WO2015045661A1 - 蓄電装置、蓄電制御装置および蓄電制御方法 - Google Patents

蓄電装置、蓄電制御装置および蓄電制御方法 Download PDF

Info

Publication number
WO2015045661A1
WO2015045661A1 PCT/JP2014/071268 JP2014071268W WO2015045661A1 WO 2015045661 A1 WO2015045661 A1 WO 2015045661A1 JP 2014071268 W JP2014071268 W JP 2014071268W WO 2015045661 A1 WO2015045661 A1 WO 2015045661A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
cells
cell
series
storage device
Prior art date
Application number
PCT/JP2014/071268
Other languages
English (en)
French (fr)
Inventor
小澤 淳史
中村 和夫
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020167006883A priority Critical patent/KR102172906B1/ko
Priority to CA2924767A priority patent/CA2924767A1/fr
Priority to CN201480051605.1A priority patent/CN105556792B/zh
Priority to US15/022,494 priority patent/US10587126B2/en
Priority to EP14849715.9A priority patent/EP3051661B1/en
Publication of WO2015045661A1 publication Critical patent/WO2015045661A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power storage device, a power storage control device, and a power storage control method. More specifically, the present invention relates to a power storage device that stores electricity in a cell, a power storage control device, and a power storage control method.
  • Patent Document 1 a technique for equalizing the voltages of a plurality of cells connected in series has been proposed.
  • Patent Document 1 a first series circuit configured by connecting n power storage cells in series and a second and third series circuit configured by connecting n ⁇ 1 power storage cells in series.
  • a voltage equalizing circuit including first and second switch groups has been proposed.
  • the configuration for equalizing the voltages of a plurality of cells connected in series is simple, but it is desirable to quickly equalize the voltage of each cell.
  • the present disclosure provides a power storage device, a power storage control device, and a power storage control method that quickly equalize cell voltages with a simple configuration.
  • a power storage device includes a plurality of cells connected in series, a plurality of reactance elements connected in series, a plurality of connection lines that connect each cell and each reactance element in parallel in a one-to-one correspondence, and each connection A plurality of switching elements that individually open and close the line, and a power storage control device that controls the switching elements to transfer energy between the cells.
  • the power storage control device closes a first pair of connection lines arranged at both ends of a series of cells of the plurality of cells, and then opens a first pair of the connection lines, and You may close the 2nd pair of the connection line arrange
  • the power storage control device may select all or part of the plurality of cells as the series of cells and select the plurality of target cells.
  • each reactance element may have the same constant.
  • each reactance element may include a capacitor.
  • each reactance element may include a reactor.
  • the power storage control device may switch the connection between the reactance element and the cell at a resonance frequency of the reactance element.
  • the resonance frequency of the reactance element may be a frequency when the imaginary component in the Cole-Cole plot of the internal impedance of the cell measured by the AC impedance method is zero.
  • the number of switching elements and the number of connection lines may be the number of cells plus one.
  • the power storage control device may close the first pair of the connection lines after selecting the target cell.
  • the power storage control device may select the target cell including a cell having a minimum voltage.
  • the power storage control device according to the present disclosure includes a plurality of connection lines for connecting a plurality of series-connected cells and a plurality of series-connected reactance elements in parallel in a one-to-one correspondence, and controlling the plurality of switching elements individually. It is opened and closed to transfer energy between the cells.
  • the power storage control method according to the present disclosure controls a plurality of connection lines that connect a plurality of series-connected cells and a plurality of series-connected reactance elements in parallel in a one-to-one correspondence by a control device. Are opened and closed individually to transfer energy between the cells.
  • the cell voltages can be quickly equalized with a simple configuration.
  • FIG. 10 is a diagram schematically illustrating an operation example of the power storage device of the first modification example of the first embodiment of the present disclosure, in which A represents a first control state of the switching element, and B represents the first of the switching element.
  • FIG. 2 is a diagram illustrating a third control state of the switching element.
  • 14 is a flowchart illustrating an operation example of the power storage device according to the second embodiment of the present disclosure. It is a figure which shows typically the operation example of the electrical storage apparatus of the 1st modification of 2nd Embodiment of this indication, A shows the closed state of the 1st pair of connection line, B shows a connection line The first pair of open states is shown, and C is a diagram showing the closed state of the second pair of connection lines.
  • A shows the closed state of the 1st pair of connection line
  • B shows a connection line The first pair of open states
  • C is a diagram showing the closed state of the second pair of connection lines.
  • 14 is a flowchart illustrating an operation example of the power storage device according to the third embodiment of the present disclosure.
  • 14 is a flowchart illustrating an operation example of the power storage device according to the first modification example of the third embodiment of the present disclosure.
  • 16 is a time chart illustrating an operation example of the power storage device according to the fifth embodiment of the present disclosure.
  • 16 is a flowchart illustrating an operation example of the power storage device of the first modification example of the fifth embodiment of the present disclosure. It is a discharge curve figure of a cell for explaining the example of composition of the power storage device of the 2nd modification of a 5th embodiment of this indication. It is a Cole-Cole plot figure for demonstrating the structural example of the electrical storage apparatus of 6th Embodiment of this indication. It is a Cole-Cole plot figure for demonstrating the structural example of the electrical storage apparatus of the 1st modification of 6th Embodiment of this indication.
  • First embodiment an example of a power storage device including a plurality of connection lines that connect a plurality of series-connected cells and a plurality of reactance elements in a one-to-one correspondence
  • First modification of first embodiment an example of a power storage device having a large number of cells connected in series
  • Second embodiment (an example of a power storage device that supplies energy from a series of cells to a target cell via a reactance element) 4).
  • First modification of second embodiment (an example of a power storage device that selects all cells as a series of cells and selects a plurality of target cells) 5.
  • Second modification of second embodiment (an example of a power storage device that selects a part of cells as a series of cells and selects a plurality of target cells) 6).
  • Third embodiment (an example of a power storage device that closes the first pair of connection lines after selecting a target cell) 7).
  • First modification of third embodiment (an example of a power storage device that includes a cell having the smallest voltage in a target cell) 8).
  • Fourth embodiment (an example of a power storage device in which the reactance element is a capacitor) 9.
  • First modified example of the fourth embodiment (an example of a power storage device in which the constants of the reactance elements are the same) 10.
  • Fifth embodiment (an example of a power storage device that is a reactor and a capacitor in which reactance elements are connected in series) 11.
  • First Modification of Fifth Embodiment (Example of power storage device that switches connection between cell and reactance element at resonance frequency of reactance element) 12
  • Second modification of fifth embodiment (an example of a power storage device to which a cell having a substantially flat discharge characteristic is applied) 13.
  • Sixth embodiment an example of a power storage device in which a reactance element has a resonance frequency adapted to Cole-Cole plot
  • First modification of sixth embodiment an example of a power storage device in which the resonance frequency of the DC resonance circuit is set in consideration of the Cole-Cole plot for each charging rate
  • FIG. 1 is an overall view schematically showing a configuration example of a power storage device 100 of the present embodiment.
  • the power storage device 100 includes a plurality of cells 110a and 110b, a plurality of reactance elements 120a and 120b, a plurality of connection lines 160a, 160b, and 160c, a plurality of switching elements 140a, 140b, and 140c, A control device 130 is provided.
  • the number of reactance elements 120a and 120b is the same as the number of cells 110a and 110b.
  • the number of switching elements 140a to 140c is the same as the number of connection lines 160a to 160c.
  • Cells 110a and 110b As shown in FIG. 1, the cells 110a and 110b are connected in series. Each of the cells 110a and 110b can be charged and discharged. That is, each of the cells 110a and 110b accumulates a charging current supplied from a charging device (not shown) as a charge when charging, and a load (not shown) using the accumulated charge as a discharging current when discharging. Can be supplied to.
  • the i-th cell (where i is 1 to the total number of cells) counted from the positive electrode end of the entire cell, that is, the positive electrode terminal, is defined as the i-th cell.
  • both the cells 110a and 110b are connected in series by connecting the positive electrode of the second cell 110b to the negative electrode of the first cell 110a.
  • the number of cells 110a and 110b is not limited to two as shown in FIG.
  • Each cell 110a, 110b may be comprised by the same standard, or may be comprised by another standard.
  • Each of the cells 110a and 110b may be either a single battery or an assembled battery. When each cell 110a, 110b is an assembled battery, the connection within the assembled battery may be in series or in parallel or both.
  • each reactance element 120a, 120b may have a capacitive reactance, an inductive reactance, or both. Each reactance element 120a, 120b does not exclude having a resistance component.
  • the j-th cell (where j is 1 to the total number of reactance elements) counted from the positive electrode end of the entire reactance element is defined as the j-th reactance element.
  • both the reactance elements 120a and 120b are connected in series by connecting the positive electrode of the second reactance element 120b to the negative electrode of the first reactance element 120a.
  • connection lines 160a to 160c connect the cells 110a and 110b and the reactance elements 120a and 120b in parallel in a one-to-one correspondence.
  • the kth connection line counting from the positive electrode side is defined as the kth connection line.
  • the first connection line 160a has a cell-side end connected to the positive electrode of the first cell 110a and a reactance element-side end connected to the positive-side end of the first reactance element 120a. Connected to the part.
  • the second connection line 160b has an end on the cell side connected to the negative electrode of the first cell 110a, and an end on the reactance element side connected to an end on the negative electrode side of the first reactance element 120a. That is, the first cell 110a and the corresponding first reactance element 120a are connected in parallel in a one-to-one correspondence by a pair of connection lines 160a and 160b.
  • the second connection line 160b has a cell-side end connected to the positive electrode of the second cell 110b and a reactance element-side end connected to the positive-side end of the second reactance element 120b.
  • the third connection line 160c has a cell-side end connected to the negative electrode of the second cell 110b, and a reactance element-side end connected to the negative-electrode side end of the second reactance element 120b. That is, the second cell 110b and the corresponding second reactance element 120b are connected in parallel in a one-to-one correspondence by the pair of connection lines 160b and 160c.
  • switching elements 140a to 140c As shown in FIG. 1, the switching elements 140a to 140c are arranged on connection lines 160a to 160c corresponding to the switching elements 140a to 140c, respectively. Each of the switching elements 140a to 140c is turned off or turned on to open or close the corresponding connection lines 160a to 160c, that is, to be disconnected or connected. The connection lines 160a to 160c are opened and closed individually for each switching element 140a to 140c.
  • the k-th switching element counted from the positive electrode side is defined as the k-th switching element.
  • the mode of the switching elements 140a to 140c is not limited.
  • the switching elements 140a to 140c may be configured by semiconductor elements or the like.
  • the semiconductor element may be a transistor or the like.
  • the transistor may be a field effect transistor or the like.
  • the field effect transistor may be a MOSFET (metal-oxide-semiconductor field-effect transistor) or the like. By using a field effect transistor, power consumption can be suppressed.
  • the power storage control device 130 controls the operation of each of the switching elements 140a to 140c to transfer energy between the cells 110a and 110b.
  • the configuration in which the power storage control device 130 controls the operation of the switching elements 140a to 140c is represented by a broken line frame surrounding the switching elements 140a to 140c and a broken line arrow from the power storage control device 130 to the broken line frame.
  • the power storage control device 130 may control the operation of each switching element 140a to 140c by outputting a control signal to each switching element 140a to 140c.
  • the control signal may be a gate voltage of a field effect transistor or the like.
  • the power storage control device 130 may be configured by an electronic device or the like.
  • the electronic device may include an arithmetic processing device such as a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit) and a storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the ROM may store a program for realizing the function of the power storage control device 130, that is, a program that causes the computer to function as the power storage control device 130.
  • the ROM may store data that is referred to when the arithmetic processing unit executes a program.
  • the arithmetic processing unit may realize the function of the power storage control device 130 by executing a program stored in the ROM.
  • the RAM may be used as a work area for the arithmetic processing unit. However, it is not limited to such a configuration.
  • energy is transferred between the cells 110a and 110b by controlling the switching elements 140a to 140c as shown in FIGS. 2A to 2C by the power storage control device 130.
  • FIG. 2A shows a first control state of the switching elements 140a to 140c.
  • the first switching element 140a and the third switching element 140c are controlled to be on, and the second switching 140b is controlled to be off.
  • the first connection line 160a and the third connection line 160c are closed, that is, connected, and the second connection line 160b is opened, that is, disconnected.
  • all the cells 110a, 110b, that is, the series-connected cell group, and all the reactance elements 120a, 120b, that is, the series-connected reactance element group are connected in parallel via the closed connection lines 160a, 160c.
  • the In such a first control state energy is transferred from all cells 110a, 110b to all reactance elements 120a, 120b, and the transferred energy is stored in each reactance element 120a, 120b.
  • FIG. 2B shows a second control state of the switching elements 140a to 140c.
  • the second control state all the switching elements 140a to 140c are controlled to the off state.
  • the change from the first control state is that the first switching element 140a and the third switching element 140c, which were in the on state in the first control state, are switched to the off state. That is, in the second control state, all connection lines 160a to 160c are opened. Thereby, in the second control state, all the cells 110a and 110b and all the reactance elements 120a and 120b are disconnected.
  • the energy stored in each reactance element 120a, 120b in the first control state continues to be stored in each reactance element 120a, 120b.
  • FIG. 2C shows a third control state of the switching elements 140a to 140c.
  • the third control state the second switching element 140b and the third switching element 140c are controlled to be on, and the first switching element 140a is controlled to be off.
  • the change from the second control state is that the second switching element 140b and the third switching element 140c, which were off in the second control state, are switched to the on state. That is, in the third control state, the second connection line 160b and the third connection line 160c are closed, and the first connection line 160a is opened. Thereby, in the third control state, the second cell 110b and the second reactance element 120b are connected in parallel. In the third control state, the energy stored in the second reactance element 120b is transferred to the second cell 110b. At this time, the energy accumulated in the first reactance element 120a does not change.
  • energy is transferred from all cells 110a and 110b to all reactance elements 120a and 120b, and then energy is transferred from the second reactance element 120b to the second cell 110b. Is done. That is, after the energy of the entire cells 110a and 110b is distributed to the reactance elements 120a and 120b, energy is supplied from the second reactance element 120b to the second cell 110b having a smaller retained energy than the first cell 110a. The After the energy is supplied, the energy variation between the cells 110a and 110b is reduced or eliminated.
  • the above operation is merely an example, and does not limit the scope of the present disclosure.
  • the power storage device 100 can operate effectively even when the energy held by the second cell 110b is larger than the energy held by the first cell 110a.
  • connection lines 160a to 160c that connect the cells 110a and 110b and the reactance elements 120a and 120b in parallel in a one-to-one correspondence are individually opened and closed by the switching elements 140a to 140c, and energy is transferred between the cells.
  • the entire energy of a cell having a large energy and a cell having a small energy is distributed to a plurality of reactance elements, and the distributed energy is supplied to a cell having a small energy. Can do.
  • voltage equalization processing that is, active cell balance processing can be quickly performed with a simple configuration. Note that in a configuration specialized for energy transfer between adjacent cells, voltage equalization processing may be delayed particularly when the number of cells is large.
  • a problem may be avoided. it can.
  • a low-cost, reduced number of switching elements based on an idea of distributing energy of a plurality of cells to a plurality of reactance elements and supplying the distributed energy to a target cell.
  • a rapid voltage equalization process can be realized by the circuit configuration.
  • FIG. 3 is an overall view schematically showing the configuration of the power storage device 100 of the first modification of the present embodiment.
  • the power storage device 100 of this modification is different from the power storage device 100 of FIG. 1 in the number of cells, reactance elements, connection lines, and switching elements. Hereinafter, the differences will be described in detail.
  • the power storage device 100 of the present modification includes a third cell 110c, a fourth cell 110d, a fifth cell 110e, and a sixth cell 110f in addition to the first and second cells 110a and 110b.
  • the cells 110a to 110f are connected in series in numerical order.
  • the power storage device 100 of the present modification includes a third reactance element 120c, a fourth reactance element 120d, a fifth reactance element 120e, and a sixth reactance element. 120f.
  • the reactance elements 120a to 120f are connected in series in numerical order.
  • connection lines 160a to 160g In addition to the first to third connection lines 160a to 160c, the power storage device 100 of this modification example includes a fourth connection line 160d, a fifth connection line 160e, a sixth connection line 160f, and a seventh connection line. 160g provided.
  • the third connection line 160c has an end on the cell side connected to the positive electrode of the third cell 110c, and an end on the reactance element side connected to an end on the positive electrode side of the third reactance element 120c.
  • the fourth connection line 160d has a cell-side end connected to the negative electrode of the third cell 110c, and a reactance element-side end connected to the negative-side end of the third reactance element 120c. That is, the third cell 110c and the corresponding third reactance element 120c are connected in parallel in a one-to-one correspondence by a pair of connection lines 160c and 160d.
  • the end of the fourth connection line 160d is connected to the positive electrode of the fourth cell 110d, and the end of the reactance element is connected to the positive end of the fourth reactance element 120d.
  • the fifth connection line 160e has a cell-side end connected to the negative electrode of the fourth cell 110d, and a reactance element-side end connected to the negative-side end of the fourth reactance element 120d. That is, the fourth cell 110d and the corresponding fourth reactance element 120d are connected in parallel in a one-to-one correspondence by a pair of connection lines 160d and 160e.
  • the fifth connection line 160e has an end on the cell side connected to the positive electrode of the fifth cell 110e, and an end on the reactance element side connected to an end on the positive electrode side of the fifth reactance element 120e.
  • the sixth connection line 160f has a cell-side end connected to the negative electrode of the fifth cell 110e, and a reactance element-side end connected to the negative-side end of the fifth reactance element 120e. That is, the fifth cell 110e and the corresponding fifth reactance element 120e are connected in parallel in a one-to-one correspondence by a pair of connection lines 160e and 160f.
  • the end of the sixth connection line 160f is connected to the positive electrode of the sixth cell 110f, and the end of the reactance element is connected to the positive end of the sixth reactance element 120f.
  • the seventh connection line 160g has a cell-side end connected to the negative electrode of the sixth cell 110f, and a reactance element-side end connected to the negative-side end of the sixth reactance element 120f. That is, the sixth cell 110f and the corresponding sixth reactance element 120f are connected in parallel in a one-to-one correspondence by a pair of connection lines 160f and 160g.
  • the power storage device 100 of the present modification includes a fourth switching element 140d, a fifth switching element 140e, a sixth switching element 140f, and a seventh switching element. 140g.
  • the fourth switching element 140d is disposed on the fourth connection line 160d, and opens and closes the fourth connection line 160d by being turned off or on.
  • the fifth switching element 140e is disposed on the fifth connection line 160e, and opens and closes the fifth connection line 160e by being turned off or on.
  • the sixth switching element 140f is disposed on the sixth connection line 160f, and opens and closes the sixth connection line 160f by being turned off or on.
  • the seventh switching element 140g is disposed on the seventh connection line 160g, and opens and closes the seventh connection line 160g by being turned off or on.
  • the power storage control device 130 controls the operation of the switching elements 140a to 140g to transfer energy between the cells 110a to 110f.
  • the power storage control device 130 may control the operation of each switching element 140a to 140g by outputting a control signal to each switching element 140a to 140g.
  • energy is transferred between the cells 110a to 110f by controlling the switching elements 140a to 140g as shown in FIGS. 4A to 4C by the power storage control device 130.
  • FIG. 4A shows a first control state of the switching elements 140a to 140g.
  • the first switching element 140a and the seventh switching element 140g are controlled to be in the on state, and the second to sixth switching elements 140b to 140f are controlled to be in the off state. That is, in the first control state, the first connection line 160a and the seventh connection line 160g are closed, and the second to sixth connection lines 160b to 160f are opened.
  • the first control state all the cells 110a to 110f and all the reactance elements 120a to 120f are connected in parallel via the connection lines 160a and 160g in the closed state.
  • energy is transferred from all cells 110a to 110f to all reactance elements 120a to 120f, and the transferred energy is stored in each reactance element 120a to 120f.
  • FIG. 4B shows a second control state of the switching elements 140a to 140g.
  • the second control state all the switching elements 140a to 140g are controlled to the off state.
  • the change from the first control state is that the first switching element 140a and the seventh switching element 140g, which were in the on state in the first control state, are switched to the off state. That is, in the second control state, all the connection lines 160a to 160g are opened.
  • the second control state all the cells 110a to 110f and all the reactance elements 120a to 120f are disconnected.
  • the energy stored in the reactance elements 120a to 120f in the first control state continues to be stored in the reactance elements 120a to 120f.
  • FIG. 4C shows a third control state of the switching elements 140a to 140g.
  • the third control state the sixth switching element 140f and the seventh switching element 140g are controlled to be on, and the first to fifth switching elements 140a to 140e are controlled to be off.
  • the change from the second control state is that the sixth switching element 140f and the seventh switching element 140g that were in the off state in the second control state are switched to the on state. That is, in the third control state, the sixth connection line 160f and the seventh connection line 160g are closed, and the first to fifth connection lines 160a to 160e are opened. Thereby, in the third control state, the sixth cell 110f and the sixth reactance element 120f are connected in parallel. In the third control state, the energy stored in the sixth reactance element 120f is transferred to the sixth cell 110f.
  • energy is transferred from all cells 110a to 110f to all reactance elements 120a to 120f, and then energy is transferred from the sixth reactance element 120f to the sixth cell 110f. . That is, after the energy of the entire cells 110a to 110f is distributed to the reactance elements 120a to 120f, the energy distributed to the sixth reactance element 120f is supplied to the sixth cell 110f having a relatively small retained energy. .
  • the above operation is merely an example, and does not limit the scope of the present disclosure.
  • the power storage device 100 can operate effectively even when the energy held by cells other than the sixth cell 110f is relatively small.
  • the same operational effects as the power storage device 100 of FIG. 1 can be obtained, and voltage equalization processing between multiple series cells can be quickly performed with a simple configuration, or voltage equalization can be performed. It is possible to improve the degree of freedom of the mode of the conversion process.
  • the power storage control device 130 of the present embodiment is configured to close the first pair of connection lines arranged at both ends of a series of cells among a plurality of cells.
  • the series of cells is not limited to all cells as long as they are two or more consecutive cells. Therefore, the first pair of connection lines is not limited to the connection lines 160a and 160g at both ends shown in FIG. 4A.
  • the power storage control device 130 of the present embodiment closes the first pair of connection lines, then opens the first pair of connection lines, and opens both ends of the target cell in the series of cells. It is the structure which closes the 2nd pair of the arranged connection line.
  • the target cell is a cell that receives energy, that is, a power supply target cell.
  • the power storage control device 130 opens and closes the first pair of connection lines by controlling the switching elements arranged in each of the first pair of connection lines.
  • the power storage control device 130 opens and closes the second pair of connection lines by controlling the switching elements disposed in each of the second pair of connection lines.
  • the power storage control device 130 may select a series of cells according to a preset selection criterion. In the series of cells, in order to ensure the effectiveness of energy supply to the target cell, it is desirable to include a cell having a voltage higher than that of the target cell.
  • the power storage control device 130 can perform more efficient voltage equalization processing by selecting a series of cells including the cell having the maximum voltage among all the cells.
  • the power storage control device 130 may record a series of cell selection results in a storage area of the power storage control device 130 in association with cell identification information such as a cell number.
  • the power storage control device 130 closes the first pair of connection lines, for example, information indicating the correspondence relationship between cells and switching elements stored in the storage area in advance and a series of cell selection results. Based on this, the switching element to be switched on may be determined.
  • the correspondence relationship between the cell and the switching element may be a relationship between the cell and the switching element connected to the positive electrode and the negative electrode of the cell.
  • the information indicating the correspondence relationship between the cell and the switching element may be information in which cell identification information and identification information of the switching element corresponding to the cell are linked.
  • the target cell may be a cell selected according to a preset selection criterion.
  • the power storage control device 130 closes the second pair of connection lines, for example, the power storage control device 130 is turned on based on the correspondence relationship between the cells and the switching elements stored in advance in the storage area and the identification information of the target cell. A switching element to be switched to the state may be determined.
  • FIG. 5 is a flowchart illustrating an operation example of the power storage device 100 of the present embodiment.
  • the operation example of FIG. 5 includes an embodiment of the power storage control method according to the present disclosure.
  • step 51 (S51) of FIG. 5 the power storage control device 130 selects a series of cells.
  • step 52 the power storage control device 130 changes the first pair of connection lines corresponding to the series of cells selected in step 51 (S51) to the switching element corresponding to the first pair.
  • the circuit is closed by switching to the ON state.
  • step 52 the series of cells are connected in parallel to the series of reactance elements corresponding to the series of cells via the first pair of closed connection lines. Then, current flows from the series of cells to the series of reactance elements, and energy is transferred from the series of cells to the series of reactance elements. The transferred energy is stored in each reactance element according to the constant of each reactance element.
  • step 53 the power storage control device 130 switches the switching element corresponding to the first pair of the first pair of connection lines closed in step 52 (S52) to the OFF state. Open the circuit. At this time, the energy accumulated in the series of reactance elements in step 52 (S52) continues to be accumulated in each reactance element.
  • step 54 the power storage control device 130 switches the second pair of connection lines corresponding to the target cell in the series of cells to the ON state for the switching element corresponding to the second pair. Close the circuit.
  • step 54 only the target cell is connected in parallel to the reactance element corresponding to the target cell via the second pair of connection lines closed. Then, current flows from the reactance element corresponding to the target cell to the target cell, and energy is transferred.
  • step 55 the power storage control device 130 switches the second pair of connection lines closed in step 54 (S54) to the OFF state corresponding to the second pair. Open the circuit. Thereafter, the voltage equalization process is terminated, or the process returns to step 51 (S51) or step 52 (S52) as necessary.
  • energy is transferred from a series of cells to the corresponding reactance element group and distributed to the individual reactance elements, and then the target cell is distributed from the corresponding reactance element to this element.
  • Can receive energy Thereby, a quick voltage equalization process can be performed by a simple connection line opening and closing operation.
  • the power storage control device 130 of this modification is configured to select all cells as a series of cells and select a plurality of target cells. That is, the power storage control device 130 according to the present modification moves the energy from all the cells to all the reactance elements, opens the first pair of connection lines, and then opens the second pair of connection lines. In this configuration, the pair is closed.
