, antiglare properties can be imparted to the optical laminate. Examples of a method for forming such a concavo-convex structure include a method in which fine particles are contained in the hard coat layer forming composition. The fine particles may be inorganic fine particles or organic fine particles. Examples of the inorganic fine particles include silicon oxide fine particles, titanium oxide fine particles, aluminum oxide fine particles, zinc oxide fine particles, tin oxide fine particles, calcium carbonate fine particles, barium sulfate fine particles, talc fine particles, kaolin fine particles, and calcium sulfate fine particles. Examples of the organic fine particles include polymethyl methacrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, and polyester resin powder. , Polyamide resin powder, polyimide resin powder, polyfluorinated ethylene resin powder, and the like. These fine particles may be used alone or in combination.
 上記微粒子の形状は、任意の適切な形状が採用され得る。好ましくは略球形であり、より好ましくはアスペクト比が1.5以下の略球形である。微粒子の重量平均粒径は、好ましくは1μm~30μmであり、より好ましくは2μm~20μmである。微粒子の重量平均粒径は、例えば、コールターカウント法により測定できる。 Any appropriate shape can be adopted as the shape of the fine particles. It is preferably a substantially spherical shape, more preferably a substantially spherical shape having an aspect ratio of 1.5 or less. The weight average particle diameter of the fine particles is preferably 1 μm to 30 μm, more preferably 2 μm to 20 μm. The weight average particle diameter of the fine particles can be measured by, for example, a Coulter count method.
 上記ハードコート層形成用組成物が上記微粒子を含む場合、上記微粒子の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは1重量%~60重量%であり、より好ましくは2重量%~50重量%である。 When the hard coat layer forming composition contains the fine particles, the content ratio of the fine particles is preferably 1% by weight to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. 60% by weight, more preferably 2% to 50% by weight.
 上記ハードコート層形成用組成物は、任意の適切な添加剤をさらに含み得る。添加剤としては、例えば、レベリング剤、ブロッキング防止剤、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、フィラー、滑剤、帯電防止剤等が挙げられる。 The hard coat layer forming composition may further contain any appropriate additive. Examples of additives include leveling agents, anti-blocking agents, dispersion stabilizers, thixotropic agents, antioxidants, UV absorbers, antifoaming agents, thickeners, dispersants, surfactants, catalysts, fillers, and lubricants. And antistatic agents.
 上記ハードコート層形成用組成物は、溶媒を含んでいてもよく、含んでいなくてもよい。溶媒としては、例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン(CPN)、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n-ペンチル、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール、イソプロピルアルコール(IPA)、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2-オクタノン、2-ペンタノン、2-ヘキサノン、2-ヘプタノン、3-ヘプタノン、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等が挙げられる。これらは、単独で用いてもよく、複数を組み合わせて用いてもよい。 The hard coat layer forming composition may or may not contain a solvent. Examples of the solvent include dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, acetone, methyl ethyl ketone (MEK). , Diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone (CPN), cyclohexanone, methylcyclohexanone, ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n acetate -Pentyl, acetylacetone, diacetone alcohol, methyl acetoacetate, ethyl acetoacetate, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pen Nord, 2-methyl-2-butanol, cyclohexanol, isopropyl alcohol (IPA), isobutyl acetate, methyl isobutyl ketone (MIBK), 2-octanone, 2-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, ethylene Examples include glycol monoethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether. These may be used alone or in combination.
 本発明によれば、溶媒を含まないハードコート層形成用組成物、あるいは溶媒として熱可塑性樹脂フィルム形成材料の貧溶媒のみを含むハードコート層形成用組成物を用いても、ハードコート層形成用組成物が熱可塑性樹脂フィルム、好ましくは(メタ)アクリル系樹脂フィルムに浸透して、所望の厚みを有する浸透層を形成することができる。 According to the present invention, a hard coat layer forming composition containing no solvent or a hard coat layer forming composition containing only a poor solvent of a thermoplastic resin film forming material as a solvent can be used. The composition can permeate a thermoplastic resin film, preferably a (meth) acrylic resin film, to form a permeation layer having a desired thickness.
 上記ハードコート層の厚みは、好ましくは1μm~20μmであり、より好ましくは3μm~10μmである。 The thickness of the hard coat layer is preferably 1 μm to 20 μm, more preferably 3 μm to 10 μm.
 上記ハードコート層中には、熱可塑性樹脂フィルムからハードコート層形成用組成物に溶出した熱可塑性樹脂が存在していてもよい。ハードコート層中に、熱可塑性樹脂フィルムを形成する熱可塑性樹脂が存在する場合、好ましくは当該熱可塑性樹脂の濃度が、浸透層側表面から光学機能層側表面に向かって連続的に低くなる。このような実施形態においては、熱可塑性樹脂の濃度が連続的に変化すること、すなわち熱可塑性樹脂の濃度変化に起因する界面が形成されていないことにより界面反射を抑制することができ、干渉ムラの少ない光学積層体を得ることができる。 In the hard coat layer, a thermoplastic resin eluted from the thermoplastic resin film into the hard coat layer forming composition may be present. When a thermoplastic resin that forms a thermoplastic resin film is present in the hard coat layer, the concentration of the thermoplastic resin is preferably continuously reduced from the penetrating layer side surface toward the optical functional layer side surface. In such an embodiment, since the concentration of the thermoplastic resin continuously changes, that is, the interface due to the change in the concentration of the thermoplastic resin is not formed, the interface reflection can be suppressed, and the interference unevenness is reduced. It is possible to obtain an optical layered body with less.
E.光学機能層
 光学機能層は、上記ハードコート層に光学機能層形成用組成物を塗工して形成される。光学機能層は、熱可塑性樹脂フィルムからハードコート層形成用組成物に溶出し、ハードコート層を経由して混入した熱可塑性樹脂フィルム由来の成分を含む。該熱可塑性樹脂フィルム由来の成分は、光学機能層において、その表面よりも内部においてより高い濃度で存在する。光学機能層における熱可塑性樹脂フィルム由来の成分の濃度分布は、例えば実施例に記載するように、飛行時間二次イオン質量分析計(TOF-SIMS)を用いて光学機能層の表面および斜め切削断面に存在する元素および分子情報を検出することによって決定できる。この場合、測定領域において、光学機能層の斜め切削断面での当該成分の平均濃度が表面での平均濃度よりも高い場合に、当該成分が光学機能層の表面よりも内部においてより高い濃度で存在すると判断する。
E. Optical Functional Layer The optical functional layer is formed by applying the optical functional layer forming composition to the hard coat layer. The optical functional layer contains a component derived from a thermoplastic resin film that is eluted from the thermoplastic resin film into the composition for forming a hard coat layer and mixed through the hard coat layer. The component derived from the thermoplastic resin film is present in the optical functional layer at a higher concentration inside than on the surface thereof. The concentration distribution of the component derived from the thermoplastic resin film in the optical functional layer is measured by using a time-of-flight secondary ion mass spectrometer (TOF-SIMS), for example, as described in the examples. Can be determined by detecting elemental and molecular information present in In this case, in the measurement region, when the average concentration of the component in the oblique cutting section of the optical functional layer is higher than the average concentration on the surface, the component is present at a higher concentration inside than the surface of the optical functional layer. Judge that.
 光学機能層中に混入する熱可塑性樹脂フィルム由来の成分としては、フィルムに添加された添加剤、低分子量の熱可塑性樹脂等が挙げられる。なかでも、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤、およびオキサジアゾール系紫外線吸収剤から選択される紫外線吸収剤は上記ハードコート層形成用組成物への移行性が高く、白化の問題を生じさせ易い。本発明においては、これらの白化の原因となり得る熱可塑性樹脂フィルム由来の成分を光学機能層内部に安定的に保持することにより、白化の問題を改善することができる。1つの実施形態において、本発明の光学積層体は、製造後2週間経過しても実質的に白化の問題が生じない。 Examples of the component derived from the thermoplastic resin film mixed in the optical functional layer include additives added to the film, low molecular weight thermoplastic resins, and the like. Of these, UV absorption selected from triazine UV absorbers, benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, benzoxazine UV absorbers, and oxadiazole UV absorbers. The agent has a high transferability to the hard coat layer forming composition and easily causes whitening problems. In the present invention, the problem of whitening can be improved by stably holding the components derived from the thermoplastic resin film that can cause whitening inside the optical functional layer. In one embodiment, the optical layered body of the present invention is substantially free from whitening problems even after two weeks have passed since manufacture.
 光学機能層は、画像表示装置の表示画面の最表面に配置され得ることから防汚性を有することが好ましい。光学機能層の水接触角は、例えば90°以上、好ましくは95°以上、より好ましくは100°以上、さらに好ましくは105°以上である。また、光学機能層のヘキサデカン接触角は、好ましくは35°以上、より好ましくは40°以上、さらに好ましくは45°以上である。 The optical functional layer is preferably antifouling because it can be disposed on the outermost surface of the display screen of the image display device. The water contact angle of the optical functional layer is, for example, 90 ° or more, preferably 95 ° or more, more preferably 100 ° or more, and further preferably 105 ° or more. Further, the hexadecane contact angle of the optical functional layer is preferably 35 ° or more, more preferably 40 ° or more, and further preferably 45 ° or more.
 光学機能層の具体例としては、低屈折率層、高屈折率層、防眩層、帯電防止層等が挙げられる。光学機能層が低屈折率層である場合、該低屈折率層は反射防止層として機能し得る。 Specific examples of the optical functional layer include a low refractive index layer, a high refractive index layer, an antiglare layer, and an antistatic layer. When the optical functional layer is a low refractive index layer, the low refractive index layer can function as an antireflection layer.
 低屈折率層の屈折率は、ハードコート層の屈折率よりも低い。低屈折率層の屈折率は、好ましくは1.20~1.45、より好ましくは1.23~1.42である。また、低屈折率層の屈折率とハードコート層の屈折率との差は、例えば0.08~0.33であり得る。なお、本明細書において、屈折率は、波長590nmにおける屈折率を意味する。 The refractive index of the low refractive index layer is lower than the refractive index of the hard coat layer. The refractive index of the low refractive index layer is preferably 1.20 to 1.45, more preferably 1.23 to 1.42. Further, the difference between the refractive index of the low refractive index layer and the refractive index of the hard coat layer may be, for example, 0.08 to 0.33. In the present specification, the refractive index means a refractive index at a wavelength of 590 nm.
