WO2019216384A1 - Multilayer body and method for producing same, and fresnel mirror and method for producing same - Google Patents

Multilayer body and method for producing same, and fresnel mirror and method for producing same Download PDF

Info

Publication number
WO2019216384A1
WO2019216384A1 PCT/JP2019/018609 JP2019018609W WO2019216384A1 WO 2019216384 A1 WO2019216384 A1 WO 2019216384A1 JP 2019018609 W JP2019018609 W JP 2019018609W WO 2019216384 A1 WO2019216384 A1 WO 2019216384A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
water
antifouling layer
fresnel mirror
laminate
Prior art date
Application number
PCT/JP2019/018609
Other languages
French (fr)
Japanese (ja)
Inventor
良 鈴木
忍 原
水野 幹久
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019003128A external-priority patent/JP2019200409A/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2019216384A1 publication Critical patent/WO2019216384A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a laminate used for a Fresnel mirror, a manufacturing method thereof, a Fresnel mirror, and a manufacturing method thereof.
  • the Fresnel mirror has a function of a convex mirror or a concave mirror although it is a flat shape as well known in Patent Document 1 and the like.
  • Fresnel mirrors can be made thinner than conventional convex mirrors, so they can be installed on the walls of passages such as T-shaped, L-shaped, and crossroads to check blind spots around the corners of the passage. It doesn't get in the way. Therefore, Fresnel mirrors having a convex mirror function are installed in intersections and the like, and are used as collision prevention means for checking blind spots (for example, see Patent Document 2).
  • the Fresnel mirror can also be used as a mirror for confirming the rear. Therefore, Fresnel mirrors are installed in a wide range of locations, including ATMs (automatic teller machines), convenience stores, roadways, office buildings, factories, railways, and airplanes.
  • the Fresnel mirror is used as a collision prevention means for confirming blind spots, a rear confirmation means, etc., it is required to have good visibility.
  • An object of the present invention is to provide a Fresnel mirror excellent in antifouling property, a manufacturing method thereof, a laminate used for the Fresnel mirror, and a manufacturing method thereof.
  • Means for solving the problems are as follows. That is, ⁇ 1> Having a laminate including an antifouling layer and a resin layer, The laminate has heat resistance, The Fresnel mirror characterized in that the antifouling layer is disposed on the surface on the viewing side and has a water-repellent molecular structure.
  • the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
  • the antifouling layer has a water-repellent molecular structure;
  • the water repellent molecular structure is derived from a water repellent monomer having fluorine,
  • the antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate which is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a carbon-carbon double bond-containing compound obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond).
  • ⁇ 3> The Fresnel mirror according to any one of ⁇ 1> to ⁇ 2>, wherein a water contact angle of a surface on the viewing side of the antifouling layer is 110 ° or more and a hexadecane contact angle is 60 ° or more. is there.
  • ⁇ 4> The Fresnel mirror according to any one of ⁇ 1> to ⁇ 3>, wherein the surface energy on the viewing side of the antifouling layer is 16 mJ / m 2 or less.
  • ⁇ 5> The Fresnel mirror according to any one of ⁇ 1> to ⁇ 4>, wherein a dynamic friction coefficient of a surface on the viewing side of the antifouling layer is 0.40 or less.
  • ⁇ 6> The Fresnel mirror according to any one of ⁇ 1> to ⁇ 5>, wherein an elastic recovery rate of the antifouling layer is 50% or more.
  • ⁇ 7> The Fresnel mirror according to ⁇ 1>, wherein the water-repellent molecular structure is derived from a water-repellent monomer having fluorine.
  • the antifouling layer is a cured product of the curable resin composition,
  • the curable resin composition contains a bifunctional or higher functional (meth) acrylate.
  • the bifunctional or higher functional (meth) acrylate has a ring structure.
  • the antifouling layer A resin layer having a multi-step inclined surface like a Fresnel lens on the surface opposite to the viewing side; A light reflecting layer disposed on a surface of the resin layer having the inclined surface; The Fresnel mirror according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 12> A heat-resistant laminate used for a Fresnel mirror, An antifouling layer having a water-repellent molecular structure; A resin layer; It is a laminated body characterized by having.
  • the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
  • a laminate used for a Fresnel mirror An antifouling layer having a water-repellent molecular structure; A resin layer; Have The water repellent molecular structure is derived from a water repellent monomer having fluorine,
  • the antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate which is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a carbon-carbon double bond-containing compound obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond).
  • ⁇ 14> The laminate according to any one of ⁇ 12> to ⁇ 13>, wherein the surface of the antifouling layer has a water contact angle of 110 ° or more and a hexadecane contact angle of 60 ° or more.
  • ⁇ 15> The laminate according to any one of ⁇ 12> to ⁇ 14>, wherein the surface energy of the antifouling layer is 16 mJ / m 2 or less.
  • ⁇ 16> The laminate according to any one of ⁇ 12> to ⁇ 15>, wherein the surface of the antifouling layer has a dynamic friction coefficient of 0.40 or less.
  • ⁇ 17> The laminate according to any one of ⁇ 12> to ⁇ 16>, wherein the antifouling layer has an elastic recovery rate of 50% or more.
  • the water-repellent molecular structure is derived from a water-repellent monomer having fluorine.
  • the antifouling layer is a cured product of the curable resin composition,
  • the curable resin composition is a laminate according to any one of ⁇ 13> and ⁇ 18>, containing the water-repellent monomer.
  • ⁇ 20> The laminate according to ⁇ 19>, wherein the curable resin composition contains a bifunctional or higher (meth) acrylate.
  • ⁇ 21> The laminate according to ⁇ 20>, wherein the bifunctional or higher functional (meth) acrylate has a ring structure.
  • ⁇ 22> The laminate according to any one of ⁇ 12> to ⁇ 21>, wherein the resin layer has a multi-stage inclined surface like a Fresnel lens on a surface opposite to the antifouling layer side.
  • ⁇ 23> The laminate according to any one of ⁇ 12> to ⁇ 13>, which is used for the Fresnel mirror according to any one of ⁇ 1> to ⁇ 11>.
  • the method for producing a laminate according to ⁇ 19> A process for producing a laminate comprising the steps of applying the curable resin composition containing the water repellent monomer onto the resin layer, curing the curable resin composition, and obtaining the cured product. Is the method.
  • the method for producing a Fresnel mirror according to ⁇ 11> Forming a multi-stage inclined surface like a Fresnel lens on the surface opposite to the viewing side of the resin layer; Forming the light reflecting layer on the surface of the resin layer on which the inclined surface is formed; It is a manufacturing method of the Fresnel mirror characterized by including.
  • a curable resin composition containing a water-repellent monomer is applied onto the surface on the viewing side of the resin layer, and the curable resin composition is cured. It is a manufacturing method of the Fresnel mirror as described in said ⁇ 25> including the process of obtaining the hardened
  • the present invention it is possible to provide a Fresnel mirror excellent in antifouling properties, a method for producing the same, a laminate used for the Fresnel mirror, and a method for producing the same.
  • FIG. 1 is a schematic sectional view of an example of the Fresnel mirror of the present invention.
  • FIG. 2 is a plan view of the resin layer.
  • FIG. 3 is a schematic cross-sectional view of another example of the Fresnel mirror of the present invention.
  • FIG. 4A is a schematic cross-sectional view for explaining an example of a method for producing a Fresnel mirror of the present invention (part 1).
  • FIG. 4B is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 2).
  • FIG. 4C is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 3).
  • FIG. 1 is a schematic sectional view of an example of the Fresnel mirror of the present invention.
  • FIG. 2 is a plan view of the resin layer.
  • FIG. 3 is a schematic cross-sectional view of another example of the Fres
  • FIG. 4D is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 4).
  • FIG. 4E is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 5).
  • FIG. 4F is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (No. 6).
  • FIG. 4G is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 7).
  • the Fresnel mirror of the present invention has at least an antifouling layer, preferably has a resin layer and a light reflecting layer, and further has other members such as a protective layer as necessary.
  • the antifouling layer is disposed on the viewing side surface of the Fresnel mirror.
  • the Fresnel mirror has excellent antifouling properties and can be easily wiped even if the surface is dirty. Therefore, the Fresnel mirror can easily recover good visibility even if the surface is soiled.
  • the laminated body of this invention has an antifouling layer and a resin layer, and also has another member as needed.
  • the laminate is used for a Fresnel mirror.
  • the surface opposite to the antifouling layer may be a flat surface or may have a multi-stage inclined surface like a Fresnel lens. .
  • a laminate including an antifouling layer and a resin layer is provided.
  • the laminate has heat resistance.
  • the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
  • the antifouling layer has a water-repellent molecular structure
  • the water-repellent molecular structure is derived from a water-repellent monomer having fluorine
  • the antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate that is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a compound containing a carbon-carbon double bond obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond).
  • the carbon-carbon double bond-containing compound can be obtained by reacting a polyisocyanate that is a trimer of diisocyanate with a compound having active hydrogen.
  • the compound having active hydrogen contains the following (A), (B) and (C).
  • the laminate of the present invention has heat resistance.
  • the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
  • the antifouling layer has a water-repellent molecular structure
  • the water-repellent molecular structure is derived from a water-repellent monomer having fluorine
  • the antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate that is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a compound containing a carbon-carbon double bond obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond).
  • a Fresnel mirror is a reflecting mirror in which a reflecting film is formed on a Fresnel lens.
  • the Fresnel lens is formed, for example, in a concentric ring-shaped inclined surface on one side of a transparent plastic plate in multiple stages, and the inclination angle is gradually increased from the concentric center to the radially outer side. . That is, the Fresnel lens is a lens formed by cutting the convex spherical surface or concave spherical surface of a lens into a large number of ring zones and rearranging them into a flat plate shape on a flat surface.
  • a metal film is formed on the inclined surface of the annular zone of such a Fresnel lens by plating, vapor deposition, or the like, a mirror having a convex mirror function or a concave mirror function can be obtained.
  • the antifouling layer has a water-repellent molecular structure.
  • the water repellent molecular structure causes the antifouling layer to exhibit antifouling properties. It is preferable that the water contact angle of the surface on the viewing side of the antifouling layer is 110 ° or more. It is preferable that the hexadecane contact angle of the surface on the visual recognition side of the antifouling layer is 60 ° or more.
  • the surface energy of the surface on the viewing side of the antifouling layer is preferably 16 mJ / m 2 or less.
  • the dynamic friction coefficient of the surface on the viewing side of the antifouling layer is preferably 0.40 or less.
  • the elastic recovery rate of the antifouling layer is preferably 50% or more.
  • the water-repellent molecular structure is preferably derived from a water-repellent monomer having fluorine.
  • the antifouling layer is a cured product of a curable resin composition, and the curable resin composition preferably contains the water repellent monomer.
  • Water contact angle There is no restriction
  • the water contact angle can be measured under the following conditions using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. ⁇ Drip amount of distilled water: 2 ⁇ L ⁇ Measurement temperature: 25 °C The contact angle after 5 seconds from dropping water is measured by an ellipse fitting method at an arbitrary 10 locations on the test piece, and the average value is taken as the water contact angle.
  • Hexadecane contact angle ⁇ Hexadecane contact angle
  • the hexadecane contact angle of the surface at the side of visual recognition of the said pollution protection layer 60 degrees or more are preferable from the point which is more excellent in pollution resistance.
  • the said hexadecane contact angle is 70 degrees or less, 80 degrees or less, etc. are mentioned.
  • the hexadecane contact angle can be measured under the following conditions using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. ⁇ Drop amount of hexadecane: 1 ⁇ L ⁇ Measurement temperature: 25 °C Hexadecane is dropped and the contact angle after 20 seconds has passed is measured by an ellipse fitting method at any 10 locations on the test piece, and the average value is taken as the hexadecane contact angle.
  • the surface energy of the surface on the visual recognition side of the antifouling layer is not particularly limited and can be appropriately selected according to the purpose. However, since the antifouling property is more excellent in that it is difficult to get dirt, 16 mJ / m It is preferable that it is 2 or less. There is no restriction
  • the surface energy can be calculated by the Kaelble-Uy method using the water contact angle and the hexadecane contact angle.
  • the Kaelble-Uy theoretical formula is a method for quantitatively determining the surface energy ⁇ of a solid.
  • the dynamic friction coefficient of the surface on the viewing side of the antifouling layer is not particularly limited and can be appropriately selected according to the purpose. It is preferably 40 or less, more preferably 0.30 or less, and particularly preferably 0.20 or less. When the coefficient of dynamic friction is 0.40 or less, the wiping material has good sliding properties and can be easily wiped off even if dirt is attached. Moreover, when the said dynamic friction coefficient is small, the effect of releasing force will arise and the said pollution protection layer will not be damaged easily. There is no restriction
  • the dynamic friction coefficient is obtained by the following method. Measurement is performed using Triboster TS501 manufactured by Kyowa Interface Science Co., Ltd. BEMCOT (registered trademark) M-3II manufactured by Asahi Kasei Co., Ltd. is attached to the surface contactor with double-sided tape, measured 12 times with a measurement load of 50 g / cm 2 , a measurement speed of 1.7 mm / s, and a measurement distance of 20 mm. It is a coefficient.
  • the elastic recovery rate of the antifouling layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50% or more and 60% or more in terms of excellent scratch resistance. More preferred. There is no restriction
  • the elastic recovery rate is obtained by the following method.
  • the elastic recovery rate of the test piece is measured under the following conditions using a PICODENTOR HM500 manufactured by Fischer Instruments. Load: 1mN / 20s Needle: Diamond cone with a surface angle of 136 ° Measured at any 10 points, and the average value is taken as the elastic recovery rate.
  • the average thickness of the antifouling layer is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be 0.1 ⁇ m or more and 50 ⁇ m or less, or 0.5 ⁇ m or more and 50 ⁇ m or less. Or 0.5 ⁇ m or more and 30 ⁇ m or less.
  • the average thickness is obtained by, for example, the following method.
  • the thickness of the antifouling layer can be measured by observing the cross section with a field emission scanning electron microscope S-4700 (trade name; manufactured by Hitachi High-Technologies Corporation). Measurement is performed at any 10 points, and the average value is defined as the average thickness. Moreover, you may measure with the film metrics Co., Ltd. F20 film thickness measurement system.
  • the antifouling layer is preferably a cured product of a curable resin composition.
  • the curable resin composition contains a water-repellent monomer having fluorine.
  • examples of the curable resin composition include a thermosetting resin composition and an active energy ray curable resin composition, and an active energy ray curable resin composition is preferable.
  • the antifouling layer is preferably a cured product of an active energy ray curable resin composition.
  • the active energy ray-curable resin composition contains at least a water-repellent monomer, and further contains other components such as other monomers, a photopolymerization initiator, an ultraviolet absorber, a radical scavenger, and a solvent as necessary. To do.
  • the water repellent monomer has fluorine.
  • the water repellent monomer has a water repellent molecular structure.
  • Examples of the water-repellent molecular structure in the present invention include a structure having fluorine, and examples thereof include a fluoroalkyl structure and a perfluoropolyether structure.
  • the water repellent monomer has a (meth) acryloyl group.
  • the number of the (meth) acryloyl groups in the water repellent monomer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 to 6.
  • the water-repellent monomer is preferably a (meth) acrylate containing a perfluoropolyether group, and the perfluoropolyether group is represented by — (O—CF 2 CF 2 ) — or — (O—CF 2 CF 2 CF 2). )-Or — (O—CF 2 C (CF 3 ) F) — is preferred.
  • the water-repellent monomer may be a commercially available product.
  • the commercially available products include DAC-HP manufactured by Daikin Industries, Ltd., Fluorolink AD1700 manufactured by Solvay Specialty Polymers, Fluorolink MD700 manufactured by Solvay Specialty Polymers, CN4000 manufactured by Sartomer, and SHIN-ETSU SUBLYN manufactured by Shin-Etsu Chemical Co., Ltd. DIC Corporation RS Series, Kanto Denka Kogyo Co., Ltd. F Clear, Fluoro Technology Co., Ltd. Fluorosurf Co., Ltd., Daicel Ornex Co., Ltd. EBECRYL8110, and the like.
  • the molecular weight of the water repellent monomer is not particularly limited and can be appropriately selected according to the purpose.
  • the content of the water repellent monomer in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. On the other hand, 0.001 mass% or more and 5.0 mass% or less are preferable, 0.01 mass% or more and 5.0 mass% or less are more preferable, 0.01 mass% or more and 4.0 mass% or less are still more preferable. 0.04% by mass to 3.0% by mass is particularly preferable. If the content is less than 0.001% by mass, the antifouling property may be inferior. When the content exceeds 5.0% by mass, appearance deterioration (whitening, cloudiness) may occur in the antifouling layer.
  • the other monomer is not particularly limited as long as it is a monomer (active energy ray-curable component) other than the water-repellent monomer, and can be appropriately selected according to the purpose.
  • urethane (meth) acrylate examples include silicone (meth) acrylate and bifunctional or higher functional (meth) acrylate.
  • the urethane (meth) acrylate and the bifunctional or higher functional (meth) acrylate are used, for example, for adjusting the elastic recovery rate.
  • the silicone (meth) acrylate is used, for example, for adjusting the surface energy and the dynamic friction coefficient.
  • urethane (meth) acrylate examples include aliphatic urethane (meth) acrylate and aromatic urethane (meth) acrylate.
  • the active energy ray-curable resin composition contains the water-repellent monomer
  • the dynamic friction coefficient of the antifouling layer can be reduced and scratch resistance can be imparted to the antifouling layer.
  • the curable resin composition contains the urethane (meth) acrylate
  • the coefficient of dynamic friction of the antifouling layer can be further reduced, and as a result, the flaw resistance of the antifouling layer can be further improved. .
  • the urethane (meth) acrylate refers to a material having a urethane bond and a (meth) acryloyl group in one molecule, and such a material can be used without any particular limitation.
  • the urethane (meth) acrylate is obtained, for example, by a reaction between a hydroxy compound having at least one (meth) acryloyl group and an isocyanate.
  • examples of the isocyanate include polyisocyanate.
  • the aliphatic urethane (meth) acrylate is obtained, for example, by a reaction between a hydroxy compound having at least one (meth) acryloyl group and an aliphatic isocyanate.
  • the aliphatic isocyanate include aliphatic diisocyanate and aliphatic triisocyanate.
  • the aromatic urethane (meth) acrylate is obtained, for example, by a reaction between a hydroxy compound having at least one (meth) acryloyl group and an aromatic isocyanate.
  • the aromatic isocyanate include aromatic diisocyanate and aromatic triisocyanate.
  • the non-volatile property of the said active energy ray curable resin composition is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 85% by mass or less, and particularly preferably 15% by mass or more and 60% by mass or less.
  • Silicone (meth) acrylate-- The silicone (meth) acrylate is a (meth) acrylate having a silicone skeleton.
  • the bifunctional or higher functional (meth) acrylate is not particularly limited as long as it is a material having two or more (meth) acryloyl groups in one molecule, and can be appropriately selected according to the purpose.
  • the active energy ray-curable resin composition contains the bifunctional or higher functional (meth) acrylate, the laminate can have excellent press resistance and heat resistance.
  • the number of (meth) acryloyl groups in the bifunctional or higher (meth) acrylate is not particularly limited as long as it is 2 or more, and can be appropriately selected according to the purpose. Is more preferable, and 2 to 6 is particularly preferable.
  • bifunctional or higher functional (meth) acrylate examples include bifunctional (meth) acrylate, trifunctional (meth) acrylate, and tetrafunctional (meth) acrylate.
  • Examples of the tri- or more functional (meth) acrylates include dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, glycerin ethoxytri (meth) acrylate, Glycerin propoxytri (meth) acrylate, isocyanuric acid ethoxytri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol alkoxytetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate Etc.
  • alkoxy, ethoxy, propoxy, etc. are mentioned, for example.
  • the bifunctional or higher (meth) acrylate preferably has a ring structure.
  • the ring structure include an alicyclic structure, an aromatic structure, a heterocyclic structure, a polycyclic structure, and an isocyanuric ring structure.
  • the bifunctional or higher functional (meth) acrylate having the ring structure include tricyclodecane dimethanol di (meth) acrylate, isocyanuric acid ethoxydi (meth) acrylate [for example, isocyanuric acid EO-modified diacrylate] and the like. It is done.
  • the ring structure gives hardness to the cured product (antifouling layer) of the active energy ray-curable resin composition.
  • the glass transition temperature of the antifouling layer is preferably, for example, 130 ° C. or higher.
  • a high glass transition temperature contributes to the antifouling layer obtaining excellent scratch resistance. Even if the glass transition temperature is high, if the elastic recovery rate is low, excellent scratch resistance cannot be obtained.
  • the content of the bifunctional or higher functional (meth) acrylate in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. 10 mass% or more and 99 mass% or less are preferable with respect to the non volatile matter of a thing, and 15 mass% or more and 99 mass% or less are more preferable.
  • the content of the bifunctional or higher functional (meth) acrylate in the active energy ray-curable resin composition is 10 mass when the active energy ray-curable resin composition contains the urethane (meth) acrylate. % To 90% by mass is preferable, and 15% to 85% by mass is more preferable.
  • the content of the bifunctional or higher functional (meth) acrylate having the ring structure in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. 10 mass% or more and 99 mass% or less are preferable with respect to the non volatile matter of a wire curable resin composition, and 15 mass% or more and 90 mass% or less are more preferable.
  • the water repellent monomer, the urethane (meth) acrylate, the silicone (meth) acrylate, and the bifunctional or higher functional (meth) acrylate are positioned as different materials in the following points.
  • a monomer having a fluorine atom belongs to the water-repellent monomer even if it is bifunctional or higher.
  • the monomer having a fluorine atom belongs to the water-repellent monomer even if it has a urethane bond.
  • the monomer having a fluorine atom belongs to the water-repellent monomer even if it has a silicone skeleton.
  • a monomer having a silicone skeleton belongs to the silicone (meth) acrylate even if it is bifunctional or higher.
  • a monomer having a silicone skeleton belongs to the silicone (meth) acrylate even if it has a urethane bond.
  • a monomer having no fluorine atom and no silicone skeleton but having a urethane bond belongs to the urethane (meth) acrylate even if it is bifunctional or higher.
  • a monomer that does not have a fluorine atom, a silicone skeleton, and a urethane bond but is bifunctional or higher belongs to the bifunctional or higher (meth) acrylate.
  • photopolymerization initiator examples include a photoradical polymerization initiator, a photoacid generator, a bisazide compound, hexamethoxymethylmelamine, and tetramethoxyglycolyl.
  • a photoradical polymerization initiator a photoacid generator
  • a bisazide compound a bisazide compound
  • hexamethoxymethylmelamine a bisazide compound
  • hexamethoxymethylmelamine hexamethoxymethylmelamine
  • tetramethoxyglycolyl There is no restriction
  • the photopolymerization initiator preferably does not contain a nitrogen atom as a constituent element from the viewpoint of preventing yellowing in appearance.
  • the photopolymerization initiator may contain only C, H, and O as constituent elements, or only C, H, P, and O as constituent elements from the viewpoint of preventing yellowing in appearance. preferable.
  • the non-volatile content of the said active energy ray curable resin composition Is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 5% by mass, and particularly preferably 1% by mass to 5% by mass.
  • UV absorber examples include benzophenone compounds, benzotriazole compounds, triazine compounds, benzoate compounds, benzoxazinone compounds, cyanoacrylate compounds, benzoxazole compounds, merocyanine compounds, salicylate compounds, Examples include formamidine compounds and oxanilide compounds.
  • the ultraviolet absorber may be a commercially available product.
  • the commercially available products include the Tinuvin series, the Chimassorb series, the Uvinul series manufactured by BASF, the Adeka Stub LA series manufactured by ADEKA Corporation, the Chemisorb series manufactured by Chemipro Kasei Co., Ltd., and the SEESORB series manufactured by Sipro Kasei Co., Ltd. Examples include benzotriazole-based compounds.
  • the content of the ultraviolet absorber in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose.
  • radical scavenger examples include amine compounds, phenol compounds, and benzoate compounds.
  • the radical scavenger may be a commercially available product.
  • the commercially available products include: Tinufin series manufactured by BASF, Chimassorb series, Adeka stab manufactured by ADEKA, LA series, Chemisorb series manufactured by Chemipro Kasei Co., Ltd., Chemistab series, Cheminox series, SEENOX series manufactured by Sipro Kasei Co., Ltd. Is mentioned.
  • the content of the radical scavenger in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose.
  • an organic solvent is mentioned.
  • the organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl
  • the organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl
  • a solvent having a boiling point of 80 ° C. or higher is preferable from the viewpoint of obtaining an antifouling layer having a better appearance.
  • the solvent having a boiling point of 80 ° C. or higher include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, 1,3-butanediol, 1,4-butanediol, 2-ethyl-1-hexanol, normal propyl acetate, isopropyl acetate, butyl acetate, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, diacetone alcohol, propylene glycol monomethyl ether, methyl cellosolve, ethyl cellosolve, butyl cellosolve, 1,4-dioxane, Examples thereof include methyl carbitol, ethyl carbitol, butyl carbit
  • the content of the solvent in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the active energy ray-curable resin composition is cured when irradiated with active energy rays.
  • active energy ray There is no restriction
  • ⁇ Resin layer> There is no restriction
  • the resin layer has transparency.
  • the average thickness of the resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25 ⁇ m to 5 mm, and more preferably 500 ⁇ m to 5 mm.
  • the resin layer usually has a Fresnel lens-like multi-level inclined surface on the surface opposite to the viewing side.
  • the light reflecting layer is not particularly limited as long as it is a layer having light reflectivity arranged on the surface having the inclined surface of the resin layer, and can be appropriately selected according to the purpose.
  • examples of the material include metals such as gold, aluminum, platinum, chromium, and silver.
  • the light reflection layer can be formed, for example, by arranging the metal in a layered manner by plating or vapor deposition on the surface of the resin layer having the inclined surface.
  • the light reflecting layer may be, for example, a dielectric deposited multilayer film.
  • the average thickness of the light reflection layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 10 nm to 1,000 nm.
  • the protective layer is not particularly limited as long as it is a layer disposed on the surface of the light reflecting layer opposite to the resin layer, and can be appropriately selected according to the purpose.
  • the protective layer protects the metal layer from oxidation and corrosion due to contact with air and water.
  • the average thickness of the protective layer is not particularly limited and can be appropriately selected depending on the purpose.
  • FIG. 1 is a schematic sectional view of an example of the Fresnel mirror of the present invention.
  • the upper side in FIG. 1 is the viewing side.
  • FIG. 2 is a plan view of the resin layer.
  • the Fresnel mirror in FIG. 1 has an antifouling layer 1, a resin layer 2, and a light reflecting layer 3.
  • the antifouling layer 1 is disposed on the surface on the viewing side.
  • On the surface of the resin layer 2 opposite to the viewing side, a large number of annular inclined surfaces 2a are formed in multiple stages and concentrically in the form of a Fresnel lens as shown in FIG.
  • the multi-step inclined surfaces 2a are shown with a rough pitch, but are generally formed with a density of about 2 to 10 steps per 1 mm width.
  • a light reflecting layer 3 is formed on the inclined surface 2a formed in multiple stages.
  • the light reflecting layer 3 (inclined surface 2a) serving as a reflecting surface is inclined outward with respect to the center of the concentric circle so that it functions as a convex mirror. It is also possible to function as a concave mirror by inclining the surface 2a) inward with respect to the concentric circle center.
  • FIG. 3 is a schematic cross-sectional view of another example of the Fresnel mirror of the present invention.
  • the Fresnel mirror of FIG. 3 includes an antifouling layer 1, a resin layer 2, a light reflecting layer 3, and a protective layer 4.
  • the antifouling layer 1 is disposed on the surface on the viewing side.
  • On the surface of the resin layer 2 opposite to the viewing side a large number of annular inclined surfaces 2a are formed in multiple stages and concentrically in the form of a Fresnel lens as shown in FIG.
  • a light reflecting layer 3 is formed on the inclined surface 2a formed in multiple stages.
  • the protective layer 4 is disposed so as to be in contact with the surface of the light reflecting layer 3 opposite to the viewing side.
  • the protective layer 4 embeds a multi-stage uneven surface.
  • the manufacturing method of the laminated body of this invention includes the process of obtaining hardened
  • the manufacturing method of the said laminated body is a method of manufacturing the said laminated body of this invention.
  • the process for obtaining the cured product is not particularly limited as long as it is a process for obtaining a cured product by applying a curable resin composition containing a water repellent monomer onto a resin layer and curing the curable resin composition. It can be appropriately selected depending on the purpose.
  • the said curable resin composition illustrated in description of the said Fresnel mirror of this invention is mentioned.
  • the resin layer include the resin layer exemplified in the description of the Fresnel mirror of the present invention.
  • the method for applying the curable resin composition onto the resin layer is not particularly limited and may be appropriately selected depending on the purpose.
  • wire bar coating, blade coating, spin coating, reverse roll coating examples include die coating, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, and dipping method.
  • the method for curing the curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but the curable resin composition is an active energy ray curable resin composition, A method in which the active energy ray-curable resin composition is irradiated with an active energy ray and cured is preferable.
  • the active energy ray There is no restriction
  • the curing is a step of forming the antifouling layer by irradiating an uncured layer formed from the active energy ray-curable resin composition with an active energy ray in an atmosphere having an oxygen concentration of less than 1% by volume.
  • an atmosphere having an oxygen concentration of less than 1% by volume include an inert gas atmosphere such as a nitrogen atmosphere.
  • the method for producing a Fresnel mirror of the present invention includes at least a step of forming an inclined surface and a step of forming a light reflecting layer, and further includes other steps as necessary.
  • the method for producing the Fresnel mirror is a method for producing the Fresnel mirror of the present invention.
  • the step of forming the inclined surface is not particularly limited as long as it is a step of forming a Fresnel lens-like multi-step inclined surface on the surface opposite to the viewing side of the resin layer, and is appropriately selected according to the purpose.
  • the resin layer is pressed against a predetermined mold heated to a temperature higher than the softening temperature of the resin layer to form a Fresnel lens-like multi-step inclined surface.
  • the step of forming the light reflecting layer is not particularly limited as long as it is a step of forming the light reflecting layer on the surface of the resin layer on which the inclined surface is formed, and is appropriately selected according to the purpose.
  • a method of forming a light reflection layer, which is a metal layer, by plating, vapor deposition, or the like on the surface of the resin layer on which the inclined surface is formed may be mentioned.
  • Step of obtaining a cured product As the step of obtaining the cured product, before the step of forming the inclined surface, a curable resin composition containing a water-repellent monomer is applied on the visual side surface of the resin layer, and the curable resin is obtained. If it is the process of hardening a composition and obtaining hardened
  • FIG. 4A to 4G are schematic cross-sectional views for explaining an example of the manufacturing method of the Fresnel mirror of the present invention.
  • the flat resin layer 2 is prepared (FIG. 4A).
  • the antifouling layer 1 is formed on one surface of the resin layer 2 to produce a laminate (FIG. 4B).
  • a mold 11 for providing a Fresnel lens-like shape on the other surface of the resin layer 2 is prepared (FIG. 4C).
  • the heated mold 11 is pressed against the surface on the resin layer 2 side of the laminate (FIG.
  • ⁇ Water contact angle> The water contact angle was measured using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. under the following conditions. ⁇ Drip amount of distilled water: 2 ⁇ L ⁇ Measurement temperature: 25 °C The contact angle after 5 seconds from dropping of water was measured by an ellipse fitting method at any 10 locations on the test piece, and the average value was taken as the water contact angle.
  • ⁇ Hexadecane contact angle> The hexadecane contact angle was measured using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. under the following conditions. ⁇ Drop amount of hexadecane: 1 ⁇ L ⁇ Measurement temperature: 25 °C Hexadecane was dropped and the contact angle after 20 seconds was measured by an ellipse fitting method at an arbitrary 10 locations on the test piece, and the average value was defined as the hexadecane contact angle.
  • the surface energy was calculated by the Kaelble-Uy method using the water contact angle and the hexadecane contact angle.
  • ⁇ Dynamic friction coefficient> It measured using Triboster TS501 by Kyowa Interface Science Co., Ltd. BEMCOT (registered trademark) M-3II manufactured by Asahi Kasei Co., Ltd. was attached to the surface contactor with double-sided tape and measured 12 times with a measurement load of 50 g / cm 2 , a measurement speed of 1.7 mm / s, and a measurement distance of 20 mm. Coefficient.
  • the elastic recovery rate of the test piece was measured under the following conditions using a PICODETOR HM500 manufactured by Fischer Instruments. Load: 1mN / 20s Needle: Diamond cone with a surface angle of 136 ° Measured at any 10 points, and the average value was taken as the elastic recovery rate.
  • ⁇ Scratch resistance> The test piece was rubbed 3,600 times with a bonster steel wool # 0000 manufactured by Nippon Steel Wool Co., Ltd. under a load of 1,500 gf / 4 cm 2 and then visually observed and evaluated according to the following evaluation criteria.
  • the glass transition temperature of the antifouling layer was determined by differential scanning calorimetry. Specifically, it was measured using a DSC7000X manufactured by Hitachi High-Technologies Corporation under a nitrogen atmosphere at a temperature rising condition of 10 ° C. per minute, and was calculated from the DSC curve by a tangent method. As a measurement sample, a 0.5 mm-thick test piece cured by irradiation with a metal halide lamp in a nitrogen atmosphere so that the integrated light quantity at 365 nm was 500 mJ / cm 2 was used.
  • the active energy ray-curable resin composition shown in Table 1 was applied to the PMMA side of the resin base material so that the film thickness after drying and curing was the value shown in Table 1. After coating, it was dried in an oven at 80 ° C. for 3 minutes.
  • the antifouling layer was cured by irradiating with ultraviolet rays at a dose of 500 mJ / cm 2 in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) using a metal halide lamp.
  • a metal was deposited on the surface of the annular groove on the PC side to form a light reflecting layer.
  • a protective layer was formed on the surface of the light reflecting layer with a black lacquer spray to obtain a super-fouling Fresnel mirror.
  • Example 2 a super antifouling Fresnel mirror was obtained in the same manner as in Example 1 except that the active energy ray-curable resin composition was changed to the active energy ray-curable resin composition shown in Table 1. .
  • Example 1 (Comparative Example 1) In Example 1, the Fresnel mirror was obtained like Example 1 except having changed the active energy ray-curable resin composition into the active energy ray-curable resin composition shown in Table 1.
  • Table 1 the unit of the content of each component of the active energy ray-curable resin composition is part by mass. Details of the materials listed in Table 1 are as follows. In the comparative example, “ ⁇ ” indicates that evaluation was not performed.
  • DAC-HP Terminal (meth) acrylic modified perfluoropolyether (Daikin Industries, Ltd.) KY-1203: Perfluoropolyether-containing acrylate (Shin-Etsu Chemical Co., Ltd.)
  • MU9500 aliphatic urethane acrylate oligomer (functional group number: 10, MIWON)
  • CN975 Aromatic urethane acrylate oligoomer (functional group number 6: SARTOMER)
  • A-GLY-20E Ethoxylated glycerin triacrylate (Shin Nakamura Kogyo Co., Ltd.)
  • SR9035 Ethoxylated trimethylolpropane triacrylate (SARTOMER)
  • A-TMMT Pentaerythritol tetraacrylate (Shin Nakamura Chemical Co., Ltd.)
  • EBECRYL130 Tricyclodecane dimethanol diacrylate (Daicel Ornex Co., Ltd.)
  • the Fresnel mirrors of Examples 1 to 6 were excellent in all of antifouling property, scratch resistance, press resistance and heat resistance. From the evaluation results of scratch resistance in Examples 1 to 6, it was found that the lower the dynamic friction coefficient, the better the scratch resistance. The Fresnel mirrors of Examples 3 to 6 were more excellent in scratch resistance because the coefficient of dynamic friction was 0.20 or less. In addition, in Examples 3 to 6, the glass transition temperature is high. This is also one of the reasons why the scratch resistance is excellent. In addition, Examples 3 to 5 using a bifunctional or higher functional (meth) acrylate having a ring structure had excellent elastic recovery (60% or higher) and a high glass transition temperature. It was excellent in Examples 1-6. When the elastic recovery rate is low (less than 60%), deformation tends to be difficult to return to, and the scratch resistance is reduced as compared with the case where the elastic recovery rate is 60% or more.
  • Comparative Example 1 since the water contact angle and the hexadecane contact angle were low, the surface energy was larger than 16 mJ / m 2 and the adhesion of the oily magic was inferior. In addition, the coefficient of dynamic friction was greater than 0.40 and the removability was poor. In Comparative Example 2, the dynamic friction coefficient was 0.40 or less, but the elastic recovery rate was less than 50%, and the scratch resistance was insufficient.
  • the Fresnel mirror of the present invention has the characteristics of a Fresnel mirror that can be reduced in thickness as compared with a conventional convex mirror, and has excellent antifouling properties, so ATM (automatic teller machine) It can be installed in a wide range of convenience stores, roadways, office buildings, factories, railways, airplanes, etc., and used as a blind spot confirmation mirror and a rear confirmation mirror.
  • ATM automated teller machine

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides a Fresnel mirror which has an antifouling layer on the viewing-side surface, and which is configured such that the antifouling layer has a water repellent molecular structure.

Description

積層体、及びその製造方法、並びにフレネルミラー、及びその製造方法Laminated body, manufacturing method thereof, Fresnel mirror, and manufacturing method thereof
 本発明は、フレネルミラーに用いる積層体、及びその製造方法、並びにフレネルミラー、及びその製造方法に関する。 The present invention relates to a laminate used for a Fresnel mirror, a manufacturing method thereof, a Fresnel mirror, and a manufacturing method thereof.
 フレネルミラーは、特許文献1等で周知のように、フラットな形状であるのに凸面鏡又は凹面鏡の機能を有している。フレネルミラーは、従来の凸面ミラーに比して厚さを小さくすることができるので、通路のコーナー周辺の死角を確認するために、T字路、L字路や十字路等の通路の壁面に設置しても邪魔にならない。そのため、凸面鏡機能を有するフレネルミラーは、交差路などに設置されて、死角確認用の衝突防止手段として利用されている(例えば特許文献2参照)。また、フレネルミラーは、後方確認用のミラーとしても利用が可能である。そのため、フレネルミラーの設置先は、ATM(現金自動預け払い機、automatic teller machine)、コンビニエンスストア、車道、オフィスビル、工場、鉄道、飛行機など、広範囲に渡る。 The Fresnel mirror has a function of a convex mirror or a concave mirror although it is a flat shape as well known in Patent Document 1 and the like. Fresnel mirrors can be made thinner than conventional convex mirrors, so they can be installed on the walls of passages such as T-shaped, L-shaped, and crossroads to check blind spots around the corners of the passage. It doesn't get in the way. Therefore, Fresnel mirrors having a convex mirror function are installed in intersections and the like, and are used as collision prevention means for checking blind spots (for example, see Patent Document 2). The Fresnel mirror can also be used as a mirror for confirming the rear. Therefore, Fresnel mirrors are installed in a wide range of locations, including ATMs (automatic teller machines), convenience stores, roadways, office buildings, factories, railways, and airplanes.
特開平6-174906号公報JP-A-6-174906 特開2012-88565号公報JP 2012-88565 A
 上記のとおり、フレネルミラーは、死角確認用の衝突防止手段、後方確認手段などとして利用されているため、視認性が良好であることが求められる。 As described above, since the Fresnel mirror is used as a collision prevention means for confirming blind spots, a rear confirmation means, etc., it is required to have good visibility.
 本発明は、防汚性に優れるフレネルミラー、及びその製造方法、並びに、前記フレネルミラーに用いられる積層体、及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a Fresnel mirror excellent in antifouling property, a manufacturing method thereof, a laminate used for the Fresnel mirror, and a manufacturing method thereof.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 防汚層と樹脂層とを含む積層体を有し、
 前記積層体が、耐熱性を有し、
 前記防汚層が、視認側の表面に配され、かつ撥水性の分子構造を有することを特徴とするフレネルミラー。
 ここで、前記耐熱性とは、前記積層体を前記防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察してヒビ割れもしくは変色がないことを意味する。
 <2> 視認側の表面に防汚層を有し、
 前記防汚層が、撥水性の分子構造を有し、
 前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来し、
 前記防汚層が、前記撥水性モノマーを含有する硬化性樹脂組成物(ただし、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有するパーフルオロポリエーテル、活性水素を含有するシラン化合物、及び活性水素と炭素-炭素二重結合とを有するモノマーを含有する活性水素を有する化合物を反応させることにより得られる炭素-炭素二重結合含有化合物を含有する場合を除く。)の硬化物であることを特徴とするフレネルミラーである。
 <3> 前記防汚層の視認側の表面の水接触角が110°以上であり、かつヘキサデカン接触角が60°以上である前記<1>から<2>のいずれかに記載のフレネルミラーである。
 <4> 前記防汚層の視認側の表面の表面エネルギーが、16mJ/m以下である前記<1>から<3>のいずれかに記載のフレネルミラーである。
 <5> 前記防汚層の視認側の表面の動摩擦係数が、0.40以下である前記<1>から<4>のいずれかに記載のフレネルミラーである。
 <6> 前記防汚層の弾性回復率が、50%以上である前記<1>から<5>のいずれかに記載のフレネルミラーである。
 <7> 前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来する前記<1>に記載のフレネルミラーである。
 <8> 前記防汚層が、硬化性樹脂組成物の硬化物であり、
 前記硬化性樹脂組成物が、前記撥水性モノマーを含有する、前記<2>及び<7>のいずれかに記載のフレネルミラーである。
 <9> 前記硬化性樹脂組成物が、2官能以上の(メタ)アクリレートを含有する前記<8>に記載のフレネルミラーである。
 <10> 前記2官能以上の(メタ)アクリレートが、環構造を有する前記<9>に記載のフレネルミラーである。
 <11> 前記防汚層と、
 視認側と反対側の面にフレネルレンズ様の多段の傾斜面を有する樹脂層と、
 前記樹脂層の前記傾斜面を有する側の面上に配された光反射層と、
を有する、前記<1>から<10>のいずれかに記載のフレネルミラーである。
 <12> フレネルミラーに用いられ、耐熱性を有する積層体であって、
 撥水性の分子構造を有する防汚層と、
 樹脂層と、
を有することを特徴とする積層体である。
 ここで、前記耐熱性とは、前記積層体を前記防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察してヒビ割れもしくは変色がないことを意味する。
 <13> フレネルミラーに用いられる積層体であって、
 撥水性の分子構造を有する防汚層と、
 樹脂層と、
を有し、
 前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来し、
 前記防汚層が、前記撥水性モノマーを含有する硬化性樹脂組成物(ただし、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有するパーフルオロポリエーテル、活性水素を含有するシラン化合物、及び活性水素と炭素-炭素二重結合とを有するモノマーを含有する活性水素を有する化合物を反応させることにより得られる炭素-炭素二重結合含有化合物を含有する場合を除く。)の硬化物であることを特徴とする積層体である。
 <14> 前記防汚層の表面の水接触角が110°以上であり、かつヘキサデカン接触角が60°以上である前記<12>から<13>のいずれかに記載の積層体である。
 <15> 前記防汚層の表面の表面エネルギーが、16mJ/m以下である前記<12>から<14>のいずれかに記載の積層体である。
 <16> 前記防汚層の表面の動摩擦係数が、0.40以下である前記<12>から<15>のいずれかに記載の積層体である。
 <17> 前記防汚層の弾性回復率が、50%以上である前記<12>から<16>のいずれかに記載の積層体である。
 <18> 前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来する前記<12>に記載の積層体である。
 <19> 前記防汚層が、硬化性樹脂組成物の硬化物であり、
 前記硬化性樹脂組成物が、前記撥水性モノマーを含有する、前記<13>及び<18>のいずれかに記載の積層体である。
 <20> 前記硬化性樹脂組成物が、2官能以上の(メタ)アクリレートを含有する前記<19>に記載の積層体である。
 <21> 前記2官能以上の(メタ)アクリレートが、環構造を有する前記<20>に記載の積層体である。
 <22> 前記樹脂層が、前記防汚層側と反対側の面にフレネルレンズ様の多段の傾斜面を有する、前記<12>から<21>のいずれかに記載の積層体である。
 <23> 前記<1>から<11>のいずれかに記載のフレネルミラーに用いられる前記<12>から<13>のいずれかに記載の積層体である。
 <24> 前記<19>に記載の積層体の製造方法であって、
 前記撥水性モノマーを含有する前記硬化性樹脂組成物を、前記樹脂層上に塗布し、前記硬化性樹脂組成物を硬化させ、前記硬化物を得る工程を含むことを特徴とする積層体の製造方法である。
 <25> 前記<11>に記載のフレネルミラーの製造方法であって、
 前記樹脂層の視認側と反対側の面に、フレネルレンズ様の多段の前記傾斜面を形成する工程と、
 前記傾斜面が形成された前記樹脂層の面上に、前記光反射層を形成する工程と、
を含むことを特徴とするフレネルミラーの製造方法である。
 <26> 前記傾斜面を形成する工程の前に、撥水性モノマーを含有する硬化性樹脂組成物を、前記樹脂層の視認側の面上に塗布し、前記硬化性樹脂組成物を硬化させ、前記防汚層である硬化物を得る工程を含む、前記<25>に記載のフレネルミラーの製造方法である。
Means for solving the problems are as follows. That is,
<1> Having a laminate including an antifouling layer and a resin layer,
The laminate has heat resistance,
The Fresnel mirror characterized in that the antifouling layer is disposed on the surface on the viewing side and has a water-repellent molecular structure.
Here, the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
<2> Having an antifouling layer on the surface on the viewing side,
The antifouling layer has a water-repellent molecular structure;
The water repellent molecular structure is derived from a water repellent monomer having fluorine,
The antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate which is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a carbon-carbon double bond-containing compound obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond). It is a Fresnel mirror characterized by
<3> The Fresnel mirror according to any one of <1> to <2>, wherein a water contact angle of a surface on the viewing side of the antifouling layer is 110 ° or more and a hexadecane contact angle is 60 ° or more. is there.
<4> The Fresnel mirror according to any one of <1> to <3>, wherein the surface energy on the viewing side of the antifouling layer is 16 mJ / m 2 or less.
<5> The Fresnel mirror according to any one of <1> to <4>, wherein a dynamic friction coefficient of a surface on the viewing side of the antifouling layer is 0.40 or less.
<6> The Fresnel mirror according to any one of <1> to <5>, wherein an elastic recovery rate of the antifouling layer is 50% or more.
<7> The Fresnel mirror according to <1>, wherein the water-repellent molecular structure is derived from a water-repellent monomer having fluorine.
<8> The antifouling layer is a cured product of the curable resin composition,
The Fresnel mirror according to any one of <2> and <7>, wherein the curable resin composition contains the water-repellent monomer.
<9> The Fresnel mirror according to <8>, wherein the curable resin composition contains a bifunctional or higher functional (meth) acrylate.
<10> The Fresnel mirror according to <9>, wherein the bifunctional or higher functional (meth) acrylate has a ring structure.
<11> The antifouling layer,
A resin layer having a multi-step inclined surface like a Fresnel lens on the surface opposite to the viewing side;
A light reflecting layer disposed on a surface of the resin layer having the inclined surface;
The Fresnel mirror according to any one of <1> to <10>.
<12> A heat-resistant laminate used for a Fresnel mirror,
An antifouling layer having a water-repellent molecular structure;
A resin layer;
It is a laminated body characterized by having.
Here, the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
<13> A laminate used for a Fresnel mirror,
An antifouling layer having a water-repellent molecular structure;
A resin layer;
Have
The water repellent molecular structure is derived from a water repellent monomer having fluorine,
The antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate which is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a carbon-carbon double bond-containing compound obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond). It is the laminated body characterized by these.
<14> The laminate according to any one of <12> to <13>, wherein the surface of the antifouling layer has a water contact angle of 110 ° or more and a hexadecane contact angle of 60 ° or more.
<15> The laminate according to any one of <12> to <14>, wherein the surface energy of the antifouling layer is 16 mJ / m 2 or less.
<16> The laminate according to any one of <12> to <15>, wherein the surface of the antifouling layer has a dynamic friction coefficient of 0.40 or less.
<17> The laminate according to any one of <12> to <16>, wherein the antifouling layer has an elastic recovery rate of 50% or more.
<18> The laminate according to <12>, wherein the water-repellent molecular structure is derived from a water-repellent monomer having fluorine.
<19> The antifouling layer is a cured product of the curable resin composition,
The curable resin composition is a laminate according to any one of <13> and <18>, containing the water-repellent monomer.
<20> The laminate according to <19>, wherein the curable resin composition contains a bifunctional or higher (meth) acrylate.
<21> The laminate according to <20>, wherein the bifunctional or higher functional (meth) acrylate has a ring structure.
<22> The laminate according to any one of <12> to <21>, wherein the resin layer has a multi-stage inclined surface like a Fresnel lens on a surface opposite to the antifouling layer side.
<23> The laminate according to any one of <12> to <13>, which is used for the Fresnel mirror according to any one of <1> to <11>.
<24> The method for producing a laminate according to <19>,
A process for producing a laminate comprising the steps of applying the curable resin composition containing the water repellent monomer onto the resin layer, curing the curable resin composition, and obtaining the cured product. Is the method.
<25> The method for producing a Fresnel mirror according to <11>,
Forming a multi-stage inclined surface like a Fresnel lens on the surface opposite to the viewing side of the resin layer;
Forming the light reflecting layer on the surface of the resin layer on which the inclined surface is formed;
It is a manufacturing method of the Fresnel mirror characterized by including.
<26> Before the step of forming the inclined surface, a curable resin composition containing a water-repellent monomer is applied onto the surface on the viewing side of the resin layer, and the curable resin composition is cured. It is a manufacturing method of the Fresnel mirror as described in said <25> including the process of obtaining the hardened | cured material which is the said antifouling layer.
 本発明によれば、防汚性に優れるフレネルミラー、及びその製造方法、並びに、前記フレネルミラーに用いられる積層体、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a Fresnel mirror excellent in antifouling properties, a method for producing the same, a laminate used for the Fresnel mirror, and a method for producing the same.
図1は、本発明のフレネルミラーの一例の概略断面図である。FIG. 1 is a schematic sectional view of an example of the Fresnel mirror of the present invention. 図2は、樹脂層の平面図である。FIG. 2 is a plan view of the resin layer. 図3は、本発明のフレネルミラーの他の一例の概略断面図である。FIG. 3 is a schematic cross-sectional view of another example of the Fresnel mirror of the present invention. 図4Aは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その1)。FIG. 4A is a schematic cross-sectional view for explaining an example of a method for producing a Fresnel mirror of the present invention (part 1). 図4Bは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その2)。FIG. 4B is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 2). 図4Cは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その3)。FIG. 4C is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 3). 図4Dは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その4)。FIG. 4D is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 4). 図4Eは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その5)。FIG. 4E is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 5). 図4Fは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その6)。FIG. 4F is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (No. 6). 図4Gは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である(その7)。FIG. 4G is a schematic cross-sectional view for explaining an example of the manufacturing method of the Fresnel mirror of the present invention (part 7).
(フレネルミラー、積層体)
 本発明のフレネルミラーは、防汚層を少なくとも有し、好ましくは樹脂層及び光反射層を有し、更に必要に応じて、保護層などのその他の部材を有する。
 前記防汚層は、前記フレネルミラーの視認側の表面に配されている。
 前記フレネルミラーは、防汚性に優れ、表面に汚れがついても簡単に拭き取れる。そのことから、前記フレネルミラーは、表面に汚れがついても良好な視認性を簡単に回復させることができる。
(Fresnel mirror, laminate)
The Fresnel mirror of the present invention has at least an antifouling layer, preferably has a resin layer and a light reflecting layer, and further has other members such as a protective layer as necessary.
The antifouling layer is disposed on the viewing side surface of the Fresnel mirror.
The Fresnel mirror has excellent antifouling properties and can be easily wiped even if the surface is dirty. Therefore, the Fresnel mirror can easily recover good visibility even if the surface is soiled.
 本発明の積層体は、防汚層と、樹脂層とを有し、更に必要に応じて、その他の部材を有する。
 前記積層体は、フレネルミラーに用いられる。
 フレネルミラーに用いられる前の前記積層体においては、前記防汚層側と反対側の面は、平らな面であってもよいし、フレネルレンズ様の多段の傾斜面を有していてもよい。
The laminated body of this invention has an antifouling layer and a resin layer, and also has another member as needed.
The laminate is used for a Fresnel mirror.
In the laminate before being used for the Fresnel mirror, the surface opposite to the antifouling layer may be a flat surface or may have a multi-stage inclined surface like a Fresnel lens. .
 本発明のフレネルミラーの一態様は、
 防汚層と樹脂層とを含む積層体を有する。
 前記積層体は、耐熱性を有する。
 ここで、前記耐熱性とは、前記積層体を前記防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察してヒビ割れもしくは変色がないことを意味する。
One aspect of the Fresnel mirror of the present invention is:
A laminate including an antifouling layer and a resin layer is provided.
The laminate has heat resistance.
Here, the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
 本発明のフレネルミラーの一態様において、
 前記防汚層は、撥水性の分子構造を有し、
 前記撥水性の分子構造は、フッ素を有する撥水性モノマーに由来し、
 前記防汚層は、前記撥水性モノマーを含有する硬化性樹脂組成物(ただし、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有するパーフルオロポリエーテル、活性水素を含有するシラン化合物、及び活性水素と炭素-炭素二重結合とを有するモノマーを含有する活性水素を有する化合物を反応させることにより得られる炭素-炭素二重結合含有化合物を含有する場合を除く。)の硬化物である。
 前記炭素-炭素二重結合含有化合物は、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有する化合物を反応させることにより得られる。
 前記活性水素を有する化合物は、以下の(A)、(B)及び(C)を含有する。
 (A)活性水素を有するパーフルオロポリエーテル
 (B)活性水素を含有するシラン化合物
 (C)活性水素と炭素-炭素二重結合とを有するモノマー
In one embodiment of the Fresnel mirror of the present invention,
The antifouling layer has a water-repellent molecular structure,
The water-repellent molecular structure is derived from a water-repellent monomer having fluorine,
The antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate that is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a compound containing a carbon-carbon double bond obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond).
The carbon-carbon double bond-containing compound can be obtained by reacting a polyisocyanate that is a trimer of diisocyanate with a compound having active hydrogen.
The compound having active hydrogen contains the following (A), (B) and (C).
(A) Perfluoropolyether having active hydrogen (B) Silane compound containing active hydrogen (C) Monomer having active hydrogen and carbon-carbon double bond
 本発明の積層体の一態様は、耐熱性を有する。
 ここで、前記耐熱性とは、前記積層体を前記防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察してヒビ割れもしくは変色がないことを意味する。
One embodiment of the laminate of the present invention has heat resistance.
Here, the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
 本発明の積層体の一態様において、
 前記防汚層は、撥水性の分子構造を有し、
 前記撥水性の分子構造は、フッ素を有する撥水性モノマーに由来し、
 前記防汚層は、前記撥水性モノマーを含有する硬化性樹脂組成物(ただし、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有するパーフルオロポリエーテル、活性水素を含有するシラン化合物、及び活性水素と炭素-炭素二重結合とを有するモノマーを含有する活性水素を有する化合物を反応させることにより得られる炭素-炭素二重結合含有化合物を含有する場合を除く。)の硬化物である。
In one aspect of the laminate of the present invention,
The antifouling layer has a water-repellent molecular structure,
The water-repellent molecular structure is derived from a water-repellent monomer having fluorine,
The antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate that is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a compound containing a carbon-carbon double bond obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond).
 フレネルミラーとは、フレネルレンズ上に反射膜を形成した反射鏡である。
 前記フレネルレンズは、例えば、透明なプラスチック板の片面に同心円状に輪帯状の傾斜面を多段に、かつその傾斜角度を同心円中心から径方向外側のものほど順次大きくするように形成したものである。すなわち、フレネルレンズは、レンズの凸球面又は凹球面を多数の輪帯状に輪切りにし、それらを平面に薄板状に並べ変えて形成したレンズである。このようなフレネルレンズの輪帯傾斜面に、メッキや蒸着などにより金属膜を施すと、これを反射面とする凸面鏡又は凹面鏡の機能を有するミラーにすることができる。
A Fresnel mirror is a reflecting mirror in which a reflecting film is formed on a Fresnel lens.
The Fresnel lens is formed, for example, in a concentric ring-shaped inclined surface on one side of a transparent plastic plate in multiple stages, and the inclination angle is gradually increased from the concentric center to the radially outer side. . That is, the Fresnel lens is a lens formed by cutting the convex spherical surface or concave spherical surface of a lens into a large number of ring zones and rearranging them into a flat plate shape on a flat surface. When a metal film is formed on the inclined surface of the annular zone of such a Fresnel lens by plating, vapor deposition, or the like, a mirror having a convex mirror function or a concave mirror function can be obtained.
<防汚層>
 前記防汚層は、撥水性の分子構造を有する。前記撥水性の分子構造が前記防汚層に防汚性を発現させる。
 前記防汚層の視認側の表面の水接触角は、110°以上であることが好ましい。
 前記防汚層の視認側の表面のヘキサデカン接触角は、60°以上であることが好ましい。
 前記防汚層の視認側の表面の表面エネルギーは、16mJ/m以下であることが好ましい。
 前記防汚層の視認側の表面の動摩擦係数は、0.40以下であることが好ましい。
 前記防汚層の弾性回復率は、50%以上であることが好ましい。
 前記撥水性の分子構造は、フッ素を有する撥水性モノマーに由来することが好ましい。
 前記防汚層は、硬化性樹脂組成物の硬化物であり、前記硬化性樹脂組成物は、前記撥水性モノマーを含有することが好ましい。
<Anti-fouling layer>
The antifouling layer has a water-repellent molecular structure. The water repellent molecular structure causes the antifouling layer to exhibit antifouling properties.
It is preferable that the water contact angle of the surface on the viewing side of the antifouling layer is 110 ° or more.
It is preferable that the hexadecane contact angle of the surface on the visual recognition side of the antifouling layer is 60 ° or more.
The surface energy of the surface on the viewing side of the antifouling layer is preferably 16 mJ / m 2 or less.
The dynamic friction coefficient of the surface on the viewing side of the antifouling layer is preferably 0.40 or less.
The elastic recovery rate of the antifouling layer is preferably 50% or more.
The water-repellent molecular structure is preferably derived from a water-repellent monomer having fluorine.
The antifouling layer is a cured product of a curable resin composition, and the curable resin composition preferably contains the water repellent monomer.
<<水接触角>>
 前記防汚層の視認側の表面の水接触角としては、特に制限はなく、目的に応じて適宜選択することができるが、防汚性がより優れる点から、110°以上が好ましい。前記水接触角の上限値としては、特に制限はなく、目的に応じて適宜選択することができ、前記水接触角は、例えば、120°以下、130°以下などが挙げられる。
<< Water contact angle >>
There is no restriction | limiting in particular as the water contact angle of the surface at the side of visual recognition of the said pollution protection layer, Although it can select suitably according to the objective, 110 degrees or more are preferable from the point which is more excellent in pollution resistance. There is no restriction | limiting in particular as an upper limit of the said water contact angle, According to the objective, it can select suitably, For example, the said water contact angle is 120 degrees or less, 130 degrees or less, etc. are mentioned.
 前記水接触角は協和界面化学株式会社製自動接触角計DM-501を用いて下記の条件で測定することができる。
 ・蒸留水の滴下量:2μL
 ・測定温度:25℃
 水を滴下して5秒経過後の接触角を試験片の任意の10か所で楕円フィッティング法で測定しその平均値を水接触角とする。
The water contact angle can be measured under the following conditions using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd.
・ Drip amount of distilled water: 2 μL
・ Measurement temperature: 25 ℃
The contact angle after 5 seconds from dropping water is measured by an ellipse fitting method at an arbitrary 10 locations on the test piece, and the average value is taken as the water contact angle.
<<ヘキサデカン接触角>>
 前記防汚層の視認側の表面のヘキサデカン接触角としては、特に制限はなく、目的に応じて適宜選択することができるが、防汚性がより優れる点から、60°以上が好ましい。前記ヘキサデカン接触角の上限値としては、特に制限はなく、目的に応じて適宜選択することができ、前記ヘキサデカン接触角は、例えば、70°以下、80°以下などが挙げられる。
<< Hexadecane contact angle >>
There is no restriction | limiting in particular as the hexadecane contact angle of the surface at the side of visual recognition of the said pollution protection layer, Although it can select suitably according to the objective, 60 degrees or more are preferable from the point which is more excellent in pollution resistance. There is no restriction | limiting in particular as an upper limit of the said hexadecane contact angle, According to the objective, it can select suitably, For example, the said hexadecane contact angle is 70 degrees or less, 80 degrees or less, etc. are mentioned.
 前記ヘキサデカン接触角は協和界面化学株式会社製自動接触角計DM-501を用いて下記の条件で測定することができる。
 ・ヘキサデカンの滴下量:1μL
 ・測定温度:25℃
 ヘキサデカンを滴下して20秒経過後の接触角を試験片の任意の10か所で楕円フィッティング法で測定しその平均値をヘキサデカン接触角とする。
The hexadecane contact angle can be measured under the following conditions using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd.
・ Drop amount of hexadecane: 1 μL
・ Measurement temperature: 25 ℃
Hexadecane is dropped and the contact angle after 20 seconds has passed is measured by an ellipse fitting method at any 10 locations on the test piece, and the average value is taken as the hexadecane contact angle.
<<表面エネルギー>>
 前記防汚層の視認側の表面の表面エネルギーとしては、特に制限はなく、目的に応じて適宜選択することができるが、汚れがつきにくい点で防汚性がより優れることから、16mJ/m以下であることが好ましい。前記表面エネルギーの下限値としては、特に制限はなく、目的に応じて適宜選択することができ、前記表面エネルギーは、例えば、10mJ/m以上、12mJ/m以上などが挙げられる。
<< Surface energy >>
The surface energy of the surface on the visual recognition side of the antifouling layer is not particularly limited and can be appropriately selected according to the purpose. However, since the antifouling property is more excellent in that it is difficult to get dirt, 16 mJ / m It is preferable that it is 2 or less. There is no restriction | limiting in particular as a lower limit of the said surface energy, According to the objective, it can select suitably, For example, 10 mJ / m < 2 > or more, 12 mJ / m < 2 > or more etc. are mentioned.
 前記表面エネルギーは、水接触角とヘキサデカン接触角とを用いて、Kaelble-Uyの方法で算出できる。
 Kaelble-Uyの理論式は、固体の表面エネルギーγを定量的に求める方法である。
The surface energy can be calculated by the Kaelble-Uy method using the water contact angle and the hexadecane contact angle.
The Kaelble-Uy theoretical formula is a method for quantitatively determining the surface energy γ of a solid.
 Kaelble-Uyの理論式では、表面エネルギーγが分散成分γ、極性成分γからなると仮定し、トータル表面自由エネルギーγを下記式(1)で表す。
  γ=γ+γ  ・・・式(1)
In the Kaelble-Uy theoretical formula, it is assumed that the surface energy γ is composed of a dispersion component γ d and a polar component γ p , and the total surface free energy γ is expressed by the following formula (1).
γ = γ d + γ p (1)
 また、液体の表面の表面エネルギーをγ、固体の表面エネルギーをγ、接触角をθで表すと、下記式(2)が成り立つ。
  γ(1+cosθ)=2√γ γ +2√γ γ   ・・・式(2)
Further, when the surface energy of the liquid surface is represented by γ L , the solid surface energy is represented by γ S , and the contact angle is represented by θ, the following formula (2) is established.
γ L (1 + cos θ) = 2√γ S d γ L d + 2√γ S p γ L p (2)
 したがって、γの成分が既知である液体を2種類用いてそれぞれの接触角θを測定し、γ 、γ に関する連立方程式を解くことによりγが求められる。 Therefore, the θ respective contact angles were measured using two liquid components of gamma L is known, γ S d, γ S is obtained by solving the simultaneous equations for gamma S p.
<<動摩擦係数>>
 前記防汚層の視認側の表面の動摩擦係数としては、特に制限はなく、目的に応じて適宜選択することができるが、汚れが除去しやすい点で防汚性がより優れることから、0.40以下であることが好ましく、0.30以下であることがより好ましく、0.20以下であることが特に好ましい。前記動摩擦係数が、0.40以下であることで、払拭材料のすべり性がよく汚れが付着しても拭き取りやすい。また、前記動摩擦係数が小さいと、力を逃がす効果が生じ、前記防汚層が傷つきにくい。前記動摩擦係数の下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記動摩擦係数は、例えば、0.05以上が好ましい。
<< Coefficient of dynamic friction >>
The dynamic friction coefficient of the surface on the viewing side of the antifouling layer is not particularly limited and can be appropriately selected according to the purpose. It is preferably 40 or less, more preferably 0.30 or less, and particularly preferably 0.20 or less. When the coefficient of dynamic friction is 0.40 or less, the wiping material has good sliding properties and can be easily wiped off even if dirt is attached. Moreover, when the said dynamic friction coefficient is small, the effect of releasing force will arise and the said pollution protection layer will not be damaged easily. There is no restriction | limiting in particular as a lower limit of the said dynamic friction coefficient, Although it can select suitably according to the objective, For example, the said dynamic friction coefficient is 0.05 or more.
 動摩擦係数は、以下の方法により求められる。
 協和界面科学株式会社製Triboster TS501を用いて測定する。面接触子に旭化成株式会社製BEMCOT(登録商標)M-3IIを両面テープで貼り付け測定荷重50g/cm、測定速度1.7mm/s、測定距離20mmとして12回測定しその平均値を動摩擦係数とする。
The dynamic friction coefficient is obtained by the following method.
Measurement is performed using Triboster TS501 manufactured by Kyowa Interface Science Co., Ltd. BEMCOT (registered trademark) M-3II manufactured by Asahi Kasei Co., Ltd. is attached to the surface contactor with double-sided tape, measured 12 times with a measurement load of 50 g / cm 2 , a measurement speed of 1.7 mm / s, and a measurement distance of 20 mm. It is a coefficient.
<<弾性回復率>>
 前記防汚層の弾性回復率としては、特に制限はなく、目的に応じて適宜選択することができるが、耐傷性に優れる点で50%以上であることが好ましく、60%以上であることがより好ましい。前記弾性回復率の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記弾性回復率は、例えば、100%以下であってもよい。
<< Elastic recovery factor >>
The elastic recovery rate of the antifouling layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50% or more and 60% or more in terms of excellent scratch resistance. More preferred. There is no restriction | limiting in particular as an upper limit of the said elastic recovery rate, Although it can select suitably according to the objective, The said elastic recovery rate may be 100% or less, for example.
 弾性回復率は、以下の方法により求められる。
 試験片の弾性回復率はフィッシャー・インストルメンツ社製PICODENTOR HM500を用いて下記の条件で測定する。
 荷重:1mN/20s
 針:面角136°のダイアモンド錐体
 任意の10か所で測定しその平均値を弾性回復率とする。
The elastic recovery rate is obtained by the following method.
The elastic recovery rate of the test piece is measured under the following conditions using a PICODENTOR HM500 manufactured by Fischer Instruments.
Load: 1mN / 20s
Needle: Diamond cone with a surface angle of 136 ° Measured at any 10 points, and the average value is taken as the elastic recovery rate.
<<平均厚み>>
 前記防汚層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.1μm以上50μm以下であってもよいし、0.5μm以上50μm以下であってもよいし、0.5μm以上30μm以下であってもよい。
 平均厚みは、例えば、以下の方法により求められる。
 防汚層の厚みは、その断面を、電界放出形走査電子顕微鏡S-4700(商品名;株式会社日立ハイテクノロジーズ製)で観察することで測定できる。任意の10箇所で測定し、その平均値を、平均厚みとする。
 また、フィルメトリクス株式会社製F20膜厚測定システムで測定してもよい。
<< Average thickness >>
The average thickness of the antifouling layer is not particularly limited and may be appropriately selected depending on the purpose. For example, it may be 0.1 μm or more and 50 μm or less, or 0.5 μm or more and 50 μm or less. Or 0.5 μm or more and 30 μm or less.
The average thickness is obtained by, for example, the following method.
The thickness of the antifouling layer can be measured by observing the cross section with a field emission scanning electron microscope S-4700 (trade name; manufactured by Hitachi High-Technologies Corporation). Measurement is performed at any 10 points, and the average value is defined as the average thickness.
Moreover, you may measure with the film metrics Co., Ltd. F20 film thickness measurement system.
<<硬化性樹脂組成物>>
 前記防汚層は、硬化性樹脂組成物の硬化物であることが好ましい。
 前記硬化性樹脂組成物は、フッ素を有する撥水性モノマーを含有する。
 前記硬化性樹脂組成物としては、例えば、熱硬化性樹脂組成物、活性エネルギー線硬化性樹脂組成物などが挙げられるが、活性エネルギー線硬化性樹脂組成物であることが好ましい。
<< Curable resin composition >>
The antifouling layer is preferably a cured product of a curable resin composition.
The curable resin composition contains a water-repellent monomer having fluorine.
Examples of the curable resin composition include a thermosetting resin composition and an active energy ray curable resin composition, and an active energy ray curable resin composition is preferable.
<<<活性エネルギー線硬化性樹脂組成物>>>
 前記防汚層は、活性エネルギー線硬化性樹脂組成物の硬化物であることが好ましい。
 前記活性エネルギー線硬化性樹脂組成物は、撥水性モノマーを少なくとも含有し、更に必要に応じて、その他のモノマー、光重合開始剤、紫外線吸収剤、ラジカル捕捉剤、溶剤などのその他の成分を含有する。
<<< Active energy ray-curable resin composition >>>
The antifouling layer is preferably a cured product of an active energy ray curable resin composition.
The active energy ray-curable resin composition contains at least a water-repellent monomer, and further contains other components such as other monomers, a photopolymerization initiator, an ultraviolet absorber, a radical scavenger, and a solvent as necessary. To do.
-撥水性モノマー-
 前記撥水性モノマーは、フッ素を有する。
 前記撥水性モノマーは、撥水性分子構造を有する。本発明における撥水性分子構造としては、フッ素を有する構造が挙げられ、例えば、フルオロアルキル構造、パーフルオロポリエーテル構造などが挙げられる。
 前記活性エネルギー線硬化性樹脂組成物が前記撥水性モノマーを含有することにより、前記防汚層の動摩擦係数を小さくでき、その結果、前記防汚層に耐傷性を付与することができる。
-Water repellent monomer-
The water repellent monomer has fluorine.
The water repellent monomer has a water repellent molecular structure. Examples of the water-repellent molecular structure in the present invention include a structure having fluorine, and examples thereof include a fluoroalkyl structure and a perfluoropolyether structure.
When the active energy ray-curable resin composition contains the water-repellent monomer, the coefficient of dynamic friction of the antifouling layer can be reduced, and as a result, scratch resistance can be imparted to the antifouling layer.
 前記撥水性モノマーは、(メタ)アクリロイル基を有する。前記撥水性モノマーにおける前記(メタ)アクリロイル基の数としては、特に制限はなく、目的に応じて適宜選択することができるが、2~6が好ましい。 The water repellent monomer has a (meth) acryloyl group. The number of the (meth) acryloyl groups in the water repellent monomer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 to 6.
 前記撥水性モノマーとしては、パーフルオロポリエーテル基を含有する(メタ)アクリレートが好ましく、パーフルオロポリエーテル基として、-(O-CFCF)-、-(O-CFCFCF)-、又は-(O-CFC(CF)F)-の繰り返し構造を含む化合物が好ましい。 The water-repellent monomer is preferably a (meth) acrylate containing a perfluoropolyether group, and the perfluoropolyether group is represented by — (O—CF 2 CF 2 ) — or — (O—CF 2 CF 2 CF 2). )-Or — (O—CF 2 C (CF 3 ) F) — is preferred.
 前記撥水性モノマーは、市販品であってもよい。前記市販品としては、例えば、ダイキン工業株式会社製DAC-HP、ソルベイスペシャルティポリマーズ社製フルオロリンクAD1700、ソルベイスペシャルティポリマーズ社製フルオロリンクMD700、サートマー社製CN4000、信越化学工業株式会社製SHIN-ETSU SUBELYN、DIC株式会社製RSシリーズ、関東電化工業株式会社製エフクリア、株式会社フロロテクノロジー製フロロサーフ、ダイセル・オルネクス株式会社製EBECRYL8110などが挙げられる。 The water-repellent monomer may be a commercially available product. Examples of the commercially available products include DAC-HP manufactured by Daikin Industries, Ltd., Fluorolink AD1700 manufactured by Solvay Specialty Polymers, Fluorolink MD700 manufactured by Solvay Specialty Polymers, CN4000 manufactured by Sartomer, and SHIN-ETSU SUBLYN manufactured by Shin-Etsu Chemical Co., Ltd. DIC Corporation RS Series, Kanto Denka Kogyo Co., Ltd. F Clear, Fluoro Technology Co., Ltd. Fluorosurf Co., Ltd., Daicel Ornex Co., Ltd. EBECRYL8110, and the like.
 前記撥水性モノマーの分子量としては、特に制限はなく、目的に応じて適宜選択することができる。 The molecular weight of the water repellent monomer is not particularly limited and can be appropriately selected according to the purpose.
 前記活性エネルギー線硬化性樹脂組成物における前記撥水性モノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対して、0.001質量%以上5.0質量%以下が好ましく、0.01質量%以上5.0質量%以下がより好ましく、0.01質量%以上4.0質量%以下が更により好ましく、0.04質量%以上3.0質量%以下が特に好ましい。前記含有量が、0.001質量%未満であると、防汚性が劣ることがある。前記含有量が、5.0質量%を超えると、前記防汚層に外観の低下(白化、曇り)が生じることがある。 The content of the water repellent monomer in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. On the other hand, 0.001 mass% or more and 5.0 mass% or less are preferable, 0.01 mass% or more and 5.0 mass% or less are more preferable, 0.01 mass% or more and 4.0 mass% or less are still more preferable. 0.04% by mass to 3.0% by mass is particularly preferable. If the content is less than 0.001% by mass, the antifouling property may be inferior. When the content exceeds 5.0% by mass, appearance deterioration (whitening, cloudiness) may occur in the antifouling layer.
-その他のモノマー-
 前記その他のモノマーとしては、前記撥水性モノマー以外のモノマー(活性エネルギー線硬化性成分)であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレタン(メタ)アクリレート、シリコーン(メタ)アクリレート、2官能以上の(メタ)アクリレートなどが挙げられる。
 前記ウレタン(メタ)アクリレート、及び前記2官能以上の(メタ)アクリレートは、例えば、弾性回復率の調整に利用される。
 前記シリコーン(メタ)アクリレートは、例えば、表面エネルギー、動摩擦係数の調整に利用される。
-Other monomers-
The other monomer is not particularly limited as long as it is a monomer (active energy ray-curable component) other than the water-repellent monomer, and can be appropriately selected according to the purpose. For example, urethane (meth) acrylate, Examples include silicone (meth) acrylate and bifunctional or higher functional (meth) acrylate.
The urethane (meth) acrylate and the bifunctional or higher functional (meth) acrylate are used, for example, for adjusting the elastic recovery rate.
The silicone (meth) acrylate is used, for example, for adjusting the surface energy and the dynamic friction coefficient.
--ウレタン(メタ)アクリレート--
 前記ウレタン(メタ)アクリレートとしては、例えば、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレートなどが挙げられる。
 前記活性エネルギー線硬化性樹脂組成物が前記撥水性モノマーを含有することにより、前記防汚層の動摩擦係数を小さくでき、前記防汚層に耐傷性を付与することができるが、前記活性エネルギー線硬化性樹脂組成物が前記ウレタン(メタ)アクリレートを含有することにより、前記防汚層の動摩擦係数を更に小さくでき、その結果、前記防汚層の耐傷性を更に優れたものにすることができる。
-Urethane (meth) acrylate-
Examples of the urethane (meth) acrylate include aliphatic urethane (meth) acrylate and aromatic urethane (meth) acrylate.
When the active energy ray-curable resin composition contains the water-repellent monomer, the dynamic friction coefficient of the antifouling layer can be reduced and scratch resistance can be imparted to the antifouling layer. When the curable resin composition contains the urethane (meth) acrylate, the coefficient of dynamic friction of the antifouling layer can be further reduced, and as a result, the flaw resistance of the antifouling layer can be further improved. .
 前記ウレタン(メタ)アクリレートとは、一分子中にウレタン結合と(メタ)アクリロイル基を有する材料のことをいい、かかる材料を特に制限なく用いることができる。 The urethane (meth) acrylate refers to a material having a urethane bond and a (meth) acryloyl group in one molecule, and such a material can be used without any particular limitation.
 前記ウレタン(メタ)アクリレートは、例えば、少なくとも1つの(メタ)アクリロイル基を有するヒドロキシ化合物とイソシアネートとの反応によって得られる。
 前記イソシアネートとしては、例えば、ポリイソシアネートが挙げられる。
The urethane (meth) acrylate is obtained, for example, by a reaction between a hydroxy compound having at least one (meth) acryloyl group and an isocyanate.
Examples of the isocyanate include polyisocyanate.
 前記脂肪族ウレタン(メタ)アクリレートは、例えば、少なくとも1つの(メタ)アクリロイル基を有するヒドロキシ化合物と脂肪族イソシアネートとの反応によって得られる。前記脂肪族イソシアネートとしては、例えば、脂肪族ジイソシアネート、脂肪族トリイソシアネートなどが挙げられる。
 前記芳香族ウレタン(メタ)アクリレートは、例えば、少なくとも1つの(メタ)アクリロイル基を有するヒドロキシ化合物と芳香族イソシアネートとの反応によって得られる。前記芳香族イソシアネートとしては、例えば、芳香族ジイソシアネート、芳香族トリイソシアネートなどが挙げられる。
The aliphatic urethane (meth) acrylate is obtained, for example, by a reaction between a hydroxy compound having at least one (meth) acryloyl group and an aliphatic isocyanate. Examples of the aliphatic isocyanate include aliphatic diisocyanate and aliphatic triisocyanate.
The aromatic urethane (meth) acrylate is obtained, for example, by a reaction between a hydroxy compound having at least one (meth) acryloyl group and an aromatic isocyanate. Examples of the aromatic isocyanate include aromatic diisocyanate and aromatic triisocyanate.
 前記活性エネルギー線硬化性樹脂組成物における前記ウレタン(メタ)アクリレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対して、10質量%以上90質量%以下が好ましく、15質量%以上85質量%以下がより好ましく、15質量%以上60質量%以下が特に好ましい。 There is no restriction | limiting in particular as content of the said urethane (meth) acrylate in the said active energy ray curable resin composition, Although it can select suitably according to the objective, The non-volatile property of the said active energy ray curable resin composition The content is preferably 10% by mass or more and 90% by mass or less, more preferably 15% by mass or more and 85% by mass or less, and particularly preferably 15% by mass or more and 60% by mass or less.
--シリコーン(メタ)アクリレート--
 前記シリコーン(メタ)アクリレートとは、シリコーン骨格を有する(メタ)アクリレートである。
--- Silicone (meth) acrylate--
The silicone (meth) acrylate is a (meth) acrylate having a silicone skeleton.
 前記活性エネルギー線硬化性樹脂組成物における前記シリコーン(メタ)アクリレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対して、0.001質量%以上5.0質量%以下が好ましい。 There is no restriction | limiting in particular as content of the said silicone (meth) acrylate in the said active energy ray-curable resin composition, Although it can select suitably according to the objective, The non-volatile property of the said active energy ray-curable resin composition 0.001 mass% or more and 5.0 mass% or less are preferable with respect to a minute.
--2官能以上の(メタ)アクリレート--
 前記2官能以上の(メタ)アクリレートとしては、一分子中に2以上の(メタ)アクリロイル基を有する材料であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記活性エネルギー線硬化性樹脂組成物が前記2官能以上の(メタ)アクリレートを含有することにより、前記積層体のプレス耐性、及び耐熱性を優れたものにすることができる。
--2 (meth) acrylates with higher functionality--
The bifunctional or higher functional (meth) acrylate is not particularly limited as long as it is a material having two or more (meth) acryloyl groups in one molecule, and can be appropriately selected according to the purpose.
When the active energy ray-curable resin composition contains the bifunctional or higher functional (meth) acrylate, the laminate can have excellent press resistance and heat resistance.
 前記2官能以上の(メタ)アクリレートにおける(メタ)アクリロイル基の数としては、2以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、2~10が好ましく、2~8がより好ましく、2~6が特に好ましい。 The number of (meth) acryloyl groups in the bifunctional or higher (meth) acrylate is not particularly limited as long as it is 2 or more, and can be appropriately selected according to the purpose. Is more preferable, and 2 to 6 is particularly preferable.
 前記2官能以上の(メタ)アクリレートとしては、例えば、2官能の(メタ)アクリレート、3官能の(メタ)アクリレート、4官能の(メタ)アクリレートなどが挙げられる。 Examples of the bifunctional or higher functional (meth) acrylate include bifunctional (meth) acrylate, trifunctional (meth) acrylate, and tetrafunctional (meth) acrylate.
 3官能以上の(メタ)アクリレートしては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、グリセリンエトキシトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、イソシアヌル酸エトキシトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールアルコキシテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 ここで、アルコキシとしては、例えば、エトキシ、プロポキシなどが挙げられる。
Examples of the tri- or more functional (meth) acrylates include dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate, glycerin ethoxytri (meth) acrylate, Glycerin propoxytri (meth) acrylate, isocyanuric acid ethoxytri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol alkoxytetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate Etc.
Here, as alkoxy, ethoxy, propoxy, etc. are mentioned, for example.
 前記2官能以上の(メタ)アクリレートは、環構造を有することが好ましい。前記環構造としては、脂環式構造、芳香族構造、複素環式構造、多環式構造、イソシアヌル環構造などが挙げられる。
 前記環構造を有する前記2官能以上の(メタ)アクリレートとしては、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、イソシアヌル酸エトキシジ(メタ)アクリレート〔例えば、イソシアヌル酸EO変性ジアクリレート〕などが挙げられる。
 ここで、前記環構造は、前記活性エネルギー線硬化性樹脂組成物の硬化物(防汚層)に硬さを与える。この硬さは、例えば、前記防汚層のガラス転移温度に現れる。前記防汚層の前記ガラス転移温度は、例えば、130℃以上が好ましい。ガラス転移温度が高いことは、防汚層が優れた耐傷性を得る一因となる。なお、ガラス転移温度が高くても、弾性回復率が低い場合は、優れた耐傷性は得られない。
The bifunctional or higher (meth) acrylate preferably has a ring structure. Examples of the ring structure include an alicyclic structure, an aromatic structure, a heterocyclic structure, a polycyclic structure, and an isocyanuric ring structure.
Examples of the bifunctional or higher functional (meth) acrylate having the ring structure include tricyclodecane dimethanol di (meth) acrylate, isocyanuric acid ethoxydi (meth) acrylate [for example, isocyanuric acid EO-modified diacrylate] and the like. It is done.
Here, the ring structure gives hardness to the cured product (antifouling layer) of the active energy ray-curable resin composition. This hardness appears, for example, in the glass transition temperature of the antifouling layer. The glass transition temperature of the antifouling layer is preferably, for example, 130 ° C. or higher. A high glass transition temperature contributes to the antifouling layer obtaining excellent scratch resistance. Even if the glass transition temperature is high, if the elastic recovery rate is low, excellent scratch resistance cannot be obtained.
 前記活性エネルギー線硬化性樹脂組成物における前記2官能以上の(メタ)アクリレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対して、10質量%以上99質量%以下が好ましく、15質量%以上99質量%以下がより好ましい。
 前記活性エネルギー線硬化性樹脂組成物における前記2官能以上の(メタ)アクリレートの含有量としては、前記活性エネルギー線硬化性樹脂組成物が前記ウレタン(メタ)アクリレートを含有する場合には、10質量%以上90質量%以下が好ましく、15質量%以上85質量%以下がより好ましい。
 前記活性エネルギー線硬化性樹脂組成物における前記環構造を有する前記2官能以上の(メタ)アクリレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対して、10質量%以上99質量%以下が好ましく、15質量%以上90質量%以下がより好ましい。
The content of the bifunctional or higher functional (meth) acrylate in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. 10 mass% or more and 99 mass% or less are preferable with respect to the non volatile matter of a thing, and 15 mass% or more and 99 mass% or less are more preferable.
The content of the bifunctional or higher functional (meth) acrylate in the active energy ray-curable resin composition is 10 mass when the active energy ray-curable resin composition contains the urethane (meth) acrylate. % To 90% by mass is preferable, and 15% to 85% by mass is more preferable.
The content of the bifunctional or higher functional (meth) acrylate having the ring structure in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose. 10 mass% or more and 99 mass% or less are preferable with respect to the non volatile matter of a wire curable resin composition, and 15 mass% or more and 90 mass% or less are more preferable.
 ここで、本発明において、前記撥水性モノマーと、前記ウレタン(メタ)アクリレートと、前記シリコーン(メタ)アクリレートと、前記2官能以上の(メタ)アクリレートとは、以下の点で異なる材料として位置づけられる。
 フッ素原子を有するモノマーは、2官能以上であっても前記撥水性モノマーに属する。
 フッ素原子を有するモノマーは、ウレタン結合を有していても前記撥水性モノマーに属する。
 フッ素原子を有するモノマーは、シリコーン骨格を有していても前記撥水性モノマーに属する。
 シリコーン骨格を有するモノマーは、2官能以上であっても前記シリコーン(メタ)アクリレートに属する。
 シリコーン骨格を有するモノマーは、ウレタン結合を有していても前記シリコーン(メタ)アクリレートに属する。
 フッ素原子及びシリコーン骨格を有さないがウレタン結合を有するモノマーは、2官能以上であっても前記ウレタン(メタ)アクリレートに属する。
 フッ素原子、シリコーン骨格、及びウレタン結合を有しないが、2官能以上であるモノマーは、前記2官能以上の(メタ)アクリレートに属する。
Here, in the present invention, the water repellent monomer, the urethane (meth) acrylate, the silicone (meth) acrylate, and the bifunctional or higher functional (meth) acrylate are positioned as different materials in the following points. .
A monomer having a fluorine atom belongs to the water-repellent monomer even if it is bifunctional or higher.
The monomer having a fluorine atom belongs to the water-repellent monomer even if it has a urethane bond.
The monomer having a fluorine atom belongs to the water-repellent monomer even if it has a silicone skeleton.
A monomer having a silicone skeleton belongs to the silicone (meth) acrylate even if it is bifunctional or higher.
A monomer having a silicone skeleton belongs to the silicone (meth) acrylate even if it has a urethane bond.
A monomer having no fluorine atom and no silicone skeleton but having a urethane bond belongs to the urethane (meth) acrylate even if it is bifunctional or higher.
A monomer that does not have a fluorine atom, a silicone skeleton, and a urethane bond but is bifunctional or higher belongs to the bifunctional or higher (meth) acrylate.
-光重合開始剤-
 前記光重合開始剤としては、例えば、光ラジカル重合開始剤、光酸発生剤、ビスアジド化合物、ヘキサメトキシメチルメラミン、テトラメトキシグリコユリルなどが挙げられる。
 前記光ラジカル重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下の化合物が挙げられる。
 ・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
 ・2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン
 ・2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン
 ・2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン
 ・1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン
 ・オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルと、オキシフェニル酢酸、2-(2-ヒドロキシエトキシ)エチルエステルの混合物
 ・2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド
-Photopolymerization initiator-
Examples of the photopolymerization initiator include a photoradical polymerization initiator, a photoacid generator, a bisazide compound, hexamethoxymethylmelamine, and tetramethoxyglycolyl.
There is no restriction | limiting in particular as said radical photopolymerization initiator, According to the objective, it can select suitably, For example, the following compounds are mentioned.
1-hydroxy-cyclohexyl-phenyl-ketone 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one 2,2-dimethoxy-1,2-diphenylethane-1-one • 2-hydroxy-2-methyl-1-phenyl-propan-1-one • 1- [4- (2-hydroxyethoxy) -phenyl]- 2-hydroxy-2-methyl-1-propan-1-one oxyphenylacetic acid, 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, oxyphenylacetic acid, 2- (2-hydroxyethoxy) ethyl Ester mixture 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide
 前記光重合開始剤は、外観における黄変を防止する点から、構成元素に窒素原子を含まないことが好ましい。
 他方、前記光重合開始剤は、外観における黄変を防止する点から、C、H、及びOのみを構成元素とするか、又はC、H、P、及びOのみを構成元素とすることが好ましい。
The photopolymerization initiator preferably does not contain a nitrogen atom as a constituent element from the viewpoint of preventing yellowing in appearance.
On the other hand, the photopolymerization initiator may contain only C, H, and O as constituent elements, or only C, H, P, and O as constituent elements from the viewpoint of preventing yellowing in appearance. preferable.
 前記活性エネルギー線硬化性樹脂組成物における前記光重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対して、0.1質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましく、1質量%~5質量%が特に好ましい。 There is no restriction | limiting in particular as content of the said photoinitiator in the said active energy ray curable resin composition, Although it can select suitably according to the objective, The non-volatile content of the said active energy ray curable resin composition Is preferably 0.1% by mass to 10% by mass, more preferably 0.1% by mass to 5% by mass, and particularly preferably 1% by mass to 5% by mass.
-紫外線吸収剤-
 前記紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾエート系化合物、ベンゾオキサジノン系化合物、シアノアクリレート系化合物、ベンゾオキサゾール系化合物、メロシアニン系化合物、サリシレート系化合物、ホルムアミジン系化合物、オキザニリド系化合物などが挙げられる。
-UV absorber-
Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, triazine compounds, benzoate compounds, benzoxazinone compounds, cyanoacrylate compounds, benzoxazole compounds, merocyanine compounds, salicylate compounds, Examples include formamidine compounds and oxanilide compounds.
 前記紫外線吸収剤は、市販品であってもよい。前記市販品としては、例えば、BASF社製Tinuvinシリーズ、Chimassorbシリーズ、Uvinulシリーズ、株式会社ADEKA製アデカスタブLAシリーズ、ケミプロ化成株式会社製ケミソーブシリーズ、シプロ化成株式会社製SEESORBシリーズ、城北化学工業株式会社製ベンゾトリアゾール系化合物などが挙げられる。 The ultraviolet absorber may be a commercially available product. Examples of the commercially available products include the Tinuvin series, the Chimassorb series, the Uvinul series manufactured by BASF, the Adeka Stub LA series manufactured by ADEKA Corporation, the Chemisorb series manufactured by Chemipro Kasei Co., Ltd., and the SEESORB series manufactured by Sipro Kasei Co., Ltd. Examples include benzotriazole-based compounds.
 前記活性エネルギー線硬化性樹脂組成物における前記紫外線吸収剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。 The content of the ultraviolet absorber in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose.
-ラジカル捕捉剤-
 前記ラジカル捕捉剤としては、例えば、アミン系化合物、フェノール系化合物、ベンゾエート系化合物などが挙げられる。
-Radical scavenger-
Examples of the radical scavenger include amine compounds, phenol compounds, and benzoate compounds.
 前記ラジカル捕捉剤は、市販品であってもよい。前記市販品としては、例えば、BASF社製Tinuvinシリーズ、Chimassorbシリーズ、株式会社ADEKA製アデカスタブ LAシリーズ、ケミプロ化成株式会社製ケミソーブシリーズ、ケミスタブシリーズ、ケミノックスシリーズ、シプロ化成株式会社製SEENOXシリーズなどが挙げられる。 The radical scavenger may be a commercially available product. Examples of the commercially available products include: Tinufin series manufactured by BASF, Chimassorb series, Adeka stab manufactured by ADEKA, LA series, Chemisorb series manufactured by Chemipro Kasei Co., Ltd., Chemistab series, Cheminox series, SEENOX series manufactured by Sipro Kasei Co., Ltd. Is mentioned.
 前記活性エネルギー線硬化性樹脂組成物における前記ラジカル捕捉剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。 The content of the radical scavenger in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose.
-溶剤-
 前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機溶剤が挙げられる。
 前記有機溶剤としては、例えば、芳香族系溶媒、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、グリコールエーテル系溶媒、グリコールエーテルエステル系溶媒、塩素系溶媒、エーテル系溶媒、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。
-solvent-
There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, an organic solvent is mentioned.
Examples of the organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl Examples include formamide, dimethyl sulfoxide, dimethylacetamide, and the like.
 前記溶剤としては、より良好な外観の防汚層を得る観点から、沸点が80℃以上の溶剤が好ましい。
 沸点が80℃以上の溶剤としては、例えば、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノール、1,3-ブタンジオール、1,4-ブタンジオール、2-エチル-1-ヘキサノール、酢酸ノルマルプロピル、酢酸イソプロピル、酢酸ブチル、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン、ジアセトンアルコール、プロピレングリコールモノメチルエーテル、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、1,4-ジオキサン、メチルカルビトール、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ブチルカルビトールアセテートなどが挙げられる。
As the solvent, a solvent having a boiling point of 80 ° C. or higher is preferable from the viewpoint of obtaining an antifouling layer having a better appearance.
Examples of the solvent having a boiling point of 80 ° C. or higher include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, 1,3-butanediol, 1,4-butanediol, 2-ethyl-1-hexanol, normal propyl acetate, isopropyl acetate, butyl acetate, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, diacetone alcohol, propylene glycol monomethyl ether, methyl cellosolve, ethyl cellosolve, butyl cellosolve, 1,4-dioxane, Examples thereof include methyl carbitol, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, and butyl carbitol acetate.
 前記活性エネルギー線硬化性樹脂組成物における前記溶剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。 The content of the solvent in the active energy ray curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose.
 前記活性エネルギー線硬化性樹脂組成物は、活性エネルギー線が照射されることにより硬化する。前記活性エネルギー線としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子線、紫外線、赤外線、レーザー光線、可視光線、電離放射線(X線、α線、β線、γ線等)、マイクロ波、高周波などが挙げられる。 The active energy ray-curable resin composition is cured when irradiated with active energy rays. There is no restriction | limiting in particular as said active energy ray, According to the objective, it can select suitably, For example, an electron beam, an ultraviolet-ray, infrared rays, a laser beam, visible light, ionizing radiation (X ray, alpha ray, beta ray, gamma) Wire, etc.), microwave, high frequency and the like.
<樹脂層>
 前記樹脂層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ポリスチレン、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、PC/PMMA積層体、ゴム添加PMMAなどが挙げられる。
 前記樹脂層は、例えば、上記材質の単層構造であってもよいし、複数の上記材質の積層構造であってもよい。
<Resin layer>
There is no restriction | limiting in particular as a material of the said resin layer, According to the objective, it can select suitably, For example, a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN) , Polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyethersulfone, polysulfone, polypropylene (PP), polystyrene, diacetylcellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate ( PC), epoxy resin, urea resin, urethane resin, melamine resin, phenol resin, acrylonitrile / butadiene / styrene copolymer, cycloolefin polymer (COP), cycloolefin copolymer (COC) PC / PMMA laminate, such as rubber additives PMMA and the like.
The resin layer may have, for example, a single layer structure made of the above material or a laminated structure made of a plurality of the above materials.
 前記樹脂層は、透明性を有する。 The resin layer has transparency.
 前記樹脂層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、25μm~5mmが好ましく、500μm~5mmがより好ましい。 The average thickness of the resin layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25 μm to 5 mm, and more preferably 500 μm to 5 mm.
 前記樹脂層は、通常、視認側と反対側の面にフレネルレンズ様の多段の傾斜面を有する。 The resin layer usually has a Fresnel lens-like multi-level inclined surface on the surface opposite to the viewing side.
<光反射層>
 前記光反射層としては、前記樹脂層の前記傾斜面を有する側の面上に配された光反射性を有する層であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、その材質としては、金、アルミニウム、プラチナ、クロム、銀等の金属などが挙げられる。
 前記光反射層は、例えば、前記金属を、メッキや蒸着などにより層状に、前記樹脂層の前記傾斜面を有する側の面上に配することにより形成することができる。
 前記光反射層は、例えば、誘電体の蒸着多層膜であってもよい。
<Light reflection layer>
The light reflecting layer is not particularly limited as long as it is a layer having light reflectivity arranged on the surface having the inclined surface of the resin layer, and can be appropriately selected according to the purpose. For example, examples of the material include metals such as gold, aluminum, platinum, chromium, and silver.
The light reflection layer can be formed, for example, by arranging the metal in a layered manner by plating or vapor deposition on the surface of the resin layer having the inclined surface.
The light reflecting layer may be, for example, a dielectric deposited multilayer film.
 前記光反射層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10nm~1,000nmなどが挙げられる。 The average thickness of the light reflection layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 10 nm to 1,000 nm.
<保護層>
 前記保護層としては、前記光反射層の前記樹脂層側と反対側の面上に配された層であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記保護層は、空気や水との接触による酸化・腐食から前記金属層を保護する。
<Protective layer>
The protective layer is not particularly limited as long as it is a layer disposed on the surface of the light reflecting layer opposite to the resin layer, and can be appropriately selected according to the purpose.
The protective layer protects the metal layer from oxidation and corrosion due to contact with air and water.
 前記保護層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有色塗料を前記光反射層の前記樹脂層側と反対側の面上に塗布することにより形成することができる。 There is no restriction | limiting in particular as a formation method of the said protective layer, According to the objective, it can select suitably, For example, by apply | coating a colored paint on the surface on the opposite side to the said resin layer side of the said light reflection layer. Can be formed.
 前記保護層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。 The average thickness of the protective layer is not particularly limited and can be appropriately selected depending on the purpose.
 ここで、前記フレネルミラーの一例を説明する。 Here, an example of the Fresnel mirror will be described.
 図1は、本発明のフレネルミラーの一例の概略断面図である。図1の上側が視認側である。
 図2は、樹脂層の平面図である。
 図1のフレネルミラーは、防汚層1と、樹脂層2と、光反射層3とを有する。
 防汚層1は、視認側の表面に配されている。
 樹脂層2の視認側と反対側の面には、多数の輪帯状の傾斜面2aが、多段に、かつ図2に示すように同心状にフレネルレンズ状に形成されている。図1及び2では、理解を容易にするため、多段の傾斜面2aが粗いピッチで示されているが、一般的には、1mm幅当たり2~10段程度の密度で形成されている。この多段に形成された傾斜面2aには、光反射層3が形成されている。
FIG. 1 is a schematic sectional view of an example of the Fresnel mirror of the present invention. The upper side in FIG. 1 is the viewing side.
FIG. 2 is a plan view of the resin layer.
The Fresnel mirror in FIG. 1 has an antifouling layer 1, a resin layer 2, and a light reflecting layer 3.
The antifouling layer 1 is disposed on the surface on the viewing side.
On the surface of the resin layer 2 opposite to the viewing side, a large number of annular inclined surfaces 2a are formed in multiple stages and concentrically in the form of a Fresnel lens as shown in FIG. In FIG. 1 and FIG. 2, for easy understanding, the multi-step inclined surfaces 2a are shown with a rough pitch, but are generally formed with a density of about 2 to 10 steps per 1 mm width. A light reflecting layer 3 is formed on the inclined surface 2a formed in multiple stages.
 図1の例では、反射面となる光反射層3(傾斜面2a)が同心円中心に対して外向きに傾斜することによって、凸面鏡として機能するようになっているが、光反射層3(傾斜面2a)を同心円中心に対して内向きに傾斜させることによって、凹面鏡として機能させることもできる。 In the example of FIG. 1, the light reflecting layer 3 (inclined surface 2a) serving as a reflecting surface is inclined outward with respect to the center of the concentric circle so that it functions as a convex mirror. It is also possible to function as a concave mirror by inclining the surface 2a) inward with respect to the concentric circle center.
 図3は、本発明のフレネルミラーの他の一例の概略断面図である。
 図3のフレネルミラーは、防汚層1と、樹脂層2と、光反射層3と、保護層4とを有する。
 防汚層1は、視認側の表面に配されている。
 樹脂層2の視認側と反対側の面には、多数の輪帯状の傾斜面2aが、多段に、かつ図2に示すように同心状にフレネルレンズ状に形成されている。この多段に形成された傾斜面2aには、光反射層3が形成されている。
 保護層4は、光反射層3の視認側と反対側の面に接するように、配されている。保護層4によって、多段状の凹凸面が埋め込まれている。
FIG. 3 is a schematic cross-sectional view of another example of the Fresnel mirror of the present invention.
The Fresnel mirror of FIG. 3 includes an antifouling layer 1, a resin layer 2, a light reflecting layer 3, and a protective layer 4.
The antifouling layer 1 is disposed on the surface on the viewing side.
On the surface of the resin layer 2 opposite to the viewing side, a large number of annular inclined surfaces 2a are formed in multiple stages and concentrically in the form of a Fresnel lens as shown in FIG. A light reflecting layer 3 is formed on the inclined surface 2a formed in multiple stages.
The protective layer 4 is disposed so as to be in contact with the surface of the light reflecting layer 3 opposite to the viewing side. The protective layer 4 embeds a multi-stage uneven surface.
(積層体の製造方法)
 本発明の積層体の製造方法は、硬化物を得る工程を含み、更に必要に応じて、その他の工程を含む。
 前記積層体の製造方法は、本発明の前記積層体を製造する方法である。
(Laminate manufacturing method)
The manufacturing method of the laminated body of this invention includes the process of obtaining hardened | cured material, and also includes another process as needed.
The manufacturing method of the said laminated body is a method of manufacturing the said laminated body of this invention.
<硬化物を得る工程>
 前記硬化物を得る工程としては、撥水性モノマーを含有する硬化性樹脂組成物を、樹脂層上に塗布し、前記硬化性樹脂組成物を硬化させ、硬化物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Step of obtaining a cured product>
The process for obtaining the cured product is not particularly limited as long as it is a process for obtaining a cured product by applying a curable resin composition containing a water repellent monomer onto a resin layer and curing the curable resin composition. It can be appropriately selected depending on the purpose.
 前記硬化性樹脂組成物としては、本発明の前記フレネルミラーの説明において例示した前記硬化性樹脂組成物が挙げられる。
 前記樹脂層としては、本発明の前記フレネルミラーの説明において例示した前記樹脂層が挙げられる。
As said curable resin composition, the said curable resin composition illustrated in description of the said Fresnel mirror of this invention is mentioned.
Examples of the resin layer include the resin layer exemplified in the description of the Fresnel mirror of the present invention.
 前記硬化性樹脂組成物を前記樹脂層上に塗布する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング、ブレードコーティング、スピンコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、カーテンコーティング、コンマコート法、ディッピング法などが挙げられる。 The method for applying the curable resin composition onto the resin layer is not particularly limited and may be appropriately selected depending on the purpose. For example, wire bar coating, blade coating, spin coating, reverse roll coating, Examples include die coating, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, and dipping method.
 前記硬化性樹脂組成物を硬化させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記硬化性樹脂組成物が、活性エネルギー線硬化性樹脂組成物であり、前記活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射させ硬化させる方法が好ましい。前記活性エネルギー線としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子線、紫外線、赤外線、レーザー光線、可視光線、電離放射線(X線、α線、β線、γ線等)、マイクロ波、高周波などが挙げられる。 The method for curing the curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but the curable resin composition is an active energy ray curable resin composition, A method in which the active energy ray-curable resin composition is irradiated with an active energy ray and cured is preferable. There is no restriction | limiting in particular as said active energy ray, According to the objective, it can select suitably, For example, an electron beam, an ultraviolet-ray, infrared rays, a laser beam, visible light, ionizing radiation (X ray, alpha ray, beta ray, gamma) Wire, etc.), microwave, high frequency and the like.
 前記硬化は、前記活性エネルギー線硬化性樹脂組成物から形成される未硬化層に対して、酸素濃度1体積%未満の雰囲気下で活性エネルギー線照射を行い、前記防汚層を形成する工程であることが好ましい。
 前記酸素濃度1体積%未満の雰囲気としては、例えば、窒素雰囲気などの不活性ガス雰囲気が挙げられる。
The curing is a step of forming the antifouling layer by irradiating an uncured layer formed from the active energy ray-curable resin composition with an active energy ray in an atmosphere having an oxygen concentration of less than 1% by volume. Preferably there is.
Examples of the atmosphere having an oxygen concentration of less than 1% by volume include an inert gas atmosphere such as a nitrogen atmosphere.
<その他の工程>
 前記その他の工程としては、後述する傾斜面を形成する工程などが挙げられる。
<Other processes>
As said other process, the process of forming the inclined surface mentioned later etc. are mentioned.
(フレネルミラーの製造方法)
 本発明のフレネルミラーの製造方法は、傾斜面を形成する工程と、光反射層を形成する工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記フレネルミラーの製造方法は、本発明の前記フレネルミラーを製造する方法である。
(Fresnel mirror manufacturing method)
The method for producing a Fresnel mirror of the present invention includes at least a step of forming an inclined surface and a step of forming a light reflecting layer, and further includes other steps as necessary.
The method for producing the Fresnel mirror is a method for producing the Fresnel mirror of the present invention.
<傾斜面を形成する工程>
 前記傾斜面を形成する工程としては、樹脂層の視認側と反対側の面に、フレネルレンズ様の多段の傾斜面を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂層の軟化温度以上に加熱した所定の金型に前記樹脂層を押し当てて、フレネルレンズ様の多段の傾斜面を形成する方法などが挙げられる。
<Step of forming an inclined surface>
The step of forming the inclined surface is not particularly limited as long as it is a step of forming a Fresnel lens-like multi-step inclined surface on the surface opposite to the viewing side of the resin layer, and is appropriately selected according to the purpose. For example, there is a method in which the resin layer is pressed against a predetermined mold heated to a temperature higher than the softening temperature of the resin layer to form a Fresnel lens-like multi-step inclined surface.
<光反射層を形成する工程>
 前記光反射層を形成する工程としては、前記傾斜面が形成された前記樹脂層の面上に、前記光反射層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記傾斜面が形成された前記樹脂層の面上に、メッキ法、蒸着法などにより金属製の層である光反射層を形成する方法などが挙げられる。
<Process for forming light reflecting layer>
The step of forming the light reflecting layer is not particularly limited as long as it is a step of forming the light reflecting layer on the surface of the resin layer on which the inclined surface is formed, and is appropriately selected according to the purpose. For example, a method of forming a light reflection layer, which is a metal layer, by plating, vapor deposition, or the like on the surface of the resin layer on which the inclined surface is formed may be mentioned.
<<その他の工程>>
 前記その他の工程としては、例えば、硬化物を得る工程が挙げられる。
<< Other processes >>
As said other process, the process of obtaining hardened | cured material is mentioned, for example.
<<<硬化物を得る工程>>>
 前記硬化物を得る工程としては、前記傾斜面を形成する工程の前に、撥水性モノマーを含有する硬化性樹脂組成物を、前記樹脂層の視認側の面上に塗布し、前記硬化性樹脂組成物を硬化させ、硬化物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記積層体の製造方法において例示した前記硬化物を得る工程などが挙げられる。
<<< Step of obtaining a cured product >>>
As the step of obtaining the cured product, before the step of forming the inclined surface, a curable resin composition containing a water-repellent monomer is applied on the visual side surface of the resin layer, and the curable resin is obtained. If it is the process of hardening a composition and obtaining hardened | cured material, there will be no restriction | limiting in particular, According to the objective, it can select suitably, For example, the said hardened | cured material illustrated in the manufacturing method of the said laminated body of this invention is obtained. The process etc. are mentioned.
 ここで、本発明のフレネルミラーの製造方法の一例を図を用いて説明する。
 図4A~図4Gは、本発明のフレネルミラーの製造方法の一例を説明するための断面模式図である。
 まず、平板状の樹脂層2を用意する(図4A)。
 次に、樹脂層2の片面に、防汚層1を形成し、積層体を作製する(図4B)。
 次に、樹脂層2の他方の面にフレネルレンズ様の形状を付与するための金型11を用意する(図4C)。
 次に、加熱した金型11に、積層体の樹脂層2側の面に押し付け(図4D)、樹脂層2の一方の面上に、フレネルレンズ様の多段の傾斜面2aを形成する(図4E)。
 次に、樹脂層2の傾斜面2aが形成された側の表面に、光反射層3を形成する(図4F)。
 次に、光反射層3上に、保護層4を形成する。
 以上により、フレネルミラーが得られる。
Here, an example of the manufacturing method of the Fresnel mirror of this invention is demonstrated using figures.
4A to 4G are schematic cross-sectional views for explaining an example of the manufacturing method of the Fresnel mirror of the present invention.
First, the flat resin layer 2 is prepared (FIG. 4A).
Next, the antifouling layer 1 is formed on one surface of the resin layer 2 to produce a laminate (FIG. 4B).
Next, a mold 11 for providing a Fresnel lens-like shape on the other surface of the resin layer 2 is prepared (FIG. 4C).
Next, the heated mold 11 is pressed against the surface on the resin layer 2 side of the laminate (FIG. 4D), and a Fresnel lens-like multi-step inclined surface 2a is formed on one surface of the resin layer 2 (FIG. 4). 4E).
Next, the light reflection layer 3 is formed on the surface of the resin layer 2 where the inclined surface 2a is formed (FIG. 4F).
Next, the protective layer 4 is formed on the light reflecting layer 3.
As described above, a Fresnel mirror is obtained.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
<水接触角>
 水接触角は協和界面化学株式会社製自動接触角計DM-501を用いて下記の条件で測定した。
 ・蒸留水の滴下量:2μL
 ・測定温度:25℃
 水を滴下して5秒経過後の接触角を試験片の任意の10か所で楕円フィッティング法で測定しその平均値を水接触角とした。
<Water contact angle>
The water contact angle was measured using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. under the following conditions.
・ Drip amount of distilled water: 2 μL
・ Measurement temperature: 25 ℃
The contact angle after 5 seconds from dropping of water was measured by an ellipse fitting method at any 10 locations on the test piece, and the average value was taken as the water contact angle.
<ヘキサデカン接触角>
 ヘキサデカン接触角は協和界面化学株式会社製自動接触角計DM-501を用いて下記の条件で測定した。
 ・ヘキサデカンの滴下量:1μL
 ・測定温度:25℃
 ヘキサデカンを滴下して20秒経過後の接触角を試験片の任意の10か所で楕円フィッティング法で測定しその平均値をヘキサデカン接触角とした。
<Hexadecane contact angle>
The hexadecane contact angle was measured using an automatic contact angle meter DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. under the following conditions.
・ Drop amount of hexadecane: 1 μL
・ Measurement temperature: 25 ℃
Hexadecane was dropped and the contact angle after 20 seconds was measured by an ellipse fitting method at an arbitrary 10 locations on the test piece, and the average value was defined as the hexadecane contact angle.
<表面エネルギー>
 表面エネルギーは、水接触角とヘキサデカン接触角とを用いて、Kaelble-Uyの方法で算出した。
<Surface energy>
The surface energy was calculated by the Kaelble-Uy method using the water contact angle and the hexadecane contact angle.
<動摩擦係数>
 協和界面科学株式会社製Triboster TS501を用いて測定した。面接触子に旭化成株式会社製BEMCOT(登録商標)M-3IIを両面テープで貼り付け測定荷重50g/cm、測定速度1.7mm/s、測定距離20mmとして12回測定しその平均値を動摩擦係数とした。
<Dynamic friction coefficient>
It measured using Triboster TS501 by Kyowa Interface Science Co., Ltd. BEMCOT (registered trademark) M-3II manufactured by Asahi Kasei Co., Ltd. was attached to the surface contactor with double-sided tape and measured 12 times with a measurement load of 50 g / cm 2 , a measurement speed of 1.7 mm / s, and a measurement distance of 20 mm. Coefficient.
<弾性回復率>
 試験片の弾性回復率はフィッシャー・インストルメンツ社製PICODENTOR HM500を用いて下記の条件で測定した。
 荷重:1mN/20s
 針:面角136°のダイアモンド錐体
 任意の10か所で測定しその平均値を弾性回復率とした。
<Elastic recovery rate>
The elastic recovery rate of the test piece was measured under the following conditions using a PICODETOR HM500 manufactured by Fischer Instruments.
Load: 1mN / 20s
Needle: Diamond cone with a surface angle of 136 ° Measured at any 10 points, and the average value was taken as the elastic recovery rate.
<油性マジックの付着性と除去性(防汚性)>
 Sharpie PROFESSIONAL(黒の油性マジック、商品名、Newell Rubbermaid社製)で試験片を汚した。これをティッシュペーパー(大王製紙株式会社製、エリエール)で10回円を描くように乾拭き後目視で観察して下記の評価基準で評価した。
〔評価基準〕
 ○: よくはじき2~5回の払拭で汚れがなくなっていた。
 △: 弱くはじく。6~10回の払拭で汚れがなくなっていた。
 ×: はじかず10回払拭しても汚れが残っていてミラーの機能を阻害した。
<Adhesion and removal of oil-based magic (antifouling)>
The specimen was soiled with Sharpie PROFESSIONAL (black oily magic, trade name, manufactured by Newell Rubbermaid). This was wiped dry with tissue paper (Daiou Paper Co., Ltd., Erière) 10 times and then visually observed and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: Fouling 2 to 5 times to remove the dirt.
Δ: Weakly repels. Dirt disappeared after 6-10 wiping.
X: Dirt remained even after wiping 10 times, and the function of the mirror was impaired.
<耐傷性>
 試験片を日本スチールウール株式会社製ボンスタースチールウール#0000で荷重1,500gf/4cmをかけて3,600往復こすった後目視で観察して下記の評価基準で評価した。
〔評価基準〕
 ○: 変化なし。
 △: 少し傷ついたがミラーとしての機能に問題なかった。
 ×: 傷多発して真っ白になりミラーの機能を失った。
<Scratch resistance>
The test piece was rubbed 3,600 times with a bonster steel wool # 0000 manufactured by Nippon Steel Wool Co., Ltd. under a load of 1,500 gf / 4 cm 2 and then visually observed and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: No change.
Δ: Slightly damaged but no problem with mirror function.
×: Many scratches occurred and the surface became white and the mirror function was lost.
<プレス耐性>
 後述のプレス加工の後に、ミラーを目視で確認し、以下の評価基準でプレス耐性を評価した。
[評価基準]
 ○: 割れ、もしくはヒビがなく、像鮮明性を維持していた。
 ×: 割れ、ヒビもしくは着色により、像鮮明性が低下した。
<Press resistance>
After the press work described later, the mirror was visually confirmed, and the press resistance was evaluated according to the following evaluation criteria.
[Evaluation criteria]
○: No cracks or cracks, and image clarity was maintained.
X: Image clarity was deteriorated by cracking, cracking or coloring.
<耐熱性>
 プレス加工前の積層体(防汚層が形成された樹脂基材)について、以下の試験を行った。
 積層体を防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察して下記の評価基準で評価した。
〔評価基準〕
 ○: ヒビ割れもしくは変色がない。
 ×: ヒビ割れもしくは変色した。
<Heat resistance>
The following tests were performed on the laminate (resin base material on which the antifouling layer was formed) before pressing.
The laminate was placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, then visually observed and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: No cracking or discoloration.
X: Cracked or discolored.
<ガラス転移温度>
 防汚層のガラス転移温度は、示差走査熱量分析により求めた。具体的には、日立ハイテクノロジーズ社製DSC7000X用い、窒素雰囲気下、毎分10℃昇温条件にて測定し、DSC曲線より接線法で算出した。測定サンプルとしては、窒素雰囲気下、メタルハライドランプで365nmにおける積算光量が500mJ/cmになるように照射することで硬化させた、厚み0.5mmの試験片を用いた。
<Glass transition temperature>
The glass transition temperature of the antifouling layer was determined by differential scanning calorimetry. Specifically, it was measured using a DSC7000X manufactured by Hitachi High-Technologies Corporation under a nitrogen atmosphere at a temperature rising condition of 10 ° C. per minute, and was calculated from the DSC curve by a tangent method. As a measurement sample, a 0.5 mm-thick test piece cured by irradiation with a metal halide lamp in a nitrogen atmosphere so that the integrated light quantity at 365 nm was 500 mJ / cm 2 was used.
(実施例1)
<フレネルミラーの製造>
 樹脂基材には三菱ガス化学株式会社製DF02PU(PMMA/PC積層シート、厚み=0.3mm)を使用した。
 樹脂基材のPMMA側に表1に示した活性エネルギー線硬化性樹脂組成物を乾燥及び硬化後膜厚が表1の値となるように塗布した。塗布後、80℃のオーブンで3分間乾燥させた。メタルハライドランプを用いて窒素雰囲気下(酸素濃度500ppm以下)、照射量500mJ/cmで紫外線を照射して防汚層を硬化させた。
(Example 1)
<Manufacture of Fresnel mirror>
DF02PU (PMMA / PC laminated sheet, thickness = 0.3 mm) manufactured by Mitsubishi Gas Chemical Co., Ltd. was used as the resin base material.
The active energy ray-curable resin composition shown in Table 1 was applied to the PMMA side of the resin base material so that the film thickness after drying and curing was the value shown in Table 1. After coating, it was dried in an oven at 80 ° C. for 3 minutes. The antifouling layer was cured by irradiating with ultraviolet rays at a dose of 500 mJ / cm 2 in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) using a metal halide lamp.
 次に、以下のプレス加工を行った。
-プレス加工-
 次に、防汚層が形成された樹脂基材を250℃に加熱した金型を使ったプレス加工でPC(ポリカーボネート)側にフレネルレンズ様の環状溝を形成した。その後、60℃以下に冷却したのち金型からはずした。
Next, the following press work was performed.
-Press working-
Next, Fresnel lens-like annular grooves were formed on the PC (polycarbonate) side by press working using a mold in which the resin base material on which the antifouling layer was formed was heated to 250 ° C. Then, after cooling to 60 degrees C or less, it removed from the metal mold | die.
 次に、PC側の環状溝の表面に金属を蒸着して光反射層を形成した。
 次に、光反射層の表面に黒のラッカースプレーで保護層を形成し超防汚フレネルミラーを得た。
Next, a metal was deposited on the surface of the annular groove on the PC side to form a light reflecting layer.
Next, a protective layer was formed on the surface of the light reflecting layer with a black lacquer spray to obtain a super-fouling Fresnel mirror.
 得られた超防汚フレネルミラーを上記各評価に供した。結果を表1に示した。 The super antifouling Fresnel mirror obtained was subjected to the above evaluations. The results are shown in Table 1.
(実施例2~6)
 実施例1において、活性エネルギー線硬化性樹脂組成物を、表1に示した活性エネルギー線硬化性樹脂組成物に変更した以外は、実施例1と同様にして、超防汚フレネルミラーを得た。
(Examples 2 to 6)
In Example 1, a super antifouling Fresnel mirror was obtained in the same manner as in Example 1 except that the active energy ray-curable resin composition was changed to the active energy ray-curable resin composition shown in Table 1. .
 得られた超防汚フレネルミラーを上記各評価に供した。結果を表1に示した。 The super antifouling Fresnel mirror obtained was subjected to the above evaluations. The results are shown in Table 1.
(比較例1)
 実施例1において、活性エネルギー線硬化性樹脂組成物を、表1に示した活性エネルギー線硬化性樹脂組成物に変更した以外は、実施例1と同様にして、フレネルミラーを得た。
(Comparative Example 1)
In Example 1, the Fresnel mirror was obtained like Example 1 except having changed the active energy ray-curable resin composition into the active energy ray-curable resin composition shown in Table 1.
 得られたフレネルミラーを上記各評価に供した。結果を表1に示した。 The obtained Fresnel mirror was subjected to each of the above evaluations. The results are shown in Table 1.
(比較例2)
 市販の後方確認用フレネルミラーについて、上記各評価(ただし、プレス耐性、及び耐熱性を除く。)に供した。結果を表1に示した。
(Comparative Example 2)
About the commercially available Fresnel mirror for back confirmation, it used for said each evaluation (however, press tolerance and heat resistance are remove | excluded). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、活性エネルギー線硬化性樹脂組成物の各成分の含有量の単位は質量部である。
 表1に記載の材料の詳細は以下の通りである。
 なお、比較例において「-」は、評価を行っていないことを示す。
In Table 1, the unit of the content of each component of the active energy ray-curable resin composition is part by mass.
Details of the materials listed in Table 1 are as follows.
In the comparative example, “−” indicates that evaluation was not performed.
 ・DAC-HP:末端(メタ)アクリル変性パーフルオロポリエーテル(ダイキン工業株式会社)
 ・KY-1203:パーフルオロポリエーテル含有アクリレート(信越化学工業株式会社)
 ・MU9500:脂肪族ウレタンアクリレートオリゴマー(官能基数:10、MIWON社)
 ・CN975:芳香族ウレタンアクリレートオリゴオマー(官能基数6:SARTOMER社)
 ・A-GLY-20E:エトキシ化グリセリントリアクリレート(新中村工業株式会社)
 ・SR9035:エトキシ化トリメチロールプロパントリアクリレート(SARTOMER社)
 ・A-TMMT:ペンタエリスリトールテトラアクリレート(新中村化学工業株式会社)
 ・EBECRYL130:トリシクロデカンジメタノールジアクリレート(ダイセル・オルネクス株式会社)
 ・EBECRYL40:ペンタエリスリトールアルコキシテトラアクリレート(ダイセル・オルネクス株式会社)
 ・M-215:イソシアヌル酸EO変性ジアクリレート(東亞合成株式会社)
 ・Irgacure 184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社)
 ・PGM:プロピレングリコールモノメチルエーテル
DAC-HP: Terminal (meth) acrylic modified perfluoropolyether (Daikin Industries, Ltd.)
KY-1203: Perfluoropolyether-containing acrylate (Shin-Etsu Chemical Co., Ltd.)
MU9500: aliphatic urethane acrylate oligomer (functional group number: 10, MIWON)
CN975: Aromatic urethane acrylate oligoomer (functional group number 6: SARTOMER)
A-GLY-20E: Ethoxylated glycerin triacrylate (Shin Nakamura Kogyo Co., Ltd.)
SR9035: Ethoxylated trimethylolpropane triacrylate (SARTOMER)
A-TMMT: Pentaerythritol tetraacrylate (Shin Nakamura Chemical Co., Ltd.)
EBECRYL130: Tricyclodecane dimethanol diacrylate (Daicel Ornex Co., Ltd.)
EBECRYL40: Pentaerythritol alkoxytetraacrylate (Daicel Ornex Co., Ltd.)
M-215: Isocyanuric acid EO-modified diacrylate (Toagosei Co., Ltd.)
Irgacure 184: 1-hydroxy-cyclohexyl-phenyl-ketone (BASF)
・ PGM: Propylene glycol monomethyl ether
 なお、表1に記載の2官能以上のアクリレートモノマー〔2官能以上の(メタ)アクリレート〕の詳細は、以下の通りである。 The details of the bifunctional or higher acrylate monomer [bifunctional or higher (meth) acrylate] shown in Table 1 are as follows.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~6のフレネルミラーは、防汚性、耐傷性、プレス耐性、耐熱性の全てに優れていた。
 実施例1~6における耐傷性の評価結果から動摩擦係数が低いほど耐傷性に優れることがわかった。
 実施例3~6のフレネルミラーは、動摩擦係数が、0.20以下であることから、耐傷性がより優れていた。
 加えて、実施例3~6においては、ガラス転移温度が高い。この点も、耐傷性が優れている一因である。
 また、環構造を有する2官能以上の(メタ)アクリレートを用いた実施例3~5は、優れた弾性回復率(60%以上)と、高いガラス転移温度とを有する結果、非常に優れた耐傷性を有しており、実施例1~6の中で最も優れていた。なお、弾性回復率が低い(60%未満である)と、変形が元に戻りにくい傾向にあり、弾性回復率が60%以上の場合と比べて耐傷性が低下する。
The Fresnel mirrors of Examples 1 to 6 were excellent in all of antifouling property, scratch resistance, press resistance and heat resistance.
From the evaluation results of scratch resistance in Examples 1 to 6, it was found that the lower the dynamic friction coefficient, the better the scratch resistance.
The Fresnel mirrors of Examples 3 to 6 were more excellent in scratch resistance because the coefficient of dynamic friction was 0.20 or less.
In addition, in Examples 3 to 6, the glass transition temperature is high. This is also one of the reasons why the scratch resistance is excellent.
In addition, Examples 3 to 5 using a bifunctional or higher functional (meth) acrylate having a ring structure had excellent elastic recovery (60% or higher) and a high glass transition temperature. It was excellent in Examples 1-6. When the elastic recovery rate is low (less than 60%), deformation tends to be difficult to return to, and the scratch resistance is reduced as compared with the case where the elastic recovery rate is 60% or more.
 比較例1では水接触角、及びヘキサデカン接触角が低いため表面エネルギーが16mJ/mよりも大きく油性マジックの付着性に劣っていた。加えて動摩擦係数が0.40よりも大きく除去性に劣っていた。
 比較例2では動摩擦係数は0.40以下であったものの弾性回復率は50%を下まわっており耐傷性は不十分であった。
In Comparative Example 1, since the water contact angle and the hexadecane contact angle were low, the surface energy was larger than 16 mJ / m 2 and the adhesion of the oily magic was inferior. In addition, the coefficient of dynamic friction was greater than 0.40 and the removability was poor.
In Comparative Example 2, the dynamic friction coefficient was 0.40 or less, but the elastic recovery rate was less than 50%, and the scratch resistance was insufficient.
 本発明のフレネルミラーは、従来の凸面ミラーに比して厚さを小さくできるというフレネルミラーの特徴を有する上に、防汚性に優れることから、ATM(現金自動預け払い機、automatic teller machine)、コンビニエンスストア、車道、オフィスビル、工場、鉄道、飛行機など広範囲に設置して、死角確認用のミラー、後方確認用のミラーとして用いることができる。 The Fresnel mirror of the present invention has the characteristics of a Fresnel mirror that can be reduced in thickness as compared with a conventional convex mirror, and has excellent antifouling properties, so ATM (automatic teller machine) It can be installed in a wide range of convenience stores, roadways, office buildings, factories, railways, airplanes, etc., and used as a blind spot confirmation mirror and a rear confirmation mirror.
 1  防汚層
 2  樹脂層
 2a 傾斜面
 3  金属層
 4  保護層

 
DESCRIPTION OF SYMBOLS 1 Antifouling layer 2 Resin layer 2a Inclined surface 3 Metal layer 4 Protective layer

Claims (26)

  1.  防汚層と樹脂層とを含む積層体を有し、
     前記積層体が、耐熱性を有し、
     前記防汚層が、視認側の表面に配され、かつ撥水性の分子構造を有することを特徴とするフレネルミラー。
     ここで、前記耐熱性とは、前記積層体を前記防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察してヒビ割れもしくは変色がないことを意味する。
    Having a laminate comprising an antifouling layer and a resin layer;
    The laminate has heat resistance,
    The Fresnel mirror characterized in that the antifouling layer is disposed on the surface on the viewing side and has a water-repellent molecular structure.
    Here, the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
  2.  視認側の表面に防汚層を有し、
     前記防汚層が、撥水性の分子構造を有し、
     前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来し、
     前記防汚層が、前記撥水性モノマーを含有する硬化性樹脂組成物(ただし、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有するパーフルオロポリエーテル、活性水素を含有するシラン化合物、及び活性水素と炭素-炭素二重結合とを有するモノマーを含有する活性水素を有する化合物を反応させることにより得られる炭素-炭素二重結合含有化合物を含有する場合を除く。)の硬化物であることを特徴とするフレネルミラー。
    It has an antifouling layer on the surface on the viewing side,
    The antifouling layer has a water-repellent molecular structure;
    The water repellent molecular structure is derived from a water repellent monomer having fluorine,
    The antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate which is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a carbon-carbon double bond-containing compound obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond). Fresnel mirror characterized by.
  3.  前記防汚層の視認側の表面の水接触角が110°以上であり、かつヘキサデカン接触角が60°以上である請求項1から2のいずれかに記載のフレネルミラー。 The Fresnel mirror according to any one of claims 1 to 2, wherein a water contact angle of a surface on the viewing side of the antifouling layer is 110 ° or more and a hexadecane contact angle is 60 ° or more.
  4.  前記防汚層の視認側の表面の表面エネルギーが、16mJ/m以下である請求項1から3のいずれかに記載のフレネルミラー。 The Fresnel mirror according to any one of claims 1 to 3, wherein the surface energy of the surface on the viewing side of the antifouling layer is 16 mJ / m 2 or less.
  5.  前記防汚層の視認側の表面の動摩擦係数が、0.40以下である請求項1から4のいずれかに記載のフレネルミラー。 The Fresnel mirror according to any one of claims 1 to 4, wherein a dynamic friction coefficient of a surface on the viewing side of the antifouling layer is 0.40 or less.
  6.  前記防汚層の弾性回復率が、50%以上である請求項1から5のいずれかに記載のフレネルミラー。 The Fresnel mirror according to any one of claims 1 to 5, wherein an elastic recovery rate of the antifouling layer is 50% or more.
  7.  前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来する請求項1に記載のフレネルミラー。 The Fresnel mirror according to claim 1, wherein the water-repellent molecular structure is derived from a water-repellent monomer having fluorine.
  8.  前記防汚層が、硬化性樹脂組成物の硬化物であり、
     前記硬化性樹脂組成物が、前記撥水性モノマーを含有する、請求項2及び7のいずれかに記載のフレネルミラー。
    The antifouling layer is a cured product of a curable resin composition,
    The Fresnel mirror according to claim 2, wherein the curable resin composition contains the water-repellent monomer.
  9.  前記硬化性樹脂組成物が、2官能以上の(メタ)アクリレートを含有する請求項8に記載のフレネルミラー。 The Fresnel mirror according to claim 8, wherein the curable resin composition contains a bifunctional or higher functional (meth) acrylate.
  10.  前記2官能以上の(メタ)アクリレートが、環構造を有する請求項9に記載のフレネルミラー。 The Fresnel mirror according to claim 9, wherein the bifunctional or higher functional (meth) acrylate has a ring structure.
  11.  前記防汚層と、
     視認側と反対側の面にフレネルレンズ様の多段の傾斜面を有する樹脂層と、
     前記樹脂層の前記傾斜面を有する側の面上に配された光反射層と、
    を有する、請求項1から10のいずれかに記載のフレネルミラー。
    The antifouling layer;
    A resin layer having a multi-step inclined surface like a Fresnel lens on the surface opposite to the viewing side;
    A light reflecting layer disposed on a surface of the resin layer having the inclined surface;
    The Fresnel mirror according to claim 1, comprising:
  12.  フレネルミラーに用いられ、耐熱性を有する積層体であって、
     撥水性の分子構造を有する防汚層と、
     樹脂層と、
    を有することを特徴とする積層体。
     ここで、前記耐熱性とは、前記積層体を前記防汚層側を上にして250℃に設定したホットプレートにのせて5分間保持した後目視で観察してヒビ割れもしくは変色がないことを意味する。
    It is a laminate that is used for Fresnel mirrors and has heat resistance,
    An antifouling layer having a water-repellent molecular structure;
    A resin layer;
    A laminate characterized by comprising:
    Here, the heat resistance means that the laminate is placed on a hot plate set at 250 ° C. with the antifouling layer side up and held for 5 minutes, and then visually observed to prevent cracking or discoloration. means.
  13.  フレネルミラーに用いられる積層体であって、
     撥水性の分子構造を有する防汚層と、
     樹脂層と、
    を有し、
     前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来し、
     前記防汚層が、前記撥水性モノマーを含有する硬化性樹脂組成物(ただし、ジイソシアネートの三量体であるポリイソシアネートに、活性水素を有するパーフルオロポリエーテル、活性水素を含有するシラン化合物、及び活性水素と炭素-炭素二重結合とを有するモノマーを含有する活性水素を有する化合物を反応させることにより得られる炭素-炭素二重結合含有化合物を含有する場合を除く。)の硬化物であることを特徴とする積層体。
    A laminate used for a Fresnel mirror,
    An antifouling layer having a water-repellent molecular structure;
    A resin layer;
    Have
    The water repellent molecular structure is derived from a water repellent monomer having fluorine,
    The antifouling layer is a curable resin composition containing the water-repellent monomer (however, a polyisocyanate which is a diisocyanate trimer, a perfluoropolyether having active hydrogen, a silane compound containing active hydrogen, and Except for the case of containing a carbon-carbon double bond-containing compound obtained by reacting a compound having an active hydrogen containing a monomer having an active hydrogen and a carbon-carbon double bond). A laminate characterized by the following.
  14.  前記防汚層の表面の水接触角が110°以上であり、かつヘキサデカン接触角が60°以上である請求項12から13のいずれかに記載の積層体。 The laminate according to any one of claims 12 to 13, wherein the surface of the antifouling layer has a water contact angle of 110 ° or more and a hexadecane contact angle of 60 ° or more.
  15.  前記防汚層の表面の表面エネルギーが、16mJ/m以下である請求項12から14のいずれかに記載の積層体。 The laminate according to any one of claims 12 to 14, wherein the surface energy of the antifouling layer is 16 mJ / m 2 or less.
  16.  前記防汚層の表面の動摩擦係数が、0.40以下である請求項12から15のいずれかに記載の積層体。 The laminate according to any one of claims 12 to 15, wherein the surface of the antifouling layer has a dynamic friction coefficient of 0.40 or less.
  17.  前記防汚層の弾性回復率が、50%以上である請求項12から16のいずれかに記載の積層体。 The laminate according to any one of claims 12 to 16, wherein an elastic recovery rate of the antifouling layer is 50% or more.
  18.  前記撥水性の分子構造が、フッ素を有する撥水性モノマーに由来する請求項12に記載の積層体。 The laminate according to claim 12, wherein the water-repellent molecular structure is derived from a water-repellent monomer having fluorine.
  19.  前記防汚層が、硬化性樹脂組成物の硬化物であり、
     前記硬化性樹脂組成物が、前記撥水性モノマーを含有する、請求項13及び18のいずれかに記載の積層体。
    The antifouling layer is a cured product of a curable resin composition,
    The laminate according to any one of claims 13 and 18, wherein the curable resin composition contains the water-repellent monomer.
  20.  前記硬化性樹脂組成物が、2官能以上の(メタ)アクリレートを含有する請求項19に記載の積層体。 The laminate according to claim 19, wherein the curable resin composition contains a bifunctional or higher functional (meth) acrylate.
  21.  前記2官能以上の(メタ)アクリレートが、環構造を有する請求項20に記載の積層体。 The laminate according to claim 20, wherein the bifunctional or higher functional (meth) acrylate has a ring structure.
  22.  前記樹脂層が、前記防汚層側と反対側の面にフレネルレンズ様の多段の傾斜面を有する、請求項12から21のいずれかに記載の積層体。 The laminate according to any one of claims 12 to 21, wherein the resin layer has a Fresnel lens-like multi-stage inclined surface on a surface opposite to the antifouling layer side.
  23.  請求項1から11のいずれかに記載のフレネルミラーに用いられる請求項12から13のいずれかに記載の積層体。 The laminate according to any one of claims 12 to 13, which is used for the Fresnel mirror according to any one of claims 1 to 11.
  24.  請求項19に記載の積層体の製造方法であって、
     前記撥水性モノマーを含有する前記硬化性樹脂組成物を、前記樹脂層上に塗布し、前記硬化性樹脂組成物を硬化させ、前記硬化物を得る工程を含むことを特徴とする積層体の製造方法。
    It is a manufacturing method of the layered product according to claim 19,
    A process for producing a laminate comprising the steps of applying the curable resin composition containing the water repellent monomer onto the resin layer, curing the curable resin composition, and obtaining the cured product. Method.
  25.  請求項11に記載のフレネルミラーの製造方法であって、
     前記樹脂層の視認側と反対側の面に、フレネルレンズ様の多段の前記傾斜面を形成する工程と、
     前記傾斜面が形成された前記樹脂層の面上に、前記光反射層を形成する工程と、
    を含むことを特徴とするフレネルミラーの製造方法。
    It is a manufacturing method of the Fresnel mirror of Claim 11,
    Forming a multi-stage inclined surface like a Fresnel lens on the surface opposite to the viewing side of the resin layer;
    Forming the light reflecting layer on the surface of the resin layer on which the inclined surface is formed;
    The manufacturing method of the Fresnel mirror characterized by including.
  26.  前記傾斜面を形成する工程の前に、撥水性モノマーを含有する硬化性樹脂組成物を、前記樹脂層の視認側の面上に塗布し、前記硬化性樹脂組成物を硬化させ、前記防汚層である硬化物を得る工程を含む、請求項25に記載のフレネルミラーの製造方法。 Prior to the step of forming the inclined surface, a curable resin composition containing a water-repellent monomer is applied onto the surface of the resin layer on the viewing side, the curable resin composition is cured, and the antifouling agent is applied. The manufacturing method of the Fresnel mirror of Claim 25 including the process of obtaining the hardened | cured material which is a layer.
PCT/JP2019/018609 2018-05-11 2019-05-09 Multilayer body and method for producing same, and fresnel mirror and method for producing same WO2019216384A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-092026 2018-05-11
JP2018092026 2018-05-11
JP2019-003128 2019-01-11
JP2019003128A JP2019200409A (en) 2018-05-11 2019-01-11 Laminate body, method for manufacturing the same, fresnel mirror, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019216384A1 true WO2019216384A1 (en) 2019-11-14

Family

ID=68467546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018609 WO2019216384A1 (en) 2018-05-11 2019-05-09 Multilayer body and method for producing same, and fresnel mirror and method for producing same

Country Status (1)

Country Link
WO (1) WO2019216384A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037704A1 (en) * 2021-09-10 2023-03-16 日東電工株式会社 Laminate, optical member with laminate, and image display device
WO2023037705A1 (en) * 2021-09-10 2023-03-16 日東電工株式会社 Laminate, laminate-equipped optical member, and image display device
CN115835957A (en) * 2020-07-13 2023-03-21 日东电工株式会社 Optical film with antifouling layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142613A (en) * 1997-11-05 1999-05-28 Shin Etsu Polymer Co Ltd Dead angle decreasing auxiliary lens and its production
WO2002053345A1 (en) * 2000-12-22 2002-07-11 Nippon Sheet Glass Co., Ltd. Article having predetermined surface shape and method for preparing the same
JP2006182880A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Curable composition
JP2009276658A (en) * 2008-05-16 2009-11-26 Nippon Zeon Co Ltd Anti-reflection film
JP2014199330A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Film mirror and solar reflector using the same
JP2015069008A (en) * 2013-09-30 2015-04-13 日東電工株式会社 Optical laminate
JP2015118308A (en) * 2013-12-19 2015-06-25 コミー株式会社 Fresnel mirror and manufacturing method therefor
JP2015138150A (en) * 2014-01-22 2015-07-30 株式会社ダイセル Abrasion resistant hard coat film and manufacturing method therefor
JP2017021681A (en) * 2015-07-14 2017-01-26 日油株式会社 Resin composition for forming finger sliding layer, finger sliding film, and image display device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142613A (en) * 1997-11-05 1999-05-28 Shin Etsu Polymer Co Ltd Dead angle decreasing auxiliary lens and its production
WO2002053345A1 (en) * 2000-12-22 2002-07-11 Nippon Sheet Glass Co., Ltd. Article having predetermined surface shape and method for preparing the same
JP2006182880A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Curable composition
JP2009276658A (en) * 2008-05-16 2009-11-26 Nippon Zeon Co Ltd Anti-reflection film
JP2014199330A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Film mirror and solar reflector using the same
JP2015069008A (en) * 2013-09-30 2015-04-13 日東電工株式会社 Optical laminate
JP2015118308A (en) * 2013-12-19 2015-06-25 コミー株式会社 Fresnel mirror and manufacturing method therefor
JP2015138150A (en) * 2014-01-22 2015-07-30 株式会社ダイセル Abrasion resistant hard coat film and manufacturing method therefor
JP2017021681A (en) * 2015-07-14 2017-01-26 日油株式会社 Resin composition for forming finger sliding layer, finger sliding film, and image display device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835957A (en) * 2020-07-13 2023-03-21 日东电工株式会社 Optical film with antifouling layer
WO2023037704A1 (en) * 2021-09-10 2023-03-16 日東電工株式会社 Laminate, optical member with laminate, and image display device
WO2023037705A1 (en) * 2021-09-10 2023-03-16 日東電工株式会社 Laminate, laminate-equipped optical member, and image display device
JP2023040662A (en) * 2021-09-10 2023-03-23 日東電工株式会社 Laminate, optical member with laminate, and image display device
JP2023040663A (en) * 2021-09-10 2023-03-23 日東電工株式会社 Laminate, optical member with laminate, and image display device

Similar Documents

Publication Publication Date Title
TWI530707B (en) Method for manufacturing anti-reflection film, anti-reflection film, polarizing plate, and image display device
WO2019216384A1 (en) Multilayer body and method for producing same, and fresnel mirror and method for producing same
KR102086762B1 (en) Photo-curable composition
US20150165733A1 (en) Method for producing laminate, laminate, and article
KR102608557B1 (en) Hard coat film
JP2009143226A (en) Readily bondable polyester film for optical use and laminated polyester film for optical use
KR20150125704A (en) Multilayer structure, method for producing same, and article
JP2014152281A (en) Method for producing transparent resin laminate film
US10987899B2 (en) Active energy ray curable resin composition, laminate, manufacturing method thereof, and product
KR20190072446A (en) Uv-curing acrylic resin compositions for thermoformable hardcoat applications
JP2018132665A (en) Hard coat film
TW201527099A (en) Resin laminate and method for manufacturing the same
JP2008209877A (en) Optical multilayer film and image display device
JP2024050846A (en) Optical film and image display device
JP2006035778A (en) Impact-resistant resin laminated sheet
JP6518374B2 (en) Active energy ray curable resin composition, laminate, method for producing the same, and article
JP2019200409A (en) Laminate body, method for manufacturing the same, fresnel mirror, and method for manufacturing the same
JP2017128114A (en) Hard coat laminated film
US10976475B1 (en) Antifouling film
JP6512281B1 (en) Active energy ray-curable hard coat agent and laminate
JP6917534B2 (en) Laminated film and laminated members
JP2016218395A (en) Antireflection film
JP5640417B2 (en) Biaxially stretched polyester film for curable resin lamination
JP2017152004A (en) Ultraviolet ray curable resin layer
JP2005313450A (en) Reflection preventing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800022

Country of ref document: EP

Kind code of ref document: A1