  • the plurality of target cells may have a positional relationship adjacent to each other, may have a positional relationship apart from each other, or target cells having both of these positional relationships are mixed. Also good.
  • connection lines 160a to 160g are opened and closed as shown in FIGS. 6A to 6C by the control of the switching elements 140a to 140g by the power storage control device 130, so that the energy between a series of cells and a plurality of target cells is obtained. Will be given and received.
  • FIG. 6A shows a closed state of the first pair of connection lines. More specifically, the state of FIG. 6A is a state in which a pair, that is, a pair of the first connection line 160a and the seventh connection line 160g is closed as the first pair of connection lines. In the state of FIG. 6A, energy is transferred from the first to sixth cells 110a to 110f to the first to sixth reactance elements 120a to 120f, and the transferred energy is accumulated in the reactance elements 120a to 120f.
  • the state of FIG. 6A energy is transferred from the first to sixth cells 110a to 110f to the first to sixth reactance elements 120a to 120f, and the transferred energy is accumulated in the reactance elements 120a to 120f.
  • FIG. 6B shows an open state of the first pair of connection lines closed in FIG. 6A.
  • the energy accumulated in the reactance elements 120a to 120f in the state of FIG. 6A continues to be accumulated in the reactance elements 120a to 120f.
  • FIG. 6C shows the closed state of the second pair of connection lines.
  • the state of FIG. 6C is a state in which the pair of the second connection line 160b and the third connection line 160c is closed as the second pair of connection lines.
  • the state of FIG. 6C is a state in which the pair of the fifth connection line 160e and the seventh connection line 160g is also closed as the second pair of connection lines.
  • the energy stored in the second reactance element 120b is transferred to the second cell 110b.
  • the energy stored in the fifth and sixth reactance elements 120e and 120f is transferred to the fifth and sixth cells 110e and 110f.
  • the above operation is only one aspect of this modification, and does not limit the scope of this modification.
  • the power storage device 100 can operate effectively even when a plurality of cells other than the second, fifth, and sixth cells 110b, 110e, and 110f are the target cells.
  • the power storage control device 130 opens the first pair of connection lines and the second connection line.
  • a pair of cycles may be simultaneously performed.
  • the common connection line may continue the closed state without going through the open state.
  • the same function and effect as the power storage device 100 described with reference to FIG. 5 can be achieved, or flexible voltage equalization processing in which restrictions on the position and number of target cells are relaxed Is possible.
  • the electrical storage apparatus 100 of this modification since energy can be simultaneously moved to a some target cell, it becomes possible to ensure the rapidity of a voltage equalization process effectively.
  • the power storage control device 130 of this modification is configured to select a part of all cells as a series of cells and select a plurality of target cells. That is, the power storage control device 130 according to the present modification moves the energy from the continuous part of the cells to the continuous part of the reactance elements and then opens the first pair of connection lines, The second pair of connection lines is closed.
  • selecting a part of all cells as a series of cells it may be a case of excluding from the series of cells cells that are determined not to require voltage equalization based on the cell voltage. . More specifically, for example, a cell that is not sandwiched between the maximum voltage cell and the minimum voltage cell may be excluded, but is not limited thereto.
  • connection lines 160a to 160g are opened and closed as shown in FIGS. 7A to 7C by controlling the switching elements 140a to 140g by the power storage control device 130, so that energy is generated between a series of cells and a plurality of target cells. Will be given and received.
  • FIG. 7A shows a state where the first pair of connection lines corresponding to some cells selected as a series of cells are closed. More specifically, the state of FIG. 7A is a state in which the second to sixth cells 110b to 110f are selected as a series of cells. 7A is a state in which the second connection line 160b and the seventh connection line 160g are closed as a first pair of connection lines.
  • FIG. 7B shows an open state of the first pair of connection lines closed in FIG. 7A.
  • the energy stored in the series of reactance elements 120b to 120f in the state of FIG. 7A continues to be stored in the reactance elements 120b to 120f.
  • FIG. 7C shows the closed state of the second pair of connection lines.
  • the state of FIG. 7C is a state in which the pair of the third connection line 160c and the fourth connection line 160d is closed as the second pair of connection lines.
  • the state of FIG. 7C is a state in which the pair of the sixth connection line 160f and the seventh connection line 160g is also closed as the second pair of connection lines.
  • the energy accumulated in the third reactance element 120c is moved to the third cell 110c
  • the energy accumulated in the sixth reactance element 120f is moved to the sixth cell 110f.
  • the same effects as the power storage device 100 of FIG. 6 can be obtained, or a flexible voltage equalization process in which restrictions on the position and number of cells in a series are relaxed. It becomes possible.
  • FIG. 8 is an overall view schematically showing a configuration example of the power storage device 100 of the present embodiment.
  • the power storage device 100 of the present embodiment is different from the power storage device 100 of the second embodiment in the configuration of the power storage control device 130. That is, the power storage control device 130 is configured to close the first pair of connection lines after selecting the target cell.
  • the power storage device 100 includes a cell voltage monitoring unit 150.
  • the power storage control device 130 includes a target cell selection unit 131 and a switch drive determination unit 132.
  • the cell voltage monitoring unit 150 is configured to monitor the voltages of the cells 110a to 110f. As shown in FIG. 8, the cell voltage monitoring unit 150 is connected to the positive and negative electrodes of each of the cells 110a to 110f, and is configured to individually monitor the voltage between the terminals of each of the cells 110a to 110f. As shown in FIG. 8, the number of wirings 170 connecting the cells 110a to 110f and the cell voltage monitoring unit 150 may be the same as the number of connection lines 160a to 160g.
  • the cell voltage monitoring unit 150 outputs the monitoring results of the voltages of the cells 110a to 110f, that is, the detected cell voltages to the power storage control device 130.
  • the monitoring result may be output in such a manner that the cells 110a to 110f corresponding to the monitoring result can be specified on the power storage control device 130 side.
  • the monitoring result may be output toward the input terminals of the cells 110a to 110f in the power storage control device 130, or the identification information of the cells 110a to 110f may be associated.
  • the mode of the cell voltage monitoring unit 150 is not limited, and various electronic devices that can monitor the voltages of the cells 110a to 110f can be employed.
  • the electronic device may include an integrated circuit or the like.
  • the target cell selection unit 131 is configured to select a target cell.
  • the monitoring result output from the cell voltage monitoring unit 150 is input to the target cell selection unit 131.
  • the target cell selection unit 131 selects a target cell based on the monitoring result input from the cell voltage monitoring unit 150.
  • the target cell selection criteria by the target cell selection unit 131 are not limited.
  • the target cell selection unit 131 may preferentially select a cell having a relatively low cell voltage, that is, a low cell, as the target cell. Further, the target cell selection unit 131 may determine the number and position of target cells according to the number and position of cells having a low cell voltage.
  • the switch drive determining unit 132 is configured to determine the driving method of the switching elements 140a to 140g, for example, the assignment and order of the on operation or the off operation for the switching elements 140a to 140g.
  • the switch drive determining unit 132 is configured to drive the switching elements 140a to 140g according to the determined driving method of the switching elements 140a to 140g.
  • the switch drive determination unit 132 receives the result of target cell selection by the target cell selection unit 131 and determines the driving method of the switching elements 140a to 140g. That is, the switch drive determination unit 132 is configured to switch the switching elements corresponding to the series of cells, that is, the switching elements corresponding to the first pair of connection lines, to the ON state after the target cell is selected.
  • the switch drive determining unit 132 may determine which of the cells 110a to 110f should be selected as a series of cells. Such a determination may be based on the monitoring result of the cell voltage monitoring unit 150.
  • the switch drive determination unit 132 When the switch drive determination unit 132 is configured to always select all cells as a series of cells, the switch drive determination unit 132 does not need to determine the cells to be selected as the series of cells.
  • the switch drive determination unit 132 may output a control signal according to the determined drive method to the switching elements 140a to 140g.
  • the target cell selection unit 131 and the switch drive determination unit 132 may be embodied by hardware, software, or both.
  • FIG. 9 is a flowchart illustrating an operation example of the power storage device 100 of the present embodiment.
  • the operation example illustrated in FIG. 9 includes an embodiment of the power storage control method according to the present disclosure.
  • the voltage equalization process is not started, and all the switching elements 140a to 140g are in the off state, that is, all the cells 110a to 110f are disconnected from the reactance elements 120a to 120f. State.
  • the cell voltage is first monitored by the cell voltage monitoring unit 150 in step 91 (S91) of FIG.
  • step 92 the power storage control device 130 determines whether or not the voltage equalization process should be continued based on the monitoring result of the cell voltage in step 91 (S91). If a positive determination result is obtained in step 92 (S92), the process proceeds to step 93 (S93), and if a negative determination result is obtained, the process returns to step 91 (S91).
  • step 93 the target cell selection unit 131 selects a target cell based on the cell voltage monitoring result in step 91 (S91).
  • step 94 the switch drive determination unit 132 determines the drive method of the switching elements 140a to 140g. This determination is based on the selection result of the target cell in step 93 (S93).
  • step 95 (S95) the switch drive determining unit 132 drives the switching elements 140a to 140g according to the driving method of the switching elements 140a to 140g determined in step 94 (S94). Specifically, in step 95 (S95), the switching elements corresponding to the series of cells are switched on to close the first pair of connection lines.
  • step 96 the switching elements corresponding to the series of cells switched to the on state in step 95 (S95) are switched to the off state to open the first pair of connection lines.
  • step 97 the switching element corresponding to the target cell selected in step 93 (S93) is switched on, and the second pair of connection lines is closed.
  • step 98 the switching element corresponding to the target cell switched to the on state in step 97 (S97) is switched to the off state, and the second pair of connection lines is opened. Thereafter, the process returns to step 91 (S91).
  • the same effects as the power storage device 100 of the second embodiment can be achieved.
  • the switch drive determining unit 132 may select a series of cells. A series of cells can be appropriately selected so that the target cell is included in.
  • the target cell is selected in advance, thereby switching between the first pair of closed lines of the connection line and the second pair of closed lines of the connection line. This can be done quickly without waiting for the selection of the target cell after the opening of one pair of circuits.
  • ensuring the continuity of the opening / closing operation of the connection line is described in ⁇ 11. It can also lead to ensuring the effectiveness of the first modified example of the fifth embodiment.
  • the power storage device 100 of the present modification has a configuration for selecting a target cell with respect to the power storage device 100 of FIG.
  • the power storage control device 130 of the present modification is configured to include a cell with the lowest voltage in the target cell.
  • the target cell selection unit 131 of the present modification is configured to detect a cell having the minimum voltage based on the monitoring result of the cell voltage monitoring unit 150.
  • the target cell selection unit 131 of the present modification is configured to select a target cell including a cell having the minimum voltage.
  • the target cell may be only the cell having the minimum voltage, or may include cells other than the cell having the minimum voltage. Besides this, the mode of selection of the target cell is not limited. For example, when there is a first cell with the lowest voltage and one or more second cells whose potential difference between the first cell is within a predetermined value, the target cell selection unit 131 selects the first cell. And the second cell may be selected as the target cell. In this case, the first cell and the second cell may have an adjacent positional relationship or may have a separated positional relationship.
  • FIG. 10 is a flowchart illustrating an operation example of the power storage device 100 according to the present modification.
  • the operation example illustrated in FIG. 10 includes an embodiment of the power storage control method according to the present disclosure.
  • step 93 (S93) in FIG. 9 is embodied by step 931 (S931) and step 932 (S932).
  • step 931 the target cell selection unit 131 detects the cell having the minimum voltage based on the monitoring result of the cell voltage monitoring unit 150.
  • step 932 the target cell selection unit 131 selects a target cell including the cell having the minimum voltage detected in step 931 (S931). After selecting the target cell, the process proceeds to step 94 (S94).
  • the same operational effects as the power storage device 100 of FIG. 8 can be obtained, or more efficient voltage equalization can be achieved by causing the cell with the lowest voltage to receive energy. Processing is possible.
  • FIG. 11 is an overall view schematically showing a configuration example of the power storage device 100 of the present embodiment.
  • the configurations of reactance elements and switching elements are specified with respect to the power storage devices 100 of the first to third embodiments. Details will be described below.
  • the reactance elements 120a to 120f in this embodiment are capacitors 121.
  • the reactance elements 120a to 120f accumulate energy transferred from a series of cells as electric charges.
  • each of the switching elements 140a to 140g is composed of a pair of MOSFETs 141 in which the directions of the parasitic diodes are opposite to each other.
  • Each MOSFET 141 is connected to the switch drive determining unit 132, and is turned on or off when a gate voltage which is an example of a control signal, that is, a gate-source voltage, is applied from the switch drive determining unit 132.
  • MOSFETs 141 constituting the same switching element are connected in series.
  • the drain electrodes of MOSFETs 141 constituting the same switching element are connected to each other.
  • the MOSFET 141 is not limited to the P channel type as shown in FIG. 11, and may be an n channel type. Further, the source electrodes of the MOSFETs 141 constituting the same switching element may be connected to each other.
  • the switch drive determining unit 132 supplies a gate voltage (absolute value) that is, for example, a gate threshold voltage (absolute value) or higher to the switching elements corresponding to a series of cells.
  • the switching elements corresponding to the series of cells are switched on.
  • a current that is, a discharge current flows from the series of cells to the series of reactance elements via the first pair of connection lines, and charges are accumulated in the capacitors constituting the reactance elements.
  • the switch drive determining unit 132 sets the gate voltage (absolute value) below, for example, the gate threshold voltage (absolute value).
  • the switching elements corresponding to the series of cells are switched to the off state. Then, the switch drive determination unit 132 switches the switching element corresponding to the target cell to the on state. Thereby, the electric charge accumulated in the reactance element flows as a current, that is, a charging current, to the target cell via the second pair of connection lines. In this way, energy is transferred from the reactance element to the target cell.
  • the same effects as the power storage devices 100 of the first to third embodiments can be achieved, or the ability to prevent short-circuiting of the cells 110a to 110f by the capacitor, that is, safety Voltage equalization processing with improved performance is possible.
  • FIG. 12 and FIG. 13 show comparative examples of power storage devices in which MOSFETs are applied to switching elements as in the present embodiment.
  • the power storage device 200 of the first comparative example shown in FIG. 12 has a configuration in which energy is transferred between adjacent cells 210 via a capacitor 220.
  • the power storage device 300 of the second comparative example shown in FIG. 13 has a configuration in which energy is transferred between any cells 310 regardless of whether they are adjacent to each other via a capacitor 320.
  • the number of switching elements 240 and 340 is increased in the power storage devices 200 and 300 of both comparative examples compared to the power storage device 100 of the present embodiment.
  • the number of switching elements 140a to 140g is seven, whereas in the power storage devices 200 and 300 of the comparative example, the number of switching elements 240 and 340 increases to twelve. ing. Further, in the power storage devices 200 and 300 of the comparative example, the number of connection lines 260 and 360 is increased as compared with the power storage device 100 of the present embodiment.
  • the number of the switching elements 140a to 140g and the connection lines 160a to 160g is the number obtained by adding 1 to the number of the cells 110a to 110f.
  • the number can be reduced. Thereby, cost can be reduced rather than a comparative example.
  • the voltage equalization process can be performed more quickly than when the voltage equalization process is performed by repeatedly transferring energy between adjacent cells.
  • the constants of the reactance elements 160a to 160f that is, the capacitances of the capacitors are the same.
  • FIG. 14 schematically shows an operation example of the power storage device 100 of the present modification.
  • FIG. 14A shows the ON state of the first switching element 140a and the seventh switching element 140g. That is, FIG. 14A shows a state in which the first connection line 160a and the seventh connection line 160g are closed as the first pair of connection lines.
  • FIG. 14B shows the on state of the sixth switching element 140f and the seventh switching element 140g. That is, FIG. 14B shows a state in which the sixth connection line 160f and the seventh connection line 160g are closed as the closed state of the second pair of connection lines.
  • the voltage Vc of the reactance elements 120a to 120f is equal to (V1 + V2 + V3 + V4 + V5 + V6) / 6 That is, the voltages of the reactance elements 120a to 120f are average voltages of the cells 110a to 110f.
  • V6 ⁇ Vc.
  • the sixth cell 110f having a voltage lower than that of the reactance elements 120a to 120f and the sixth reactance element 120f are connected to transfer energy from the reactance element 120f to the cell 110f.
  • the cell 110f to which energy is transferred may be a cell having the smallest voltage, or may be a cell other than the cell having the smallest voltage as long as the voltage is lower than the reactance elements 120a to 120f. .
  • the same effects as the power storage device 100 of FIG. 11 can be obtained, or an efficient voltage equalization process can be performed by transferring average energy of each cell. Is possible.
  • FIG. 15 is an overall view schematically showing a configuration example of the power storage device 100 of the present embodiment.
  • the power storage device 100 of the present embodiment is different from the power storage device 100 of FIG. 11 in the configuration of reactance elements. Details will be described below.
  • the reactance elements 120a to 120f in this embodiment are a capacitor 121 and a reactor 122, that is, an inductor.
  • the reactance elements 120a to 120f constitute an LC series resonance circuit.
  • the power storage device 100 of the present embodiment is configured such that energy is stored not only in the capacitor 121 but also in the reactor 122.
  • the power storage device 100 of the present embodiment is configured to perform voltage equalization processing using a resonance current generated by the series resonance phenomenon of the reactance elements 120a to 120f.
  • a resonance current that is, a discharge current
  • a resonance current flows from a series of cells to a series of reactance elements, and energy is transferred to the series of reactance elements.
  • the constants of the reactance elements 120a to 120f are the same as each other, the energy transferred to the series of reactance elements is evenly distributed to the series of reactance elements.
  • a resonance current that is, a charging current, flows from the reactance element toward the target cell, and energy is transferred to the target cell.
  • FIG. 16 schematically shows an example of the resonance current.
  • the horizontal axis in FIG. 16 is time t, and the vertical axis in FIG. 16 is the current value i of the resonance current.
  • the current value of the discharge current is positive and the current value of the charging current is negative.
  • the first pair of connection lines is closed, and a discharge current that changes with time in a sinusoidal manner flows.
  • the second pair of connection lines is closed, and a charging current that changes with time in a sine wave flows.
  • the same operational effects as the power storage device 100 of FIG. 11 can be obtained, or energy can be quickly transferred between cells via the reactor 122 even when the potential difference between the cells is small. Can be given to.
  • energy can be efficiently transferred between cells using the series resonance phenomenon of the reactance element.
  • the power storage device 100 of the present modification is different from the power storage device 100 of FIG. 15 in the configuration for switching the connection between the cells 110a to 110f and the reactance elements 120a to 120f. Details will be described below.
  • the power storage control device 130 of the present modification is configured to switch the connection between the reactance elements 120a to 120f and the cells 110a to 110f at the resonance frequency of the reactance elements 120a to 120f. That is, the power storage control device 130 is configured to switch the connection between the series of cells and the series of reactance elements and the connection between the target cell and the reactance elements corresponding to the target cell at the resonance frequency.
  • the resonance frequency of the reactance element is 1 / ⁇ 2 ⁇ (L ⁇ C) 1/2 ⁇ [Hz]. It becomes.
  • the resonance frequency of the series of reactance elements connected to the series of cells is equal to the resonance frequency of the reactance elements connected to the target cell.
  • a series of reactance elements has a combined inductance of nL and a combined capacitance of C / n, where n is the number of series connections.
  • the resonance frequency of the series of reactance elements is 1 / ⁇ 2 ⁇ (n ⁇ L ⁇ C / n) 1/2 ⁇ , and n is eliminated by the product of n ⁇ L and C / n.
  • the resonance frequency of the reactance element is the same as 1 / ⁇ 2 ⁇ (L ⁇ C) 1/2 ⁇ .
  • connection switching cycle Sc When a period from when a cell is connected to a reactance element until it is disconnected is defined as a connection switching cycle Sc, the connection switching cycle Sc is ⁇ (L ⁇ C) 1/2 [s]. It can also be said that the power storage control device 130 of the present modification switches the connection between the reactance element and the cell for each connection switching cycle Sc.
  • the power storage control device 130 may be configured to store information on the resonance frequency and the connection switching cycle Sc, and operate by determining the connection switching timing based on the stored information.
  • FIG. 17 is a flowchart illustrating an operation example of the power storage device 100 according to the present modification.
  • the power storage control device 130 connects a series of cells to a series of reactance elements.
  • step 172 the power storage control device 130 determines whether or not the connection switching timing based on the resonance frequency of the reactance element has come.
  • step 173 the process proceeds to step 173 (S173), and when a negative determination result is obtained, step 172 (S172) is repeated.
  • step 173 the power storage control device 130 disconnects the series of cells from the series of reactance elements.
  • step 174 the power storage control device 130 connects the target cell to the corresponding reactance element.
  • step 175 the power storage control device 130 determines whether or not the connection switching timing based on the resonance frequency of the reactance element has come. If a positive determination result is obtained in step 175 (S175), the process proceeds to step 176 (S176). If a negative determination result is obtained, step 175 (S175) is repeated.
  • step 176 the power storage control device 130 causes the target cell to be disconnected from the reactance element.
  • step 177 the power storage control device 130 ends the process if the voltage equalization process is to be terminated, and returns to step 171 (S171) if the voltage equalization process is to be continued.
  • the determination as to whether or not to end the voltage equalization process may be made before step 177 (S177).
  • the target cell, the series of cells, or both of them may be reselected based on the cell voltage monitoring result or the like.
  • the same operational effects as the power storage device 100 of FIG. 15 can be obtained, or cell connection can be switched at a timing suitable for energy transfer.
  • the cell in this modification is a cell having a substantially flat discharge characteristic.
  • FIG. 18 shows a discharge curve when a 1 C discharge is performed on a lithium ion secondary battery in which the positive electrode material is olivine-type iron phosphate.
  • the horizontal axis represents SOC [%] as an example of the charging rate
  • the vertical axis represents the cell terminal voltage [V].
  • the discharge curve of FIG. 18 shows that the voltage change in a series of sections over 50% of the sections of the charging rate of 0% to 100% is 0.25 V or less. More specifically, in the discharge curve of FIG. 18, the voltage change in the section where the charging rate is 20% to 90% is about 0.1V.
  • the discharge curve of FIG. 18 shows that the voltage change in a series of sections over 50% of the sections of the charging rate of 0% to 100% is 0.25 V or less. More specifically, in the discharge curve of FIG. 18, the voltage change in the section where the charging rate is 20% to 90% is about 0.1V. In the discharge curve of FIG.
  • the cell is not limited to a lithium ion secondary battery using olivine type iron phosphate.
  • the temperature distribution in the power storage device 100 is relatively uniform and the load current is less fluctuated than an automobile or the like, the voltage variation between the cells is small. Therefore, in the power storage device 100, it is preferable to secure a cell balance with a small current without waste rather than using a large current in the voltage equalization process to quickly eliminate variations in the voltage between cells. If a cell having a flat discharge characteristic as in this modification is applied, voltage equalization processing with a small current with reduced burden on the cell can be quickly performed by the LC series resonance circuit.
  • the use of a cell having a substantially flat discharge characteristic is not limited to the case where the reactance element constitutes an LC series resonance circuit.
  • the power storage device 100 of the present embodiment differs from the power storage devices 100 of the first to fifth embodiments in the resonance frequency of the reactance element.
  • the resonance frequency of the reactance element in the present embodiment is a frequency when the imaginary component in the Cole-Cole plot of the internal impedance of the cell measured by the AC impedance method is zero.
  • the internal impedance for each frequency is measured while changing the frequency by applying AC to the cell.
  • the Cole-Cole plot is one method for illustrating the measurement result of the AC impedance method.
  • the internal impedance of the cell for each frequency obtained by the AC impedance method is plotted on a complex plane with the real component of internal impedance on the horizontal axis and the imaginary component of internal impedance on the vertical axis.
  • FIG. 19 An example of a Cole-Cole plot is shown in FIG. In FIG. 19, the frequency when the imaginary number component of the internal impedance is 0 is fmin [Hz].
  • the reactance element may be designed so that fmin becomes the resonance frequency.
  • the same effects as the power storage devices 100 of the first to fifth embodiments can be obtained, or energy can be further increased by minimizing the internal impedance of the cell. It can be exchanged efficiently.
  • the power storage device 100 of the present modification differs from the power storage device 100 described with reference to FIG. 19 in the manner of setting the resonance frequency of the reactance element.
  • FIG. 20 An example of a Cole-Cole plot for explaining the power storage device 100 of the present modification is schematically shown in FIG. 20 is the real part of the internal impedance of the cell, and the vertical axis Z ′′ of FIG. 20 is the imaginary part of the internal impedance of the cell.
  • FIG. 20 shows an example of the charge rate of the cell.
  • the call call plot for each SOC (State (of Charge) [%] is shown in Fig. 20.
  • the call call plot of Fig. 20 is a plot based on the measurement result of the internal impedance of the cell by FRA (Frequency Response Analyzer). Specific numerical values in 20 are merely examples, and do not limit the scope of the present disclosure.
  • FRA Frequency Response Analyzer
  • the Cole-Cole plot may vary depending on the SOC.
  • the frequency fmin when the imaginary component in the Cole-Cole plot is 0 differs depending on the SOC
  • the fmin is obtained for each SOC
  • the resonance frequency of the reactance element is set by comprehensively considering the obtained fmin for each SOC. May be.
  • an average value of fmin for each SOC may be obtained, and the reactance element may be designed so that this average value becomes the resonance frequency.
  • the present disclosure can take the following configurations.
  • (1) a plurality of cells connected in series; A plurality of reactance elements connected in series; A plurality of connection lines for connecting each cell and each reactance element in parallel in a one-to-one correspondence; A plurality of switching elements that individually open and close each connection line; A power storage control device for controlling the switching element to transfer energy between the cells;
  • a power storage device comprising: (2) The power storage control device closes the first pair of connection lines arranged at both ends of a selected series of cells of the plurality of cells, and then closes the first pair of connection lines.
  • the power storage device according to (1) configured to open and close a second pair of connection lines arranged at both ends of the target cell in the series of cells.
  • each reactance element has the same constant.
  • each reactance element includes a capacitor.
  • each reactance element includes a reactor.
  • the power storage control device is configured to switch the connection between the reactance element and the cell at a resonance frequency of the reactance element.
  • the resonance frequency of the reactance element is a frequency when the imaginary component in the Cole-Cole plot of the internal impedance of the cell measured by the alternating current impedance method is 0, in any one of (1) to (7)
  • the power storage device described The power storage device described.
  • connection lines for connecting a plurality of series-connected cells and a plurality of reactance elements connected in series in parallel in a one-to-one correspondence are controlled by switching a plurality of switching elements to individually open and close the energy between the cells.
  • a storage control program that functions as a means for sending and receiving.
  • Power storage device 110a 110b Cell 120a, 120b Reactance element 130 Power storage control device 140a, 140b, 140c Switching element 160a, 160b, 160c Connection line

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 簡易な構成によってセルの電圧を迅速に均等化する蓄電装置、蓄電制御装置および蓄電制御方法を提供する。 直列接続された複数のセルと、直列接続された複数のリアクタンス素子と、各セルと各リアクタンス素子とを一対一対応で並列接続する複数の接続ラインと、各接続ラインを個別に開閉する複数のスイッチング素子と、前記スイッチング素子を制御して前記セル間でエネルギーを授受させる蓄電制御装置と、を備えること。

Description

蓄電装置、蓄電制御装置および蓄電制御方法
 本開示は、蓄電装置、蓄電制御装置および蓄電制御方法に関する。より詳しくは、セルに電気を蓄える蓄電装置、蓄電制御装置および蓄電制御方法に関する。
 従来から、直列接続された複数のセルの電圧を均等化する技術が提案されている。例えば、特許文献1では、n個の蓄電セルを直列接続して構成される第1の直列回路と、n-1個の蓄電セルを直列接続して構成される第2、第3の直列回路と、第1、第2のスイッチ群とを備える電圧均等化回路が提案されている。
特開2012-257440号公報
 直列接続された複数のセルの電圧を均等化する構成は、簡易でありながら各セルの電圧を迅速に均等化することが望ましい。
 本開示は、簡易な構成によってセルの電圧を迅速に均等化する蓄電装置、蓄電制御装置および蓄電制御方法を提供する。
 本開示に係る蓄電装置は、直列接続された複数のセルと、直列接続された複数のリアクタンス素子と、各セルと各リアクタンス素子とを一対一対応で並列接続する複数の接続ラインと、各接続ラインを個別に開閉する複数のスイッチング素子と、前記スイッチング素子を制御して前記セル間でエネルギーを授受させる蓄電制御装置と、を備えるものである。
 前記蓄電制御装置は、前記複数のセルのうちの一連のセルの両端に配置された接続ラインの第1の対を閉路させ、その後、前記接続ラインの第1の対を開路させ、かつ、前記一連のセルのうちの対象セルの両端に配置された接続ラインの第2の対を閉路させてもよい。
 この場合、前記蓄電制御装置は、前記複数のセルの全部または一部を前記一連のセルとして選択し、複数の前記対象セルを選択してもよい。
 あるいは、各リアクタンス素子は、定数が互いに同一であってもよい。この場合、各リアクタンス素子は、コンデンサを含んでもよい。この場合、各リアクタンス素子は、リアクトルを含んでもよい。この場合、前記蓄電制御装置は、前記リアクタンス素子と前記セルとの接続を前記リアクタンス素子の共振周波数で切り替えてもよい。
 前記リアクタンス素子の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数であってもよい。
 前記スイッチング素子の個数及び前記接続ラインの個数は、前記セルの個数に1を加えた個数であってもよい。
 前記蓄電制御装置は、前記対象セルを選択した上で前記接続ラインの第1の対を閉路させてもよい。この場合、前記蓄電制御装置は、電圧が最小のセルを含む前記対象セルを選択してもよい。
 本開示に係る蓄電制御装置は、直列接続された複数のセルと直列接続された複数のリアクタンス素子とを一対一対応で並列接続する複数の接続ラインを、複数のスイッチング素子を制御して個別に開閉させて、前記セル間でエネルギーを授受させるものである。
 本開示に係る蓄電制御方法は、直列接続された複数のセルと直列接続された複数のリアクタンス素子とを一対一対応で並列接続する複数の接続ラインを、複数のスイッチング素子を制御装置によって制御して個別に開閉させて、前記セル間でエネルギーを授受させる。
 本開示によれば、簡易な構成によってセルの電圧を迅速に均等化することができる。
本開示の第1の実施形態の蓄電装置の構成例を模式的に示す図である。 本開示の第1の実施形態の蓄電装置の動作例を模式的に示す図であり、Aは、スイッチング素子の第1の制御状態を示し、Bは、スイッチング素子の第2の制御状態を示し、Cは、スイッチング素子の第3の制御状態を示す図である。 本開示の第1の実施形態の第1の変形例の蓄電装置の構成を模式的に示す図である。 本開示の第1の実施形態の第1の変形例の蓄電装置の動作例を模式的に示す図であり、Aは、スイッチング素子の第1の制御状態を示し、Bは、スイッチング素子の第2の制御状態を示し、Cは、スイッチング素子の第3の制御状態を示す図である。 本開示の第2の実施形態の蓄電装置の動作例を示すフローチャートである。 本開示の第2の実施形態の第1の変形例の蓄電装置の動作例を模式的に示す図であり、Aは、接続ラインの第1の対の閉路状態を示し、Bは、接続ラインの第1の対の開路状態を示し、Cは、接続ラインの第2の対の閉路状態を示す図である。 本開示の第2の実施形態の第2の変形例の蓄電装置の動作例を模式的に示す図であり、Aは、接続ラインの第1の対の閉路状態を示し、Bは、接続ラインの第1の対の開路状態を示し、Cは、接続ラインの第2の対の閉路状態を示す図である。 本開示の第3の実施形態の蓄電装置の構成例を模式的に示す図である。 本開示の第3の実施形態の蓄電装置の動作例を示すフローチャートである。 本開示の第3の実施形態の第1の変形例の蓄電装置の動作例を示すフローチャートである。 本開示の第4の実施形態の蓄電装置の構成例を模式的に示す図である。 本開示の第4の実施形態の第1の比較例の蓄電装置の構成を模式的に示す図である。 本開示の第4の実施形態の第2の比較例の蓄電装置の構成を模式的に示す図である。 本開示の第4の実施形態の第1の変形例の蓄電装置の動作例を模式的に示す図であり、Aは、接続ラインの第1の対の閉路状態を示し、Bは、接続ラインの第2の対の閉路状態を示す図である。 本開示の第5の実施形態の蓄電装置の構成例を模式的に示す図である。 本開示の第5の実施形態の蓄電装置の動作例を示すタイムチャートである。 本開示の第5の実施形態の第1の変形例の蓄電装置の動作例を示すフローチャートである。 本開示の第5の実施形態の第2の変形例の蓄電装置の構成例を説明するためのセルの放電曲線図である。 本開示の第6の実施形態の蓄電装置の構成例を説明するためのコールコールプロット図である。 本開示の第6の実施形態の第1の変形例の蓄電装置の構成例を説明するためのコールコールプロット図である。
 以下、本開示を実施するための好適な形態について図面を参照しながら説明する。以下に説明する複数の実施形態は、本開示の代表的な実施形態の一例を示したものであり、これにより本開示の範囲が狭く解釈されることはない。また、各実施形態において、互いに対応する構成要素については、同一の符号を付して重複する説明は省略する。説明は以下の順序で行う。
 
1.第1の実施形態
(直列接続された複数のセルと複数のリアクタンス素子とを一対一対応で接続する複数の接続ラインを備える蓄電装置の例)
2.第1の実施形態の第1の変形例
(直列接続されたセルの数が多い蓄電装置の例)
3.第2の実施形態
(一連のセルからリアクタンス素子を介して対象セルにエネルギーを供給する蓄電装置の例)
4.第2の実施形態の第1の変形例
(全部のセルを一連のセルとして選択し、複数の対象セルを選択する蓄電装置の例)
5.第2の実施形態の第2の変形例
(一部のセルを一連のセルとして選択し、複数の対象セルを選択する蓄電装置の例)
6.第3の実施形態
(対象セルを選択した上で接続ラインの第1の対を閉路させる蓄電装置の例)
7.第3の実施形態の第1の変形例
(電圧が最小のセルを対象セルに含める蓄電装置の例)
8.第4の実施形態
(リアクタンス素子がコンデンサである蓄電装置の例)
9.第4の実施形態の第1の変形例
(各リアクタンス素子の定数が同一である蓄電装置の例)
10.第5の実施形態
(リアクタンス素子が直列接続されたリアクトルおよびコンデンサである蓄電装置の例)
11.第5の実施形態の第1の変形例
(セルとリアクタンス素子との接続をリアクタンス素子の共振周波数で切り替える蓄電装置の例)
12.第5の実施形態の第2の変形例
(実質的にフラットな放電特性を有するセルを適用した蓄電装置の例)
13.第6の実施形態
(リアクタンス素子がコールコールプロットに適応した共振周波数を有する蓄電装置の例)
14.第6の実施形態の第1の変形例
(充電率ごとのコールコールプロットを考慮して直流共振回路の共振周波数が設定された蓄電装置の例)
 
<1.第1の実施形態>
[装置の構成例]
 図1は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。図1に示すように、蓄電装置100は、複数のセル110a、110b、複数のリアクタンス素子120a、120b、複数の接続ライン160a、160b、160c、複数のスイッチング素子140a、140b、140c、及び、蓄電制御装置130を備える。リアクタンス素子120a、120bの個数は、セル110a、110bの個数と同数である。スイッチング素子140a~140cの個数は、接続ライン160a~160cの個数と同数である。
 [セル110a、110b]
 図1に示すように、各セル110a、110bは、直列接続されている。各セル110a、110bは、いずれも充放電可能とされている。すなわち、各セル110a、110bは、充電の際には、不図示の充電装置から供給された充電電流を電荷として蓄積し、放電の際には、蓄積された電荷を放電電流として不図示の負荷に供給することができる。ここで、セル全体の正極側の端部すなわち正極端子から数えてi番目(ただし、iは1~セルの総数)のセルのことを、i番目のセルと定義する。図1の例では、1番目のセル110aの負極に2番目のセル110bの正極が接続されることで、両セル110a、110bが直列接続されている。
 セル110a、110bの個数は、複数であれば図1に示すような2つに限定されない。各セル110a、110bは、同一規格で構成されていてもよく、または、別規格で構成されていてもよい。各セル110a、110bは、それぞれが単電池および組電池のいずれであってもよい。各セル110a、110bをそれぞれ組電池とする場合、組電池内での接続は、直列または並列もしくはこれらの双方であってもよい。
 [リアクタンス素子120a、120b]
 図1に示すように、各リアクタンス素子120a、120bは、直列接続されている。各リアクタンス素子120a、120bは、容量性リアクタンス又は誘導性リアクタンス若しくはこれらの双方を有していてもよい。各リアクタンス素子120a、120bは、抵抗成分を有することを除外しない。ここで、リアクタンス素子全体の正極側の端部から数えてj番目(ただし、jは1~リアクタンス素子の総数)のセルのことを、j番目のリアクタンス素子と定義する。図1の例では、1番目のリアクタンス素子120aの負極に2番目のリアクタンス素子120bの正極が接続されることで、両リアクタンス素子120a、120bが直列接続されている。
 [接続ライン160a~160c]
 各接続ライン160a~160cは、各セル110a、110bと各リアクタンス素子120a、120bとを一対一対応で並列接続する。ここで、正極側から数えてk番目(ただし、kは1~接続ラインの総数)の接続ラインのことを、k番目の接続ラインと定義する。
 図1に示すように、1番目の接続ライン160aは、セル側の端部が1番目のセル110aの正極に接続され、リアクタンス素子側の端部が1番目のリアクタンス素子120aにおける正極側の端部に接続される。2番目の接続ライン160bは、セル側の端部が1番目のセル110aの負極に接続され、リアクタンス素子側の端部が1番目のリアクタンス素子120aにおける負極側の端部に接続される。すなわち、1番目のセル110aと、これに対応する1番目のリアクタンス素子120aとは、一対の接続ライン160a、160bによって一対一対応で並列接続される。
 また、2番目の接続ライン160bは、セル側の端部が2番目のセル110bの正極に接続され、リアクタンス素子側の端部が2番目のリアクタンス素子120bにおける正極側の端部に接続される。3番目の接続ライン160cは、セル側の端部が2番目のセル110bの負極に接続され、リアクタンス素子側の端部が2番目のリアクタンス素子120bにおける負極側の端部に接続される。すなわち、2番目のセル110bと、これに対応する2番目のリアクタンス素子120bとは、一対の接続ライン160b、160cによって一対一対応で並列接続される。
 [スイッチング素子140a~140c]
 図1に示すように、各スイッチング素子140a~140cは、各スイッチング素子140a~140cに対応する接続ライン160a~160c上にそれぞれ配置されている。各スイッチング素子140a~140cは、オフ状態またはオン状態になることで、対応する接続ライン160a~160cを開閉すなわち切断状態または接続状態にする。各接続ライン160a~160cの開閉は、スイッチング素子140a~140c毎に個別に行われる。ここで、正極側から数えてk番目のスイッチング素子のことを、k番目のスイッチング素子と定義する。
 スイッチング素子140a~140cの態様は限定されず、例えば、スイッチング素子140a~140cを半導体素子等によって構成してもよい。半導体素子は、トランジスタ等であってもよい。トランジスタは、電界効果トランジスタ等であってもよい。電界効果トランジスタは、MOSFET(metal-oxide-semiconductor field-effect transistor)等であってもよい。電界効果トランジスタを採用することで、消費電力を抑えることができる。
 [蓄電制御装置130]
 蓄電制御装置130は、各スイッチング素子140a~140cの動作を制御して、セル110a、110b間でエネルギーを授受させる。図1には、蓄電制御装置130がスイッチング素子140a~140cの動作を制御する構成であることが、スイッチング素子140a~140cを囲む破線枠および蓄電制御装置130から破線枠に向かう破線矢印で表されている。蓄電制御装置130は、各スイッチング素子140a~140cに制御信号を出力することによって各スイッチング素子140a~140cの動作を制御してもよい。制御信号は、電界効果トランジスタのゲート電圧等であってもよい。
 蓄電制御装置130は、電子装置等によって構成してもよい。この場合、電子装置は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等の演算処理装置およびRAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置等を備えてもよい。ROMには、蓄電制御装置130の機能を実現するためのプログラムすなわちコンピュータを蓄電制御装置130として機能させるプログラムを格納してもよい。また、ROMには、演算処理装置がプログラムを実行する際に参照するデータを格納してもよい。演算処理装置は、ROMに格納されたプログラムを実行することで、蓄電制御装置130の機能を実現してもよい。RAMは、演算処理装置の作業領域等として利用してもよい。ただし、このような構成に限定されない。
[装置の動作例]
 蓄電装置100の動作例を以下に述べる。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。ただし、本開示に係る蓄電制御方法は、蓄電装置100以外の構成で具現化されてもよい。
 本実施形態では、蓄電制御装置130によってスイッチング素子140a~140cが図2A~図2Cの如く制御されることで、セル110a、110b間でエネルギーが授受される。
 具体的には、図2Aには、スイッチング素子140a~140cの第1の制御状態が示されている。第1の制御状態では、1番目のスイッチング素子140aと、3番目のスイッチング素子140cとがオン状態に制御され、2番目のスイッチング140bがオフ状態に制御される。換言すれば、第1の制御状態では、1番目の接続ライン160aと3番目の接続ライン160cとが閉路すなわち接続状態にされ、2番目の接続ライン160bが開路すなわち切断状態にされる。これにより、全てのセル110a、110bすなわち直列接続されたセル群と、全てのリアクタンス素子120a、120bすなわち直列接続されたリアクタンス素子群とが、閉路状態の接続ライン160a、160cを介して並列接続される。このような第1の制御状態では、全てのセル110a、110bから全てのリアクタンス素子120a、120bにエネルギーが移動され、移動されたエネルギーは、各リアクタンス素子120a、120bに蓄積される。
 図2Bには、スイッチング素子140a~140cの第2の制御状態が示されている。第2の制御状態では、全てのスイッチング素子140a~140cがオフ状態に制御される。第1の制御状態からの変化は、第1の制御状態においてオン状態であった1番目のスイッチング素子140aおよび3番目のスイッチング素子140cがオフ状態に切り替えられたことである。すなわち、第2の制御状態では、全ての接続ライン160a~160cが開路される。これにより、第2の制御状態では、全てのセル110a、110bと全てのリアクタンス素子120a、120bとが切断される。第2の制御状態では、第1の制御状態において各リアクタンス素子120a、120bに蓄積されたエネルギーが、各リアクタンス素子120a、120bに蓄積され続ける。
 図2Cには、スイッチング素子140a~140cの第3の制御状態が示されている。第3の制御状態では、2番目のスイッチング素子140bおよび3番目のスイッチング素子140cがオン状態に制御され、1番目のスイッチング素子140aがオフ状態に制御される。第2の制御状態からの変化は、第2の制御状態においてオフ状態であった2番目のスイッチング素子140bおよび3番目のスイッチング素子140cがオン状態に切り替えられたことである。すなわち、第3の制御状態では、2番目の接続ライン160bおよび3番目の接続ライン160cが閉路され、1番目の接続ライン160aが開路される。これにより、第3の制御状態では、2番目のセル110bと2番目のリアクタンス素子120bとが並列接続される。第3の制御状態では、2番目のリアクタンス素子120bに蓄積されているエネルギーが、2番目のセル110bに移動される。このとき、1番目のリアクタンス素子120aに蓄積されているエネルギーは変化しない。
 以上を総括すると、図2A~図2Cでは、全てのセル110a、110bから全てのリアクタンス素子120a、120bにエネルギーが移動された後に、2番目のセル110bに2番目のリアクタンス素子120bからエネルギーが移動される。すなわち、セル110a、110b全体のエネルギーがリアクタンス素子120a、120bに分配された後に、1番目のセル110aよりも保有エネルギーが小さい2番目のセル110bに、2番目のリアクタンス素子120bからエネルギーが供給される。エネルギーの供給後は、両セル110a、110b間のエネルギーのばらつきが低減もしくは解消される。ただし、以上の動作はあくまで一例であり、本開示の範囲を限定するものではない。例えば、蓄電装置100は、2番目のセル110bが保有するエネルギーが1番目のセル110aが保有するエネルギーより大きい場合にも有効に動作することができる。
 本実施形態によれば、セル110a、110bとリアクタンス素子120a、120bとを一対一対応で並列接続する接続ライン160a~160cを、スイッチング素子140a~140cで個別に開閉させてセル間でエネルギーを授受させることができる。本実施形態によれば、保有するエネルギーが大きいセルと保有するエネルギーが小さいセルとの全体のエネルギーを複数のリアクタンス素子に分配し、分配されたエネルギーを、保有するエネルギーが小さいセルに供給することができる。これにより、電圧均等化処理すなわちアクティブセルバランス処理を簡易な構成によって迅速に行うことができる。なお、隣接するセル間でのエネルギーの授受に特化した構成では、特にセル数が多い場合に電圧均等化処理が遅くなる場合があるが、本開示では、そのような不具合を回避することができる。また、本開示によれば、複数のセル全体のエネルギーを複数のリアクタンス素子に分配して、分配されたエネルギーを対象セルに供給するという発想に基づき、スイッチング素子の個数が削減された低コストの回路構成による迅速な電圧均等化処理を実現できる。
<2.第1の実施形態の第1の変形例>
[装置の構成例]
 図3は、本実施形態の第1の変形例の蓄電装置100の構成を模式的に示す全体図である。本変形例の蓄電装置100は、図1の蓄電装置100に対して、セル、リアクタンス素子、接続ラインおよびスイッチング素子の個数が相違する。以下、相違点を詳細に説明する。
 [セル110a~110f]
 本変形例の蓄電装置100は、1番目、2番目のセル110a、110bに加えて、3番目のセル110c、4番目のセル110d、5番目のセル110eおよび6番目のセル110fを備える。各セル110a~110fは、番号順に直列接続されている。
 [リアクタンス素子120a~120f]
 本変形例の蓄電装置100は、1番目、2番目のリアクタンス素子120a、120bに加えて、3番目のリアクタンス素子120c、4番目のリアクタンス素子120d、5番目のリアクタンス素子120eおよび6番目のリアクタンス素子120fを備える。各リアクタンス素子120a~120fは、番号順に直列接続されている。
 [接続ライン160a~160g]
 本変形例の蓄電装置100は、1番目~3番目の接続ライン160a~160cに加えて、4番目の接続ライン160d、5番目の接続ライン160e、6番目の接続ライン160fおよび7番目の接続ライン160gを備える。
 3番目の接続ライン160cは、セル側の端部が3番目のセル110cの正極に接続され、リアクタンス素子側の端部が3番目のリアクタンス素子120cにおける正極側の端部に接続される。4番目の接続ライン160dは、セル側の端部が3番目のセル110cの負極に接続され、リアクタンス素子側の端部が3番目のリアクタンス素子120cにおける負極側の端部に接続される。すなわち、3番目のセル110cと、これに対応する3番目のリアクタンス素子120cとは、一対の接続ライン160c、160dによって一対一対応で並列接続される。
 4番目の接続ライン160dは、セル側の端部が4番目のセル110dの正極に接続され、リアクタンス素子側の端部が4番目のリアクタンス素子120dにおける正極側の端部に接続される。5番目の接続ライン160eは、セル側の端部が4番目のセル110dの負極に接続され、リアクタンス素子側の端部が4番目のリアクタンス素子120dにおける負極側の端部に接続される。すなわち、4番目のセル110dと、これに対応する4番目のリアクタンス素子120dとは、一対の接続ライン160d、160eによって一対一対応で並列接続される。
 5番目の接続ライン160eは、セル側の端部が5番目のセル110eの正極に接続され、リアクタンス素子側の端部が5番目のリアクタンス素子120eにおける正極側の端部に接続される。6番目の接続ライン160fは、セル側の端部が5番目のセル110eの負極に接続され、リアクタンス素子側の端部が5番目のリアクタンス素子120eにおける負極側の端部に接続される。すなわち、5番目のセル110eと、これに対応する5番目のリアクタンス素子120eとは、一対の接続ライン160e、160fによって一対一対応で並列接続される。
 6番目の接続ライン160fは、セル側の端部が6番目のセル110fの正極に接続され、リアクタンス素子側の端部が6番目のリアクタンス素子120fにおける正極側の端部に接続される。7番目の接続ライン160gは、セル側の端部が6番目のセル110fの負極に接続され、リアクタンス素子側の端部が6番目のリアクタンス素子120fにおける負極側の端部に接続される。すなわち、6番目のセル110fと、これに対応する6番目のリアクタンス素子120fとは、一対の接続ライン160f、160gによって一対一対応で並列接続される。
 [スイッチング素子140a~140g]
 本変形例の蓄電装置100は、1番目~3番目のスイッチング素子140a~140cに加えて、4番目のスイッチング素子140d、5番目のスイッチング素子140e、6番目のスイッチング素子140fおよび7番目のスイッチング素子140gを備える。
 4番目のスイッチング素子140dは、4番目の接続ライン160d上に配置されており、オフ状態またはオン状態になることで、4番目の接続ライン160dを開閉する。5番目のスイッチング素子140eは、5番目の接続ライン160e上に配置されており、オフ状態またはオン状態になることで、5番目の接続ライン160eを開閉する。6番目のスイッチング素子140fは、6番目の接続ライン160f上に配置されており、オフ状態またはオン状態になることで、6番目の接続ライン160fを開閉する。7番目のスイッチング素子140gは、7番目の接続ライン160g上に配置されており、オフ状態またはオン状態になることで、7番目の接続ライン160gを開閉する。
 [蓄電制御装置130]
 蓄電制御装置130は、各スイッチング素子140a~140gの動作を制御して、セル110a~110f間でエネルギーを授受させる。蓄電制御装置130は、各スイッチング素子140a~140gに制御信号を出力することによって各スイッチング素子140a~140gの動作を制御してもよい。
[装置の動作例]
 本変形例の蓄電装置100の動作例を以下に述べる。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
 本変形例では、蓄電制御装置130によってスイッチング素子140a~140gが図4A~図4Cの如く制御されることで、セル110a~110f間でエネルギーが授受される。
 具体的には、図4Aには、スイッチング素子140a~140gの第1の制御状態が示されている。第1の制御状態では、1番目のスイッチング素子140aと、7番目のスイッチング素子140gとがオン状態に制御され、2番目~6番目のスイッチング140b~140fがオフ状態に制御される。すなわち、第1の制御状態では、1番目の接続ライン160aと7番目の接続ライン160gとが閉路され、2番目~6番目の接続ライン160b~160fが開路される。これにより、第1の制御状態では、全てのセル110a~110fと全てのリアクタンス素子120a~120fとが、閉路状態の接続ライン160a、160gを介して並列接続される。第1の制御状態では、全てのセル110a~110fから全てのリアクタンス素子120a~120fにエネルギーが移動され、移動されたエネルギーは、各リアクタンス素子120a~120fに蓄積される。
 図4Bには、スイッチング素子140a~140gの第2の制御状態が示されている。第2の制御状態では、全てのスイッチング素子140a~140gがオフ状態に制御される。第1の制御状態からの変化は、第1の制御状態においてオン状態であった1番目のスイッチング素子140aおよび7番目のスイッチング素子140gがオフ状態に切り替えられたことである。すなわち、第2の制御状態では、全ての接続ライン160a~160gが開路される。これにより、第2の制御状態では、全てのセル110a~110fと全てのリアクタンス素子120a~120fとが切断される。第2の制御状態では、第1の制御状態において各リアクタンス素子120a~120fに蓄積されたエネルギーが、各リアクタンス素子120a~120fに蓄積され続ける。
 図4Cには、スイッチング素子140a~140gの第3の制御状態が示されている。第3の制御状態では、6番目のスイッチング素子140fおよび7番目のスイッチング素子140gがオン状態に制御され、1番目~5番目のスイッチング素子140a~140eがオフ状態に制御される。第2の制御状態からの変化は、第2の制御状態においてオフ状態であった6番目のスイッチング素子140fおよび7番目のスイッチング素子140gがオン状態に切り替えられたことである。すなわち、第3の制御状態では、6番目の接続ライン160fおよび7番目の接続ライン160gが閉路され、1番目~5番目の接続ライン160a~160eが開路される。これにより、第3の制御状態では、6番目のセル110fと6番目のリアクタンス素子120fとが並列接続される。第3の制御状態では、6番目のリアクタンス素子120fに蓄積されているエネルギーが、6番目のセル110fに移動される。
 以上を総括すると、本変形例では、全てのセル110a~110fから全てのリアクタンス素子120a~120fにエネルギーが移動された後に、6番目のセル110fに6番目のリアクタンス素子120fからエネルギーが移動される。すなわち、セル110a~110f全体のエネルギーがリアクタンス素子120a~120fに分配された後に、保有エネルギーが相対的に小さい6番目のセル110fに、6番目のリアクタンス素子120fに分配されたエネルギーが供給される。ただし、以上の動作はあくまで一例であり、本開示の範囲を限定するものではない。例えば、蓄電装置100は、6番目のセル110f以外のセルが保有するエネルギーが相対的に小さい場合にも有効に動作することができる。
 本変形例によれば、図1の蓄電装置100と同様の作用効果を奏することができ、多直列のセル間の電圧均等化処理を簡易な構成によって迅速に行うことができ、または、電圧均等化処理の態様の自由度を向上させることができる。
<3.第2の実施形態>
[装置の構成例]
 本実施形態の蓄電装置100は、図1および図3の蓄電装置100に対して、蓄電制御装置130の制御内容が特定されている。
 具体的には、本実施形態の蓄電制御装置130は、複数のセルのうちの一連のセルの両端に配置された接続ラインの第1の対を閉路させる構成である。ここで、一連のセルは、連続する2以上のセルであれば、全てのセルに限定されない。したがって、接続ラインの第1の対は、図4Aに示した両端の接続ライン160a、160gに限定されない。また、本実施形態の蓄電制御装置130は、接続ラインの第1の対を閉路させた後、接続ラインの第1の対を開路させ、かつ、前記一連のセルのうちの対象セルの両端に配置された接続ラインの第2の対を閉路させる構成である。対象セルは、エネルギーを受け取る対象となるセルすなわち給電対象となるセルである。蓄電制御装置130は、接続ラインの第1の対のそれぞれに配置されたスイッチング素子を制御することで、接続ラインの第1の対を開閉する。蓄電制御装置130は、接続ラインの第2の対のそれぞれに配置されたスイッチング素子を制御することで、接続ラインの第2の対を開閉する。
 蓄電制御装置130は、予め設定された選択基準にしたがって一連のセルを選択してもよい。一連のセルの中には、対象セルへのエネルギー供給の実効性を確保するために、対象セルよりも電圧が大きいセルが含まれることが望ましい。蓄電制御装置130は、全てのセルのうちの電圧が最大のセルを含む一連のセルを選択すれば、より効率的な電圧均等化処理が可能となる。蓄電制御装置130は、一連のセルの選択結果を、例えばセルの番号等のセルの識別情報と対応付けて蓄電制御装置130の記憶領域に記録してもよい。
 蓄電制御装置130は、接続ラインの第1の対を閉路させる際に、例えば、予め記憶領域に記憶されているセルとスイッチング素子との対応関係を示す情報と、一連のセルの選択結果とに基づいて、オン状態に切り替えるべきスイッチング素子を決定してもよい。セルとスイッチング素子との対応関係は、セルと、このセルの正極および負極に接続されたスイッチング素子との関係であってもよい。また、セルとスイッチング素子との対応関係を示す情報は、セルの識別情報と、セルに対応するスイッチング素子の識別情報とが紐づけられた情報であってもよい。
 対象セルは、予め設定された選択基準にしたがって選択されたセルであってもよい。蓄電制御装置130は、接続ラインの第2の対を閉路させる際に、例えば、予め記憶領域に記憶されているセルとスイッチング素子との対応関係と、対象セルの識別情報とに基づいて、オン状態に切り替えるべきスイッチング素子を決定してもよい。
[装置の動作例]
 図5は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図5の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
 説明の便宜上、図5の初期状態では、全てのスイッチング素子がオフ状態すなわち全ての接続ラインが開路状態であることで、全てのセルがリアクタンス素子から切断された状態であるとする。
 そして、初期状態から、先ず、図5のステップ51(S51)において、蓄電制御装置130により、一連のセルを選択する。
 次いで、ステップ52(S52)において、蓄電制御装置130により、ステップ51(S51)において選択された一連のセルに対応する接続ラインの第1の対を、この第1の対に対応するスイッチング素子をオン状態に切り替えることで閉路する。
 ステップ52(S52)により、一連のセルが、閉路された接続ラインの第1の対を介して、一連のセルに対応する一連のリアクタンス素子に並列接続される。そして、一連のセルから一連のリアクタンス素子に電流が流れて、一連のセルから一連のリアクタンス素子にエネルギーが移動される。移動されたエネルギーは、各リアクタンス素子の定数に応じて各リアクタンス素子に蓄積される。
 次いで、ステップ53(S53)において、蓄電制御装置130により、ステップ52(S52)において閉路された接続ラインの第1の対を、この第1の対に対応するスイッチング素子をオフ状態に切り替えることで開路する。このとき、ステップ52(S52)において一連のリアクタンス素子に蓄積されたエネルギーは、各リアクタンス素子に蓄積され続ける。
 次いで、ステップ54(S54)において、蓄電制御装置130により、一連のセルのうちの対象セルに対応する接続ラインの第2の対を、この第2の対に対応するスイッチング素子をオン状態に切り替えることで閉路する。
 ステップ54(S54)により、対象セルのみが、閉路された接続ラインの第2の対を介して、対象セルに対応するリアクタンス素子に並列接続される。そして、対象セルに対応するリアクタンス素子から対象セルに電流が流れてエネルギーが移動される。
 次いで、ステップ55(S55)において、蓄電制御装置130により、ステップ54(S54)において閉路された接続ラインの第2の対を、この第2の対に対応するスイッチング素子をオフ状態に切り替えることで開路する。その後は、電圧均等化処理を終了するか、または、必要に応じてステップ51(S51)もしくはステップ52(S52)に戻る。
 本実施形態の蓄電装置100によれば、一連のセルから対応するリアクタンス素子群にエネルギーを引き渡して個々のリアクタンス素子に分配させた後に、対象セルが、対応するリアクタンス素子からこの素子に分配されたエネルギーを受け取ることができる。これにより、簡便な接続ラインの開閉動作による迅速な電圧均等化処理が可能となる。
<4.第2の実施形態の第1の変形例>
 [装置の構成例]
 本変形例の蓄電装置100は、図5で説明した蓄電装置100に対して、蓄電制御装置130の制御内容が特定されている。
 具体的には、本変形例の蓄電制御装置130は、全てのセルを一連のセルとして選択し、複数の対象セルを選択する構成である。すなわち、本変形例の蓄電制御装置130は、全てのセルから全てのリアクタンス素子にエネルギーを移動させた上で接続ラインの第1の対を開路させた後に、複数対の接続ラインの第2の対を閉路させる構成である。複数の対象セルは、互いに隣接する位置関係を有していてもよく、または、互いに離れた位置関係を有していてもよく、あるいは、これら双方の位置関係を有する対象セルが混在していてもよい。
 [装置の動作例]
 本変形例の蓄電装置100の動作例を以下に述べる。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
 本変形例では、蓄電制御装置130によるスイッチング素子140a~140gの制御によって接続ライン160a~160gが図6A~図6Cの如く開閉されることで、一連のセルと複数の対象セルとの間でエネルギーが授受される。
 具体的には、図6Aには、接続ラインの第1の対の閉路状態が示されている。より具体的には、図6Aの状態は、1番目の接続ライン160aと7番目の接続ライン160gとの対すなわち組が、接続ラインの第1の対として閉路された状態である。図6Aの状態では、1番目~6番目のセル110a~110fから、1番目~6番目のリアクタンス素子120a~120fにエネルギーが移動され、移動されたエネルギーは、各リアクタンス素子120a~120fに蓄積される。
 図6Bには、図6Aにおいて閉路された接続ラインの第1の対の開路状態が示されている。図6Bの状態では、図6Aの状態において各リアクタンス素子120a~120fに蓄積されたエネルギーが、各リアクタンス素子120a~120fに蓄積され続ける。
 図6Cには、接続ラインの第2の対の閉路状態が示されている。図6Cの状態は、2番目の接続ライン160bと3番目の接続ライン160cとの対が、接続ラインの第2の対として閉路された状態である。また、図6Cの状態は、5番目の接続ライン160eと7番目の接続ライン160gとの対も、接続ラインの第2の対として閉路された状態である。図6Cの状態では、2番目のリアクタンス素子120bに蓄積されているエネルギーが2番目のセル110bに移動される。また、図6Cの状態では、5番目および6番目のリアクタンス素子120e、120fに蓄積されているエネルギーが、5番目および6番目のセル110e、110fに移動される。
 ただし、以上の動作は本変形例の一態様に過ぎず、本変形例の範囲を限定するものではない。例えば、蓄電装置100は、2番目、5番目および6番目のセル110b、110e、110f以外の複数のセルが対象セルとなる場合にも有効に動作することができる。
 接続ラインの第1の対と接続ラインの第2の対とが共通の接続ラインを含まない場合等においては、蓄電制御装置130は、接続ラインの第1の対の開路と接続ラインの第2の対の閉路とを同時に行ってもよい。接続ラインの第1の対と接続ラインの第2の対とが共通の接続ラインを含む場合については、共通の接続ラインは開路状態を経由せずに閉路状態を継続させてもよい。
 本変形例の蓄電装置100によれば、図5で説明した蓄電装置100と同様の作用効果を奏することができ、または、対象セルの位置および個数の制約が緩和されたフレキシブルな電圧均等化処理が可能となる。あるいは、本変形例の蓄電装置100によれば、複数の対象セルにエネルギーを同時に移動させることができるので、電圧均等化処理の迅速性を有効に確保することが可能となる。
<5.第2の実施形態の第2の変形例>
 [装置の構成例]
 本変形例の蓄電装置100は、図6で説明した蓄電装置100に対して、蓄電制御装置130の制御内容が相違する。
 具体的には、本変形例の蓄電制御装置130は、全セルのうちの一部のセルを一連のセルとして選択し、複数の対象セルを選択する構成である。すなわち、本変形例の蓄電制御装置130は、連続する一部のセルから連続する一部のリアクタンス素子にエネルギーを移動させた上で接続ラインの第1の対を開路させた後に、複数対の接続ラインの第2の対を閉路させる構成である。全セルのうちの一部のセルを一連のセルとして選択する場合は、セル電圧に基づいて電圧均等化処理を要しないと判断されるセルを一連のセルから除外する場合等であってもよい。より具体的には、例えば、最大電圧セルと最小電圧セルに挟まれないセルを除外してもよいが、これに限定されない。
 [装置の動作例]
 本変形例の蓄電装置100の動作例を以下に述べる。以下の動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
 本変形例では、蓄電制御装置130によるスイッチング素子140a~140gの制御によって接続ライン160a~160gが図7A~図7Cの如く開閉されることで、一連のセルと複数の対象セルとの間でエネルギーが授受される。
 具体的には、図7Aには、一連のセルとして選択された一部のセルに対応する接続ラインの第1の対が閉路された状態が示されている。より具体的には、図7Aの状態は、2番目~6番目のセル110b~110fが一連のセルに選択された状態である。また、図7Aの状態は、2番目の接続ライン160bと7番目の接続ライン160gとが、接続ラインの第1の対として閉路された状態である。
 図7Aの状態では、一連のセル110b~110fから、全体として、2番目~6番目のリアクタンス素子120b~120fにエネルギーが移動され、移動されたエネルギーは、各リアクタンス素子120b~120fに蓄積される。
 図7Bには、図7Aにおいて閉路された接続ラインの第1の対の開路状態が示されている。図7Bの状態では、図7Aの状態において一連のリアクタンス素子120b~120fに蓄積されたエネルギーが、各リアクタンス素子120b~120fに蓄積され続ける。
 図7Cには、接続ラインの第2の対の閉路状態が示されている。図7Cの状態は、3番目の接続ライン160cと4番目の接続ライン160dとの対が、接続ラインの第2の対として閉路された状態である。また、図7Cの状態は、6番目の接続ライン160fと7番目の接続ライン160gとの対も、接続ラインの第2の対として閉路された状態である。図7Cの状態では、3番目のリアクタンス素子120cに蓄積されたエネルギーが3番目のセル110cに移動され、6番目のリアクタンス素子120fに蓄積されたエネルギーが、6番目のセル110fに移動される。
 ただし、以上の動作は本変形例の一態様に過ぎず、本変形例の範囲を限定するものではない。例えば、一連のセルとして、最も負極側のセルを除く一連のセルや、最も正極側および最も負極側のセルを除く一連のセルが選択されてもよい。
 本変形例の蓄電装置100によれば、図6の蓄電装置100と同様の作用効果を奏することができ、または、一連のセルの位置および個数の制約が緩和されたフレキシブルな電圧均等化処理が可能となる。
<6.第3の実施形態>
[装置の構成例]
 図8は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、第2の実施形態の蓄電装置100に対して、蓄電制御装置130の構成が相違する。すなわち、蓄電制御装置130は、対象セルを選択した上で接続ラインの第1の対を閉路させる構成である。
 具体的には、図8に示すように、蓄電装置100は、セル電圧監視部150を備える。また、図8に示すように、蓄電制御装置130は、対象セル選択部131およびスイッチ駆動決定部132を備える。
 [セル電圧監視部150]
 セル電圧監視部150は、各セル110a~110fの電圧を監視する構成である。図8に示すように、セル電圧監視部150は、各セル110a~110fの正極および負極に接続されており、各セル110a~110fの端子間電圧を個別に監視する構成である。図8に示すように、各セル110a~110fとセル電圧監視部150とを接続する配線170の数は、接続ライン160a~160gと同数であってもよい。
 セル電圧監視部150は、各セル110a~110fの電圧の監視結果すなわち検出されたセル電圧を蓄電制御装置130に出力する。監視結果は、蓄電制御装置130側で監視結果に対応するセル110a~110fを特定可能な態様で出力されてもよい。例えば、監視結果は、蓄電制御装置130におけるセル110a~110f毎の入力端子に向けて出力されたり、セル110a~110fの識別情報が対応付けられたりしてもよい。
 セル電圧監視部150の態様は限定されず、セル110a~110fの電圧を監視可能な種々の電子装置を採用することができる。電子装置は、集積回路等を含んでもよい。
 [蓄電制御装置130]
  [対象セル選択部131]
 対象セル選択部131は、対象セルを選択する構成である。対象セル選択部131には、セル電圧監視部150から出力された監視結果が入力される。対象セル選択部131は、セル電圧監視部150から入力された監視結果に基づいて対象セルを選択する。
 対象セル選択部131による対象セルの選択基準は限定されない。例えば、対象セル選択部131は、セル電圧が相対的に小さいすなわち低いセルを優先的に対象セルに選択してもよい。また、対象セル選択部131は、セル電圧が小さいセルの個数や位置に応じて、対象セルの個数や位置を決定してもよい。
  [スイッチ駆動決定部132]
 スイッチ駆動決定部132は、スイッチング素子140a~140gの駆動方法、例えば、スイッチング素子140a~140gに対するオン動作またはオフ動作の割り当て及び順序等を決定する構成である。また、スイッチ駆動決定部132は、決定されたスイッチング素子140a~140gの駆動方法に従ってスイッチング素子140a~140gを駆動する構成である。
 スイッチ駆動決定部132は、対象セル選択部131による対象セルの選択結果を受けて、スイッチング素子140a~140gの駆動方法を決定する。つまり、スイッチ駆動決定部132は、対象セルが選択された上で、一連のセルに対応するスイッチング素子すなわち接続ラインの第1の対に対応するスイッチング素子を、オン状態に切り替える構成である。スイッチ駆動決定部132は、スイッチング素子140a~140gの駆動方法を決定する際には、各セル110a~110fのいずれを一連のセルとして選択すべきかを判断してもよい。このような判断は、セル電圧監視部150の監視結果に基づいてもよい。スイッチ駆動決定部132が常に全てのセルを一連のセルに選択する構成である場合には、スイッチ駆動決定部132は、一連のセルとして選択すべきセルを判断しなくてもよい。スイッチ駆動決定部132は、決定された駆動方法に従った制御信号をスイッチング素子140a~140gに出力してもよい。
 対象セル選択部131およびスイッチ駆動決定部132は、ハードウェアまたはソフトウェアもしくはこれらの双方によって具現化してもよい。
[装置の動作例]
 図9は、本実施形態の蓄電装置100の動作例を示すフローチャートである。図9に示す動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
 説明の便宜上、図9の初期状態では、電圧均等化処理は開始されておらず、全てのスイッチング素子140a~140gがオフ状態、すなわち、全てのセル110a~110fがリアクタンス素子120a~120fから切断された状態とする。
 そして、初期状態から、先ず、図9のステップ91(S91)において、セル電圧監視部150により、セル電圧を監視する。
 次いで、ステップ92(S92)において、蓄電制御装置130により、ステップ91(S91)におけるセル電圧の監視結果に基づいて、電圧均等化処理を継続すべきか否かを判定する。そして、ステップ92(S92)において肯定的な判定結果が得られた場合には、ステップ93(S93)に進み、否定的な判定結果が得られた場合には、ステップ91(S91)に戻る。
 次いで、ステップ93(S93)において、対象セル選択部131により、ステップ91(S91)におけるセル電圧の監視結果に基づいて対象セルを選択する。
 次いで、ステップ94(S94)において、スイッチ駆動決定部132により、スイッチング素子140a~140gの駆動方法を決定する。この決定は、ステップ93(S93)における対象セルの選択結果に基づく。
 そして、ステップ95(S95)以降は、スイッチ駆動決定部132により、ステップ94(S94)において決定されたスイッチング素子140a~140gの駆動方法にしたがってスイッチング素子140a~140gを駆動する。具体的には、ステップ95(S95)においては、一連のセルに対応するスイッチング素子をオン状態に切り替えて、接続ラインの第1の対を閉路させる。
 次いで、ステップ96(S96)においては、ステップ95(S95)においてオン状態に切り替えられた一連のセルに対応するスイッチング素子をオフ状態に切り替えて、接続ラインの第1の対を開路させる。
 次いで、ステップ97(S97)においては、ステップ93(S93)において選択された対象セルに対応するスイッチング素子をオン状態に切り替えて、接続ラインの第2の対を閉路させる。
 次いで、ステップ98(S98)においては、ステップ97(S97)においてオン状態に切り替えられた対象セルに対応するスイッチング素子をオフ状態に切り替えて、接続ラインの第2の対を開路させる。その後は、ステップ91(S91)に戻る。
 本実施形態の蓄電装置100によれば、第2の実施形態の蓄電装置100と同様の作用効果を奏することができる。又は、本実施形態によれば、予め対象セルを選択することで、スイッチ駆動決定部132が一連のセルとして選択すべきセルを判断する構成の場合に、スイッチ駆動決定部132が、一連のセルに対象セルが含まれるように一連のセルを適切に選択することができる。
 もしくは、本実施形態の蓄電装置100によれば、予め対象セルを選択することで、接続ラインの第1の対の閉路と接続ラインの第2の対の閉路との切り替えを、接続ラインの第1の対の開路後における対象セルの選択を待つことなく速やかに行うことができる。このように接続ラインの開閉動作の連続性を確保することは、後述の<11.第5の実施形態の第1の変形例>の実効性を確保することにも繋げることができる。
<7.第3の実施形態の第1の変形例>
[装置の構成例]
 本変形例の蓄電装置100は、図8の蓄電装置100に対して、対象セルを選択するための構成が特定されている。
 具体的には、本変形例の蓄電制御装置130は、電圧が最小のセルを対象セルに含ませる構成である。本変形例の対象セル選択部131は、セル電圧監視部150の監視結果に基づいて、電圧が最小のセルを検知する構成である。また、本変形例の対象セル選択部131は、電圧が最小のセルを含む対象セルを選択する構成である。
 対象セルは、電圧が最小のセルのみであってもよく、または、電圧が最小のセル以外のセルも含んでもよい。これ以外にも、対象セルの選択の態様は限定されない。例えば、電圧が最小の第1のセルと、第1のセルとの電位差が所定値以内の1又は2以上の第2のセルとが存在する場合、対象セル選択部131は、第1のセルと第2のセルとの双方を対象セルに選択してもよい。この場合、第1のセルと第2のセルとは、隣接する位置関係を有していてもよく、または、離れた位置関係を有していてもよい。
 [装置の動作例]
 図10は、本変形例の蓄電装置100の動作例を示すフローチャートである。図10に示す動作例は、本開示に係る蓄電制御方法の一実施形態を含む。
 図10に示すように、本変形例では、図9におけるステップ93(S93)が、ステップ931(S931)およびステップ932(S932)によって具現化される。
 具体的には、ステップ931(S931)では、対象セル選択部131により、セル電圧監視部150の監視結果に基づいて、電圧が最小のセルを検知する。
 ステップ932(S932)では、対象セル選択部131により、ステップ931(S931)において検知された電圧が最小のセルを含む対象セルを選択する。対象セルを選択した後は、ステップ94(S94)に進む。
 本変形例の蓄電装置100によれば、図8の蓄電装置100と同様の作用効果を奏することができ、または、電圧が最小のセルにエネルギーを受け取らせることで、更に効率的な電圧均等化処理が可能となる。
<8.第4の実施形態>
[装置の構成例]
 図11は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、第1~第3の実施形態の蓄電装置100に対して、リアクタンス素子およびスイッチング素子の構成が特定されている。以下、詳細に説明する。
 [リアクタンス素子120a~120b]
 本実施形態におけるリアクタンス素子120a~120fは、コンデンサ121である。リアクタンス素子120a~120fは、一連のセルから移動されたエネルギーを電荷として蓄積する。
 [スイッチング素子140a~140g]
 図11に示すように、各スイッチング素子140a~140gは、寄生ダイオードの向きが互いに相反する一対のMOSFET141によって構成されている。各MOSFET141は、スイッチ駆動決定部132に接続されており、スイッチ駆動決定部132から制御信号の一例であるゲート電圧すなわちゲート・ソース間電圧が印加されることにより、オン状態またはオフ状態になる。同一のスイッチング素子を構成するMOSFET141同士は、直列接続されている。同一のスイッチング素子を構成するMOSFET141同士は、ドレイン電極同士が接続されている。このような構成によれば、寄生ダイオードによる電流の流れを防止して双方向の電流に対するスイッチ機能を発揮させることができる。MOSFET141は、図11に示すようなPチャンネル型に限定されず、nチャンネル型であってもよい。また、同一のスイッチング素子を構成するMOSFET141同士は、ソース電極同士が接続されていてもよい。
[装置の動作例]
 本実施形態の蓄電装置100は、スイッチ駆動決定部132が、一連のセルに対応するスイッチング素子に対して例えばゲートしきい値電圧(絶対値)以上のゲート電圧(絶対値)を供給することで、一連のセルに対応するスイッチング素子をオン状態に切り替える。これにより、一連のセルから一連のリアクタンス素子に、接続ラインの第1の対を介して電流すなわち放電電流が流れ、各リアクタンス素子を構成するコンデンサに電荷が蓄積される。このようにして一連のセルから一連のリアクタンス素子にエネルギーが移動された後は、スイッチ駆動決定部132が、例えばゲート電圧(絶対値)をゲートしきい値電圧(絶対値)未満にすることで、一連のセルに対応するスイッチング素子をオフ状態に切り替える。そして、スイッチ駆動決定部132が、対象セルに対応するスイッチング素子をオン状態に切り替える。これにより、リアクタンス素子に蓄積されている電荷が、接続ラインの第2の対を介して、対象セルに電流すなわち充電電流として流れる。このようにして、リアクタンス素子から対象セルにエネルギーが移動される。
 本実施形態の蓄電装置100によれば、第1~第3の実施形態の蓄電装置100と同様の作用効果を奏することができ、または、コンデンサにより、セル110a~110fの短絡の防止能力すなわち安全性が向上された電圧均等化処理が可能となる。
 次に、本実施形態と同様にMOSFETをスイッチング素子に適用した蓄電装置の比較例を、図12および図13に示す。図12に示す第1の比較例の蓄電装置200は、隣接するセル210同士の間で、コンデンサ220を介してエネルギーを授受する構成である。図13に示す第2の比較例の蓄電装置300は、隣接の有無を問わず任意のセル310同士の間でコンデンサ320を介してエネルギーを授受する構成である。図12および図13を図11と比較すれば分かるように、両比較例の蓄電装置200、300とも、本実施形態の蓄電装置100に比べてスイッチング素子240、340の個数が増加している。具体的には、本実施形態の蓄電装置100では、スイッチング素子140a~140gが7個であるのに対して、比較例の蓄電装置200、300では、スイッチング素子240、340が12個に増加している。また、比較例の蓄電装置200、300では、本実施形態の蓄電装置100に比較して接続ライン260、360の個数も増加している。
 すなわち、本実施形態の蓄電装置100は、スイッチング素子140a~140gおよび接続ライン160a~160gの個数がセル110a~110fの個数に1を加えた個数であり、比較例よりもスイッチング素子および接続ラインの数を減らすことができる。これにより、比較例よりもコストを削減することができる。また、本実施形態の蓄電装置100によれば、隣接するセル同士のエネルギーの授受を繰り返して電圧均等化処理を行う場合に比較して、電圧均等化処理を迅速に行うことができる。
<9.第4の実施形態の第1の変形例>
[装置の構成例]
 本変形例の蓄電装置100は、図11の蓄電装置100に対して各リアクタンス素子160a~160fの定数が特定されている。
 具体的には、本変形例において、各リアクタンス素子160a~160fの定数すなわちコンデンサの静電容量は、互いに同一とされている。
[装置の動作例]
 図14には、本変形例の蓄電装置100の動作例が模式的に示されている。具体的には、図14Aには、1番目のスイッチング素子140aおよび7番目のスイッチング素子140gのオン状態が示されている。すなわち、図14Aには、接続ラインの第1の対の閉路状態として、1番目の接続ライン160aと7番目の接続ライン160gとが閉路された状態が示されている。図14Bには、6番目のスイッチング素子140fおよび7番目のスイッチング素子140gのオン状態が示されている。すなわち、図14Bには、接続ラインの第2の対の閉路状態として、6番目の接続ライン160fと7番目の接続ライン160gとが閉路された状態が示されている。
 図14Aに示すように、各セル110a~110fの電圧をV1~V6とした場合、各リアクタンス素子120a~120fの電圧Vcは、各リアクタンス素子120a~120fの定数が等しいことにより、(V1+V2+V3+V4+V5+V6)/6となる。すなわち、各リアクタンス素子120a~120fの電圧は、各セル110a~110fの平均電圧となる。図14では、V6<Vcと仮定する。
 図14Bに示すように、リアクタンス素子120a~120fよりも電圧が低い6番目のセル110fと、6番目のリアクタンス素子120fとが接続されることで、リアクタンス素子120fからセル110fにエネルギーが移動される。このとき、エネルギーが移動されるセル110fは、電圧が最小のセルであってもよく、または、リアクタンス素子120a~120fよりも電圧が低ければ、電圧が最小のセル以外のセルであってもよい。
 本変形例の蓄電装置100によれば、図11の蓄電装置100と同様の作用効果を奏することができ、または、各セルの平均的なエネルギーを授受させることで、効率的な電圧均等化処理が可能となる。
<10.第5の実施形態>
 図15は、本実施形態の蓄電装置100の構成例を模式的に示す全体図である。本実施形態の蓄電装置100は、図11の蓄電装置100に対して、リアクタンス素子の構成が相違する。以下、詳細に説明する。
 [リアクタンス素子120a~120b]
 本実施形態におけるリアクタンス素子120a~120fは、コンデンサ121およびリアクトル122すなわちインダクタである。リアクタンス素子120a~120fは、LC直列共振回路を構成する。本実施形態の蓄電装置100は、コンデンサ121だけでなくリアクトル122にもエネルギーが蓄積される構成である。本実施形態の蓄電装置100は、リアクタンス素子120a~120fの直列共振現象によって生じる共振電流を利用して、電圧均等化処理を行う構成である。
[装置の動作例]
 本実施形態の蓄電装置100では、接続ラインの第1の対の閉路状態において、一連のセルから一連のリアクタンス素子に向かう共振電流すなわち放電電流が流れて、一連のリアクタンス素子にエネルギーが移動される。各リアクタンス素子120a~120fの定数が互いに同一である場合、一連のリアクタンス素子に移動されたエネルギーは、一連のリアクタンス素子に均等に分配される。接続ラインの第2の対の閉路状態においては、リアクタンス素子から対象セルに向かう共振電流すなわち充電電流が流れて、対象セルにエネルギーが移動される。
 図16に、共振電流の一例を模式的に示す。図16の横軸は時刻tであり、図16の縦軸は共振電流の電流値iである。図16では、放電電流の電流値を正、充電電流の電流値を負にとっている。図16における期間T1では、接続ラインの第1の対が閉路されていて、正弦波的に時間変化する放電電流が流れる。図16における期間T2では、接続ラインの第2の対が閉路されていて、正弦波的に時間変化する充電電流が流れる。
 本実施形態の蓄電装置100によれば、図11の蓄電装置100と同様の作用効果を奏することができ、または、セル同士の電位差が少ない場合でも、リアクトル122を介してセル間でエネルギーを迅速に授受することができる。あるいは、本実施形態の蓄電装置100によれば、リアクタンス素子の直列共振現象を利用してセル間でエネルギーを効率的に授受することができる。
<11.第5の実施形態の第1の変形例>
[装置の構成例]
 本変形例の蓄電装置100は、図15の蓄電装置100に対して、セル110a~110fとリアクタンス素子120a~120fとの接続を切り替えるための構成が相違する。以下、詳細に説明する。
 本変形例の蓄電制御装置130は、リアクタンス素子120a~120fとセル110a~110fとの接続をリアクタンス素子120a~120fの共振周波数で切り替える構成である。すなわち、蓄電制御装置130は、一連のセルと一連のリアクタンス素子との接続と、対象セルと対象セルに対応するリアクタンス素子との接続とを共振周波数で切り替える構成である。
 ここで、コンデンサ121の静電容量をC[F]、リアクトル122の自己インダクタンスをL[H]とすると、リアクタンス素子の共振周波数は1/{2π(L×C)1/2}[Hz]となる。各リアクタンス素子120a~120fの定数すなわちLおよびCが互いに同一である場合、一連のセルに接続される一連のリアクタンス素子の共振周波数と、対象セルに接続されるリアクタンス素子の共振周波数とは等しい。一連のリアクタンス素子は、直列接続数をnとすると、合成インダクタンスがnLとなり、合成容量がC/nとなる。したがって、一連のリアクタンス素子の共振周波数は、1/{2π(n×L×C/n)1/2}となり、n×LとC/nとの積によってnが消去されるため、単数のリアクタンス素子の共振周波数1/{2π(L×C)1/2}と変わらない。
 セルがリアクタンス素子に接続されてから切断されるまでの期間を接続切り替え周期Scと定義すると、接続切り替え周期Scは、π(L×C)1/2[s]となる。本変形例の蓄電制御装置130は、このような接続切り替え周期Sc毎にリアクタンス素子とセルとの接続を切り替える構成ということもできる。
 蓄電制御装置130は、共振周波数や接続切り替え周期Scの情報が記憶され、当該記憶された情報に基づいて、接続の切り替えタイミングを割り出して動作する構成でもよい。
[装置の動作例]
 図17は、本変形例の蓄電装置100の動作例を示すフローチャートである。図17では、先ず、ステップ171(S171)において、蓄電制御装置130により、一連のセルを一連のリアクタンス素子に接続させる。
 次いで、ステップ172(S172)において、蓄電制御装置130により、リアクタンス素子の共振周波数に基づく接続の切り替えタイミングになったか否かを判定する。そして、ステップ172(S172)において肯定的な判定結果が得られた場合には、ステップ173(S173)に進み、否定的な判定結果が得られた場合には、ステップ172(S172)を繰り返す。
 次いで、ステップ173(S173)において、蓄電制御装置130により、一連のセルを一連のリアクタンス素子から切断させる。
 次いで、ステップ174(S174)において、蓄電制御装置130により、対象セルを対応するリアクタンス素子に接続させる。
 次いで、ステップ175(S175)において、蓄電制御装置130により、リアクタンス素子の共振周波数に基づく接続の切り替えタイミングになったか否かを判定する。そして、ステップ175(S175)において肯定的な判定結果が得られた場合には、ステップ176(S176)に進み、否定的な判定結果が得られた場合には、ステップ175(S175)を繰り返す。
 次いで、ステップ176(S176)において、蓄電制御装置130により、対象セルをリアクタンス素子から切断させる。
 次いで、ステップ177(S177)において、蓄電制御装置130は、電圧均等化処理を終了すべき場合には処理を終了し、電圧均等化処理を継続すべき場合にはステップ171(S171)に戻る。電圧均等化処理を終了すべきか否かの判断は、ステップ177(S177)以前に行ってもよい。ステップ171(S171)に戻る場合には、セル電圧の監視結果等に基づいて、対象セルまたは一連のセルもしくはこれらの双方を再選択してもよい。
 本変形例の蓄電装置100によれば、図15の蓄電装置100と同様の作用効果を奏することができ、または、エネルギーの授受に好適なタイミングでセルの接続を切り替えることができる。
<12.第5の実施形態の第2の変形例>
 本変形例の蓄電装置100は、図15の蓄電装置100に対して、セルが特定されている。
 具体的には、本変形例におけるセルは、実質的にフラットな放電特性を有するセルである。
 実質的にフラットな放電特性の一例として、正極材がオリビン型リン酸鉄とされたリチウムイオン二次電池を1C放電した場合の放電曲線を図18に示す。図18の放電曲線は、横軸が、充電率の一例としてのSOC[%]であり、縦軸が、セルの端子電圧[V]である。図18の放電曲線は、充電率0%~100%の区間のうちの5割以上に亘る一連の区間での電圧変化が0.25V以下となっている。より具体的には、図18の放電曲線は、充電率20%~90%の区間における電圧変化が約0.1Vとなっている。図18の放電曲線は、放電開始直後は内部抵抗による電圧降下が大きいが、その後はフラットな特性が続くことから、直列接続で構成した組電池内における電圧のばらつきは小さくなる。セルは、オリビン型リン酸鉄を用いたリチウムイオン二次電池に限定されない。
 ここで、蓄電装置100は、装置内の温度分布が比較的一様で、負荷電流も自動車などと比較すると変動が少ないため、セル間の電圧のばらつきは小さい。よって、蓄電装置100では、電圧均等化処理で大電流を使って高速にセル間電圧のばらつきを解消するよりも、少ない電流で無駄なくセルバランスを確保する方が望ましい。本変形例のような放電特性がフラットなセルを適用すれば、セルへの負担が軽減された少ない電流での電圧均等化処理を、LC直列共振回路によって迅速に行うことができる。実質的にフラットな放電特性を有するセルの使用は、リアクタンス素子がLC直列共振回路を構成する場合に限定されない。
<13.第6の実施形態>
 本実施形態の蓄電装置100は、第1~第5の実施形態の蓄電装置100に対して、リアクタンス素子の共振周波数が相違する。
 具体的には、本実施形態におけるリアクタンス素子の共振周波数は、交流インピーダンス法で測定されたセルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である。
 ここで、交流インピーダンス法では、セルに交流を印加して周波数を変化させながら、周波数毎の内部インピーダンスを測定する。コールコールプロットは、交流インピーダンス法の測定結果を図示する方法の1つである。コールコールプロットでは、内部インピーダンスの実数成分を横軸にとり、内部インピーダンスの虚数成分を縦軸にとった複素平面上に、交流インピーダンス法で求められた周波数毎のセルの内部インピーダンスをプロットする。
 コールコールプロットの一例を図19に示す。図19では、内部インピーダンスの虚数成分が0となる場合の周波数が、fmin[Hz]となっている。この場合、fminが共振周波数となるようにリアクタンス素子を設計すればよい。具体的には、fmin=1/{2π×(L×C)1/2}を満足するように、リアクトル122の自己インダクタンスLおよびコンデンサ121の静電容量Cを選択すればよい。
 本実施形態の蓄電装置100によれば、第1~第5の実施形態の蓄電装置100と同様の作用効果を奏することができ、または、セルの内部インピーダンスを最小にすることで、エネルギーを更に効率的に授受することができる。
<14.第6の実施形態の第1の変形例>
 本変形例の蓄電装置100は、図19を参照して説明した蓄電装置100に対して、リアクタンス素子の共振周波数の設定の態様が相違する。
 本変形例の蓄電装置100を説明するためのコールコールプロットの一例を図20に模式的に示す。図20の横軸Z’は、セルの内部インピーダンスの実部であり、図20の縦軸Z”は、セルの内部インピーダンスの虚数部である。図20には、セルの充電率の一例としてのSOC(State of Charge)[%]ごとのコールコールプロットが示されている。図20のコールコールプロットは、FRA(Frequency Response Analyzer)によるセルの内部インピーダンスの測定結果に基づくプロットである。図20中の具体的な数値はあくまで一例であり、本開示の範囲を何ら限定するものではない。
 図20に示すように、コールコールプロットは、SOCに応じて異なる場合がある。コールコールプロットにおける虚数成分が0となる場合の周波数fminがSOCに応じて異なる場合、fminをSOC毎に求め、求められたSOC毎のfminを総合的に考慮してリアクタンス素子の共振周波数を設定してもよい。例えば、SOC毎のfminの平均値を求め、この平均値が共振周波数となるようにリアクタンス素子を設計してもよい。
 本変形例によれば、SOCの変化を加味したエネルギーの効率的な授受が可能となる。
 上述の各実施形態および変形例は、これらを適宜組み合わせてもよい。
 各実施形態および変形例に記載された作用効果はあくまで例示であって限定されるものでは無く、他の作用効果があってもよい。本開示は、各実施形態および変形例に記載された複数の作用効果のいずれか一つを奏すればよい。
 また、本開示は、以下のような構成をとることもできる。
(1)直列接続された複数のセルと、
 直列接続された複数のリアクタンス素子と、
 各セルと各リアクタンス素子とを一対一対応で並列接続する複数の接続ラインと、
 各接続ラインを個別に開閉する複数のスイッチング素子と、
 前記スイッチング素子を制御して前記セル間でエネルギーを授受させる蓄電制御装置と、
 を備える蓄電装置。
(2)前記蓄電制御装置は、前記複数のセルのうちの選択された一連のセルの両端に配置された接続ラインの第1の対を閉路させ、その後、前記接続ラインの第1の対を開路させ、かつ、前記一連のセルのうちの対象セルの両端に配置された接続ラインの第2の対を閉路させる構成の(1)に記載の蓄電装置。
(3)前記蓄電制御装置は、前記複数のセルの全部または一部を前記一連のセルとして選択し、複数の前記対象セルを選択する構成の(2)に記載の蓄電装置。
(4)各リアクタンス素子は、定数が互いに同一である(1)~(3)のいずれかに記載の蓄電装置。
(5)各リアクタンス素子は、コンデンサを含む(1)~(4)のいずれかに記載の蓄電装置。
(6)各リアクタンス素子は、リアクトルを含む(5)に記載の蓄電装置。
(7)前記蓄電制御装置は、前記リアクタンス素子と前記セルとの接続を前記リアクタンス素子の共振周波数で切り替える構成の(6)に記載の蓄電装置。
(8)前記リアクタンス素子の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である(1)~(7)のいずれかに記載の蓄電装置。
(9)前記スイッチング素子の個数及び前記接続ラインの個数は、前記セルの個数に1を加えた個数である(1)~(8)のいずれかに記載の蓄電装置。
(10)前記蓄電制御装置は、前記対象セルを選択した上で前記接続ラインの第1の対を閉路させる構成の(2)に記載の蓄電装置。
(11)前記蓄電制御装置は、電圧が最小のセルを含む前記対象セルを選択する構成の(10)に記載の蓄電装置。
(12)コンピュータを、
 直列接続された複数のセルと直列接続された複数のリアクタンス素子とを一対一対応で並列接続する複数の接続ラインを、複数のスイッチング素子を制御して個別に開閉させて、前記セル間でエネルギーを授受させる手段
 として機能させる蓄電制御プログラム。
 100 蓄電装置
 110a、110b セル
 120a、120b リアクタンス素子
 130 蓄電制御装置
 140a、140b、140c スイッチング素子
 160a、160b、160c 接続ライン

Claims (13)

  1.  直列接続された複数のセルと、
     直列接続された複数のリアクタンス素子と、
     各セルと各リアクタンス素子とを一対一対応で並列接続する複数の接続ラインと、
     各接続ラインを個別に開閉する複数のスイッチング素子と、
     前記スイッチング素子を制御して前記セル間でエネルギーを授受させる蓄電制御装置と、
     を備える蓄電装置。
  2.  前記蓄電制御装置は、前記複数のセルのうちの一連のセルの両端に配置された接続ラインの第1の対を閉路させ、その後、前記接続ラインの第1の対を開路させ、かつ、前記一連のセルのうちの対象セルの両端に配置された接続ラインの第2の対を閉路させる構成の請求項1記載の蓄電装置。
  3.  前記蓄電制御装置は、前記複数のセルの全部または一部を前記一連のセルとして選択し、複数の前記対象セルを選択する構成の請求項2記載の蓄電装置。
  4.  各リアクタンス素子は、定数が互いに同一である請求項2記載の蓄電装置。
  5.  各リアクタンス素子は、コンデンサを含む請求項4記載の蓄電装置。
  6.  各リアクタンス素子は、リアクトルを含む請求項5記載の蓄電装置。
  7.  前記蓄電制御装置は、前記リアクタンス素子と前記セルとの接続を前記リアクタンス素子の共振周波数で切り替える構成の請求項6記載の蓄電装置。
  8.  前記リアクタンス素子の共振周波数は、交流インピーダンス法で測定された前記セルの内部インピーダンスのコールコールプロットにおける虚数成分が0となる場合の周波数である請求項1記載の蓄電装置。
  9.  前記スイッチング素子の個数及び前記接続ラインの個数は、前記セルの個数に1を加えた個数である請求項2記載の蓄電装置。
  10.  前記蓄電制御装置は、前記対象セルを選択した上で前記接続ラインの第1の対を閉路させる構成の請求項2記載の蓄電装置。
  11.  前記蓄電制御装置は、電圧が最小のセルを含む前記対象セルを選択する構成の請求項10記載の蓄電装置。
  12.  直列接続された複数のセルと直列接続された複数のリアクタンス素子とを一対一対応で並列接続する複数の接続ラインを、複数のスイッチング素子を制御して個別に開閉させて、前記セル間でエネルギーを授受させる構成の蓄電制御装置。
  13.  直列接続された複数のセルと直列接続された複数のリアクタンス素子とを一対一対応で並列接続する複数の接続ラインを、複数のスイッチング素子を制御装置によって制御して個別に開閉させて、前記セル間でエネルギーを授受させる蓄電制御方法。
PCT/JP2014/071268 2013-09-26 2014-08-12 蓄電装置、蓄電制御装置および蓄電制御方法 WO2015045661A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167006883A KR102172906B1 (ko) 2013-09-26 2014-08-12 축전 장치, 축전 제어 장치 및 축전 제어 방법
CA2924767A CA2924767A1 (fr) 2013-09-26 2014-08-12 Power storage device, power storage control device, and power storage control method
CN201480051605.1A CN105556792B (zh) 2013-09-26 2014-08-12 电力存储装置、电力存储控制装置和电力存储控制方法
US15/022,494 US10587126B2 (en) 2013-09-26 2014-08-12 Power storage device, power storage control device, and power storage control method
EP14849715.9A EP3051661B1 (en) 2013-09-26 2014-08-12 Power storage device and power storage control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199746A JP2015065796A (ja) 2013-09-26 2013-09-26 蓄電装置、蓄電制御装置および蓄電制御方法
JP2013-199746 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015045661A1 true WO2015045661A1 (ja) 2015-04-02

Family

ID=52742816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071268 WO2015045661A1 (ja) 2013-09-26 2014-08-12 蓄電装置、蓄電制御装置および蓄電制御方法

Country Status (7)

Country Link
US (1) US10587126B2 (ja)
EP (1) EP3051661B1 (ja)
JP (1) JP2015065796A (ja)
KR (1) KR102172906B1 (ja)
CN (1) CN105556792B (ja)
CA (1) CA2924767A1 (ja)
WO (1) WO2015045661A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010388A1 (ja) * 2019-07-18 2021-01-21 ヌヴォトンテクノロジージャパン株式会社 電池管理回路および蓄電装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105048602B (zh) * 2015-08-31 2017-12-05 矽力杰半导体技术(杭州)有限公司 电池平衡电路及电池装置
CN107458970B (zh) * 2016-06-06 2020-07-07 台湾积体电路制造股份有限公司 天车输送系统以及天车输送系统的输送车和控制方法
JP6798224B2 (ja) * 2016-09-30 2020-12-09 株式会社Gsユアサ 蓄電装置、蓄電システム、蓄電装置の状態判定方法
KR102150147B1 (ko) 2017-05-24 2020-09-01 주식회사 엘지화학 배터리 모듈 균등화 장치 및 방법
KR102236384B1 (ko) 2017-10-27 2021-04-05 주식회사 엘지화학 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029382A (ja) * 2010-07-20 2012-02-09 Toshiba Corp 蓄電装置及びエネルギバランス調整方法
JP2012034446A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 蓄電装置及びエネルギバランス調整方法
JP2012257440A (ja) 2011-05-13 2012-12-27 Japan Aerospace Exploration Agency 直並列切り替え式セル電圧バランス回路のスイッチをmosfetで構成した回路及びその駆動回路
JP2013115983A (ja) * 2011-11-30 2013-06-10 Yazaki Corp 均等化装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633154B1 (en) * 2000-01-04 2003-10-14 William B. Duff, Jr. Method and circuit for using polarized device in AC applications
TWI228340B (en) 2003-08-08 2005-02-21 Ind Tech Res Inst Voltage balance circuit for rechargeable batteries
CN101199094B (zh) * 2006-04-11 2011-01-05 三菱电机株式会社 蓄电系统
KR101011235B1 (ko) * 2008-10-27 2011-01-26 킴스테크날리지 주식회사 전기에너지 저장장치의 전압균등화회로
KR101234059B1 (ko) * 2010-02-22 2013-02-15 주식회사 엘지화학 셀 밸런싱부의 고장 진단 장치 및 방법
EP2590299A4 (en) * 2010-06-30 2018-01-10 Panasonic Intellectual Property Management Co., Ltd. Electric power generator and electric power generating system
KR101218996B1 (ko) * 2010-07-14 2013-01-04 삼성전기주식회사 전압 균등화 장치 및 방법
CN102598472B (zh) 2010-10-08 2016-08-31 松下知识产权经营株式会社 发电系统及发电单元
JP5353914B2 (ja) * 2011-02-01 2013-11-27 株式会社デンソー 電池電圧監視装置
EP2700141A1 (en) 2011-04-19 2014-02-26 4Esys A system and method for balancing energy storage devices
CN104115247B (zh) * 2011-07-27 2018-01-12 快帽系统公司 用于井下仪器的电源
US9225179B2 (en) * 2011-10-12 2015-12-29 Texas Instruments Incorporated Capacitor-based active balancing for batteries and other power supplies
JP5733420B2 (ja) * 2011-11-25 2015-06-10 株式会社Ihi 移動式電力供給装置
JP5696110B2 (ja) * 2012-09-19 2015-04-08 株式会社東芝 電源システム、電源制御装置およびプログラム
US9225191B2 (en) * 2013-02-19 2015-12-29 Freescale Semiconductor, Inc. Circuit and method for voltage equalization in large batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029382A (ja) * 2010-07-20 2012-02-09 Toshiba Corp 蓄電装置及びエネルギバランス調整方法
JP2012034446A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 蓄電装置及びエネルギバランス調整方法
JP2012257440A (ja) 2011-05-13 2012-12-27 Japan Aerospace Exploration Agency 直並列切り替え式セル電圧バランス回路のスイッチをmosfetで構成した回路及びその駆動回路
JP2013115983A (ja) * 2011-11-30 2013-06-10 Yazaki Corp 均等化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051661A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010388A1 (ja) * 2019-07-18 2021-01-21 ヌヴォトンテクノロジージャパン株式会社 電池管理回路および蓄電装置

Also Published As

Publication number Publication date
US10587126B2 (en) 2020-03-10
KR102172906B1 (ko) 2020-11-02
CN105556792A (zh) 2016-05-04
KR20160060639A (ko) 2016-05-30
CN105556792B (zh) 2020-09-18
CA2924767A1 (fr) 2015-04-02
JP2015065796A (ja) 2015-04-09
US20160233697A1 (en) 2016-08-11
EP3051661B1 (en) 2021-02-24
EP3051661A1 (en) 2016-08-03
EP3051661A4 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2015045661A1 (ja) 蓄電装置、蓄電制御装置および蓄電制御方法
US10559860B2 (en) Power storage device, power storage control device, and power storage control method
US10348100B2 (en) Battery balance circuit and battery apparatus thereof
US6538414B1 (en) Electric energy storage device with cell energy control, and method of controlling cell energy
US9270132B2 (en) Balancing method and battery system
US8957625B2 (en) Systems and methods for cell balancing
US8466657B2 (en) Autonomous balancing of series connected charge storage devices
US20110221398A1 (en) Impedence Balancer
US6756769B2 (en) Enabling circuit for avoiding negative voltage transients
JP2015070653A (ja) 電池電圧均等化制御装置及び方法
US11888410B1 (en) Symmetric hybrid converters
TW201843905A (zh) 電池組及將電池組並聯到外部電池系統的方法
US9407099B2 (en) Two-way direct balance circuit for series cells
US20130062946A1 (en) Hierarchical balancing system
JP2016154423A (ja) 電圧バランス装置
JP2011045183A (ja) 充放電装置
JP6268357B1 (ja) 蓄電装置及びその制御方法
JP3728622B2 (ja) 充電装置
JP2018068036A (ja) 蓄電素子の電圧均等化回路
US20130221899A1 (en) Battery charge circuit
CN115021364A (zh) 一种电池的电能均衡电路及其均衡方法、储能系统
KR20210047156A (ko) 배터리 관리 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051605.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006883

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022494

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014849715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2924767

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE