WO2015045449A1 - Laminate and method for producing same - Google Patents

Laminate and method for producing same Download PDF

Info

Publication number
WO2015045449A1
WO2015045449A1 PCT/JP2014/058768 JP2014058768W WO2015045449A1 WO 2015045449 A1 WO2015045449 A1 WO 2015045449A1 JP 2014058768 W JP2014058768 W JP 2014058768W WO 2015045449 A1 WO2015045449 A1 WO 2015045449A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
plating layer
bright
plating
treatment
Prior art date
Application number
PCT/JP2014/058768
Other languages
French (fr)
Japanese (ja)
Inventor
宏明 安藤
尚泰 井土
順治 吉田
弘志 度会
健二郎 森本
Original Assignee
豊田合成 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成 株式会社 filed Critical 豊田合成 株式会社
Publication of WO2015045449A1 publication Critical patent/WO2015045449A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper

Definitions

  • the present invention relates to a laminate having a Sn plating layer on the surface of a substrate and a method for producing the same.
  • ABS resin acrylonitrile / butadiene / styrene copolymer
  • SBN semi-bright Ni
  • BN gloss Ni
  • Joule Ni (DN) plating processing Joule Ni (DN) plating processing, and Cr plating processing are sequentially performed by an electroplating method.
  • the Cu plating layer is laminated mainly to give ductility that can follow the extension of the ABS resin base material, and a base material made of a synthetic resin that gives rigidity to the laminate and the metal that constitutes each plating layer It relieves thermal stress based on the difference in linear expansion coefficient and prevents the occurrence of cracks on the surface of the laminate and the deterioration of the adhesion of each plating layer.
  • Each Ni plating layer has a function of preventing corrosion of the outermost Cr plating layer and imparting corrosion resistance to the laminate from the viewpoint of sacrificial corrosion protection.
  • the Cr plating layer has a function of imparting a bright appearance to the laminate and imparting chipping resistance (scratch resistance).
  • Each layer of these conventional laminates has a different function, and imparts necessary functions to be required for members to which the laminate is applied.
  • such a laminate has a multilayer structure in which a large number of metal plating layers are laminated, so that the machining process becomes complicated and takes a long time, and the material cost increases and the cost increases. was there.
  • the present inventors have focused on Sn as a metal having an appropriate ductility that can follow a base material made of synthetic resin, for example, from the viewpoint of preventing cracks in the laminate and suppressing cracks.
  • Patent Document 1 describes an invention relating to a method for producing a resin-coated tin-plated steel sheet in which a small amount of a Ni plating layer is formed on a steel sheet and then a resin film is coated thereon.
  • Patent Document 2 describes an invention relating to a method for producing a Sn-plated steel sheet, in which a Sn-plating treatment is performed on a steel sheet, a silane coupling agent is applied, and a resin film is coated thereon. Yes.
  • the present invention has been made in order to solve the problems existing in the prior art, and its purpose is to improve the adhesion of the deposited layer laminated on the bright Sn plating layer to the bright Sn plating layer. And providing a laminate and a method for manufacturing the same, which can prevent peeling at the boundary surface.
  • the method for producing a laminate of the present invention is a method for producing a laminate in which a deposited layer is electrically formed on a Sn plating layer laminated on the surface of a substrate.
  • a Sn plating step of laminating a bright Sn plating layer made of Sn or an Sn alloy on the substrate, and after the Sn plating step, the bright Sn plating layer on the substrate
  • An acid immersion treatment step of immersing in either a sulfuric acid solution having a concentration of 10% by mass or more or a hydrochloric acid solution having a concentration of 3.5% by mass or more at 50 to 80 ° C. for 1 to 30 minutes, and after the acid immersion treatment step, And a deposition layer forming step of electrically forming a deposition layer on the bright Sn plating layer.
  • the surface of the bright Sn plating layer is roughened and minute uneven portions are formed. Then, the precipitation layer deposited on the upper surface of the bright Sn plating layer enters the recess formed on the surface of the bright Sn plating layer, and an anchor effect is generated depending on the form of the bright Sn plating layer / deposition layer interface.
  • the physical adhesion between the deposited layer can be improved.
  • the oxide film is removed from the surface of the bright Sn plating layer by an immersion treatment with a high concentration acid solution. Thereby, the fall of the chemical adhesiveness between the glossy Sn plating layer and precipitation layer by an oxide membrane
  • the acid dipping treatment step is performed such that the surface of the bright Sn plating layer after the acid dipping treatment has a roughness of 0.040 to 0.080 ⁇ m, and the undulation is 0 to 0.040 ⁇ m. It is preferable.
  • the manufacturing method of the laminate includes an acid rinsing treatment step of rinsing the surface of the bright Sn plating layer on the substrate with an acid solution having a lower concentration than the acid solution used in the acid immersion treatment step after the acid immersion treatment step. Is preferred.
  • the said acid rinse process process uses the same kind of acid as the acid in the acid solution used at the said acid immersion process process.
  • the base material is preferably formed by subjecting a synthetic resin to electroless plating.
  • a laminate of the present invention comprises a base material, a bright Sn plating layer laminated on the base material, and a deposited layer laminated on the bright Sn plating layer,
  • the bright Sn plating layer is made of Sn or Sn alloy containing a brightener, and the surface of the bright Sn plating layer has a roughness of 0.040 to 0.080 ⁇ m and a undulation of 0 to 0.040 ⁇ m.
  • the method for producing a laminate of the present invention it is possible to improve the adhesion of the deposited layer laminated on the bright Sn plating layer to the bright Sn plating layer and to prevent peeling at the boundary surface.
  • (C) is a laminate in which a deposited layer was formed after an acid immersion treatment at 50 ° C. for 30 minutes using an 80 mass% sulfuric acid solution.
  • the manufacturing method of the laminated body of this embodiment after imparting conductivity to the surface of the synthetic resin substrate by electroless Ni plating or electroless Cu plating, laminating a bright Sn plating layer by electrolytic plating, After the surface of the bright Sn plating layer is subjected to an acid dipping treatment and an acid rinsing treatment, a deposited layer is electrically formed on the bright Sn plating layer.
  • the base material made of synthetic resin can be appropriately selected in consideration of rigidity, ease of processing, heat resistance, and the like.
  • ABS acrylonitrile / butadiene / styrene copolymer
  • PC polycarbonate
  • PC / ABS alloy PC / ABS blend resin
  • PP polypropylene
  • PMMA polymethyl methacrylate
  • modified polyphenylene It can be appropriately selected from known synthetic resins such as ether (PPE) resin, polyamide resin, polyacetal resin, or olefinic thermoplastic elastomer (TPO).
  • PPE ether
  • TPO olefinic thermoplastic elastomer
  • These various synthetic resins can be used after being molded by a known molding method such as an injection molding method, an extrusion molding method, a blow molding method, or a compression molding method.
  • an electroless Ni plating treatment or an electroless Cu plating treatment for imparting conductivity to the substrate surface is performed.
  • the electroless Ni plating treatment can be performed by a conventionally known method. For example, after the ABS resin substrate is immersed in a surfactant-containing bath to degrease the substrate surface, the substrate surface is etched by immersion in a chromic acid / sulfuric acid solution. Subsequently, a catalyst represented by a Pd / Sn mixed colloidal catalyst or the like is applied to the surface of the substrate and activated, and then an electroless Ni plating treatment is performed.
  • Electroless Ni plating treatment includes phosphinate, tetrahydroborate, dimethylamine borane (DMAB), or reducing agents such as hydrazine, nickel agents such as nickel sulfate and nickel chloride, complexing agents, accelerators, stabilizers, It can be performed by immersing in a plating bath containing a pH adjuster, a surfactant and the like.
  • DMAB dimethylamine borane
  • the electroless Cu plating treatment can also be performed by a conventionally known method.
  • the pretreatment of the ABS resin base material may be performed in the same manner as in the case of the electroless Ni plating treatment.
  • the electroless Cu plating treatment is typically a formaldehyde bath using formaldehyde as a reducing agent, but is not limited thereto. It may be carried out in a bath using borohydride such as potassium tetrahydroborate, DMAB, sodium borohydride, glyoxylate, hypophosphite, phosphinate, cobalt (II) salt, hydrazine, etc. as a reducing agent. it can.
  • an Sn plating process for laminating a bright Sn plating layer on the electroless plating layer is performed.
  • the surface of the base material on which the electroless plating layer is formed and provided with conductivity is washed with water to remove dirt, and then electroless plating is performed in a plating bath containing a brightener and Sn.
  • a bright Sn plating layer is laminated on the layer.
  • the Sn plating process can be performed by a conventionally known electrolytic plating method.
  • the Sn plating bath may be any of an acidic bath, an alkaline bath, and a neutral bath.
  • an acidic bath any of a sulfuric acid bath, a borofluoride bath, and an organic sulfonic acid bath can be used.
  • an organic sulfonic acid bath methane in which stannous sulfate, cresol sulfonic acid, formalin compounds (formaldehyde), amine-aldehyde brighteners, surfactants, pH adjusters, etc.
  • Electroplating can be performed in a sulfonic acid bath under conditions of a processing temperature of 10 to 20 ° C., a cathode current density of 0.3 to 1.5 A / dm 2 , and an anode current density of 1.0 to 3.0 A / dm 2. .
  • the Sn plating treatment may be performed using a Sn alloy plating bath.
  • Sn—Pb alloy plating bath, Sn—Co alloy plating bath, Sn—Ni alloy plating bath, Sn—Ni—Cu alloy plating bath, Sn—Cu—Zn alloy plating bath, Sn—Fe alloy plating bath, Sn— Various Sn alloy plating treatments may be performed using an Fe—Zn alloy plating bath or the like. These Sn alloy plating processes can be performed by a conventionally known method.
  • a brightening agent is contained in the Sn plating bath so that the glossy Sn plating layer to be laminated provides a bright appearance suitable for the laminate.
  • the brightener generally known brighteners can be appropriately used.
  • aldehyde compound-based brighteners or unsaturated carboxylic acid compound-based brighteners include 1-naphthaldehyde, 2-naphthaldehyde, o-chlorobenzaldehyde, m-chlorobenzaldehyde, p-chlorobenzaldehyde, 2,4- Dichlorobenzaldehyde, 2,6-dichlorobenzaldehyde, o-methoxybenzaldehyde, p-methoxybenzaldehyde, 3-indolecarboxaldehyde, formaldehyde, acetaldehyde, salicylaldehyde, paraaldehyde, butyraldehyde, isobutyraldehyde, propional
  • brighteners include vanillin, acrolein, glyoxal, aldol, 1-benzylidene-7-heptanal, 2,4-hexadienal, cinnamaldehyde, amine-aldehyde condensate, mesityl oxide, isophorone, diacetyl, hexanedione -3,4, acetylacetone, 3-chlorobenzylideneacetone, sub.pyridylideneacetone, sub.furfuridineacetone, sub.tenylideneacetone, 4- (1-naphthyl) -3-buten-2-one, 4- (2-furyl) -3-buten-2-one, 4- (2-thiophenyl) -3-buten-2-one, curcumin, benzylideneacetylacetone, benzalacetone, acetophenone, (2,4-3,4 -) Dichloroacetophenone, benzyliden
  • the brightener one type may be selected and used, or a plurality of types may be used in combination.
  • the amount of the brightener added varies depending on the type of brightener to be added, but is preferably 0.01 to 1.0 g / l as the total concentration in the Sn plating bath. When the concentration of the brightening agent is 0.01 g / l or more, the dispersibility and adhesion of Sn to the surface of the base material are improved, and an appropriate bright appearance can be imparted to the surface of the base material.
  • the base material on which the bright Sn plating layer is laminated is immersed in an acid solution to perform an acid immersion treatment on the surface of the bright Sn plating layer.
  • the acid dipping treatment performed here is performed by dipping in an acid solution at a higher temperature and a higher concentration than the acid surface treatment performed as a pretreatment of the plating treatment in a conventionally known plating treatment.
  • Sn laminated by Sn plating is a metal with moderate ductility that can follow a base material made of synthetic resin.
  • the conventional laminate for example, when a Ni plating layer is laminated on a Sn plating layer The adhesion at the interface between the two is relatively good.
  • a brightening agent is mixed in the Sn plating bath to give a bright appearance to the Sn plating layer, the surface shape of the bright Sn plating film becomes smooth. Is observed.
  • EDS energy dispersive X-ray analysis
  • the surface of the bright Sn plating layer has a lower physical adhesion with the Ni plating layer due to its smoothness, and the presence of the oxide film on the surface of the bright Sn plating layer causes a gap between the bright Sn plating layer and the Ni plating layer. It was predicted that the amount of metal bonds in the metal was reduced and the chemical adhesion was lowered. And it was considered that the adhesion of the Ni plating layer to the bright Sn plating layer was lowered by these two factors. These phenomena depend on the concentration of the brightener, and it has been found that the lower the concentration of the brightener, the better the adhesion.
  • the acid immersion treatment here is based on the physical adhesion between the precipitation layer laminated on the bright Sn plating layer and the chemistry with respect to the type and concentration of the brightener contained in the bright Sn plating layer.
  • the surface of the bright Sn plating layer is made in a suitable surface state. Therefore, according to the kind and density
  • the acid solution to be used is preferably a sulfuric acid solution or a hydrochloric acid solution, and an 80% by mass sulfuric acid solution or a 35% by mass hydrochloric acid solution can be appropriately diluted with water and used.
  • the concentration of the acid solution can be determined as appropriate depending on the type and concentration of the brightener used. From the viewpoint of the adhesion between the bright Sn plating layer and the deposited layer that is electrically deposited on the bright Sn plating layer, sulfuric acid can be used.
  • a solution it is preferably used at a concentration of 10% by mass or more, and more preferably 20% by mass or more.
  • a hydrochloric acid solution it is preferably used at a concentration of 3.5% by mass or more.
  • the acid immersion treatment temperature is preferably from room temperature to 80 ° C., more preferably from 50 ° C. to 70 ° C. for both sulfuric acid solution and hydrochloric acid solution. If the acid immersion treatment is performed at a temperature exceeding 80 ° C., the ABS resin base material may be denatured and its rigidity may not be maintained. Moreover, it is not preferable to perform the acid dipping treatment at a temperature lower than room temperature because the reaction with the acid solution is delayed and a sufficient acid dipping effect cannot be obtained, and a long acid dipping treatment time is required.
  • the acid immersion treatment time for both the sulfuric acid solution and the hydrochloric acid solution is preferably 1 minute or more, more preferably 2 minutes or more, and further preferably 3 minutes or more. If it is less than 1 minute, a sufficient acid immersion effect cannot be obtained, and it becomes difficult to obtain high adhesion at the interface between the bright Sn plating layer and the deposited layer.
  • the acid immersion treatment time can be varied depending on the concentration of the acid solution used in the acid immersion treatment. The higher the concentration of the acid solution, the better the acid immersion effect can be obtained even with a shorter acid immersion treatment time.
  • an acid rinsing treatment is performed on the surface of the bright Sn plating layer on the substrate that has been subjected to an acid immersion treatment in an acid solution.
  • the acid rinsing process performed here is a process for preventing the acid solution covering the surface of the bright Sn plating layer by performing the acid dipping process from being brought into the next deposited layer forming step.
  • the acid rinsing treatment is preferably performed using an acid solution of the same type as the acid solution used in the acid dipping treatment and having a lower concentration than that used in the acid dipping treatment step.
  • the concentration of the acid solution used for the acid rinsing treatment can be appropriately determined according to the type and concentration of the brightener used, as in the acid dip treatment. For example, when a sulfuric acid solution having a concentration of 10% by mass or more and 80% by mass or less is used in the acid dipping process, the sulfuric acid used in the acid dipping process has a concentration of 8% by mass or more in the acid dipping process. It is preferable to use a sulfuric acid solution having a concentration lower than that of the solution.
  • the acid rinsing treatment temperature in the acid rinsing treatment may be any temperature
  • the acid rinsing treatment time may be any time.
  • the acid rinsing treatment temperature and the acid rinsing treatment time may be appropriately determined using as a guide the state in which the concentration of the acid solution covering the substrate surface is equal to the concentration of the acid solution used for the acid rinsing treatment.
  • the deposited layer to be formed may be a metal plating layer obtained by a normal electroplating method, or may be a coating film obtained by an electrodeposition coating method.
  • the metal constituting the deposited layer by the metal plating method may be appropriately selected in consideration of various functions required for the laminate. Thereby, various functions, such as corrosion resistance, glossiness, smoothness, chipping resistance, abrasion resistance, slipperiness, weather resistance, chemical resistance, antibacterial properties, and heat reflectivity, can be imparted to the laminate. Moreover, the electroplating method can be performed by a conventionally well-known method according to each metal plating method.
  • a coating film when laminated by an electrodeposition coating method, it can be performed by a conventionally known method. You may carry out by any method of cationic electrodeposition coating and anion electrodeposition coating.
  • cationic electrodeposition coating is performed using a cationic electrodeposition coating composition as the electrodeposition coating composition, a voltage of 1 to 400 V is usually applied between the substrate and the anode.
  • the bath temperature of the coating composition is adjusted to 10 to 45 ° C., preferably 15 to 30 ° C.
  • the electrodeposition process includes a step of immersing the base material provided with the bright Sn plating layer in the cationic electrodeposition coating composition, and applying a voltage between the base material as the cathode and the anode, and on the bright Sn plating layer.
  • a voltage between the base material as the cathode and the anode, and on the bright Sn plating layer is comprised from the process of depositing a coating film, the application time of a voltage, an applied voltage, etc. can be performed in accordance with a conventionally well-known method.
  • the coating formed on the surface of the bright Sn plating layer on the substrate is cured by crosslinking. Curing may be performed by heating the film or by irradiating the film with UV.
  • anion electrodeposition coating When anion electrodeposition coating is performed using an anion electrodeposition coating composition as the electrodeposition coating composition, it can be performed by applying a voltage between the base material and the cathode.
  • the applied voltage, applied time, applied voltage, and the like can be performed by a conventionally known method in the same manner as in the cationic electrodeposition coating.
  • the surface of the bright Sn plating layer is subjected to an acid dipping treatment and an acid rinsing treatment so that the acid solution improves physical adhesion and chemical adhesion between the bright Sn plating layer and the deposited layer.
  • a high-temperature, high-concentration acid solution acts to roughen the surface of the bright Sn plating layer.
  • irregularities are formed on the surface of the bright Sn plating layer, the surface roughness is improved, and the physical adhesion is improved by the anchor effect with the deposited layer that has entered the recess.
  • a high-temperature, high-concentration acid solution acts to remove the oxide film formed on the surface of the bright Sn plating layer.
  • the oxide film that was difficult to remove by the pickling treatment after the normal metal plating treatment can also be removed.
  • the chemical adhesiveness in the interface of a gloss Sn plating layer and a precipitation layer improves.
  • the acid dipping treatment on the surface of the bright Sn layer acts to improve both physical adhesion and chemical adhesion at the interface between the bright Sn plating layer and the precipitation layer, and the adhesion of the precipitation layer to the bright Sn plating layer. To improve.
  • Such an effect can be obtained by performing an acid dipping treatment in an acid solution having a higher concentration than that used in a normal pickling treatment performed at the time of metal plating, and at a higher temperature than a normal pickling treatment. Is. It is possible to realize roughening of the surface necessary to ensure the adhesion between the bright Sn plating layer and the electrodeposited layer laminated thereon, and the removal of the oxide film that is difficult to remove by normal pickling treatment. To do.
  • an acid solution having a lower concentration than the acid solution used during the acid immersion treatment acts to remove the acid solution during the acid immersion treatment remaining on the surface of the bright Sn plating layer.
  • the acid concentration on the surface of the bright Sn plating layer is balanced with the acid concentration of the acid solution used in the acid rinsing process.
  • the acid concentration that does not affect the formation of the electrically deposited layer can be obtained.
  • the above embodiment may be modified as follows.
  • the synthetic resin was used as a base material, it is not limited to this.
  • Stainless steel, copper, copper alloys (brass, beryl copper, tungsten copper, etc.), special alloys such as aluminum and Ti alloys, glass, ceramics, and the like may be used.
  • an acid rinse process can also be abbreviate
  • the acid solution used in the acid dipping treatment and the acid solution used in the acid rinsing treatment need not be performed with the same kind of acid solution.
  • acid rinse treatment with a sulfuric acid solution may be performed.
  • the deposited layer forming step is a method for manufacturing a laminate, which is based on an electrodeposition coating method.
  • Example 1 After the gloss Sn plating layer was laminated on the ABS resin base material provided with conductivity by performing electroless Ni plating treatment, acid immersion treatment and acid rinsing treatment were performed. Thereafter, a bright Ni plating treatment, a microporous Ni plating treatment, and a Cr plating treatment were sequentially performed, and the obtained laminate was evaluated by a tape peeling test. In the acid dipping treatment and the acid rinsing treatment, an appropriate acid concentration, treatment temperature, and treatment time were examined using a sulfuric acid solution.
  • a bright Sn plating treatment was performed by laminating a bright Sn plating layer on the ABS resin base material provided with conductivity by performing an electroless Ni plating treatment. This bright Sn plating treatment was performed in a methanesulfonic acid bath.
  • the bath composition is stannous sulfate (SnSO 4 ) 40 g / L, sulfuric acid (H 2 SO 4 ) 100 g / L, cresolsulfonic acid 30 g / L, formaldehyde 5 g / L, and amine-aldehyde brightener 40 mL / L. .
  • the bright Sn plating treatment is performed at a bath temperature of 10 to 20 ° C., a cathode current density of 0.3 to 1.5 A / dm 2 , an anode current density of 1.0 to 3.0 A / dm 2 , and a liquid filtration circulation 5 to 6 times. Per hour.
  • the acid rinsing treatment was performed using an 8% by mass sulfuric acid solution under conditions of an acid rinsing treatment temperature of 25 ° C. and an acid rinsing treatment time of 10 seconds.
  • the acid rinsing treatment was carried out in an 8% by mass sulfuric acid solution at 25 ° C. for 10, 60 and 180 seconds, respectively.
  • the acid immersion treatment was performed using a 20% by mass sulfuric acid solution under conditions of an acid immersion treatment temperature of 50 ° C. and an acid immersion treatment time of 5 minutes.
  • a bright Ni plating layer was laminated on the bright Sn plating layer after the acid immersion treatment and the acid rinsing treatment.
  • the bright Ni plating treatment can be performed in any of a Watt bath, a total chloride bath, a sulfamine bath, a wood strike bath, etc., but in this example, it was performed in a conventionally known Watt bath.
  • As the brightener an alkene sulfonate brightener (Hibright # 88, manufactured by Ebara Seisakusho) was used.
  • the bath composition contains nickel sulfate (NiSO 4 ) 250-300 g / L, nickel chloride (NiCl 2 ) 40-60 g / L, boric acid 40-50 g / L, wetting agent, etc., and pH 3.8-4.6.
  • the plating was performed under the conditions of a treatment temperature of 50 to 60 ° C., a cathode current density of 1.0 to 6.0 A / dm 2 , and an anode current density of 0.5 to 3.0 A / dm 2 .
  • a microporous Ni plating layer was further laminated thereon.
  • the microporous Ni plating treatment is performed by dispersing and co-depositing inorganic fine particles in a nickel plating film in a bath to which insoluble inorganic fine particles (silica or the like) are added.
  • the bath composition contains 280 g / L of nickel sulfate (NiSO 4 ), 50 g / L of nickel chloride (NiCl 2 ), and 40 g / L of boric acid.
  • silica-based brightener manufactured by Ebara Seisakusho, 3 mL of MP311) / L, MP333 10 mL / L was used.
  • the plating conditions were pH 4.4 to 4.8, treatment temperature 50 to 60 ° C., cathode current density 3.0 to 6.0 A / dm 2 , and anode current density 1.5 to 3.0 A / dm 2 .
  • Cr plating process After laminating the microporous Ni plating layer, a Cr plating layer as the outermost layer was laminated thereon.
  • Cr plating treatment can be any of Sargent bath, fluoride-containing bath (silica fluoride bath, SRHS bath), high speed bath, tetrachromate bath, trivalent chromium bath, high hardness chromium plating bath (Cr-C alloy plating bath), etc. However, in this example, it was performed in a conventionally known sergeant bath.
  • the bath composition contains 200 to 300 g / L of chromic anhydride, 2 to 3 g / L of sulfuric acid (H 2 SO 4 ), and the plating process is performed under conditions of a bath temperature of 40 to 55 ° C. and a current density of 10 to 60 A / dm 2. went.
  • the tape peeling test method was performed by a method according to a cross-cut tape test (old JIS K5400). Specifically, eleven grooves in each of the vertical and horizontal directions are provided on the surface of the obtained laminated body at intervals of 2 mm to form 100 square grids. The cellophane tape was strongly pressure-bonded to the grid area, and then the cellophane tape was peeled off at a stretch, and the ratio of the area where peeling occurred on the surface of the laminate was determined in 100 grid grids to evaluate the adhesion.
  • Tables 1 and 2 show the results obtained by examining the suitability values of acid dipping treatment and acid rinsing treatment, respectively.
  • the tape peeled area was 0%, ⁇ 2, 2% or less ⁇ , 5% or less ⁇ , and the others x.
  • the concentration of the sulfuric acid solution is 20% by mass
  • the adhesion of the deposited layer to the bright Sn plating layer is very high at an acid immersion treatment temperature of 50 ° C. and an acid immersion treatment time of 3 minutes or more.
  • the amount was 40% by mass
  • the adhesion to the bright Sn plating layer was very high when the acid immersion treatment temperature was 50 ° C. and the acid immersion treatment time was 2 minutes or longer.
  • the concentration of the sulfuric acid solution is 12% by mass or more, and the peeling area is 2% or less after 1 minute or more of the acid immersion treatment, and the adhesion of the deposited layer to the bright Sn plating layer is excellent. I found out.
  • the concentration of the sulfuric acid solution is 8% by mass or more, a laminate having excellent adhesion can be obtained even if the acid rinsing treatment temperature and the acid rinsing treatment time are arbitrary. It was.
  • the evaluation is based on the observation of the roughness of the surface of the bright Sn plating layer after sulfuric acid immersion treatment with a scanning electron microscope (SEM) and the component analysis of the oxygen ratio on the surface of the bright Sn plating layer by energy dispersive X-ray analysis (EDS). went.
  • SEM scanning electron microscope
  • EDS energy dispersive X-ray analysis
  • Example 2 It is the same as that of Example 1 except having replaced with the sulfuric acid solution and having performed the acid immersion process by the hydrochloric acid solution of the density
  • Table 4 shows the evaluation results of the tape peel test.
  • the result of the tape peeling test when the acid immersion treatment with a 1.75 mass% hydrochloric acid solution was performed was 15%, and the result of the tape peeling test when the acid immersion treatment with a 3.5 mass% hydrochloric acid solution was performed.
  • the result was 0%. It was found that when an acid immersion treatment was performed at 50 ° C. for 5 minutes using a 3.5 mass% hydrochloric acid solution, a laminate having excellent adhesion could be obtained.
  • Example 3 After performing an acid immersion treatment at 50 ° C. for 5 minutes with a sulfuric acid solution having a concentration of 20% by mass or 40% by mass, and an acid rinsing treatment at 25 ° C. for 10 seconds with an 8% by mass sulfuric acid solution, bright Ni plating treatment And the laminate obtained by performing the Cr plating treatment was evaluated for adhesion by a tape peeling test. The result showed that the adhesiveness of the laminate was excellent.
  • Example 4 In the same manner as in Example 1, the gloss Sn plating layer was laminated on the ABS resin base material subjected to electroless Ni plating treatment to give conductivity, and then acid dipping treatment and acid rinsing treatment were performed. Thereafter, a bright Ni plating process, a microporous Ni plating process, and a Cr plating process were sequentially performed to obtain a laminate. Except for the acid solution concentration, acid immersion treatment temperature, and acid immersion treatment time in the acid immersion treatment step, the other steps were performed under the same conditions as in Example 1. In the examination of the acid solution concentration, acid immersion treatment was performed on sulfuric acid solutions having respective concentrations of 25, 50, and 80 mass% at a treatment temperature of 50 ° C. for treatment times of 2, 5, 10, 20, and 30 minutes, respectively.
  • the surface state of the bright Sn plating layer after the treatment was observed.
  • the acid rinsing treatment was performed using an 8% by mass sulfuric acid solution under the conditions of an acid rinsing treatment temperature of 25 ° C. and an acid rinsing treatment time of 10 seconds.
  • the surface was observed with a scanning electron microscope (SEM), and the fine shape of the surface of the bright Sn plating layer was measured with a surface roughness R ( ⁇ m) and waviness W ( ⁇ m).
  • SEM scanning electron microscope
  • the chipping test was done about the obtained laminated body.
  • the surface roughness R is a geometric amount that represents fine irregularities on the surface of the object, and is a parameter that represents the surface roughness from the roughness curve by obtaining a roughness curve of the object surface with a surface roughness measuring machine. It can be measured by calculating Since the surface roughness has a high frequency component in the shape of the object, the surface roughness is measured using a wide-area filter that passes only the high frequency component and cuts the low frequency component.
  • the waviness W is a geometric amount that expresses unevenness larger than the surface roughness R, and has a frequency component lower than the surface roughness R.
  • the waviness W is obtained from a filtered waviness curve obtained by removing a small concavo-convex component corresponding to the surface roughness from the cross-sectional curve of the object using a low-pass filter.
  • the chipping resistance of each laminate was evaluated based on the state of the laminate surface when 100 g of basalt No. 6 was blown horizontally with air at a pressure of 0.4 MPa and applied to the laminate. Measurement conditions are based on JIS Z8801-1. Furthermore, the adhesion between the bright Sn plating layer and the deposited layer was evaluated by observing the occurrence of swelling on the surface of each laminate. These results are shown in Table 5.
  • the surface of the bright Sn plating layer is often roughened by immersing it in an 80% by weight sulfuric acid solution for 5 minutes or more, and the entire surface is uniformly uneven. It was.
  • the surface of the bright Sn plating layer before the acid immersion treatment was smooth, whereas the surface treated with a 25% by mass sulfuric acid solution for 5 minutes, the one treated with a 50% by mass sulfuric acid solution for 5 minutes, 80% by mass No. 2 treated with sulfuric acid solution for 2 minutes was in a state where only a part of the surface of the bright Sn plating layer was dissolved.
  • FIGS. 1A to 1C show SEM photographs of the surface of the bright plating layer before and after the acid immersion treatment. It was found that the surface of the bright Sn plating layer that had been smooth before the acid immersion treatment was roughened by the acid immersion treatment for 5 minutes or longer with an 80% by mass sulfuric acid solution, and irregularities were generated on the entire surface. In the acid immersion treatment with an 80% by mass sulfuric acid solution, it was found that the treatment time was preferably 5 minutes or longer, more preferably 10 minutes or longer. However, in terms of the efficiency of manufacturing the laminate, if the treatment time exceeds 30 minutes, the acid immersion treatment requires a long time, which is not preferable.
  • the surface of the bright Sn plating layer was in a rough state, that is, the acid immersion treatment was performed for 5, 10, 20, or 30 minutes with an 80% by mass sulfuric acid solution. It was observed that the occurrence of swelling on the surface of the laminate was suppressed.
  • the surface microstructure of the bright Sn plating layer subjected to the acid dipping treatment under the same conditions as the laminate in which the occurrence of swelling is suppressed is measured with a Surface corderET4000A
  • the swell W is 0 to 0.04 ( ⁇ m )
  • the surface roughness R was in the range of 0.04 to 0.08 ( ⁇ m). It was found that the surface condition of the bright Sn plating layer can be made excellent in adhesion to the deposited layer by performing the acid dipping treatment so that the undulation W and the surface roughness R are in this range.
  • Example 5 The chipping resistance of the laminate formed with the deposited layer was examined from the viewpoint of the film thickness of the Ni plating layer laminated after the acid immersion treatment. Laminates having different Ni plating layer thicknesses were created, and a chipping test was performed on each laminate.
  • the ABS resin base material provided with conductivity by electroless Ni plating treatment was subjected to a bright Sn plating treatment, an acid dipping treatment and an acid rinsing treatment, and then a bright Ni plating treatment to obtain a laminate.
  • the bright Sn plating treatment and the bright Ni plating treatment were performed under the same conditions as in Example 1.
  • the acid immersion treatment was performed in a 25% by mass sulfuric acid solution at a treatment temperature of 50 ° C. under a treatment time of 5 minutes.
  • the acid rinse treatment was conducted in an 8% by mass sulfuric acid solution at an acid treatment temperature of 25. It was performed under the conditions of ° C and a treatment time of 10 seconds.
  • a bright Sn plating layer having a thickness of 10 ⁇ m was formed.
  • a bright Ni plating layer having a thickness of 1, 5 or 10 ⁇ m was formed.
  • Each laminated body thus obtained was evaluated by a chipping test under the same test conditions as in Example 4 to determine whether or not the ABS resin as the base material was exposed. Moreover, while measuring the chipping depth (micrometer) of each laminated body surface after a chipping test, the Young's modulus (GPa) and surface hardness (N / mm ⁇ 2 >) of the laminated glossy Ni plating layer were measured.
  • the measurement of the chipping depth was the same as the measurement condition of the surface roughness in Example 4, and was performed based on JIS B0651: 2001.
  • the Young's modulus and surface hardness were determined by measuring Martens hardness under measurement conditions based on ISO EN DIN14577 based on the indentation test method using Fixerscope H100CS manufactured by Fischer Instruments.
  • the film thickness of the bright Ni plating layer was 1 ⁇ m or 5 ⁇ m
  • the bright Sn plating layer was damaged and the ABS resin as the base material was exposed.
  • the ABS resin base material was not exposed.
  • the chipping depth from the surface of the bright Ni plating layer was measured.
  • the depth of the hole was compared with the 1 ⁇ m or 5 ⁇ m laminated body. Was shallow. It is considered that the formation of deep holes is suppressed by the rigidity of the bright Ni plating layer.
  • the gloss Ni plating layer having a thickness of 10 ⁇ m had a Young's modulus of 44.66 GPa and a surface hardness of 2270.26 N / mm 2. Met.
  • the Young's modulus and the surface hardness were these values, it was found that the ABS resin substrate was not exposed in the laminate and was excellent in chipping resistance.
  • the bright Sn plating layer has a ductility that can follow the ABS resin substrate and can give a bright appearance. However, since Sn is a relatively soft metal, the surface of the bright Sn plating layer is easily damaged.
  • a bright Ni plating layer was laminated as a deposited layer to protect the bright Sn plating layer, and no ABS resin exposure was observed when the thickness of the bright Ni plating layer was 10 ⁇ m. Scratches are suppressed by the rigidity of the bright Ni plating layer, and Sn is extended on the ABS resin substrate by the bright Sn plating layer, and it is considered that the exposure of the ABS resin substrate is suppressed by the action of these layers. .
  • the Young's modulus of the glossy Ni plating layer at this time is 44.66 GPa and the surface hardness is 2270.26 N / mm 2 , which is different from the value in the glossy Ni plating layer in which the exposure of the ABS resin substrate was observed. Met. Therefore, it is considered that desired chipping resistance can be imparted to the laminate by setting the Young's modulus and surface hardness of the bright Ni plating layer within a predetermined range.
  • the surface of the bright Sn plating layer is in an excellent state of adhesion to the bright Ni plating layer, and between the bright Sn plating layer and the bright Ni plating layer. Delamination at the interface is suppressed. Also by this, it can be considered that desired chipping resistance can be imparted to the laminate, and exposure of the ABS resin substrate is suppressed.