 光学機能層形成用組成物は、代表的には、硬化性化合物と防汚剤とを含む。光学機能層が低屈折率層である場合、光学機能層形成用組成物(低屈折率層形成用組成物)は、屈折率が1.44以下である低屈折率微粒子をさらに含む。硬化性化合物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る。好ましくは、光学機能層形成用組成物は、光硬化型の硬化性化合物を含む。硬化性化合物は、モノマー、オリゴマーおよびプレポリマーのいずれであってもよい。 The optical functional layer forming composition typically includes a curable compound and an antifouling agent. When the optical functional layer is a low refractive index layer, the optical functional layer forming composition (low refractive index layer forming composition) further includes low refractive index fine particles having a refractive index of 1.44 or less. The curable compound can be cured by, for example, heat, light (such as ultraviolet rays), or an electron beam. Preferably, the composition for forming an optical functional layer contains a photocurable curable compound. The curable compound may be any of a monomer, an oligomer and a prepolymer.
 光学機能層形成用組成物は、好ましくは2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む。ハードコート層形成用組成物と光学機能層形成用組成物がともに2個以上の(メタ)アクリロイル基を有する場合、ハードコート層と光学機能層との密着性が向上し得る。2個以上の(メタ)アクリロイル基を有する硬化性化合物としては、ハードコート層形成用組成物に関してD項で記載したものと同様のものを単独でまたは2種以上組み合わせて用いることができる。 The composition for forming an optical functional layer preferably contains a curable compound having two or more (meth) acryloyl groups. When both the hard coat layer forming composition and the optical functional layer forming composition have two or more (meth) acryloyl groups, the adhesion between the hard coat layer and the optical functional layer can be improved. As the curable compound having two or more (meth) acryloyl groups, the same compounds as those described in the section D for the composition for forming a hard coat layer can be used alone or in combination of two or more.
 上記2個以上の(メタ)アクリロイル基を有する硬化性化合物は、好ましくは水酸基を有する。光学機能層形成用組成物が、このような硬化性化合物を含んでいれば、ハードコート層と光学機能層との密着性に優れる光学積層体を得ることができる。 The curable compound having two or more (meth) acryloyl groups preferably has a hydroxyl group. If the composition for optical function layer formation contains such a sclerosing | hardenable compound, the optical laminated body excellent in the adhesiveness of a hard-coat layer and an optical function layer can be obtained.
 上記2個以上の(メタ)アクリロイル基を有する硬化性化合物の含有割合は、光学機能層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは50重量%~100重量%であり、より好ましくは60重量%~100重量%であり、特に好ましくは70重量%~100重量%である。このような範囲であれば、ハードコート層と光学機能層との密着性に優れた光学積層体を得ることができる。また、光学機能層の硬化収縮を有効に防止できる。 The content ratio of the curable compound having two or more (meth) acryloyl groups is preferably 50% by weight to 100% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the composition for forming an optical functional layer. %, More preferably 60% by weight to 100% by weight, and particularly preferably 70% by weight to 100% by weight. If it is such a range, the optical laminated body excellent in the adhesiveness of a hard-coat layer and an optical function layer can be obtained. In addition, curing shrinkage of the optical functional layer can be effectively prevented.
 光学機能層形成用組成物が含み得る他のモノマー、オリゴマーおよびプレポリマーとしては、ハードコート層形成用組成物に関してD項で記載したものと同様のものが挙げられる。 Examples of other monomers, oligomers and prepolymers that can be contained in the composition for forming an optical functional layer include those described in the section D for the composition for forming a hard coat layer.
 本発明においては、上記防汚剤として、フッ素含有化合物が好ましく用いられ得る。フッ素含有化合物は、光学機能層に防汚性を付与するとともに、光学機能層の低屈折率化にも寄与し得る。一般に、画像表示装置の最表面層において、シリコーン系防汚剤を用いて防汚性に加えて耐擦傷性等を付与することが行なわれているが、本発明においては、フッ素系防汚剤を用いることにより、上記熱可塑性樹脂フィルム由来の成分を光学機能層内部に安定して保持し得る。本発明で使用するフッ素含有化合物は、ケイ素を含有していなくてもよく、例えばシロキサン結合を含有していない。 In the present invention, a fluorine-containing compound can be preferably used as the antifouling agent. The fluorine-containing compound imparts antifouling properties to the optical functional layer and can also contribute to lowering the refractive index of the optical functional layer. In general, in the outermost surface layer of an image display device, a silicone-based antifouling agent is used to impart antifouling properties as well as scratch resistance and the like. In the present invention, a fluorine-based antifouling agent is used. By using this, the component derived from the thermoplastic resin film can be stably held inside the optical functional layer. The fluorine-containing compound used in the present invention may not contain silicon, for example, it does not contain a siloxane bond.
 フッ素含有化合物は、好ましくは分子中に各々炭素数1~10のフルオロアルキル基、フルオロアルケニル基またはフルオロアルキレン基を有し、より好ましくは各々炭素数1~10のパーフルオロアルキル基、パーフルオロアルケニル基またはパーフルオロアルキレン基を有する。これらの基を有するフッ素含有化合物によれば、熱可塑性樹脂フィルム由来の成分のブリードアウトを抑制して、光学機能層内部に安定に保持し得る。 The fluorine-containing compound preferably has a fluoroalkyl group, a fluoroalkenyl group or a fluoroalkylene group each having 1 to 10 carbon atoms in the molecule, more preferably a perfluoroalkyl group or a perfluoroalkenyl group each having 1 to 10 carbon atoms. Group or perfluoroalkylene group. According to the fluorine-containing compound having these groups, bleeding out of the component derived from the thermoplastic resin film can be suppressed and stably held inside the optical functional layer.
 フッ素含有化合物は、さらにエーテル結合を有し得る。エーテル結合の数は、好ましくは1以上であり、より好ましくは2~30であり、特に好ましくは4~20である。エーテル結合の数がこのような範囲内であれば、優れた防汚性が得られ得る。 The fluorine-containing compound may further have an ether bond. The number of ether bonds is preferably 1 or more, more preferably 2 to 30, and particularly preferably 4 to 20. If the number of ether bonds is within such a range, excellent antifouling properties can be obtained.
 1つの実施形態において、フッ素含有化合物は、トリフルオロメチル基、テトラフルオロエチレン基、パーフルオロイソプロピル基等のパーフルオロアルキル基および/またはヘプタデカフルオロノネニル基等のパーフルオロアルケニル基とエーテル結合とを有し得る。 In one embodiment, the fluorine-containing compound comprises a perfluoroalkyl group such as a trifluoromethyl group, a tetrafluoroethylene group, a perfluoroisopropyl group, and / or a perfluoroalkenyl group such as a heptadecafluorononenyl group and an ether bond. Can have.
 別の実施形態において、フッ素含有化合物は、テトラフルオロエチレンオキサイド基、ジフルオロメチレンオキサイド基等のパーフルオロアルキレンオキサイド基を有し得る。当該実施形態においては、フッ素含有化合物は、例えば、ポリ(ジフルオロメチレンオキサイド)、ポリ(テトラフルオロエチレンオキサイド)、ポリ(テトラフルオロエチレンオキサイド-コ-ジフルオロメチレンオキサイド)等のポリ(パーフルオロアルキレンオキサイド)であり得る。 In another embodiment, the fluorine-containing compound may have a perfluoroalkylene oxide group such as a tetrafluoroethylene oxide group or a difluoromethylene oxide group. In this embodiment, the fluorine-containing compound is, for example, poly (perfluoroalkylene oxide) such as poly (difluoromethylene oxide), poly (tetrafluoroethylene oxide), poly (tetrafluoroethylene oxide-co-difluoromethylene oxide), etc. It can be.
 フッ素含有化合物は、必要に応じて、任意の適切な反応性基をさらに有していてもよい。反応性基は、代表的には、(メタ)アクリロイル基である。反応性基を有する場合、フッ素含有化合物が光学機能層内で固定され、層中での移動が制限され得る。その結果、フッ素含有化合物と熱可塑性樹脂フィルム由来の成分との接触が低減され、当該接触に起因する熱可塑性樹脂フィルム由来の成分の凝集および析出が抑制され得る。 The fluorine-containing compound may further have any appropriate reactive group as required. The reactive group is typically a (meth) acryloyl group. When having a reactive group, the fluorine-containing compound is fixed in the optical functional layer, and movement in the layer can be restricted. As a result, contact between the fluorine-containing compound and the component derived from the thermoplastic resin film is reduced, and aggregation and precipitation of the component derived from the thermoplastic resin film due to the contact can be suppressed.
 フッ素含有化合物の重量平均分子量は、比較的小さいかまたは比較的大きいことが好ましい。具体的には、重量平均分子量が300~8,000または50,000以上であることが好ましく、より好ましくは500~5,000または100,000~500,000である。比較的小さい分子量のフッ素含有化合物の場合、表面への移行性に優れることから、光学機能層表面に当該化合物の薄層を好適に形成し得、これにより、熱可塑性樹脂フィルム由来の成分のブリードアウトを抑制し得ると推測される。一方、比較的大きい分子量のフッ素含有化合物の場合、光学機能層内部にて熱可塑性樹脂フィルム由来の成分を相溶または安定分散等することにより、当該成分のブリードアウトを好適に抑制し得ると推測される。 The weight average molecular weight of the fluorine-containing compound is preferably relatively small or relatively large. Specifically, the weight average molecular weight is preferably 300 to 8,000 or 50,000 or more, more preferably 500 to 5,000 or 100,000 to 500,000. In the case of a fluorine-containing compound having a relatively small molecular weight, it is excellent in transferability to the surface, so that a thin layer of the compound can be suitably formed on the surface of the optical functional layer, thereby bleeding the component derived from the thermoplastic resin film. It is presumed that out can be suppressed. On the other hand, in the case of a fluorine-containing compound having a relatively large molecular weight, it is assumed that bleeding out of the component can be suitably suppressed by compatibilizing or stably dispersing the component derived from the thermoplastic resin film inside the optical functional layer. Is done.
 フッ素含有化合物の配合量は、光学機能層形成用組成物中の全固形分に対して、好ましくは0.5重量%~30重量%であり、より好ましくは1重量%~25重量%であり、さらに好ましくは1.5重量%~20重量%である。 The compounding amount of the fluorine-containing compound is preferably 0.5% by weight to 30% by weight, more preferably 1% by weight to 25% by weight, based on the total solid content in the composition for forming an optical functional layer. More preferably, it is 1.5 wt% to 20 wt%.
 上記光学機能層形成用組成物は、好ましくは、任意の適切な光重合開始剤を含む。また、必要に応じて溶媒および任意の適切な添加剤をさらに含んでいてもよい。光重合開始剤、溶媒および添加剤の具体例としては、ハードコート層形成用組成物に用いられ得るものと同様のものが挙げられる。 The optical functional layer forming composition preferably contains any appropriate photopolymerization initiator. Further, it may further contain a solvent and any appropriate additive as required. Specific examples of the photopolymerization initiator, the solvent and the additive include the same ones that can be used for the composition for forming a hard coat layer.
 上記低屈折率微粒子としては、任意の適切な微粒子が用いられ得る。低屈折率微粒子の屈折率は、好ましくは1.20~1.44、より好ましくは1.23~1.40である。低屈折率微粒子としては、例えば、空隙を有する微粒子または低屈折率材料で形成された微粒子が挙げられる。 Any appropriate fine particles may be used as the low refractive index fine particles. The refractive index of the low refractive index fine particles is preferably 1.20 to 1.44, more preferably 1.23 to 1.40. Examples of the low refractive index fine particles include fine particles having voids or fine particles formed of a low refractive index material.
 空隙を有する微粒子としては、中空微粒子または多孔質微粒子が挙げられる。空隙を有する微粒子の形成材料としては、金属、金属酸化物、樹脂等が挙げられる。なかでも、中空シリカ微粒子が好ましく用いられ得る。中空シリカ微粒子には、シランカップリング剤を用いて表面に親油性基や反応性基が導入されていてもよい。 Examples of the fine particles having voids include hollow fine particles and porous fine particles. Examples of the material for forming fine particles having voids include metals, metal oxides, and resins. Among these, hollow silica fine particles can be preferably used. In the hollow silica fine particles, a lipophilic group or a reactive group may be introduced on the surface using a silane coupling agent.
 低屈折率材料で形成された微粒子の形成材料としては、上記屈折率を満たす限りにおいて制限はなく、例えば、フッ化マグネシウム、フッ化アルミニウム、フッ化カルシウム、フッ化リチウム等の金属フッ化物が挙げられる。 The material for forming the fine particles formed of the low refractive index material is not limited as long as the refractive index is satisfied, and examples thereof include metal fluorides such as magnesium fluoride, aluminum fluoride, calcium fluoride, and lithium fluoride. It is done.
 低屈折率微粒子の平均粒径(平均一次粒子径)は、例えば1nm~100nmである。平均粒径が当該範囲内であれば、透明性と分散性とを両立することができる。 The average particle size (average primary particle size) of the low refractive index fine particles is, for example, 1 nm to 100 nm. If the average particle size is within the range, both transparency and dispersibility can be achieved.
 低屈折率微粒子の詳細に関しては、WO2008/038714、WO2009/025292等の記載を参考にすることができる。 For details of the low refractive index fine particles, descriptions in WO2008 / 038714, WO2009 / 025292, etc. can be referred to.
 低屈折率微粒子の配合量は、硬化性化合物の総量(モノマー、オリゴマーおよびプレポリマーの合計量)に対して、好ましくは30重量%~250重量%であり、より好ましくは45重量%~200重量%であり、さらに好ましくは60重量%~150重量%である。 The blending amount of the low refractive index fine particles is preferably 30% by weight to 250% by weight and more preferably 45% by weight to 200% by weight with respect to the total amount of the curable compound (total amount of monomer, oligomer and prepolymer). %, More preferably 60% to 150% by weight.
 光学機能層の厚みは、目的等に応じて任意の適切な値に設定され得る。光学機能層が低屈折率層である場合、その厚みは、例えば10nm~200nm、好ましくは20nm~120nmである。 The thickness of the optical functional layer can be set to any appropriate value depending on the purpose and the like. When the optical functional layer is a low refractive index layer, the thickness thereof is, for example, 10 nm to 200 nm, preferably 20 nm to 120 nm.
F.光学積層体の製造方法
 本発明の光学積層体の製造方法は、熱可塑性樹脂フィルム上にハードコート層形成用組成物を塗布して第1の塗布層を形成すること、第1の塗布層を加熱することおよび第1の塗布層上に光学機能層形成用組成物を塗布して第2の塗布層を形成することを含む。好ましくは、ハードコート層は、加熱後の第1の塗布層を硬化処理して形成される。同様に、光学機能層は、好ましくは第2の塗布層を硬化処理して形成される。第2の塗布層の形成および硬化処理は、通常、第1の塗布層の硬化処理後に行われるが、加熱後の第1の塗布層上に第2の塗布層を形成し、第1および第2の塗布層の硬化処理を同時に行ってもよい。
F. Manufacturing method of optical laminated body The manufacturing method of the optical laminated body of this invention apply | coats the composition for hard-coat layer formation on a thermoplastic resin film, forms a 1st coating layer, The 1st coating layer is formed. Heating and applying a composition for forming an optical functional layer on the first coating layer to form a second coating layer. Preferably, the hard coat layer is formed by curing the first coating layer after heating. Similarly, the optical functional layer is preferably formed by curing the second coating layer. The formation and curing process of the second coating layer is usually performed after the curing process of the first coating layer. However, the second coating layer is formed on the heated first coating layer, and the first and first coating layers are formed. You may perform the hardening process of 2 coating layers simultaneously.
 ハードコート層形成用組成物または光学機能層形成用組成物の塗布方法としては、任意の適切な方法を採用し得る。例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法が挙げられる。 Arbitrary appropriate methods can be employ | adopted as a coating method of the composition for hard-coat layer formation or the composition for optical function layer formation. Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, and a comma coating method.
 上記第1の塗布層の加熱温度は、ハードコート層形成用組成物の組成に応じて、適切な温度に設定され得、好ましくは、熱可塑性樹脂フィルムに含まれる樹脂のガラス転移温度以下に設定される。熱可塑性樹脂フィルムに含まれる樹脂のガラス転移温度以下の温度で加熱すれば、加熱による変形が抑制された光学積層体を得ることができる。上記第1の塗布層の加熱温度は、例えば、80℃~140℃である。このような範囲の温度で加熱すれば、ハードコート層形成用組成物中のモノマー、オリゴマーおよび/またはプレポリマーが熱可塑性樹脂フィルム中に良好に浸透および拡散する。当該加熱、その後の硬化処理を経て、浸透したハードコート層形成用組成物および熱可塑性樹脂フィルムの形成材料により、上記C項で説明した浸透層が形成される。その結果、熱可塑性樹脂フィルムとハードコート層との密着性に優れ、かつ干渉ムラの抑制された光学積層体を得ることができる。なお、ハードコート層形成用組成物が溶媒を含む場合、当該加熱により、塗布したハードコート層形成用組成物を乾燥させることができる。また、浸透層の厚みは、例えば、加熱温度を上記範囲内で高く設定すること等によって大きくすることができる。 The heating temperature of the first coating layer may be set to an appropriate temperature according to the composition of the hard coat layer forming composition, and preferably set to be equal to or lower than the glass transition temperature of the resin contained in the thermoplastic resin film. Is done. When heated at a temperature not higher than the glass transition temperature of the resin contained in the thermoplastic resin film, an optical laminate in which deformation due to heating is suppressed can be obtained. The heating temperature of the first coating layer is, for example, 80 ° C. to 140 ° C. When heated at such a temperature, the monomer, oligomer and / or prepolymer in the composition for forming a hard coat layer can penetrate and diffuse well into the thermoplastic resin film. The permeation layer described in the above section C is formed by the hard coat layer forming composition and the thermoplastic resin film forming material that has permeated through the heating and subsequent curing treatment. As a result, it is possible to obtain an optical laminate that is excellent in adhesion between the thermoplastic resin film and the hard coat layer and in which interference unevenness is suppressed. In addition, when the composition for hard-coat layer formation contains a solvent, the apply | coated composition for hard-coat layer formation can be dried by the said heating. The thickness of the permeation layer can be increased by setting the heating temperature high within the above range, for example.
 1つの実施形態においては、上記加熱温度はハードコート層形成用組成物中に含まれる2個以上の(メタ)アクリロイル基を有する硬化性化合物および上記単官能モノマーの含有割合に応じて設定され得る。ハードコート層形成用組成物中に含まれる2個以上の(メタ)アクリロイル基を有する硬化性化合物および/または単官能モノマーが多いほど、低温の加熱温度(例えば、80℃~100℃)で、密着性が優れ、かつ、干渉ムラが抑制された光学積層体が得ることが可能であり、環境負荷が小さく効率のよい製造プロセスとすることができる。 In one embodiment, the heating temperature may be set according to the content ratio of the curable compound having two or more (meth) acryloyl groups and the monofunctional monomer contained in the composition for forming a hard coat layer. . The more the curable compound and / or monofunctional monomer having two or more (meth) acryloyl groups contained in the composition for forming a hard coat layer, the lower the heating temperature (for example, 80 ° C. to 100 ° C.), It is possible to obtain an optical laminate having excellent adhesion and suppressing interference unevenness, and an efficient manufacturing process with a small environmental load can be achieved.
 上記硬化処理としては、任意の適切な硬化処理が採用され得る。代表的には、硬化処理は紫外線照射により行われる。紫外線照射の積算光量は、好ましくは200mJ~400mJである。 Any appropriate curing process can be adopted as the curing process. Typically, the curing process is performed by ultraviolet irradiation. The integrated light quantity of ultraviolet irradiation is preferably 200 mJ to 400 mJ.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は以下のとおりである。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The evaluation methods in the examples are as follows. In Examples, unless otherwise specified, “parts” and “%” are based on weight.
(1)屈折率
 アタゴ社製のアッベ屈折率計(商品名:DR-M2/1550)を用い、中間液としてモノブロモナフタレンを選択して測定した。
(2)浸透層の厚み
 実施例および比較例で作製した[基材層/浸透層/ハードコート層]の構成を有する積層体の基材層側に、黒色アクリル板(三菱レイヨン社製、厚み2mm)を、厚み20μmのアクリル系粘着剤を介して貼着した。次いで、ハードコート層の反射スペクトルを、瞬間マルチ測光システム(大塚電子社製、商品名:MCPD3700)を用いて以下の条件で測定し、FFTスペクトルのピーク位置から、(ハードコート層+浸透層)の厚みを評価した。なお屈折率は、上記(1)で測定した値を用いた。
・反射スペクトル測定条件
 リファレンス:ミラー
 アルゴリズム:FFT法
 計算波長:450nm~850nm
・検出条件
 露光時間:20ms
 ランプゲイン:ノーマル
 積算回数:10回
・FFT法
 膜厚値の範囲:2~15μm
 膜厚分解能:24nm
 また、ハードコート層の厚みは、下記積層体についての上記反射スペクトル測定により評価した。
・積層体:基材フィルムとしてPET基材(東レ社製、商品名:U48-3、屈折率:1.60)を用い、塗布層の加熱温度を60℃とした以外は、実施例1と同様にして得た。
 なお、上記積層体に用いられるPET基材には、ハードコート層形成用組成物が浸透しないので、積層体から得られるFFTスペクトルのピーク位置から、ハードコート層のみの厚みが測定される。当該評価の結果、ハードコート層の厚みは6μmであった。
 ((ハードコート層+浸透層)の厚み)-((ハードコート層)の厚み)から算出される正の値を浸透層の厚みとした。
(3)白化の評価
 実施例および比較例で作製した[基材層/浸透層/ハードコート層/低屈折率層]の構成を有する積層体の基材層側に、黒色アクリル板(10cm×10cm)を、厚み20μmのアクリル系粘着剤を介して貼着して評価用試料を作製した。作製した評価用試料(各3サンプル)を60℃、90%の湿熱環境試験器に投入し、3日後にサンプルを取り出して白化の有無を確認した。なお、白化の評価基準は以下のとおりである。
[評価基準]
○:すべてのサンプルで白化なし
△:1~2サンプルで白化が認められる
×:すべてのサンプルで白化が認められる
××:すべてのサンプルで著しく白化が認められる。
(4)接触角
 接触角測定器(協和界面化学社製 製品名「Drop Master DM700」)を用いて、水またはヘキサデカンを1ml滴下し、3秒後の接触角を求めた。
(5)濃度分布測定
 図2に示すような精密斜め切削によりフィルム内部を露出させた。測定領域に低屈折率層表面および斜め切削断面が入ることを顕微鏡で確認しながら、TOF-SIMS(ION-TOF社製,製品名「TOF-SIMS5」)にて低屈折率層の表面からハードコート層内部までの正二次イオンラインプロファイルを得た。
(1) Refractive index Measurement was performed using an Abbe refractometer (trade name: DR-M2 / 1550) manufactured by Atago Co., Ltd., selecting monobromonaphthalene as an intermediate solution.
(2) Thickness of osmotic layer A black acrylic plate (Mitsubishi Rayon Co., Ltd., thickness) is formed on the base layer side of the laminate having the configuration of [base layer / penetration layer / hard coat layer] prepared in Examples and Comparative Examples. 2 mm) was attached via an acrylic adhesive having a thickness of 20 μm. Next, the reflection spectrum of the hard coat layer was measured under the following conditions using an instantaneous multi-photometry system (trade name: MCPD3700, manufactured by Otsuka Electronics Co., Ltd.). From the peak position of the FFT spectrum, (hard coat layer + penetration layer) The thickness of was evaluated. In addition, the value measured by said (1) was used for the refractive index.
Reflection spectrum measurement conditions Reference: Mirror Algorithm: FFT method Calculation wavelength: 450 nm to 850 nm
・ Detection conditions Exposure time: 20 ms
Lamp gain: Normal Integration count: 10 times / FFT method Film thickness range: 2 to 15 μm
Film thickness resolution: 24nm
Moreover, the thickness of the hard coat layer was evaluated by the reflection spectrum measurement for the following laminate.
Stacked body: Example 1 except that a PET base material (trade name: U48-3, refractive index: 1.60) manufactured by Toray Industries, Inc. was used as the base film, and the heating temperature of the coating layer was set to 60 ° C. Obtained similarly.
In addition, since the composition for forming a hard coat layer does not penetrate into the PET substrate used in the laminate, the thickness of only the hard coat layer is measured from the peak position of the FFT spectrum obtained from the laminate. As a result of the evaluation, the thickness of the hard coat layer was 6 μm.
A positive value calculated from (thickness of (hard coat layer + penetration layer)) − (thickness of (hard coat layer)) was taken as the thickness of the permeation layer.
(3) Evaluation of whitening On the base material layer side of the laminate having the structure of [base material layer / penetration layer / hard coat layer / low refractive index layer] prepared in Examples and Comparative Examples, a black acrylic plate (10 cm × 10 cm) was pasted through an acrylic adhesive having a thickness of 20 μm to prepare a sample for evaluation. The prepared evaluation samples (each 3 samples) were put into a 60 ° C., 90% wet heat environment tester, and the samples were taken out after 3 days to confirm the presence or absence of whitening. The evaluation criteria for whitening are as follows.
[Evaluation criteria]
○: No whitening in all samples Δ: Whitening is observed in 1-2 samples ×: Whitening is observed in all samples XX: Whitening is remarkably observed in all samples.
(4) Contact angle Using a contact angle measuring device (product name “Drop Master DM700” manufactured by Kyowa Interface Chemical Co., Ltd.), 1 ml of water or hexadecane was dropped, and the contact angle after 3 seconds was determined.
(5) Measurement of concentration distribution The inside of the film was exposed by precision oblique cutting as shown in FIG. While confirming with a microscope that the surface of the low refractive index layer and the oblique cut cross-section are in the measurement region, harden the surface of the low refractive index layer with TOF-SIMS (product name “TOF-SIMS5”) manufactured by ION-TOF. A positive secondary ion line profile up to the inside of the coating layer was obtained.
<製造例1>基材フィルムAの作製
 特開2010-284840号公報の製造例1に記載のイミド化MS樹脂100重量部およびトリアジン系紫外線吸収剤(アデカ社製、商品名:T-712、分子量699)0.62重量部を、2軸混練機にて220℃にて混合し、樹脂ペレットを作製した。得られた樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押出してフィルム状に成形した(厚み160μm)。さらに当該フィルムを、その搬送方向に150℃の雰囲気下に延伸し(厚み80μm)、次いでフィルム搬送方向と直交する方向に150℃の雰囲気下に延伸して、厚み40μmの基材フィルムA((メタ)アクリル系樹脂フィルム)を得た。得られた基材フィルムAの波長380nmの光の透過率は8.5%、面内位相差Reは0.4nm、厚み方向位相差Rthは0.78nmであった。また得られた基材フィルムAの透湿度は、61g/m・24hrであった。なお、光透過率は、日立ハイテク(株)社製の分光光度計(装置名称;U-4100)を用いて波長範囲200nm~800nmで透過率スペクトルを測定し、波長380nmにおける透過率を読み取った。また、位相差値は、王子計測機器(株)製 商品名「KOBRA21-ADH」を用いて、波長590nm、23℃で測定した。透湿度は、JIS K 0208に準じた方法により、温度40℃、相対湿度92%の条件で測定した。
<Production Example 1> Production of base film A 100 parts by weight of an imidized MS resin and a triazine-based ultraviolet absorber (trade name: T-712, manufactured by Adeka Co., Ltd.) described in Production Example 1 of JP 2010-284840 A Molecular weight 699) 0.62 parts by weight were mixed at 220 ° C. with a biaxial kneader to prepare resin pellets. The obtained resin pellets were dried at 100.5 kPa and 100 ° C. for 12 hours, extruded from a T-die at a die temperature of 270 ° C. with a single screw extruder, and formed into a film (thickness: 160 μm). Further, the film is stretched in an atmosphere of 150 ° C. in the transport direction (thickness 80 μm), and then stretched in an atmosphere of 150 ° C. in a direction orthogonal to the film transport direction to form a base film A (( (Meth) acrylic resin film). The base film A thus obtained had a light transmittance of 8.5% at a wavelength of 380 nm, an in-plane retardation Re of 0.4 nm, and a thickness direction retardation Rth of 0.78 nm. In addition, the moisture permeability of the obtained base film A was 61 g / m 2 · 24 hr. The light transmittance was measured by measuring a transmittance spectrum in a wavelength range of 200 nm to 800 nm using a spectrophotometer (device name: U-4100) manufactured by Hitachi High-Tech Co., Ltd., and reading the transmittance at a wavelength of 380 nm. . The phase difference value was measured at a wavelength of 590 nm and 23 ° C. using a trade name “KOBRA21-ADH” manufactured by Oji Scientific Instruments. The moisture permeability was measured by a method according to JIS K 0208 under conditions of a temperature of 40 ° C. and a relative humidity of 92%.
<製造例2>中空シリカ微粒子の調製
 低屈折率成分として、シリカ系中空微粒子分散ゾル(触媒化成工業社製、商品名:スルーリア1420、平均粒子径60nm、濃度20.5重量%、分散媒:イソプロパノ-ル、粒子屈折率1.30)を用いた。このゾル100gにγ-メタアクリロオキシプロピルトリメトキシシラン1.88gを混合した。得られたオルガノゾル100gに対して28%アンモニア水溶液をアンモニアとして400ppmとなるように加えて40℃で5時間攪拌し、これにより、表面処理したシリカ系中空微粒子分散ゾルを得た(固形分20.3%)。
<Production Example 2> Preparation of hollow silica fine particles As a low refractive index component, silica-based hollow fine particle dispersed sol (manufactured by Catalyst Kasei Kogyo Co., Ltd., trade name: Thruria 1420, average particle diameter 60 nm, concentration 20.5 wt%, dispersion medium: Isopropanol and particle refractive index of 1.30) were used. 1.88 g of γ-methacryloxypropyltrimethoxysilane was mixed with 100 g of this sol. To 100 g of the resulting organosol, a 28% aqueous ammonia solution was added to 400 ppm as ammonia, and the mixture was stirred at 40 ° C. for 5 hours, thereby obtaining a surface-treated silica-based hollow fine particle dispersed sol (solid content 20. 3%).
<実施例1>
 ウレタンアクリルオリゴマー(ダイセル・サイテック製、商品名:KRM7804)60部、ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)40部、レベリング剤(DIC社製、商品名:PC4100)0.5部および光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製した。
<Example 1>
60 parts of urethane acrylic oligomer (manufactured by Daicel-Cytec, trade name: KRM7804), 40 parts of pentaerythritol triacrylate (PETA) (trade name: Viscoat # 300, manufactured by Osaka Organic Chemical Industry Co., Ltd.), leveling agent (manufactured by DIC, product) Name: PC4100) 0.5 part and photopolymerization initiator (Ciba Japan Co., Ltd., trade name: Irgacure 907) 3 parts are mixed and diluted with methyl isobutyl ketone so that the solid content concentration is 50%. A composition for forming a hard coat layer was prepared.
 製造例1で得られた基材フィルムA上に、得られたハードコート層形成用組成物を塗布して第1の塗布層を形成し、当該第1の塗布層を100℃で1分間加熱した。加熱後の第1の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して第1の塗布層を硬化させて、[基材層/浸透層/ハードコート層]の構成を有する積層体を得た。 On the base film A obtained in Production Example 1, the obtained composition for forming a hard coat layer is applied to form a first coating layer, and the first coating layer is heated at 100 ° C. for 1 minute. did. Configuration of [base layer / penetrating layer / hard coat layer] by irradiating the heated first coating layer with ultraviolet light having an integrated light quantity of 300 mJ / cm 2 with a high-pressure mercury lamp to cure the first coating layer. A laminated body having was obtained.
 ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300)50部、製造例2で得られたシリカ系中空微粒子分散ゾル246部(固形分として50部)、4官能フッ素含有化合物(ソルベイスペシャルティポリマーズジャパン社製、商品名:MT70、固形分80%、主鎖の重量平均分子量が2,000であり、全体の重量平均分子量が3,000である末端4官能のポリ(テトラフルオロエチレンオキサイド-コ-ジフルオロメチレンオキサイド))3.75部(固形分として3部)および光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア2959)5部を混合し、固形分濃度が2%となるように、メチルイソブチルケトンで希釈して、低屈折率層形成用組成物を調製した。 Pentaerythritol triacrylate (PETA) (trade name: Biscoat # 300, manufactured by Osaka Organic Chemical Industry Co., Ltd., 50 parts), 246 parts of silica-based hollow fine particle dispersion sol obtained in Production Example 2 (50 parts as solid content), tetrafunctional Fluorine-containing compound (manufactured by Solvay Specialty Polymers Japan Ltd., trade name: MT70, solid content 80%, weight average molecular weight of main chain is 2,000, terminal tetrafunctional poly having a total weight average molecular weight of 3,000 (Tetrafluoroethylene oxide-co-difluoromethylene oxide)) 3.75 parts (3 parts as a solid content) and 5 parts of a photopolymerization initiator (Ciba Japan, trade name: Irgacure 2959) were mixed to obtain a solid content. The composition for low refractive index layer formation was prepared by diluting with methyl isobutyl ketone so that the concentration was 2%.
 上記で得られた[基材層/浸透層/ハードコート層]の構成を有する積層体のハードコート層表面に乾燥後の厚みが100nmとなるように低屈折率層形成用組成物を塗布して第2の塗布層を形成し、60℃で1分加熱した。その後、第2の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して第2の塗布層を硬化させて、[基材層/浸透層/ハードコート層/低屈折率層]の構成を有する光学積層体1を得た。 The composition for forming a low refractive index layer was applied to the surface of the hard coat layer of the laminate having the structure of [base layer / penetration layer / hard coat layer] obtained above so that the thickness after drying was 100 nm. A second coating layer was formed and heated at 60 ° C. for 1 minute. Thereafter, the second coating layer is irradiated with ultraviolet rays having an integrated light amount of 300 mJ / cm 2 with a high-pressure mercury lamp to cure the second coating layer, and [base layer / penetration layer / hard coat layer / low refractive index). Optical layered body 1 having the configuration of [Layer] was obtained.
<実施例2>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の配合量を12.5部(固形分として10部)として低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体2を得た。
<Example 2>
Except that the blending amount of pentaerythritol triacrylate was 40 parts and the blending amount of the fluorine-containing compound was 12.5 parts (10 parts as a solid content), a composition for forming a low refractive index layer was prepared. In the same manner as in Example 1, an optical laminate 2 was obtained.
<実施例3>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物として、主鎖の重量平均分子量が1,500であり、全体の重量平均分子量が3,000である末端4官能のポリ(テトラフルオロエチレンオキサイド-コ-ジフルオロメチレンオキサイド)(ソルベイスペシャルティポリマーズジャパン社製、商品名:AD1700、固形分70%)を14.3部(固形分として10部)の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体3を得た。
<Example 3>
The blended amount of pentaerythritol triacrylate is 40 parts, and, as a fluorine-containing compound, the terminal chain tetrafunctional poly (tetrahydrofuran) having a weight average molecular weight of 1,500 in the main chain and an overall weight average molecular weight of 3,000. Low refractive index layer using 14.3 parts (10 parts as solids) of fluoroethylene oxide-co-difluoromethylene oxide) (trade name: AD1700, 70% solids) manufactured by Solvay Specialty Polymers Japan An optical layered body 3 was obtained in the same manner as in Example 1 except that the forming composition was prepared.
<実施例4>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物として、重量平均分子量が150,000である多官能のフッ素系ポリマー(ダイキン社製、商品名:AR110、屈折率:1.38、固形分15%)を66.7部(固形分として10部)の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体4を得た。
<Example 4>
A polyfunctional fluorine-based polymer having a weight average molecular weight of 150,000 as a fluorine-containing compound (trade name: AR110, refractive index: 1.38) having a blending amount of pentaerythritol triacrylate of 40 parts and a fluorine-containing compound. The optical laminate 4 was prepared in the same manner as in Example 1 except that a composition for forming a low refractive index layer was prepared using a blending amount of 66.7 parts (solid content 15%) (solid content 10 parts). Got.
<実施例5>
 ペンタエリスリトールトリアクリレートの配合量を30部とし、かつ、フッ素含有化合物として、重量平均分子量が150,000である多官能のフッ素系ポリマー(ダイキン社製、商品名:AR110、屈折率:1.38、固形分15%)を133.4部(固形分として20部)の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体5を得た。
<Example 5>
A polyfunctional fluorine-based polymer having a weight average molecular weight of 150,000 as a fluorine-containing compound (trade name: AR110, refractive index: 1.38), the blending amount of pentaerythritol triacrylate being 30 parts. The optical laminate 5 was prepared in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using a blending amount of 133.4 parts (solid content 15%) (20 parts as solids). Got.
<実施例6>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物として、フッ素含有3官能(メタ)アクリルモノマー(共栄社化学社製、商品名:LINC-3A、分子量=728)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体6を得た。
<Example 6>
The blending amount of pentaerythritol triacrylate is 40 parts, and 10 parts of fluorine-containing trifunctional (meth) acrylic monomer (manufactured by Kyoeisha Chemical Co., Ltd., trade name: LINC-3A, molecular weight = 728) is used as the fluorine-containing compound. The optical layered body 6 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using the same amount.
<実施例7>
 ペンタエリスリトールトリアクリレートの配合量を30部とし、かつ、フッ素含有化合物として、フッ素含有3官能(メタ)アクリルモノマー(共栄社化学社製、商品名:LINC-3A、分子量=728)を20部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体7を得た。
<Example 7>
The blending amount of pentaerythritol triacrylate is 30 parts, and a fluorine-containing trifunctional (meth) acrylic monomer (manufactured by Kyoeisha Chemical Co., Ltd., trade name: LINC-3A, molecular weight = 728) is blended as a fluorine-containing compound. An optical layered body 7 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared by using an amount.
<実施例8>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、側鎖にアクリル基とアルコキシシリル基とを有する多官能シリコーン系化合物(信越化学工業社製、商品名:X-20-1048、アクリル基/アルコキシシリル基=1)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体8を得た。
<Example 8>
A polyfunctional silicone compound (trade name: X-, manufactured by Shin-Etsu Chemical Co., Ltd.) containing 40 parts of pentaerythritol triacrylate and having an acrylic group and an alkoxysilyl group in the side chain instead of a fluorine-containing compound. An optical laminated body 8 was obtained in the same manner as in Example 1 except that a composition for forming a low refractive index layer was prepared using 20-1048, acrylic group / alkoxysilyl group = 1) in an amount of 10 parts. It was.
<実施例9>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、側鎖にアクリル基とアルコキシシリル基とを有する多官能シリコーン系化合物(信越化学工業社製、商品名:X-20-1050、アクリル基/アルコキシシリル基=5)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体9を得た。
<Example 9>
A polyfunctional silicone compound (trade name: X-, manufactured by Shin-Etsu Chemical Co., Ltd.) containing 40 parts of pentaerythritol triacrylate and having an acrylic group and an alkoxysilyl group in the side chain instead of a fluorine-containing compound. An optical laminate 9 was obtained in the same manner as in Example 1 except that a composition for forming a low refractive index layer was prepared using 20-1050, acrylic group / alkoxysilyl group = 5) in a blending amount of 10 parts. It was.
<実施例10>
 ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名:A-DPH)100部、レベリング剤(DIC社製、商品名:PC4100)0.5部および光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製したこと以外は実施例1と同様にして光学積層体10を得た。
<Example 10>
Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Example 1 except that a hard coat layer-forming composition was prepared by mixing 3 parts of the product, trade name: Irgacure 907) and diluting with methyl isobutyl ketone so that the solid content concentration was 50%. In the same manner, an optical laminate 10 was obtained.
<実施例11>
 ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名:A-DPH)100部、レベリング剤(DIC社製、商品名:PC4100)0.5部および光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製したこと以外は実施例2と同様にして光学積層体11を得た。
<Example 11>
Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Example 2 except that a hard coat layer-forming composition was prepared by mixing 3 parts of the product, trade name: Irgacure 907) and diluting with methyl isobutyl ketone so that the solid content concentration was 50%. In the same manner, an optical laminate 11 was obtained.
<実施例12>
 ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名:A-DPH)100部、レベリング剤(DIC社製、商品名:PC4100)0.5部および光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製したこと以外は実施例4と同様にして光学積層体12を得た。
<Example 12>
Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Example 4 except that a hard coat layer-forming composition was prepared by mixing 3 parts of the product, trade name: Irgacure 907) and diluting with methyl isobutyl ketone so that the solid concentration was 50%. In the same manner, an optical laminate 12 was obtained.
<比較例1>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物として、多官能のフッ素変性シリコーン系化合物(信越化学工業社製、商品名:X-40-2729、屈折率:1.42)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C1を得た。
<Comparative Example 1>
The compounding amount of pentaerythritol triacrylate is 40 parts, and the polyfunctional fluorine-modified silicone compound (trade name: X-40-2729, refractive index: 1.42) manufactured by Shin-Etsu Chemical Co., Ltd. is used as the fluorine-containing compound. An optical laminate C1 was obtained in the same manner as in Example 1, except that a composition for forming a low refractive index layer was prepared using 10 parts by weight.
<比較例2>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、末端メタクリル変性ポリジメチルシロキサン(信越化学工業社製、商品名:X-22-174DX)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C2を得た。
<Comparative example 2>
The blending amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-174DX) is blended in 10 parts. An optical laminate C2 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared.
<比較例3>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、シリコーン系化合物(共栄社化学社製、商品名:KL401)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C3を得た。
<Comparative Example 3>
For the formation of a low refractive index layer, the amount of pentaerythritol triacrylate is 40 parts, and a silicone compound (trade name: KL401, manufactured by Kyoeisha Chemical Co., Ltd.) is used in an amount of 10 parts instead of the fluorine-containing compound. An optical laminate C3 was obtained in the same manner as in Example 1 except that the composition was prepared.
<比較例4>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、末端メタクリル変性ポリジメチルシロキサン(信越化学工業社製、商品名:X-22-164A)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C4を得た。
<Comparative example 4>
The compounding amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-164A) is used in an amount of 10 parts. An optical laminate C4 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared.
<比較例5>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、末端メタクリル変性ポリジメチルシロキサン(信越化学工業社製、商品名:X-22-164B)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C5を得た。
<Comparative Example 5>
The blending amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-164B) is blended in 10 parts. An optical laminate C5 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using the same.
<比較例6>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、末端メタクリル変性ポリジメチルシロキサン(信越化学工業社製、商品名:X-22-164C)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C6を得た。
<Comparative Example 6>
The blending amount of pentaerythritol triacrylate is 40 parts, and instead of the fluorine-containing compound, terminal methacryl-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X-22-164C) is blended in 10 parts. An optical laminate C6 was obtained in the same manner as in Example 1 except that the composition for forming a low refractive index layer was prepared using the same.
<比較例7>
 ペンタエリスリトールトリアクリレートの配合量を40部とし、かつ、フッ素含有化合物の代わりに、5官能シリコーン系化合物(Evonik社製、商品名:tego rad 2011)を10部の配合量で用いて低屈折率層形成用組成物を調製したこと以外は、実施例1と同様にして光学積層体C7を得た。
<Comparative Example 7>
Low refractive index using a blending amount of pentaerythritol triacrylate of 40 parts and using a pentafunctional silicone compound (product name: tego rad 2011, manufactured by Evonik, Inc.) in a blending amount of 10 parts instead of the fluorine-containing compound. An optical laminate C7 was obtained in the same manner as in Example 1 except that the layer forming composition was prepared.
<比較例8>
 ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名:A-DPH)100部、レベリング剤(DIC社製、商品名:PC4100)0.5部および光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製したこと以外は、比較例1と同様にして光学積層体C8を得た。
<Comparative Example 8>
Dipentaerythritol hexaacrylate (DPHA) (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) 100 parts, leveling agent (manufactured by DIC, trade name: PC4100) and photopolymerization initiator (Ciba Japan) Comparative Example, except that 3 parts of the product, trade name: Irgacure 907) were mixed and diluted with methyl isobutyl ketone so that the solid concentration was 50% to prepare a composition for forming a hard coat layer. In the same manner as in Example 1, an optical laminate C8 was obtained.
 上記実施例および比較例で得た光学積層体の評価結果を表1に示す。また、実施例1ならびに比較例1および比較例2で得た光学積層体(製造から72時間後)の低屈折率層における(メタ)アクリル系樹脂フィルム由来の成分の分布を調べた結果を図3に示す。
Figure JPOXMLDOC01-appb-T000003
 
Table 1 shows the evaluation results of the optical laminates obtained in the above examples and comparative examples. In addition, the results of examining the distribution of components derived from the (meth) acrylic resin film in the low refractive index layer of the optical layered body obtained in Example 1 and Comparative Examples 1 and 2 (72 hours after production) are shown in FIG. 3 shows.
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、本発明の光学積層体は、白化の問題が顕著に改善されている。また、図3のグラフから、実施例1の光学積層体においては、低屈折率層の表面よりも内部においてより高濃度で熱可塑性樹脂フィルム由来の成分が存在していることがわかる。 As is clear from Table 1, the optical laminate of the present invention has a marked improvement in the problem of whitening. From the graph of FIG. 3, it can be seen that in the optical laminate of Example 1, components derived from the thermoplastic resin film are present at a higher concentration inside than the surface of the low refractive index layer.
 なお、比較例の光学積層体の低屈折率層表面に生じた析出物を分析したところ、該析出物は基材フィルムAに添加したトリアジン系紫外線吸収剤およびグルタルイミド構造単位を含む樹脂成分を含んでいた。また、比較例1と比較例8とを比較すると、比較例1の方が白化が軽微であった。このことから、ハードコート層形成用組成物におけるモノマーの配合比を減少させることによっても、白化を低減し得ることがわかる。 In addition, when the precipitate generated on the surface of the low refractive index layer of the optical laminate of the comparative example was analyzed, the precipitate was obtained by adding a resin component containing a triazine-based ultraviolet absorber and a glutarimide structural unit added to the base film A. Included. Moreover, when the comparative example 1 and the comparative example 8 were compared, the whitening of the comparative example 1 was lighter. This shows that whitening can also be reduced by reducing the compounding ratio of the monomers in the hard coat layer forming composition.
 本発明の光学積層体は、画像表示装置に好適に用いられ得る。本発明の光学積層体は、画像表示装置の前面板または偏光子の保護材料として好適に用いられ得、とりわけ、液晶表示装置(なかでも、3次元液晶表示装置)の前面板として好適に用いられ得る。 The optical layered body of the present invention can be suitably used for an image display device. The optical layered body of the present invention can be suitably used as a front plate of an image display device or a protective material for a polarizer, and particularly suitably used as a front plate of a liquid crystal display device (in particular, a three-dimensional liquid crystal display device). obtain.
 10       基材層
 20       浸透層
 30       ハードコート層
 40       光学機能層
 100、200  光学積層体
DESCRIPTION OF SYMBOLS 10 Base material layer 20 Penetration layer 30 Hard coat layer 40 Optical functional layer 100, 200 Optical laminated body

Claims (9)

  1.  熱可塑性樹脂フィルムから形成される基材層と、
     熱可塑性樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層と、
     基材層とハードコート層との間に、ハードコート層形成用組成物が熱可塑性樹脂フィルムに浸透して形成された浸透層と、
     ハードコート層に光学機能層形成用組成物を塗工して形成された光学機能層と、を備え、
     光学機能層が、熱可塑性樹脂フィルムから溶出した熱可塑性樹脂フィルム由来の成分を含み、
     熱可塑性樹脂フィルム由来の成分が、光学機能層の表面よりも内部においてより高い濃度で存在する、光学積層体。
    A base material layer formed from a thermoplastic resin film;
    A hard coat layer formed by applying a composition for forming a hard coat layer on a thermoplastic resin film;
    Between the base material layer and the hard coat layer, a penetrating layer formed by penetrating the thermoplastic resin film with the hard coat layer forming composition;
    An optical functional layer formed by applying a composition for forming an optical functional layer to a hard coat layer, and
    The optical functional layer contains a component derived from a thermoplastic resin film eluted from the thermoplastic resin film,
    An optical laminate in which a component derived from a thermoplastic resin film is present at a higher concentration inside than the surface of the optical functional layer.
  2.  前記熱可塑性樹脂フィルムが、(メタ)アクリル系樹脂フィルムである、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the thermoplastic resin film is a (meth) acrylic resin film.
  3.  前記熱可塑性樹脂フィルム由来の成分が、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤およびオキサジアゾール系紫外線吸収剤から選択される少なくとも1つの紫外線吸収剤である、請求項1または2に記載の光学積層体。 The thermoplastic resin film-derived component is a triazine UV absorber, a benzotriazole UV absorber, a benzophenone UV absorber, a cyanoacrylate UV absorber, a benzoxazine UV absorber, or an oxadiazole UV absorber. The optical laminate according to claim 1, wherein the optical laminate is at least one ultraviolet absorber selected from:
  4.  前記光学機能層形成用組成物が、硬化性化合物と屈折率が1.44以下である微粒子と防汚剤とを含む、請求項1から3のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the composition for forming an optical functional layer comprises a curable compound, fine particles having a refractive index of 1.44 or less, and an antifouling agent.
  5.  前記防汚剤が、フッ素含有化合物である、請求項4に記載の光学積層体。 The optical laminate according to claim 4, wherein the antifouling agent is a fluorine-containing compound.
  6.  前記ハードコート層形成用組成物が、2個以上の(メタ)アクリロイル基を有する硬化性化合物を含む、請求項1から5のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the composition for forming a hard coat layer contains a curable compound having two or more (meth) acryloyl groups.
  7.  前記ハードコート層形成用組成物が、硬化性化合物としてモノマーとオリゴマーおよび/またはプレポリマーとを含み、硬化性化合物の総量に対するオリゴマーおよびプレポリマーの合計量が20重量%~90重量%である、請求項1から6のいずれかに記載の光学積層体。 The composition for forming a hard coat layer contains a monomer, an oligomer and / or a prepolymer as a curable compound, and the total amount of the oligomer and the prepolymer is 20% by weight to 90% by weight with respect to the total amount of the curable compound. The optical laminated body in any one of Claim 1 to 6.
  8.  請求項1から7のいずれかに記載の光学積層体を含む、偏光フィルム。 A polarizing film comprising the optical laminate according to any one of claims 1 to 7.
  9.  請求項1から8のいずれかに記載の光学積層体を含む、画像表示装置。
     
     
    The image display apparatus containing the optical laminated body in any one of Claim 1-8.

PCT/JP2014/075275 2013-09-30 2014-09-24 Optical laminate WO2015046244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167008272A KR102248947B1 (en) 2013-09-30 2014-09-24 Optical laminate
CN201480053648.3A CN105593715B (en) 2013-09-30 2014-09-24 Optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203300A JP6235287B2 (en) 2013-09-30 2013-09-30 Optical laminate
JP2013-203300 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046244A1 true WO2015046244A1 (en) 2015-04-02

Family

ID=52743379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075275 WO2015046244A1 (en) 2013-09-30 2014-09-24 Optical laminate

Country Status (5)

Country Link
JP (1) JP6235287B2 (en)
KR (1) KR102248947B1 (en)
CN (1) CN105593715B (en)
TW (1) TWI551881B (en)
WO (1) WO2015046244A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668605B2 (en) * 2015-04-15 2020-03-18 大日本印刷株式会社 Optical film
WO2018190174A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device
WO2018190175A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device
JP6936206B2 (en) * 2017-12-08 2021-09-15 住友化学株式会社 Optical laminate
JP6628859B2 (en) * 2017-12-08 2020-01-15 住友化学株式会社 Optical laminate
JP2019200409A (en) * 2018-05-11 2019-11-21 デクセリアルズ株式会社 Laminate body, method for manufacturing the same, fresnel mirror, and method for manufacturing the same
WO2019216384A1 (en) * 2018-05-11 2019-11-14 デクセリアルズ株式会社 Multilayer body and method for producing same, and fresnel mirror and method for producing same
JP7217118B2 (en) 2018-09-26 2023-02-02 日東電工株式会社 Optical film with protective film
CN113574422B (en) * 2019-03-13 2023-10-13 松下知识产权经营株式会社 Optical element and method for manufacturing the same
US20220196898A1 (en) * 2019-03-29 2022-06-23 Lg Chem, Ltd. Optical laminate
KR102413738B1 (en) 2019-11-25 2022-06-27 닛토덴코 가부시키가이샤 Anti-reflection film and image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205545A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Hard coat film
JP2011084048A (en) * 2009-10-19 2011-04-28 Tomoegawa Paper Co Ltd Optical laminated body
JP2012037670A (en) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd Manufacturing method of mold for producing antireflection film
JP2013141771A (en) * 2012-01-10 2013-07-22 Dainippon Printing Co Ltd Optical laminate and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156144A (en) * 2005-12-06 2007-06-21 Konica Minolta Opto Inc Anti-reflection film, method for producing the same and image display device
KR101398507B1 (en) * 2006-10-27 2014-06-27 도레이 카부시키가이샤 White polyester film for light reflective plate
JP5531509B2 (en) 2008-09-05 2014-06-25 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
WO2012008444A1 (en) * 2010-07-12 2012-01-19 大日本印刷株式会社 Curable resin composition for antistatic layer, optical film, polarizing plate, and display panel
TWI470136B (en) * 2010-09-09 2015-01-21 Ting-Hao Chen Geological grading manufacturing method with disaster prevention and ecological function
CN103154776B (en) * 2010-10-08 2015-08-05 富士胶片株式会社 Blooming, its manufacture method, polaroid and image display
JP6128576B2 (en) 2011-04-22 2017-05-17 日東電工株式会社 Optical laminate
JP6054019B2 (en) * 2011-08-04 2016-12-27 日東電工株式会社 Optical laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205545A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Hard coat film
JP2011084048A (en) * 2009-10-19 2011-04-28 Tomoegawa Paper Co Ltd Optical laminated body
JP2012037670A (en) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd Manufacturing method of mold for producing antireflection film
JP2013141771A (en) * 2012-01-10 2013-07-22 Dainippon Printing Co Ltd Optical laminate and method for producing the same

Also Published As

Publication number Publication date
TW201520587A (en) 2015-06-01
CN105593715B (en) 2018-11-27
KR102248947B1 (en) 2021-05-06
CN105593715A (en) 2016-05-18
JP2015069008A (en) 2015-04-13
JP6235287B2 (en) 2017-11-22
KR20160065103A (en) 2016-06-08
TWI551881B (en) 2016-10-01

Similar Documents

Publication Publication Date Title
JP6235287B2 (en) Optical laminate
JP6128629B2 (en) Optical laminate
JP6128576B2 (en) Optical laminate
TWI550001B (en) Optical continuum
JP6238684B2 (en) Optical laminate
JP6235288B2 (en) Optical laminate
JP6054019B2 (en) Optical laminate
JP2017058693A (en) Optical laminate
JP6937115B2 (en) Optical laminate
JP2017072846A (en) Optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848086

Country of ref document: EP

Kind code of ref document: A1