Abstract

The problem addressed by the present invention is to provide: a laminate that has increased adhesiveness between an Sn plating layer and a coating film laminated on the Sn plating layer, and that can prevent delamination at the interface surface; and a method for producing the laminate. The method for producing a laminate resulting from electrically forming a deposit layer on an Sn plating layer laminated to the surface of a substrate is provided with: an Sn plating step for laminating a glossy Sn plating layer comprising Sn or an Sn alloy onto a substrate in a plating solution containing Sn and a brightener; an acid dipping processing step after the Sn plating step for immersing the glossy Sn plating layer on the substrate in a sulfuric acid solution having a concentration of at least 10 mass% or a hydrochloric acid solution having a concentration of at least 3.5 mass% at 50-80°C for 1-30 minutes; and a deposit layer forming step after the acid dipping processing step for electrically forming a deposit layer on the Sn plating layer.

Description

積層体及びその製造方法Laminated body and method for producing the same
 本発明は、基材の表面にSnめっき層を備えた積層体及びその製造方法に関するものである。 The present invention relates to a laminate having a Sn plating layer on the surface of a substrate and a method for producing the same.
 従来、各種車両用部品等の表面処理として金属めっき処理を施した積層体が用いられている。この種の積層体としては、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)樹脂に金属めっき処理を行って金属様外観を付与したものが知られている。ABS樹脂の金属めっき処理工程は、一般に、Sn触媒存在下で無電解Niめっき処理を行ってABS樹脂基材に導電性を付与した後、Cuめっき処理、半光沢Ni(SBN)めっき処理、光沢Ni(BN)めっき処理、ジュールNi(DN)めっき処理、Crめっき処理を、順次電気めっき法により行うといった工程によっている。Cuめっき層は、主にABS樹脂基材の延びに追従可能な延性を付与するために積層されており、積層体に剛性を付与する合成樹脂製の基材と、各めっき層を構成する金属との線膨張率の違いに基づく熱応力を緩和し、各めっき層の密着性低下と積層体表面のクラック発生を防止するといった機能を担っている。また、各Niめっき層は、犠牲防食の観点から、最表層のCrめっき層の腐食を抑制して積層体に防食性を付与するといった機能を担っている。さらに、Crめっき層は、積層体に光輝外観を付与するとともに、耐チッピング性(耐傷つき性)を付与するといった機能を担っている。これら従来の積層体の各層は、それぞれ異なる機能を備えたものであり、積層体を適用する部材等に対して要求されるべき必要な機能を付与するものである。 Conventionally, a laminate subjected to metal plating is used as a surface treatment for various vehicle parts and the like. As this type of laminate, one obtained by applying a metal plating treatment to an acrylonitrile / butadiene / styrene copolymer (ABS) resin to give a metal-like appearance is known. The metal plating process of ABS resin is generally performed by performing electroless Ni plating in the presence of Sn catalyst to impart conductivity to the ABS resin substrate, then Cu plating, semi-bright Ni (SBN) plating, and gloss Ni (BN) plating processing, Joule Ni (DN) plating processing, and Cr plating processing are sequentially performed by an electroplating method. The Cu plating layer is laminated mainly to give ductility that can follow the extension of the ABS resin base material, and a base material made of a synthetic resin that gives rigidity to the laminate and the metal that constitutes each plating layer It relieves thermal stress based on the difference in linear expansion coefficient and prevents the occurrence of cracks on the surface of the laminate and the deterioration of the adhesion of each plating layer. Each Ni plating layer has a function of preventing corrosion of the outermost Cr plating layer and imparting corrosion resistance to the laminate from the viewpoint of sacrificial corrosion protection. Further, the Cr plating layer has a function of imparting a bright appearance to the laminate and imparting chipping resistance (scratch resistance). Each layer of these conventional laminates has a different function, and imparts necessary functions to be required for members to which the laminate is applied.
 しかし、このような積層体では、金属めっき層が多数積層された多層構造となることから、加工工程が複雑となって加工時間が長くかかり、また、材料費が嵩んでコスト高となるといった問題があった。 However, such a laminate has a multilayer structure in which a large number of metal plating layers are laminated, so that the machining process becomes complicated and takes a long time, and the material cost increases and the cost increases. was there.
 そこで、これら各層の機能を統合することによって積層数を減らして工程を簡略化し、材料費を低減することが検討されている。本発明者らは、積層体のクラック発生を防止して割れを抑制する観点から、例えば合成樹脂製の基材に対して追従可能な適度な延性を備える金属としてSnに着目した。 Therefore, by integrating the functions of these layers, it has been studied to reduce the number of layers, simplify the process, and reduce material costs. The present inventors have focused on Sn as a metal having an appropriate ductility that can follow a base material made of synthetic resin, for example, from the viewpoint of preventing cracks in the laminate and suppressing cracks.
 特許文献1には、鋼板上にSnめっき処理を施した後、少量のNiめっき層を形成し、その上に樹脂皮膜を被覆してなる樹脂被覆錫めっき鋼板の製造方法に係る発明が記載されている。また、特許文献2には、鋼板上にSnめっき処理を施した後、シランカップリング剤を塗布し、その上に樹脂皮膜を被覆してなるSnめっき鋼板の製造方法に係る発明が記載されている。 Patent Document 1 describes an invention relating to a method for producing a resin-coated tin-plated steel sheet in which a small amount of a Ni plating layer is formed on a steel sheet and then a resin film is coated thereon. ing. Patent Document 2 describes an invention relating to a method for producing a Sn-plated steel sheet, in which a Sn-plating treatment is performed on a steel sheet, a silane coupling agent is applied, and a resin film is coated thereon. Yes.
特開平5-98465号公報Japanese Patent Laid-Open No. 5-98465 特開2003-231989号公報JP 2003-231989
 しかし、これら各特許文献に記載される表面処理は、Snめっき浴中に光沢剤を含有させない無光沢Snめっき処理によるものであり、Snめっき層によって満足すべき光輝性を付与することができないといった問題があった。また、Snめっき層と当該Snめっき層上に積層される皮膜との付着性が十分でなく、得られたSnめっき鋼板表面での皮膜の剥がれが起こりやすくなるといった問題があった。したがって、これを例えば各種車両用部品に適用すると、各種車両用部品に必要な性能としては満足いくものが得られず、改良の余地があるものであった。 However, the surface treatment described in each of these patent documents is based on a matte Sn plating treatment in which a brightener is not contained in the Sn plating bath, and satisfactory brightness cannot be imparted by the Sn plating layer. There was a problem. In addition, there is a problem that the adhesion between the Sn plating layer and the film laminated on the Sn plating layer is not sufficient, and the film easily peels off on the surface of the obtained Sn plated steel sheet. Therefore, when this is applied to, for example, various vehicle parts, satisfactory performance cannot be obtained as performance required for various vehicle parts, and there is room for improvement.
 本発明は、これら従来の技術に存在する課題を解決するためになされたものであり、その目的は、光沢Snめっき層上に積層される析出層の、当該光沢Snめっき層に対する付着性を向上させ、その境界面での剥離を防止することが可能な積層体及びその製造方法を提供することである。 The present invention has been made in order to solve the problems existing in the prior art, and its purpose is to improve the adhesion of the deposited layer laminated on the bright Sn plating layer to the bright Sn plating layer. And providing a laminate and a method for manufacturing the same, which can prevent peeling at the boundary surface.
 上記の目的を達成するために、本発明の積層体の製造方法は、基材の表面に積層されたSnめっき層上に電気的に析出層を形成してなる積層体の製造方法であって、光沢剤とSnを含むめっき浴中で、基材上にSn又はSn合金からなる光沢Snめっき層を積層するSnめっき工程と、前記Snめっき工程後に、前記基材上の光沢Snめっき層を10質量%以上の濃度の硫酸溶液又は3.5質量%以上の濃度の塩酸溶液のいずれかに、50~80℃で1~30分間浸漬する酸浸漬処理工程と、前記酸浸漬処理工程後に、前記光沢Snめっき層上に電気的に析出層を形成する析出層形成工程と、を備えることを要旨とする。 In order to achieve the above object, the method for producing a laminate of the present invention is a method for producing a laminate in which a deposited layer is electrically formed on a Sn plating layer laminated on the surface of a substrate. In a plating bath containing a brightener and Sn, a Sn plating step of laminating a bright Sn plating layer made of Sn or an Sn alloy on the substrate, and after the Sn plating step, the bright Sn plating layer on the substrate An acid immersion treatment step of immersing in either a sulfuric acid solution having a concentration of 10% by mass or more or a hydrochloric acid solution having a concentration of 3.5% by mass or more at 50 to 80 ° C. for 1 to 30 minutes, and after the acid immersion treatment step, And a deposition layer forming step of electrically forming a deposition layer on the bright Sn plating layer.
 この構成によれば、光沢Snめっき層を高い濃度の酸溶液で浸漬処理することで、光沢Snめっき層表面が荒れて微小の凹凸部分が形成される。そして、光沢Snめっき層の上層に析出させる析出層が、光沢Snめっき層表面に形成された凹部内に入り込み、光沢Snめっき層/析出層界面の形態によりアンカー効果が生じ、光沢Snめっき層と析出層との間の物理的密着性を向上させることができる。また、高い濃度の酸溶液での浸漬処理により、光沢Snめっき層表面から酸化物皮膜が除去される。これにより、酸化物皮膜が存在することによる光沢Snめっき層と析出層との間の化学的密着性の低下を抑制することができる。 According to this configuration, by immersing the bright Sn plating layer with an acid solution having a high concentration, the surface of the bright Sn plating layer is roughened and minute uneven portions are formed. Then, the precipitation layer deposited on the upper surface of the bright Sn plating layer enters the recess formed on the surface of the bright Sn plating layer, and an anchor effect is generated depending on the form of the bright Sn plating layer / deposition layer interface. The physical adhesion between the deposited layer can be improved. In addition, the oxide film is removed from the surface of the bright Sn plating layer by an immersion treatment with a high concentration acid solution. Thereby, the fall of the chemical adhesiveness between the glossy Sn plating layer and precipitation layer by an oxide membrane | film | coat can be suppressed.
 光沢Snめっき層を積層することにより、積層体に好適な延性と光輝外観とを付与することができることに加え、光沢Snめっき層の上に積層される析出層の、光沢Snめっき層に対する付着性を向上させて、その境界面における剥離を防止することができる。 By laminating the bright Sn plating layer, suitable ductility and bright appearance can be imparted to the laminate, and the adhesion of the deposited layer laminated on the bright Sn plating layer to the bright Sn plating layer Can be improved, and peeling at the interface can be prevented.
 上記積層体の製造方法において、前記酸浸漬処理工程は、酸浸漬処理後の光沢Snめっき層表面の粗さが0.040~0.080μm、うねりが0~0.040μmとなるように行われることが好ましい。 In the method for producing a laminate, the acid dipping treatment step is performed such that the surface of the bright Sn plating layer after the acid dipping treatment has a roughness of 0.040 to 0.080 μm, and the undulation is 0 to 0.040 μm. It is preferable.
 この構成によれば、光沢Snめっき層に対する析出層の付着性を良好にすることができる。
 上記積層体の製造方法は、前記酸浸漬処理工程後に、該酸浸漬処理工程で使用した酸溶液より低濃度の酸溶液で基材上の光沢Snめっき層表面をすすぐ酸すすぎ処理工程を備えることが好ましい。
According to this configuration, the adhesion of the deposited layer to the bright Sn plating layer can be improved.
The manufacturing method of the laminate includes an acid rinsing treatment step of rinsing the surface of the bright Sn plating layer on the substrate with an acid solution having a lower concentration than the acid solution used in the acid immersion treatment step after the acid immersion treatment step. Is preferred.
 この構成によれば、析出層形成工程への酸の持ち込みが抑制され、光沢Snめっき層に対する析出層の付着性が低下することを抑制することができる。
 上記積層体の製造方法において、前記酸すすぎ処理工程は、前記酸浸漬処理工程で使用した酸溶液中の酸と同じ種類の酸を使用することが好ましい。
According to this configuration, it is possible to prevent acid from being brought into the precipitation layer forming step, and to prevent the adhesion of the precipitation layer to the bright Sn plating layer from decreasing.
In the manufacturing method of the said laminated body, it is preferable that the said acid rinse process process uses the same kind of acid as the acid in the acid solution used at the said acid immersion process process.
 この構成によれば、酸浸漬処理工程で使用した光沢Snめっき層上の酸溶液の置換を容易に行うことができる。
 上記積層体の製造方法において、前記基材は、合成樹脂に無電解めっき処理を施してなることが好ましい。
According to this configuration, the acid solution on the bright Sn plating layer used in the acid immersion treatment step can be easily replaced.
In the method for manufacturing a laminate, the base material is preferably formed by subjecting a synthetic resin to electroless plating.
 この構成によれば、加工成形が容易であり、各種装飾部品の製造に好適である。
 上記の目的を達成するために、本発明の積層体は、基材と、該基材上に積層された光沢Snめっき層と、該光沢Snめっき層上に積層された析出層とを備え、前記光沢Snめっき層は、光沢剤を含むSn又はSn合金からなり、前記光沢Snめっき層表面の粗さが0.040~0.080μmであるとともに、うねりが0~0.040μmであることを要旨とする。
According to this configuration, processing and molding are easy, and it is suitable for manufacturing various decorative parts.
In order to achieve the above object, a laminate of the present invention comprises a base material, a bright Sn plating layer laminated on the base material, and a deposited layer laminated on the bright Sn plating layer, The bright Sn plating layer is made of Sn or Sn alloy containing a brightener, and the surface of the bright Sn plating layer has a roughness of 0.040 to 0.080 μm and a undulation of 0 to 0.040 μm. The gist.
 本発明の積層体の製造方法によれば、光沢Snめっき層上に積層される析出層の、当該光沢Snめっき層に対する付着性を向上させ、その境界面での剥離を防止することができる。 According to the method for producing a laminate of the present invention, it is possible to improve the adhesion of the deposited layer laminated on the bright Sn plating layer to the bright Sn plating layer and to prevent peeling at the boundary surface.
光沢Snめっき層表面のSEM写真であって、(A)は酸浸漬処理前の光沢Snめっき層表面、(B)は80質量%の硫酸溶液を用いて50℃で5分間の酸浸漬処理をした光沢Snめっき層表面、(C)は80質量%の硫酸溶液を用いて50℃で30分間の酸浸漬処理をした光沢Snめっき層表面。It is a SEM photograph of the surface of the bright Sn plating layer, (A) is the surface of the bright Sn plating layer before the acid immersion treatment, and (B) is an acid immersion treatment at 50 ° C. for 5 minutes using an 80 mass% sulfuric acid solution. The surface of the bright Sn plating layer, (C) is the surface of the bright Sn plating layer that has been subjected to an acid immersion treatment at 50 ° C. for 30 minutes using an 80% by mass sulfuric acid solution. 実施例4の積層体に対するチッピング試験後の表面の写真であって、(A)は酸浸漬未処理で析出層を形成した積層体の表面、(B)は80質量%の硫酸溶液を用いて50℃で5分間の酸浸漬処理後に析出層を形成した積層体の表面、(C)は80質量%の硫酸溶液を用いて50℃で30分間の酸浸漬処理後に析出層を形成した積層体の表面。It is the photograph of the surface after the chipping test with respect to the laminated body of Example 4, Comprising: (A) is the surface of the laminated body which formed the precipitation layer by acid immersion non-processing, (B) is using 80 mass% sulfuric acid solution. The surface of the laminate on which a deposited layer was formed after an acid immersion treatment at 50 ° C. for 5 minutes, (C) is a laminate in which a deposited layer was formed after an acid immersion treatment at 50 ° C. for 30 minutes using an 80 mass% sulfuric acid solution. Surface.
 以下、本発明を具体化した一実施形態について説明する。
 本実施形態の積層体の製造方法は、合成樹脂製の基材表面に無電解Niめっき処理或いは無電解Cuめっき処理によって導電性を付与した後、電解めっき処理によって光沢Snめっき層を積層し、当該光沢Snめっき層表面を酸浸漬処理及び酸すすぎ処理した後、光沢Snめっき層上に電気的に析出層を形成するものである。
Hereinafter, an embodiment embodying the present invention will be described.
The manufacturing method of the laminated body of this embodiment, after imparting conductivity to the surface of the synthetic resin substrate by electroless Ni plating or electroless Cu plating, laminating a bright Sn plating layer by electrolytic plating, After the surface of the bright Sn plating layer is subjected to an acid dipping treatment and an acid rinsing treatment, a deposited layer is electrically formed on the bright Sn plating layer.
 合成樹脂製の基材は、剛性、加工容易性、耐熱性等を考慮して適宜選択することができる。例えばアクリルニトリル・ブタジエン・スチレン共重合体(ABS)樹脂、ポリカーボネート(PC)樹脂、PC/ABSアロイ(PC/ABSブレンド樹脂)、ポリプロピレン(PP)樹脂、ポリメタクリル酸メチル(PMMA)樹脂、変性ポリフェニレンエーテル(PPE)樹脂、ポリアミド樹脂、ポリアセタール樹脂、またはオレフィン系熱可塑性エラストラマー(TPO)等公知の合成樹脂から適宜選択することができる。これら各種合成樹脂を、例えば射出成形法、押出成形法、ブロー成形法、圧縮成形法等、公知の成形方法によって成形して用いることができる。 The base material made of synthetic resin can be appropriately selected in consideration of rigidity, ease of processing, heat resistance, and the like. For example, acrylonitrile / butadiene / styrene copolymer (ABS) resin, polycarbonate (PC) resin, PC / ABS alloy (PC / ABS blend resin), polypropylene (PP) resin, polymethyl methacrylate (PMMA) resin, modified polyphenylene It can be appropriately selected from known synthetic resins such as ether (PPE) resin, polyamide resin, polyacetal resin, or olefinic thermoplastic elastomer (TPO). These various synthetic resins can be used after being molded by a known molding method such as an injection molding method, an extrusion molding method, a blow molding method, or a compression molding method.
 基材の表面に光沢Snめっき層を積層する前処理として、まず、基材表面に導電性を付与するための無電解Niめっき処理或いは無電解Cuめっき処理を行う。
 無電解Niめっき処理は、従来公知の方法で行うことができる。例えば、ABS樹脂基材を界面活性剤含有浴に浸漬して基材表面を脱脂した後、クロム酸/硫酸溶液に浸漬して基材表面のエッチング処理を行う。続いて、基材表面にPd/Sn混合コロイド触媒等に代表される触媒を付与して活性化後、無電解Niめっき処理を行う。無電解Niめっき処理は、ホスフィン酸塩、テトラヒドロホウ酸塩、ジメチルアミンボラン(DMAB)、或いはヒドラジン等の還元剤、硫酸ニッケル、塩化ニッケル等のニッケル剤、錯化剤、促進剤、安定剤、pH調整剤、界面活性剤等を含有するめっき浴に浸漬することによって行うことができる。
As a pretreatment for laminating the bright Sn plating layer on the surface of the substrate, first, an electroless Ni plating treatment or an electroless Cu plating treatment for imparting conductivity to the substrate surface is performed.
The electroless Ni plating treatment can be performed by a conventionally known method. For example, after the ABS resin substrate is immersed in a surfactant-containing bath to degrease the substrate surface, the substrate surface is etched by immersion in a chromic acid / sulfuric acid solution. Subsequently, a catalyst represented by a Pd / Sn mixed colloidal catalyst or the like is applied to the surface of the substrate and activated, and then an electroless Ni plating treatment is performed. Electroless Ni plating treatment includes phosphinate, tetrahydroborate, dimethylamine borane (DMAB), or reducing agents such as hydrazine, nickel agents such as nickel sulfate and nickel chloride, complexing agents, accelerators, stabilizers, It can be performed by immersing in a plating bath containing a pH adjuster, a surfactant and the like.
 無電解Cuめっき処理についても、従来公知の方法で行うことができる。ABS樹脂基材の前処理は、無電解Niめっき処理の場合と同様に行えばよい。無電解Cuめっき処理は、還元剤としてホルムアルデヒドを用いるホルムアルデヒド浴が代表的なものとして挙げられるが、これに限られるものではない。還元剤としてテトラヒドロホウ酸カリウム、DMAB、水酸化ホウ素ナトリウム等の水素化ホウ素系、グリオキシル酸塩、次亜リン酸塩、ホスフィン酸塩、コバルト(II)塩、ヒドラジン等を用いる浴によって行うこともできる。例えば、ホルムアルデヒド浴にて行う場合、還元剤としてのホルムアルデヒドの他に、銅塩としての硫酸銅、錯化剤としてのロシェル塩或いはエチレンジアミン四酢酸(EDTA)、pH調整剤、安定剤、促進剤、皮膜改良剤、界面活性剤等を含有するめっき浴に浸漬することによって行うことができる。 The electroless Cu plating treatment can also be performed by a conventionally known method. The pretreatment of the ABS resin base material may be performed in the same manner as in the case of the electroless Ni plating treatment. The electroless Cu plating treatment is typically a formaldehyde bath using formaldehyde as a reducing agent, but is not limited thereto. It may be carried out in a bath using borohydride such as potassium tetrahydroborate, DMAB, sodium borohydride, glyoxylate, hypophosphite, phosphinate, cobalt (II) salt, hydrazine, etc. as a reducing agent. it can. For example, when performed in a formaldehyde bath, in addition to formaldehyde as a reducing agent, copper sulfate as a copper salt, Rochelle salt as a complexing agent or ethylenediaminetetraacetic acid (EDTA), a pH adjuster, a stabilizer, an accelerator, It can be performed by immersing in a plating bath containing a film improver, a surfactant and the like.
 次に、無電解めっき層上に光沢Snめっき層を積層するSnめっき処理を行う。まず、無電解めっき処理により、無電解めっき層が形成されて導電性が付与された基材表面を水洗して汚れを除去し、その後、光沢剤とSnを含むめっき浴中で、無電解めっき層上に光沢Snめっき層を積層する。 Next, an Sn plating process for laminating a bright Sn plating layer on the electroless plating layer is performed. First, by electroless plating treatment, the surface of the base material on which the electroless plating layer is formed and provided with conductivity is washed with water to remove dirt, and then electroless plating is performed in a plating bath containing a brightener and Sn. A bright Sn plating layer is laminated on the layer.
 Snめっき処理は、従来公知の電解めっき法により行うことができる。Snめっき浴は、酸性浴、アルカリ性浴、中性浴のいずれで行ってもよい。また、酸性浴の場合、硫酸浴、ホウフッ化物浴、有機スルホン酸浴のいずれでも行うことができる。例えば、有機スルホン酸浴中で行う場合、硫酸第一スズ、クレゾールスルホン酸、ホルマリン系化合物(ホルムアルデヒド)、アミン-アルデヒド系光沢剤、界面活性剤、pH調整剤等をメタンスルホン酸に溶解したメタンスルホン酸浴中、処理温度10~20℃、陰極電流密度0.3~1.5A/dm、陽極電流密度1.0~3.0A/dmの条件で電解めっき処理を行うことができる。 The Sn plating process can be performed by a conventionally known electrolytic plating method. The Sn plating bath may be any of an acidic bath, an alkaline bath, and a neutral bath. In the case of an acidic bath, any of a sulfuric acid bath, a borofluoride bath, and an organic sulfonic acid bath can be used. For example, in an organic sulfonic acid bath, methane in which stannous sulfate, cresol sulfonic acid, formalin compounds (formaldehyde), amine-aldehyde brighteners, surfactants, pH adjusters, etc. are dissolved in methane sulfonic acid Electroplating can be performed in a sulfonic acid bath under conditions of a processing temperature of 10 to 20 ° C., a cathode current density of 0.3 to 1.5 A / dm 2 , and an anode current density of 1.0 to 3.0 A / dm 2. .
 なお、Snめっき処理は、Sn合金めっき浴により行ってもよい。例えば、Sn-Pb合金めっき浴、Sn-Co合金めっき浴、Sn-Ni合金めっき浴、Sn-Ni-Cu合金めっき浴、Sn-Cu-Zn合金めっき浴、Sn-Fe合金めっき浴、Sn-Fe―Zn合金めっき浴等により、各種Sn合金めっき処理を行ってもよい。これらSn合金めっき処理は、従来公知の方法により行うことができる。 Note that the Sn plating treatment may be performed using a Sn alloy plating bath. For example, Sn—Pb alloy plating bath, Sn—Co alloy plating bath, Sn—Ni alloy plating bath, Sn—Ni—Cu alloy plating bath, Sn—Cu—Zn alloy plating bath, Sn—Fe alloy plating bath, Sn— Various Sn alloy plating treatments may be performed using an Fe—Zn alloy plating bath or the like. These Sn alloy plating processes can be performed by a conventionally known method.
 積層される光沢Snめっき層が積層体に好適な光輝外観を付与すべく、Snめっき浴中には光沢剤を含有させる。光沢剤としては、通常公知の光沢剤を適宜使用することができる。例えば、アルデヒド化合物系光沢剤、或いは、不飽和カルボン酸化合物系光沢剤としては、1―ナフトアルデヒド、2―ナフトアルデヒド、o―クロロベンズアルデヒド、m―クロロベンズアルデヒド、p―クロロベンズアルデヒド、2,4-ジクロロベンズアルデヒド、2,6-ジクロロベンズアルデヒド、o-メトキシベンズアルデヒド、p-メトキシベンズアルデヒド、3-インドールカルボキシアルデヒド、ホルムアルデヒド、アセトアルデヒド、サリチルアルデヒド、パラアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、プロピオンアルデヒド、n-バレルアルデヒド、アリルアルデヒド、グルタルアルデヒド、2-チオフェンアルデヒド、3-チオフェンアルデヒド、o-アニスアルデヒド、m-アニスアルデヒド、p-アニスアルデヒド、p-ニトロベンズアルデヒド、p-ヒドロキシベンズアルデヒド、スクシンジアルデヒド、カプロンアルデヒド、イソバレルアルデヒド、アクリル酸、メタクリル酸、エタクリル酸、アクリル酸エチル、メタクリル酸メチル、メタクリル酸ブチル、クロトン酸、ピロピレン-1,3-ジカルボン酸、ケイ皮酸、安息香酸、フマル酸、フタル酸、シトラコン酸、イタコン酸等が挙げられる。 A brightening agent is contained in the Sn plating bath so that the glossy Sn plating layer to be laminated provides a bright appearance suitable for the laminate. As the brightener, generally known brighteners can be appropriately used. For example, aldehyde compound-based brighteners or unsaturated carboxylic acid compound-based brighteners include 1-naphthaldehyde, 2-naphthaldehyde, o-chlorobenzaldehyde, m-chlorobenzaldehyde, p-chlorobenzaldehyde, 2,4- Dichlorobenzaldehyde, 2,6-dichlorobenzaldehyde, o-methoxybenzaldehyde, p-methoxybenzaldehyde, 3-indolecarboxaldehyde, formaldehyde, acetaldehyde, salicylaldehyde, paraaldehyde, butyraldehyde, isobutyraldehyde, propionaldehyde, n-valeraldehyde, Allylaldehyde, glutaraldehyde, 2-thiophenaldehyde, 3-thiophenaldehyde, o-anisaldehyde, m-anisaldehyde, p- Anisaldehyde, p-nitrobenzaldehyde, p-hydroxybenzaldehyde, succinaldehyde, capronaldehyde, isovaleraldehyde, acrylic acid, methacrylic acid, ethacrylic acid, ethyl acrylate, methyl methacrylate, butyl methacrylate, crotonic acid, pyropyrene- Examples thereof include 1,3-dicarboxylic acid, cinnamic acid, benzoic acid, fumaric acid, phthalic acid, citraconic acid, itaconic acid and the like.
 また、他の光沢剤として、バニリン、アクロレイン、グリオキサール、アルドール、1-ベンジリデン-7-ヘプタナール、2,4-ヘキサジエナール、シンナムアルデヒド、アミン-アルデヒド縮合物、酸化メシチル、イソホロン、ジアセチル、ヘキサンジオン-3,4、アセチルアセトン、3-クロロベンジリデンアセトン、sub.ピリジリデンアセトン、sub.フルフリジンアセトン、sub.テニリデンアセトン、4-(1-ナフチル)-3-ブテン-2-オン、4-(2-フリル)-3-ブテン-2-オン、4-(2-チオフェニル)-3-ブテン-2-オン、クルクミン、ベンジリデンアセチルアセトン、ベンザルアセトン、アセトフェノン、(2,4-、3,4-)ジクロロアセトフェノン、ベンジリデンアセトフェノン、2-シンナミルチオフェン、2-(ω-ベンゾイル)ビニルフラン、ビニルフェニルケトン、 (o-、m-、p-)トルイジン、(o-、p-)アミノアニリン、アニリン、(o-、p-)クロロアニリン、(2,5-、3,4-)クロロメチルアニリン、N-モノメチルアニリン、4,4′-ジアミノジフェニルメタン、N-フェニル-(α-、β-)ナフチルアミン、メチルベンズトリアゾール、1,2,3-トリアジン、1,2,4-トリアジン、1,3,5-トリアジン、1,2,3-ベンズトリアジン、イミダゾール、2-ビニルピリジン、インドール、キノリン、モノエタノールアミンとo-バニリンの反応物等が挙げられる。 Other brighteners include vanillin, acrolein, glyoxal, aldol, 1-benzylidene-7-heptanal, 2,4-hexadienal, cinnamaldehyde, amine-aldehyde condensate, mesityl oxide, isophorone, diacetyl, hexanedione -3,4, acetylacetone, 3-chlorobenzylideneacetone, sub.pyridylideneacetone, sub.furfuridineacetone, sub.tenylideneacetone, 4- (1-naphthyl) -3-buten-2-one, 4- (2-furyl) -3-buten-2-one, 4- (2-thiophenyl) -3-buten-2-one, curcumin, benzylideneacetylacetone, benzalacetone, acetophenone, (2,4-3,4 -) Dichloroacetophenone, benzylideneacetophenone, 2-cinnamylchi Phen, 2- (ω-benzoyl) vinyl furan, vinyl phenyl ketone, (o-, m-, p-) toluidine, (o-, p-) aminoaniline, aniline, (o-, p-) chloroaniline, (2,5-3,4-) chloromethylaniline, N-monomethylaniline, 4,4'-diaminodiphenylmethane, N-phenyl- (α-, β-) naphthylamine, methylbenztriazole, 1,2,3 -Triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-benztriazine, imidazole, 2-vinylpyridine, indole, quinoline, reaction product of monoethanolamine and o-vanillin, etc. Is mentioned.
 光沢剤は、1種類を選択して用いてもよく、或いは複数種類を組み合わせて用いることもできる。光沢剤の添加量は、添加する光沢剤の種類によっても異なるが、Snめっき浴中の合計濃度として0.01~1.0g/lであることが好ましい。光沢剤の濃度を0.01g/l以上とすると、基材表面へのSnの分散性、密着性が良好になるとともに、基材表面に適度な光輝外観を付与することができる。 As the brightener, one type may be selected and used, or a plurality of types may be used in combination. The amount of the brightener added varies depending on the type of brightener to be added, but is preferably 0.01 to 1.0 g / l as the total concentration in the Sn plating bath. When the concentration of the brightening agent is 0.01 g / l or more, the dispersibility and adhesion of Sn to the surface of the base material are improved, and an appropriate bright appearance can be imparted to the surface of the base material.
 次に、光沢Snめっき層が積層された基材を酸溶液中に浸漬して、光沢Snめっき層表面の酸浸漬処理を行う。ここで行う酸浸漬処理は、従来公知のめっき処理においてめっき処理の前処理として行う酸表面処理より高温、高濃度の酸性溶液中に浸漬することにより行うものである。 Next, the base material on which the bright Sn plating layer is laminated is immersed in an acid solution to perform an acid immersion treatment on the surface of the bright Sn plating layer. The acid dipping treatment performed here is performed by dipping in an acid solution at a higher temperature and a higher concentration than the acid surface treatment performed as a pretreatment of the plating treatment in a conventionally known plating treatment.
 まず、本実施形態の酸浸漬処理の位置づけについて説明する。
 Snめっき処理により積層されたSnは、合成樹脂製の基材に追従可能な適度な延性を備える金属であり、従来の積層体においては、例えば、Snめっき層上にNiめっき層を積層した場合、両者の界面における付着性は比較的良好である。しかし、Snめっき層を多機能化するために、Snめっき浴中に光沢剤を混合してSnめっき層に光輝外観を付与しようとすると、光沢Snめっき皮膜の表面形状が平滑となってしまうことが観察される。走査型電子顕微鏡(SEM)写真での観察によれば、無光沢Snめっき層表面には凹凸形状が観察されて、無光沢Snめっき層とNiめっき層との界面における密着性が比較的良好であったのに対し、光沢Snめっき層ではその表面が平滑となり、光沢Snめっき層とNiめっき層との界面では剥がれが生じていることが観察された。
First, the positioning of the acid dipping process of this embodiment will be described.
Sn laminated by Sn plating is a metal with moderate ductility that can follow a base material made of synthetic resin. In the conventional laminate, for example, when a Ni plating layer is laminated on a Sn plating layer The adhesion at the interface between the two is relatively good. However, in order to make the Sn plating layer multifunctional, if a brightening agent is mixed in the Sn plating bath to give a bright appearance to the Sn plating layer, the surface shape of the bright Sn plating film becomes smooth. Is observed. According to the observation with a scanning electron microscope (SEM) photograph, an uneven shape is observed on the surface of the matte Sn plating layer, and the adhesion at the interface between the matte Sn plating layer and the Ni plating layer is relatively good. In contrast, it was observed that the surface of the bright Sn plating layer was smooth, and peeling occurred at the interface between the bright Sn plating layer and the Ni plating layer.
 また、Snめっき層の表面組成をエネルギー分散型X線分析(EDS)により測定したところ、無光沢Snめっき層の表面では、酸素の分布が測定されず、表面に酸化物皮膜が形成されていないと考えられたが、光沢Snめっき層の表面では、EDSにより測定した酸素比率が23.5atm%であり、酸化物皮膜が形成されていることが予測された。 Further, when the surface composition of the Sn plating layer was measured by energy dispersive X-ray analysis (EDS), the distribution of oxygen was not measured on the surface of the matte Sn plating layer, and no oxide film was formed on the surface. However, on the surface of the bright Sn plating layer, the oxygen ratio measured by EDS was 23.5 atm%, and it was predicted that an oxide film was formed.
 これらのことより、光沢Snめっき層の表面は、その平滑性によりNiめっき層との間の物理的密着性が低下し、光沢Snめっき層表面の酸化物皮膜の存在によりNiめっき層との間の金属結合量が減少して化学的密着性が低下していることが予測された。そして、これら2つの要因により光沢Snめっき層に対するNiめっき層の付着性が低下することが考えられた。こういった現象は、光沢剤の濃度に依存しており、光沢剤が低濃度であるほど付着性が向上するとの知見が得られた。 As a result, the surface of the bright Sn plating layer has a lower physical adhesion with the Ni plating layer due to its smoothness, and the presence of the oxide film on the surface of the bright Sn plating layer causes a gap between the bright Sn plating layer and the Ni plating layer. It was predicted that the amount of metal bonds in the metal was reduced and the chemical adhesion was lowered. And it was considered that the adhesion of the Ni plating layer to the bright Sn plating layer was lowered by these two factors. These phenomena depend on the concentration of the brightener, and it has been found that the lower the concentration of the brightener, the better the adhesion.
 そこで、ここでの酸浸漬処理は、光沢Snめっき層に含有される光沢剤の種類と濃度に対して、光沢Snめっき層上に積層される析出層との間の物理的密着性、及び化学的密着性を向上させるために、光沢Snめっき層表面を好適な表面状態とするといった観点に立ってなされるものである。したがって、使用する光沢剤の種類、濃度に応じて、酸浸漬処理に使用する酸溶液の濃度、処理温度、及び処理時間を適宜決定することができる。 Therefore, the acid immersion treatment here is based on the physical adhesion between the precipitation layer laminated on the bright Sn plating layer and the chemistry with respect to the type and concentration of the brightener contained in the bright Sn plating layer. In order to improve the mechanical adhesion, the surface of the bright Sn plating layer is made in a suitable surface state. Therefore, according to the kind and density | concentration of the brightener to be used, the density | concentration of the acid solution used for an acid immersion process, process temperature, and process time can be determined suitably.
 使用する酸溶液は、硫酸溶液或いは塩酸溶液が好ましく、80質量%の硫酸溶液或いは35質量%の塩酸溶液を水で適宜希釈して使用することができる。使用する光沢剤の種類、濃度によって、酸溶液の濃度は適宜決定することができるが、光沢Snめっき層と、その上に電気的に析出させる析出層との密着性の観点から言えば、硫酸溶液の場合は、10質量%以上の濃度で使用することが好ましく、20質量%以上の濃度で使用することがより好ましい。塩酸溶液の場合は、3.5質量%以上の濃度で使用することが好ましい。 The acid solution to be used is preferably a sulfuric acid solution or a hydrochloric acid solution, and an 80% by mass sulfuric acid solution or a 35% by mass hydrochloric acid solution can be appropriately diluted with water and used. The concentration of the acid solution can be determined as appropriate depending on the type and concentration of the brightener used. From the viewpoint of the adhesion between the bright Sn plating layer and the deposited layer that is electrically deposited on the bright Sn plating layer, sulfuric acid can be used. In the case of a solution, it is preferably used at a concentration of 10% by mass or more, and more preferably 20% by mass or more. In the case of a hydrochloric acid solution, it is preferably used at a concentration of 3.5% by mass or more.
 酸浸漬処理温度は、硫酸溶液、塩酸溶液ともに室温以上80℃以下で行うことが好ましく、50℃以上70℃以下で行うことがより好ましい。80℃を超える温度で酸浸漬処理を行うと、ABS樹脂基材が変性してその剛性が保てなくなる場合が生じるため好ましくない。また、室温より低い温度で酸浸漬処理を行うと、酸溶液による反応が遅くなって十分な酸浸漬効果が得られず、酸浸漬処理時間が長く必要となるため好ましくない。 The acid immersion treatment temperature is preferably from room temperature to 80 ° C., more preferably from 50 ° C. to 70 ° C. for both sulfuric acid solution and hydrochloric acid solution. If the acid immersion treatment is performed at a temperature exceeding 80 ° C., the ABS resin base material may be denatured and its rigidity may not be maintained. Moreover, it is not preferable to perform the acid dipping treatment at a temperature lower than room temperature because the reaction with the acid solution is delayed and a sufficient acid dipping effect cannot be obtained, and a long acid dipping treatment time is required.
 酸浸漬処理時間は硫酸溶液、塩酸溶液ともに1分以上であることが好ましく、2分以上であることがより好ましく、3分以上であることがさらに好ましい。1分未満であると、十分な酸浸漬効果が得られず、光沢Snめっき層と析出層との界面における高い密着性を得ることが困難になる。酸浸漬処理時間は、酸浸漬処理で使用される酸溶液の濃度により異ならせることができる。酸溶液の濃度が高いほど短い酸浸漬処理時間であっても好適な酸浸漬効果を得ることができる。 The acid immersion treatment time for both the sulfuric acid solution and the hydrochloric acid solution is preferably 1 minute or more, more preferably 2 minutes or more, and further preferably 3 minutes or more. If it is less than 1 minute, a sufficient acid immersion effect cannot be obtained, and it becomes difficult to obtain high adhesion at the interface between the bright Sn plating layer and the deposited layer. The acid immersion treatment time can be varied depending on the concentration of the acid solution used in the acid immersion treatment. The higher the concentration of the acid solution, the better the acid immersion effect can be obtained even with a shorter acid immersion treatment time.
 次に、酸溶液中で酸浸漬処理した基材上の光沢Snめっき層表面の酸すすぎ処理を行う。ここで行う酸すすぎ処理は、酸浸漬処理を行うことによって光沢Snめっき層表面を被覆している酸溶液を、次の析出層形成工程に持ち込まないようにするための処理である。 Next, an acid rinsing treatment is performed on the surface of the bright Sn plating layer on the substrate that has been subjected to an acid immersion treatment in an acid solution. The acid rinsing process performed here is a process for preventing the acid solution covering the surface of the bright Sn plating layer by performing the acid dipping process from being brought into the next deposited layer forming step.
 酸すすぎ処理は、酸浸漬処理で使用した酸溶液と同じ種類の酸溶液であって、酸浸漬処理工程で使用したものより低濃度の酸溶液を使用して行うことが好ましい。酸すすぎ処理においても酸浸漬処理と同様、使用する光沢剤の種類、濃度に応じて、酸すすぎ処理に使用する酸溶液の濃度を適宜決定することができる。例えば、10質量%以上80質量%以下のいずれかの濃度の硫酸溶液を酸浸漬処理工程で使用した場合、酸すすぎ工程では、8質量%以上の濃度で、かつ、酸浸漬処理で使用した硫酸溶液の濃度より低濃度の硫酸溶液を使用することが好ましい。また、酸すすぎ処理での酸すすぎ処理温度は任意の温度とすればよく、酸すすぎ処理時間も任意の時間とすればよい。基材表面を被覆している酸溶液濃度が、酸すすぎ処理に使用する酸溶液濃度に等しくなる状態を目安として、酸すすぎ処理温度、酸すすぎ処理時間を適宜決定すればよい。 The acid rinsing treatment is preferably performed using an acid solution of the same type as the acid solution used in the acid dipping treatment and having a lower concentration than that used in the acid dipping treatment step. Also in the acid rinsing treatment, the concentration of the acid solution used for the acid rinsing treatment can be appropriately determined according to the type and concentration of the brightener used, as in the acid dip treatment. For example, when a sulfuric acid solution having a concentration of 10% by mass or more and 80% by mass or less is used in the acid dipping process, the sulfuric acid used in the acid dipping process has a concentration of 8% by mass or more in the acid dipping process. It is preferable to use a sulfuric acid solution having a concentration lower than that of the solution. Further, the acid rinsing treatment temperature in the acid rinsing treatment may be any temperature, and the acid rinsing treatment time may be any time. The acid rinsing treatment temperature and the acid rinsing treatment time may be appropriately determined using as a guide the state in which the concentration of the acid solution covering the substrate surface is equal to the concentration of the acid solution used for the acid rinsing treatment.
 次に、酸すすぎ処理を行った光沢Snめっき層上に電気的に析出層を形成する析出層形成工程を行う。形成する析出層は、通常の電気めっき法によって得られる金属めっき層であってもよく、或いは、電着塗装法によって得られる塗膜であってもよい。 Next, a deposited layer forming step of electrically forming a deposited layer on the bright Sn plating layer that has been subjected to the acid rinse treatment is performed. The deposited layer to be formed may be a metal plating layer obtained by a normal electroplating method, or may be a coating film obtained by an electrodeposition coating method.
 金属めっき法によって析出層を構成する金属については、積層体に要求される各種機能を考慮して適宜選択すればよい。これにより、積層体に耐食性、光沢性、平滑性、耐チッピング性、耐摩耗性、滑り性、耐候性、耐薬品性、抗菌性、熱反射性等の種々の機能を付与することができる。また、電気めっき法は、それぞれの金属めっき法に準じた従来公知の方法で行うことができる。 The metal constituting the deposited layer by the metal plating method may be appropriately selected in consideration of various functions required for the laminate. Thereby, various functions, such as corrosion resistance, glossiness, smoothness, chipping resistance, abrasion resistance, slipperiness, weather resistance, chemical resistance, antibacterial properties, and heat reflectivity, can be imparted to the laminate. Moreover, the electroplating method can be performed by a conventionally well-known method according to each metal plating method.
 電着塗装法によって塗膜を積層する場合も、従来公知の方法で行うことができる。カチオン電着塗装、アニオン電着塗装のいずれの方法で行ってもよい。
 電着塗料組成物としてカチオン電着塗料組成物を用いてカチオン電着塗装を行う場合は、基材を陰極として、陽極との間に、通常1~400Vの電圧を印加して行う。電着塗装時、塗料組成物の浴液温度は10~45℃、好ましくは15~30℃に調節する。電着過程は、光沢Snめっき層が設けられた基材をカチオン電着塗料組成物に浸漬する工程、および、基材を陰極として陽極との間に電圧を印加し、光沢Snめっき層上に塗膜を析出させる工程、から構成されるが、電圧の印加時間および印加電圧などは従来公知の方法に従って行うことができる。電着塗装後、基材上の光沢Snめっき層表面に形成された皮膜を架橋処理することによって硬化させる。硬化は、皮膜を加熱することによって行ってもよく、皮膜にUV照射することによって行ってもよい。
Also when a coating film is laminated by an electrodeposition coating method, it can be performed by a conventionally known method. You may carry out by any method of cationic electrodeposition coating and anion electrodeposition coating.
When cationic electrodeposition coating is performed using a cationic electrodeposition coating composition as the electrodeposition coating composition, a voltage of 1 to 400 V is usually applied between the substrate and the anode. During electrodeposition coating, the bath temperature of the coating composition is adjusted to 10 to 45 ° C., preferably 15 to 30 ° C. The electrodeposition process includes a step of immersing the base material provided with the bright Sn plating layer in the cationic electrodeposition coating composition, and applying a voltage between the base material as the cathode and the anode, and on the bright Sn plating layer. Although it is comprised from the process of depositing a coating film, the application time of a voltage, an applied voltage, etc. can be performed in accordance with a conventionally well-known method. After electrodeposition coating, the coating formed on the surface of the bright Sn plating layer on the substrate is cured by crosslinking. Curing may be performed by heating the film or by irradiating the film with UV.
 電着塗料組成物としてアニオン電着塗料組成物を用いてアニオン電着塗装を行う場合は、基材を陽極として陰極との間に電圧を印加して行うことができるが、電着塗装の際の印加電圧、印加時間および印加電圧などは、カチオン電着塗装と同様に、従来公知の方法で行うことができる。 When anion electrodeposition coating is performed using an anion electrodeposition coating composition as the electrodeposition coating composition, it can be performed by applying a voltage between the base material and the cathode. The applied voltage, applied time, applied voltage, and the like can be performed by a conventionally known method in the same manner as in the cationic electrodeposition coating.
 次に、本実施形態の積層体の製造方法による作用について記載する。
 本実施形態では、光沢Snめっき層表面を酸浸漬処理及び酸すすぎ処理することにより、酸溶液が光沢Snめっき層と析出層との間の物理的密着性及び化学的密着性を向上させるように作用する。
Next, the effect | action by the manufacturing method of the laminated body of this embodiment is described.
In the present embodiment, the surface of the bright Sn plating layer is subjected to an acid dipping treatment and an acid rinsing treatment so that the acid solution improves physical adhesion and chemical adhesion between the bright Sn plating layer and the deposited layer. Works.
 まず、光沢Snめっき層表面に対する酸浸漬処理では、高温、高濃度の酸溶液が光沢Snめっき層表面を荒らすように作用する。これにより、光沢Snめっき層表面に凹凸が形成されて表面粗度が向上し、凹部内に入り込んだ析出層とのアンカー効果によって物理的密着性が向上することになる。 First, in the acid immersion treatment on the surface of the bright Sn plating layer, a high-temperature, high-concentration acid solution acts to roughen the surface of the bright Sn plating layer. As a result, irregularities are formed on the surface of the bright Sn plating layer, the surface roughness is improved, and the physical adhesion is improved by the anchor effect with the deposited layer that has entered the recess.
 また、高温、高濃度の酸溶液が光沢Snめっき層表面に形成された酸化物皮膜を除去するように作用する。通常の金属めっき処理後の酸洗い処理では除去困難であった酸化物皮膜をも除去することができる。これにより、光沢Snめっき層と析出層との境界面における化学的密着性が向上することになる。 Also, a high-temperature, high-concentration acid solution acts to remove the oxide film formed on the surface of the bright Sn plating layer. The oxide film that was difficult to remove by the pickling treatment after the normal metal plating treatment can also be removed. Thereby, the chemical adhesiveness in the interface of a gloss Sn plating layer and a precipitation layer improves.
 光沢Sn層表面に対する酸浸漬処理は、光沢Snめっき層と析出層との境界面における物理的密着性、化学的密着性をともに向上させるように作用して光沢Snめっき層に対する析出層の付着性を向上させる。 The acid dipping treatment on the surface of the bright Sn layer acts to improve both physical adhesion and chemical adhesion at the interface between the bright Sn plating layer and the precipitation layer, and the adhesion of the precipitation layer to the bright Sn plating layer. To improve.
 こういった作用は、金属めっき処理時に行われる通常の酸洗い処理に使用されるよりも高濃度の酸溶液中で、且つ、通常の酸洗い処理よりも高温で酸浸漬処理することにより得られるものである。光沢Snめっき層とその上層に積層される電気的析出層との密着性を確保するために必要な表面の荒らしと、通常の酸洗い処理では除去困難な酸化物皮膜の除去とを実現可能とする。 Such an effect can be obtained by performing an acid dipping treatment in an acid solution having a higher concentration than that used in a normal pickling treatment performed at the time of metal plating, and at a higher temperature than a normal pickling treatment. Is. It is possible to realize roughening of the surface necessary to ensure the adhesion between the bright Sn plating layer and the electrodeposited layer laminated thereon, and the removal of the oxide film that is difficult to remove by normal pickling treatment. To do.
 酸浸漬処理に続く酸すすぎ処理では、酸浸漬処理時に使用した酸溶液より低濃度の酸溶液が、光沢Snめっき層表面に残存する酸浸漬処理時の酸溶液を除去するように作用する。本実施形態では、酸浸漬処理での酸溶液より低濃度の酸溶液で酸すすぎ処理を行うことにより、光沢Snめっき層表面の酸濃度が酸すすぎ処理で使用する酸溶液の酸濃度と平衡となって、電気的析出層の形成に影響のない酸濃度とすることができる。 In the acid rinsing treatment subsequent to the acid immersion treatment, an acid solution having a lower concentration than the acid solution used during the acid immersion treatment acts to remove the acid solution during the acid immersion treatment remaining on the surface of the bright Sn plating layer. In the present embodiment, by performing the acid rinsing process with an acid solution having a lower concentration than the acid solution in the acid dipping process, the acid concentration on the surface of the bright Sn plating layer is balanced with the acid concentration of the acid solution used in the acid rinsing process. Thus, the acid concentration that does not affect the formation of the electrically deposited layer can be obtained.
 本実施形態の積層体の製造方法による効果について記載する。
 (1)光沢Snめっき層と析出層との境界面における物理的密着性及び化学的密着性が向上することにより、光沢Snめっき層に対する析出層の付着性が向上する。これにより、合成樹脂基材に追従可能な延性と、積層体に要求される光輝外観とを光沢Snめっき層により実現しつつ、光沢Snめっき層に対する析出層の剥がれを抑制することができる。光沢Snめっき層の積層と、その後の酸浸漬処理工程及び酸すすぎ処理工程により積層体に要求される機能を統合することが可能となる。
The effect by the manufacturing method of the laminated body of this embodiment is described.
(1) By improving the physical adhesion and chemical adhesion at the interface between the bright Sn plating layer and the precipitation layer, the adhesion of the precipitation layer to the bright Sn plating layer is improved. Thereby, exfoliation of the deposited layer with respect to the gloss Sn plating layer can be suppressed while realizing the ductility capable of following the synthetic resin base material and the bright appearance required for the laminate by the gloss Sn plating layer. It is possible to integrate the functions required of the laminate by the lamination of the bright Sn plating layer and the subsequent acid dipping treatment step and acid rinsing treatment step.
 (2)酸浸漬処理における酸溶液を、通常のめっき処理における酸表面処理より高温、高濃度とすることにより、光沢剤が含有された光沢Snめっき層表面に対する析出層の付着性を向上させることができる。光沢剤の種類に応じて酸溶液の温度及び濃度を適宜決定することにより、積層体に好適な光輝外観を付与しつつ積層体の表面状態を良好に保持することが可能となる。 (2) Improve the adhesion of the deposited layer to the surface of the bright Sn plating layer containing the brightener by setting the acid solution in the acid dipping treatment to a higher temperature and higher concentration than the acid surface treatment in the normal plating treatment. Can do. By appropriately determining the temperature and concentration of the acid solution according to the type of the brightening agent, it is possible to satisfactorily maintain the surface state of the laminate while providing a suitable glitter appearance to the laminate.
 上記実施形態は、以下のように変更してもよい。
 ・ 本実施形態では、基材として合成樹脂を使用したが、これに限定されない。ステンレス、銅、銅合金(黄銅、ベリ銅、タングステン銅等)、アルミニウム、Ti合金等の特殊合金、ガラス、セラミックス等であってもよい。
The above embodiment may be modified as follows.
-In this embodiment, although the synthetic resin was used as a base material, it is not limited to this. Stainless steel, copper, copper alloys (brass, beryl copper, tungsten copper, etc.), special alloys such as aluminum and Ti alloys, glass, ceramics, and the like may be used.
 ・ 本実施形態では、酸浸漬処理の後に酸すすぎ処理を行ったが、酸浸漬処理で使用した酸溶液の種類によっては、酸すすぎ処理を省略することもできる。
 ・ 酸浸漬処理で使用する酸溶液と、酸すすぎ処理で使用する酸溶液とを同じ種類の酸溶液で行わなくてもよい。例えば、塩酸溶液で酸浸漬処理をした後、硫酸溶液で酸すすぎ処理を行ってもよい。
-In this embodiment, although the acid rinse process was performed after the acid immersion process, depending on the kind of acid solution used by the acid immersion process, an acid rinse process can also be abbreviate | omitted.
-The acid solution used in the acid dipping treatment and the acid solution used in the acid rinsing treatment need not be performed with the same kind of acid solution. For example, after acid immersion treatment with a hydrochloric acid solution, acid rinse treatment with a sulfuric acid solution may be performed.
 上記実施形態から把握できる技術的思想について以下に記載する。
 (A)前記析出層形成工程は、電着塗装法によるものである積層体の製造方法。
 (B)前記析出層形成工程は、電気めっき法によるものである積層体の製造方法。
The technical idea that can be grasped from the above embodiment will be described below.
(A) The deposited layer forming step is a method for manufacturing a laminate, which is based on an electrodeposition coating method.
(B) The manufacturing method of the laminated body whose said deposit layer formation process is based on the electroplating method.
 以下、実施例により本発明をさらに詳細に説明する。
 (実施例1)
 無電解Niめっき処理を行って導電性を付与したABS樹脂基材に、光沢Snめっき層を積層後、酸浸漬処理、酸すすぎ処理を行った。その後、光沢Niめっき処理、マイクロポーラスNiめっき処理、Crめっき処理を順次行い、得られた積層体に対してテープ剥離試験による評価を行った。酸浸漬処理及び酸すすぎ処理は、それぞれ、硫酸溶液を用いて適正な酸濃度、処理温度、処理時間の検討を行った。また、硫酸浸漬処理後の光沢Snめっき層表面の粗度を走査型電子顕微鏡(SEM)により観察するとともに、表面の酸素比率をエネルギー分散型X線分析(EDS)により成分分析して、硫酸浸漬処理後の光沢Snめっき層の評価を行った。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
After the gloss Sn plating layer was laminated on the ABS resin base material provided with conductivity by performing electroless Ni plating treatment, acid immersion treatment and acid rinsing treatment were performed. Thereafter, a bright Ni plating treatment, a microporous Ni plating treatment, and a Cr plating treatment were sequentially performed, and the obtained laminate was evaluated by a tape peeling test. In the acid dipping treatment and the acid rinsing treatment, an appropriate acid concentration, treatment temperature, and treatment time were examined using a sulfuric acid solution. In addition, the surface roughness of the bright Sn plating layer after the sulfuric acid immersion treatment was observed with a scanning electron microscope (SEM), and the oxygen ratio of the surface was subjected to component analysis by energy dispersive X-ray analysis (EDS). The gloss Sn plating layer after the treatment was evaluated.
 (Snめっき工程)
 無電解Niめっき処理を行って導電性を付与したABS樹脂基材に、光沢Snめっき層を積層する光沢Snめっき処理を行った。この光沢Snめっき処理は、メタンスルホン酸浴にて行った。浴組成は、硫酸第一スズ(SnSO)40g/L、硫酸(HSO)100g/L、クレゾールスルホン酸30g/L、ホルムアルデヒド5g/L、アミン-アルデヒド系光沢剤40mL/Lである。また、光沢Snめっき処理は、浴温度10~20℃、陰極電流密度0.3~1.5A/dm、陽極電流密度1.0~3.0A/dm、液濾過循環5~6回/時間の条件で行った。
(Sn plating process)
A bright Sn plating treatment was performed by laminating a bright Sn plating layer on the ABS resin base material provided with conductivity by performing an electroless Ni plating treatment. This bright Sn plating treatment was performed in a methanesulfonic acid bath. The bath composition is stannous sulfate (SnSO 4 ) 40 g / L, sulfuric acid (H 2 SO 4 ) 100 g / L, cresolsulfonic acid 30 g / L, formaldehyde 5 g / L, and amine-aldehyde brightener 40 mL / L. . The bright Sn plating treatment is performed at a bath temperature of 10 to 20 ° C., a cathode current density of 0.3 to 1.5 A / dm 2 , an anode current density of 1.0 to 3.0 A / dm 2 , and a liquid filtration circulation 5 to 6 times. Per hour.
 (酸浸漬処理工程)
 光沢Snめっき層が積層されたABS樹脂基材を、80質量%硫酸溶液を適宜水で希釈して得られた各濃度の硫酸溶液中に所定温度で所定時間浸漬することにより、酸浸漬処理の適性値を検討した。酸溶液濃度の検討にあたっては、4、8、12、16、20、40質量%の各濃度の硫酸溶液を用いた。また、酸浸漬処理温度の適性値の検討では、20、40質量%の各濃度の硫酸溶液に、25℃、50℃でそれぞれ5分浸漬処理して検討した。さらに、酸浸漬処理時間の適性値の検討では、20、40質量%の各濃度の硫酸溶液に、50℃で1、2、3分間それぞれ浸漬処理して検討した。いずれの場合も、酸すすぎ処理は、8質量%の硫酸溶液を用いて、酸すすぎ処理温度25℃、酸すすぎ処理時間10秒の条件で行った。
(Acid soaking process)
By immersing the ABS resin base material on which the bright Sn plating layer is laminated in a sulfuric acid solution having various concentrations obtained by diluting an 80% by mass sulfuric acid solution with water, the acid immersion treatment is performed. The suitability value was examined. In the examination of the acid solution concentration, sulfuric acid solutions having respective concentrations of 4, 8, 12, 16, 20, and 40% by mass were used. Moreover, in the examination of the suitability value of the acid immersion treatment temperature, the immersion treatment was carried out at 25 ° C. and 50 ° C. for 5 minutes in sulfuric acid solutions having respective concentrations of 20, 40% by mass. Furthermore, in the examination of the suitability value of the acid immersion treatment time, the immersion treatment was carried out at 50 ° C. for 1, 2, and 3 minutes, respectively, in sulfuric acid solutions having respective concentrations of 20, 40% by mass. In any case, the acid rinsing treatment was performed using an 8% by mass sulfuric acid solution under conditions of an acid rinsing treatment temperature of 25 ° C. and an acid rinsing treatment time of 10 seconds.
 (酸すすぎ処理工程)
 酸浸漬処理後のABS樹脂基材上の光沢Snめっき層について、80質量%の硫酸溶液を適宜水で希釈して得られた各濃度の硫酸溶液を用いて、所定温度で所定時間の酸すすぎ処理をすることにより、酸すすぎ処理の適性値を検討した。酸溶液濃度の検討にあたっては、0、1、4、8質量%の各濃度の硫酸溶液を用いた。また、酸すすぎ処理温度の適性値の検討では、8質量%の濃度の硫酸溶液中で、10℃、25℃、50℃でそれぞれ10秒間酸すすぎ処理して検討した。さらに、酸すすぎ処理時間の適性値の検討では、8質量%の硫酸溶液中で、25℃で10、60、180秒間それぞれ酸すすぎ処理して検討した。いずれの場合も、酸浸漬処理は、20質量%の硫酸溶液を用いて酸浸漬処理温度50℃、酸浸漬処理時間5分の条件で行った。
(Acid rinsing process)
For the bright Sn plating layer on the ABS resin substrate after the acid immersion treatment, an acid rinse for a predetermined time at a predetermined temperature using a sulfuric acid solution of each concentration obtained by appropriately diluting an 80 mass% sulfuric acid solution with water. By performing the treatment, the suitability value of the acid rinsing treatment was examined. In the examination of the acid solution concentration, sulfuric acid solutions having concentrations of 0, 1, 4, and 8% by mass were used. In addition, in the examination of the appropriate value of the acid rinsing treatment temperature, the acid rinsing treatment was conducted for 10 seconds at 10 ° C., 25 ° C., and 50 ° C. in a sulfuric acid solution having a concentration of 8% by mass. Furthermore, in the examination of the suitability value of the acid rinsing treatment time, the acid rinsing treatment was carried out in an 8% by mass sulfuric acid solution at 25 ° C. for 10, 60 and 180 seconds, respectively. In any case, the acid immersion treatment was performed using a 20% by mass sulfuric acid solution under conditions of an acid immersion treatment temperature of 50 ° C. and an acid immersion treatment time of 5 minutes.
 (光沢Niめっき工程)
 酸浸漬処理及び酸すすぎ処理後の光沢Snめっき層上に光沢Niめっき層を積層した。光沢Niめっき処理は、ワット浴、全塩化物浴、スルファミン浴、ウッドストライク浴等のいずれで行うこともできるが、本実施例では従来公知のワット浴にて行った。光沢剤として、アルケンスルホン酸塩光沢剤(荏原製作所製、ハイブライト♯88)を使用した。浴組成は、硫酸ニッケル(NiSO)250~300g/L、塩化ニッケル(NiCl)40~60g/L、ホウ酸40~50g/L、湿潤剤等を含有し、pH3.8~4.6、処理温度50~60℃、陰極電流密度1.0~6.0A/dm、陽極電流密度0.5~3.0A/dmの条件でめっき処理を行った。
(Glossy Ni plating process)
A bright Ni plating layer was laminated on the bright Sn plating layer after the acid immersion treatment and the acid rinsing treatment. The bright Ni plating treatment can be performed in any of a Watt bath, a total chloride bath, a sulfamine bath, a wood strike bath, etc., but in this example, it was performed in a conventionally known Watt bath. As the brightener, an alkene sulfonate brightener (Hibright # 88, manufactured by Ebara Seisakusho) was used. The bath composition contains nickel sulfate (NiSO 4 ) 250-300 g / L, nickel chloride (NiCl 2 ) 40-60 g / L, boric acid 40-50 g / L, wetting agent, etc., and pH 3.8-4.6. The plating was performed under the conditions of a treatment temperature of 50 to 60 ° C., a cathode current density of 1.0 to 6.0 A / dm 2 , and an anode current density of 0.5 to 3.0 A / dm 2 .
 (マイクロポーラスNiめっき工程)
 光沢Niめっき層を積層した後、さらにマイクロポーラスNiめっき層をその上に積層した。マイクロポーラスNiめっき処理は、不溶性の無機質微粒子(シリカ等)を添加した浴中で、ニッケルめっき皮膜中に無機質微粒子を分散共析出させることによるものである。浴組成は、硫酸ニッケル(NiSO)280g/L、塩化ニッケル(NiCl)50g/L、ホウ酸40g/Lを含有し、光沢剤としては、シリカ系光沢剤(荏原製作所製、MP311を3mL/L、MP333を10mL/L)を使用した。めっき条件は、pH4.4~4.8、処理温度50~60℃、陰極電流密度3.0~6.0A/dm、陽極電流密度1.5~3.0A/dmで行った。
(Microporous Ni plating process)
After laminating the bright Ni plating layer, a microporous Ni plating layer was further laminated thereon. The microporous Ni plating treatment is performed by dispersing and co-depositing inorganic fine particles in a nickel plating film in a bath to which insoluble inorganic fine particles (silica or the like) are added. The bath composition contains 280 g / L of nickel sulfate (NiSO 4 ), 50 g / L of nickel chloride (NiCl 2 ), and 40 g / L of boric acid. As the brightener, silica-based brightener (manufactured by Ebara Seisakusho, 3 mL of MP311) / L, MP333 10 mL / L) was used. The plating conditions were pH 4.4 to 4.8, treatment temperature 50 to 60 ° C., cathode current density 3.0 to 6.0 A / dm 2 , and anode current density 1.5 to 3.0 A / dm 2 .
 (Crめっき工程)
 マイクロポーラスNiめっき層を積層した後、最表層となるCrめっき層をその上に積層した。Crめっき処理は、サージェント浴、フッ化物含有浴(ケイフッ化物浴、SRHS浴)、高速度浴、テトラクロメート浴、三価クロム浴、高硬度クロムめっき浴(Cr-C合金めっき浴)等のいずれで行うこともできるが、本実施例では従来公知のサージェント浴にて行った。浴組成は、無水クロム酸200~300g/L、硫酸(HSO)2~3g/Lを含有し、浴温40~55℃、電流密度10~60A/dmの条件でめっき処理を行った。
(Cr plating process)
After laminating the microporous Ni plating layer, a Cr plating layer as the outermost layer was laminated thereon. Cr plating treatment can be any of Sargent bath, fluoride-containing bath (silica fluoride bath, SRHS bath), high speed bath, tetrachromate bath, trivalent chromium bath, high hardness chromium plating bath (Cr-C alloy plating bath), etc. However, in this example, it was performed in a conventionally known sergeant bath. The bath composition contains 200 to 300 g / L of chromic anhydride, 2 to 3 g / L of sulfuric acid (H 2 SO 4 ), and the plating process is performed under conditions of a bath temperature of 40 to 55 ° C. and a current density of 10 to 60 A / dm 2. went.
 (テープ剥離試験による評価)
 テープ剥離試験方法は、碁盤目テープ試験(旧JIS K5400)に準ずる方法で行った。具体的には、得られた積層体表面に2mm間隔で格子状に縦横それぞれ11本の溝をつけて、100マスの碁盤目を形成する。碁盤目部分にセロハンテープを強く圧着させた後、セロハンテープを一気に剥がして、100マスの碁盤目中、積層体表面に剥がれが生じた面積の割合を求めて付着性を評価した。
(Evaluation by tape peeling test)
The tape peeling test method was performed by a method according to a cross-cut tape test (old JIS K5400). Specifically, eleven grooves in each of the vertical and horizontal directions are provided on the surface of the obtained laminated body at intervals of 2 mm to form 100 square grids. The cellophane tape was strongly pressure-bonded to the grid area, and then the cellophane tape was peeled off at a stretch, and the ratio of the area where peeling occurred on the surface of the laminate was determined in 100 grid grids to evaluate the adhesion.
 酸浸漬処理及び酸すすぎ処理の適性値の検討により得られた結果をそれぞれ、表1及び表2に示した。表1及び表2の評価欄は、テープ剥離面積が0%のものを◎、2%以下のものを○、5%以下のものを△、それ以外を×とした。 Tables 1 and 2 show the results obtained by examining the suitability values of acid dipping treatment and acid rinsing treatment, respectively. In the evaluation column of Tables 1 and 2, the tape peeled area was 0%, 、 2, 2% or less ◯, 5% or less △, and the others x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この結果より、硫酸溶液の濃度が20質量%のときには、酸浸漬処理温度50℃、酸浸漬処理時間3分以上で光沢Snめっき層に対する析出層の密着性が非常に高く、硫酸溶液の濃度が40質量%のときには、酸浸漬処理温度50℃、酸浸漬処理時間2分以上で光沢Snめっき層に対する密着性が非常に高いことがわかった。酸浸漬処理を50℃で行うことにより、硫酸溶液の濃度が12質量%以上、酸浸漬処理時間1分以上で剥離面積が2%以下となり、光沢Snめっき層に対する析出層の密着性が優れていることがわかった。
Figure JPOXMLDOC01-appb-T000002
From this result, when the concentration of the sulfuric acid solution is 20% by mass, the adhesion of the deposited layer to the bright Sn plating layer is very high at an acid immersion treatment temperature of 50 ° C. and an acid immersion treatment time of 3 minutes or more. When the amount was 40% by mass, it was found that the adhesion to the bright Sn plating layer was very high when the acid immersion treatment temperature was 50 ° C. and the acid immersion treatment time was 2 minutes or longer. By performing the acid immersion treatment at 50 ° C., the concentration of the sulfuric acid solution is 12% by mass or more, and the peeling area is 2% or less after 1 minute or more of the acid immersion treatment, and the adhesion of the deposited layer to the bright Sn plating layer is excellent. I found out.
 また、酸すすぎ処理については、硫酸溶液の濃度が8質量%以上であれば、酸すすぎ処理温度、酸すすぎ処理時間は任意であっても密着性に優れた積層体を得ることができることがわかった。 As for the acid rinsing treatment, it can be seen that if the concentration of the sulfuric acid solution is 8% by mass or more, a laminate having excellent adhesion can be obtained even if the acid rinsing treatment temperature and the acid rinsing treatment time are arbitrary. It was.
 (硫酸浸漬処理後の光沢Snめっき層の評価及び析出層との密着性評価)
 光沢Snめっき層と光沢Niめっき層との密着性改善に硫酸浸漬処理による洗浄が有効であることが確認されたことから、光沢Snめっき層を硫酸浸漬処理した後の表面形状と表面成分の変化についての評価を行った。硫酸浸漬処理は、8、20、40質量%の硫酸溶液中に、室温で5分間浸漬することにより行った。8質量%硫酸溶液で酸すすぎ処理を行った後、表面をエタノールで洗浄乾燥し、すぐにスパッタ処理を行って評価した。
(Evaluation of glossy Sn plating layer after sulfuric acid immersion treatment and adhesion evaluation with precipitation layer)
Changes in surface shape and surface components after sulfuric acid immersion treatment of the bright Sn plating layer has been confirmed to be effective in improving the adhesion between the bright Sn plating layer and the bright Ni plating layer. Was evaluated. The sulfuric acid immersion treatment was performed by immersing in a sulfuric acid solution of 8, 20, or 40% by mass at room temperature for 5 minutes. After an acid rinsing treatment with an 8% by mass sulfuric acid solution, the surface was washed with ethanol and dried, and immediately subjected to a sputtering treatment for evaluation.
 評価は、走査型電子顕微鏡(SEM)による硫酸浸漬処理後の光沢Snめっき層表面の粗度の観察と、エネルギー分散型X線分析(EDS)による光沢Snめっき層表面の酸素比率の成分分析により行った。また、同じ条件で硫酸浸漬処理を行った後、上記条件で両Niめっき処理及びCrめっき処理を行い、得られた積層体表面のフクレ(膨れ)の発生を観察することにより光沢Snめっき層と析出層との密着性を評価した。これらの結果を、表3に示す。 The evaluation is based on the observation of the roughness of the surface of the bright Sn plating layer after sulfuric acid immersion treatment with a scanning electron microscope (SEM) and the component analysis of the oxygen ratio on the surface of the bright Sn plating layer by energy dispersive X-ray analysis (EDS). went. In addition, after performing the sulfuric acid immersion treatment under the same conditions, both the Ni plating treatment and the Cr plating treatment are performed under the above conditions, and by observing the occurrence of blisters on the surface of the obtained laminate, The adhesion with the deposited layer was evaluated. These results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 20質量%以上の硫酸溶液に酸浸漬処理することにより、光沢Snめっき層表面の荒れが多く観察された。表面荒れが多い領域では表面酸素が検出されず、硫酸溶液で酸浸漬処理することにより酸化物皮膜が除去されていることが考えられる。また、Niめっき層及びCrめっき層を積層後のフクレの発生は、硫酸溶液による表面荒れにより抑制されていると考えられる。
Figure JPOXMLDOC01-appb-T000003
When the acid immersion treatment was performed in a sulfuric acid solution of 20% by mass or more, many rough surfaces of the bright Sn plating layer were observed. It is conceivable that surface oxygen is not detected in a region having a lot of surface roughness, and the oxide film is removed by acid immersion treatment with a sulfuric acid solution. In addition, it is considered that the occurrence of swelling after the Ni plating layer and the Cr plating layer are laminated is suppressed by surface roughness due to the sulfuric acid solution.
 (実施例2)
 硫酸溶液に代えて、1.75質量%又は3.5質量%の濃度の塩酸溶液による酸浸漬処理を行ったこと、酸すすぎ処理を行わなかったこと以外は実施例1と同様である。テープ剥離試験による評価結果を表4に示す。
(Example 2)
It is the same as that of Example 1 except having replaced with the sulfuric acid solution and having performed the acid immersion process by the hydrochloric acid solution of the density | concentration of 1.75 mass% or 3.5 mass%, and not having performed the acid rinse process. Table 4 shows the evaluation results of the tape peel test.
Figure JPOXMLDOC01-appb-T000004
 1.75質量%の塩酸溶液による酸浸漬処理を行った場合のテープ剥離試験の結果は、15%であり、3.5質量%の塩酸溶液による酸浸漬処理を行った場合のテープ剥離試験の結果は、0%であった。3.5質量%の塩酸溶液を用いて50℃で5分間の酸浸漬処理を行った場合、密着性に優れた積層体を得ることができることがわかった。
Figure JPOXMLDOC01-appb-T000004
The result of the tape peeling test when the acid immersion treatment with a 1.75 mass% hydrochloric acid solution was performed was 15%, and the result of the tape peeling test when the acid immersion treatment with a 3.5 mass% hydrochloric acid solution was performed. The result was 0%. It was found that when an acid immersion treatment was performed at 50 ° C. for 5 minutes using a 3.5 mass% hydrochloric acid solution, a laminate having excellent adhesion could be obtained.
 (実施例3)
 20質量%又は40質量%の濃度の硫酸溶液による50℃で5分間の酸浸漬処理、及び、8質量%の硫酸溶液による25℃で10秒間の酸すすぎ処理を行った後、光沢Niめっき処理及びCrめっき処理を行って得られた積層体で、テープ剥離試験による付着性を評価した。その結果は、積層体の密着性が優れていることを示していた。
Example 3
After performing an acid immersion treatment at 50 ° C. for 5 minutes with a sulfuric acid solution having a concentration of 20% by mass or 40% by mass, and an acid rinsing treatment at 25 ° C. for 10 seconds with an 8% by mass sulfuric acid solution, bright Ni plating treatment And the laminate obtained by performing the Cr plating treatment was evaluated for adhesion by a tape peeling test. The result showed that the adhesiveness of the laminate was excellent.
 (実施例4)
 実施例1と同様に、無電解Niめっき処理を行って導電性を付与したABS樹脂基材に、光沢Snめっき層を積層後、酸浸漬処理、酸すすぎ処理を行った。その後、光沢Niめっき処理、マイクロポーラスNiめっき処理、Crめっき処理を順次行って積層体を得た。酸浸漬処理工程における酸溶液濃度、酸浸漬処理温度、酸浸漬処理時間を除いて、他の工程は実施例1の条件と同様で行った。酸溶液濃度の検討にあたっては、25、50、80質量%の各濃度の硫酸溶液に、処理温度50℃で、処理時間2、5、10、20、30分間それぞれ酸浸漬処理を行い、酸浸漬処理後の光沢Snめっき層の表面状態について観察した。いずれの場合も、酸すすぎ処理は、8質量%硫酸溶液を用いて、酸すすぎ処理温度25℃、酸すすぎ処理時間10秒の条件で行った。
Example 4
In the same manner as in Example 1, the gloss Sn plating layer was laminated on the ABS resin base material subjected to electroless Ni plating treatment to give conductivity, and then acid dipping treatment and acid rinsing treatment were performed. Thereafter, a bright Ni plating process, a microporous Ni plating process, and a Cr plating process were sequentially performed to obtain a laminate. Except for the acid solution concentration, acid immersion treatment temperature, and acid immersion treatment time in the acid immersion treatment step, the other steps were performed under the same conditions as in Example 1. In the examination of the acid solution concentration, acid immersion treatment was performed on sulfuric acid solutions having respective concentrations of 25, 50, and 80 mass% at a treatment temperature of 50 ° C. for treatment times of 2, 5, 10, 20, and 30 minutes, respectively. The surface state of the bright Sn plating layer after the treatment was observed. In any case, the acid rinsing treatment was performed using an 8% by mass sulfuric acid solution under the conditions of an acid rinsing treatment temperature of 25 ° C. and an acid rinsing treatment time of 10 seconds.
 酸浸漬処理工程後の光沢Snめっき層の表面の物理的形状を評価するために、走査型電子顕微鏡(SEM)により観察するとともに、光沢Snめっき層の表面の微細形状を、表面粗さR(μm)及びうねりW(μm)により測定した。また、酸浸漬処理による析出層の密着性への影響を評価するために、得られた積層体について、チッピング試験を行った。 In order to evaluate the physical shape of the surface of the bright Sn plating layer after the acid immersion treatment step, the surface was observed with a scanning electron microscope (SEM), and the fine shape of the surface of the bright Sn plating layer was measured with a surface roughness R ( μm) and waviness W (μm). Moreover, in order to evaluate the influence on the adhesiveness of the precipitation layer by an acid immersion process, the chipping test was done about the obtained laminated body.
 表面粗さRとは、対象物の表面の微細な凹凸を表現する幾何量であり、表面粗さ測定機で対象物表面の粗さ曲線を得て、粗さ曲線から表面粗さを表すパラメータを計算することで測定できる。表面粗さは、対象物の形状のうち高い周波数成分を持っていることから、高い周波数成分だけを通し低い周波数成分をカットする広域フィルタを用いて測定する。一方、うねりWとは 表面粗さRより大きな凹凸を表現する幾何量であり、表面粗さRより低い周波数成分を持っている。うねりWは、対象物の断面曲線から表面粗さに対応する小さい凹凸成分を低域フィルタを用いて除去して得られたろ波うねり曲線から求める。表面粗さR及びうねりWは、株式会社小坂研究所製の微細形状測定機Surface corderET4000Aを用いて測定した。測定条件はJIS B0651:2001に基づくものである。荷重100μN、速度50μm/s、触針R=2μmの測定条件で行った。 The surface roughness R is a geometric amount that represents fine irregularities on the surface of the object, and is a parameter that represents the surface roughness from the roughness curve by obtaining a roughness curve of the object surface with a surface roughness measuring machine. It can be measured by calculating Since the surface roughness has a high frequency component in the shape of the object, the surface roughness is measured using a wide-area filter that passes only the high frequency component and cuts the low frequency component. On the other hand, the waviness W is a geometric amount that expresses unevenness larger than the surface roughness R, and has a frequency component lower than the surface roughness R. The waviness W is obtained from a filtered waviness curve obtained by removing a small concavo-convex component corresponding to the surface roughness from the cross-sectional curve of the object using a low-pass filter. The surface roughness R and waviness W were measured using a fine shape measuring instrument Surface corderET4000A manufactured by Kosaka Laboratory. The measurement conditions are based on JIS B0651: 2001. The measurement was performed under the conditions of a load of 100 μN, a speed of 50 μm / s, and a stylus R = 2 μm.
 また、チッピング試験では、玄武岩6号100gを圧力0.4MPaのエアーで水平方向に飛ばして積層体に当てたときの積層体表面の状態により、各積層体の耐チッピング性を評価した。測定条件はJIS Z8801-1に基づくものである。さらに、各積層体表面のフクレの発生を観察することにより光沢Snめっき層と析出層との密着性を評価した。これらの結果を表5に示す。 Also, in the chipping test, the chipping resistance of each laminate was evaluated based on the state of the laminate surface when 100 g of basalt No. 6 was blown horizontally with air at a pressure of 0.4 MPa and applied to the laminate. Measurement conditions are based on JIS Z8801-1. Furthermore, the adhesion between the bright Sn plating layer and the deposited layer was evaluated by observing the occurrence of swelling on the surface of each laminate. These results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 SEMによる光沢Snめっき層の表面観察によれば、80質量%の硫酸溶液で5分以上浸漬処理することにより、光沢Snめっき層表面の荒れが多く観察され、表面全体に均一に凹凸が発生していた。酸浸漬処理前の光沢Snめっき層表面は全体が平滑であったのに対し、25質量%の硫酸溶液で5分処理したもの、50質量%の硫酸溶液で5分処理したもの、80質量%の硫酸溶液で2分処理したものは、光沢Snめっき層表面の一部のみが溶解した状態となっていた。
Figure JPOXMLDOC01-appb-T000005
According to the surface observation of the bright Sn plating layer by SEM, the surface of the bright Sn plating layer is often roughened by immersing it in an 80% by weight sulfuric acid solution for 5 minutes or more, and the entire surface is uniformly uneven. It was. The surface of the bright Sn plating layer before the acid immersion treatment was smooth, whereas the surface treated with a 25% by mass sulfuric acid solution for 5 minutes, the one treated with a 50% by mass sulfuric acid solution for 5 minutes, 80% by mass No. 2 treated with sulfuric acid solution for 2 minutes was in a state where only a part of the surface of the bright Sn plating layer was dissolved.
 図1(A)~(C)に、酸浸漬処理前後の光沢めっき層表面のSEM写真を示す。酸浸漬処理前には平滑だった光沢Snめっき層表面が、80質量%の硫酸溶液による5分以上の酸浸漬処理により荒らされて表面全体に凹凸が発生していることがわかった。80質量%の硫酸溶液による酸浸漬処理では、処理時間は5分以上が好ましく、10分以上がさらに好ましいことがわかった。ただし、積層体を製造する効率の面から言えば、30分を超える処理時間とすると、酸浸漬処理に長時間を要することとなり好ましくない。 FIGS. 1A to 1C show SEM photographs of the surface of the bright plating layer before and after the acid immersion treatment. It was found that the surface of the bright Sn plating layer that had been smooth before the acid immersion treatment was roughened by the acid immersion treatment for 5 minutes or longer with an 80% by mass sulfuric acid solution, and irregularities were generated on the entire surface. In the acid immersion treatment with an 80% by mass sulfuric acid solution, it was found that the treatment time was preferably 5 minutes or longer, more preferably 10 minutes or longer. However, in terms of the efficiency of manufacturing the laminate, if the treatment time exceeds 30 minutes, the acid immersion treatment requires a long time, which is not preferable.
 また、析出層が形成された積層体では、光沢Snめっき層表面全体が荒れた状態となっていたもの、つまり、80質量%の硫酸溶液により5、10、20又は30分の酸浸漬処理したもので、積層体表面のフクレの発生が抑制されていることが観察された。 Moreover, in the laminated body in which the precipitation layer was formed, the surface of the bright Sn plating layer was in a rough state, that is, the acid immersion treatment was performed for 5, 10, 20, or 30 minutes with an 80% by mass sulfuric acid solution. It was observed that the occurrence of swelling on the surface of the laminate was suppressed.
 さらに、フクレの発生が抑制されていた積層体と同じ条件で酸浸漬処理を行った光沢Snめっき層の表面微細構造について、Surface corderET4000Aで測定したところ、うねりWが、0~0.04(μm)の範囲であり、表面粗さRが、0.04~0.08(μm)の範囲であった。うねりW、表面粗さRがこの範囲となるように酸浸漬処理を行うことで、光沢Snめっき層の表面状態を、析出層との密着性に優れた状態とすることができることがわかった。 Further, when the surface microstructure of the bright Sn plating layer subjected to the acid dipping treatment under the same conditions as the laminate in which the occurrence of swelling is suppressed is measured with a Surface corderET4000A, the swell W is 0 to 0.04 (μm ) And the surface roughness R was in the range of 0.04 to 0.08 (μm). It was found that the surface condition of the bright Sn plating layer can be made excellent in adhesion to the deposited layer by performing the acid dipping treatment so that the undulation W and the surface roughness R are in this range.
 各積層体の耐チッピング性の評価によれば、うねりW、表面粗さRがこの範囲にある場合に高い評価が得られ、耐チッピング試験の結果からも、80質量%の硫酸溶液で5分以上酸浸漬処理を行うことにより、光沢Snめっき層表面を析出層との密着性に優れた状態とすることができることが裏付けられた。 According to the evaluation of the chipping resistance of each laminate, a high evaluation is obtained when the undulation W and the surface roughness R are within these ranges. From the results of the chipping test, it is 5 minutes with an 80% by mass sulfuric acid solution. By performing the acid immersion treatment as described above, it was confirmed that the surface of the bright Sn plating layer can be brought into a state excellent in adhesion with the deposited layer.
 図2(A)~(C)に、析出層を形成した積層体の耐チッピング試験後の表面の写真を示す。酸浸漬処理を行わずに析出層を形成した積層体では表面にはがれが散見されるのに対し、80質量%硫酸による5分以上の酸浸漬処理を行って析出層を形成した積層体では、はがれが抑制されて全体に光輝外観が付与されていることがわかる。 2 (A) to (C) show photographs of the surface after the chipping test of the laminate on which the deposited layer is formed. In the laminate in which the precipitation layer is formed without performing the acid immersion treatment, peeling is observed on the surface, whereas in the laminate in which the precipitation layer is formed by performing the acid immersion treatment with 80 mass% sulfuric acid for 5 minutes or more, It can be seen that peeling is suppressed and a lustrous appearance is imparted to the whole.
 (実施例5)
 析出層を形成した積層体の耐チッピング性について、酸浸漬処理後に積層されるNiめっき層の膜厚の観点から検討した。Niめっき層の膜厚が異なる積層体を作成し、それぞれの積層体に対してチッピング試験を行った。
(Example 5)
The chipping resistance of the laminate formed with the deposited layer was examined from the viewpoint of the film thickness of the Ni plating layer laminated after the acid immersion treatment. Laminates having different Ni plating layer thicknesses were created, and a chipping test was performed on each laminate.
 無電解Niめっき処理により導電性を付与したABS樹脂基材に、光沢Snめっき処理、酸浸漬処理、酸すすぎ処理を行った後、光沢Niめっき処理を行うことによって積層体を得た。光沢Snめっき処理、光沢Niめっき処理は、実施例1と同様の条件で行った。酸浸漬処理は、25質量%の硫酸溶液中で、処理温度50℃で、処理時間5分の条件で行った、また、酸すすぎ処理は、8質量%の硫酸溶液中で、酸処理温度25℃、処理時間10秒の条件で行った。 The ABS resin base material provided with conductivity by electroless Ni plating treatment was subjected to a bright Sn plating treatment, an acid dipping treatment and an acid rinsing treatment, and then a bright Ni plating treatment to obtain a laminate. The bright Sn plating treatment and the bright Ni plating treatment were performed under the same conditions as in Example 1. The acid immersion treatment was performed in a 25% by mass sulfuric acid solution at a treatment temperature of 50 ° C. under a treatment time of 5 minutes. The acid rinse treatment was conducted in an 8% by mass sulfuric acid solution at an acid treatment temperature of 25. It was performed under the conditions of ° C and a treatment time of 10 seconds.
 光沢Snめっき処理では、膜厚が10μmの光沢Snめっき層を形成した。光沢Niめっき層処理では、膜厚が1、5又は10μmの光沢Niめっき層を形成した。こうして得られた各積層体について、実施例4と同様の試験条件でチッピング試験による評価を行い、基材であるABS樹脂が露出するか否かを判定した。また、チッピング試験後の各積層体表面のチッピング深さ(μm)を測定するとともに、積層された光沢Niめっき層のヤング率(GPa)及び表面硬度(N/mm)を測定した。 In the bright Sn plating treatment, a bright Sn plating layer having a thickness of 10 μm was formed. In the bright Ni plating layer treatment, a bright Ni plating layer having a thickness of 1, 5 or 10 μm was formed. Each laminated body thus obtained was evaluated by a chipping test under the same test conditions as in Example 4 to determine whether or not the ABS resin as the base material was exposed. Moreover, while measuring the chipping depth (micrometer) of each laminated body surface after a chipping test, the Young's modulus (GPa) and surface hardness (N / mm < 2 >) of the laminated glossy Ni plating layer were measured.
 チッピング深さの測定は、実施例4における表面粗さの測定条件と同じであり、JIS B0651:2001に基づいて行った。
 ヤング率と表面硬度は、フィッシャー・インストルメンツ社製のFixherscope H100CSを用いて、インデンテーション試験法に基づき、ISO EN DIN14577に準拠する測定条件でマルテンス硬さを測定して求めた。
The measurement of the chipping depth was the same as the measurement condition of the surface roughness in Example 4, and was performed based on JIS B0651: 2001.
The Young's modulus and surface hardness were determined by measuring Martens hardness under measurement conditions based on ISO EN DIN14577 based on the indentation test method using Fixerscope H100CS manufactured by Fischer Instruments.
 これらの結果を表6に示す。 These results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
 耐チッピング性評価の結果によれば、光沢Niめっき層の膜厚を1μm又は5μmとした積層体では、光沢Snめっき層に傷がついて基材であるABS樹脂が露出していた。一方、光沢Niめっき層の膜厚を10μmとした積層体では、ABS樹脂基材の露出が観察されなかった。
Figure JPOXMLDOC01-appb-T000006
According to the result of the evaluation of chipping resistance, in the laminate in which the film thickness of the bright Ni plating layer was 1 μm or 5 μm, the bright Sn plating layer was damaged and the ABS resin as the base material was exposed. On the other hand, in the laminate in which the film thickness of the bright Ni plating layer was 10 μm, the ABS resin base material was not exposed.
 チッピング試験後の積層体において、光沢Niめっき層表面からのチッピング深さを測定したところ、光沢Niめっき層の膜厚が10μmの積層体では、1μm又は5μmの積層体に比べて穴の深さが浅いものであった。光沢Niめっき層の剛性によって深い穴が形成されることが抑制されていると考えられる。 In the laminated body after the chipping test, the chipping depth from the surface of the bright Ni plating layer was measured. In the laminated body with the thickness of the bright Ni plating layer being 10 μm, the depth of the hole was compared with the 1 μm or 5 μm laminated body. Was shallow. It is considered that the formation of deep holes is suppressed by the rigidity of the bright Ni plating layer.
 また、それぞれの積層体の光沢Niめっき層のヤング率及び表面硬度を測定したところ、膜厚10μmの光沢Niめっき層では、ヤング率が44.66GPaであり、表面硬度が2270.26N/mmであった。ヤング率及び表面硬度がこれらの値であるときには、積層体でABS樹脂基材の露出が観察されず耐チッピング性に優れていることがわかった。 Further, when the Young's modulus and surface hardness of the gloss Ni plating layer of each laminate were measured, the gloss Ni plating layer having a thickness of 10 μm had a Young's modulus of 44.66 GPa and a surface hardness of 2270.26 N / mm 2. Met. When the Young's modulus and the surface hardness were these values, it was found that the ABS resin substrate was not exposed in the laminate and was excellent in chipping resistance.
 光沢Snめっき層は、ABS樹脂基材に追従可能な延性を備えるとともに光輝外観を付与することができるが、Snが比較的柔らかい金属であることから、光沢Snめっき層表面は傷つきやすい。本実施例では、光沢Snめっき層を保護するべく析出層として光沢Niめっき層を積層しており、光沢Niめっき層の膜厚が10μmの場合に、ABS樹脂の露出が観察されなかった。光沢Niめっき層の剛性により傷つきが抑制されるとともに、光沢Snめっき層によってABS樹脂基材上でSnが延ばされ、これら各層の作用によりABS樹脂基材の露出が抑制されていると考えられる。そして、このときの光沢Niめっき層のヤング率は44.66GPa、表面硬度は2270.26N/mmであり、ABS樹脂基材の露出が観察された光沢Niめっき層での値とは異なるものであった。したがって、光沢Niめっき層のヤング率及び表面硬度を所定の範囲とすることで、積層体に所望の耐チッピング性を付与することができると考えられる。 The bright Sn plating layer has a ductility that can follow the ABS resin substrate and can give a bright appearance. However, since Sn is a relatively soft metal, the surface of the bright Sn plating layer is easily damaged. In this example, a bright Ni plating layer was laminated as a deposited layer to protect the bright Sn plating layer, and no ABS resin exposure was observed when the thickness of the bright Ni plating layer was 10 μm. Scratches are suppressed by the rigidity of the bright Ni plating layer, and Sn is extended on the ABS resin substrate by the bright Sn plating layer, and it is considered that the exposure of the ABS resin substrate is suppressed by the action of these layers. . The Young's modulus of the glossy Ni plating layer at this time is 44.66 GPa and the surface hardness is 2270.26 N / mm 2 , which is different from the value in the glossy Ni plating layer in which the exposure of the ABS resin substrate was observed. Met. Therefore, it is considered that desired chipping resistance can be imparted to the laminate by setting the Young's modulus and surface hardness of the bright Ni plating layer within a predetermined range.
 また、光沢Snめっき層を酸浸漬処理していることから、光沢Snめっき層表面が、光沢Niめっき層との密着性に優れた状態となり、光沢Snめっき層と光沢Niめっき層との間の界面における層間剥離が抑制される。これによっても、積層体に所望の耐チッピング性を付与することができて、ABS樹脂基材の露出が抑制されていると考えられる。 Moreover, since the bright Sn plating layer is subjected to acid dipping treatment, the surface of the bright Sn plating layer is in an excellent state of adhesion to the bright Ni plating layer, and between the bright Sn plating layer and the bright Ni plating layer. Delamination at the interface is suppressed. Also by this, it can be considered that desired chipping resistance can be imparted to the laminate, and exposure of the ABS resin substrate is suppressed.

Claims (6)

  1. 基材の表面に積層されたSnめっき層上に電気的に析出層を形成してなる積層体の製造方法であって、
     光沢剤とSnを含むめっき浴中で、基材上にSn又はSn合金からなる光沢Snめっき層を積層するSnめっき工程と、
     前記Snめっき工程後に、前記基材上の光沢Snめっき層を10質量%以上の濃度の硫酸溶液又は3.5質量%以上の濃度の塩酸溶液のいずれかに、50~80℃で1~30分間浸漬する酸浸漬処理工程と、
     前記酸浸漬処理工程後に、前記光沢Snめっき層上に電気的に析出層を形成する析出層形成工程と、
    を備えることを特徴とする積層体の製造方法。
    A method for producing a laminate in which a deposited layer is electrically formed on a Sn plating layer laminated on the surface of a substrate,
    In a plating bath containing a brightener and Sn, an Sn plating step of laminating a bright Sn plating layer made of Sn or an Sn alloy on a substrate;
    After the Sn plating step, the bright Sn plating layer on the substrate is added to a sulfuric acid solution having a concentration of 10% by mass or more or a hydrochloric acid solution having a concentration of 3.5% by mass or more at 50 to 80 ° C. for 1 to 30%. An acid dipping process for dipping for a minute;
    A deposited layer forming step for electrically forming a deposited layer on the bright Sn plating layer after the acid immersion treatment step;
    The manufacturing method of the laminated body characterized by comprising.
  2.  前記酸浸漬処理工程は、酸浸漬処理後の光沢Snめっき層表面の粗さが0.040~0.080μm、うねりが0~0.040μmとなるように行われることを特徴とする請求項1に記載の積層体の製造方法。 2. The acid immersion treatment step is performed such that the surface of the bright Sn plating layer after the acid immersion treatment has a roughness of 0.040 to 0.080 μm and a undulation of 0 to 0.040 μm. The manufacturing method of the laminated body as described in any one of.
  3. 前記酸浸漬処理工程後に、該酸浸漬処理工程で使用した酸溶液より低濃度の酸溶液で基材上の光沢Snめっき層表面をすすぐ酸すすぎ処理工程を備えることを特徴とする請求項1又は2に記載の積層体の製造方法。 2. The method according to claim 1, further comprising an acid rinsing treatment step of rinsing the surface of the bright Sn plating layer on the substrate with an acid solution having a lower concentration than the acid solution used in the acid immersion treatment step after the acid immersion treatment step. The manufacturing method of the laminated body of 2.
  4. 前記酸すすぎ処理工程は、前記酸浸漬処理工程で使用した酸溶液中の酸と同じ種類の酸を使用することを特徴とする請求項3に記載の積層体の製造方法。 The said acid rinse process process uses the acid of the same kind as the acid in the acid solution used at the said acid immersion process process, The manufacturing method of the laminated body of Claim 3 characterized by the above-mentioned.
  5. 前記基材は、合成樹脂に無電解めっき処理を施してなる請求項1乃至4のいずれか一項に記載の積層体の製造方法。 The said base material is a manufacturing method of the laminated body as described in any one of Claims 1 thru | or 4 formed by performing an electroless-plating process to a synthetic resin.
  6. 基材と、該基材上に積層された光沢Snめっき層と、該光沢Snめっき層上に積層された析出層とを備え、
    前記光沢Snめっき層は、光沢剤を含むSn又はSn合金からなり、
    前記光沢Snめっき層表面の粗さが0.040~0.080μmであるとともに、うねりが0~0.040μmであることを特徴とする積層体。
    A base material, a bright Sn plating layer laminated on the base material, and a deposited layer laminated on the bright Sn plating layer,
    The bright Sn plating layer is made of Sn or Sn alloy containing a brightener,
    A laminate having a surface roughness of the bright Sn plating layer of 0.040 to 0.080 μm and a undulation of 0 to 0.040 μm.
PCT/JP2014/058768 2013-09-26 2014-03-27 Laminate and method for producing same WO2015045449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199730 2013-09-26
JP2013-199730 2013-09-26

Publications (1)

Publication Number Publication Date
WO2015045449A1 true WO2015045449A1 (en) 2015-04-02

Family

ID=52742609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058768 WO2015045449A1 (en) 2013-09-26 2014-03-27 Laminate and method for producing same

Country Status (1)

Country Link
WO (1) WO2015045449A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420022U (en) * 1990-06-08 1992-02-19
WO2010119489A1 (en) * 2009-04-14 2010-10-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2012107263A (en) * 2010-11-15 2012-06-07 Kyowa Densen Kk Plating structure and coating method
JP2012134435A (en) * 2010-11-30 2012-07-12 Mitsubishi Shindoh Co Ltd Light-emitting device for back light
WO2012147506A1 (en) * 2011-04-26 2012-11-01 株式会社オートネットワーク技術研究所 Electrical contact material for connector, method for producing same, and electrical contact for connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420022U (en) * 1990-06-08 1992-02-19
WO2010119489A1 (en) * 2009-04-14 2010-10-21 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP2012107263A (en) * 2010-11-15 2012-06-07 Kyowa Densen Kk Plating structure and coating method
JP2012134435A (en) * 2010-11-30 2012-07-12 Mitsubishi Shindoh Co Ltd Light-emitting device for back light
WO2012147506A1 (en) * 2011-04-26 2012-11-01 株式会社オートネットワーク技術研究所 Electrical contact material for connector, method for producing same, and electrical contact for connector

Similar Documents

Publication Publication Date Title
KR100547513B1 (en) Electrolyte copper foil having carrier foil,manufacturing method thereof, and layered plate using the electrolyte copper foil having carrier foil
TW593688B (en) Copper foil for printed wiring board having excellent chemical resistance and heat resistance
US20190169763A1 (en) Methods for improving adhesion of aluminum films
CA2763983C (en) Metal-clad polymer article
JP4303291B2 (en) Composite copper foil and method for producing the same
RU2618017C2 (en) Nickel and/or chromium-plated element and method for its production
US7108923B1 (en) Copper foil for printed circuit board with taking environmental conservation into consideration
US8530749B2 (en) Copper foil attached to the carrier foil, a method for preparing the same and printed circuit board using the same
JP5070767B2 (en) Plating process and fine pitch wiring board manufacturing method
JP6485122B2 (en) Decorative parts
EP2756116B1 (en) Zincating aluminum
JP5875350B2 (en) Electrolytic copper alloy foil and electrolytic copper alloy foil with carrier foil
AU2017314185A1 (en) Method to create thin functional coatings on light alloys
WO2015045449A1 (en) Laminate and method for producing same
JPH03204992A (en) Swelling agent for pretreatment of syntheticresin before electroless metal, manufacture of wholly metallized substrate, wholly metallized substrate, and manufacture of printed wiring board, chip supporter, hybrid circuit, multilyered laminate semi-finished product, and electromagnetic shield semi-finished product
US7749611B2 (en) Peel strength enhancement of copper laminates
JP2006523774A (en) Use of articles as molding tools
WO2016056346A1 (en) Decorative component
WO2009046328A1 (en) Galvanic deposition of metal layers on magnesium or magnesium alloy surfaces
JPH0987888A (en) Treatment of copper foil for printed circuit
KR102504286B1 (en) Surface treated copper foil and Method for producing the same
JP2002235182A (en) Metallic molding material essentially consisting of magnesium and production method therefor
WO2023095774A1 (en) Chromium-plated component and method for manufacturing same
JP6539746B2 (en) Decorative part and method of manufacturing the same
JP2003138396A (en) Nickel chrome plating method and appliance for water system subjected to this plating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP