WO2015045387A1 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2015045387A1
WO2015045387A1 PCT/JP2014/004911 JP2014004911W WO2015045387A1 WO 2015045387 A1 WO2015045387 A1 WO 2015045387A1 JP 2014004911 W JP2014004911 W JP 2014004911W WO 2015045387 A1 WO2015045387 A1 WO 2015045387A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
substituted
group
secondary battery
electrolytic solution
Prior art date
Application number
PCT/JP2014/004911
Other languages
French (fr)
Japanese (ja)
Inventor
山田 淳夫
裕貴 山田
佳浩 中垣
智之 河合
雄紀 長谷川
浩平 間瀬
合田 信弘
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014186340A external-priority patent/JP5817003B2/en
Priority claimed from JP2014186341A external-priority patent/JP5817004B2/en
Priority claimed from JP2014186342A external-priority patent/JP5817005B2/en
Priority claimed from JP2014186339A external-priority patent/JP5817002B2/en
Priority claimed from JP2014186338A external-priority patent/JP5817001B2/en
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to DE112014004442.3T priority Critical patent/DE112014004442T5/en
Priority to KR1020167010615A priority patent/KR101901675B1/en
Priority to CN201480053195.4A priority patent/CN105580184B/en
Priority to US15/024,415 priority patent/US11011781B2/en
Publication of WO2015045387A1 publication Critical patent/WO2015045387A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • a lithium ion secondary battery is a secondary battery with high charge / discharge capacity and high output.
  • secondary batteries that are mainly used as power sources for portable electronic devices, notebook computers, and electric vehicles.
  • it is necessary to charge and discharge with a large current, and development of a secondary battery having high rate characteristics capable of high-speed charging and discharging is required.
  • the lithium ion secondary battery has active materials capable of inserting and extracting lithium (Li) in the positive electrode and the negative electrode, respectively. Then, the lithium ion moves through the electrolytic solution sealed between the two electrodes. In order to increase the rate, it is necessary to improve the active material and binder used in the positive electrode and / or the negative electrode, and improve the electrolytic solution.
  • Carbon materials such as graphite are widely used as negative electrode active materials for lithium ion secondary batteries.
  • a non-aqueous carbonate solvent such as a cyclic ester or a chain ester is used for the electrolytic solution.
  • carbonate-based solvent it has been difficult to significantly improve the rate characteristics. That is, as described in Non-Patent Documents 1 to 3 below, carbonate-based solvents such as ethylene carbonate and propylene carbonate have a large activation barrier for electrode reaction. Review of the solvent composition is required.
  • the present invention has been made in view of the above-described circumstances, and a main problem to be solved is to improve battery characteristics by an optimal combination of an electrolytic solution and a negative electrode active material.
  • the organic solvent contains a salt having alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element, and the peak intensity derived from the organic solvent in a vibrational spectroscopic spectrum.
  • the “electrolytic solution with Is> Io” may be referred to as the “electrolytic solution of the present invention”.
  • the feature of the nonaqueous electrolyte secondary battery (1) of the present invention that solves the above problems is that the electrolyte solution of the present invention described above and the G / D ratio, which is the ratio of the peak of G-band and D-band in the Raman spectrum. And a negative electrode having a negative electrode active material layer containing graphite of 3.5 or more.
  • the “G / D ratio is 3.5 or more” in the present invention means that either the area ratio or the height ratio of the G-band and D-band peaks in the Raman spectrum is 3.5 or more. In particular, the height ratio of the peak is 3.5 or more.
  • a feature of the nonaqueous electrolyte secondary battery (3) of the present invention that solves the above problems is that it comprises the above-described electrolytic solution of the present invention and a negative electrode containing a silicon element and / or a tin element in the negative electrode active material. It is in.
  • the characteristics of the nonaqueous electrolyte secondary battery (4) of the present invention that solves the above problems are the above-described electrolytic solution of the present invention, a negative electrode containing a metal oxide capable of inserting and extracting lithium ions as a negative electrode active material, It is in having.
  • the feature of the non-aqueous electrolyte secondary battery (5) of the present invention that solves the above problems is that the above-described electrolytic solution of the present invention and the ratio of the major axis to the minor axis (major axis / minor axis) are 1 to 5. And a negative electrode having a negative electrode active material layer containing graphite.
  • nonaqueous electrolyte secondary battery of the present invention battery characteristics are improved.
  • 3 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Example 1-1.
  • 3 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Example 1-2.
  • 4 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Example 1-3.
  • 6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-1.
  • 6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-2.
  • 6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-3.
  • 6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-4.
  • 6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-5.
  • 7 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-6.
  • 7 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-7.
  • 6 is a DSC chart of the nonaqueous electrolyte secondary battery of Example 1-5 and the nonaqueous electrolyte secondary battery of Comparative Example 1-8.
  • 6 is a DSC chart of the nonaqueous electrolyte secondary battery of Example 1-6 and the nonaqueous electrolyte secondary battery of Comparative Example 1-8.
  • 6 is a graph showing the relationship between the number of cycles and the current capacity ratio of the nonaqueous electrolyte secondary battery of Example 1-1 and the nonaqueous electrolyte secondary battery of Comparative Example 1-1.
  • 6 is a charge / discharge curve of the nonaqueous electrolyte secondary battery in Example 1-8.
  • FIG. 6 is a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 1-9.
  • FIG. 3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery in Example 1-10.
  • 3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery in Example 1-11.
  • 10 is a charge / discharge curve of a nonaqueous electrolyte secondary battery in Comparative Example 1-9.
  • 10 is a graph showing a relationship between a current rate and a voltage curve in the nonaqueous electrolyte secondary battery of Example 1-12.
  • 6 is a graph showing a relationship between a current rate and a voltage curve in the nonaqueous electrolyte secondary battery of Comparative Example 1-4. It is a result of the cycle characteristic of the evaluation example 19.
  • the initial charge / discharge curves of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary battery of Comparative Example 2-1 are shown.
  • 6 is a graph showing the relationship between the number of cycles and the current capacity ratio of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary battery of Comparative Example 2-1.
  • 3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 3-2 and Comparative Example 3-2. 3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 3-3. It is a charging / discharging curve of the nonaqueous electrolyte secondary battery of Example 4-1.
  • FIG. It is a STEM analysis result about C of the negative electrode S and O containing film
  • 44 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 12 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 13 and a response current in Evaluation Example 37.
  • 40 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 13 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 14 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 14 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 15 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 15 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to CB6 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.0 to 4.5 V) with respect to EB 13 and a response current in Evaluation Example 37.
  • the scale of the vertical axis in FIG. 93 is changed.
  • 42 is a graph showing a relationship between a potential (3.0 to 5.0 V) with respect to EB 13 and a response current in Evaluation Example 37.
  • the scale of the vertical axis in FIG. 94 is changed.
  • 44 is a graph showing a relationship between a potential (3.0 to 4.5 V) with respect to EB16 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.0 to 5.0 V) with respect to EB16 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.0 to 4.5 V) with respect to CB7 and a response current in Evaluation Example 37.
  • 44 is a graph showing a relationship between a potential (3.0 to 5.0 V) and a response current with respect to CB7 in Evaluation Example 37.
  • 42 is a DSC chart of EB19 in Evaluation Example 39.
  • 42 is a DSC chart of CB10 in Evaluation Example 39.
  • the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
  • the non-aqueous electrolyte secondary battery of the present invention is intended to improve battery characteristics by an optimal combination of an electrolytic solution and a negative electrode active material. Therefore, there are no particular limitations on other battery components, such as the positive electrode.
  • the charge carrier in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
  • the nonaqueous electrolyte secondary battery of the present invention may be a nonaqueous electrolyte secondary battery using lithium as a charge carrier (for example, a lithium secondary battery or a lithium ion secondary battery), or sodium as a charge carrier. It may be a non-aqueous electrolyte secondary battery (for example, a sodium secondary battery or a sodium ion secondary battery).
  • the non-aqueous electrolyte secondary battery (1) of the present invention is a main problem that should be solved by improving the rate capacity characteristics and improving the cycle characteristics by an optimal combination of the electrolytic solution and the negative electrode active material. It is.
  • the nonaqueous electrolyte secondary battery (1) of the present invention includes the electrolyte of the present invention and graphite having a G / D ratio of 3.5 or more, which is a ratio of G-band and D-band peaks in the Raman spectrum.
  • a negative electrode having a negative electrode active material layer is a nonaqueous electrolyte secondary battery having improved rate capacity characteristics and cycle characteristics.
  • the nonaqueous electrolyte secondary battery (2) of the present invention is a main problem that should be solved to improve the rate capacity characteristics by an optimal combination of an electrolytic solution and a negative electrode active material.
  • the nonaqueous electrolyte secondary battery (2) of the present invention includes the electrolytic solution of the present invention and a negative electrode having a negative electrode active material layer containing a carbon material having a crystallite size of 20 nm or less.
  • the nonaqueous electrolyte secondary battery (3) of the present invention uses silicon (Si) or tin (Sn) as the negative electrode active material for the nonaqueous electrolyte secondary battery, and improves the battery characteristics of the nonaqueous electrolyte secondary battery. This is the main problem to be solved.
  • the nonaqueous electrolyte secondary battery (3) of the present invention comprises the electrolytic solution of the present invention and a negative electrode containing a silicon element and / or a tin element in the negative electrode active material.
  • Such a non-aqueous electrolyte secondary battery (3) of the present invention has an effect derived from the negative electrode active material by using a negative electrode active material containing silicon and / or tin and carbon together with the electrolytic solution of the present invention. Excellent battery characteristics are achieved through cooperation with the effects derived from the electrolyte.
  • the non-aqueous electrolyte secondary battery (4) of the present invention is a main problem to be solved by providing a non-aqueous electrolyte secondary battery having a metal oxide as a negative electrode active material and excellent in energy density and charge / discharge efficiency. is there.
  • a technique using a metal oxide capable of inserting and extracting lithium ions as a negative electrode active material for a non-aqueous electrolyte secondary battery is known.
  • this kind of metal oxide for example, lithium titanate is known.
  • non-aqueous electrolyte secondary battery using lithium titanate as a negative electrode it is considered that lithium occlusion and release reactions are performed stably, and as a result, deterioration of the active material is also suppressed. That is, it is known that a non-aqueous electrolyte secondary battery using this type of metal oxide as a negative electrode active material is excellent in cycle characteristics. On the other hand, non-aqueous electrolyte secondary batteries using this type of metal oxide as the negative electrode active material have a lower energy density at the negative electrode than non-aqueous electrolyte secondary batteries using carbon-based negative electrode active materials such as graphite. It has been known.
  • nonaqueous electrolyte secondary battery that uses a metal oxide as a negative electrode active material and has further improved battery characteristics.
  • the nonaqueous electrolyte secondary battery (4) of the present invention uses a metal oxide as a negative electrode active material and is excellent in battery characteristics.
  • the nonaqueous electrolyte secondary battery (5) of the present invention has the negative electrode active material layer containing the electrolyte of the present invention and graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5.
  • a negative electrode is a nonaqueous electrolyte secondary battery having further improved input / output characteristics. That is, when the electrolytic solution of the present invention is used, the input / output characteristics of the nonaqueous electrolyte secondary battery are improved.
  • graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5 is used as the negative electrode active material, so that the non-aqueous electrolyte secondary battery can be inserted. It is possible to further improve the output characteristics.
  • the electrolytic solution of the present invention includes a salt having alkali metal, alkaline earth metal or aluminum as a cation (hereinafter sometimes referred to as “metal salt” or simply “salt”) and an organic solvent having a hetero atom,
  • metal salt or simply “salt”
  • organic solvent having a hetero atom With respect to the peak intensity derived from the organic solvent in the vibrational spectrum, if the intensity of the peak inherent to the organic solvent is Io and the intensity of the peak obtained by wave number shifting of the peak inherent to the organic solvent is Is, Is> Io.
  • the metal salt may be a compound that is usually used as an electrolyte, such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiAlCl 4 , etc. contained in the battery electrolyte.
  • the cation of the metal salt include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium, and aluminum.
  • the cation of the metal salt is preferably the same metal ion as the charge carrier of the battery using the electrolytic solution.
  • the metal salt cation is preferably lithium.
  • the chemical structure of the anion of the salt may include at least one element selected from halogen, boron, nitrogen, oxygen, sulfur or carbon.
  • Specific examples of the chemical structure of an anion containing halogen or boron include ClO 4 , PF 6 , AsF 6 , SbF 6 , TaF 6 , BF 4 , SiF 6 , B (C 6 H 5 ) 4 , and B (oxalate). 2 , Cl, Br, and I.
  • the chemical structure of the anion of the salt is preferably a chemical structure represented by the following general formula (1), general formula (2), or general formula (3).
  • R 1 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
  • R 2 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • the R 1 and R 2 may be bonded to each other to form a ring.
  • X 2 is, SO 2
  • R a , R b , R c , and R d are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent.
  • R a , R b , R c , and R d may combine with R 1 or R 2 to form a ring.
  • R 3 X 3 Y General formula (2) (R 3 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
  • R e and R f are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent.
  • R e and R f may combine with R 3 to form a ring.
  • Y is selected from O and S.
  • R 4 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
  • R 5 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • the R 6 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent.
  • any two or three of R 4 , R 5 and R 6 may be bonded to form a ring.
  • R g , R h , R i , R j , R k , and R l are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent.
  • an unsaturated alkyl group that may be substituted with a substituent an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent
  • R g , R h , R i , R j , R k , and R l may combine with R 4 , R 5, or R 6 to form a ring.
  • substituents in the phrase “may be substituted with a substituent” include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an unsaturated cycloalkyl group, an aromatic group, a heterocyclic group, a halogen, and OH.
  • the chemical structure of the salt anion is more preferably a chemical structure represented by the following general formula (4), general formula (5), or general formula (6).
  • R 7 and R 8 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
  • R m , R n , R o , and R p are each independently substituted with hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent.
  • R m , R n , R o , and R p may combine with R 7 or R 8 to form a ring.
  • R q and R r are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent.
  • R q and R r may combine with R 9 to form a ring.
  • Y is selected from O and S.
  • R 10 X 10 (R 11 X 11 ) (R 12 X 12 ) C ...
  • R 10 , R 11 , and R 12 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
  • R s , R t , R u , R v , R w , and R x are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent.
  • an unsaturated alkyl group that may be substituted with a substituent an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent
  • R s , R t , R u , R v , R w , and R x may combine with R 10 , R 11, or R 12 to form a ring.
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2.
  • n is preferably an integer of 1 to 8, more preferably an integer of 1 to 7, and particularly preferably an integer of 1 to 3.
  • the chemical structure of the salt anion is more preferably represented by the following general formula (7), general formula (8) or general formula (9).
  • R 13 SO 2 (R 14 SO 2 ) N...
  • R 13 and R 14 are each independently C n H a F b Cl c Br d I e .
  • R 15 SO 3 ...
  • R 15 is a C n H a F b Cl c Br d I e.
  • R 16 SO 2 (R 17 SO 2 ) (R 18 SO 2 ) C General formula (9)
  • R 16 , R 17 , and R 18 are each independently C n H a F b Cl c Br d I e .
  • n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2.
  • n is preferably an integer of 1 to 8, more preferably an integer of 1 to 7, and particularly preferably an integer of 1 to 3.
  • the metal salt may be a combination of an appropriate number of cations and anions described above.
  • One kind of metal salt may be adopted, or a plurality of kinds may be used in combination.
  • Organic solvent having a hetero element an organic solvent in which the hetero element is at least one selected from nitrogen, oxygen, sulfur and halogen is preferable, and an organic solvent in which the hetero element is at least one selected from nitrogen or oxygen Is more preferable.
  • an aprotic solvent having no proton donating group such as NH group, NH 2 group, OH group, and SH group is preferable.
  • organic solvent having a hetero element examples include nitriles such as acetonitrile, propionitrile, acrylonitrile, malononitrile, 1,2-dimethoxyethane, 1, 2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 2,2-dimethyl-1,3-dioxolane, 2-methyltetrahydropyran, 2-methyltetrahydrofuran, crown Ethers such as ether, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolide Amides such as isopropyl isocyanate, n-propyl isocyanate, chloromethyl
  • Esters glycidyl methyl ether, epoxy butane, epoxy such as 2-ethyloxirane, oxazole, 2-ethyloxazole, oxazoline, oxazole such as 2-methyl-2-oxazoline, ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone Acid anhydrides such as acetic anhydride and propionic anhydride, sulfones such as dimethyl sulfone and sulfolane, sulfoxides such as dimethyl sulfoxide, 1-nitropropane and 2-nitrate Nitros such as propane, furans such as furan and furfural, cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -valerolactone, aromatic heterocycles such as thiophene and pyridine, tetrahydro-4-pyrone, Examples thereof include heterocyclic rings such as 1-methylpyr
  • Examples of the organic solvent having a hetero element include a chain carbonate represented by the following general formula (10).
  • n is preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2.
  • m is preferably an integer of 3 to 8, more preferably an integer of 4 to 7, and particularly preferably an integer of 5 to 6.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl Carbonate
  • a solvent having a relative dielectric constant of 20 or more or a donor ether oxygen is preferable.
  • organic solvent include nitriles such as acetonitrile, propionitrile, acrylonitrile, and malononitrile, 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 2,2-dimethyl-1,3-dioxolane, 2-methyltetrahydropyran And ethers such as 2-methyltetrahydrofuran and crown ether, N, N-dimethylformamide, acetone, dimethyl sulfoxide, and sulfolane.
  • acetonitrile hereinafter sometimes referred to as “AN”
  • D 1, 2-dimethoxyethane
  • organic solvents may be used alone or in combination as an electrolyte.
  • the electrolyte solution of the present invention has a peak in which the original peak of the organic solvent is shifted to Io with respect to the peak intensity derived from the organic solvent contained in the electrolyte solution of the present invention in the vibrational spectrum.
  • the intensity of the “shift peak” may be Is, where Is> Io. That is, in the vibrational spectroscopic spectrum chart obtained by subjecting the electrolytic solution of the present invention to vibrational spectroscopic measurement, the relationship between the two peak intensities is Is> Io.
  • the original peak of the organic solvent means a peak observed at the peak position (wave number) when vibration spectroscopy measurement is performed only on the organic solvent.
  • the value of the intensity Io of the original peak of the organic solvent and the value of the intensity Is of the shift peak are the height or area from the baseline of each peak in the vibrational spectrum.
  • the relationship when there are a plurality of peaks in which the original peak of the organic solvent is shifted, the relationship may be determined based on the peak for which the relationship between Is and Io is most easily determined.
  • an organic solvent that can determine the relationship between Is and Io most easily is selected, an organic solvent that can determine the relationship between Is and Io most easily (the difference between Is and Io is most pronounced) is selected, The relationship between Is and Io may be determined based on the peak intensity.
  • peak separation may be performed using known means to determine the relationship between Is and Io.
  • the peak of an organic solvent that is most easily coordinated with a cation (hereinafter sometimes referred to as “preferred coordination solvent”) is another. Shift in preference to.
  • the mass% of the preferential coordination solvent with respect to the entire organic solvent having a hetero element is preferably 40% or more, more preferably 50% or more, and further preferably 60% or more. 80% or more is particularly preferable.
  • the volume% of the preferential coordination solvent with respect to the entire organic solvent having a hetero element is preferably 40% or more, more preferably 50% or more, and 60% or more. Is more preferable, and 80% or more is particularly preferable.
  • the relationship between the two peak intensities preferably satisfies the condition of Is> 2 ⁇ Io, more preferably satisfies the condition of Is> 3 ⁇ Io, and particularly preferably satisfies the condition of Is> 5 ⁇ Io.
  • an electrolytic solution in which the intensity Io of the peak inherent in the organic solvent is not observed and the intensity Is of the shift peak is observed in the vibrational spectrum of the electrolytic solution of the present invention.
  • the metal salt and the organic solvent (or preferential coordination solvent) having a hetero element have an interaction.
  • a metal salt and a hetero element of an organic solvent (or preferential coordination solvent) having a hetero element form a coordination bond
  • the organic solvent (or preferential coordinating solvent) having a metal salt and a hetero element ) Is estimated to form a stable cluster. From the results of Examples described later, this cluster is presumed to be formed by coordination of two molecules of an organic solvent (or preferential coordination solvent) having a hetero element with one molecule of a metal salt.
  • the molar range of the organic solvent having a hetero element (or preferential coordination solvent) with respect to 1 mol of the metal salt in the electrolytic solution of the present invention is preferably 1.4 mol or more and less than 3.5 mol. More preferably, it is 0.5 mol or more and 3.1 mol or less, and 1.6 mol or more and 3 mol or less are still more preferable.
  • the viscosity ⁇ (mPa ⁇ s) of the electrolytic solution of the present invention is preferably in the range of 10 ⁇ ⁇ 500, more preferably in the range of 12 ⁇ ⁇ 400, further preferably in the range of 15 ⁇ ⁇ 300, and 18 ⁇ .
  • a range of ⁇ 150 is particularly preferred, and a range of 20 ⁇ ⁇ 140 is most preferred.
  • the electrolytic solution of the present invention exhibits excellent ionic conductivity. For this reason, the nonaqueous electrolyte secondary battery of this invention is excellent in a battery characteristic.
  • the ionic conductivity ⁇ (mS / cm) of the electrolytic solution of the present invention is preferably 1 ⁇ ⁇ .
  • a suitable range including the upper limit when a suitable range including the upper limit is shown, a range of 2 ⁇ ⁇ 200 is preferable, and a range of 3 ⁇ ⁇ 100 is more preferable.
  • the range of 4 ⁇ ⁇ 50 is more preferable, and the range of 5 ⁇ ⁇ 35 is particularly preferable.
  • the density d (g / cm 3 ) in the electrolytic solution of the present invention is preferably d ⁇ 1.2 or d ⁇ 2.2, more preferably 1.2 ⁇ d ⁇ 2.2.
  • a range of 24 ⁇ d ⁇ 2.0 is more preferable, a range of 1.26 ⁇ d ⁇ 1.8 is more preferable, and a range of 1.27 ⁇ d ⁇ 1.6 is particularly preferable.
  • the density d (g / cm 3 ) in the electrolytic solution of the present invention means the density at 20 ° C. D / c described below is a value obtained by dividing the above d by the salt concentration c (mol / L).
  • d / c is 0.15 ⁇ d / c ⁇ 0.71, preferably 0.15 ⁇ d / c ⁇ 0.56, and 0.25 ⁇ d / c ⁇ 0. Within the range of .56, more preferably within the range of 0.26 ⁇ d / c ⁇ 0.50, and particularly preferably within the range of 0.27 ⁇ d / c ⁇ 0.47.
  • D / c in the electrolytic solution of the present invention can be defined even when a metal salt and an organic solvent are specified.
  • d / c is preferably within the range of 0.42 ⁇ d / c ⁇ 0.56, and 0.44 ⁇ d / c ⁇ 0.52 The range of is more preferable.
  • d / c is preferably in the range of 0.35 ⁇ d / c ⁇ 0.41, and 0.36 ⁇ d / c ⁇ 0.39. The inside is more preferable.
  • d / c is preferably in the range of 0.32 ⁇ d / c ⁇ 0.46, and in the range of 0.34 ⁇ d / c ⁇ 0.42. The inside is more preferable.
  • d / c is preferably in the range of 0.25 ⁇ d / c ⁇ 0.48, and in the range of 0.25 ⁇ d / c ⁇ 0.38.
  • the range of 0.25 ⁇ d / c ⁇ 0.31 is still more preferable, and the range of 0.26 ⁇ d / c ⁇ 0.29 is still more preferable.
  • d / c is preferably in the range of 0.32 ⁇ d / c ⁇ 0.46, and in the range of 0.34 ⁇ d / c ⁇ 0.42. The inside is more preferable.
  • d / c is preferably in the range of 0.34 ⁇ d / c ⁇ 0.50, and in the range of 0.37 ⁇ d / c ⁇ 0.45. The inside is more preferable.
  • d / c is preferably in the range of 0.36 ⁇ d / c ⁇ 0.54, and in the range of 0.39 ⁇ d / c ⁇ 0.48. The inside is more preferable.
  • the electrolyte solution of the present invention is different in the environment in which the metal salt and the organic solvent are present, and has a high density. , Improvement in lithium transport number), improvement in the reaction rate between the electrode and the electrolyte solution, relaxation of uneven distribution of the salt concentration of the electrolyte that occurs during high-rate charge / discharge of the battery, and increase in the electric double layer capacity can be expected. Furthermore, in the electrolytic solution of the present invention, since the density is high, the vapor pressure of the organic solvent contained in the electrolytic solution is lowered. As a result, volatilization of the organic solvent from the electrolytic solution of the present invention can be reduced.
  • the electrolytic solution of the present invention it is presumed that a cluster is formed by coordination of two molecules of an organic solvent (or a preferential coordination solvent) having a hetero element with one molecule of a metal salt.
  • concentration (mol / L) of the electrolytic solution of the invention depends on the molecular weight of each of the metal salt and the organic solvent and the density when the solution is used. Therefore, it is not appropriate to prescribe the concentration of the electrolytic solution of the present invention.
  • Table 1 individually illustrates the concentration (mol / L) of the electrolytic solution of the present invention.
  • the organic solvent that forms the cluster and the organic solvent that is not involved in the formation of the cluster have different environments. Therefore, in vibrational spectroscopy measurement, the peak derived from the organic solvent forming the cluster is higher than the observed wave number of the peak derived from the organic solvent not involved in the cluster formation (original peak of the organic solvent). Or it is observed shifted to the low wavenumber side. That is, the shift peak corresponds to the peak of the organic solvent forming the cluster.
  • an IR spectrum or a Raman spectrum can be exemplified.
  • the measurement method for IR measurement include transmission measurement methods such as Nujol method and liquid film method, and reflection measurement methods such as ATR method.
  • transmission measurement methods such as Nujol method and liquid film method
  • reflection measurement methods such as ATR method.
  • the vibrational spectroscopic measurement is preferably performed under conditions that can reduce or ignore the influence of moisture in the atmosphere.
  • IR measurement may be performed under low or no humidity conditions such as a dry room or a glove box, or Raman measurement may be performed with the electrolytic solution of the present invention in a sealed container.
  • LiTFSA is dissolved in an acetonitrile solvent at a concentration of 1 mol / L to obtain an electrolytic solution according to conventional technical common sense. Since 1 L of acetonitrile corresponds to about 19 mol, 1 L of conventional electrolyte includes 1 mol of LiTFSA and 19 mol of acetonitrile. Then, in the conventional electrolyte, there are many acetonitriles that are not solvated with LiTFSA (not coordinated with Li) simultaneously with acetonitrile that is solvated with LiTFSA (coordinated with Li). .
  • the acetonitrile molecule is different between the LiTFSA solvated acetonitrile molecule and the LiTFSA non-solvated acetonitrile molecule, in the IR spectrum, the acetonitrile peaks of both are distinguished and observed. Is done. More specifically, the peak of acetonitrile that is not solvated with LiTFSA is observed at the same position (wave number) as in the case of IR measurement of only acetonitrile, but the peak of acetonitrile that is solvated with LiTFSA. Is observed with the peak position (wave number) shifted to the high wave number side.
  • the electrolytic solution of the present invention has a higher LiTFSA concentration than the conventional electrolytic solution, and the number of acetonitrile molecules solvated with LiTFSA (forming clusters) in the electrolytic solution is different from that of LiTFSA. More than the number of unsolvated acetonitrile molecules. Then, the relation between the intensity Io of the original peak of the acetonitrile and the intensity Is of the peak obtained by shifting the original peak of acetonitrile in the vibrational spectrum of the electrolytic solution of the present invention is Is> Io.
  • Table 2 exemplifies the wave numbers of organic solvents that are considered useful for the calculation of Io and Is and their attribution in the vibrational spectrum of the electrolytic solution of the present invention. It should be added that the wave number of the observed peak may be different from the following wave numbers depending on the measurement apparatus, measurement environment, and measurement conditions of the vibrational spectrum.
  • the electrolytic solution of the present invention is different from the conventional electrolytic solution in that the presence environment of the metal salt and the organic solvent is different and the concentration of the metal salt is high, so that the metal ion transport rate in the electrolytic solution is improved (especially metal When Li is lithium, the lithium transport number is improved), the reaction rate between the electrode and the electrolyte solution is improved, the uneven distribution of the salt concentration of the electrolyte solution that occurs during high-rate charge / discharge of the battery, and the electric double layer capacity can be expected to increase . Furthermore, in the electrolytic solution of the present invention, since most of the organic solvent having a hetero element forms a cluster with a metal salt, the vapor pressure of the organic solvent contained in the electrolytic solution is lowered. As a result, volatilization of the organic solvent from the electrolytic solution of the present invention can be reduced.
  • the electrolyte of the present invention has a higher viscosity than the conventional battery electrolyte.
  • the preferable Li concentration of the electrolytic solution of the present invention is about 2 to 5 times the Li concentration of a general electrolytic solution. Therefore, if it is a battery using the electrolyte solution of this invention, even if a battery is damaged, electrolyte solution leakage is suppressed. Moreover, the capacity
  • the uneven distribution of Li concentration in the liquid can be considered. However, it has become clear that the capacity of the secondary battery using the electrolytic solution of the present invention is suitably maintained during high-speed charge / discharge. It is considered that the uneven distribution of Li concentration in the electrolytic solution could be suppressed due to the physical properties of the electrolytic solution of the present invention with high viscosity. In addition, due to the high viscosity of the electrolyte solution of the present invention, the liquid retention of the electrolyte solution at the electrode interface has been improved, and the state where the electrolyte solution is insufficient at the electrode interface (so-called liquid withdrawn state) has been suppressed. The reason is considered.
  • the electrolytic solution of the present invention contains a metal salt cation in a high concentration.
  • the distance between adjacent cations is extremely short.
  • cations such as lithium ions move between the positive electrode and the negative electrode during charge / discharge of the nonaqueous electrolyte secondary battery
  • the cations closest to the destination electrode are first supplied to the electrode.
  • the other cation adjacent to the said cation moves to the place with the said supplied cation.
  • the nonaqueous electrolyte secondary battery of the present invention has an S, O-containing film on the electrode (that is, the negative electrode and / or the positive electrode), and the S, O-containing film has an S ⁇ O structure. It is thought to contain many cations. It is considered that cations contained in the S, O-containing film are preferentially supplied to the electrode.
  • the cation transport rate is further improved by having an abundant cation source (that is, an S, O-containing film) in the vicinity of the electrode. Therefore, in the nonaqueous electrolyte secondary battery of the present invention, it is considered that excellent battery characteristics are exhibited by the cooperation of the electrolytic solution of the present invention and the S, O-containing film.
  • the method for producing the electrolytic solution of the present invention will be described. Since the electrolytic solution of the present invention has a higher metal salt content than the conventional electrolytic solution, the production method in which an organic solvent is added to a solid (powder) metal salt results in the formation of aggregates. It is difficult to produce an electrolytic solution. Therefore, in the manufacturing method of the electrolyte solution of this invention, it is preferable to manufacture, adding a metal salt gradually with respect to an organic solvent, and maintaining the solution state of electrolyte solution.
  • the electrolytic solution of the present invention includes a liquid in which the metal salt is dissolved in the organic solvent beyond the conventionally considered saturation solubility.
  • a method for producing an electrolytic solution of the present invention includes a first dissolving step of preparing a first electrolytic solution by mixing an organic solvent having a hetero element and a metal salt, dissolving the metal salt, stirring and / or Alternatively, under heating conditions, the metal salt is added to the first electrolyte solution, the metal salt is dissolved, and a second electrolyte solution in a supersaturated state is prepared; and stirring and / or heating conditions, A third dissolving step of adding the metal salt to the second electrolytic solution, dissolving the metal salt, and preparing a third electrolytic solution;
  • the “supersaturated state” refers to a state in which metal salt crystals are precipitated from the electrolyte when the stirring and / or heating conditions are canceled or when crystal nucleation energy such as vibration is applied. Means.
  • the second electrolytic solution is “supersaturated”, and the first electrolytic solution and the third electrolytic solution are not “supersaturated”.
  • the above-described method for producing the electrolytic solution of the present invention is a thermodynamically stable liquid state, and passes through the first electrolytic solution containing the conventional metal salt concentration, and then the thermodynamically unstable liquid state.
  • the second electrolytic solution passes through the two electrolytic solutions and becomes a thermodynamically stable new electrolytic third solution, that is, the electrolytic solution of the present invention.
  • the third electrolyte solution is composed of, for example, two molecules of an organic solvent for one lithium salt molecule, and a strong distribution between these molecules. It is presumed that the cluster stabilized by the coordinate bond inhibits the crystallization of the lithium salt.
  • the first dissolution step is a step of preparing a first electrolytic solution by mixing an organic solvent having a hetero atom and a metal salt to dissolve the metal salt.
  • a metal salt may be added to the organic solvent having a heteroatom, or an organic solvent having a heteroatom may be added to the metal salt.
  • the first dissolution step is preferably performed under stirring and / or heating conditions. What is necessary is just to set suitably about stirring speed. About heating conditions, it is preferable to control suitably with thermostats, such as a water bath or an oil bath. Since heat of dissolution is generated when the metal salt is dissolved, it is preferable to strictly control the temperature condition when using a metal salt that is unstable to heat. In addition, the organic solvent may be cooled in advance, or the first dissolution step may be performed under cooling conditions.
  • the first dissolution step and the second dissolution step may be performed continuously, or the first electrolytic solution obtained in the first dissolution step is temporarily stored (standing), and after a certain time has passed, You may implement a melt
  • the second dissolution step is a step of preparing a supersaturated second electrolyte solution by adding a metal salt to the first electrolyte solution under stirring and / or heating conditions to dissolve the metal salt.
  • the stirring condition may be achieved, or the second dissolution step is performed using a stirrer and a device (stirrer) that operates the stirrer.
  • the stirring condition may be used.
  • Heating conditions it is preferable to control suitably with thermostats, such as a water bath or an oil bath.
  • thermostats such as a water bath or an oil bath.
  • heating here refers to warming a target object to temperature more than normal temperature (25 degreeC).
  • the heating temperature is more preferably 30 ° C. or higher, and further preferably 35 ° C. or higher. Further, the heating temperature is preferably lower than the boiling point of the organic solvent.
  • the added metal salt is not sufficiently dissolved, increase the stirring speed and / or further heating.
  • a small amount of an organic solvent having a hetero atom may be added to the electrolytic solution in the second dissolution step.
  • the second dissolution step and the third dissolution step are preferably carried out continuously.
  • the third dissolution step is a step of preparing a third electrolyte solution by adding a metal salt to the second electrolyte solution under stirring and / or heating conditions to dissolve the metal salt.
  • it is necessary to add a metal salt to the supersaturated second electrolytic solution and dissolve it. Therefore, it is essential to perform the stirring and / or heating conditions as in the second dissolution step. Specific stirring and / or heating conditions are the same as those in the second dissolution step.
  • the electrolytic solution of the present invention is composed of, for example, two molecules of an organic solvent for one molecule of a lithium salt, and is presumed to form a cluster stabilized by a strong coordinate bond between these molecules. Is done.
  • the first to third dissolving steps can be performed even if the supersaturated state is not passed at the treatment temperature in each dissolving step.
  • the electrolytic solution of the present invention can be appropriately produced using the specific dissolution means described in 1.
  • a vibrational spectroscopic measurement step of performing vibrational spectroscopic measurement of the electrolytic solution being manufactured for example, a method of sampling a part of each electrolytic solution in the middle of production and using it for vibration spectroscopic measurement, or a method of performing spectroscopic spectroscopic measurement of each electrolytic solution in situ (situ) But it ’s okay.
  • the solvent in addition to the organic solvent having a hetero element, the solvent has a low polarity (low dielectric constant) or a low donor number and does not exhibit a special interaction with a metal salt, that is, the present invention.
  • a solvent that does not affect the formation and maintenance of the clusters in the electrolyte can be added.
  • the solvent that does not exhibit a special interaction with the metal salt include benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, 1-methylnaphthalene, hexane, heptane, and cyclohexane. it can.
  • a flame retardant solvent can be added to the electrolytic solution of the present invention.
  • a flame retardant solvent include halogen solvents such as carbon tetrachloride, tetrachloroethane, and hydrofluoroether, and phosphoric acid derivatives such as trimethyl phosphate and triethyl phosphate.
  • the electrolytic solution of the present invention when the electrolytic solution of the present invention is mixed with a polymer or an inorganic filler to form a mixture, the mixture contains the electrolytic solution and becomes a pseudo solid electrolyte.
  • the pseudo-solid electrolyte As the battery electrolyte, leakage of the electrolyte in the battery can be suppressed.
  • a polymer used for a battery such as a lithium ion secondary battery or a general chemically crosslinked polymer can be employed.
  • a polymer that can absorb an electrolyte such as polyvinylidene fluoride and polyhexafluoropropylene and gel can be used, and a polymer such as polyethylene oxide in which an ion conductive group is introduced.
  • polymers include polymethyl acrylate, polymethacrylate, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyethylene glycol dimethacrylate, polyethylene glycol acrylate, polyglycidol, polytetrafluoroethylene, polyhexa Fluoropropylene, polysiloxane, polyvinyl acetate, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polyfumaric acid, polycrotonic acid, polyangelic acid, polycarboxylic acids such as carboxymethylcellulose, styrene-butadiene rubber, nitrile-butadiene Rubber, polystyrene, polycarbonate, maleic anhydride and glycols copolymerized Sum polyesters, polyethylene oxide derivative having a substituent, a copolymer of vinylidene fluoride and hexafluoropropylene can be
  • Polysaccharides are also suitable as the polymer.
  • Specific examples of the polysaccharide include glycogen, cellulose, chitin, agarose, carrageenan, heparin, hyaluronic acid, pectin, amylopectin, xyloglucan, and amylose.
  • the inorganic filler is preferably an inorganic ceramic such as oxide or nitride.
  • Inorganic ceramics have hydrophilic and hydrophobic functional groups on the surface. Therefore, when the functional group attracts the electrolytic solution, a conductive path can be formed in the inorganic ceramic. Furthermore, the inorganic ceramics dispersed in the electrolytic solution can form a network between the inorganic ceramics by the functional groups and serve to contain the electrolytic solution. With such a function of the inorganic ceramics, it is possible to more suitably suppress the leakage of the electrolytic solution in the battery. In order to suitably exhibit the above functions of the inorganic ceramics, the inorganic ceramics preferably have a particle shape, and particularly preferably have a particle size of nano level.
  • the inorganic ceramics include general alumina, silica, titania, zirconia, and lithium phosphate. Further, the inorganic ceramic itself may be lithium conductive, and specifically, Li 3 N, LiI, LiI—Li 3 N—LiOH, LiI—Li 2 S—P 2 O 5 , LiI—Li 2 S —P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 2 O—B 2 S 3 , Li 2 O—V 2 O 3 —SiO 2 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—B 2 O 3 —ZnO, Li 2 O—Al 2 O 3 —TiO 2 —SiO 2 —P 2 O 5 , LiTi 2 (PO 4 ) 3 , Li— ⁇ Al 2 O 3 , LiTaO 3 Can be illustrated.
  • Li 3 N LiI, LiI—Li 3 N—LiOH, LiI—Li 2 S—
  • Glass ceramics may be employed as the inorganic filler. Since glass ceramics can contain an ionic liquid, the same effect can be expected for the electrolytic solution of the present invention. Glass ceramics include compounds represented by xLi 2 S- (1-x) P 2 S 5 , those obtained by substituting part of S of the compound with other elements, and compounds of P of the compound. An example in which the part is replaced with germanium can be exemplified.
  • the electrolytic solution of the present invention described above exhibits excellent ionic conductivity, it is suitably used as an electrolytic solution for power storage devices such as batteries.
  • it is preferably used as an electrolyte solution for a secondary battery, and particularly preferably used as an electrolyte solution for a lithium ion secondary battery.
  • nonaqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention will be described. Unless otherwise specified, it is considered that the nonaqueous electrolyte secondary batteries (1) to (5) of the present invention described above are all explained.
  • the nonaqueous electrolyte secondary battery includes a negative electrode having a negative electrode active material capable of occluding and releasing charge carriers such as lithium ions, a positive electrode having a positive electrode active material capable of occluding and releasing the charge carriers, and the electrolytic solution of the present invention With. Since the electrolytic solution of the present invention employs a lithium salt as a metal salt, it is particularly suitable as an electrolytic solution for a lithium ion secondary battery.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the current collector surface.
  • the current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a nonaqueous electrolyte secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Metal materials can be exemplified.
  • the current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, metal foils, such as copper foil, nickel foil, stainless steel foil, can be used suitably as a collector, for example.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the negative electrode active material layer includes a negative electrode active material and generally a binder. Furthermore, you may contain a conductive support agent as needed.
  • the negative electrode active material in the nonaqueous electrolyte secondary battery (1) contains graphite having a G / D ratio of 3.5 or more.
  • the G / D ratio is the ratio of the G-band and D-band peaks in the Raman spectrum.
  • each peak appears in the G-band (1590cm -1 vicinity) and D-band (1350cm around -1), G-band 'is derived from the graphite structure, D-band' is to be attributed to a defect . Therefore, the higher the G / D ratio, which is the ratio of G-band to D-band, means that the graphite has fewer defects and higher crystallinity.
  • graphite having a G / D ratio of 3.5 or more may be referred to as high crystalline graphite
  • graphite having a G / D ratio of less than 3.5 may be referred to as low crystalline graphite.
  • graphite either natural graphite or artificial graphite can be used.
  • scaly graphite spherical graphite, massive graphite, earthy graphite, and the like can be used.
  • coated graphite whose surface is coated with a carbon material or the like can be used.
  • the negative electrode active material may be mainly high crystalline graphite having a G / D ratio of 3.5 or more, and may contain low crystalline graphite or amorphous carbon.
  • the negative electrode active material in the nonaqueous electrolyte secondary battery (2) includes a carbon material having a crystallite size of 20 nm or less.
  • a larger crystallite size means that the atoms are arranged periodically and accurately according to a certain rule.
  • a carbon material having a crystallite size of 20 nm or less has poor periodicity and accuracy.
  • the size of the graphite crystal is 20 nm or less, or due to the influence of strain, defects, impurities, etc., the regularity of the arrangement of the atoms constituting the graphite becomes poor.
  • the size is 20 nm or less.
  • the carbon material having a crystallite size of 20 nm or less is typically hard carbon or soft carbon, but the “carbon material having a crystallite size of 20 nm or less” in the nonaqueous electrolyte secondary battery (2) of the present invention is It is not limited to.
  • an X-ray diffraction method using CuK ⁇ rays as an X-ray source may be used.
  • L 0.94 ⁇ / ( ⁇ cos ⁇ ) here, L: Crystallite size ⁇ : Incident X-ray wavelength (1.54 mm) ⁇ : half width of peak (radian) ⁇ : Diffraction angle
  • Nonaqueous electrolyte secondary battery (3) contains a silicon element and / or a tin element. Silicon and tin are known to be negative electrode active materials that can greatly improve the capacity of the nonaqueous electrolyte secondary battery. Silicon and tin belong to group 14 elements. Since these simple substances can occlude and release a large number of charge carriers (lithium ions, etc.) per unit volume (mass), they become high-capacity negative electrode active materials. However, on the other hand, non-aqueous electrolyte secondary batteries using these as negative electrode active materials have relatively poor rate characteristics.
  • a non-aqueous electrolyte secondary battery using carbon as a negative electrode active material has excellent rate characteristics. Therefore, by using both of them as the negative electrode active material, the nonaqueous electrolyte secondary battery can have a high capacity, and excellent rate characteristics can be imparted to the nonaqueous electrolyte secondary battery.
  • Silicon has a large theoretical capacity when used as a negative electrode active material, but has a large volume change during charge and discharge. Therefore, as the negative electrode active material containing silicon element, it is particularly preferable to use SiO x (0.3 ⁇ x ⁇ 1.6) disproportionated into two phases of a Si phase and a silicon oxide phase.
  • the Si phase in SiO x can occlude and release lithium ions. This Si phase undergoes volume change (that is, expansion and contraction) as lithium ions are occluded and released.
  • Silicon oxide phase consists of SiO 2 or the like, the volume change due to charging and discharging as compared with Si phase is small.
  • SiO x as the negative electrode active material realizes a high capacity by the Si phase and suppresses the volume change of the entire negative electrode active material (or the negative electrode) by having the silicon oxide phase. If x is less than the lower limit, the Si ratio becomes excessive, so that the volume change at the time of charging / discharging becomes too large and the cycle characteristics deteriorate. On the other hand, when x exceeds the upper limit value, the Si ratio becomes too small and the energy density decreases.
  • the range of x is more preferably 0.5 ⁇ x ⁇ 1.5, and further preferably 0.7 ⁇ x ⁇ 1.2.
  • the alloying reaction by the silicon element contained in the lithium element and Si phase is believed to occur during charge and discharge of a nonaqueous electrolyte secondary battery. And it is thought that this alloying reaction contributes to charging / discharging of a nonaqueous electrolyte secondary battery (in this case, a lithium ion secondary battery). Similarly, it is considered that a negative electrode active material containing a tin element described later can be charged and discharged by an alloying reaction between a tin element and a lithium element.
  • Examples of the negative electrode active material containing tin element include Sn alone, tin alloy (Cu—Sn alloy, Co—Sn alloy), amorphous tin oxide, tin silicon oxide, and the like. Among them, the amorphous tin oxide SnB 0.4 P 0.6 O 3.1 is exemplified. The Suzukei containing oxide SnSiO 3 is illustrated.
  • the negative electrode active material containing silicon element and the negative electrode active material containing tin element can be combined with a material containing carbon element (carbon material).
  • a carbon material such as graphite is a material with less volume change at the time of charging / discharging as compared with a silicon simple substance or a tin simple substance. Therefore, by combining a negative electrode active material containing silicon element and a negative electrode active material containing tin element with such a carbon material, damage of the negative electrode due to volume change during charging and discharging can be suppressed. Durability is improved. As a result, the cycle characteristics of the nonaqueous electrolyte secondary battery are improved.
  • the composite of the negative electrode active material containing silicon element and / or the negative electrode active material containing tin element and the carbon material may be performed by a known method.
  • the carbon material to be combined with the negative electrode active material containing silicon element and / or the negative electrode active material containing tin element graphite, hard carbon (non-graphitizable carbon), soft carbon (graphitizable carbon), etc. are preferable. Can be used.
  • the particle diameter of graphite is not particularly limited, whether natural or artificial.
  • the negative electrode active material in the nonaqueous electrolyte secondary battery (4) contains a metal oxide that can occlude and release lithium ions.
  • a metal oxide that can occlude and release lithium ions.
  • titanium oxide such as TiO 2
  • lithium titanium oxide lithium titanium oxide
  • tungsten oxide such as WO 3
  • amorphous tin oxide tin silicon oxide, and the like.
  • lithium titanium oxide includes spinel lithium titanate (for example, Li 4 + x Ti 5 + y O 12 (x is ⁇ 1 ⁇ x ⁇ 4, y is ⁇ 1 ⁇ y ⁇ 1)), ramsdellite structure.
  • examples thereof include lithium titanate (for example, Li 2 Ti 3 O 7 ).
  • An example of the amorphous tin oxide is SnB 0.4 P 0.6 O 3.1 .
  • the Suzukei containing oxide SnSiO 3 is illustrated. Among these, it is particularly preferable to use spinel lithium titanate. More specifically, Li 4 Ti 5 O 12 is used.
  • a lithium ion secondary battery using lithium titanate as a negative electrode it is considered that the lithium occlusion and release reactions are performed stably, and as a result, the deterioration of the active material is also suppressed. . That is, it is known that a lithium ion secondary battery using such a metal compound as a negative electrode active material is excellent in cycle characteristics.
  • the metal oxide in combination with the non-aqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention the excellent battery characteristics derived from the electrolytic solution of the present invention and the excellent cycle characteristics are compatible. A water electrolyte secondary battery can be obtained.
  • the negative electrode active material in the nonaqueous electrolyte secondary battery (5) includes graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5.
  • Typical graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5 includes spherical graphite, MCMB (mesocarbon microbeads), and the like.
  • Spherical graphite is a carbon material such as artificial graphite, natural graphite, graphitizable carbon, and non-graphitizable carbon, and has a spherical shape or a substantially spherical shape.
  • the spherical graphite particles are obtained by collecting the flakes and compressing them into a spherical shape while pulverizing the raw graphite with an impact pulverizer having a relatively small crushing force.
  • an impact pulverizer having a relatively small crushing force.
  • a hammer mill or a pin mill can be used as the impact pulverizer.
  • the outer peripheral linear velocity of the rotating hammer or pin is preferably about 50 to 200 m / sec.
  • the degree of spheroidization of graphite particles can be expressed by the ratio of the major axis to the minor axis of the particle (major axis / minor axis: hereinafter referred to as aspect ratio). That is, in an arbitrary cross section of the graphite particles, when the axis having the maximum aspect ratio is selected from the axes orthogonal to the center of gravity, the closer the aspect ratio is to 1, the closer to the true sphere. By the spheroidization treatment, the aspect ratio can be easily reduced to 5 or less (1 to 5). Further, if the spheroidization treatment is sufficiently performed, the aspect ratio can be made 3 or less (1 to 3).
  • the graphite used in the present invention has a particle aspect ratio of 1 to 5.
  • the aspect ratio is 1 or less, so that the diffusion path of the electrolytic solution in the negative electrode active material layer is shortened, so that the resistance component due to the electrolytic solution can be reduced, so that the input / output can be improved.
  • the aspect ratio is 1, the graphite has a shape closest to a true sphere, and the electrolyte solution diffusion path can be shortened to the shortest.
  • the ratio [I (110) / I (004)] of diffraction intensity derived from a crystal plane different from the basal plane such as I (110) is included, and how much flat graphite is included.
  • the graphite used in the present invention is preferably in a range where I (110) / I (004) is 0.03 to 1.
  • the graphite particles preferably have a BET specific surface area in the range of 0.5 to 15 m 3 / g. If the BET specific surface area exceeds 15 m 3 / g, the side reaction with the electrolytic solution tends to accelerate, and if it is less than 0.5 m 3 / g, the reaction resistance increases and the input / output may decrease.
  • the negative electrode active material is mainly graphite having an aspect ratio of 1 to 5, it can also contain graphite or amorphous carbon having an aspect ratio outside this range.
  • the nonaqueous electrolyte secondary battery (1) to the nonaqueous electrolyte secondary battery (5) of the present invention occlude charge carriers in addition to the characteristic negative electrode active material that can be used for each nonaqueous electrolyte secondary battery described above. And other negative electrode active materials that can be released.
  • the other negative electrode active material is referred to as a sub negative electrode active material as necessary.
  • the characteristic negative electrode active material in each of the nonaqueous electrolyte secondary batteries of the present invention is referred to as a main negative electrode active material.
  • the secondary negative electrode active material may be capable of occluding and releasing charge carriers, that is, lithium ions.
  • elemental elements that can be used as the secondary negative electrode active material include group 14 elements such as Li, carbon, silicon, germanium, and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, antimony, A group 15 element such as bismuth, an alkaline earth metal such as magnesium or calcium, and a group 11 element such as silver or gold may be employed alone.
  • the sub-negative electrode active material when silicon or the like is employed as the sub-negative electrode active material, one silicon atom reacts with a plurality of lithiums, so that a high-capacity active material is obtained. However, volume expansion and contraction due to insertion and extraction of lithium become significant. Such a problem may occur.
  • the alloy or compound include tin-based materials such as Ag—Sn alloy, Cu—Sn alloy and Co—Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated to silicon simple substance and silicon dioxide).
  • Examples thereof include silicon-based materials such as 0.3 ⁇ x ⁇ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials.
  • any one of the above-described sub-negative electrode active materials is used in combination with the metal oxide as the main negative electrode active material, so that non-metal oxide is used in comparison with the case where the metal oxide is used alone.
  • the capacity of the water electrolyte secondary battery can be further increased.
  • the main negative electrode active material and the sub negative electrode active material are used in combination, the main component of the negative electrode active material may be the main negative electrode active material.
  • the main negative electrode active material preferably occupies 50% by mass or more of the entire negative electrode active material, and more preferably 80% by mass or more.
  • the metal oxide negative electrode active material described above is selected from titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, and tin silicon oxide. At least one kind is a main component.
  • a main component here means that the applicable component is contained 50 mass% or more of the reference population.
  • the main components that is, titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide 50% by mass or more
  • the negative electrode can contain other inevitable ingredients.
  • Inevitable inclusions include, for example, Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La
  • the at least 1 element chosen from can be illustrated.
  • the binder plays a role of connecting the active material and the conductive additive to the surface of the current collector.
  • binder examples include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, polyacrylic acid ( Examples thereof include polymers having hydrophilic groups such as PAA) and carboxymethylcellulose (CMC).
  • a conductive additive contained in the negative electrode active material layer as necessary is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent.
  • the conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), vapor grown carbon fiber (Vapor Growth), which are carbonaceous fine particles. Carbon Fiber (VGCF) is exemplified. These conductive assistants can be added to the active material layer alone or in combination of two or more.
  • a negative electrode active material powder In order to produce a negative electrode of a non-aqueous electrolyte secondary battery, a negative electrode active material powder, a conductive auxiliary agent such as carbon powder, a binder, and an appropriate amount of solvent mixed to form a slurry, a roll coating method, It can be produced by applying on a current collector by a method such as a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method, and drying or curing the binder.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the dried product In order to increase the electrode density, the dried product may be compressed.
  • a positive electrode used for a non-aqueous electrolyte secondary battery has a positive electrode active material that can occlude and release charge carriers.
  • the positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
  • the positive electrode active material layer includes a positive electrode active material and, if necessary, a binder and / or a conductive aid.
  • the positive electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used.
  • non-aqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery and the potential of the positive electrode is set to 4 V or more with respect to lithium, it is preferable to employ an aluminum current collector.
  • the electrolyte of the present invention hardly corrodes the aluminum current collector. That is, it is considered that the non-aqueous electrolyte secondary battery using the electrolytic solution of the present invention and using the aluminum current collector for the positive electrode hardly causes elution of Al even at a high potential. Although it is not clear why the elution of Al is unlikely to occur, the electrolytic solution of the present invention differs from the conventional electrolytic solution in the types of metal salt and organic solvent, the existing environment, and the metal salt concentration. For this reason, it is estimated that the solubility of Al in the electrolytic solution of the present invention may be lower than that of the conventional electrolytic solution.
  • the positive electrode current collector is preferably made of aluminum or an aluminum alloy.
  • aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum.
  • An alloy obtained by adding various elements to pure aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al—Cu, Al—Mn, Al—Fe, Al—Si, Al—Mg, Al—Mg—Si, and Al—Zn—Mg.
  • A1000 series alloys pure aluminum series
  • A3000 series alloys Al-Mn series
  • A8000-based alloy Al-Fe-based
  • the current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
  • the current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the binder for the positive electrode and the conductive additive are the same as those described for the negative electrode.
  • a positive electrode active material a solid solution composed of a spinel such as LiMn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, And a polyanionic compound represented by (selected from at least one of Fe).
  • a spinel such as LiMn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, And a polyanionic compound represented by (selected from at least one of Fe).
  • tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal)
  • LiMPO 4 F such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal)
  • Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element included in the basic composition may be substituted with another metal element.
  • a positive electrode active material that does not include a charge carrier that contributes to charge / discharge can also be used.
  • a positive electrode active material that does not include a charge carrier that contributes to charge / discharge can also be used.
  • S sulfur alone
  • metal sulfides such as TiS 2 , oxides such as V 2 O 5 and MnO 2 , polyaniline and anthraquinone, and these
  • a compound containing an aromatic in the chemical structure a conjugated material such as a conjugated diacetate-based organic substance, or other known materials can be used as the positive electrode active material.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material.
  • the charge carrier may be added in an ionic state, or may be added in a nonionic state such as a metal or a compound.
  • a lithium foil or the like may be integrated by sticking to a positive electrode and / or a negative electrode.
  • the positive electrode may contain a conductive additive, a binder, and the like, similarly to the negative electrode.
  • the conductive auxiliary agent and the binder are not particularly limited as long as they can be used for the non-aqueous electrolyte secondary battery like the negative electrode described above.
  • a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method can be used.
  • An active material may be applied to the surface of the body.
  • a composition for forming an active material layer containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then collected. After applying to the surface of the electric body, it is dried.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the dried product may be compressed.
  • a separator is used for non-aqueous electrolyte secondary batteries as necessary.
  • the separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes.
  • natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • the electrolytic solution of the present invention has a slightly high viscosity and a high polarity
  • a membrane in which a polar solvent such as water can easily penetrate is preferable.
  • a film in which a polar solvent such as water soaks into 90% or more of the existing voids is more preferable.
  • a separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body.
  • the electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched.
  • the electrolyte solution of the present invention is added to the electrode body to make a non-aqueous solution. It is preferable to use an electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.
  • a special structure SEI film derived from the electrolytic solution of the present invention is formed on the negative electrode surface and / or the positive electrode surface.
  • the SEI film includes S and O, and has an S ⁇ O structure. Therefore, the electrolytic solution of the present invention for producing the SEI film particularly contains sulfur element and oxygen element in the chemical structure of the anion of the salt.
  • the SEI film having the special structure is referred to as an S, O-containing film as necessary.
  • the S, O-containing coating contributes to improvement of battery characteristics (improvement of battery life, improvement of input / output characteristics, etc.) of the non-aqueous electrolyte secondary battery through cooperation with the electrolytic solution of the present invention.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
  • the non-aqueous electrolyte secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from the non-aqueous electrolyte secondary battery for all or a part of its power source.
  • the vehicle may be an electric vehicle or a hybrid vehicle.
  • a non-aqueous electrolyte secondary battery is mounted on a vehicle, a plurality of non-aqueous electrolyte secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with non-aqueous electrolyte secondary batteries include personal computers, portable communication devices, and various household electrical appliances driven by batteries, office equipment, industrial equipment, and the like.
  • non-aqueous electrolyte secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power for power sources such as ships, and / or power supply sources for auxiliary machinery, aircraft Power supplies for spacecrafts and / or auxiliary equipment, auxiliary power sources for vehicles that do not use electricity as power sources, mobile home robot power sources, system backup power sources, uninterruptible power supply power sources
  • it may be used for a power storage device that temporarily stores electric power required for charging in an electric vehicle charging station or the like.
  • the electrolytic solution of the present invention was produced as follows. About 5 mL of 1,2-dimethoxyethane, an organic solvent, was placed in a flask equipped with a stir bar and a thermometer. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to 1,2-dimethoxyethane in the flask so as to keep the solution temperature at 40 ° C. or lower and dissolved. When about 13 g of (CF 3 SO 2 ) 2 NLi was added, the dissolution of (CF 3 SO 2 ) 2 NLi temporarily stagnated. Therefore, the flask was put into a thermostat, and the solution temperature in the flask was 50 ° C.
  • (CF 3 SO 2 ) 2 NLi was dissolved.
  • the dissolution of (CF 3 SO 2 ) 2 NLi stagnated again, so 1 drop of 1,2-dimethoxyethane was added with a pipette (CF 3 SO 2 ) 2 NLi dissolved.
  • (CF 3 SO 2 ) 2 NLi was gradually added, and the entire amount of predetermined (CF 3 SO 2 ) 2 NLi was added.
  • the resulting electrolyte was transferred to a 20 mL volumetric flask and 1,2-dimethoxyethane was added until the volume was 20 mL. This was designated as an electrolytic solution E1.
  • the obtained electrolytic solution had a volume of 20 mL, and (CF 3 SO 2 ) 2 NLi contained in this electrolytic solution was 18.38 g.
  • the concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution E1 was 3.2 mol / L.
  • the production was performed in a glove box under an inert gas atmosphere.
  • Electrolytic solution E2 Using 16.08 g of (CF 3 SO 2 ) 2 NLi, an electrolytic solution E2 having a concentration of (CF 3 SO 2 ) 2 NLi of 2.8 mol / L was produced in the same manner as the electrolytic solution E1. In the electrolytic solution E2, 2.1 molecules of 1,2-dimethoxyethane are contained per molecule of (CF 3 SO 2 ) 2 NLi.
  • Electrolytic solution E3 About 5 mL of acetonitrile, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in acetonitrile in the flask. When 19.52 g of (CF 3 SO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and acetonitrile was added until the volume was 20 mL. This was designated as an electrolytic solution E3. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution E3 was 3.4 mol / L.
  • 3 molecules of acetonitrile are contained with respect to 1 molecule of (CF 3 SO 2 ) 2 NLi.
  • Electrolytic solution E4 Using 24.11 g of (CF 3 SO 2 ) 2 NLi, an electrolytic solution E4 having a concentration of (CF 3 SO 2 ) 2 NLi of 4.2 mol / L was produced in the same manner as the electrolytic solution E3. In the electrolytic solution E4, 1.9 molecules of acetonitrile are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E5 Using (FSO 2) 2 NLi of 13.47g lithium salt, except for using 1,2-dimethoxyethane as the organic solvent, in the same manner as the electrolyte solution E3, (FSO 2) concentration of 2 NLi 3 An electrolytic solution E5 having a concentration of 6 mol / L was produced. In the electrolytic solution E5, 1.9 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E6 (Electrolytic solution E6) Using 14.97 g of (FSO 2 ) 2 NLi, an electrolytic solution E6 having a concentration of (FSO 2 ) 2 NLi of 4.0 mol / L was produced in the same manner as the electrolytic solution E5. In the electrolytic solution E6, 1.5 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E7 having a concentration of 4.2 mol / L of (FSO 2 ) 2 NLi was produced in the same manner as the electrolytic solution E3 except that 15.72 g of (FSO 2 ) 2 NLi was used as the lithium salt. .
  • electrolytic solution E7 3 molecules of acetonitrile are contained with respect to 1 molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E8 having a concentration of (FSO 2 ) 2 NLi of 4.5 mol / L was produced in the same manner as the electrolytic solution E7 using 16.83 g of (FSO 2 ) 2 NLi.
  • electrolytic solution E8 2.4 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E9 By using 18.71 g of (FSO 2 ) 2 NLii, an electrolytic solution E9 having a concentration of (FSO 2 ) 2 NLi of 5.0 mol / L was produced in the same manner as the electrolytic solution E7. In the electrolytic solution E9, 2.1 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E10 (Electrolytic solution E10) Using 20.21 g of (FSO 2 ) 2 NLi, an electrolytic solution E10 having a concentration of (FSO 2 ) 2 NLi of 5.4 mol / L was produced in the same manner as the electrolytic solution E7. In the electrolyte solution E10, 2 molecules of acetonitrile are contained with respect to 1 molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E11 About 5 mL of dimethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to dimethyl carbonate in the flask and dissolved. When (FSO 2 ) 2 NLi was added in a total amount of 14.64 g, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and dimethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution E11. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (FSO 2 ) 2 NLi in the electrolytic solution E11 was 3.9 mol / L.
  • two molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E12 Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E12 having a (FSO 2 ) 2 NLi concentration of 3.4 mol / L. In the electrolytic solution E12, 2.5 molecules of dimethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E13 Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E13 having a (FSO 2 ) 2 NLi concentration of 2.9 mol / L. In the electrolytic solution E13, three molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E14 Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E14 having a concentration of (FSO 2 ) 2 NLi of 2.6 mol / L. In the electrolytic solution E14, 3.5 molecules of dimethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E15 Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E15 having a (FSO 2 ) 2 NLi concentration of 2.0 mol / L. In the electrolytic solution E15, five molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E16 About 5 mL of ethyl methyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in ethyl methyl carbonate in the flask. When 12.81 g of (FSO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The obtained electrolytic solution was transferred to a 20 mL volumetric flask, and ethyl methyl carbonate was added until the volume became 20 mL. This was designated as an electrolytic solution E16. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (FSO 2 ) 2 NLi in the electrolytic solution E16 was 3.4 mol / L.
  • two molecules of ethyl methyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E17 The electrolyte solution E16 was diluted by adding ethyl methyl carbonate to obtain an electrolyte solution E17 having a (FSO 2 ) 2 NLi concentration of 2.9 mol / L. In the electrolytic solution E17, 2.5 molecules of ethyl methyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E18 The electrolyte solution E16 was diluted by adding ethyl methyl carbonate to obtain an electrolyte solution E18 having a concentration of (FSO 2 ) 2 NLi of 2.2 mol / L. In the electrolytic solution E18, 3.5 molecules of ethyl methyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E19 About 5 mL of diethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stirring bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in diethyl carbonate in the flask. When 11.37 g of the total amount of (FSO 2 ) 2 NLi was added, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and diethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution E19. The production was performed in a glove box under an inert gas atmosphere.
  • the concentration of (FSO 2 ) 2 NLi in the electrolytic solution E19 was 3.0 mol / L.
  • two molecules of diethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution E20 Diethyl carbonate was added to the electrolytic solution E19 for dilution to obtain an electrolytic solution E20 having a (FSO 2 ) 2 NLi concentration of 2.6 mol / L. In the electrolytic solution E20, 2.5 molecules of diethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution E21 Diethyl carbonate was added to the electrolytic solution E19 for dilution to obtain an electrolytic solution E21 having a (FSO 2 ) 2 NLi concentration of 2.0 mol / L. In the electrolytic solution E21, 3.5 molecules of diethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
  • Electrolytic solution C1 (Electrolytic solution C1) Using (CF 3 SO 2) 2 NLi of 5.74 g, as except for using 1,2-dimethoxyethane organic solvents, in the same manner as the electrolyte solution E3, is (CF 3 SO 2) concentration of 2 NLi Electrolyte C1 which is 1.0 mol / L was manufactured. In the electrolytic solution C1, 8.3 molecules of 1,2-dimethoxyethane are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecules.
  • Electrolytic solution C2 (Electrolytic solution C2) Using 5.74 g of (CF 3 SO 2 ) 2 NLi, an electrolytic solution C2 having a concentration of (CF 3 SO 2 ) 2 NLi of 1.0 mol / L was produced in the same manner as the electrolytic solution E3. In the electrolytic solution C2, 16 molecules of acetonitrile are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecule.
  • Electrolytic solution C3 Using 3.74 g of (FSO 2 ) 2 NLi, an electrolytic solution C3 having a concentration of (FSO 2 ) 2 NLi of 1.0 mol / L was produced in the same manner as the electrolytic solution E5. In the electrolytic solution C3, 8.8 molecules of 1,2-dimethoxyethane are contained per molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution C4 Using 3.74 g of (FSO 2 ) 2 NLi, an electrolytic solution C4 having a concentration of (FSO 2 ) 2 NLi of 1.0 mol / L was produced in the same manner as the electrolytic solution E7. In the electrolyte solution C4, 17 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecule.
  • Electrolytic solution C5 (Electrolytic solution C5) Except that a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 3: 7, hereinafter referred to as “EC / DEC”) was used as the organic solvent, and 3.04 g of LiPF 6 was used as the lithium salt.
  • Electrolytic solution C6 Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution C6 having a (FSO 2 ) 2 NLi concentration of 1.1 mol / L. In the electrolytic solution C6, 10 molecules of dimethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Electrolytic solution C7 The electrolyte solution E16 was diluted by adding ethyl methyl carbonate to obtain an electrolyte solution C7 having a (FSO 2 ) 2 NLi concentration of 1.1 mol / L.
  • electrolytic solution C7 8 molecules of ethyl methyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecule.
  • Electrolytic solution C8 Diethyl carbonate was added to the electrolytic solution E19 for dilution to obtain an electrolytic solution C8 having a (FSO 2 ) 2 NLi concentration of 1.1 mol / L. In the electrolytic solution C8, 7 molecules of diethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
  • Table 3 shows a list of the electrolytic solutions E1 to E21 and the electrolytic solutions C1 to C8.
  • Electrolytic solution E3, electrolytic solution E4, electrolytic solution E7, electrolytic solution E8, electrolytic solution E10, electrolytic solution C2, electrolytic solution C4, and acetonitrile, (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi are as follows: The IR measurement was performed under the following conditions. IR spectra in the range of 2100 to 2400 cm ⁇ 1 are shown in FIGS. 1 to 10, respectively. Further, IR measurement was performed on the electrolytic solutions E11 to E21, the electrolytic solutions C6 to C8, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate under the following conditions.
  • FIGS. 11 to 27 show IR spectra in the range of 1900 to 1600 cm ⁇ 1 in FIGS. 11 to 27, respectively.
  • FIG. 28 shows an IR spectrum in the range of 1900 to 1600 cm ⁇ 1 for (FSO 2 ) 2 NLi.
  • the horizontal axis in the figure is the wave number (cm ⁇ 1 ), and the vertical axis is the absorbance (reflection absorbance).
  • IR measurement conditions Device FT-IR (Bruker Optics) Measurement conditions: ATR method (using diamond) Measurement atmosphere: Inert gas atmosphere
  • FIG. IR spectrum of the electrolyte E10 represented by 5 is not a peak derived from acetonitrile observed around 2250 cm -1, inter 2250 cm from the vicinity -1 shifted acetonitrile 2280cm around -1 to the high frequency side C and N
  • the relationship between the peak intensities of Is and Io was Is> Io.
  • Ionic conductivity measurement conditions In an Ar atmosphere, an electrolytic solution was sealed in a glass cell with a platinum constant and a known cell constant, and impedance at 30 ° C. and 1 kHz was measured. The ion conductivity was calculated from the impedance measurement result.
  • Solartron 147055BEC Solartron
  • Electrolytic solutions E1 and E2 electrolytic solutions E4 to E6, E8, E11, E16, and E19 all exhibited ion conductivity. Therefore, it can be understood that the electrolytic solution of the present invention can function as an electrolytic solution for various batteries.
  • Viscosity measurement conditions Using a falling ball viscometer (Lovis 2000 M manufactured by Anton Paar GmbH (Anton Paar)), an electrolytic solution was sealed in a test cell under an Ar atmosphere, and the viscosity was measured at 30 ° C.
  • the maximum volatilization rates of the electrolytic solutions E2, E4, E8, E11, and E13 were significantly smaller than the maximum volatilization rates of the electrolytic solutions C1, C2, C4, and C6. Therefore, even if the battery using the electrolytic solution of the present invention is damaged, the volatilization rate of the electrolytic solution is small, so that rapid volatilization of the organic solvent to the outside of the battery is suppressed.
  • Electrolyte E4 did not ignite even after 15 seconds of indirect flame. On the other hand, the electrolytic solution C2 burned out in about 5 seconds. It was confirmed that the electrolytic solution of the present invention is difficult to burn.
  • Electrolytes E11, E13, E16, and E19 were placed in containers, filled with an inert gas, and sealed. These were stored in a freezer at ⁇ 30 ° C. for 2 days. Each electrolyte was observed after storage. None of the electrolytes were solidified and maintained in a liquid state, and no salt deposition was observed.
  • Evaluation Example 7 Raman spectrum measurement
  • FIGS. 29 to 35 show Raman spectra in which peaks derived from the anion portion of the metal salt of each electrolytic solution were observed.
  • the horizontal axis represents the wave number (cm ⁇ 1 ), and the vertical axis represents the scattering intensity.
  • the electrolyte was sealed in a quartz cell under an inert gas atmosphere and used for measurement.
  • a characteristic peak derived from (FSO 2 ) 2 N of LiFSA dissolved in acetonitrile was observed in 700 to 800 cm ⁇ 1 of the Raman spectra of the electrolytic solutions E8, E9, and C4 shown in FIGS. .
  • FIGS. 29 to 31 it can be seen from FIGS. 29 to 31 that the peak shifts to the higher wavenumber side as the LiFSA concentration increases.
  • a characteristic peak derived from (FSO 2 ) 2 N of LiFSA dissolved in dimethyl carbonate is observed in 700 to 800 cm ⁇ 1 of the Raman spectra of the electrolytic solutions E11, E13, E15, and C6 shown in FIGS. Observed.
  • the peak shifts to the higher wavenumber side as the concentration of LiFSA increases. This phenomenon is similar to that discussed in the previous paragraph.
  • the concentration of the electrolyte is increased, the state in which (FSO 2 ) 2 N corresponding to the anion of the salt interacts with a plurality of Li is shown in the spectrum. It is inferred that the result is reflected.
  • Li transport numbers of the electrolytic solutions E2, E8, C4 and C5 were measured under the following conditions.
  • the NMR tube containing each electrolyte solution was supplied to a PFG-NMR apparatus (ECA-500, JEOL), and the spin echo method was used for 7Li and 19F under conditions of 500 MHz and a magnetic field gradient of 1.26 T / m.
  • the diffusion coefficient of Li ions and anions in each electrolyte was measured while changing the magnetic field pulse width.
  • the Li transport number of the electrolytic solutions E2 and E8 was significantly higher than the Li transport number of the electrolytic solutions C4 and C5.
  • the Li ion conductivity of the electrolytic solution can be calculated by multiplying the ionic conductivity (total ionic conductivity) contained in the electrolytic solution by the Li transport number. If it does so, it can be said that the electrolyte solution of this invention has the high transport rate of lithium ion (cation) compared with the conventional electrolyte solution which shows comparable ionic conductivity.
  • electrolyte solution E8 the Li transport number at the time of changing temperature was measured according to the said Li transport number measurement conditions. The results are shown in Table 8. From the results in Table 8, it can be seen that the electrolytic solution of the present invention maintains a suitable Li transport number regardless of the temperature. It can be said that the electrolytic solution of the present invention maintains a liquid state even at a low temperature.
  • electrolytic solution of the present invention includes the following electrolytic solutions.
  • the following electrolytes include those already described.
  • electrolytic solution A The electrolytic solution of the present invention was produced as follows.
  • the obtained electrolytic solution had a volume of 20 mL, and (CF 3 SO 2 ) 2 NLi contained in this electrolytic solution was 18.38 g. This was designated as an electrolytic solution A.
  • the concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution A was 3.2 mol / L, and the density was 1.39 g / cm 3 .
  • the density was measured at 20 ° C. The production was performed in a glove box under an inert gas atmosphere.
  • Electrolytic solution B By a method similar to that for the electrolytic solution A, an electrolytic solution B having a (CF 3 SO 2 ) 2 NLi concentration of 2.8 mol / L and a density of 1.36 g / cm 3 was produced.
  • Electrolytic solution C About 5 mL of acetonitrile, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in acetonitrile in the flask. The mixture was stirred overnight when the prescribed (CF 3 SO 2 ) 2 NLi was added. The resulting electrolyte was transferred to a 20 mL volumetric flask and acetonitrile was added until the volume was 20 mL. This was designated as an electrolytic solution C. The production was performed in a glove box under an inert gas atmosphere. The electrolytic solution C had a (CF 3 SO 2 ) 2 NLi concentration of 4.2 mol / L and a density of 1.52 g / cm 3 .
  • Electrolytic solution D By a method similar to that of the electrolytic solution C, an electrolytic solution D having a concentration of (CF 3 SO 2 ) 2 NLi of 3.0 mol / L and a density of 1.31 g / cm 3 was produced.
  • Electrolytic solution F The concentration of (CF 3 SO 2 ) 2 NLi is 3.2 mol / L and the density is 1.49 g / cm 3 except that dimethyl sulfoxide is used as the organic solvent. Electrolytic solution F was produced.
  • Electrolytic solution J (Electrolytic solution J) Except that acetonitrile was used as the organic solvent, an electrolytic solution J having a concentration of (FSO 2 ) 2 NLi of 5.0 mol / L and a density of 1.40 g / cm 3 in the same manner as the electrolytic solution G Manufactured.
  • Electrolytic solution K In the same manner as the electrolytic solution J, an electrolytic solution K having a concentration of (FSO 2 ) 2 NLi of 4.5 mol / L and a density of 1.34 g / cm 3 was produced.
  • Electrolytic solution L About 5 mL of dimethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to dimethyl carbonate in the flask and dissolved. When (FSO 2 ) 2 NLi was added in a total amount of 14.64 g, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and dimethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution L. The production was performed in a glove box under an inert gas atmosphere. The concentration of (FSO 2 ) 2 NLi in the electrolytic solution L was 3.9 mol / L, and the density of the electrolytic solution L was 1.44 g / cm 3 .
  • Electrolytic solution N About 5 mL of ethyl methyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in ethyl methyl carbonate in the flask. When 12.81 g of (FSO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The obtained electrolytic solution was transferred to a 20 mL volumetric flask, and ethyl methyl carbonate was added until the volume became 20 mL. This was designated as an electrolytic solution N. The production was performed in a glove box under an inert gas atmosphere. The concentration of (FSO 2 ) 2 NLi in the electrolytic solution N was 3.4 mol / L, and the density of the electrolytic solution N was 1.35 g / cm 3 .
  • Electrolytic solution O About 5 mL of diethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stirring bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in diethyl carbonate in the flask. When 11.37 g of the total amount of (FSO 2 ) 2 NLi was added, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and diethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution O. The production was performed in a glove box under an inert gas atmosphere. The concentration of (FSO 2 ) 2 NLi in the electrolytic solution O was 3.0 mol / L, and the density of the electrolytic solution O was 1.29 g / cm 3 . Table 9 shows a list of the electrolyte solutions.
  • Non-aqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery (1) to the nonaqueous electrolyte secondary battery (5) will be specifically described below. In the following embodiments, items are described separately for convenience, and therefore may be duplicated. The following examples and EB and CB described later may correspond to a plurality of examples of the nonaqueous electrolyte secondary battery (1) to the nonaqueous electrolyte secondary battery (5). ⁇ Nonaqueous electrolyte secondary battery (1)> Example 1-1
  • a nonaqueous electrolyte secondary battery of Example 1-1 was produced using the electrolytic solution E8.
  • the graphite (A) powder used was subjected to Raman spectrum analysis.
  • the G / D ratio which is the intensity ratio of the G-band and D-band peaks, was 12.2.
  • This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 ⁇ m using a doctor blade, and a negative electrode active material layer was formed on the copper foil.
  • the current collector and the negative electrode active material layer were firmly and closely joined with a roll press. This was vacuum-dried at 120 ° C. for 6 hours to form a negative electrode having a negative electrode active material layer thickness of about 30 ⁇ m.
  • the basis weight of the negative electrode active material layer was 2.3 mg / cm 2 and the density was 0.86 g / cm 3 .
  • Nonaqueous electrolyte secondary battery A non-aqueous electrolyte secondary battery was produced using the produced negative electrode as an evaluation electrode.
  • the counter electrode was a metal lithium foil (thickness 500 ⁇ m).
  • This nonaqueous electrolyte secondary battery is a nonaqueous electrolyte secondary battery for evaluation, a so-called half cell.
  • the counter electrode was cut to ⁇ 13 mm, the evaluation electrode was cut to ⁇ 11 mm, and a separator (Whatman glass fiber filter paper) having a thickness of 400 ⁇ m was sandwiched between them to form an electrode body battery.
  • This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). Then, electrolyte solution E8 was injected, and the battery case was sealed to obtain a nonaqueous electrolyte secondary battery of Example 1-1. Details of the lithium battery of Example 1-1 and the nonaqueous electrolyte secondary batteries of the following examples and comparative examples are shown in Table 41 at the end of the column of Examples.
  • Example 1-2 Example 1-1 was used except that SNO grade graphite (average particle size 10 ⁇ m) graphite (hereinafter sometimes referred to as graphite (B)) from SEC Carbon Co. was used instead of graphite (A). A negative electrode was produced, and the nonaqueous electrolyte secondary battery of Example 1-2 was obtained in the same manner as in Example 1-1. The graphite (B) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 4.4.
  • Example 1-3 A negative electrode was prepared in the same manner as in Example 1-1 except that graphite (C) having an average particle diameter of 10 ⁇ m was used in place of graphite (A), and the other examples were the same as in Example 1-1. -3 non-aqueous electrolyte secondary battery was obtained.
  • the graphite (C) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 16.0.
  • Example 1-4 A nonaqueous electrolyte secondary battery of Example 1-4 was obtained in the same manner as Example 1-3 except that the electrolytic solution E11 was used.
  • Example 1-1 (Comparative Example 1-1) Example 1-1 was used except that graphite of the product name SG-BH (average particle size 20 ⁇ m) (hereinafter sometimes referred to as graphite (D)) of Ito Graphite Industries Co., Ltd. was used instead of graphite (A). A negative electrode was produced in the same manner, and the nonaqueous electrolyte secondary battery of Comparative Example 1-1 was obtained in the same manner as in Example 1-1. The graphite (D) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 3.4.
  • Example 1-1 was used except that instead of graphite (A), graphite with the product name SG-BH8 (average particle size: 8 ⁇ m) of Ito Graphite Industries Co., Ltd. (hereinafter sometimes referred to as graphite (E)) was used.
  • a negative electrode was produced in the same manner, and the nonaqueous electrolyte secondary battery of Comparative Example 1-2 was obtained in the same manner as in Example 1-1.
  • the graphite (E) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 3.2.
  • Comparative Example 1-3 A nonaqueous electrolyte secondary battery of Comparative Example 1-3 was obtained in the same manner as Example 1-1 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Comparative Example 1-4 A nonaqueous electrolyte secondary battery of Comparative Example 1-4 was obtained in the same manner as Example 1-2 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Comparative Example 1-5 A nonaqueous electrolyte secondary battery of Comparative Example 1-5 was obtained in the same manner as Example 1-3 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Comparative Example 1-6 A nonaqueous electrolyte secondary battery of Comparative Example 1-6 was obtained in the same manner as Comparative Example 1-1 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Comparative Example 1-7 A nonaqueous electrolyte secondary battery of Comparative Example 1-7 was obtained in the same manner as Comparative Example 1-2 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Table 6 shows the configurations of the nonaqueous electrolyte secondary batteries of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-7.
  • Example 1-5 In the non-aqueous electrolyte secondary battery of Example 1-5, the same negative electrode as in Example 1-1 was used.
  • This slurry was applied to the surface of an aluminum foil (current collector) using a doctor blade and dried to produce a positive electrode having a positive electrode active material layer having a thickness of about 25 ⁇ m.
  • NCM 523 Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 is referred to as NCM 523 as necessary.
  • ⁇ Nonaqueous electrolyte secondary battery> Using the positive electrode, the negative electrode, and the electrolytic solution E8, a laminated lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery, was manufactured. Specifically, an experimental filter paper having a thickness of 260 ⁇ m was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed. Then, the electrolyte solution of the present invention was injected into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • Example 1-6 A nonaqueous electrolyte secondary battery of Example 1-6 was produced in the same manner as Example 1-5 except that the electrolytic solution E4 was used.
  • Comparative Example 1-8 A nonaqueous electrolyte secondary battery of Comparative Example 1-8 was obtained in the same manner as Example 1-5 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • FIG. 46 shows a DSC chart of the nonaqueous electrolyte secondary batteries of Example 1-5 and Comparative Example 1-8
  • FIG. 47 shows a DSC chart of the nonaqueous electrolyte secondary batteries of Example 1-6 and Comparative Example 1-8. Respectively.
  • nonaqueous electrolyte secondary battery of Example 1-1 has a current capacity approximately twice that of Comparative Example 1-1 in the range of 0.5 C to 2 C, and can be charged at high speed.
  • Comparative Examples 1-1 and 1-2 it is difficult to improve the cycle capacity retention rate only by combining a negative electrode using graphite having a G / D ratio of less than 4 as a negative electrode active material and the electrolytic solution of the present invention. Further, as in Comparative Examples 1-3 and 1-7, when a conventional electrolyte is used, it is difficult to improve the rate capacity characteristics regardless of the G / D ratio of graphite. However, as in Examples 1-1 to 1-3, by combining the electrolytic solution of the present invention with a negative electrode using graphite having a G / D ratio of 3.5 or more as a negative electrode active material, Both the cycle capacity maintenance rate can be improved.
  • the higher the G / D ratio the more the rate capacity characteristics and the cycle capacity retention rate tend to be improved, and it is considered that the G / D ratio is more preferably 10 or more.
  • the electrolytic solution is the electrolytic solution of the present invention, and the G / D ratio is 3.5 or more. It can be understood that the rate capacity characteristics and the cycle capacity retention ratio are improved by using the graphite together.
  • Example 1--7 ⁇ Negative electrode>
  • SNO grade graphite (average particle size: 15 ⁇ m) graphite (hereinafter sometimes referred to as graphite (A)) manufactured by SEC Carbon Co., Ltd. was used. 98 parts by mass of graphite (A) as a negative electrode active material, 1 part by mass of styrene butadiene rubber as a binder, and 1 part by mass of carboxymethyl cellulose were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry-like negative electrode mixture.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the graphite (A) powder used was subjected to Raman spectrum analysis.
  • the G / D ratio which is the intensity ratio of the G-band and D-band peaks, was 12.2.
  • This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 ⁇ m using a doctor blade, and a negative electrode active material layer was formed on the copper foil.
  • the positive electrode includes a positive electrode active material layer and a current collector covered with the positive electrode active material layer.
  • the positive electrode active material layer has a positive electrode active material, a binder, and a conductive additive.
  • the positive electrode active material is made of LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
  • the binder is made of PVDF, and the conductive additive is made of AB.
  • the current collector is made of an aluminum foil having a thickness of 20 ⁇ m.
  • NCM523, PVDF and AB are mixed so as to have the above mass ratio, and NMP as a solvent is added to obtain a paste-like positive electrode material.
  • the paste-like positive electrode material was applied to the surface of the current collector using a doctor blade to form a positive electrode active material layer.
  • the positive electrode active material layer was dried at 80 ° C. for 20 minutes to remove NMP by volatilization.
  • the aluminum foil having the positive electrode active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly bonded.
  • the joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape, and a positive electrode was obtained.
  • Nonaqueous electrolyte secondary battery of Example 1-7 was obtained in the same manner as Example 1-5, except that the above positive electrode, negative electrode, and electrolytic solution E8 were used, and a cellulose nonwoven fabric (thickness 20 ⁇ m) was used as the separator. It was.
  • Comparative Example 1-9 A nonaqueous electrolyte secondary battery of Comparative Example 1-9 was obtained in the same manner as Example 1-7, except that electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Evaluation conditions are 80% charged state (SOC), 0 ° C., 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh.
  • SOC 80%, 0 ° C. is a region in which input characteristics are difficult to be obtained, for example, when used in a refrigerator room.
  • the input characteristics of Example 1-7 and Comparative Example 1-9 were evaluated three times for 2-second input and 5-second input, respectively.
  • Tables 12 and 13 show the evaluation results of the input characteristics. “2-second input” in the table means an input after 2 seconds from the start of charging, and “5-second input” means an input after 5 seconds from the start of charging.
  • Example 1-7 At both 0 ° C. and 25 ° C., the input (charging) characteristics of Example 1-7 are improved compared to Comparative Example 1-9. This is an effect obtained by using graphite having a GD ratio of 3.5 or more and the electrolytic solution of the present invention. In particular, since it exhibits a high input (charge) characteristic even at 0 ° C., lithium in the electrolytic solution even at a low temperature. It is shown that the movement of ions proceeds smoothly.
  • Example 1-8 A nonaqueous electrolyte secondary battery of Example 1-8 using the electrolytic solution E11 was produced as follows.
  • the copper foil coated with the slurry was dried to remove NMP, and then the copper foil was pressed to obtain a bonded product.
  • the obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which an active material layer was formed. This was the working electrode.
  • the mass of the active material on copper foil was 2.214 mg, and the mass of the active material per 1 cm ⁇ 2> of copper foil was 1.48 mg.
  • the density of natural graphite and PVdF before pressing was 0.68 g / cm 3
  • the density of the active material layer after pressing was 1.025 g / cm 3 .
  • the counter electrode was metal Li.
  • the working electrode, the counter electrode, and the electrolytic solution E11 were accommodated in a battery case (CR2032 type coin cell case manufactured by Hosen Co., Ltd.) having a diameter of 13.82 mm to obtain a nonaqueous electrolyte secondary battery of Example 1-8.
  • a battery case CR2032 type coin cell case manufactured by Hosen Co., Ltd.
  • Example 1-9 A nonaqueous electrolyte secondary battery of Example 1-9 was obtained in the same manner as in Example 1-8, except that electrolytic solution E8 was used instead of electrolytic solution E11.
  • Example 1-10 A nonaqueous electrolyte secondary battery of Example 1-10 was obtained in the same manner as in Example 1-8, except that electrolytic solution E16 was used instead of electrolytic solution E11.
  • Example 1-11 A nonaqueous electrolyte secondary battery of Example 1-11 was obtained in the same manner as in Example 1-8, except that electrolytic solution E19 was used instead of electrolytic solution E11.
  • Comparative Example 1-10 A nonaqueous electrolyte secondary battery of Comparative Example 1-10 was obtained in the same manner as Example 1-8 except that the electrolytic solution C5 was used instead of the electrolytic solution E11.
  • nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 are reversibly charged and discharged in the same manner as the general nonaqueous electrolyte secondary battery of Comparative Example 1-10.
  • the nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 had a capacity reduction at rates of 0.2 C, 0.5 C, and 1 C compared to the nonaqueous electrolyte secondary battery of Comparative Example 1-10. It is suppressed. From these results, it was confirmed that the nonaqueous electrolyte secondary battery of each example, that is, the nonaqueous electrolyte secondary battery of the present invention showed excellent rate characteristics. Furthermore, the nonaqueous electrolyte secondary batteries of Examples 1-8 and 1-9 are suppressed in capacity reduction even at the rate of 2C compared to the nonaqueous electrolyte secondary battery of Comparative Example 1-10. That is, the nonaqueous electrolyte secondary batteries of Examples 1-8 and 1-9 show particularly excellent rate characteristics.
  • Each non-aqueous electrolyte secondary battery is CC charged (constant current charge) to 25 ° C. and a voltage of 2.0 V, and is subjected to CC discharge (constant current discharge) to a voltage of 0.01 V.
  • a discharge cycle was performed. Specifically, first, charge / discharge is performed for 3 cycles at a charge / discharge rate of 0.1C, and then charge / discharge is performed for each charge / discharge rate in 3 cycles in the order of 0.2C, 0.5C, 1C, 2C, 5C, Finally, 3 cycles of charge and discharge were performed at 0.1 C.
  • any of the nonaqueous electrolyte secondary batteries performed a charge / discharge reaction satisfactorily and exhibited a suitable capacity retention rate.
  • the capacity retention rates of the half cells of Examples 1-9, 1-10, and 1-11 were remarkably excellent.
  • Example 1-12 A nonaqueous electrolyte secondary battery of Example 1-12 was obtained in the same manner as Example 1-2 except that the electrolytic solution E9 was used.
  • the voltage curve of the nonaqueous electrolyte secondary battery of Example 1-12 at each current rate is higher than the voltage curve of the nonaqueous electrolyte secondary battery of Comparative Example 1-4. You can see that. From this result, it was confirmed that the nonaqueous electrolyte secondary battery of the present invention exhibits excellent rate characteristics even in a low temperature environment.
  • the nonaqueous electrolyte secondary battery of Example 1-2 has a capacity higher than that of the nonaqueous electrolyte secondary battery of Comparative Example 1-4 at any rate of 0.2C, 0.5C, 1C, and 2C. The decline of the was suppressed. That is, the non-aqueous electrolyte secondary battery of Example 1-2 exhibited excellent rate characteristics. This result also confirmed that the non-aqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention exhibits excellent rate characteristics.
  • the nonaqueous electrolyte secondary battery of Comparative Example 1-4 has a tendency to increase the polarization when a current is passed at a rate of 1 C with repeated charge and discharge, and the capacity obtained from reaching 2 V to 0.01 V Fell rapidly.
  • the nonaqueous electrolyte secondary battery of Example 1-2 there was almost no increase or decrease in polarization even after repeated charge and discharge, and the capacity was suitably maintained. This can also be confirmed from the fact that the three curves overlap in FIG.
  • the reason why the polarization increased in the nonaqueous electrolyte secondary battery of Comparative Example 1-4 is that the amount sufficient for the reaction interface with the electrode due to the uneven Li concentration generated in the electrolyte when rapidly charging and discharging was repeated. It can be considered that the electrolyte solution can no longer supply Li, that is, the Li concentration of the electrolyte solution is unevenly distributed. In the non-aqueous electrolyte secondary battery of Example 1-2, it is considered that the uneven distribution of the Li concentration of the electrolytic solution could be suppressed by using the electrolytic solution of the present invention having a high Li concentration.
  • the measuring device was manufactured by Rigaku [SmartLab], and the optical system was a concentration method.
  • This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 ⁇ m using a doctor blade, and a negative electrode active material layer was formed on the copper foil.
  • Nonaqueous electrolyte secondary battery Using the negative electrode produced above as an evaluation electrode, a non-aqueous electrolyte secondary battery was produced.
  • the counter electrode was a metal lithium foil (thickness 500 ⁇ m).
  • the counter electrode was cut to ⁇ 13 mm, the evaluation electrode was cut to ⁇ 11 mm, and a separator (Whatman glass fiber filter paper) having a thickness of 400 ⁇ m was sandwiched between them to form an electrode body battery.
  • This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). Then, the electrolyte solution E8 was injected, the battery case was sealed, and the nonaqueous electrolyte secondary battery of Example 2-1 was obtained. Details of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary batteries of the following examples and comparative examples are shown in Table 42 at the end of the column of Examples.
  • Comparative Example 2-1 A nonaqueous electrolyte secondary battery of Comparative Example 2-1 was obtained in the same manner as in Example 2-1, except that the electrolytic solution C5 was used instead of the electrolytic solution E8.
  • FIG. 57 clearly shows that the nonaqueous electrolyte secondary battery of Example 2-1 can be charged and discharged. Also, from FIG. 58, the nonaqueous electrolyte secondary battery of Example 2-1 has better rate capacity characteristics than the nonaqueous electrolyte secondary battery of Comparative Example 2-1, and functions as a battery for high-speed charging and high input / output. I understand that
  • Example 2-2 A negative electrode was produced in the same manner as in Example 1-1 except that soft carbon having a crystallite size (L) of 4.2 nm was selected and this soft carbon was used. A nonaqueous electrolyte secondary battery of Example 2-2 was obtained in the same manner as Example 1-1 except that this negative electrode was used.
  • Example 2-3 A nonaqueous electrolyte secondary battery of Example 2-3 was obtained in the same manner as Example 2-1, except that the electrolytic solution E11 was used.
  • Example 2-4 A nonaqueous electrolyte secondary battery of Example 2-4 was obtained in the same manner as Example 2-2, except that the same electrolytic solution E11 as in Example 2-3 was used.
  • Comparative Example 2-2 A negative electrode was produced in the same manner as in Example 2-1, except that graphite having a crystallite size (L) of 28 nm was selected and this graphite was used. A nonaqueous electrolyte secondary battery of Comparative Example 2-2 was obtained in the same manner as in Example 2-1, except that this negative electrode was used.
  • Example 2-3 A negative electrode was produced in the same manner as in Example 2-1, except that graphite having a crystallite size (L) of 42 nm was selected and this graphite was used.
  • a nonaqueous electrolyte secondary battery of Comparative Example 2-3 was obtained in the same manner as Example 2-1, except that this negative electrode was used.
  • Example 2-4 Using the same hard carbon as in Example 2-1, a negative electrode was produced in the same manner as in Example 2-1.
  • a nonaqueous electrolyte secondary battery of Comparative Example 2-4 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Example 2-5 Using the same soft carbon as in Example 2-2, a negative electrode was produced in the same manner as in Example 2-1.
  • a nonaqueous electrolyte secondary battery of Comparative Example 2-5 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Comparative Example 2-6 A negative electrode was produced in the same manner as in Comparative Example 2-2.
  • a nonaqueous electrolyte secondary battery of Comparative Example 2-6 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Comparative Example 2--7 A negative electrode was produced in the same manner as in Comparative Example 2-3.
  • a nonaqueous electrolyte secondary battery of Comparative Example 2-7 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  • Example 3-1 A nonaqueous electrolyte secondary battery of Example 3-1 was manufactured using the above-described electrolytic solution E8 and a negative electrode active material made of silicon-carbon composite powder.
  • the silicon-carbon composite powder is obtained by mixing Si powder having a particle diameter of 50 nm and acetylene black at a mass ratio of 6: 4 and using a planetary ball mill to form a composite.
  • lithium foil metallic lithium
  • electrolytic solution E8 electrolytic solution E8
  • a non-aqueous electrolyte secondary battery was manufactured using the above negative electrode, positive electrode and electrolyte. Specifically, a Whatman glass fiber filter paper having a thickness of 400 ⁇ m was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. This electrode group was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). An electrolytic solution was further injected into the battery case. After injecting the electrolyte, the battery case was sealed to obtain the nonaqueous electrolyte secondary battery of Example 3-1. Details of the nonaqueous electrolyte secondary battery of Example 4-1 and each of the following batteries are shown in Table 43 at the end of the column of the example.
  • Example 3-2 The nonaqueous electrolyte secondary battery of Example 3-2 is the same as the nonaqueous electrolyte secondary battery of Example 3-1, except for the composition of the negative electrode mixture.
  • the negative electrode mixture in the non-aqueous electrolyte secondary battery of Example 3-2 was 75 parts by mass of silicon-carbon composite powder as the negative electrode active material, 15 parts by mass of graphite as the negative electrode active material, and as the binder. And 10 parts by mass of polyamideimide (PAI).
  • PAI polyamideimide
  • Example 3-3 The nonaqueous electrolyte secondary battery of Example 3-3 is the same as the nonaqueous electrolyte secondary battery of Example 3-2 except that the electrolytic solution E11 is used.
  • Comparative Example 3-1 The non-aqueous electrolyte secondary battery of Comparative Example 3-1 is the same as the non-aqueous electrolyte secondary battery of Example 3-1 except that the electrolytic solution C5 was used.
  • Comparative Example 3-2 The nonaqueous electrolyte secondary battery of Comparative Example 3-2 is the same as the nonaqueous electrolyte secondary battery of Example 3-2 except that the same electrolytic solution C5 as Comparative Example 3-1 was used.
  • the constant current (CC) charge / discharge was performed with respect to each nonaqueous electrolyte secondary battery.
  • the voltage range was 2V to 0.01V, and the C rate was 0.1C.
  • Table 19 shows the discharge capacity of each non-aqueous electrolyte secondary battery.
  • the charge / discharge curves of the nonaqueous electrolyte secondary batteries of Example 3-2 and Comparative Example 3-2 are shown in FIG.
  • a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 3-3 is shown in FIG.
  • Example 3-1 and Comparative Example 3-1 use the same negative electrode mixture
  • Example 3-2 and Comparative Example 3-2 use the same negative electrode mixture.
  • the non-aqueous electrolyte secondary battery of Example 3-1 using the same negative electrode mixture was compared with the non-aqueous electrolyte secondary battery of Comparative Example 3-1, and Example 3-2 using the same negative electrode mixture
  • the discharge capacity of the non-aqueous electrolyte secondary battery is improved by using the electrolyte solution of the present invention as the electrolyte solution.
  • the nonaqueous electrolyte secondary battery using DMC as the organic solvent for the electrolytic solution is similar to the nonaqueous electrolyte secondary battery of the example. It turns out that it fully charges / discharges. From this result, it can be seen that the electrolytic solution of the present invention using a chain carbonate as an organic solvent is also useful for combining with a composite material of silicon and carbon.
  • Example 4-1 A nonaqueous electrolyte secondary battery of Example 4-1 was manufactured using the above-described electrolytic solution E8.
  • the negative electrode in the nonaqueous electrolyte secondary battery of Example 4-1 includes a negative electrode active material, a binder, and a conductive additive.
  • a negative electrode active material 90 parts by mass of lithium titanate (Li 4 Ti 5 O 12 , so-called LTO) as a negative electrode active material, 2 parts by mass of SBR as a binder, 2 parts by mass of CMC as a binder, and ketjen black (as a conductive additive) 6 parts by weight of KB) was taken and mixed.
  • This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry-like negative electrode mixture.
  • This negative electrode mixture was applied to the negative electrode current collector in a film form using a doctor blade.
  • the negative electrode current collector a copper foil having a thickness of 20 ⁇ m was used.
  • the composite of the negative electrode mixture and the negative electrode current collector was dried and then pressed using a roller press to obtain a bonded product.
  • the bonded product after pressing was heated in a vacuum dryer at 100 ° C. for 6 hours, and cut into a predetermined shape to obtain a negative electrode.
  • the nonaqueous electrolyte secondary battery of Example 4-1 As the positive electrode in the nonaqueous electrolyte secondary battery of Example 4-1, lithium foil (metallic lithium) was used. That is, the nonaqueous electrolyte secondary battery of Example 4-1 is a half cell for evaluation. By charging and discharging the half cell, the effect of the negative electrode and the electrolyte on the battery characteristics of the nonaqueous electrolyte secondary battery can be evaluated.
  • a non-aqueous electrolyte secondary battery was manufactured using the above negative electrode, positive electrode, and electrolytic solution E8. Specifically, a Whatman glass fiber filter paper having a thickness of 400 ⁇ m was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. This electrode group was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). An electrolytic solution was further injected into the battery case. After injecting the electrolytic solution, the battery case was sealed to obtain the nonaqueous electrolyte secondary battery of Example 4-1. Details of the nonaqueous electrolyte secondary battery of Example 4-1 and each of the following batteries are shown in Table 44 at the end of the column of the example.
  • Example 4-2 The nonaqueous electrolyte secondary battery of Example 4-2 was manufactured in the same manner as Example 4-1, except that the electrolytic solution E11 was used instead of the electrolytic solution E8.
  • Example 4-3 The nonaqueous electrolyte secondary battery of Example 4-3 was manufactured in the same manner as Example 4-1, except that the electrolytic solution E13 was used instead of the electrolytic solution E8.
  • Example 4-1 The nonaqueous electrolyte secondary battery of Comparative Example 1 is different from Example 4-1 in the components of the electrolytic solution. In the nonaqueous electrolyte secondary battery of Comparative Example 4-1, the electrolytic solution C5 was used. Other configurations are the same as those of the embodiment 4-1.
  • FIG. 61 shows the charge / discharge curve (second cycle) of the nonaqueous electrolyte secondary battery of Example 4-1
  • FIG. 62 shows the charge / discharge curve (second cycle) of the half cell of Comparative Example 4-1. Based on the charge / discharge curves shown in FIG. 61 and FIG.
  • Example 4-1 discharge of the nonaqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1
  • the energy density at the time (mWh / g) and the charge / discharge efficiency (%) were calculated.
  • the energy density is a density per 1 g of the negative electrode active material layer (that is, solid mass of LTO, binder, etc.).
  • the charge / discharge efficiency was calculated based on (energy density during discharge / energy density during charge) ⁇ 100 (%).
  • Table 20 shows the energy density and charge / discharge efficiency of the nonaqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1. Charge / discharge efficiency can also be rephrased as energy efficiency.
  • the non-aqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1 using lithium titanium oxide (LTO) as the negative electrode active material differ only in the electrolyte solution.
  • LTO lithium titanium oxide
  • the energy density and the charge / discharge efficiency vary greatly depending on the electrolyte.
  • the non-aqueous electrolyte secondary battery of Example 4-1 using the electrolytic solution of the present invention has a higher energy than the non-aqueous electrolyte secondary battery of Comparative Example 4-1 using a normal electrolytic solution. High density and excellent charge / discharge efficiency. As shown in FIGS.
  • the magnitude of polarization in the nonaqueous electrolyte secondary battery of Example 4-1 is the same as that of the nonaqueous electrolyte 2 of Comparative Example 4-1. It is smaller than the magnitude of polarization in the secondary battery. Therefore, it is considered that the nonaqueous electrolyte secondary battery of Example 4-1 is superior in energy density and charge / discharge efficiency as compared with the nonaqueous electrolyte secondary battery of Comparative Example 4-1.
  • the electrolyte solution of the present invention used in the nonaqueous electrolyte secondary battery of Example 4-1 contains a large amount of cation of the supporting salt. In the nonaqueous electrolyte secondary battery of Example 4-1, It is presumed that since the cation is sufficiently supplied to the negative electrode, the reaction resistance is lowered and the polarization is suppressed.
  • non-aqueous electrolyte secondary battery of Example 4-1 uses lithium titanium oxide as the negative electrode active material. For this reason, the non-aqueous electrolyte secondary battery of Example 4-1 is provided with excellent cycle characteristics derived from lithium titanium oxide.
  • the working voltage range was 1.3 V to 2.5 V (Li standard), and the C rate was 0.1 C.
  • CC charging / discharging was repeated 3 cycles.
  • the charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 4-2 is shown in FIG. 63
  • the charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 4-3 is shown in FIG. As shown in FIGS.
  • Example 5-1 A nonaqueous electrolyte secondary battery of Example 5-1 was produced using the electrolytic solution E8.
  • ⁇ Negative electrode> 98 parts by mass of Ito Graphite Industries Co., Ltd. product name SG-BH8 (average particle size 8 ⁇ m), and 1 part by mass of SBR and 1 part by mass of CMC as a binder were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry.
  • the graphite particles used had an aspect ratio of 2.1, and I (110) / I (004) measured by X-ray diffraction was 0.035.
  • the aspect ratio was calculated by measuring the major axis and the minor axis of the active material section using a scanning electron microscope (SEM) after preparing an electrode section observation sample using a JEOL cross section polisher.
  • SEM scanning electron microscope
  • X-ray diffraction was measured by Rigaku [SmartLab], using an optical system using a concentration method, and I (110) / I (004) was calculated from the ratio of integrated intensities of I (110) and I (004). .
  • the slurry was applied in the form of a film using a doctor blade on the surface of an electrolytic copper foil (current collector) having a thickness of 20 ⁇ m.
  • the copper foil coated with the slurry was dried to remove water, and then the copper foil was pressed to obtain a bonded product.
  • the obtained joined product was dried by heating at 100 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which a negative electrode active material layer was formed. This was used as a negative electrode.
  • the basis weight of the negative electrode active material layer in this negative electrode was about 8.5 mg / cm 2 .
  • the positive electrode includes a positive electrode active material layer and a current collector covered with the positive electrode active material layer.
  • the positive electrode active material layer has a positive electrode active material, a binder, and a conductive additive.
  • the positive electrode active material is NCM523.
  • the binder is made of PVdF.
  • the conductive auxiliary agent is made of AB.
  • the current collector is made of an aluminum foil having a thickness of 20 ⁇ m.
  • NCM523, PVdF and AB are mixed so as to have the above mass ratio, and NMP as a solvent is added to obtain a paste-like positive electrode material.
  • the paste-like positive electrode material was applied to the surface of the current collector using a doctor blade to form a positive electrode active material layer.
  • the positive electrode active material layer was dried at 80 ° C. for 20 minutes to remove NMP by volatilization.
  • the aluminum foil having the positive electrode active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly bonded.
  • the joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape, and a positive electrode was obtained.
  • ⁇ Nonaqueous electrolyte secondary battery> Using the positive electrode, the negative electrode, and the electrolytic solution E8, a laminated lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery, was manufactured. Specifically, a cellulose nonwoven fabric (thickness 20 ⁇ m) was sandwiched as a separator between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution was poured into the bag-like laminated film.
  • this lithium ion secondary battery is referred to as the nonaqueous electrolyte secondary battery of Example 5-1. Details of the non-aqueous electrolyte secondary battery of Example 5-1 and each of the following batteries are shown in Table 45 at the end of the column of the example.
  • Example 5-1 A negative electrode was produced in the same manner as in Example 5-1, except that graphite having an aspect ratio of 6.5 (SNO grade (average particle size: 10 ⁇ m) from SEC Carbon Co., Ltd.) was used as the active material. A negative electrode having the same basis weight as in Example 5-1 was formed. Other than that, a nonaqueous electrolyte secondary battery of Comparative Example 5-1 was obtained in the same manner as Example 5-1. I (110) / I (004) measured by X-ray diffraction was 0.027.
  • Comparative Example 5-2 A nonaqueous electrolyte secondary battery of Comparative Example 5-2 was obtained in the same manner as in Example 5-1, except that the electrolytic solution C5 was used instead of the electrolytic solution E8.
  • Evaluation conditions are 80% charged state (SOC), 0 ° C., 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh.
  • SOC 80%, 0 ° C. is a region in which input characteristics are difficult to be obtained, for example, when used in a refrigerator room.
  • the input characteristics of Example 5-1 and Comparative Examples 5-1 and 5-2 were evaluated three times for 2-second input and 5-second input, respectively.
  • Tables 21 and 22 show the evaluation results of the input characteristics. “2-second input” in the table means an input after 2 seconds from the start of charging, and “5-second input” means an input after 5 seconds from the start of charging.
  • Example 5-1 and Comparative Example 5-1 the electrolytic solution of the present invention used in Example 5-1 and Comparative Example 5-1 is abbreviated as “FSA”, and the electrolytic solution used in Comparative Example 5-2 is designated as “ECPF”. Abbreviated.
  • Example 5-1 At both 0 ° C. and 25 ° C., the input / output characteristics of Example 5-1 are improved compared to Comparative Example 5-1 and Comparative Example 5-2.
  • graphite having a predetermined aspect ratio since it exhibits high input / output characteristics even at 0 ° C., the migration of lithium ions in the electrolytic solution can be achieved even at low temperatures. It has been shown to proceed smoothly.
  • the positive electrode includes a positive electrode active material layer and a current collector covered with the positive electrode active material layer.
  • the positive electrode active material layer has a positive electrode active material, a binder, and a conductive additive.
  • the positive electrode active material is NCM523.
  • the binder is made of PVdF.
  • the conductive auxiliary agent is made of AB.
  • the current collector is made of an aluminum foil having a thickness of 20 ⁇ m.
  • NCM523, PVdF and AB were mixed at the above mass ratio, and NMP as a solvent was added to obtain a paste-like positive electrode mixture.
  • the paste-like positive electrode mixture was applied to the surface of the current collector using a doctor blade to form a positive electrode active material layer.
  • the positive electrode active material layer was dried at 80 ° C. for 20 minutes to remove NMP by volatilization.
  • the aluminum foil having the positive electrode active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly bonded.
  • the joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape, and a positive electrode was obtained.
  • the negative electrode includes a negative electrode active material layer and a current collector covered with the negative electrode active material layer.
  • the negative electrode active material layer has a negative electrode active material and a binder.
  • 98 parts by mass of graphite as a negative electrode active material and 1 part by mass of SBR and 1 part by mass of CMC were mixed as a binder. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry-like negative electrode mixture.
  • the slurry-like negative electrode mixture was applied to a copper foil having a thickness of 20 ⁇ m, which is a negative electrode current collector, so as to form a film using a doctor blade to form a negative electrode active material layer.
  • the composite material of the negative electrode active material layer and the current collector was dried and pressed, and the bonded product after pressing was heated in a vacuum dryer at 100 ° C. for 6 hours, cut into a predetermined shape, and used as a negative electrode.
  • the graphite particles used had an aspect ratio of 2.1.
  • Nonaqueous electrolyte secondary battery of Example 5-2 was obtained in the same manner as in Example 5-1, except that the above positive electrode and negative electrode were used and the above-described electrolytic solution E11 was used as the electrolytic solution.
  • Comparative Example 5-3 A nonaqueous electrolyte secondary battery of Comparative Example 5-3 was obtained in the same manner as in Example 5-2 except that the electrolytic solution C5 was used instead of the electrolytic solution E11.
  • Example 25 Cycle durability
  • the battery was charged to 4.1 V under the conditions of CC charging at a temperature of 25 ° C. and 1 C, and after resting for 1 minute, the CC of 1 C
  • a cycle test was conducted by repeating 500 cycles of discharging to 3.0 V and resting for 1 minute.
  • the discharge capacity retention ratio at the 500th cycle was measured, and the results are shown in Table 23.
  • the discharge capacity retention ratio is a value obtained as a percentage of the value obtained by dividing the discharge capacity at the 500th cycle by the initial discharge capacity ((discharge capacity at the 500th cycle) / (initial discharge capacity) ⁇ 100).
  • FIG. 65 shows the change in the discharge capacity retention rate during the cycle test.
  • the amount of voltage change when the CC discharge was performed for 10 seconds at 3 C was measured from the difference between the post-voltage and the current value according to Ohm's law.
  • the non-aqueous electrolyte secondary battery of Example 5-2 has a low resistance even after cycling.
  • the nonaqueous electrolyte secondary battery of Example 5-2 has a high capacity retention rate and is hardly deteriorated.
  • the nonaqueous electrolyte secondary battery of the present invention can take will be described in more detail with reference to test examples and reference test examples.
  • the non-aqueous electrolyte secondary battery of the test example is EB
  • the non-aqueous electrolyte secondary battery of the reference test example is CB.
  • the difference between EB and CB lies in the electrolytic solution, and EB uses the electrolytic solution of the present invention.
  • a film S, O-containing film
  • the following nonaqueous electrolyte secondary batteries include those described above.
  • a nonaqueous electrolyte secondary battery EB1 using the electrolytic solution E8 was produced as follows.
  • the positive electrode was produced in the same manner as the positive electrode of the non-aqueous electrolyte secondary battery in Example 5-1, and the negative electrode was produced in the same manner as the negative electrode in the non-aqueous electrolyte secondary battery in Example 5-2.
  • a nonaqueous electrolyte secondary battery EB1 was obtained in the same manner as in Example 5-1, except that experimental filter paper (Toyo Filter Paper Co., Ltd., cellulose, thickness: 260 ⁇ m) was used as the separator.
  • experimental filter paper Toyo Filter Paper Co., Ltd., cellulose, thickness: 260 ⁇ m
  • the nonaqueous electrolyte secondary battery EB2 is the same as EB1 except that the electrolytic solution E4 is used.
  • the nonaqueous electrolyte secondary battery EB3 is the same as EB1 except that the electrolytic solution E11 is used.
  • the nonaqueous electrolyte secondary battery EB4 is the same as EB1 except that the electrolytic solution E11 is used, the mixing ratio of the positive electrode active material, the conductive additive and the binder, and the separator.
  • the basis weight of the active material layer in the positive electrode was 5.5 mg / cm 2 and the density was 2.5 g / cm 3 .
  • the basis weight of the active material layer in the negative electrode was 3.8 mg / cm 2 , and the density was 1.1 g / cm 3 .
  • a cellulose nonwoven fabric with a thickness of 20 ⁇ m was used as the separator.
  • the nonaqueous electrolyte secondary battery EB5 is the same as EB4 except that the electrolytic solution E8 is used.
  • EB6 In the nonaqueous electrolyte secondary battery EB6, the type of the binder for the negative electrode and the mixing ratio of the negative electrode active material and the binder are the same as those of EB4.
  • the nonaqueous electrolyte secondary battery EB7 is the same as EB6 except that the electrolytic solution E8 is used.
  • the nonaqueous electrolyte secondary battery CB1 is the same as EB1 except that the electrolytic solution C5 is used.
  • the nonaqueous electrolyte secondary battery CB2 is the same as EB4 except that the electrolytic solution C5 is used.
  • the nonaqueous electrolyte secondary battery CB3 is the same as EB6 except that the electrolytic solution C5 is used.
  • the film formed on the negative electrode surface of EB1 to EB7 is abbreviated as the negative electrode S, O-containing film of EB1 to EB7, and the film formed on the negative electrode surface of CB1 to CB3 is referred to as CB1 to CB3.
  • CB3 negative electrode film Abbreviated as CB3 negative electrode film.
  • the film formed on the surface of the positive electrode in EB1 to EB7 is abbreviated as the film containing the positive electrode S, O of EB1 to EB7, and the film formed on the surface of the positive electrode in CB1 to CB3 is made of CB1 to CB3.
  • FIG. 70 shows the result of analysis for elemental sulfur.
  • the electrolytic solution in EB1 and the electrolytic solution in EB2 contain sulfur element (S), oxygen element and nitrogen element (N) in the salt.
  • the electrolyte solution in CB1 does not contain these in the salt.
  • the electrolyte solutions in EB1, EB2, and CB1 all contain a fluorine element (F), a carbon element (C), and an oxygen element (O) in the salt.
  • each of the negative electrode S, O-containing film and the negative electrode film contains a component derived from the chemical structure of the anion of the metal salt (that is, the supporting salt).
  • S elemental sulfur
  • FIG. 70 The analysis result of elemental sulfur (S) shown in FIG. 70 was analyzed in more detail. About the analysis result of EB1 and EB2, peak separation was performed using the Gauss / Lorentz mixed function. 71 shows the analysis result of EB1, and FIG. 72 shows the analysis result of EB2.
  • the negative electrode film of CB1 did not contain S exceeding the detection limit, but S was detected from the negative electrode S, O-containing film of EB1 and the negative electrode S, O-containing film of EB2. Further, the negative electrode S, O-containing film of EB1 contained more S than the negative electrode S, O-containing film of EB2. Since S was not detected from the negative electrode S, O-containing film of CB1, S contained in the negative electrode S, O-containing film of each test example was derived from inevitable impurities and other additives contained in the positive electrode active material. It can be said that it originates from the metal salt in the electrolyte solution.
  • the S element ratio in the negative electrode S, O-containing film of EB1 is 10.4 atomic% and the S element ratio in the negative electrode S, O-containing film of EB2 is 3.7 atomic%
  • the S element ratio in the negative electrode S, O-containing film is 2.0 atomic% or more, preferably 2.5 atomic% or more, more preferably 3.0 atomic% or more, More preferably, it is 3.5 atomic% or more.
  • the elemental ratio (atomic%) of S indicates the peak intensity ratio of S when the sum of the peak intensities of S, N, F, C, and O is 100% as described above.
  • the upper limit value of the element ratio of S is not particularly defined, but to be strong, it should be 25 atomic% or less.
  • FIGS. 73 is a BF (Bright-field) -STEM image
  • FIGS. 74 to 76 are element distribution images by STEM-EDX in the same observation region as FIG. 74 shows the analysis result for C
  • FIG. 75 shows the analysis result for O
  • FIG. 76 shows the analysis result for S. 74 to 76 show the analysis results of the negative electrode in the discharged nonaqueous electrolyte secondary battery.
  • FIG. 73 there is a black portion in the upper left part of the STEM image. This black part is derived from Pt deposited in the pretreatment of FIB processing.
  • a portion above the Pt-derived portion (referred to as a Pt portion) can be regarded as a contaminated portion after Pt deposition. Therefore, in FIGS. 74 to 76, only the portion below the Pt portion was examined.
  • C was layered below the Pt portion. This is considered to be a layered structure of graphite as a negative electrode active material.
  • O exists in the part corresponding to the outer periphery and interlayer of graphite.
  • S exists in the part corresponding to the outer periphery and interlayer of graphite. From these results, it is surmised that the negative electrode S, O-containing film containing S and O, such as the S ⁇ O structure, is formed between the surface and the interlayer of graphite.
  • the thickness of the negative electrode S, O-containing film increases after charging. From this result, it is presumed that the negative electrode S, O-containing film has a fixing portion that stably exists with respect to charging and discharging and an adsorption portion that increases and decreases with charging and discharging. And it is estimated that the thickness of the negative electrode S, O-containing film increased or decreased during charging / discharging due to the presence of the adsorbing portion.
  • the positive electrode S, O-containing film of EB1 also contains S and O.
  • the positive electrode S, O-containing film of EB1 also has an S ⁇ O structure derived from the electrolytic solution of the present invention, like the negative electrode S, O-containing film of EB1. I understand that.
  • the height of the peak existing in the vicinity of 529 eV decreases after the cycle.
  • This peak is considered to indicate the presence of O derived from the positive electrode active material.
  • photoelectrons excited by O atoms in the positive electrode active material pass through the S, O-containing coating and are detected. It is thought that it was done. Since this peak decreased after the cycle, it is considered that the thickness of the S, O-containing film formed on the positive electrode surface increased with the cycle.
  • O and S in the positive electrode S and O-containing film increased during discharging and decreased during charging. From this result, it is considered that O and S enter and leave the positive electrode S and O-containing film with charge and discharge. From this fact, the concentration of S and O in the positive electrode S and O-containing coating is increased or decreased during charging or discharging, or the presence of an adsorbing portion in the positive electrode S and O-containing coating as well as the negative electrode S and O-containing coating. It is estimated that the thickness increases or decreases.
  • the positive electrode S, O-containing coating and the negative electrode S, O-containing coating were analyzed by XPS.
  • EB4 was set to 25 ° C. and a working voltage range of 3.0 V to 4.1 V, and CC charge / discharge was repeated 500 cycles at a rate of 1C.
  • the XPS spectrum of the positive electrode S, O-containing film was measured in a discharge state of 3.0 V and a charge state of 4.0 V.
  • the negative electrode S, O-containing coating in the 3.0V discharge state before the cycle test (that is, after the first charge / discharge) and the negative electrode S, O-containing coating in the 3.0V discharge state after 500 cycles are measured by XPS.
  • FIG. 79 and FIG. 80 show the analysis results of the positive electrode S, O-containing film of EB4 measured by XPS. Specifically, FIG. 79 shows the analysis result for sulfur element, and FIG. 80 shows the analysis result for oxygen element.
  • Table 26 shows the S element ratio (atomic%) of the negative electrode S, O-containing coating. The S element ratio was calculated in the same manner as the above-mentioned item “S element ratio of negative electrode S, O-containing film”.
  • the negative electrode S, O-containing film of EB4 contained 2.0 atomic% or more of S even after the first charge / discharge and after 500 cycles. From this result, it can be seen that the negative electrode S, O-containing film in the nonaqueous electrolyte secondary battery of the present invention contains 2.0 atomic% or more of S before or after the cycle.
  • EB4 to EB7 and CB2 and CB3 were subjected to a high temperature storage test that was stored at 60 ° C. for 1 week.
  • the positive electrode S, O-containing film and negative electrode S, O-containing film of EB4 to EB7, and CB2, CB3 The positive electrode film and the negative electrode film were analyzed.
  • CC-CV charging was performed at a rate of 0.33 C from 3.0 V to 4.1 V.
  • the charge capacity at this time was set as a standard (SOC100), 20% of the standard was CC discharged and adjusted to SOC80, and then a high-temperature storage test was started.
  • CC-CV discharge was performed to 3.0V at 1C.
  • membrane was measured.
  • 81 to 84 show the analysis results of the positive electrode S, O-containing films of EB4 to EB7 and the positive electrode films of CB2 and CB3 measured by XPS.
  • 85 to 88 show the analysis results of the EB4 to EB7 negative electrode S, O-containing films and the CB2 and CB3 negative electrode films measured by XPS.
  • FIG. 81 shows the analysis results for the elemental sulfur in the positive electrode S, O-containing coatings of EB4 and EB5 and the positive electrode coating of CB2.
  • FIG. 82 shows the analysis results of the elemental sulfur of the positive electrode S, O-containing film of EB6 and EB7 and the positive electrode film of CB3.
  • FIG. 83 shows the analysis results of oxygen elements in the positive electrode S, O-containing film of EB4 and EB5 and the positive electrode film of CB2.
  • FIG. 84 shows analysis results of oxygen elements in the positive electrode S, O-containing films of EB6 and EB7 and the positive electrode film of CB3.
  • FIG. 81 shows the analysis results for the elemental sulfur in the positive electrode S, O-containing coatings of EB4 and EB5 and the positive electrode coating of CB2.
  • FIG. 82 shows the analysis results of the elemental sulfur of the positive electrode S, O-containing film of EB6 and EB7 and the positive electrode film of CB3.
  • FIG. 83 shows
  • FIG. 85 shows the analysis results of sulfur elements in the negative electrode S, O-containing films of EB4 and EB5 and the negative electrode film of CB2.
  • FIG. 86 shows the analysis results of sulfur elements in the negative electrode S, O-containing films of EB6 and EB7 and the negative electrode film of CB3.
  • FIG. 87 shows the results of analysis of oxygen elements in the negative electrode S, O-containing films of EB4 and EB5 and the negative electrode film of CB2.
  • FIG. 88 shows the analysis results of oxygen elements in the negative electrode S, O-containing films of EB6 and EB7 and the negative electrode film of CB3.
  • CB2 and CB3 using the conventional electrolytic solution do not contain S in the positive electrode film
  • EB4 to EB7 using the electrolytic solution of the present invention contain positive electrodes S and O.
  • the film contained S.
  • EB4 to EB7 all contained O in the positive electrode S, O-containing coating.
  • a peak around 170 eV indicating the presence of SO 2 (S ⁇ O structure) was detected from the positive electrode S, O-containing films in EB4 to EB7.
  • a stable positive electrode S containing S and O is used both when AN is used as the organic solvent for the electrolytic solution and when DMC is used. It can be seen that an O-containing film is formed. Moreover, since this positive electrode S, O containing film is not influenced by the kind of negative electrode binder, it is thought that O in the positive electrode S, O containing film does not originate in CMC. Further, as shown in FIGS. 83 and 84, when DMC was used as the organic solvent for the electrolyte, an O peak derived from the positive electrode active material was detected in the vicinity of 530 eV. For this reason, when DMC is used as the organic solvent for the electrolytic solution, it is considered that the thickness of the positive electrode S, O-containing film is thinner than when AN is used.
  • the XPS spectra of the negative electrode S, O-containing film and the negative electrode film after the above high-temperature storage test and discharge were measured, and the discharge in the negative electrode S, O-containing film of EB4, EB5 and the negative electrode film of CB2
  • the ratio of S element at the time was calculated. Specifically, for each negative electrode S, O-containing film or negative electrode film, the element ratio of S was calculated when the sum of the peak intensities of S, N, F, C, and O was 100%. The results are shown in Table 27.
  • the negative electrode film of CB2 did not contain S exceeding the detection limit, but S was detected from the negative electrode S, O-containing films of EB4 and EB5. Further, the negative electrode S, O-containing film of EB5 contained more S than the negative electrode S, O-containing film of EB4. Further, from this result, it is understood that the S element ratio in the negative electrode S, O-containing film is 2.0 atomic% or more even after high temperature storage.
  • EB8 uses the electrolytic solution E11.
  • E11 is the same as the nonaqueous electrolyte secondary battery of Example 5-1, except for the composition of the negative electrode mixture, the mixing ratio of the negative electrode active material and the conductive additive, the separator, and the electrolytic solution.
  • EB9 uses the electrolytic solution E13.
  • EB9 is the same as EB8 except for the electrolytic solution.
  • EB10 is the same as EB8 except that electrolytic solution E8 is used.
  • CB4 is the same as EB8 except that electrolytic solution C5 is used.
  • CC charging / discharging that is, constant current charging / discharging
  • room temperature in the range of 3.0 V to 4.1 V (vs. Li standard).
  • the AC impedance after the first charge / discharge and the AC impedance after 100 cycles were measured.
  • the reaction resistances of the electrolytic solution, the negative electrode, and the positive electrode were each analyzed.
  • FIG. 89 two circular arcs were seen in the complex impedance plane plot. The arc on the left side of the figure (that is, the side where the real part of the complex impedance is small) is called the first arc.
  • the arc on the right side in the figure is called the second arc.
  • the reaction resistance of the negative electrode was analyzed based on the size of the first arc
  • the reaction resistance of the positive electrode was analyzed based on the size of the second arc.
  • the resistance of the electrolytic solution was analyzed based on the leftmost plot in FIG. 89 continuous with the first arc.
  • Table 28 shows the resistance (so-called solution resistance) of the electrolytic solution after the first charge / discharge, the reaction resistance of the negative electrode, and the reaction resistance of the positive electrode
  • Table 29 shows each resistance after 100 cycles.
  • the negative electrode reaction resistance and the positive electrode reaction resistance after 100 cycles tend to be lower than the respective resistances after the first charge / discharge.
  • each non-aqueous electrolyte secondary battery has a difference in durability even though the same polymer (CMC-SBR) having a hydrophilic group is used as a binder for the negative electrode. That is, after 100 cycles shown in Table 29, the negative electrode reaction resistance and the positive electrode reaction resistance of the nonaqueous electrolyte secondary batteries of EB8, EB9, and EB10 are the negative electrode reaction resistance and the positive electrode reaction resistance of the nonaqueous electrolyte secondary battery of CB4.
  • CMC-SBR polymer having a hydrophilic group
  • the non-aqueous electrolyte secondary battery of CB4 did not use the electrolytic solution of the present invention, whereas the non-aqueous electrolyte secondary batteries of EB8, EB9, and EB10 used the electrolytic solution of the present invention. It is thought to be caused by. That is, it can be said that the nonaqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention is excellent in durability because the reaction resistance is reduced after the cycle.
  • EB8, EB9, and EB10 use the electrolytic solution of the present invention, and S and O-containing films derived from the electrolytic solution of the present invention are formed on the surfaces of the negative electrode and the positive electrode.
  • CB4 which does not use the electrolytic solution of the present invention, the S, O-containing film is not formed on the surfaces of the negative electrode and the positive electrode.
  • the negative electrode reaction resistance and the positive electrode reaction resistance of EB8, EB9, and EB10 are lower than CB4. From this, in each test example, it is guessed that the negative electrode reaction resistance and the positive electrode reaction resistance were reduced due to the presence of the S, O-containing film derived from the electrolytic solution of the present invention.
  • the solution resistance of the electrolyte solution in EB10 and CB4 is substantially the same, and the solution resistance of the electrolyte solution in EB8 and EB9 is higher than that of EB10 and CB4.
  • the solution resistance of each electrolyte solution in each non-aqueous electrolyte secondary battery is substantially the same after the first charge / discharge and after 100 cycles. For this reason, it is considered that durability deterioration of each electrolyte solution does not occur, and the difference between the negative electrode reaction resistance and the positive electrode reaction resistance generated in the above reference test examples and test examples is not related to the durability deterioration of the electrolyte solution. It is thought that this occurs in the electrode itself.
  • the internal resistance of the non-aqueous electrolyte secondary battery can be comprehensively determined from the solution resistance of the electrolytic solution, the reaction resistance of the negative electrode, and the reaction resistance of the positive electrode. Based on the results of Table 28 and Table 29, it can be said that EB8 and EB9 are particularly excellent in durability, and then EB10 is excellent in durability from the viewpoint of suppressing the increase in internal resistance of the nonaqueous electrolyte secondary battery. .
  • EC in the electrolytic solution is considered to be a material for the SEI film.
  • EC is blended in the electrolytic solution.
  • EB8 EB9, and EB10 did not include EC as a material for SEI, they exhibited a capacity retention rate equivalent to that of CB4 including EC. This is thought to be because the S and O-containing coating derived from the electrolytic solution of the present invention is present on the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of each test example.
  • EB8 showed a very high capacity retention rate even after 500 cycles, and was particularly excellent in durability. Therefore, when DMC was selected as the organic solvent, it was more durable than when AN was selected. It can be said that the property is improved.
  • the remaining capacity of EB8 and EB10 is larger than the remaining capacity of CB4. From this result, it can be said that the S, O-containing coating derived from the electrolytic solution of the present invention and formed on the positive electrode and the negative electrode contributes to an increase in the remaining capacity.
  • Nonaqueous electrolyte secondary battery EB11 was produced in the same manner as EB1 except for the basis weight of the positive electrode and the negative electrode.
  • the basis weight of the active material layer in the positive electrode was 5.5 mg / cm 2
  • the basis weight of the active material layer in the negative electrode was 4.0 mg / cm 2 .
  • the basis weight of the active material layer here refers to the basis weight after roll press and drying.
  • the basis weight of the active material layer in the positive electrode was 11.0 mg / cm 2
  • the basis weight of the active material layer in the negative electrode was 8.0 mg / cm 2 .
  • Nonaqueous electrolyte secondary battery CB5 was produced in the same manner as CB1 except for the weights of the positive electrode and the negative electrode.
  • the basis weight of the active material layer in the positive electrode was 5.5 mg / cm 2 as in EB11, and the basis weight of the active material layer in the negative electrode was also 4.0 mg / cm 2 as in EB11. Note that the basis weight of the active material layer in the positive electrodes of EB11 and CB5 and the basis weight of the active material layer in the negative electrode were half of EB1 and CB1.
  • the basis weight of the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of Comparative Example 5-2 was the same as that of the nonaqueous electrolyte secondary battery of Example 5-1.
  • Rate capacity characteristics The rate capacity characteristics of EB1 and CB1 were evaluated by the following methods. The capacity of each battery was adjusted to 160 mAh / g. The evaluation condition was that each non-aqueous electrolyte secondary battery was charged at a rate of 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, and then discharged, and the capacity of the working electrode at each rate (discharge) Capacity). Table 33 shows the discharge capacity after 0.1 C discharge and after 1 C discharge. The discharge capacity shown in Table 33 is the capacity calculated per mass (g) of the positive electrode active material.
  • the nonaqueous electrolyte secondary battery of the present invention is excellent in rate capacity characteristics. As described above, this is because the electrolyte in the non-aqueous electrolyte secondary battery of the present invention is different from the conventional one, and S, O formed on the negative electrode and / or the positive electrode of the non-aqueous electrolyte secondary battery of the present invention. It is thought that the contained film is also different from the conventional film.
  • Evaluation Example 32 Output characteristic evaluation at 0 °, SOC 20%
  • the output characteristics of EB1 and CB1 described above were evaluated.
  • the evaluation conditions are a state of charge (SOC) 20%, 0 ° C., a working voltage range 3V-4.2V, and a capacity 13.5 mAh.
  • SOC 20%, 0 ° C. is a region where output characteristics are difficult to be obtained, for example, when used in a refrigerator room.
  • Evaluation of the output characteristics of EB1 and CB1 was performed three times for each of the 2-second output and the 5-second output. The evaluation results of the output characteristics are shown in Table 34.
  • the ratio of the output at 0 ° C. to the output at 25 ° C. (0 ° C. output / 25 ° C. output) at the output of 2 seconds and 5 seconds is about the same as CB1, and EB1 was found to be able to suppress a decrease in output at a low temperature to the same extent as CB1.
  • EB4 was charged and discharged at 25 ° C. for 3 cycles, then disassembled in a 3V discharge state, and the positive electrode was taken out. Separately, EB4 was charged and discharged at 25 ° C. for 500 cycles, then disassembled in a 3V discharge state, and the positive electrode was taken out. Separately from this, EB4 was charged and discharged at 25 ° C. for 3 cycles, then left at 60 ° C. for one month, disassembled in a 3V discharge state, and the positive electrode was taken out. Each positive electrode was washed with DMC three times to obtain a positive electrode for analysis. In addition, the positive electrode S and O containing film was formed in the said positive electrode, and the structural information of the molecule
  • Each positive electrode for analysis was analyzed by TOF-SIMS.
  • a time-of-flight secondary ion mass spectrometer was used as a mass spectrometer, and positive secondary ions and negative secondary ions were measured.
  • Bi was used as the primary ion source, and the primary acceleration voltage was 25 kV.
  • Ar-GCIB Ar1500 was used as the sputter ion source.
  • Tables 37 to 39 The measurement results are shown in Tables 37 to 39.
  • the positive ion intensity (relative value) of each fragment is a relative value with the total positive ion intensity of all detected fragments as 100%.
  • the negative ionic strength (relative value) of each fragment described in Table 39 is a relative value where the sum of the negative ionic strengths of all the detected fragments is 100%.
  • the fragments presumed to be derived from the solvent of the electrolytic solution were only C 3 H 3 and C 4 H 3 detected as positive secondary ions.
  • a fragment presumed to be derived from a salt of the electrolytic solution is mainly detected as a negative secondary ion, and has a higher ionic strength than the above-described fragment derived from a solvent.
  • fragments containing Li are mainly detected as positive secondary ions, and the ionic strength of the fragments containing Li accounts for a large proportion of positive secondary ions and negative secondary ions.
  • the main component of the S, O-containing film is a component derived from the metal salt contained in the electrolytic solution, and that the S, O-containing film contains a large amount of Li.
  • SNO 2 , SFO 2 , S 2 F 2 NO 4, and the like have also been detected as fragments estimated to be derived from salts.
  • the conventional electrolyte solution introduced in, for example, JP-A-2013-145732 that is, a conventional electrolyte solution containing EC as an organic solvent, LiPF 6 as a metal salt, and LiFSA as an additive
  • S is taken into the decomposition product of the organic solvent.
  • S is considered to exist as ions such as C p H q S (p and q are independent integers) in the negative electrode film and / or the positive electrode film.
  • the fragment containing S detected from the S, O-containing film is mainly a fragment reflecting the anion structure, not the C p H q S fragment. This also reveals that the S, O-containing coating is fundamentally different from the coating formed on the conventional nonaqueous electrolyte secondary battery.
  • a nonaqueous electrolyte secondary battery using the electrolytic solution E8 was produced as follows.
  • An aluminum foil (JIS A1000 series) having a diameter of 13.82 mm, an area of 1.5 cm 2 and a thickness of 20 ⁇ m was used as a working electrode, and the counter electrode was metal Li.
  • As the separator Whatman glass fiber filter paper having a thickness of 400 ⁇ m: No. 1825-055 was used.
  • a working electrode, a counter electrode, a separator, and an electrolyte solution of E8 were housed in a battery case (CR2032-type coin cell case manufactured by Hosen Co., Ltd.) to obtain a nonaqueous electrolyte secondary battery EB12.
  • EB13 A nonaqueous electrolyte secondary battery EB13 was obtained in the same manner as EB12 except that the electrolytic solution E11 was used instead of the electrolytic solution E8.
  • EB14 A nonaqueous electrolyte secondary battery EB14 was obtained in the same manner as EB12 except that the electrolytic solution E16 was used instead of the electrolytic solution E8.
  • EB15 A nonaqueous electrolyte secondary battery EB15 was obtained in the same manner as EB12 except that the electrolytic solution E19 was used instead of the electrolytic solution E8.
  • EB16 A nonaqueous electrolyte secondary battery EB16 was obtained in the same manner as EB12 except that the electrolytic solution E13 was used instead of the electrolytic solution E8.
  • CB6 A nonaqueous electrolyte secondary battery CB6 was obtained in the same manner as EB12 except that the electrolytic solution C5 was used instead of the electrolytic solution E8.
  • CB7 A nonaqueous electrolyte secondary battery CB7 was obtained in the same manner as EB12 except that the electrolytic solution C6 was used instead of the electrolytic solution E8.
  • 91 to 99 are graphs showing the relationship between the potential and response current for EB12 to EB15 and CB6. Further, graphs showing the relationship between the potential and response current with respect to EB13, EB16, and CB7 are shown in FIGS.
  • the electrolytes E8, E11, E16, and E19 can be said to be suitable electrolytes for batteries using aluminum as a current collector or the like.
  • a nonaqueous electrolyte secondary battery EB17 using the electrolytic solution E8 was produced as follows. 94 parts by mass of NCM523 as a positive electrode active material, 3 parts by mass of AB as a conductive additive, and 3 parts by mass of PVdF as a binder were mixed. This mixture was dispersed in an appropriate amount of NMP to obtain a slurry-like positive electrode mixture. An aluminum foil (JIS A1000 series) having a thickness of 20 ⁇ m was prepared as a positive electrode current collector. The surface of the positive electrode current collector was applied using a doctor blade so that the positive electrode mixture was in the form of a film. NMP was removed by volatilization by drying the positive electrode current collector coated with the positive electrode mixture at 80 ° C.
  • the negative electrode mixture was applied to the surface of the negative electrode current collector in the form of a film using a doctor blade.
  • the negative electrode current collector coated with the negative electrode mixture was dried to remove water, and then a composite of the negative electrode mixture and the negative electrode current collector was pressed to obtain a bonded product.
  • the obtained joined product was heat-dried at 100 ° C. for 6 hours with a vacuum dryer to obtain a negative electrode in which a negative electrode active material layer was formed on the negative electrode current collector.
  • a cellulose nonwoven fabric having a thickness of 20 ⁇ m was prepared as a separator.
  • a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group.
  • the electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution E8 was injected into the laminated film in a bag shape. Thereafter, the remaining one side was sealed to obtain a nonaqueous electrolyte secondary battery EB17 in which the four sides were hermetically sealed, and the electrode plate group and the electrolyte were sealed.
  • a nonaqueous electrolyte secondary battery EB18 using the electrolytic solution E8 was produced as follows.
  • the positive electrode was manufactured in the same manner as the positive electrode of EB17.
  • 90 parts by mass of natural graphite as a negative electrode active material and 10 parts by mass of PVdF as a binder were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to obtain a slurry-like negative electrode mixture.
  • a copper foil having a thickness of 20 ⁇ m was prepared as a negative electrode current collector.
  • the negative electrode mixture was applied to the surface of the copper foil in the form of a film using a doctor blade.
  • the composite of the negative electrode mixture and the negative electrode current collector was dried to remove water, and then pressed to obtain a bonded product.
  • the obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a negative electrode in which a negative electrode active material layer was formed on the negative electrode current collector.
  • a nonaqueous electrolyte secondary battery EB18 was obtained in the same manner as EB17.
  • CB8 A nonaqueous electrolyte secondary battery CB8 was obtained in the same manner as EB17 except that the electrolytic solution C5 was used.
  • CB9 A nonaqueous electrolyte secondary battery CB9 was obtained in the same manner as EB18 except that the electrolytic solution C5 was used.
  • “2 second input” means an input after 2 seconds from the start of charging
  • “5 seconds input” means an input after 5 seconds from the start of charging.
  • the input of EB17 was significantly higher than the input of CB8 regardless of the difference in temperature.
  • the EB18 input was significantly higher than the CB9 input.
  • the battery input density of EB17 was significantly higher than that of CB8.
  • the battery input density of EB18 was significantly higher than the battery input density of CB9.
  • “2 seconds output” means an output 2 seconds after the start of discharge
  • “5 seconds output” means an output 5 seconds after the start of discharge.
  • the output of EB17 was significantly higher than the output of CB8 regardless of the difference in temperature.
  • the output of EB18 was significantly higher than that of CB9.
  • the battery output density of EB17 was significantly higher than that of CB8.
  • the battery output density of EB18 was significantly higher than that of CB9.
  • a nonaqueous electrolyte secondary battery EB19 using the electrolytic solution E8 was produced as follows.
  • the positive electrode was manufactured in the same manner as the positive electrode of EB17.
  • a negative electrode was obtained in the same manner as in EB17.
  • As a separator experimental filter paper (Toyo Filter Paper Co., Ltd., cellulose, thickness 260 ⁇ m) was prepared.
  • a nonaqueous electrolyte secondary battery EB19 was obtained in the same manner as EB17.
  • CB10 A nonaqueous electrolyte secondary battery CB10 was obtained in the same manner as EB19 except that the electrolytic solution C5 was used.
  • FIG. 106 shows a DSC chart when the positive electrode active material layer in the charged state of EB19 and the electrolyte coexist.
  • FIG. 107 shows DSC charts when the positive electrode active material layer in the charged state of CB10 and the electrolyte coexist, respectively.
  • the non-aqueous electrolyte secondary battery using the electrolytic solution of the present invention is more reactive with the positive electrode active material and the electrolytic solution than the non-aqueous electrolyte secondary battery using the conventional electrolytic solution. It can be seen that it is low and has excellent thermal stability.
  • the nonaqueous electrolyte secondary battery of the present invention can be used for secondary batteries, electric double layer capacitors, lithium ion capacitors, and the like. It is also useful as a non-aqueous electrolyte secondary battery for motor drive of electric vehicles and hybrid vehicles, personal computers, portable communication devices, home appliances, office equipment, industrial equipment, etc. Especially, large capacity and high output are required. It can be optimally used for driving a motor of a simple electric vehicle or hybrid vehicle.

Abstract

The invention addresses the problem of improving battery characteristics by the optimum combination of an electrolyte and a negative electrode active material. In a non-aqueous electrolyte secondary battery, an electrolyte is used that contains a metal salt and an organic solvent having a heteroatom and satisfies the relationship Is > Io, where, for peak intensities derived from the organic solvent in a vibrational spectroscopy spectrum, Io is the intensity of a peak inherent in the organic solvent and Is is the intensity of a peak to which the peak inherent in the organic solvent shifts. As a negative electrode, any of the followings (1) to (5) is used: (1) Graphite having a G/D ratio of 3.5 or more, said G/D ratio being the ratio of the peak of the G-band and the peak of the D-band in a raman spectrum (2) Carbon material having a crystallite size of 20 nm or less, said crystallite size being calculated from the half width of a peak appearing at 2θ = 20° to 30° in an x-ray diffraction profile measured by an x-ray diffraction method (3) Silicon element and/or tin element (4) Metal oxide that can absorb and release lithium ions (5) Graphite having a major axis to minor axis ratio (major axis/minor axis) of 1 to 5

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は、リチウムイオン二次電池などの非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
 例えばリチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在、主として携帯電子機器、ノートパソコン、電気自動車用の電源として用いられ、より小型・軽量の二次電池が求められている。特に自動車用途においては、大電流での充放電を行う必要があり、高速充放電可能な高レート特性を有する二次電池の開発が求められている。 For example, a lithium ion secondary battery is a secondary battery with high charge / discharge capacity and high output. Currently, there is a demand for smaller and lighter secondary batteries that are mainly used as power sources for portable electronic devices, notebook computers, and electric vehicles. In particular, in automobile applications, it is necessary to charge and discharge with a large current, and development of a secondary battery having high rate characteristics capable of high-speed charging and discharging is required.
 リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極および負極にそれぞれ有する。そして、両極間に封入された電解液を介してリチウムイオンが移動することによって動作する。高レート化するには、正極および/または負極に用いられている活物質やバインダの改良、電解液の改良などが必要となる。 The lithium ion secondary battery has active materials capable of inserting and extracting lithium (Li) in the positive electrode and the negative electrode, respectively. Then, the lithium ion moves through the electrolytic solution sealed between the two electrodes. In order to increase the rate, it is necessary to improve the active material and binder used in the positive electrode and / or the negative electrode, and improve the electrolytic solution.
 リチウムイオン二次電池の負極活物質としては、黒鉛などの炭素材料が広く用いられている。このような負極活物質への可逆的なリチウムイオンの挿入・脱離を可能とするために、電解液には環状エステルや鎖状エステルなど非水系のカーボネート系溶媒が用いられている。しかしカーボネート系溶媒を用いる場合には、レート特性の大幅な改良は困難とされていた。すなわち下記の非特許文献1~3に記載されているように、エチレンカーボネートやプロピレンカーボネートなどのカーボネート系溶媒では電極反応の活性化障壁が大きく、レート特性の改良のためには抜本的な電解液の溶媒組成の見直しが必要とされている。 Carbon materials such as graphite are widely used as negative electrode active materials for lithium ion secondary batteries. In order to enable reversible insertion / extraction of lithium ions to / from such a negative electrode active material, a non-aqueous carbonate solvent such as a cyclic ester or a chain ester is used for the electrolytic solution. However, when using a carbonate-based solvent, it has been difficult to significantly improve the rate characteristics. That is, as described in Non-Patent Documents 1 to 3 below, carbonate-based solvents such as ethylene carbonate and propylene carbonate have a large activation barrier for electrode reaction. Review of the solvent composition is required.
 本発明は上記した事情に鑑みてなされたものであり、電解液と負極活物質との最適な組み合わせによって、電池特性の向上を図ることを解決すべき主たる課題とする。 The present invention has been made in view of the above-described circumstances, and a main problem to be solved is to improve battery characteristics by an optimal combination of an electrolytic solution and a negative electrode active material.
 以下、必要に応じて、「アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioである電解液」を、「本発明の電解液」ということがある。 Hereinafter, if necessary, “the organic solvent contains a salt having alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element, and the peak intensity derived from the organic solvent in a vibrational spectroscopic spectrum. When the original peak intensity is Io and the peak shifted intensity is Is, the “electrolytic solution with Is> Io” may be referred to as the “electrolytic solution of the present invention”.
 上記課題を解決する本発明の非水電解質二次電池(1)の特徴は、上記した本発明の電解液と、ラマンスペクトルにおいてG-bandとD-bandのピークの比であるG/D比が3.5以上の黒鉛を含む負極活物質層をもつ負極と、を具備することにある。なお、本発明における「G/D比が3.5以上」とは、ラマンスペクトルにおいてG-bandとD-bandのピークの面積比あるいは高さ比のいずれかが3.5以上であることを指し、特には同ピークの高さ比が3.5以上であることを指す。 The feature of the nonaqueous electrolyte secondary battery (1) of the present invention that solves the above problems is that the electrolyte solution of the present invention described above and the G / D ratio, which is the ratio of the peak of G-band and D-band in the Raman spectrum. And a negative electrode having a negative electrode active material layer containing graphite of 3.5 or more. The “G / D ratio is 3.5 or more” in the present invention means that either the area ratio or the height ratio of the G-band and D-band peaks in the Raman spectrum is 3.5 or more. In particular, the height ratio of the peak is 3.5 or more.
 上記課題を解決する本発明の非水電解質二次電池(2)の特徴は、上記した本発明の電解液と、X線回折法で測定されるX線回折プロファイルにおいて2θ=20度~30度に現れるピークの半値幅から算出された結晶子サイズが20nm以下の炭素材料を含む負極活物質層をもつ負極と、を具備することにある。 The feature of the non-aqueous electrolyte secondary battery (2) of the present invention that solves the above-described problems is that the above-described electrolytic solution of the present invention and 2θ = 20 degrees to 30 degrees in an X-ray diffraction profile measured by an X-ray diffraction method. A negative electrode having a negative electrode active material layer containing a carbon material having a crystallite size of 20 nm or less calculated from the half width of the peak appearing in FIG.
 上記課題を解決する本発明の非水電解質二次電池(3)の特徴は、上記した本発明の電解液と、負極活物質にケイ素元素および/またはスズ元素を含む負極と、を具備することにある。 A feature of the nonaqueous electrolyte secondary battery (3) of the present invention that solves the above problems is that it comprises the above-described electrolytic solution of the present invention and a negative electrode containing a silicon element and / or a tin element in the negative electrode active material. It is in.
 上記課題を解決する本発明の非水電解質二次電池(4)の特徴は、上記した本発明の電解液と、リチウムイオンを吸蔵および放出可能な金属酸化物を負極活物質として含む負極と、を具備することにある。 The characteristics of the nonaqueous electrolyte secondary battery (4) of the present invention that solves the above problems are the above-described electrolytic solution of the present invention, a negative electrode containing a metal oxide capable of inserting and extracting lithium ions as a negative electrode active material, It is in having.
 上記課題を解決する本発明の非水電解質二次電池(5)の特徴は、上記した本発明の電解液と、長軸と短軸の比(長軸/短軸)が1~5である黒鉛を含む負極活物質層をもつ負極と、を具備することにある。 The feature of the non-aqueous electrolyte secondary battery (5) of the present invention that solves the above problems is that the above-described electrolytic solution of the present invention and the ratio of the major axis to the minor axis (major axis / minor axis) are 1 to 5. And a negative electrode having a negative electrode active material layer containing graphite.
 本発明の非水電解質二次電池によれば、電池特性が向上する。 According to the nonaqueous electrolyte secondary battery of the present invention, battery characteristics are improved.
電解液E3のIRスペクトルである。It is IR spectrum of the electrolyte solution E3. 電解液E4のIRスペクトルである。It is IR spectrum of the electrolyte solution E4. 電解液E7のIRスペクトルである。It is IR spectrum of the electrolyte solution E7. 電解液E8のIRスペクトルである。It is IR spectrum of the electrolyte solution E8. 電解液E10のIRスペクトルである。It is IR spectrum of the electrolyte solution E10. 電解液C2のIRスペクトルである。It is IR spectrum of the electrolyte solution C2. 電解液C4のIRスペクトルである。It is IR spectrum of the electrolyte solution C4. アセトニトリルのIRスペクトルである。It is IR spectrum of acetonitrile. (CFSONLiのIRスペクトルである。It is an IR spectrum of (CF 3 SO 2 ) 2 NLi. (FSONLiのIRスペクトルである(2100~2400cm-1)。It is an IR spectrum of (FSO 2 ) 2 NLi (2100 to 2400 cm −1 ). 電解液E11のIRスペクトルである。It is IR spectrum of the electrolyte solution E11. 電解液E12のIRスペクトルである。It is IR spectrum of the electrolyte solution E12. 電解液E13のIRスペクトルである。It is IR spectrum of the electrolyte solution E13. 電解液E14のIRスペクトルである。It is IR spectrum of the electrolyte solution E14. 電解液E15のIRスペクトルである。It is IR spectrum of the electrolyte solution E15. 電解液E16のIRスペクトルである。It is IR spectrum of the electrolyte solution E16. 電解液E17のIRスペクトルである。It is IR spectrum of the electrolyte solution E17. 電解液E18のIRスペクトルである。It is IR spectrum of the electrolyte solution E18. 電解液E19のIRスペクトルである。It is IR spectrum of the electrolyte solution E19. 電解液E20のIRスペクトルである。It is IR spectrum of the electrolyte solution E20. 電解液E21のIRスペクトルである。It is IR spectrum of the electrolyte solution E21. 電解液C6のIRスペクトルである。It is IR spectrum of the electrolyte solution C6. 電解液C7のIRスペクトルである。It is IR spectrum of the electrolyte solution C7. 電解液C8のIRスペクトルである。It is IR spectrum of the electrolyte solution C8. ジメチルカーボネートのIRスペクトルである。It is IR spectrum of dimethyl carbonate. エチルメチルカーボネートのIRスペクトルである。It is IR spectrum of ethyl methyl carbonate. ジエチルカーボネートのIRスペクトルである。It is IR spectrum of diethyl carbonate. (FSONLiのIRスペクトルである(1900~1600cm-1)。It is an IR spectrum of (FSO 2 ) 2 NLi (1900-1600 cm −1 ). 電解液E8のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution E8. 電解液E9のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution E9. 電解液C4のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution C4. 電解液E11のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution E11. 電解液E13のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution E13. 電解液E15のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution E15. 電解液C6のラマンスペクトルである。It is a Raman spectrum of the electrolyte solution C6. 実施例1-1の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。3 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Example 1-1. 実施例1-2の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。3 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Example 1-2. 実施例1-3の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。4 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Example 1-3. 比較例1-1の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-1. 比較例1-2の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-2. 比較例1-3の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-3. 比較例1-4の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-4. 比較例1-5の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。6 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-5. 比較例1-6の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。7 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-6. 比較例1-7の非水電解質二次電池のサイクリックボルタメントリー(CV)を示すグラフである。7 is a graph showing a cyclic voltamentary (CV) of the nonaqueous electrolyte secondary battery of Comparative Example 1-7. 実施例1-5の非水電解質二次電池および比較例1-8の非水電解質二次電池のDSCチャートである。6 is a DSC chart of the nonaqueous electrolyte secondary battery of Example 1-5 and the nonaqueous electrolyte secondary battery of Comparative Example 1-8. 実施例1-6の非水電解質二次電池および比較例1-8の非水電解質二次電池のDSCチャートである。6 is a DSC chart of the nonaqueous electrolyte secondary battery of Example 1-6 and the nonaqueous electrolyte secondary battery of Comparative Example 1-8. 実施例1-1の非水電解質二次電池および比較例1-1の非水電解質二次電池のサイクル数と電流容量比との関係を示すグラフである。6 is a graph showing the relationship between the number of cycles and the current capacity ratio of the nonaqueous electrolyte secondary battery of Example 1-1 and the nonaqueous electrolyte secondary battery of Comparative Example 1-1. 実施例1-8の非水電解質二次電池の充放電曲線である。6 is a charge / discharge curve of the nonaqueous electrolyte secondary battery in Example 1-8. 実施例1-9の非水電解質二次電池の充放電曲線である。FIG. 6 is a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 1-9. FIG. 実施例1-10の非水電解質二次電池の充放電曲線である。3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery in Example 1-10. 実施例1-11の非水電解質二次電池の充放電曲線である。3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery in Example 1-11. 比較例1-9の非水電解質二次電池の充放電曲線である。10 is a charge / discharge curve of a nonaqueous electrolyte secondary battery in Comparative Example 1-9. 実施例1-12の非水電解質二次電池における電流レートと電圧カーブとの関係を表すグラフである。10 is a graph showing a relationship between a current rate and a voltage curve in the nonaqueous electrolyte secondary battery of Example 1-12. 比較例1-4の非水電解質二次電池における電流レートと電圧カーブとの関係を表すグラフである。6 is a graph showing a relationship between a current rate and a voltage curve in the nonaqueous electrolyte secondary battery of Comparative Example 1-4. 評価例19のサイクル特性の結果である。It is a result of the cycle characteristic of the evaluation example 19. 実施例2-1の非水電解質二次電池および比較例2-1の非水電解質二次電池の初回充放電曲線を示す。The initial charge / discharge curves of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary battery of Comparative Example 2-1 are shown. 実施例2-1の非水電解質二次電池および比較例2-1の非水電解質二次電池のサイクル数と電流容量比との関係を表すグラフである。6 is a graph showing the relationship between the number of cycles and the current capacity ratio of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary battery of Comparative Example 2-1. 実施例3-2および比較例3-2の非水電解質二次電池の充放電曲線である。3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 3-2 and Comparative Example 3-2. 実施例3-3の非水電解質二次電池の充放電曲線である。3 is a charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 3-3. 実施例4-1の非水電解質二次電池の充放電曲線である。It is a charging / discharging curve of the nonaqueous electrolyte secondary battery of Example 4-1. 比較例4-1の非水電解質二次電池の充放電曲線である。It is a charging / discharging curve of the nonaqueous electrolyte secondary battery of Comparative Example 4-1. 実施例4-2の非水電解質二次電池の充放電曲線である。It is a charging / discharging curve of the nonaqueous electrolyte secondary battery of Example 4-2. 実施例4-3の非水電解質二次電池の充放電曲線である。It is a charging / discharging curve of the nonaqueous electrolyte secondary battery of Example 4-3. サイクル試験時におけるサイクル数の平方根と放電容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the square root of the cycle number at the time of a cycle test, and a discharge capacity maintenance factor. 評価例26における、EB1、EB2およびCB1の負極S,O含有皮膜の炭素元素についてのXPS分析結果である。It is an XPS analysis result about the carbon element of the negative electrode S and O containing film | membrane of EB1, EB2, and CB1 in the evaluation example 26. 評価例26における、EB1、EB2およびCB1の負極S,O含有皮膜のフッ素元素についてのXPS分析結果である。It is an XPS analysis result about the fluorine element of the negative electrode S, O containing film | membrane of EB1, EB2, and CB1 in the evaluation example 26. 評価例26における、EB1、EB2およびCB1の負極S,O含有皮膜の窒素元素についてのXPS分析結果である。It is an XPS analysis result about the nitrogen element of the negative electrode S, O containing film | membrane of EB1, EB2, and CB1 in the evaluation example 26. 評価例26における、EB1、EB2およびCB1の負極S,O含有皮膜の酸素元素についてのXPS分析結果である。It is an XPS analysis result about the oxygen element of the negative electrode S and O containing film | membrane of EB1, EB2, and CB1 in the evaluation example 26. 評価例26における、EB1、EB2およびCB1の負極S,O含有皮膜の硫黄元素についてのXPS分析結果である。It is an XPS analysis result about the sulfur element of the negative electrode S and O containing film | membrane of EB1, EB2, and CB1 in the evaluation example 26. 評価例26におけるEB1の負極S,O含有皮膜のXPS分析結果である。It is a XPS analysis result of the negative electrode S and O containing film | membrane of EB1 in the evaluation example 26. 評価例26におけるEB2の負極S,O含有皮膜のXPS分析結果である。It is a XPS analysis result of the negative electrode S and O containing film | membrane of EB2 in the evaluation example 26. 評価例26におけるEB1の負極S,O含有皮膜のBF- STEM像である。27 is a BF-STEM image of a negative electrode S, O-containing film of EB1 in Evaluation Example 26. FIG. 評価例26における、EB1の負極S,O含有皮膜のCについてのSTEM分析結果である。It is a STEM analysis result about C of the negative electrode S and O containing film | membrane of EB1 in the evaluation example 26. 評価例26における、EB1の負極S,O含有皮膜のOについてのSTEM分析結果である。It is a STEM analysis result about O of the negative electrode S and O containing film | membrane of EB1 in the evaluation example 26. 評価例26における、EB1の負極S,O含有皮膜のSについてのSTEM分析結果である。It is a STEM analysis result about S of negative electrode S and O containing film | membrane of EB1 in the evaluation example 26. 評価例26における、EB1の正極S,O含有皮膜のOについてのXPS分析結果である。It is a XPS analysis result about O of the positive electrode S of EB1, and the film containing O in Evaluation Example 26. 評価例26における、EB1の正極S,O含有皮膜のSについてのXPS分析結果である。It is an XPS analysis result about S of the positive electrode S and O containing film | membrane of EB1 in the evaluation example 26. 評価例26における、EB4の正極S,O含有皮膜のSについてのXPS分析結果である。It is an XPS analysis result about S of the positive electrode S and O containing film | membrane of EB4 in the evaluation example 26. 評価例26における、EB4の正極S,O含有皮膜のOについてのXPS分析結果である。It is an XPS analysis result about O of the positive electrode S of EB4 and the coating containing O in Evaluation Example 26. 評価例26における、EB4、EB5およびCB2の正極S,O含有皮膜のSについてのXPS分析結果である。It is an XPS analysis result about S of the positive electrode S and O containing film | membrane of EB4, EB5, and CB2 in the evaluation example 26. 評価例26における、EB6、EB7およびCB3の正極S,O含有皮膜のSについてのXPS分析結果である。It is an XPS analysis result about S of the positive electrode S and O containing film | membrane of EB6, EB7, and CB3 in the evaluation example 26. 評価例26における、EB4、EB5およびCB2の正極S,O含有皮膜のOについてのXPS分析結果である。It is an XPS analysis result about O of the positive electrode S, O containing film | membrane of EB4, EB5, and CB2 in the evaluation example 26. 評価例26における、EB6、EB7およびCB3の正極S,O含有皮膜のOについての分析結果である。It is the analysis result about O of the positive electrode S and O containing film | membrane of EB6, EB7, and CB3 in the evaluation example 26. 評価例26における、EB4、EB5およびCB2の負極S,O含有皮膜のSについての分析結果である。It is an analysis result about S of the negative electrode S and O containing film | membrane of EB4, EB5, and CB2 in the evaluation example 26. 評価例26における、EB6、EB7およびCB3の負極S,O含有皮膜のSについての分析結果である。It is an analysis result about S of the negative electrode S and O containing film | membrane of EB6, EB7, and CB3 in the evaluation example 26. 評価例26における、EB4、EB5およびCB2の負極S,O含有皮膜のOについての分析結果である。It is the analysis result about O of the negative electrode S and O containing film | membrane of EB4, EB5, and CB2 in the evaluation example 26. 評価例26における、EB6、EB7およびCB3の負極S,O含有皮膜のOについての分析結果である。It is an analysis result about O of the negative electrode S and O containing film | membrane of EB6, EB7, and CB3 in the evaluation example 26. EB8、EB9、EB10およびCB4を用い、初回充放電後のおよび100サイクル経過後の交流インピーダンスを測定して得られた、電池の複素インピーダンス平面プロットである。It is a complex impedance plane plot of the battery obtained by measuring the alternating current impedance after the first charge / discharge and after 100 cycles using EB8, EB9, EB10 and CB4. 評価例36におけるEB12の電流と電極電位との関係を示すグラフである。It is a graph which shows the relationship between the electric current of EB12 in evaluation example 36, and electrode potential. 評価例37におけるEB12に対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 12 and a response current in Evaluation Example 37. 評価例37におけるEB12に対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 12 and a response current in Evaluation Example 37. 評価例37におけるEB13に対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 13 and a response current in Evaluation Example 37. 評価例37におけるEB13に対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。40 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 13 and a response current in Evaluation Example 37. 評価例37におけるEB14に対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 14 and a response current in Evaluation Example 37. 評価例37におけるEB14に対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 14 and a response current in Evaluation Example 37. 評価例37におけるEB15に対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to EB 15 and a response current in Evaluation Example 37. 評価例37におけるEB15に対する電位(3.1~5.1V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 5.1 V) with respect to EB 15 and a response current in Evaluation Example 37. 評価例37におけるCB6に対する電位(3.1~4.6V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.1 to 4.6 V) with respect to CB6 and a response current in Evaluation Example 37. 評価例37におけるEB13に対する電位(3.0~4.5V)と応答電流との関係を示すグラフである。なお、図100は図93の縦軸の縮尺をかえたものである。44 is a graph showing a relationship between a potential (3.0 to 4.5 V) with respect to EB 13 and a response current in Evaluation Example 37. In FIG. 100, the scale of the vertical axis in FIG. 93 is changed. 評価例37におけるEB13に対する電位(3.0~5.0V)と応答電流との関係を示すグラフである。なお、図101は図94の縦軸の縮尺をかえたものである。42 is a graph showing a relationship between a potential (3.0 to 5.0 V) with respect to EB 13 and a response current in Evaluation Example 37. In FIG. 101, the scale of the vertical axis in FIG. 94 is changed. 評価例37におけるEB16に対する電位(3.0~4.5V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.0 to 4.5 V) with respect to EB16 and a response current in Evaluation Example 37. 評価例37におけるEB16に対する電位(3.0~5.0V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.0 to 5.0 V) with respect to EB16 and a response current in Evaluation Example 37. 評価例37におけるCB7に対する電位(3.0~4.5V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.0 to 4.5 V) with respect to CB7 and a response current in Evaluation Example 37. 評価例37におけるCB7に対する電位(3.0~5.0V)と応答電流との関係を示すグラフである。44 is a graph showing a relationship between a potential (3.0 to 5.0 V) and a response current with respect to CB7 in Evaluation Example 37. 評価例39におけるEB19のDSCチャートである。42 is a DSC chart of EB19 in Evaluation Example 39. 評価例39におけるCB10のDSCチャートである。42 is a DSC chart of CB10 in Evaluation Example 39.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 Hereinafter, modes for carrying out the present invention will be described. Unless otherwise specified, the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
 本発明の非水電解質二次電池は、電解液と負極活物質との最適な組み合わせによって電池特性の向上を図るものである。したがって、その他の電池構成要素、例えば正極等に関しては特に限定しない。また、本発明の非水電解質二次電池における電荷担体もまた特に限定しない。例えば、本発明の非水電解質二次電池はリチウムを電荷担体とする非水電解質二次電池(例えば、リチウム二次電池、リチウムイオン二次電池)であっても良いし、ナトリウムを電荷担体とする非水電解質二次電池(例えば、ナトリウム二次電池、ナトリウムイオン二次電池)であっても良い。
 本発明の非水電解質二次電池(1)は、電解液と負極活物質との最適な組み合わせによってレート容量特性の向上を図るとともに、サイクル特性も改良することを解決すべき主たる課題としたものである。本発明の非水電解質二次電池(1)は、本発明の電解液と、ラマンスペクトルにおいてG-bandとD-bandのピークの比であるG/D比が3.5以上の黒鉛を含む負極活物質層をもつ負極と、を具備する。このような本発明の非水電解質二次電池(1)は、レート容量特性およびサイクル特性の向上した非水電解質二次電池である。負極活物質としてG/D比が3.5未満の黒鉛を用いた場合には、同じ本発明の電解液を用いてもレート容量とサイクル特性とを両立し難い問題がある。しかし、負極活物質として、G/D比が3.5以上の黒鉛を用いることでレート容量特性が向上し、かつ、サイクル特性も向上する。
The non-aqueous electrolyte secondary battery of the present invention is intended to improve battery characteristics by an optimal combination of an electrolytic solution and a negative electrode active material. Therefore, there are no particular limitations on other battery components, such as the positive electrode. Moreover, the charge carrier in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. For example, the nonaqueous electrolyte secondary battery of the present invention may be a nonaqueous electrolyte secondary battery using lithium as a charge carrier (for example, a lithium secondary battery or a lithium ion secondary battery), or sodium as a charge carrier. It may be a non-aqueous electrolyte secondary battery (for example, a sodium secondary battery or a sodium ion secondary battery).
The non-aqueous electrolyte secondary battery (1) of the present invention is a main problem that should be solved by improving the rate capacity characteristics and improving the cycle characteristics by an optimal combination of the electrolytic solution and the negative electrode active material. It is. The nonaqueous electrolyte secondary battery (1) of the present invention includes the electrolyte of the present invention and graphite having a G / D ratio of 3.5 or more, which is a ratio of G-band and D-band peaks in the Raman spectrum. A negative electrode having a negative electrode active material layer. Such a nonaqueous electrolyte secondary battery (1) of the present invention is a nonaqueous electrolyte secondary battery having improved rate capacity characteristics and cycle characteristics. When graphite having a G / D ratio of less than 3.5 is used as the negative electrode active material, there is a problem that it is difficult to achieve both rate capacity and cycle characteristics even when the same electrolytic solution of the present invention is used. However, by using graphite having a G / D ratio of 3.5 or more as the negative electrode active material, the rate capacity characteristics are improved and the cycle characteristics are also improved.
 本発明の非水電解質二次電池(2)は、電解液と負極活物質との最適な組み合わせによってレート容量特性を向上することを解決すべき主たる課題としたものである。本発明の非水電解質二次電池(2)は、本発明の電解液と、結晶子サイズが20nm以下の炭素材料を含む負極活物質層をもつ負極と、を具備する。このような本発明の非水電解質二次電池(2)は、負極活物質として2θ=20度~30度の炭素材料を含むことで、一般的な電解液を使用した非水電解質二次電池に比べて高レート化が可能となる。 The nonaqueous electrolyte secondary battery (2) of the present invention is a main problem that should be solved to improve the rate capacity characteristics by an optimal combination of an electrolytic solution and a negative electrode active material. The nonaqueous electrolyte secondary battery (2) of the present invention includes the electrolytic solution of the present invention and a negative electrode having a negative electrode active material layer containing a carbon material having a crystallite size of 20 nm or less. Such a nonaqueous electrolyte secondary battery (2) of the present invention includes a carbon material of 2θ = 20 degrees to 30 degrees as a negative electrode active material, so that a nonaqueous electrolyte secondary battery using a general electrolytic solution is used. The rate can be increased compared to the above.
 本発明の非水電解質二次電池(3)は、非水電解質二次電池用の負極活物質として、ケイ素(Si)やスズ(Sn)を用い、非水電解質二次電池の電池特性の向上を図ることを解決すべき主たる課題としたものである。本発明の非水電解質二次電池(3)は、本発明の電解液と、負極活物質にケイ素元素および/またはスズ元素を含む負極と、を具備する。このような本発明の非水電解質二次電池(3)は、ケイ素および/またはスズと炭素とを含む負極活物質を本発明の電解液と併用することで、負極活物質に由来する効果と電解液に由来する効果との協働により、優れた電池特性を発揮する。 The nonaqueous electrolyte secondary battery (3) of the present invention uses silicon (Si) or tin (Sn) as the negative electrode active material for the nonaqueous electrolyte secondary battery, and improves the battery characteristics of the nonaqueous electrolyte secondary battery. This is the main problem to be solved. The nonaqueous electrolyte secondary battery (3) of the present invention comprises the electrolytic solution of the present invention and a negative electrode containing a silicon element and / or a tin element in the negative electrode active material. Such a non-aqueous electrolyte secondary battery (3) of the present invention has an effect derived from the negative electrode active material by using a negative electrode active material containing silicon and / or tin and carbon together with the electrolytic solution of the present invention. Excellent battery characteristics are achieved through cooperation with the effects derived from the electrolyte.
 本発明の非水電解質二次電池(4)は、金属酸化物を負極活物質としエネルギー密度と充放電効率に優れる非水電解質二次電池を提供することを解決すべき主たる課題としたものである。例えば、特開2012-160345号公報に開示されているように、非水電解質二次電池用の負極活物質として、リチウムイオンを吸蔵および放出可能な金属酸化物を用いる技術が知られている。この種の金属酸化物としては、例えばチタン酸リチウムが知られている。チタン酸リチウムを負極とする非水電解質二次電池においては、リチウムの吸蔵および放出反応が安定に行なわれると考えられており、その結果、活物質の劣化も抑制されると考えられている。つまり、この種の金属酸化物を負極活物質とする非水電解質二次電池はサイクル特性に優れることが知られている。一方、この種の金属酸化物を負極活物質とする非水電解質二次電池は、黒鉛等の炭素系負極活物質を用いた非水電解質二次電池に比べて、負極におけるエネルギー密度が小さいことが知られている。したがって、金属酸化物を負極活物質とし、かつ、電池特性のさらに向上した非水電解質二次電池の開発が望まれていた。本発明の非水電解質二次電池(4)は、金属酸化物を負極活物質とし、電池特性に優れるものである。 The non-aqueous electrolyte secondary battery (4) of the present invention is a main problem to be solved by providing a non-aqueous electrolyte secondary battery having a metal oxide as a negative electrode active material and excellent in energy density and charge / discharge efficiency. is there. For example, as disclosed in JP 2012-160345 A, a technique using a metal oxide capable of inserting and extracting lithium ions as a negative electrode active material for a non-aqueous electrolyte secondary battery is known. As this kind of metal oxide, for example, lithium titanate is known. In a non-aqueous electrolyte secondary battery using lithium titanate as a negative electrode, it is considered that lithium occlusion and release reactions are performed stably, and as a result, deterioration of the active material is also suppressed. That is, it is known that a non-aqueous electrolyte secondary battery using this type of metal oxide as a negative electrode active material is excellent in cycle characteristics. On the other hand, non-aqueous electrolyte secondary batteries using this type of metal oxide as the negative electrode active material have a lower energy density at the negative electrode than non-aqueous electrolyte secondary batteries using carbon-based negative electrode active materials such as graphite. It has been known. Accordingly, it has been desired to develop a non-aqueous electrolyte secondary battery that uses a metal oxide as a negative electrode active material and has further improved battery characteristics. The nonaqueous electrolyte secondary battery (4) of the present invention uses a metal oxide as a negative electrode active material and is excellent in battery characteristics.
 本発明の非水電解質二次電池(5)は、本発明の電解液と、長軸と短軸の比(長軸/短軸)が1~5である黒鉛を含む負極活物質層をもつ負極と、を具備する。このような本発明の非水電解質二次電池(5)は、入出力特性のさらに向上した非水電解質二次電池である。つまり、本発明の電解液を用いると非水電解質二次電池の入出力特性が向上する。そして、本発明の電解液に加えて、負極活物質として、長軸と短軸の比(長軸/短軸)が1~5である黒鉛を用いることで、非水電解質二次電池の入出力特性をさらに向上させることが可能である。 The nonaqueous electrolyte secondary battery (5) of the present invention has the negative electrode active material layer containing the electrolyte of the present invention and graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5. A negative electrode. Such a nonaqueous electrolyte secondary battery (5) of the present invention is a nonaqueous electrolyte secondary battery having further improved input / output characteristics. That is, when the electrolytic solution of the present invention is used, the input / output characteristics of the nonaqueous electrolyte secondary battery are improved. In addition to the electrolyte solution of the present invention, graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5 is used as the negative electrode active material, so that the non-aqueous electrolyte secondary battery can be inserted. It is possible to further improve the output characteristics.
 <電解液>
 本発明の電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩(以下、「金属塩」または単に「塩」ということがある。)とヘテロ原子を有する有機溶媒とを含み、振動分光スペクトルにおける有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークが波数シフトしたピークの強度をIsとした場合、Is>Ioである。
<Electrolyte>
The electrolytic solution of the present invention includes a salt having alkali metal, alkaline earth metal or aluminum as a cation (hereinafter sometimes referred to as “metal salt” or simply “salt”) and an organic solvent having a hetero atom, With respect to the peak intensity derived from the organic solvent in the vibrational spectrum, if the intensity of the peak inherent to the organic solvent is Io and the intensity of the peak obtained by wave number shifting of the peak inherent to the organic solvent is Is, Is> Io.
 なお、従来の電解液は、IsとIoとの関係がIs<Ioである。 In the conventional electrolytic solution, the relationship between Is and Io is Is <Io.
 [金属塩]
 金属塩は、通常、電池の電解液に含まれるLiClO、LiAsF、LiPF、LiBF、LiAlCl、などの電解質として用いられる化合物であれば良い。金属塩のカチオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、およびアルミニウムを挙げることができる。金属塩のカチオンは、電解液を使用する電池の電荷担体と同一の金属イオンであるのが好ましい。例えば、本発明の電解液をリチウムイオン二次電池用の電解液として使用するのであれば、金属塩のカチオンはリチウムが好ましい。
[Metal salt]
The metal salt may be a compound that is usually used as an electrolyte, such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiAlCl 4 , etc. contained in the battery electrolyte. Examples of the cation of the metal salt include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium, and aluminum. The cation of the metal salt is preferably the same metal ion as the charge carrier of the battery using the electrolytic solution. For example, if the electrolytic solution of the present invention is used as an electrolytic solution for a lithium ion secondary battery, the metal salt cation is preferably lithium.
 塩のアニオンの化学構造は、ハロゲン、ホウ素、窒素、酸素、硫黄または炭素から選択される少なくとも1つの元素を含むと良い。ハロゲンまたはホウ素を含むアニオンの化学構造を具体的に例示すると、ClO、PF、AsF、SbF、TaF、BF、SiF、B(C、B(oxalate)、Cl、Br、Iを挙げることができる。 The chemical structure of the anion of the salt may include at least one element selected from halogen, boron, nitrogen, oxygen, sulfur or carbon. Specific examples of the chemical structure of an anion containing halogen or boron include ClO 4 , PF 6 , AsF 6 , SbF 6 , TaF 6 , BF 4 , SiF 6 , B (C 6 H 5 ) 4 , and B (oxalate). 2 , Cl, Br, and I.
 窒素、酸素、硫黄または炭素を含むアニオンの化学構造について、以下、具体的に説明する。 The chemical structure of an anion containing nitrogen, oxygen, sulfur or carbon will be specifically described below.
 塩のアニオンの化学構造は、下記一般式(1)、一般式(2)または一般式(3)で表される化学構造が好ましい。 The chemical structure of the anion of the salt is preferably a chemical structure represented by the following general formula (1), general formula (2), or general formula (3).
  (R)(R)N・・・・・・一般式(1)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 また、RとRは、互いに結合して環を形成しても良い。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、Rは、RまたはRと結合して環を形成しても良い。)
(R 1 X 1 ) (R 2 X 2 ) N... General formula (1)
(R 1 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted with, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, or an alkoxy group which may be substituted with a substituent , An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
R 2 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, an alkoxy group which may be substituted with a substituent, Selected from an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, CN, SCN, OCN The
R 1 and R 2 may be bonded to each other to form a ring.
X 1 is selected from SO 2 , C = O, C = S, R a P = O, R b P = S, S = O, Si = O.
X 2 is, SO 2, C = O, C = S, R c P = O, R d P = S, S = O, is selected from Si = O.
R a , R b , R c , and R d are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent. An unsaturated alkyl group which may be substituted, an unsaturated cycloalkyl group which may be substituted with a substituent, an aromatic group which may be substituted with a substituent, or a heterocyclic group which may be substituted with a substituent , An alkoxy group that may be substituted with a substituent, an unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, and a non-optionally substituted substituent. Selected from saturated thioalkoxy groups, OH, SH, CN, SCN, OCN.
R a , R b , R c , and R d may combine with R 1 or R 2 to form a ring. )
  RY・・・・・・一般式(2)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、Rは、Rと結合して環を形成しても良い。
 Yは、O、Sから選択される。)
R 3 X 3 Y: General formula (2)
(R 3 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted with, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, or an alkoxy group which may be substituted with a substituent , An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
X 3 is selected from SO 2 , C = O, C = S, R e P = O, R f P = S, S = O, and Si = O.
R e and R f are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent. A saturated alkyl group, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, a heterocyclic group that may be substituted with a substituent, and a substituent An alkoxy group which may be substituted, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, OH , SH, CN, SCN, and OCN.
R e and R f may combine with R 3 to form a ring.
Y is selected from O and S. )
  (R)(R)(R)C・・・・・・一般式(3)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
 また、R、R、Rのうち、いずれか二つまたは三つが結合して環を形成しても良い。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、R、R、Rは、R、RまたはRと結合して環を形成しても良い。)
(R 4 X 4 ) (R 5 X 5 ) (R 6 X 6 ) C ... General formula (3)
(R 4 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted with, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, or an alkoxy group which may be substituted with a substituent , An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
R 5 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, an alkoxy group which may be substituted with a substituent, Selected from an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, CN, SCN, OCN The
R 6 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, an alkoxy group which may be substituted with a substituent, Selected from an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, CN, SCN, OCN The
Further, any two or three of R 4 , R 5 and R 6 may be bonded to form a ring.
X 4 is, SO 2, C = O, C = S, R g P = O, R h P = S, S = O, is selected from Si = O.
X 5 is selected from SO 2 , C = O, C = S, R i P = O, R j P = S, S = O, Si = O.
X 6 is selected from SO 2 , C = O, C = S, R k P = O, R 1 P = S, S = O, Si = O.
R g , R h , R i , R j , R k , and R l are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent. Group, an unsaturated alkyl group that may be substituted with a substituent, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent A heterocyclic group which may be substituted, an alkoxy group which may be substituted with a substituent, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, and a substituent It is selected from an unsaturated thioalkoxy group which may be substituted, OH, SH, CN, SCN, OCN.
R g , R h , R i , R j , R k , and R l may combine with R 4 , R 5, or R 6 to form a ring. )
 上記一般式(1)~(3)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、または、特段の置換基を有さないアルキル基を意味する。 The term “may be substituted with a substituent” in the chemical structure represented by the general formulas (1) to (3) will be described. For example, in the case of “an alkyl group which may be substituted with a substituent”, an alkyl group in which one or more of hydrogens of the alkyl group are substituted with a substituent, or an alkyl group having no particular substituent Means.
 「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基等が挙げられる。これらの置換基はさらに置換されても良い。また置換基が2つ以上ある場合、置換基は同一でも異なっていても良い。 Examples of the substituent in the phrase “may be substituted with a substituent” include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an unsaturated cycloalkyl group, an aromatic group, a heterocyclic group, a halogen, and OH. SH, CN, SCN, OCN, nitro group, alkoxy group, unsaturated alkoxy group, amino group, alkylamino group, dialkylamino group, aryloxy group, acyl group, alkoxycarbonyl group, acyloxy group, aryloxycarbonyl group, Acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, sulfo group, Carboxyl group, Dorokisamu acid group, a sulfino group, a hydrazino group, an imino group, and a silyl group. These substituents may be further substituted. When there are two or more substituents, the substituents may be the same or different.
 塩のアニオンの化学構造は、下記一般式(4)、一般式(5)または一般式(6)で表される化学構造がより好ましい。 The chemical structure of the salt anion is more preferably a chemical structure represented by the following general formula (4), general formula (5), or general formula (6).
  (R)(R)N・・・・・・一般式(4)
(R、Rは、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 また、RとRは、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、Rは、RまたはRと結合して環を形成しても良い。)
(R 7 X 7 ) (R 8 X 8 ) N ... General formula (4)
(R 7 and R 8 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
n, a, b, c, d, e, f, g, and h are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e + f + g + h.
R 7 and R 8 may combine with each other to form a ring, in which case 2n = a + b + c + d + e + f + g + h is satisfied.
X 7 is, SO 2, C = O, C = S, R m P = O, R n P = S, S = O, is selected from Si = O.
X 8 is selected from SO 2 , C = O, C = S, R o P = O, R p P = S, S = O, Si = O.
R m , R n , R o , and R p are each independently substituted with hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent. An unsaturated alkyl group which may be substituted, an unsaturated cycloalkyl group which may be substituted with a substituent, an aromatic group which may be substituted with a substituent, or a heterocyclic group which may be substituted with a substituent , An alkoxy group that may be substituted with a substituent, an unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, and a non-optionally substituted substituent. Selected from saturated thioalkoxy groups, OH, SH, CN, SCN, OCN.
R m , R n , R o , and R p may combine with R 7 or R 8 to form a ring. )
  RY・・・・・・一般式(5)
(Rは、CClBr(CN)(SCN)(OCN)である。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、Rは、Rと結合して環を形成しても良い。
 Yは、O、Sから選択される。)
R 9 X 9 Y: General formula (5)
(R 9 is a C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h.
n, a, b, c, d, e, f, g, and h are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e + f + g + h.
X 9 is, SO 2, C = O, C = S, R q P = O, R r P = S, S = O, is selected from Si = O.
R q and R r are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent. A saturated alkyl group, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, a heterocyclic group that may be substituted with a substituent, and a substituent An alkoxy group which may be substituted, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, OH , SH, CN, SCN, and OCN.
R q and R r may combine with R 9 to form a ring.
Y is selected from O and S. )
  (R1010)(R1111)(R1212)C・・・・・・一般式(6)
(R10、R11、R12は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
 n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
 R10、R11、R12のうちいずれか二つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の三つが結合して環を形成しても良く、その場合、三つのうち二つの基が2n=a+b+c+d+e+f+g+hを満たし、一つの基が2n-1=a+b+c+d+e+f+g+hを満たす。
 X10は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 X11は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 X12は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
 R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
 また、R、R、R、R、R、Rは、R10、R11またはR12と結合して環を形成しても良い。)
(R 10 X 10 ) (R 11 X 11 ) (R 12 X 12 ) C ... General formula (6)
(R 10 , R 11 , and R 12 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
n, a, b, c, d, e, f, g, and h are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e + f + g + h.
Any two of R 10 , R 11 , and R 12 may combine to form a ring, in which case the group forming the ring satisfies 2n = a + b + c + d + e + f + g + h. Three of R 10 , R 11 and R 12 may combine to form a ring, in which case two of the three satisfy 2n = a + b + c + d + e + f + g + h, and one group satisfies 2n−1 = a + b + c + d + e + f + g + h. Fulfill.
X 10 is, SO 2, C = O, C = S, R s P = O, R t P = S, S = O, is selected from Si = O.
X 11 is, SO 2, C = O, C = S, R u P = O, R v P = S, S = O, is selected from Si = O.
X 12 is, SO 2, C = O, C = S, R w P = O, R x P = S, S = O, is selected from Si = O.
R s , R t , R u , R v , R w , and R x are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent. Group, an unsaturated alkyl group that may be substituted with a substituent, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent A heterocyclic group which may be substituted, an alkoxy group which may be substituted with a substituent, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, and a substituent It is selected from an unsaturated thioalkoxy group which may be substituted, OH, SH, CN, SCN, OCN.
R s , R t , R u , R v , R w , and R x may combine with R 10 , R 11, or R 12 to form a ring. )
 上記一般式(4)~(6)で表される化学構造における、「置換基で置換されていても良い」との文言の意味は、上記一般式(1)~(3)で説明したのと同義である。 The meaning of the phrase “may be substituted with a substituent” in the chemical structures represented by the general formulas (4) to (6) has been explained in the general formulas (1) to (3). It is synonymous with.
 上記一般式(4)~(6)で表される化学構造において、nは0~6の整数が好ましく、0~4の整数がより好ましく、0~2の整数が特に好ましい。なお、上記一般式(4)~(6)で表される化学構造の、RとRが結合、または、R10、R11、R12が結合して環を形成している場合には、nは1~8の整数が好ましく、1~7の整数がより好ましく、1~3の整数が特に好ましい。 In the chemical structures represented by the general formulas (4) to (6), n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2. In the chemical structures represented by the general formulas (4) to (6), when R 7 and R 8 are bonded, or R 10 , R 11 , and R 12 are bonded to form a ring. In the formula, n is preferably an integer of 1 to 8, more preferably an integer of 1 to 7, and particularly preferably an integer of 1 to 3.
 塩のアニオンの化学構造は、下記一般式(7)、一般式(8)または一般式(9)で表されるものがさらに好ましい。 The chemical structure of the salt anion is more preferably represented by the following general formula (7), general formula (8) or general formula (9).
  (R13SO)(R14SO)N・・・・・・一般式(7)
(R13、R14は、それぞれ独立に、CClBrである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
 また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
(R 13 SO 2 ) (R 14 SO 2 ) N... General formula (7)
(R 13 and R 14 are each independently C n H a F b Cl c Br d I e .
n, a, b, c, d, and e are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e.
R 13 and R 14 may combine with each other to form a ring, in which case 2n = a + b + c + d + e is satisfied. )
  R15SO・・・・・・一般式(8)
(R15は、CClBrである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
R 15 SO 3 ... General formula (8)
(R 15 is a C n H a F b Cl c Br d I e.
n, a, b, c, d, and e are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e. )
  (R16SO)(R17SO)(R18SO)C・・・・・一般式(9)
(R16、R17、R18は、それぞれ独立に、CClBrである。
 n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
 R16、R17、R18のうちいずれか二つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の三つが結合して環を形成しても良く、その場合、三つのうち二つの基が2n=a+b+c+d+eを満たし、一つの基が2n-1=a+b+c+d+eを満たす。)
(R 16 SO 2 ) (R 17 SO 2 ) (R 18 SO 2 ) C General formula (9)
(R 16 , R 17 , and R 18 are each independently C n H a F b Cl c Br d I e .
n, a, b, c, d, and e are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e.
Any two of R 16 , R 17 and R 18 may combine to form a ring, in which case the group forming the ring satisfies 2n = a + b + c + d + e. Three of R 16 , R 17 and R 18 may combine to form a ring, in which case two of the three satisfy 2n = a + b + c + d + e, and one group satisfies 2n−1 = a + b + c + d + e. Fulfill. )
 上記一般式(7)~(9)で表される化学構造において、nは0~6の整数が好ましく、0~4の整数がより好ましく、0~2の整数が特に好ましい。なお、上記一般式(7)~(9)で表される化学構造の、R13とR14が結合、または、R16、R17、R18が結合して環を形成している場合には、nは1~8の整数が好ましく、1~7の整数がより好ましく、1~3の整数が特に好ましい。 In the chemical structures represented by the general formulas (7) to (9), n is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, and particularly preferably an integer of 0 to 2. In the chemical structures represented by the above general formulas (7) to (9), when R 13 and R 14 are bonded, or R 16 , R 17 and R 18 are bonded to form a ring. In the formula, n is preferably an integer of 1 to 8, more preferably an integer of 1 to 7, and particularly preferably an integer of 1 to 3.
 また、上記一般式(7)~(9)で表される化学構造において、a、c、d、eが0のものが好ましい。 In the chemical structures represented by the general formulas (7) to (9), those in which a, c, d, and e are 0 are preferable.
 金属塩は、(CFSONLi(以下、「LiTFSA」と言うことがある。)、(FNLi(以下、「LiFSA」と言うことがある。)、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、(SOCFCFCFSO)NLi、FSO(CHSO)NLi、FSO(CSO)NLi、またはFSO(CSO)NLiが特に好ましい。 Metal salts, (CF 3 SO 2) 2 NLi ( hereinafter sometimes referred to as "LiTFSA".), (F S O 2 ) 2 NLi ( hereinafter sometimes referred to as "LiFSA".), (C 2 F 5 SO 2 ) 2 NLi, FSO 2 (CF 3 SO 2 ) NLi, (SO 2 CF 2 CF 2 SO 2 ) NLi, (SO 2 CF 2 CF 2 CF 2 SO 2 ) NLi, FSO 2 (CH 3 SO 2 ) NLi, FSO 2 (C 2 F 5 SO 2 ) NLi, or FSO 2 (C 2 H 5 SO 2 ) NLi are particularly preferred.
 金属塩は、以上で説明したカチオンとアニオンをそれぞれ適切な数で組み合わせたものを採用すれば良い。金属塩は上記の一種類を採用しても良いし、複数種を併用しても良い。 The metal salt may be a combination of an appropriate number of cations and anions described above. One kind of metal salt may be adopted, or a plurality of kinds may be used in combination.
 [有機溶媒]
 ヘテロ元素を有する有機溶媒としては、ヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである有機溶媒が好ましく、ヘテロ元素が窒素または酸素から選択される少なくとも1つである有機溶媒がより好ましい。また、ヘテロ元素を有する有機溶媒としては、NH基、NH基、OH基、SH基などのプロトン供与基を有さない、非プロトン性溶媒が好ましい。
[Organic solvent]
As the organic solvent having a hetero element, an organic solvent in which the hetero element is at least one selected from nitrogen, oxygen, sulfur and halogen is preferable, and an organic solvent in which the hetero element is at least one selected from nitrogen or oxygen Is more preferable. As the organic solvent having a hetero element, an aprotic solvent having no proton donating group such as NH group, NH 2 group, OH group, and SH group is preferable.
 ヘテロ元素を有する有機溶媒(以下、単に「有機溶媒」ということがある。)を具体的に例示すると、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン、2,2-ジメチル-1,3-ジオキソラン、2-メチルテトラヒドロピラン、2-メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、イソプロピルイソシアネート、n-プロピルイソシアネート、クロロメチルイソシアネート等のイソシアネート類、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、蟻酸メチル、蟻酸エチル、酢酸ビニル、メチルアクリレート、メチルメタクリレート等のエステル類、グリシジルメチルエーテル、エポキシブタン、2-エチルオキシラン等のエポキシ類、オキサゾール、2-エチルオキサゾール、オキサゾリン、2-メチル-2-オキサゾリン等のオキサゾール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、無水酢酸、無水プロピオン酸等の酸無水物、ジメチルスルホン、スルホラン等のスルホン類、ジメチルスルホキシド等のスルホキシド類、1-ニトロプロパン、2-ニトロプロパン等のニトロ類、フラン、フルフラール等のフラン類、γ―ブチロラクトン、γ―バレロラクトン、δ―バレロラクトン等の環状エステル類、チオフェン、ピリジン等の芳香族複素環類、テトラヒドロ-4-ピロン、1-メチルピロリジン、N-メチルモルフォリン等の複素環類、リン酸トリメチル、リン酸トリエチル等のリン酸エステル類を挙げることができる。 Specific examples of the organic solvent having a hetero element (hereinafter sometimes simply referred to as “organic solvent”) include nitriles such as acetonitrile, propionitrile, acrylonitrile, malononitrile, 1,2-dimethoxyethane, 1, 2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 2,2-dimethyl-1,3-dioxolane, 2-methyltetrahydropyran, 2-methyltetrahydrofuran, crown Ethers such as ether, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolide Amides such as isopropyl isocyanate, n-propyl isocyanate, chloromethyl isocyanate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl formate, ethyl formate, vinyl acetate, methyl acrylate, methyl methacrylate, etc. Esters, glycidyl methyl ether, epoxy butane, epoxy such as 2-ethyloxirane, oxazole, 2-ethyloxazole, oxazoline, oxazole such as 2-methyl-2-oxazoline, ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone Acid anhydrides such as acetic anhydride and propionic anhydride, sulfones such as dimethyl sulfone and sulfolane, sulfoxides such as dimethyl sulfoxide, 1-nitropropane and 2-nitrate Nitros such as propane, furans such as furan and furfural, cyclic esters such as γ-butyrolactone, γ-valerolactone and δ-valerolactone, aromatic heterocycles such as thiophene and pyridine, tetrahydro-4-pyrone, Examples thereof include heterocyclic rings such as 1-methylpyrrolidine and N-methylmorpholine, and phosphate esters such as trimethyl phosphate and triethyl phosphate.
 ヘテロ元素を有する有機溶媒として、下記一般式(10)で示される鎖状カーボネートを挙げることができる。 Examples of the organic solvent having a hetero element include a chain carbonate represented by the following general formula (10).
  R19OCOOR20・・・・・・一般式(10)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCClBr、または、環状アルキルを化学構造に含むCClBrのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
R 19 OCOOR 20 ··· General formula (10)
(R 19 and R 20 are each independently C n H a F b Cl c Br d I e which is a chain alkyl, or C m H f F g Cl h Br i I containing a cyclic alkyl in the chemical structure. .n selected from any of j, a, b, c, d, e, m, f, g, h, i, j are each independently an integer of 0 or more, 2n + 1 = a + b + c + d + e, 2m = f + g + h + i + j Meet)
 上記一般式(10)で表される鎖状カーボネートにおいて、nは1~6の整数が好ましく、1~4の整数がより好ましく、1~2の整数が特に好ましい。mは3~8の整数が好ましく、4~7の整数がより好ましく、5~6の整数が特に好ましい。また、上記一般式(10)で表される鎖状カーボネートのうち、ジメチルカーボネート(以下、「DMC」ということがある。)、ジエチルカーボネート(以下、「DEC」ということがある。)、エチルメチルカーボネート(以下、「EMC」ということがある。)が特に好ましい。 In the chain carbonate represented by the general formula (10), n is preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 2. m is preferably an integer of 3 to 8, more preferably an integer of 4 to 7, and particularly preferably an integer of 5 to 6. Among the chain carbonates represented by the general formula (10), dimethyl carbonate (hereinafter sometimes referred to as “DMC”), diethyl carbonate (hereinafter sometimes referred to as “DEC”), ethylmethyl Carbonate (hereinafter sometimes referred to as “EMC”) is particularly preferred.
 ヘテロ元素を有する有機溶媒としては、比誘電率が20以上またはドナー性のエーテル酸素を有する溶媒が好ましく、そのような有機溶媒として、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサン、2,2-ジメチル-1,3-ジオキソラン、2-メチルテトラヒドロピラン、2-メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、N,N-ジメチルホルムアミド、アセトン、ジメチルスルホキシド、スルホランを挙げることができ、特に、アセトニトリル(以下、「AN」ということがある。)、1,2-ジメトキシエタン(以下、「DME」ということがある。)が好ましい。 As the organic solvent having a hetero element, a solvent having a relative dielectric constant of 20 or more or a donor ether oxygen is preferable. Examples of such an organic solvent include nitriles such as acetonitrile, propionitrile, acrylonitrile, and malononitrile, 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 2,2-dimethyl-1,3-dioxolane, 2-methyltetrahydropyran And ethers such as 2-methyltetrahydrofuran and crown ether, N, N-dimethylformamide, acetone, dimethyl sulfoxide, and sulfolane. In particular, acetonitrile (hereinafter sometimes referred to as “AN”), 1, 2-dimethoxyethane (hereinafter referred to as “D There is the fact that E ".) Is preferred.
 これらの有機溶媒は単独で電解液に用いても良いし、複数を併用しても良い。 These organic solvents may be used alone or in combination as an electrolyte.
 本発明の電解液は、その振動分光スペクトルにおいて、本発明の電解液に含まれる有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークがシフトしたピーク(以下、「シフトピーク」ということがある。)の強度をIsとした場合、Is>Ioであることを特徴とする。すなわち、本発明の電解液を振動分光測定に供し得られる振動分光スペクトルチャートにおいて、上記二つのピーク強度の関係はIs>Ioとなる。 The electrolyte solution of the present invention has a peak in which the original peak of the organic solvent is shifted to Io with respect to the peak intensity derived from the organic solvent contained in the electrolyte solution of the present invention in the vibrational spectrum. Hereinafter, the intensity of the “shift peak” may be Is, where Is> Io. That is, in the vibrational spectroscopic spectrum chart obtained by subjecting the electrolytic solution of the present invention to vibrational spectroscopic measurement, the relationship between the two peak intensities is Is> Io.
 ここで、「有機溶媒本来のピーク」とは、有機溶媒のみを振動分光測定した場合のピーク位置(波数)に、観察されるピークを意味する。有機溶媒本来のピークの強度Ioの値と、シフトピークの強度Isの値は、振動分光スペクトルにおける各ピークのベースラインからの高さまたは面積である。 Here, “the original peak of the organic solvent” means a peak observed at the peak position (wave number) when vibration spectroscopy measurement is performed only on the organic solvent. The value of the intensity Io of the original peak of the organic solvent and the value of the intensity Is of the shift peak are the height or area from the baseline of each peak in the vibrational spectrum.
 本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークがシフトしたピークが複数存在する場合には、最もIsとIoの関係を判断しやすいピークに基づいて当該関係を判断すれば良い。また、本発明の電解液にヘテロ元素を有する有機溶媒を複数種用いた場合には、最もIsとIoの関係を判断しやすい(最もIsとIoの差が顕著な)有機溶媒を選択し、そのピーク強度に基づいてIsとIoの関係を判断すれば良い。また、ピークのシフト量が小さく、シフト前後のピークが重なってなだらかな山のように見える場合は、既知の手段を用いてピーク分離を行い、IsとIoの関係を判断しても良い。 In the vibrational spectroscopic spectrum of the electrolytic solution of the present invention, when there are a plurality of peaks in which the original peak of the organic solvent is shifted, the relationship may be determined based on the peak for which the relationship between Is and Io is most easily determined. In addition, when a plurality of organic solvents having heteroelements are used in the electrolytic solution of the present invention, an organic solvent that can determine the relationship between Is and Io most easily (the difference between Is and Io is most pronounced) is selected, The relationship between Is and Io may be determined based on the peak intensity. Further, when the peak shift amount is small and the peaks before and after the shift appear to be a gentle mountain, peak separation may be performed using known means to determine the relationship between Is and Io.
 なお、ヘテロ元素を有する有機溶媒を複数種用いた電解液の振動分光スペクトルにおいては、カチオンと最も配位し易い有機溶媒(以下、「優先配位溶媒」ということがある。)のピークが他に優先してシフトする。ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の質量%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。また、ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の体積%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。 Note that in the vibrational spectroscopic spectrum of an electrolytic solution using a plurality of organic solvents having a hetero element, the peak of an organic solvent that is most easily coordinated with a cation (hereinafter sometimes referred to as “preferred coordination solvent”) is another. Shift in preference to. In an electrolytic solution using a plurality of organic solvents having a hetero element, the mass% of the preferential coordination solvent with respect to the entire organic solvent having a hetero element is preferably 40% or more, more preferably 50% or more, and further preferably 60% or more. 80% or more is particularly preferable. Further, in the electrolytic solution using a plurality of organic solvents having a hetero element, the volume% of the preferential coordination solvent with respect to the entire organic solvent having a hetero element is preferably 40% or more, more preferably 50% or more, and 60% or more. Is more preferable, and 80% or more is particularly preferable.
 上記二つのピーク強度の関係は、Is>2×Ioの条件を満たすことが好ましく、Is>3×Ioの条件を満たすことがさらに好ましく、Is>5×Ioの条件を満たすことが特に好ましい。最も好ましいのは、本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークの強度Ioが観察されず、シフトピークの強度Isが観察される電解液である。当該電解液においては、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和していることを意味する。本発明の電解液は、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和している状態(Io=0の状態)が最も好ましい。 The relationship between the two peak intensities preferably satisfies the condition of Is> 2 × Io, more preferably satisfies the condition of Is> 3 × Io, and particularly preferably satisfies the condition of Is> 5 × Io. Most preferred is an electrolytic solution in which the intensity Io of the peak inherent in the organic solvent is not observed and the intensity Is of the shift peak is observed in the vibrational spectrum of the electrolytic solution of the present invention. In the electrolytic solution, it means that all the molecules of the organic solvent contained in the electrolytic solution are completely solvated with the metal salt. The electrolyte solution of the present invention is most preferably in a state where all the molecules of the organic solvent contained in the electrolyte solution are completely solvated with the metal salt (Io = 0 state).
 本発明の電解液においては、金属塩と、ヘテロ元素を有する有機溶媒(または優先配位溶媒)が、相互作用を及ぼしていると推定される。具体的には、金属塩と、ヘテロ元素を有する有機溶媒(または優先配位溶媒)のヘテロ元素とが、配位結合を形成し、金属塩とヘテロ元素を有する有機溶媒(または優先配位溶媒)からなる安定なクラスターを形成していると推定される。このクラスターは、後述する実施例の結果からみて、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(または優先配位溶媒)2分子が配位することにより形成されていると推定される。この点を考慮すると、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(または優先配位溶媒)のモル範囲は、1.4モル以上3.5モル未満が好ましく、1.5モル以上3.1モル以下がより好ましく、1.6モル以上3モル以下がさらに好ましい。 In the electrolytic solution of the present invention, it is presumed that the metal salt and the organic solvent (or preferential coordination solvent) having a hetero element have an interaction. Specifically, a metal salt and a hetero element of an organic solvent (or preferential coordination solvent) having a hetero element form a coordination bond, and the organic solvent (or preferential coordinating solvent) having a metal salt and a hetero element ) Is estimated to form a stable cluster. From the results of Examples described later, this cluster is presumed to be formed by coordination of two molecules of an organic solvent (or preferential coordination solvent) having a hetero element with one molecule of a metal salt. The Considering this point, the molar range of the organic solvent having a hetero element (or preferential coordination solvent) with respect to 1 mol of the metal salt in the electrolytic solution of the present invention is preferably 1.4 mol or more and less than 3.5 mol. More preferably, it is 0.5 mol or more and 3.1 mol or less, and 1.6 mol or more and 3 mol or less are still more preferable.
 本発明の電解液の粘度η(mPa・s)は、10<η<500の範囲が好ましく、12<η<400の範囲がより好ましく、15<η<300の範囲がさらに好ましく、18<η<150の範囲が特に好ましく、20<η<140の範囲が最も好ましい。 The viscosity η (mPa · s) of the electrolytic solution of the present invention is preferably in the range of 10 <η <500, more preferably in the range of 12 <η <400, further preferably in the range of 15 <η <300, and 18 <η. A range of <150 is particularly preferred, and a range of 20 <η <140 is most preferred.
 本発明の電解液は、優れたイオン伝導度を示す。このため、本発明の非水電解質二次電池は、電池特性に優れる。なお、本発明の電解液のイオン伝導度σ(mS/cm)は1≦σであるのが好ましい。 The electrolytic solution of the present invention exhibits excellent ionic conductivity. For this reason, the nonaqueous electrolyte secondary battery of this invention is excellent in a battery characteristic. The ionic conductivity σ (mS / cm) of the electrolytic solution of the present invention is preferably 1 ≦ σ.
 本発明の電解液のイオン伝導度σ(mS/cm)は高ければ高いほど、好適にイオンを移動することができ、優れた電池の電解液となり得る。本発明の電解液のイオン伝導度σ(mS/cm)につき、あえて、上限を含めた好適な範囲を示すと、2<σ<200の範囲が好ましく、3<σ<100の範囲がより好ましく、4<σ<50の範囲がさらに好ましく、5<σ<35の範囲が特に好ましい。 The higher the ionic conductivity σ (mS / cm) of the electrolytic solution of the present invention, the more suitable ions can be transferred, and an excellent battery electrolytic solution can be obtained. Regarding the ionic conductivity σ (mS / cm) of the electrolytic solution of the present invention, when a suitable range including the upper limit is shown, a range of 2 <σ <200 is preferable, and a range of 3 <σ <100 is more preferable. The range of 4 <σ <50 is more preferable, and the range of 5 <σ <35 is particularly preferable.
 本発明の電解液における密度d(g/cm)は、好ましくはd≧1.2またはd≦2.2であり、1.2≦d≦2.2の範囲内がより好ましく、1.24≦d≦2.0の範囲内がより好ましく、1.26≦d≦1.8の範囲内がさらに好ましく、1.27≦d≦1.6の範囲内が特に好ましい。なお、本発明の電解液における密度d(g/cm)は、20℃での密度を意味する。以下に説明するd/cは上記dを塩濃度c(mol/L)で除した値である。
 本発明の電解液におけるd/cは0.15≦d/c≦0.71であり、0.15≦d/c≦0.56の範囲内が好ましく、0.25≦d/c≦0.56の範囲内がより好ましく、0.26≦d/c≦0.50の範囲内がさらに好ましく、0.27≦d/c≦0.47の範囲内が特に好ましい。
The density d (g / cm 3 ) in the electrolytic solution of the present invention is preferably d ≧ 1.2 or d ≦ 2.2, more preferably 1.2 ≦ d ≦ 2.2. A range of 24 ≦ d ≦ 2.0 is more preferable, a range of 1.26 ≦ d ≦ 1.8 is more preferable, and a range of 1.27 ≦ d ≦ 1.6 is particularly preferable. The density d (g / cm 3 ) in the electrolytic solution of the present invention means the density at 20 ° C. D / c described below is a value obtained by dividing the above d by the salt concentration c (mol / L).
In the electrolytic solution of the present invention, d / c is 0.15 ≦ d / c ≦ 0.71, preferably 0.15 ≦ d / c ≦ 0.56, and 0.25 ≦ d / c ≦ 0. Within the range of .56, more preferably within the range of 0.26 ≦ d / c ≦ 0.50, and particularly preferably within the range of 0.27 ≦ d / c ≦ 0.47.
 本発明の電解液におけるd/cは、金属塩と有機溶媒を特定した場合でも規定することができる。例えば、金属塩としてLiTFSA、有機溶媒としてDMEを選択した場合には、d/cは0.42≦d/c≦0.56の範囲内が好ましく、0.44≦d/c≦0.52の範囲内がより好ましい。金属塩としてLiTFSA、有機溶媒としてANを選択した場合には、d/cは0.35≦d/c≦0.41の範囲内が好ましく、0.36≦d/c≦0.39の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDMEを選択した場合には、d/cは0.32≦d/c≦0.46の範囲内が好ましく、0.34≦d/c≦0.42の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてANを選択した場合には、d/cは0.25≦d/c≦0.48の範囲内が好ましく、0.25≦d/c≦0.38の範囲がより好ましく、0.25≦d/c≦0.31の範囲内がさらに好ましく、0.26≦d/c≦0.29の範囲内がなお好ましい。金属塩としてLiFSA、有機溶媒としてDMCを選択した場合には、d/cは0.32≦d/c≦0.46の範囲内が好ましく、0.34≦d/c≦0.42の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてEMCを選択した場合には、d/cは0.34≦d/c≦0.50の範囲内が好ましく、0.37≦d/c≦0.45の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDECを選択した場合には、d/cは0.36≦d/c≦0.54の範囲内が好ましく、0.39≦d/c≦0.48の範囲内がより好ましい。 D / c in the electrolytic solution of the present invention can be defined even when a metal salt and an organic solvent are specified. For example, when LiTFSA is selected as the metal salt and DME is selected as the organic solvent, d / c is preferably within the range of 0.42 ≦ d / c ≦ 0.56, and 0.44 ≦ d / c ≦ 0.52 The range of is more preferable. When LiTFSA is selected as the metal salt and AN is selected as the organic solvent, d / c is preferably in the range of 0.35 ≦ d / c ≦ 0.41, and 0.36 ≦ d / c ≦ 0.39. The inside is more preferable. When LiFSA is selected as the metal salt and DME is selected as the organic solvent, d / c is preferably in the range of 0.32 ≦ d / c ≦ 0.46, and in the range of 0.34 ≦ d / c ≦ 0.42. The inside is more preferable. When LiFSA is selected as the metal salt and AN is selected as the organic solvent, d / c is preferably in the range of 0.25 ≦ d / c ≦ 0.48, and in the range of 0.25 ≦ d / c ≦ 0.38. Is more preferable, the range of 0.25 ≦ d / c ≦ 0.31 is still more preferable, and the range of 0.26 ≦ d / c ≦ 0.29 is still more preferable. When LiFSA is selected as the metal salt and DMC is selected as the organic solvent, d / c is preferably in the range of 0.32 ≦ d / c ≦ 0.46, and in the range of 0.34 ≦ d / c ≦ 0.42. The inside is more preferable. When LiFSA is selected as the metal salt and EMC is selected as the organic solvent, d / c is preferably in the range of 0.34 ≦ d / c ≦ 0.50, and in the range of 0.37 ≦ d / c ≦ 0.45. The inside is more preferable. When LiFSA is selected as the metal salt and DEC is selected as the organic solvent, d / c is preferably in the range of 0.36 ≦ d / c ≦ 0.54, and in the range of 0.39 ≦ d / c ≦ 0.48. The inside is more preferable.
 本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なり、密度が高いため、電解液中の金属イオン輸送速度の向上(特に、金属がリチウムの場合、リチウム輸率の向上)、電極と電解液界面の反応速度の向上、電池のハイレート充放電時に起こる電解液の塩濃度の偏在の緩和、電気二重層容量増大などが期待できる。さらに、本発明の電解液においては、密度が高いことから、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。 Compared with conventional electrolytes, the electrolyte solution of the present invention is different in the environment in which the metal salt and the organic solvent are present, and has a high density. , Improvement in lithium transport number), improvement in the reaction rate between the electrode and the electrolyte solution, relaxation of uneven distribution of the salt concentration of the electrolyte that occurs during high-rate charge / discharge of the battery, and increase in the electric double layer capacity can be expected. Furthermore, in the electrolytic solution of the present invention, since the density is high, the vapor pressure of the organic solvent contained in the electrolytic solution is lowered. As a result, volatilization of the organic solvent from the electrolytic solution of the present invention can be reduced.
 本発明の電解液においては、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(または優先配位溶媒)2分子が配位することによりクラスター形成されていると推定されるため、本発明の電解液の濃度(mol/L)は、金属塩および有機溶媒それぞれの分子量と、溶液にした場合の密度に依存する。そのため、本発明の電解液の濃度を一概に規定することは適当でない。 In the electrolytic solution of the present invention, it is presumed that a cluster is formed by coordination of two molecules of an organic solvent (or a preferential coordination solvent) having a hetero element with one molecule of a metal salt. The concentration (mol / L) of the electrolytic solution of the invention depends on the molecular weight of each of the metal salt and the organic solvent and the density when the solution is used. Therefore, it is not appropriate to prescribe the concentration of the electrolytic solution of the present invention.
 本発明の電解液の濃度(mol/L)を表1に個別に例示する。 Table 1 individually illustrates the concentration (mol / L) of the electrolytic solution of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 クラスターを形成している有機溶媒と、クラスターの形成に関与していない有機溶媒とは、それぞれの存在環境が異なる。そのため、振動分光測定において、クラスターを形成している有機溶媒由来のピークは、クラスターの形成に関与していない有機溶媒由来のピーク(有機溶媒本来のピーク)の観察される波数から、高波数側または低波数側にシフトして観察される。すなわち、シフトピークは、クラスターを形成している有機溶媒のピークに相当する。 The organic solvent that forms the cluster and the organic solvent that is not involved in the formation of the cluster have different environments. Therefore, in vibrational spectroscopy measurement, the peak derived from the organic solvent forming the cluster is higher than the observed wave number of the peak derived from the organic solvent not involved in the cluster formation (original peak of the organic solvent). Or it is observed shifted to the low wavenumber side. That is, the shift peak corresponds to the peak of the organic solvent forming the cluster.
 振動分光スペクトルとしては、IRスペクトルまたはラマンスペクトルを挙げることができる。IR測定の測定方法としては、ヌジョール法、液膜法などの透過測定方法、ATR法などの反射測定方法を挙げることができる。IRスペクトルまたはラマンスペクトルのいずれを選択するかについては、本発明の電解液の振動分光スペクトルにおいて、IsとIoの関係を判断しやすいスペクトルの方を選択すれば良い。なお、振動分光測定は、大気中の水分の影響を軽減または無視できる条件で行うのが良い。例えば、ドライルーム、グローブボックスなどの低湿度または無湿度条件下でIR測定を行うこと、または、本発明の電解液を密閉容器に入れたままの状態でラマン測定を行うのが良い。 As the vibrational spectrum, an IR spectrum or a Raman spectrum can be exemplified. Examples of the measurement method for IR measurement include transmission measurement methods such as Nujol method and liquid film method, and reflection measurement methods such as ATR method. As to whether to select the IR spectrum or the Raman spectrum, it is only necessary to select a spectrum in which the relationship between Is and Io can be easily determined in the vibrational spectrum of the electrolytic solution of the present invention. The vibrational spectroscopic measurement is preferably performed under conditions that can reduce or ignore the influence of moisture in the atmosphere. For example, IR measurement may be performed under low or no humidity conditions such as a dry room or a glove box, or Raman measurement may be performed with the electrolytic solution of the present invention in a sealed container.
 ここで、金属塩としてLiTFSA、有機溶媒としてアセトニトリルを含む本発明の電解液におけるピークにつき、具体的に説明する。 Here, the peak in the electrolytic solution of the present invention containing LiTFSA as the metal salt and acetonitrile as the organic solvent will be specifically described.
 アセトニトリルのみをIR測定した場合、CおよびN間の三重結合の伸縮振動に由来するピークが通常2100~2400cm-1付近に観察される。 When only acetonitrile is measured by IR, a peak derived from stretching vibration of a triple bond between C and N is usually observed in the vicinity of 2100 to 2400 cm −1 .
 ここで、従来の技術常識に従い、アセトニトリル溶媒に対しLiTFSAを1mol/Lの濃度で溶解して電解液とした場合を想定する。アセトニトリル1Lは約19molに該当するので、従来の電解液1Lには、1molのLiTFSAと19molのアセトニトリルが存在する。そうすると、従来の電解液においては、LiTFSAと溶媒和している(Liに配位している)アセトニトリルと同時に、LiTFSAと溶媒和していない(Liに配位していない)アセトニトリルが多数存在する。さて、LiTFSAと溶媒和しているアセトニトリル分子と、LiTFSAと溶媒和していないアセトニトリル分子とは、アセトニトリル分子の置かれている環境が異なるので、IRスペクトルにおいては、両者のアセトニトリルピークが区別して観察される。より具体的には、LiTFSAと溶媒和していないアセトニトリルのピークは、アセトニトリルのみをIR測定した場合と同様の位置(波数)に観察されるが、他方、LiTFSAと溶媒和しているアセトニトリルのピークは、ピーク位置(波数)が高波数側にシフトして観察される。 Here, it is assumed that LiTFSA is dissolved in an acetonitrile solvent at a concentration of 1 mol / L to obtain an electrolytic solution according to conventional technical common sense. Since 1 L of acetonitrile corresponds to about 19 mol, 1 L of conventional electrolyte includes 1 mol of LiTFSA and 19 mol of acetonitrile. Then, in the conventional electrolyte, there are many acetonitriles that are not solvated with LiTFSA (not coordinated with Li) simultaneously with acetonitrile that is solvated with LiTFSA (coordinated with Li). . Now, since the acetonitrile molecule is different between the LiTFSA solvated acetonitrile molecule and the LiTFSA non-solvated acetonitrile molecule, in the IR spectrum, the acetonitrile peaks of both are distinguished and observed. Is done. More specifically, the peak of acetonitrile that is not solvated with LiTFSA is observed at the same position (wave number) as in the case of IR measurement of only acetonitrile, but the peak of acetonitrile that is solvated with LiTFSA. Is observed with the peak position (wave number) shifted to the high wave number side.
 そして、従来の電解液の濃度においては、LiTFSAと溶媒和していないアセトニトリルが多数存在するのであるから、従来の電解液の振動分光スペクトルにおいて、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is<Ioとなる。 Since there are many acetonitriles that are not solvated with LiTFSA in the concentration of the conventional electrolyte, in the vibrational spectrum of the conventional electrolyte, the peak intensity Io of the original acetonitrile and the peak of the original acetonitrile The relationship with the intensity Is of the peak shifted is Is <Io.
 他方、本発明の電解液は従来の電解液と比較してLiTFSAの濃度が高く、かつ、電解液においてLiTFSAと溶媒和している(クラスターを形成している)アセトニトリル分子の数が、LiTFSAと溶媒和していないアセトニトリル分子の数よりも多い。そうすると、本発明の電解液の振動分光スペクトルにおける、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is>Ioとなる。 On the other hand, the electrolytic solution of the present invention has a higher LiTFSA concentration than the conventional electrolytic solution, and the number of acetonitrile molecules solvated with LiTFSA (forming clusters) in the electrolytic solution is different from that of LiTFSA. More than the number of unsolvated acetonitrile molecules. Then, the relation between the intensity Io of the original peak of the acetonitrile and the intensity Is of the peak obtained by shifting the original peak of acetonitrile in the vibrational spectrum of the electrolytic solution of the present invention is Is> Io.
 表2に、本発明の電解液の振動分光スペクトルにおいて、IoおよびIsの算出に有用と考えられる有機溶媒の波数と、その帰属を例示する。なお、振動分光スペクトルの測定装置、測定環境、測定条件に因って、観察されるピークの波数が以下の波数と異なる場合があることを付け加えておく。 Table 2 exemplifies the wave numbers of organic solvents that are considered useful for the calculation of Io and Is and their attribution in the vibrational spectrum of the electrolytic solution of the present invention. It should be added that the wave number of the observed peak may be different from the following wave numbers depending on the measurement apparatus, measurement environment, and measurement conditions of the vibrational spectrum.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 有機溶媒の波数とその帰属につき、公知のデータを参考としても良い。参考文献として、日本分光学会測定法シリーズ17 ラマン分光法、濱口宏夫、平川暁子、学会出版センター、231~249頁を挙げる。また、コンピュータを用いた計算でも、IoおよびIsの算出に有用と考えられる有機溶媒の波数と、有機溶媒と金属塩が配位した場合の波数シフトを予測することができる。例えば、Gaussian09(登録商標、ガウシアン社)を用い、密度汎関数をB3LYP、基底関数を6-311G++(d,p)として計算すれば良い。当業者は、表2の記載、公知のデータ、コンピュータでの計算結果を参考にして、有機溶媒のピークを選定し、IoおよびIsを算出することができる。 It is also possible to refer to known data regarding the wave number of organic solvents and their attribution. As references, the Spectroscopical Society of Japan Measurement Series 17, Raman Spectroscopy, Hiroo Higuchi, Atsuko Hirakawa, Academic Publishing Center, pages 231 to 249 are listed. In addition, the calculation using a computer can also predict the wave number of an organic solvent that is considered useful for the calculation of Io and Is and the wave number shift when the organic solvent and the metal salt are coordinated. For example, Gaussian 09 (registered trademark, Gaussian) may be used, and the density functional may be calculated as B3LYP and the basis function as 6-311G ++ (d, p). A person skilled in the art can calculate the Io and Is by selecting the peak of the organic solvent with reference to the description in Table 2, known data, and the calculation result in the computer.
 本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なり、かつ、金属塩濃度が高いため、電解液中の金属イオン輸送速度の向上(特に、金属がリチウムの場合、リチウム輸率の向上)、電極と電解液界面の反応速度の向上、電池のハイレート充放電時に起こる電解液の塩濃度の偏在の緩和、電気二重層容量の増大などが期待できる。さらに、本発明の電解液においては、ヘテロ元素を有する有機溶媒の大半が金属塩とクラスターを形成していることから、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。 The electrolytic solution of the present invention is different from the conventional electrolytic solution in that the presence environment of the metal salt and the organic solvent is different and the concentration of the metal salt is high, so that the metal ion transport rate in the electrolytic solution is improved (especially metal When Li is lithium, the lithium transport number is improved), the reaction rate between the electrode and the electrolyte solution is improved, the uneven distribution of the salt concentration of the electrolyte solution that occurs during high-rate charge / discharge of the battery, and the electric double layer capacity can be expected to increase . Furthermore, in the electrolytic solution of the present invention, since most of the organic solvent having a hetero element forms a cluster with a metal salt, the vapor pressure of the organic solvent contained in the electrolytic solution is lowered. As a result, volatilization of the organic solvent from the electrolytic solution of the present invention can be reduced.
 本発明の電解液は、従来の電池の電解液と比較して、粘度が高い。例えば本発明の電解液の好ましいLi濃度は、一般的な電解液のLi濃度の2~5倍程度である。そのため、本発明の電解液を用いた電池であれば、仮に電池が破損したとしても、電解液漏れが抑制される。また、従来の電解液を用いた二次電池は、高速充放電サイクル時に容量減少が顕著であった。その理由としては、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。しかしながら、本発明の電解液を用いた二次電池は、高速充放電時に容量が好適に維持されることが明らかになった。本発明の電解液の高粘度との物性により、電解液のLi濃度の偏在を抑制できたことが理由と考えられる。また、本発明の電解液の高粘度との物性により、電極界面における電解液の保液性が向上し、電極界面で電解液が不足する状態(いわゆる液枯れ状態)を抑制することができたことが理由と考えられる。 The electrolyte of the present invention has a higher viscosity than the conventional battery electrolyte. For example, the preferable Li concentration of the electrolytic solution of the present invention is about 2 to 5 times the Li concentration of a general electrolytic solution. Therefore, if it is a battery using the electrolyte solution of this invention, even if a battery is damaged, electrolyte solution leakage is suppressed. Moreover, the capacity | capacitance reduction of the secondary battery using the conventional electrolyte solution was remarkable at a high-speed charging / discharging cycle. The reason is that due to the uneven Li concentration generated in the electrolyte when rapidly charging and discharging, the electrolyte cannot supply a sufficient amount of Li to the reaction interface with the electrode. The uneven distribution of Li concentration in the liquid can be considered. However, it has become clear that the capacity of the secondary battery using the electrolytic solution of the present invention is suitably maintained during high-speed charge / discharge. It is considered that the uneven distribution of Li concentration in the electrolytic solution could be suppressed due to the physical properties of the electrolytic solution of the present invention with high viscosity. In addition, due to the high viscosity of the electrolyte solution of the present invention, the liquid retention of the electrolyte solution at the electrode interface has been improved, and the state where the electrolyte solution is insufficient at the electrode interface (so-called liquid withdrawn state) has been suppressed. The reason is considered.
 ところで、本発明の電解液は金属塩のカチオンを高濃度で含有する。このため、本発明の電解液中において、隣り合うカチオン間の距離は極めて近い。そして、非水電解質二次電池の充放電時にリチウムイオン等のカチオンが正極と負極との間を移動する際には、移動先の電極に直近のカチオンが先ず当該電極に供給される。そして、供給された当該カチオンがあった場所には、当該カチオンに隣り合う他のカチオンが移動する。つまり、本発明の電解液中においては、隣り合うカチオンが供給対象となる電極に向けて順番に一つずつ位置を変えるという、ドミノ倒し様の現象が生じていると予想される。このため、充放電時のカチオンの移動距離は短く、その分だけカチオンの移動速度が高いと考えられる。そして、このことに起因して、本発明の電解液を有する本発明の非水電解質二次電池の反応速度は高いと考えられる。また、後述するように、本発明の非水電解質二次電池は電極(つまり負極および/または正極)にS,O含有皮膜を有し、当該S,O含有皮膜はS=O構造を有するとともに多くのカチオンを含むと考えられる。このS,O含有皮膜に含まれるカチオンは電極に優先的に供給されると考えられる。よって、本発明の非水電解質二次電池においては、電極近傍に豊富なカチオン源(つまりS,O含有皮膜)を有することによってもカチオンの輸送速度がさらに向上すると考えられる。したがって、本発明の非水電解質二次電池においては、本発明の電解液とS,O含有皮膜との協働によって、優れた電池特性が発揮されると考えられる。 Incidentally, the electrolytic solution of the present invention contains a metal salt cation in a high concentration. For this reason, in the electrolytic solution of the present invention, the distance between adjacent cations is extremely short. When cations such as lithium ions move between the positive electrode and the negative electrode during charge / discharge of the nonaqueous electrolyte secondary battery, the cations closest to the destination electrode are first supplied to the electrode. And the other cation adjacent to the said cation moves to the place with the said supplied cation. In other words, in the electrolytic solution of the present invention, it is expected that a domino-like phenomenon occurs in which adjacent cations change one by one toward the electrode to be supplied one by one. For this reason, the movement distance of the cation at the time of charging / discharging is short, and it is thought that the movement speed | rate of a cation is high by that much. Due to this, the reaction rate of the nonaqueous electrolyte secondary battery of the present invention having the electrolytic solution of the present invention is considered to be high. Further, as will be described later, the nonaqueous electrolyte secondary battery of the present invention has an S, O-containing film on the electrode (that is, the negative electrode and / or the positive electrode), and the S, O-containing film has an S═O structure. It is thought to contain many cations. It is considered that cations contained in the S, O-containing film are preferentially supplied to the electrode. Therefore, in the nonaqueous electrolyte secondary battery of the present invention, it is considered that the cation transport rate is further improved by having an abundant cation source (that is, an S, O-containing film) in the vicinity of the electrode. Therefore, in the nonaqueous electrolyte secondary battery of the present invention, it is considered that excellent battery characteristics are exhibited by the cooperation of the electrolytic solution of the present invention and the S, O-containing film.
 本発明の電解液の製造方法を説明する。本発明の電解液は従来の電解液と比較して金属塩の含有量が多いため、固体(粉体)の金属塩に有機溶媒を加える製造方法では凝集体が得られてしまい、溶液状態の電解液を製造するのが困難である。よって、本発明の電解液の製造方法においては、有機溶媒に対し金属塩を徐々に加え、かつ、電解液の溶液状態を維持しながら製造することが好ましい。 The method for producing the electrolytic solution of the present invention will be described. Since the electrolytic solution of the present invention has a higher metal salt content than the conventional electrolytic solution, the production method in which an organic solvent is added to a solid (powder) metal salt results in the formation of aggregates. It is difficult to produce an electrolytic solution. Therefore, in the manufacturing method of the electrolyte solution of this invention, it is preferable to manufacture, adding a metal salt gradually with respect to an organic solvent, and maintaining the solution state of electrolyte solution.
 金属塩と有機溶媒の種類に因り、本発明の電解液は、従来考えられてきた飽和溶解度を超えて金属塩が有機溶媒に溶解している液体を包含する。そのような本発明の電解液の製造方法は、ヘテロ元素を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する第1溶解工程と、撹拌および/または加温条件下、前記第1電解液に前記金属塩を加え、前記金属塩を溶解し、過飽和状態の第2電解液を調製する第2溶解工程と、撹拌および/または加温条件下、前記第2電解液に前記金属塩を加え、前記金属塩を溶解し、第3電解液を調製する第3溶解工程を含む。 Depending on the type of metal salt and organic solvent, the electrolytic solution of the present invention includes a liquid in which the metal salt is dissolved in the organic solvent beyond the conventionally considered saturation solubility. Such a method for producing an electrolytic solution of the present invention includes a first dissolving step of preparing a first electrolytic solution by mixing an organic solvent having a hetero element and a metal salt, dissolving the metal salt, stirring and / or Alternatively, under heating conditions, the metal salt is added to the first electrolyte solution, the metal salt is dissolved, and a second electrolyte solution in a supersaturated state is prepared; and stirring and / or heating conditions, A third dissolving step of adding the metal salt to the second electrolytic solution, dissolving the metal salt, and preparing a third electrolytic solution;
 ここで、上記「過飽和状態」とは、撹拌および/または加温条件を解除した場合、または、振動等の結晶核生成エネルギーを与えた場合に、電解液から金属塩結晶が析出する状態のことを意味する。第2電解液は「過飽和状態」であり、第1電解液および第3電解液は「過飽和状態」でない。 Here, the “supersaturated state” refers to a state in which metal salt crystals are precipitated from the electrolyte when the stirring and / or heating conditions are canceled or when crystal nucleation energy such as vibration is applied. Means. The second electrolytic solution is “supersaturated”, and the first electrolytic solution and the third electrolytic solution are not “supersaturated”.
 換言すると、本発明の電解液の上記製造方法は、熱力学的に安定な液体状態であり従来の金属塩濃度を包含する第1電解液を経て、熱力学的に不安定な液体状態の第2電解液を経由し、そして、熱力学的に安定な新たな液体状態の第3電解液、すなわち本発明の電解液となる。 In other words, the above-described method for producing the electrolytic solution of the present invention is a thermodynamically stable liquid state, and passes through the first electrolytic solution containing the conventional metal salt concentration, and then the thermodynamically unstable liquid state. The second electrolytic solution passes through the two electrolytic solutions and becomes a thermodynamically stable new electrolytic third solution, that is, the electrolytic solution of the present invention.
 安定な液体状態の第3電解液は通常の条件で液体状態を保つことから、第3電解液においては、例えば、リチウム塩1分子に対し有機溶媒2分子で構成されこれらの分子間の強い配位結合によって安定化されたクラスターがリチウム塩の結晶化を阻害していると推定される。 Since the stable third electrolyte solution in a liquid state maintains a liquid state under normal conditions, the third electrolyte solution is composed of, for example, two molecules of an organic solvent for one lithium salt molecule, and a strong distribution between these molecules. It is presumed that the cluster stabilized by the coordinate bond inhibits the crystallization of the lithium salt.
 第1溶解工程は、ヘテロ原子を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する工程である。 The first dissolution step is a step of preparing a first electrolytic solution by mixing an organic solvent having a hetero atom and a metal salt to dissolve the metal salt.
 ヘテロ原子を有する有機溶媒と金属塩とを混合するためには、ヘテロ原子を有する有機溶媒に対し金属塩を加えても良いし、金属塩に対しヘテロ原子を有する有機溶媒を加えても良い。 In order to mix an organic solvent having a heteroatom and a metal salt, a metal salt may be added to the organic solvent having a heteroatom, or an organic solvent having a heteroatom may be added to the metal salt.
 第1溶解工程は、撹拌および/または加温条件下で行われるのが好ましい。撹拌速度については適宜設定すれば良い。加温条件については、ウォーターバスまたはオイルバスなどの恒温槽で適宜制御するのが好ましい。金属塩の溶解時には溶解熱が発生するので、熱に不安定な金属塩を用いる場合には、温度条件を厳密に制御することが好ましい。また、あらかじめ、有機溶媒を冷却しておいても良いし、第1溶解工程を冷却条件下で行っても良い。 The first dissolution step is preferably performed under stirring and / or heating conditions. What is necessary is just to set suitably about stirring speed. About heating conditions, it is preferable to control suitably with thermostats, such as a water bath or an oil bath. Since heat of dissolution is generated when the metal salt is dissolved, it is preferable to strictly control the temperature condition when using a metal salt that is unstable to heat. In addition, the organic solvent may be cooled in advance, or the first dissolution step may be performed under cooling conditions.
 第1溶解工程と第2溶解工程は連続して実施しても良いし、第1溶解工程で得た第1電解液を一旦保管(静置)しておき、一定時間経過した後に、第2溶解工程を実施しても良い。 The first dissolution step and the second dissolution step may be performed continuously, or the first electrolytic solution obtained in the first dissolution step is temporarily stored (standing), and after a certain time has passed, You may implement a melt | dissolution process.
 第2溶解工程は、撹拌および/または加温条件下、第1電解液に金属塩を加え、金属塩を溶解し、過飽和状態の第2電解液を調製する工程である。 The second dissolution step is a step of preparing a supersaturated second electrolyte solution by adding a metal salt to the first electrolyte solution under stirring and / or heating conditions to dissolve the metal salt.
 第2溶解工程は、熱力学的に不安定な過飽和状態の第2電解液を調製するため、撹拌および/または加温条件下で行うことが必須である。ミキサー等の撹拌器を伴った撹拌装置で第2溶解工程を行うことにより、撹拌条件下としても良いし、撹拌子と撹拌子を動作させる装置(スターラー)を用いて第2溶解工程を行うことにより、撹拌条件下としても良い。加温条件については、ウォーターバスまたはオイルバスなどの恒温槽で適宜制御するのが好ましい。もちろん、撹拌機能と加温機能を併せ持つ装置またはシステムを用いて第2溶解工程を行うことが特に好ましい。なお、ここでいう加温とは、対象物を常温(25℃)以上の温度に温めることを指す。加温温度は30℃以上であるのがより好ましく、35℃以上であるのがさらに好ましい。また、加温温度は、有機溶媒の沸点よりも低い温度であるのが良い。 It is essential to perform the second dissolution step under stirring and / or warming conditions in order to prepare a supersaturated second electrolyte solution that is thermodynamically unstable. By performing the second dissolution step with a stirrer with a stirrer such as a mixer, the stirring condition may be achieved, or the second dissolution step is performed using a stirrer and a device (stirrer) that operates the stirrer. Thus, the stirring condition may be used. About heating conditions, it is preferable to control suitably with thermostats, such as a water bath or an oil bath. Of course, it is particularly preferable to perform the second dissolution step using an apparatus or system having both a stirring function and a heating function. In addition, heating here refers to warming a target object to temperature more than normal temperature (25 degreeC). The heating temperature is more preferably 30 ° C. or higher, and further preferably 35 ° C. or higher. Further, the heating temperature is preferably lower than the boiling point of the organic solvent.
 第2溶解工程において、加えた金属塩が十分に溶解しない場合には、撹拌速度の増加および/またはさらなる加温を実施する。この場合には、第2溶解工程の電解液にヘテロ原子を有する有機溶媒を少量加えても良い。 In the second dissolution step, if the added metal salt is not sufficiently dissolved, increase the stirring speed and / or further heating. In this case, a small amount of an organic solvent having a hetero atom may be added to the electrolytic solution in the second dissolution step.
 第2溶解工程で得た第2電解液を一旦静置すると金属塩の結晶が析出してしまうので、第2溶解工程と第3溶解工程は連続して実施するのが好ましい。 Since the crystal of the metal salt is deposited once the second electrolyte obtained in the second dissolution step is allowed to stand, the second dissolution step and the third dissolution step are preferably carried out continuously.
 第3溶解工程は、撹拌および/または加温条件下、第2電解液に金属塩を加え、金属塩を溶解し、第3電解液を調製する工程である。第3溶解工程では、過飽和状態の第2電解液に金属塩を加え、溶解する必要があるので、第2溶解工程と同様に撹拌および/または加温条件下で行うことが必須である。具体的な撹拌および/または加温条件は、第2溶解工程の条件と同様である。 The third dissolution step is a step of preparing a third electrolyte solution by adding a metal salt to the second electrolyte solution under stirring and / or heating conditions to dissolve the metal salt. In the third dissolution step, it is necessary to add a metal salt to the supersaturated second electrolytic solution and dissolve it. Therefore, it is essential to perform the stirring and / or heating conditions as in the second dissolution step. Specific stirring and / or heating conditions are the same as those in the second dissolution step.
 第1溶解工程、第2溶解工程および第3溶解工程を通じて加えた有機溶媒と金属塩とのモル比が概ね2:1程度となれば、第3電解液(本発明の電解液)の製造が終了する。撹拌および/または加温条件を解除しても、本発明の電解液から金属塩結晶は析出しない。これらの事情からみて、本発明の電解液は、例えば、リチウム塩1分子に対し有機溶媒2分子からなり、これらの分子間の強い配位結合によって安定化されたクラスターを形成していると推定される。 If the molar ratio of the organic solvent and the metal salt added through the first dissolving step, the second dissolving step, and the third dissolving step is about 2: 1, the production of the third electrolytic solution (the electrolytic solution of the present invention) is completed. finish. Even when the stirring and / or heating conditions are canceled, the metal salt crystals are not precipitated from the electrolytic solution of the present invention. In view of these circumstances, the electrolytic solution of the present invention is composed of, for example, two molecules of an organic solvent for one molecule of a lithium salt, and is presumed to form a cluster stabilized by a strong coordinate bond between these molecules. Is done.
 なお、本発明の電解液を製造するにあたり、金属塩と有機溶媒の種類に因り、各溶解工程での処理温度において、上記過飽和状態を経由しない場合であっても、上記第1~3溶解工程で述べた具体的な溶解手段を用いて本発明の電解液を適宜製造することができる。 In producing the electrolytic solution of the present invention, depending on the types of metal salt and organic solvent, the first to third dissolving steps can be performed even if the supersaturated state is not passed at the treatment temperature in each dissolving step. The electrolytic solution of the present invention can be appropriately produced using the specific dissolution means described in 1.
 また、本発明の電解液の製造方法においては、製造途中の電解液を振動分光測定する振動分光測定工程を有するのが好ましい。具体的な振動分光測定工程としては、例えば、製造途中の各電解液を一部サンプリングして振動分光測定に供する方法でも良いし、各電解液をin situ(その場)で振動分光測定する方法でも良い。電解液をin situで振動分光測定する方法としては、透明なフローセルに製造途中の電解液を導入して振動分光測定する方法、または、透明な製造容器を用いて該容器外からラマン測定する方法を挙げることができる。 In addition, in the method for producing an electrolytic solution of the present invention, it is preferable to have a vibrational spectroscopic measurement step of performing vibrational spectroscopic measurement of the electrolytic solution being manufactured. As a specific vibration spectroscopic measurement step, for example, a method of sampling a part of each electrolytic solution in the middle of production and using it for vibration spectroscopic measurement, or a method of performing spectroscopic spectroscopic measurement of each electrolytic solution in situ (situ) But it ’s okay. As a method for in-vitro vibrational spectroscopic measurement of an electrolytic solution, a method of introducing an electrolytic solution in the middle of production into a transparent flow cell and performing vibrational spectroscopic measurement, or a method of performing Raman measurement from outside the container using a transparent production vessel Can be mentioned.
 本発明の電解液の製造方法に振動分光測定工程を含めることにより、電解液におけるIsとIoとの関係を製造途中で確認できるため、製造途中の電解液が本発明の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の電解液に達するのかを把握することができる。 Since the relationship between Is and Io in the electrolytic solution can be confirmed during the production by including the vibrational spectroscopic measurement step in the method for producing the electrolytic solution of the present invention, whether the electrolytic solution during the production reaches the electrolytic solution of the present invention. It is possible to determine whether or not the amount of metal salt added to reach the electrolytic solution of the present invention when the electrolytic solution being manufactured does not reach the electrolytic solution of the present invention. can do.
 本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、低極性(低誘電率)または低ドナー数であって、金属塩と特段の相互作用を示さない溶媒、すなわち、本発明の電解液における上記クラスターの形成および維持に影響を与えない溶媒を加えることができる。このような溶媒を本発明の電解液に加えることにより、本発明の電解液の上記クラスターの形成を保持したままで、本発明の電解液の粘度を低くする効果が期待できる。 In the electrolyte solution of the present invention, in addition to the organic solvent having a hetero element, the solvent has a low polarity (low dielectric constant) or a low donor number and does not exhibit a special interaction with a metal salt, that is, the present invention. A solvent that does not affect the formation and maintenance of the clusters in the electrolyte can be added. By adding such a solvent to the electrolytic solution of the present invention, an effect of lowering the viscosity of the electrolytic solution of the present invention can be expected while maintaining the formation of the cluster of the electrolytic solution of the present invention.
 金属塩と特段の相互作用を示さない溶媒としては、具体的にベンゼン、トルエン、エチルベンゼン、o-キシレン、m-キシレン、p-キシレン、1-メチルナフタレン、ヘキサン、ヘプタン、シクロヘキサンを例示することができる。 Specific examples of the solvent that does not exhibit a special interaction with the metal salt include benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, 1-methylnaphthalene, hexane, heptane, and cyclohexane. it can.
 また、本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、難燃性の溶媒を加えることができる。難燃性の溶媒を本発明の電解液に加えることにより、本発明の電解液の安全度をさらに高めることができる。難燃性の溶媒としては、四塩化炭素、テトラクロロエタン、ハイドロフルオロエーテルなどのハロゲン系溶媒、リン酸トリメチル、リン酸トリエチルなどのリン酸誘導体を例示することができる。 In addition to the organic solvent having a hetero element, a flame retardant solvent can be added to the electrolytic solution of the present invention. By adding a flame retardant solvent to the electrolytic solution of the present invention, the safety of the electrolytic solution of the present invention can be further increased. Examples of the flame retardant solvent include halogen solvents such as carbon tetrachloride, tetrachloroethane, and hydrofluoroether, and phosphoric acid derivatives such as trimethyl phosphate and triethyl phosphate.
 さらに、本発明の電解液をポリマーや無機フィラーと混合し混合物とすると、当該混合物が電解液を封じ込め、擬似固体電解質となる。擬似固体電解質を電池の電解液として用いることで、電池における電解液の液漏れを抑制することができる。 Furthermore, when the electrolytic solution of the present invention is mixed with a polymer or an inorganic filler to form a mixture, the mixture contains the electrolytic solution and becomes a pseudo solid electrolyte. By using the pseudo-solid electrolyte as the battery electrolyte, leakage of the electrolyte in the battery can be suppressed.
 上記ポリマーとしては、リチウムイオン二次電池などの電池に使用されるポリマーや一般的な化学架橋したポリマーを採用することができる。特に、ポリフッ化ビニリデンやポリヘキサフルオロプロピレンなど電解液を吸収しゲル化し得るポリマーや、ポリエチレンオキシドなどのポリマーにイオン導電性基を導入したものが好適である。 As the polymer, a polymer used for a battery such as a lithium ion secondary battery or a general chemically crosslinked polymer can be employed. In particular, a polymer that can absorb an electrolyte such as polyvinylidene fluoride and polyhexafluoropropylene and gel can be used, and a polymer such as polyethylene oxide in which an ion conductive group is introduced.
 具体的なポリマーとしては、ポリメチルアクリレート、ポリメタクリレート、ポリメチルメタクリレート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエチレングリコールジメタクリレート、ポリエチレングリコールアクリレート、ポリグリシドール、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリフマル酸、ポリクロトン酸、ポリアンゲリカ酸、カルボキシメチルセルロースなどのポリカルボン酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、ポリカーボネート、無水マレイン酸とグリコール類を共重合した不飽和ポリエステル、置換基を有するポリエチレンオキシド誘導体、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を例示できる。また、上記ポリマーとして、上記具体的なポリマーを構成する二種類以上のモノマーを共重合させた共重合体を選択しても良い。 Specific polymers include polymethyl acrylate, polymethacrylate, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyethylene glycol dimethacrylate, polyethylene glycol acrylate, polyglycidol, polytetrafluoroethylene, polyhexa Fluoropropylene, polysiloxane, polyvinyl acetate, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyitaconic acid, polyfumaric acid, polycrotonic acid, polyangelic acid, polycarboxylic acids such as carboxymethylcellulose, styrene-butadiene rubber, nitrile-butadiene Rubber, polystyrene, polycarbonate, maleic anhydride and glycols copolymerized Sum polyesters, polyethylene oxide derivative having a substituent, a copolymer of vinylidene fluoride and hexafluoropropylene can be exemplified. Further, as the polymer, a copolymer obtained by copolymerizing two or more monomers constituting the specific polymer may be selected.
 上記ポリマーとして、多糖類も好適である。具体的な多糖類として、グリコーゲン、セルロース、キチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、アミロペクチン、キシログルカン、アミロースを例示できる。また、これら多糖類を含む材料を上記ポリマーとして採用しても良く、当該材料として、アガロースなどの多糖類を含む寒天を例示することができる。 Polysaccharides are also suitable as the polymer. Specific examples of the polysaccharide include glycogen, cellulose, chitin, agarose, carrageenan, heparin, hyaluronic acid, pectin, amylopectin, xyloglucan, and amylose. Moreover, you may employ | adopt the material containing these polysaccharides as said polymer, and the agar containing polysaccharides, such as agarose, can be illustrated as the said material.
 上記無機フィラーとしては、酸化物や窒化物などの無機セラミックスが好ましい。 The inorganic filler is preferably an inorganic ceramic such as oxide or nitride.
 無機セラミックスはその表面に親水性および疎水性の官能基を有している。そのため、当該官能基が電解液を引き付けることにより、無機セラミックス内に導電性通路が形成され得る。さらに、電解液で分散した無機セラミックスは前記官能基により無機セラミックス同士のネットワークを形成し、電解液を封じ込める役割を果たし得る。無機セラミックスのこのような機能により、電池における電解液の液漏れをさらに好適に抑制することができる。無機セラミックスの上記機能を好適に発揮するために、無機セラミックスは粒子形状のものが好ましく、特にその粒子径がナノ水準のものが好ましい。 Inorganic ceramics have hydrophilic and hydrophobic functional groups on the surface. Therefore, when the functional group attracts the electrolytic solution, a conductive path can be formed in the inorganic ceramic. Furthermore, the inorganic ceramics dispersed in the electrolytic solution can form a network between the inorganic ceramics by the functional groups and serve to contain the electrolytic solution. With such a function of the inorganic ceramics, it is possible to more suitably suppress the leakage of the electrolytic solution in the battery. In order to suitably exhibit the above functions of the inorganic ceramics, the inorganic ceramics preferably have a particle shape, and particularly preferably have a particle size of nano level.
 無機セラミックスの種類としては、一般的なアルミナ、シリカ、チタニア、ジルコニア、リチウムリン酸塩などを挙げることができる。また、無機セラミックス自体にリチウム伝導性があるものでも良く、具体的には、LiN、LiI、LiI-LiN-LiOH、LiI-LiS-P、LiI-LiS-P、LiI-LiS-B、LiO-B、LiO-V-SiO、LiO-B-P、LiO-B-ZnO、LiO-Al-TiO-SiO-P、LiTi(PO、Li-βAl、LiTaOを例示することができる。 Examples of the inorganic ceramics include general alumina, silica, titania, zirconia, and lithium phosphate. Further, the inorganic ceramic itself may be lithium conductive, and specifically, Li 3 N, LiI, LiI—Li 3 N—LiOH, LiI—Li 2 S—P 2 O 5 , LiI—Li 2 S —P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 2 O—B 2 S 3 , Li 2 O—V 2 O 3 —SiO 2 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—B 2 O 3 —ZnO, Li 2 O—Al 2 O 3 —TiO 2 —SiO 2 —P 2 O 5 , LiTi 2 (PO 4 ) 3 , Li—βAl 2 O 3 , LiTaO 3 Can be illustrated.
 無機フィラーとしてガラスセラミックスを採用しても良い。ガラスセラミックスはイオン性液体を封じ込めることができるので、本発明の電解液に対しても同様の効果を期待できる。ガラスセラミックスとしては、xLiS-(1-x)Pで表される化合物、並びに、当該化合物のSの一部を他の元素で置換したもの、および、当該化合物のPの一部をゲルマニウムに置換したものを例示できる。 Glass ceramics may be employed as the inorganic filler. Since glass ceramics can contain an ionic liquid, the same effect can be expected for the electrolytic solution of the present invention. Glass ceramics include compounds represented by xLi 2 S- (1-x) P 2 S 5 , those obtained by substituting part of S of the compound with other elements, and compounds of P of the compound. An example in which the part is replaced with germanium can be exemplified.
 以上説明した本発明の電解液は、優れたイオン伝導度を示すので、電池など蓄電装置の電解液として好適に使用される。特に、二次電池の電解液として使用されるのが好ましく、中でもリチウムイオン二次電池の電解液として使用されるのが好ましい。 Since the electrolytic solution of the present invention described above exhibits excellent ionic conductivity, it is suitably used as an electrolytic solution for power storage devices such as batteries. In particular, it is preferably used as an electrolyte solution for a secondary battery, and particularly preferably used as an electrolyte solution for a lithium ion secondary battery.
 以下に、上記本発明の電解液を用いた本発明の非水電解質二次電池を説明する。なお、以下特に断りのない場合には、上記した本発明の非水電解質二次電池(1)~(5)の全てについての説明とみなす。 Hereinafter, the nonaqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention will be described. Unless otherwise specified, it is considered that the nonaqueous electrolyte secondary batteries (1) to (5) of the present invention described above are all explained.
 非水電解質二次電池は、リチウムイオン等の電荷担体を吸蔵および放出し得る負極活物質を有する負極と、当該電荷担体を吸蔵および放出し得る正極活物質を有する正極と、本発明の電解液とを備える。本発明の電解液は金属塩としてリチウム塩を採用したため、リチウムイオン二次電池用の電解液として特に好適である。 The nonaqueous electrolyte secondary battery includes a negative electrode having a negative electrode active material capable of occluding and releasing charge carriers such as lithium ions, a positive electrode having a positive electrode active material capable of occluding and releasing the charge carriers, and the electrolytic solution of the present invention With. Since the electrolytic solution of the present invention employs a lithium salt as a metal salt, it is particularly suitable as an electrolytic solution for a lithium ion secondary battery.
 <負極>
 負極は、集電体と、集電体表面に結着させた負極活物質層とを有する。
<Negative electrode>
The negative electrode has a current collector and a negative electrode active material layer bound to the current collector surface.
 [集電体]
 集電体は、非水電解質二次電池の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
[Current collector]
The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a nonaqueous electrolyte secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Metal materials can be exemplified. The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, metal foils, such as copper foil, nickel foil, stainless steel foil, can be used suitably as a collector, for example. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.
 [負極活物質層]
 負極活物質層は負極活物質と一般にバインダを含む。さらに、必要に応じて導電助剤を含んでも良い。
[Negative electrode active material layer]
The negative electrode active material layer includes a negative electrode active material and generally a binder. Furthermore, you may contain a conductive support agent as needed.
 <非水電解質二次電池(1)>
 非水電解質二次電池(1)における負極活物質は、G/D比が3.5以上の黒鉛を含む。G/D比とは、上述したように、ラマンスペクトルにおけるG-bandとD-bandのピークの比である。黒鉛のラマンスペクトルにおいては、G-band(1590cm-1付近)とD-band(1350cm-1付近)にそれぞれピークが現れ、G-bandはグラファイト構造に由来し、D-bandは欠陥に由来する。したがって、G-bandとD-bandの比であるG/D比が高いほど欠陥が少なく結晶性の高い黒鉛であることを意味する。以下、G/D比が3.5以上の黒鉛を高結晶性黒鉛、G/D比が3.5未満の黒鉛を低結晶性黒鉛と呼ぶことがある。
<Nonaqueous electrolyte secondary battery (1)>
The negative electrode active material in the nonaqueous electrolyte secondary battery (1) contains graphite having a G / D ratio of 3.5 or more. As described above, the G / D ratio is the ratio of the G-band and D-band peaks in the Raman spectrum. In the Raman spectrum of graphite, each peak appears in the G-band (1590cm -1 vicinity) and D-band (1350cm around -1), G-band 'is derived from the graphite structure, D-band' is to be attributed to a defect . Therefore, the higher the G / D ratio, which is the ratio of G-band to D-band, means that the graphite has fewer defects and higher crystallinity. Hereinafter, graphite having a G / D ratio of 3.5 or more may be referred to as high crystalline graphite, and graphite having a G / D ratio of less than 3.5 may be referred to as low crystalline graphite.
 このような高結晶性黒鉛としては、天然黒鉛、人造黒鉛のいずれも使用できる。形状による分類法では、鱗片状黒鉛、球状黒鉛、塊状黒鉛、土状黒鉛などを使用できる。また黒鉛の表面を炭素材料などで被覆したコート付き黒鉛も使用できる。 As such highly crystalline graphite, either natural graphite or artificial graphite can be used. In the classification method by shape, scaly graphite, spherical graphite, massive graphite, earthy graphite, and the like can be used. Also, coated graphite whose surface is coated with a carbon material or the like can be used.
 負極活物質は、G/D比が3.5以上の高結晶性黒鉛を主とすれば良く、低結晶性黒鉛あるいは非晶質炭素を含むこともできる。 The negative electrode active material may be mainly high crystalline graphite having a G / D ratio of 3.5 or more, and may contain low crystalline graphite or amorphous carbon.
 <非水電解質二次電池(2)>
 非水電解質二次電池(2)における負極活物質は、結晶子サイズが20nm以下の炭素材料を含む。結晶子サイズは、上述したように、X線回折法で測定されるX線回折プロファイルにおいて2θ=20度~30度に現れるピークの半値幅から算出される。結晶子サイズが大きいほど、原子がある規則に従い周期的かつ正確に配列していることを意味する。一方、結晶子サイズが20nm以下の炭素材料は、その周期性、正確性が乏しい状態にあるといえる。例えば炭素材料が黒鉛であれば、黒鉛結晶の大きさが20nm以下であるか、歪み、欠陥、不純物等の影響によって黒鉛を構成する原子の配列の規則性が乏しい状態となることで、結晶子サイズは20nm以下になる。本発明の非水電解質二次電池(2)は、結晶子サイズが5nm以下である炭素材料を用いることが特に好ましい。
<Nonaqueous electrolyte secondary battery (2)>
The negative electrode active material in the nonaqueous electrolyte secondary battery (2) includes a carbon material having a crystallite size of 20 nm or less. As described above, the crystallite size is calculated from the half width of the peak appearing at 2θ = 20 degrees to 30 degrees in the X-ray diffraction profile measured by the X-ray diffraction method. A larger crystallite size means that the atoms are arranged periodically and accurately according to a certain rule. On the other hand, it can be said that a carbon material having a crystallite size of 20 nm or less has poor periodicity and accuracy. For example, if the carbon material is graphite, the size of the graphite crystal is 20 nm or less, or due to the influence of strain, defects, impurities, etc., the regularity of the arrangement of the atoms constituting the graphite becomes poor. The size is 20 nm or less. In the nonaqueous electrolyte secondary battery (2) of the present invention, it is particularly preferable to use a carbon material having a crystallite size of 5 nm or less.
 結晶子サイズが20nm以下の炭素材料としては、ハードカーボンやソフトカーボンが代表的であるが、本発明の非水電解質二次電池(2)における「結晶子サイズが20nm以下の炭素材料」はこれらに限定されない。 The carbon material having a crystallite size of 20 nm or less is typically hard carbon or soft carbon, but the “carbon material having a crystallite size of 20 nm or less” in the nonaqueous electrolyte secondary battery (2) of the present invention is It is not limited to.
 炭素材料の結晶子サイズを測定するには、CuKα線をX線源とするX線回折法を用いれば良い。当該X線回折法により、回折角2θ=20度~30度に検出される回折ピークの半値幅と回折角を基に、次のシェラーの式を用いて、結晶子サイズを算出できる。 In order to measure the crystallite size of the carbon material, an X-ray diffraction method using CuKα rays as an X-ray source may be used. With the X-ray diffraction method, the crystallite size can be calculated using the following Scherrer equation based on the half-value width and diffraction angle of a diffraction peak detected at a diffraction angle 2θ = 20 degrees to 30 degrees.
  L=0.94 λ /(βcosθ)
  ここで、
  L:結晶子の大きさ
  λ:入射X線波長(1.54Å)
  β:ピークの半値幅(ラジアン)
  θ:回折角
L = 0.94λ / (βcosθ)
here,
L: Crystallite size λ: Incident X-ray wavelength (1.54 mm)
β: half width of peak (radian)
θ: Diffraction angle
 <非水電解質二次電池(3)>
 非水電解質二次電池(3)における負極活物質は、ケイ素元素および/またはスズ元素を含む。ケイ素およびスズは、非水電解質二次電池の容量を大きく向上させ得る負極活物質であることが知られている。ケイ素およびスズは14族元素に属する。これらの単体は単位体積(質量)あたり多数の電荷担体(リチウムイオン等)を吸蔵および放出し得るため、高容量の負極活物質となる。しかしその一方で、これらを負極活物質として用いた非水電解質二次電池は比較的レート特性に劣る。
 これに対して炭素を負極活物質として用いた非水電解質二次電池はレート特性に優れる。したがって、両者を負極活物質として併用することで、非水電解質二次電池を高容量にでき、かつ非水電解質二次電池に優れたレート特性を付与できる。
<Nonaqueous electrolyte secondary battery (3)>
The negative electrode active material in the nonaqueous electrolyte secondary battery (3) contains a silicon element and / or a tin element. Silicon and tin are known to be negative electrode active materials that can greatly improve the capacity of the nonaqueous electrolyte secondary battery. Silicon and tin belong to group 14 elements. Since these simple substances can occlude and release a large number of charge carriers (lithium ions, etc.) per unit volume (mass), they become high-capacity negative electrode active materials. However, on the other hand, non-aqueous electrolyte secondary batteries using these as negative electrode active materials have relatively poor rate characteristics.
In contrast, a non-aqueous electrolyte secondary battery using carbon as a negative electrode active material has excellent rate characteristics. Therefore, by using both of them as the negative electrode active material, the nonaqueous electrolyte secondary battery can have a high capacity, and excellent rate characteristics can be imparted to the nonaqueous electrolyte secondary battery.
 ケイ素は負極活物質として用いた場合の理論容量が大きい反面、充放電時の体積変化が大きい。したがって、ケイ素元素を含む負極活物質としては、Si相とケイ素酸化物相との2相に不均化されたSiO(0.3≦x≦1.6)を用いるのが特に好ましい。SiOにおけるSi相は、リチウムイオンを吸蔵および放出し得る。このSi相は、リチウムイオンの吸蔵および放出に伴って体積変化(すなわち膨張および収縮)する。ケイ素酸化物相は、SiO等からなり、Si相に比べて充放電に伴う体積変化が少ない。つまり、負極活物質としてのSiOは、Si相により高容量を実現するとともに、ケイ素酸化物相を有することにより負極活物質(或いは負極)全体の体積変化を抑制する。なお、xが下限値未満であると、Siの比率が過大になるため、充放電時の体積変化が大きくなりすぎてサイクル特性が低下する。一方、xが上限値を超えると、Si比率が過小になってエネルギー密度が低下する。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。
 なお、上記したSiOにおいては、非水電解質二次電池の充放電時にリチウム元素とSi相に含まれるケイ素元素とによる合金化反応が生じると考えられている。そして、この合金化反応が非水電解質二次電池(この場合にはリチウムイオン二次電池)の充放電に寄与すると考えられている。後述するスズ元素を含む負極活物質についても、同様に、スズ元素とリチウム元素との合金化反応によって充放電できると考えられている。
Silicon has a large theoretical capacity when used as a negative electrode active material, but has a large volume change during charge and discharge. Therefore, as the negative electrode active material containing silicon element, it is particularly preferable to use SiO x (0.3 ≦ x ≦ 1.6) disproportionated into two phases of a Si phase and a silicon oxide phase. The Si phase in SiO x can occlude and release lithium ions. This Si phase undergoes volume change (that is, expansion and contraction) as lithium ions are occluded and released. Silicon oxide phase consists of SiO 2 or the like, the volume change due to charging and discharging as compared with Si phase is small. That is, SiO x as the negative electrode active material realizes a high capacity by the Si phase and suppresses the volume change of the entire negative electrode active material (or the negative electrode) by having the silicon oxide phase. If x is less than the lower limit, the Si ratio becomes excessive, so that the volume change at the time of charging / discharging becomes too large and the cycle characteristics deteriorate. On the other hand, when x exceeds the upper limit value, the Si ratio becomes too small and the energy density decreases. The range of x is more preferably 0.5 ≦ x ≦ 1.5, and further preferably 0.7 ≦ x ≦ 1.2.
In the SiO x as described above, the alloying reaction by the silicon element contained in the lithium element and Si phase is believed to occur during charge and discharge of a nonaqueous electrolyte secondary battery. And it is thought that this alloying reaction contributes to charging / discharging of a nonaqueous electrolyte secondary battery (in this case, a lithium ion secondary battery). Similarly, it is considered that a negative electrode active material containing a tin element described later can be charged and discharged by an alloying reaction between a tin element and a lithium element.
 スズ元素を含む負極活物質としては、Sn単体、スズ合金(Cu-Sn合金、Co-Sn合金)、アモルファススズ酸化物、スズケイ素酸化物等が挙げられる。このうち、アモルファススズ酸化物としてはSnB0.40.63.1が例示される。スズケイ素酸化物としてはSnSiOが例示される。 Examples of the negative electrode active material containing tin element include Sn alone, tin alloy (Cu—Sn alloy, Co—Sn alloy), amorphous tin oxide, tin silicon oxide, and the like. Among them, the amorphous tin oxide SnB 0.4 P 0.6 O 3.1 is exemplified. The Suzukei containing oxide SnSiO 3 is illustrated.
 上記したケイ素元素を含む負極活物質、および、スズ元素を含む負極活物質は、炭素元素を含む材料(炭素材料)と複合化して用いることも可能である。これらを各々単独で用いるのではなく複合化して用いることで、特にケイ素および/またはスズの構造が安定化し、負極の耐久性が向上する。具体的には、黒鉛等の炭素材料は、ケイ素単体やスズ単体と比べて充放電時における体積変化の少ない材料である。したがって、ケイ素元素を含む負極活物質やスズ元素を含む負極活物質を、このような炭素材料と複合化することで、充放電時における体積変化に起因する負極の破損等を抑制でき、負極の耐久性が向上する。そしてその結果、非水電解質二次電池のサイクル特性が向上する。ケイ素元素を含む負極活物質および/またはスズ元素を含む負極活物質と、炭素材料との複合化は、既知の方法で行なえば良い。 The negative electrode active material containing silicon element and the negative electrode active material containing tin element can be combined with a material containing carbon element (carbon material). By using these in combination rather than individually, the structure of silicon and / or tin is particularly stabilized, and the durability of the negative electrode is improved. Specifically, a carbon material such as graphite is a material with less volume change at the time of charging / discharging as compared with a silicon simple substance or a tin simple substance. Therefore, by combining a negative electrode active material containing silicon element and a negative electrode active material containing tin element with such a carbon material, damage of the negative electrode due to volume change during charging and discharging can be suppressed. Durability is improved. As a result, the cycle characteristics of the nonaqueous electrolyte secondary battery are improved. The composite of the negative electrode active material containing silicon element and / or the negative electrode active material containing tin element and the carbon material may be performed by a known method.
 ケイ素元素を含む負極活物質および/またはスズ元素を含む負極活物質と複合化する炭素材料としては、黒鉛、ハードカーボン(難黒鉛化性炭素)、ソフトカーボン(易黒鉛化性炭素)等を好ましく使用できる。黒鉛は、天然、人造を問わず、その粒径もまた特に限定しない。 As the carbon material to be combined with the negative electrode active material containing silicon element and / or the negative electrode active material containing tin element, graphite, hard carbon (non-graphitizable carbon), soft carbon (graphitizable carbon), etc. are preferable. Can be used. The particle diameter of graphite is not particularly limited, whether natural or artificial.
 <非水電解質二次電池(4)>
 非水電解質二次電池(4)における負極活物質は、リチウムイオンを吸蔵および放出し得る金属酸化物を含む。例えば、TiO等のチタン酸化物、リチウムチタン酸化物、WO等のタングステン酸化物、アモルファススズ酸化物、スズケイ素酸化物等である。
<Nonaqueous electrolyte secondary battery (4)>
The negative electrode active material in the nonaqueous electrolyte secondary battery (4) contains a metal oxide that can occlude and release lithium ions. For example, titanium oxide such as TiO 2 , lithium titanium oxide, tungsten oxide such as WO 3 , amorphous tin oxide, tin silicon oxide, and the like.
 具体的には、リチウムチタン酸化物としては、スピネル構造のチタン酸リチウム(例えばLi4+xTi5+y12(xは-1≦x≦4、yは-1≦y≦1))、ラムスデライト構造のチタン酸リチウム(例えばLiTi)が例示される。アモルファススズ酸化物としてはSnB0.40.63.1が例示される。スズケイ素酸化物としてはSnSiOが例示される。このうち、スピネル構造のチタン酸リチウムを用いるのが特に好ましい。さらに具体的にはLiTi12である。このような、チタン酸リチウムを負極とするリチウムイオン二次電池においては、リチウムの吸蔵および放出反応が安定に行なわれると考えられており、その結果、活物質の劣化も抑制されると考えられる。つまり、この種の金属化合物を負極活物質とするリチウムイオン二次電池はサイクル特性に優れることが知られている。本発明の電解液を用いた本発明の非水電解質二次電池に当該金属酸化物を併用することで、本発明の電解液に由来する優れた電池特性と優れたサイクル特性とが両立した非水電解質二次電池を得ることができる。 Specifically, lithium titanium oxide includes spinel lithium titanate (for example, Li 4 + x Ti 5 + y O 12 (x is −1 ≦ x ≦ 4, y is −1 ≦ y ≦ 1)), ramsdellite structure. Examples thereof include lithium titanate (for example, Li 2 Ti 3 O 7 ). An example of the amorphous tin oxide is SnB 0.4 P 0.6 O 3.1 . The Suzukei containing oxide SnSiO 3 is illustrated. Among these, it is particularly preferable to use spinel lithium titanate. More specifically, Li 4 Ti 5 O 12 is used. In such a lithium ion secondary battery using lithium titanate as a negative electrode, it is considered that the lithium occlusion and release reactions are performed stably, and as a result, the deterioration of the active material is also suppressed. . That is, it is known that a lithium ion secondary battery using such a metal compound as a negative electrode active material is excellent in cycle characteristics. By using the metal oxide in combination with the non-aqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention, the excellent battery characteristics derived from the electrolytic solution of the present invention and the excellent cycle characteristics are compatible. A water electrolyte secondary battery can be obtained.
 <非水電解質二次電池(5)>
 非水電解質二次電池(5)における負極活物質は、長軸と短軸の比(長軸/短軸)が1~5である黒鉛を含む。長軸と短軸の比(長軸/短軸)が1~5である代表的な黒鉛として、球状黒鉛、MCMB(メソカーボンマイクロビーズ)等が挙げられる。球状黒鉛は、人造黒鉛、天然黒鉛、易黒鉛化性炭素、難黒鉛化性炭素などの炭素材料であって、形状が球状またはほぼ球状であるものをいう。
<Nonaqueous electrolyte secondary battery (5)>
The negative electrode active material in the nonaqueous electrolyte secondary battery (5) includes graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5. Typical graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5 includes spherical graphite, MCMB (mesocarbon microbeads), and the like. Spherical graphite is a carbon material such as artificial graphite, natural graphite, graphitizable carbon, and non-graphitizable carbon, and has a spherical shape or a substantially spherical shape.
 球状黒鉛粒子は、原料黒鉛を比較的破砕力の小さい衝撃式粉砕機で粉砕しながら、この薄片を集めて、圧縮球状化して得られる。衝撃式粉砕機としては、例えばハンマーミルやピンミルを使用することができる。回転するハンマーやピンの外周線速度は50~200m/秒程度が好ましい。また、これらの粉砕機に対する黒鉛の供給や排出は、空気等の気流に同伴させて行うことが好ましい。 The spherical graphite particles are obtained by collecting the flakes and compressing them into a spherical shape while pulverizing the raw graphite with an impact pulverizer having a relatively small crushing force. For example, a hammer mill or a pin mill can be used as the impact pulverizer. The outer peripheral linear velocity of the rotating hammer or pin is preferably about 50 to 200 m / sec. Moreover, it is preferable to perform supply and discharge | emission of graphite with respect to these grinders by making it accompany airflow, such as air.
 黒鉛粒子の球状化の程度は、粒子の長軸と短軸の比(長軸/短軸:以下、アスペクト比という)で表すことができる。即ち、黒鉛粒子の任意の断面において、重心で直交する軸線のうちアスペクト比が最大となるものを選んだときに、このアスペクト比が1に近い程、真球に近いことになる。上記の球状化処理により、アスペクト比を容易に5以下(1~5)とすることができる。また、球状化処理を充分に行えば、アスペクト比を3以下(1~3)とすることができる。本発明に用いられる黒鉛は、粒子のアスペクト比が1~5である。1~3であることが好ましい。アスペクト比を5以下とすることで、負極活物質層内における電解液の拡散経路が短くなるため、電解液起因の抵抗成分を低減できるので入出力を向上できると考えられる。アスペクト比が1となった時、黒鉛は最も真球に近い形状となり電解液の拡散経路を最も短くできる。 The degree of spheroidization of graphite particles can be expressed by the ratio of the major axis to the minor axis of the particle (major axis / minor axis: hereinafter referred to as aspect ratio). That is, in an arbitrary cross section of the graphite particles, when the axis having the maximum aspect ratio is selected from the axes orthogonal to the center of gravity, the closer the aspect ratio is to 1, the closer to the true sphere. By the spheroidization treatment, the aspect ratio can be easily reduced to 5 or less (1 to 5). Further, if the spheroidization treatment is sufficiently performed, the aspect ratio can be made 3 or less (1 to 3). The graphite used in the present invention has a particle aspect ratio of 1 to 5. It is preferably 1 to 3. By setting the aspect ratio to 5 or less, the diffusion path of the electrolytic solution in the negative electrode active material layer is shortened, so that the resistance component due to the electrolytic solution can be reduced, so that the input / output can be improved. When the aspect ratio is 1, the graphite has a shape closest to a true sphere, and the electrolyte solution diffusion path can be shortened to the shortest.
 ところで黒鉛は、その結晶構造に由来して基底面で割れやすい性質を持つため扁平形状となりやすい。そのため、負極活物質層において扁平状の黒鉛が配列すると、集電体表面と平行に黒鉛結晶の基底面が配向する割合が多くなって、XRD分析における基底面に由来するI(002)などの回折強度が相対的に強くなる。 By the way, graphite tends to be flat because it is derived from its crystal structure and easily breaks at the basal plane. Therefore, when flat graphite is arranged in the negative electrode active material layer, the ratio of the orientation of the basal plane of the graphite crystal parallel to the current collector surface increases, and I (002) or the like derived from the basal plane in the XRD analysis. The diffraction intensity becomes relatively strong.
 この特徴を利用してI(110)といった基底面とは別の結晶面に由来する回折強度との比[I(110)/I(004)]を調べることで、扁平形状の黒鉛をどれくらい含むのかといった情報を間接的に調べることができる。したがって本発明に用いられる黒鉛は、I(110)/I(004)が0.03~1となる範囲であることが好ましい。このような黒鉛を用いることで、扁平状粒子の配列が少なくなり、負極活物質層内における電解液の拡散経路が短くなるため、入出力特性が向上する。 By utilizing this feature, the ratio [I (110) / I (004)] of diffraction intensity derived from a crystal plane different from the basal plane such as I (110) is included, and how much flat graphite is included. Information such as Therefore, the graphite used in the present invention is preferably in a range where I (110) / I (004) is 0.03 to 1. By using such graphite, the arrangement of the flat particles is reduced, and the diffusion path of the electrolytic solution in the negative electrode active material layer is shortened, so that the input / output characteristics are improved.
 また黒鉛粒子は、BET比表面積が0.5~15m/gの範囲のものが好ましい。BET比表面積が15m/gを超えると電解液との副反応が加速する傾向があり、0.5m/g未満では反応抵抗が大きくなって入出力が低下する場合がある。 The graphite particles preferably have a BET specific surface area in the range of 0.5 to 15 m 3 / g. If the BET specific surface area exceeds 15 m 3 / g, the side reaction with the electrolytic solution tends to accelerate, and if it is less than 0.5 m 3 / g, the reaction resistance increases and the input / output may decrease.
 負極活物質は、アスペクト比が1~5である黒鉛を主とすれば、アスペクト比がこの範囲外の黒鉛あるいは非晶質炭素などを含むこともできる。 If the negative electrode active material is mainly graphite having an aspect ratio of 1 to 5, it can also contain graphite or amorphous carbon having an aspect ratio outside this range.
 本発明の非水電解質二次電池(1)~非水電解質二次電池(5)は、上記した各非水電解質二次電池に用い得る特徴的な負極活物質に加えて、電荷担体を吸蔵および放出し得る他の負極活物質を含み得る。以下、必要に応じて、当該他の負極活物質を副負極活物質と呼ぶ。また、本発明の非水電解質二次電池の各々において特徴的な負極活物質を、主負極活物質と呼ぶ。例えば本発明の非水電解質二次電池がリチウムイオン二次電池であれば、副負極活物質は、電荷担体つまりリチウムイオンを吸蔵および放出可能であれば良く、元素単体、合金または化合物であれば特に限定はない。副負極活物質として使用可能な元素単体としては、例えば、Li、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すれば良い。 The nonaqueous electrolyte secondary battery (1) to the nonaqueous electrolyte secondary battery (5) of the present invention occlude charge carriers in addition to the characteristic negative electrode active material that can be used for each nonaqueous electrolyte secondary battery described above. And other negative electrode active materials that can be released. Hereinafter, the other negative electrode active material is referred to as a sub negative electrode active material as necessary. The characteristic negative electrode active material in each of the nonaqueous electrolyte secondary batteries of the present invention is referred to as a main negative electrode active material. For example, if the non-aqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery, the secondary negative electrode active material may be capable of occluding and releasing charge carriers, that is, lithium ions. There is no particular limitation. Examples of elemental elements that can be used as the secondary negative electrode active material include group 14 elements such as Li, carbon, silicon, germanium, and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, antimony, A group 15 element such as bismuth, an alkaline earth metal such as magnesium or calcium, and a group 11 element such as silver or gold may be employed alone.
 なお、ケイ素などを副負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵および放出に伴う体積の膨張および収縮が顕著となる等の問題が生じる恐れがある。当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金または化合物を副負極活物質として採用するのも好適である。合金または化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、副負極活物質として、Nb、TiO、LiTi12、WO、MoO、FE等の酸化物、または、Li3-xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。副負極活物質として、これらのものの一種以上を使用することができる。 Note that when silicon or the like is employed as the sub-negative electrode active material, one silicon atom reacts with a plurality of lithiums, so that a high-capacity active material is obtained. However, volume expansion and contraction due to insertion and extraction of lithium become significant. Such a problem may occur. In order to reduce the fear, it is also preferable to employ an alloy or a compound in which another element such as a transition metal is combined with a simple substance such as silicon as the sub-negative electrode active material. Specific examples of the alloy or compound include tin-based materials such as Ag—Sn alloy, Cu—Sn alloy and Co—Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated to silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.3 ≦ x ≦ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials. Further, as the secondary negative electrode active material, oxides such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , FE 2 O 3 , or Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be employed. One or more of these materials can be used as the sub negative electrode active material.
 上記した各種の副負極活物質を主負極活物質と併用することで、非水電解質二次電池に更に優れた電池特性を付与できる。例えば非水電解質二次電池(4)において、上記の副負極活物質の何れかを主負極活物質としての金属酸化物と併用することで、金属酸化物を単独で用いる場合に比べて、非水電解質二次電池をさらに高容量にできる。主負極活物質と副負極活物質とを併用する場合にも、負極活物質の主たる構成要素は主負極活物質であるのが良い。具体的には、負極活物質全体の50質量%以上を主負極活物質が占めるのが好ましく、80質量%以上を主負極活物質が占めるのがより好ましい。これは、その他の非水電解質二次電池における負極活物質についても同様である。
 また、非水電解質二次電池(4)において、上述した金属酸化物系の負極活物質は、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズケイ素酸化物から選ばれる少なくとも一種を主成分とする。なお、ここでいう主成分とは、該当する成分が基準となる母集団の50質量%以上含まれることを指す。具体的には、負極活物質として機能し得る金属酸化物全体を100質量%としたときに、主成分(つまりチタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズケイ素酸化物から選ばれる少なくとも一種)が50質量%以上含まれる。なお、負極は、その他の不可避含有物を含み得る。不可避含有物として、例えば、Li、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素を例示できる。
By using the various sub-negative electrode active materials described above in combination with the main negative electrode active material, further excellent battery characteristics can be imparted to the non-aqueous electrolyte secondary battery. For example, in the non-aqueous electrolyte secondary battery (4), any one of the above-described sub-negative electrode active materials is used in combination with the metal oxide as the main negative electrode active material, so that non-metal oxide is used in comparison with the case where the metal oxide is used alone. The capacity of the water electrolyte secondary battery can be further increased. Even when the main negative electrode active material and the sub negative electrode active material are used in combination, the main component of the negative electrode active material may be the main negative electrode active material. Specifically, the main negative electrode active material preferably occupies 50% by mass or more of the entire negative electrode active material, and more preferably 80% by mass or more. The same applies to negative electrode active materials in other nonaqueous electrolyte secondary batteries.
In the non-aqueous electrolyte secondary battery (4), the metal oxide negative electrode active material described above is selected from titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, and tin silicon oxide. At least one kind is a main component. In addition, a main component here means that the applicable component is contained 50 mass% or more of the reference population. Specifically, when the total amount of metal oxide that can function as a negative electrode active material is 100% by mass, the main components (that is, titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide) 50% by mass or more) is contained. The negative electrode can contain other inevitable ingredients. Inevitable inclusions include, for example, Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La The at least 1 element chosen from can be illustrated.
 バインダは活物質および導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。 The binder plays a role of connecting the active material and the conductive additive to the surface of the current collector.
 バインダとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)などの親水基を有するポリマーなどを例示することができる。負極活物質層中のバインダの配合割合は、質量比で、負極活物質:バインダ=1:0.005~1:0.3であるのが好ましい。バインダが少なすぎると電極の成形性が低下し、また、バインダが多すぎると電極のエネルギー密度が低くなるためである。 Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, polyacrylic acid ( Examples thereof include polymers having hydrophilic groups such as PAA) and carboxymethylcellulose (CMC). The mixing ratio of the binder in the negative electrode active material layer is preferably negative electrode active material: binder = 1: 0.005 to 1: 0.3 in terms of mass ratio. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.
 負極活物質層中に必要に応じて含まれる導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えれば良く、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては、化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。負極活物質層中の導電助剤の配合割合は、特に限定的ではないが、質量比で、負極活物質:導電助剤=1:0.01~1:0.5であるのが好ましい。導電助剤が少なすぎると効率の良い導電パスを形成できず、また、導電助剤が多すぎると負極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 A conductive additive contained in the negative electrode active material layer as necessary is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent. The conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), vapor grown carbon fiber (Vapor Growth), which are carbonaceous fine particles. Carbon Fiber (VGCF) is exemplified. These conductive assistants can be added to the active material layer alone or in combination of two or more. The mixing ratio of the conductive additive in the negative electrode active material layer is not particularly limited, but is preferably negative electrode active material: conductive additive = 1: 0.01 to 1: 0.5 in terms of mass ratio. This is because if the amount of the conductive auxiliary is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary is too large, the formability of the negative electrode active material layer is deteriorated and the energy density of the electrode is lowered.
 非水電解質二次電池の負極を作製するには、負極活物質粉末と、炭素粉末などの導電助剤と、バインダと、適量の溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダを乾燥あるいは硬化させることによって作製することができる。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to produce a negative electrode of a non-aqueous electrolyte secondary battery, a negative electrode active material powder, a conductive auxiliary agent such as carbon powder, a binder, and an appropriate amount of solvent mixed to form a slurry, a roll coating method, It can be produced by applying on a current collector by a method such as a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method, and drying or curing the binder. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, the dried product may be compressed.
 <正極>
 非水電解質二次電池に用いられる正極は、電荷担体を吸蔵および放出し得る正極活物質を有する。正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。正極活物質層は正極活物質、並びに必要に応じて結着剤および/または導電助剤を含む。正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。なお、本発明の非水電解質二次電池がリチウムイオン二次電池であり、正極の電位をリチウム基準で4V以上とする場合には、アルミニウム製の集電体を採用するのが好ましい。
<Positive electrode>
A positive electrode used for a non-aqueous electrolyte secondary battery has a positive electrode active material that can occlude and release charge carriers. The positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector. The positive electrode active material layer includes a positive electrode active material and, if necessary, a binder and / or a conductive aid. The positive electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. For example, silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin , Indium, titanium, ruthenium, tantalum, chromium, molybdenum, and metal materials such as stainless steel. In addition, when the non-aqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery and the potential of the positive electrode is set to 4 V or more with respect to lithium, it is preferable to employ an aluminum current collector.
 本発明の電解液はアルミニウム製の集電体を腐食させ難い。つまり、本発明の電解液を使用するとともに正極にアルミニウム集電体を用いた非水電解質二次電池は、高電位でもAlの溶出が起こり難いと考えられる。Alの溶出が起こり難いとされる理由は明確ではないが、本発明の電解液は、従来の電解液とは金属塩と有機溶媒の種類、存在環境および金属塩濃度が異なる。このため、従来の電解液に比べて、本発明の電解液に対するAlの溶解性が低いのではないかと推測される。 The electrolyte of the present invention hardly corrodes the aluminum current collector. That is, it is considered that the non-aqueous electrolyte secondary battery using the electrolytic solution of the present invention and using the aluminum current collector for the positive electrode hardly causes elution of Al even at a high potential. Although it is not clear why the elution of Al is unlikely to occur, the electrolytic solution of the present invention differs from the conventional electrolytic solution in the types of metal salt and organic solvent, the existing environment, and the metal salt concentration. For this reason, it is estimated that the solubility of Al in the electrolytic solution of the present invention may be lower than that of the conventional electrolytic solution.
 具体的には、正極用集電体として、アルミニウムまたはアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、Al-Mg-Si系、Al-Zn-Mg系が挙げられる。 Specifically, the positive electrode current collector is preferably made of aluminum or an aluminum alloy. Here, aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum. An alloy obtained by adding various elements to pure aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al—Cu, Al—Mn, Al—Fe, Al—Si, Al—Mg, Al—Mg—Si, and Al—Zn—Mg.
 また、アルミニウムまたはアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。 Further, as aluminum or aluminum alloy, specifically, for example, A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys (Al-Mn series) such as JIS A3003 and A3004, JIS A8079, A8021, etc. A8000-based alloy (Al-Fe-based).
 集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.
 正極の結着剤および導電助剤は負極で説明したものと同様である。 The binder for the positive electrode and the conductive additive are the same as those described for the negative electrode.
 正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、およびスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVOまたはLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。 As the positive electrode active material, the layered compound Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1.2, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, At least one element selected from Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La, 1.7 ≦ f ≦ 2.1) and Li 2 MnO 3 . Further, as a positive electrode active material, a solid solution composed of a spinel such as LiMn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, And a polyanionic compound represented by (selected from at least one of Fe).
 さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすれば良く、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。 Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element included in the basic composition may be substituted with another metal element.
 また、正極活物質として、充放電に寄与する電荷担体を含まない正極活物質を用いることもできる。たとえばリチウムイオン二次電池であれば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリンおよびアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を正極活物質に採用することもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用しても良い。 Further, as the positive electrode active material, a positive electrode active material that does not include a charge carrier that contributes to charge / discharge can also be used. For example, in the case of a lithium ion secondary battery, sulfur alone (S), a compound in which sulfur and carbon are combined, metal sulfides such as TiS 2 , oxides such as V 2 O 5 and MnO 2 , polyaniline and anthraquinone, and these A compound containing an aromatic in the chemical structure, a conjugated material such as a conjugated diacetate-based organic substance, or other known materials can be used as the positive electrode active material. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material.
 リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極および/または負極に、公知の方法により、予め電荷担体を添加させておく必要がある。具体的には、電荷担体は、イオンの状態で添加しても良いし、金属或いは化合物等の非イオンの状態で添加しても良い。例えば、リチウム箔等を正極および/または負極に貼り付けるなどして一体化しても良い。正極は、負極と同様に、導電助剤およびバインダ等を含有しても良い。導電助剤およびバインダは特に限定されず、上記した負極同様に、非水電解質二次電池に使用可能なものであれば良い。 When using a positive electrode active material that does not contain a charge carrier such as lithium, it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method. Specifically, the charge carrier may be added in an ionic state, or may be added in a nonionic state such as a metal or a compound. For example, a lithium foil or the like may be integrated by sticking to a positive electrode and / or a negative electrode. The positive electrode may contain a conductive additive, a binder, and the like, similarly to the negative electrode. The conductive auxiliary agent and the binder are not particularly limited as long as they can be used for the non-aqueous electrolyte secondary battery like the negative electrode described above.
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すれば良い。具体的には、活物質、並びに必要に応じて結着剤および導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to form an active material layer on the surface of the current collector, a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method can be used. An active material may be applied to the surface of the body. Specifically, a composition for forming an active material layer containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then collected. After applying to the surface of the electric body, it is dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, the dried product may be compressed.
 非水電解質二次電池には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としても良い。本発明の電解液は粘度がやや高く極性が高いため、水などの極性溶媒が浸み込みやすい膜が好ましい。具体的には、存在する空隙の90%以上に水などの極性溶媒が浸み込む膜がさらに好ましい。 A separator is used for non-aqueous electrolyte secondary batteries as necessary. The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes. As separators, natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose, amylose, fibroin, keratin, lignin, suberin, etc. Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics. The separator may have a multilayer structure. Since the electrolytic solution of the present invention has a slightly high viscosity and a high polarity, a membrane in which a polar solvent such as water can easily penetrate is preferable. Specifically, a film in which a polar solvent such as water soaks into 90% or more of the existing voids is more preferable.
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータおよび負極を重ねた積層型、または、正極、セパレータおよび負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に本発明の電解液を加えて非水電解質二次電池とすると良い。また、本発明の非水電解質二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されれば良い。 A separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body. The electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched. After connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a current collecting lead, the electrolyte solution of the present invention is added to the electrode body to make a non-aqueous solution. It is preferable to use an electrolyte secondary battery. Moreover, the non-aqueous electrolyte secondary battery of this invention should just be charged / discharged in the voltage range suitable for the kind of active material contained in an electrode.
 本発明の電解液を含む本発明の非水電解質二次電池において、負極表面および/または正極表面には、本発明の電解液に由来する特殊構造のSEI皮膜が生成する。後述するように、当該SEI皮膜はSおよびOを含み、S=O構造を有する。したがって、当該SEI皮膜を生成するための本発明の電解液は、特に、塩のアニオンの化学構造に硫黄元素および酸素元素を含む。以下、当該特殊構造のSEI皮膜を必要に応じてS,O含有皮膜と呼ぶ。S,O含有皮膜は、本発明の電解液との協働によって、非水電解質二次電池の電池特性の向上(電池寿命の向上や入出力特性の向上等)に寄与する。 In the non-aqueous electrolyte secondary battery of the present invention containing the electrolytic solution of the present invention, a special structure SEI film derived from the electrolytic solution of the present invention is formed on the negative electrode surface and / or the positive electrode surface. As will be described later, the SEI film includes S and O, and has an S═O structure. Therefore, the electrolytic solution of the present invention for producing the SEI film particularly contains sulfur element and oxygen element in the chemical structure of the anion of the salt. Hereinafter, the SEI film having the special structure is referred to as an S, O-containing film as necessary. The S, O-containing coating contributes to improvement of battery characteristics (improvement of battery life, improvement of input / output characteristics, etc.) of the non-aqueous electrolyte secondary battery through cooperation with the electrolytic solution of the present invention.
 本発明の非水電解質二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.
 本発明の非水電解質二次電池は、車両に搭載しても良い。車両は、その動力源の全部あるいは一部に非水電解質二次電池による電気エネルギーを使用している車両であれば良く、たとえば、電気車両、ハイブリッド車両などであると良い。車両に非水電解質二次電池を搭載する場合には、非水電解質二次電池を複数直列に接続して組電池とすると良い。非水電解質二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明の非水電解質二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置および電力平滑化装置、船舶等の動力および/または補機類の電力供給源、航空機、宇宙船等の動力および/または補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いても良い。 The non-aqueous electrolyte secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from the non-aqueous electrolyte secondary battery for all or a part of its power source. For example, the vehicle may be an electric vehicle or a hybrid vehicle. When a non-aqueous electrolyte secondary battery is mounted on a vehicle, a plurality of non-aqueous electrolyte secondary batteries may be connected in series to form an assembled battery. In addition to vehicles, devices equipped with non-aqueous electrolyte secondary batteries include personal computers, portable communication devices, and various household electrical appliances driven by batteries, office equipment, industrial equipment, and the like. Further, the non-aqueous electrolyte secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power for power sources such as ships, and / or power supply sources for auxiliary machinery, aircraft Power supplies for spacecrafts and / or auxiliary equipment, auxiliary power sources for vehicles that do not use electricity as power sources, mobile home robot power sources, system backup power sources, uninterruptible power supply power sources In addition, it may be used for a power storage device that temporarily stores electric power required for charging in an electric vehicle charging station or the like.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
 以下、実施例、比較例等によって本発明の実施形態を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。 Hereinafter, embodiments of the present invention will be specifically described with reference to examples and comparative examples. In addition, this invention is not limited by these Examples. In the following, unless otherwise specified, “part” means part by mass, and “%” means mass%.
 (本発明の電解液) (Electrolytic solution of the present invention)
 (電解液E1)
 本発明の電解液を以下のとおり製造した。
 有機溶媒である1,2-ジメトキシエタン約5mLを、撹拌子および温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2-ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2-ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2-ジメトキシエタンを加えた。これを電解液E1とした。得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。電解液E1における(CFSONLiの濃度は3.2mol/Lであった。電解液E1においては、(CFSONLi1分子に対し1,2-ジメトキシエタン1.6分子が含まれている。
 なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
(Electrolytic solution E1)
The electrolytic solution of the present invention was produced as follows.
About 5 mL of 1,2-dimethoxyethane, an organic solvent, was placed in a flask equipped with a stir bar and a thermometer. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to 1,2-dimethoxyethane in the flask so as to keep the solution temperature at 40 ° C. or lower and dissolved. When about 13 g of (CF 3 SO 2 ) 2 NLi was added, the dissolution of (CF 3 SO 2 ) 2 NLi temporarily stagnated. Therefore, the flask was put into a thermostat, and the solution temperature in the flask was 50 ° C. (CF 3 SO 2 ) 2 NLi was dissolved. When about 15 g of (CF 3 SO 2 ) 2 NLi was added, the dissolution of (CF 3 SO 2 ) 2 NLi stagnated again, so 1 drop of 1,2-dimethoxyethane was added with a pipette (CF 3 SO 2 ) 2 NLi dissolved. Further, (CF 3 SO 2 ) 2 NLi was gradually added, and the entire amount of predetermined (CF 3 SO 2 ) 2 NLi was added. The resulting electrolyte was transferred to a 20 mL volumetric flask and 1,2-dimethoxyethane was added until the volume was 20 mL. This was designated as an electrolytic solution E1. The obtained electrolytic solution had a volume of 20 mL, and (CF 3 SO 2 ) 2 NLi contained in this electrolytic solution was 18.38 g. The concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution E1 was 3.2 mol / L. In the electrolytic solution E1, 1.6 molecules of 1,2-dimethoxyethane are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecules.
The production was performed in a glove box under an inert gas atmosphere.
 (電解液E2)
 16.08gの(CFSONLiを用い、電解液E1と同様の方法で、(CFSONLiの濃度が2.8mol/Lである電解液E2を製造した。電解液E2においては、(CFSONLi1分子に対し1,2-ジメトキシエタン2.1分子が含まれている。
(Electrolytic solution E2)
Using 16.08 g of (CF 3 SO 2 ) 2 NLi, an electrolytic solution E2 having a concentration of (CF 3 SO 2 ) 2 NLi of 2.8 mol / L was produced in the same manner as the electrolytic solution E1. In the electrolytic solution E2, 2.1 molecules of 1,2-dimethoxyethane are contained per molecule of (CF 3 SO 2 ) 2 NLi.
 (電解液E3)
 有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。(CFSONLiを全量で19.52g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液E3とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液E3における(CFSONLiの濃度は3.4mol/Lであった。電解液E3においては、(CFSONLi1分子に対しアセトニトリル3分子が含まれている。
(Electrolytic solution E3)
About 5 mL of acetonitrile, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in acetonitrile in the flask. When 19.52 g of (CF 3 SO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and acetonitrile was added until the volume was 20 mL. This was designated as an electrolytic solution E3. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution E3 was 3.4 mol / L. In the electrolytic solution E3, 3 molecules of acetonitrile are contained with respect to 1 molecule of (CF 3 SO 2 ) 2 NLi.
 (電解液E4)
 24.11gの(CFSONLiを用い、電解液E3と同様の方法で、(CFSONLiの濃度が4.2mol/Lである電解液E4を製造した。電解液E4においては、(CFSONLi1分子に対しアセトニトリル1.9分子が含まれている。
(Electrolytic solution E4)
Using 24.11 g of (CF 3 SO 2 ) 2 NLi, an electrolytic solution E4 having a concentration of (CF 3 SO 2 ) 2 NLi of 4.2 mol / L was produced in the same manner as the electrolytic solution E3. In the electrolytic solution E4, 1.9 molecules of acetonitrile are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecules.
 (電解液E5)
 リチウム塩として13.47gの(FSONLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、電解液E3と同様の方法で、(FSONLiの濃度が3.6mol/Lである電解液E5を製造した。電解液E5においては、(FSONLi1分子に対し1,2-ジメトキシエタン1.9分子が含まれている。
(Electrolytic solution E5)
Using (FSO 2) 2 NLi of 13.47g lithium salt, except for using 1,2-dimethoxyethane as the organic solvent, in the same manner as the electrolyte solution E3, (FSO 2) concentration of 2 NLi 3 An electrolytic solution E5 having a concentration of 6 mol / L was produced. In the electrolytic solution E5, 1.9 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
 (電解液E6)
 14.97gの(FSONLiを用い、電解液E5と同様の方法で、(FSONLiの濃度が4.0mol/Lである電解液E6を製造した。電解液E6においては、(FSONLi1分子に対し1,2-ジメトキシエタン1.5分子が含まれている。
(Electrolytic solution E6)
Using 14.97 g of (FSO 2 ) 2 NLi, an electrolytic solution E6 having a concentration of (FSO 2 ) 2 NLi of 4.0 mol / L was produced in the same manner as the electrolytic solution E5. In the electrolytic solution E6, 1.5 molecules of 1,2-dimethoxyethane are contained per 1 molecule of (FSO 2 ) 2 NLi.
 (電解液E7)
 リチウム塩として15.72gの(FSONLiを用いた以外は、電解液E3と同様の方法で、(FSONLiの濃度が4.2mol/Lである電解液E7を製造した。電解液E7においては、(FSONLi1分子に対しアセトニトリル3分子が含まれている。
(Electrolytic solution E7)
An electrolytic solution E7 having a concentration of 4.2 mol / L of (FSO 2 ) 2 NLi was produced in the same manner as the electrolytic solution E3 except that 15.72 g of (FSO 2 ) 2 NLi was used as the lithium salt. . In the electrolytic solution E7, 3 molecules of acetonitrile are contained with respect to 1 molecule of (FSO 2 ) 2 NLi.
 (電解液E8)
 16.83gの(FSONLiを用い、電解液E7と同様の方法で、(FSONLiの濃度が4.5mol/Lである電解液E8を製造した。電解液E8においては、(FSONLi1分子に対しアセトニトリル2.4分子が含まれている。
(Electrolyte E8)
An electrolytic solution E8 having a concentration of (FSO 2 ) 2 NLi of 4.5 mol / L was produced in the same manner as the electrolytic solution E7 using 16.83 g of (FSO 2 ) 2 NLi. In the electrolytic solution E8, 2.4 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液E9)
 18.71gの(FSONLiiを用い、電解液E7と同様の方法で、(FSONLiの濃度が5.0mol/Lである電解液E9を製造した。電解液E9においては、(FSONLi1分子に対しアセトニトリル2.1分子が含まれている。
(Electrolytic solution E9)
By using 18.71 g of (FSO 2 ) 2 NLii, an electrolytic solution E9 having a concentration of (FSO 2 ) 2 NLi of 5.0 mol / L was produced in the same manner as the electrolytic solution E7. In the electrolytic solution E9, 2.1 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液E10)
 20.21gの(FSONLiを用い、電解液E7と同様の方法で、(FSONLiの濃度が5.4mol/Lである電解液E10を製造した。電解液E10においては、(FSONLi1分子に対しアセトニトリル2分子が含まれている。
(Electrolytic solution E10)
Using 20.21 g of (FSO 2 ) 2 NLi, an electrolytic solution E10 having a concentration of (FSO 2 ) 2 NLi of 5.4 mol / L was produced in the same manner as the electrolytic solution E7. In the electrolyte solution E10, 2 molecules of acetonitrile are contained with respect to 1 molecule of (FSO 2 ) 2 NLi.
 (電解液E11)
 有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液E11とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液E11における(FSONLiの濃度は3.9mol/Lであった。電解液E11においては、(FSONLi1分子に対しジメチルカーボネート2分子が含まれている。
(Electrolytic solution E11)
About 5 mL of dimethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to dimethyl carbonate in the flask and dissolved. When (FSO 2 ) 2 NLi was added in a total amount of 14.64 g, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and dimethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution E11. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (FSO 2 ) 2 NLi in the electrolytic solution E11 was 3.9 mol / L. In the electrolytic solution E11, two molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
 (電解液E12)
 電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が3.4mol/Lの電解液E12とした。電解液E12においては、(FSONLi1分子に対しジメチルカーボネート2.5分子が含まれている。
(Electrolytic solution E12)
Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E12 having a (FSO 2 ) 2 NLi concentration of 3.4 mol / L. In the electrolytic solution E12, 2.5 molecules of dimethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液E13)
 電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.9mol/Lの電解液E13とした。電解液E13においては、(FSONLi1分子に対しジメチルカーボネート3分子が含まれている。
(Electrolytic solution E13)
Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E13 having a (FSO 2 ) 2 NLi concentration of 2.9 mol / L. In the electrolytic solution E13, three molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
 (電解液E14)
 電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.6mol/Lの電解液E14とした。電解液E14においては、(FSONLi1分子に対しジメチルカーボネート3.5分子が含まれている。
(Electrolytic solution E14)
Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E14 having a concentration of (FSO 2 ) 2 NLi of 2.6 mol / L. In the electrolytic solution E14, 3.5 molecules of dimethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液E15)
 電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.0mol/Lの電解液E15とした。電解液E15においては、(FSONLi1分子に対しジメチルカーボネート5分子が含まれている。
(Electrolytic solution E15)
Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution E15 having a (FSO 2 ) 2 NLi concentration of 2.0 mol / L. In the electrolytic solution E15, five molecules of dimethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
 (電解液E16)
 有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液E16とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液E16における(FSONLiの濃度は3.4mol/Lであった。電解液E16においては、(FSONLi1分子に対しエチルメチルカーボネート2分子が含まれている。
(Electrolytic solution E16)
About 5 mL of ethyl methyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in ethyl methyl carbonate in the flask. When 12.81 g of (FSO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The obtained electrolytic solution was transferred to a 20 mL volumetric flask, and ethyl methyl carbonate was added until the volume became 20 mL. This was designated as an electrolytic solution E16. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (FSO 2 ) 2 NLi in the electrolytic solution E16 was 3.4 mol / L. In the electrolytic solution E16, two molecules of ethyl methyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
 (電解液E17)
 電解液E16にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.9mol/Lの電解液E17とした。電解液E17においては、(FSONLi1分子に対しエチルメチルカーボネート2.5分子が含まれている。
(Electrolytic solution E17)
The electrolyte solution E16 was diluted by adding ethyl methyl carbonate to obtain an electrolyte solution E17 having a (FSO 2 ) 2 NLi concentration of 2.9 mol / L. In the electrolytic solution E17, 2.5 molecules of ethyl methyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
 (電解液E18)
 電解液E16にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.2mol/Lの電解液E18とした。電解液E18においては、(FSONLi1分子に対しエチルメチルカーボネート3.5分子が含まれている。
(Electrolytic solution E18)
The electrolyte solution E16 was diluted by adding ethyl methyl carbonate to obtain an electrolyte solution E18 having a concentration of (FSO 2 ) 2 NLi of 2.2 mol / L. In the electrolytic solution E18, 3.5 molecules of ethyl methyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液E19)
 有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液E19とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液E19における(FSONLiの濃度は3.0mol/Lであった。電解液E19においては、(FSONLi1分子に対しジエチルカーボネート2分子が含まれている。
(Electrolytic solution E19)
About 5 mL of diethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stirring bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in diethyl carbonate in the flask. When 11.37 g of the total amount of (FSO 2 ) 2 NLi was added, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and diethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution E19. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (FSO 2 ) 2 NLi in the electrolytic solution E19 was 3.0 mol / L. In the electrolytic solution E19, two molecules of diethyl carbonate are contained with respect to one molecule of (FSO 2 ) 2 NLi.
 (電解液E20)
 電解液E19にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が2.6mol/Lの電解液E20とした。電解液E20においては、(FSONLi1分子に対しジエチルカーボネート2.5分子が含まれている。
(Electrolytic solution E20)
Diethyl carbonate was added to the electrolytic solution E19 for dilution to obtain an electrolytic solution E20 having a (FSO 2 ) 2 NLi concentration of 2.6 mol / L. In the electrolytic solution E20, 2.5 molecules of diethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液E21)
 電解液E19にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が2.0mol/Lの電解液E21とした。電解液E21においては、(FSONLi1分子に対しジエチルカーボネート3.5分子が含まれている。
(Electrolytic solution E21)
Diethyl carbonate was added to the electrolytic solution E19 for dilution to obtain an electrolytic solution E21 having a (FSO 2 ) 2 NLi concentration of 2.0 mol / L. In the electrolytic solution E21, 3.5 molecules of diethyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecules.
 (電解液C1)
 5.74gの(CFSONLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、電解液E3と同様の方法で、(CFSONLiの濃度が1.0mol/Lである電解液C1を製造した。電解液C1においては、(CFSONLi1分子に対し1,2-ジメトキシエタン8.3分子が含まれている。
(Electrolytic solution C1)
Using (CF 3 SO 2) 2 NLi of 5.74 g, as except for using 1,2-dimethoxyethane organic solvents, in the same manner as the electrolyte solution E3, is (CF 3 SO 2) concentration of 2 NLi Electrolyte C1 which is 1.0 mol / L was manufactured. In the electrolytic solution C1, 8.3 molecules of 1,2-dimethoxyethane are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecules.
 (電解液C2)
 5.74gの(CFSONLiを用い、電解液E3と同様の方法で、(CFSONLiの濃度が1.0mol/Lである電解液C2を製造した。電解液C2においては、(CFSONLi1分子に対しアセトニトリル16分子が含まれている。
(Electrolytic solution C2)
Using 5.74 g of (CF 3 SO 2 ) 2 NLi, an electrolytic solution C2 having a concentration of (CF 3 SO 2 ) 2 NLi of 1.0 mol / L was produced in the same manner as the electrolytic solution E3. In the electrolytic solution C2, 16 molecules of acetonitrile are contained with respect to (CF 3 SO 2 ) 2 NLi1 molecule.
 (電解液C3)
 3.74gの(FSONLiを用い、電解液E5と同様の方法で、(FSONLiの濃度が1.0mol/Lである電解液C3を製造した。電解液C3においては、(FSONLi1分子に対し1,2-ジメトキシエタン8.8分子が含まれている。
(Electrolytic solution C3)
Using 3.74 g of (FSO 2 ) 2 NLi, an electrolytic solution C3 having a concentration of (FSO 2 ) 2 NLi of 1.0 mol / L was produced in the same manner as the electrolytic solution E5. In the electrolytic solution C3, 8.8 molecules of 1,2-dimethoxyethane are contained per molecule of (FSO 2 ) 2 NLi.
 (電解液C4)
 3.74gの(FSONLiを用い、電解液E7と同様の方法で、(FSONLiの濃度が1.0mol/Lである電解液C4を製造した。電解液C4においては、(FSONLi1分子に対しアセトニトリル17分子が含まれている。
(Electrolytic solution C4)
Using 3.74 g of (FSO 2 ) 2 NLi, an electrolytic solution C4 having a concentration of (FSO 2 ) 2 NLi of 1.0 mol / L was produced in the same manner as the electrolytic solution E7. In the electrolyte solution C4, 17 molecules of acetonitrile are contained with respect to (FSO 2 ) 2 NLi1 molecule.
 (電解液C5)
 有機溶媒としてエチレンカーボネートおよびジエチルカーボネートの混合溶媒(体積比3:7、以下、「EC/DEC」ということがある。)を用い、リチウム塩として3.04gのLiPFを用いた以外は、電解液E3と同様の方法で、LiPFの濃度が1.0mol/Lである電解液C5を製造した。
(Electrolytic solution C5)
Except that a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 3: 7, hereinafter referred to as “EC / DEC”) was used as the organic solvent, and 3.04 g of LiPF 6 was used as the lithium salt. An electrolytic solution C5 having a LiPF 6 concentration of 1.0 mol / L was produced in the same manner as in the liquid E3.
 (電解液C6)
 電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lの電解液C6とした。電解液C6においては、(FSONLi1分子に対しジメチルカーボネート10分子が含まれている。
(Electrolytic solution C6)
Dimethyl carbonate was added to the electrolytic solution E11 for dilution to obtain an electrolytic solution C6 having a (FSO 2 ) 2 NLi concentration of 1.1 mol / L. In the electrolytic solution C6, 10 molecules of dimethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
 (電解液C7)
 電解液E16にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lの電解液C7とした。電解液C7においては、(FSONLi1分子に対しエチルメチルカーボネート8分子が含まれている。
(Electrolytic solution C7)
The electrolyte solution E16 was diluted by adding ethyl methyl carbonate to obtain an electrolyte solution C7 having a (FSO 2 ) 2 NLi concentration of 1.1 mol / L. In the electrolytic solution C7, 8 molecules of ethyl methyl carbonate are contained with respect to (FSO 2 ) 2 NLi1 molecule.
 (電解液C8)
 電解液E19にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lの電解液C8とした。電解液C8においては、(FSONLi1分子に対しジエチルカーボネート7分子が含まれている。
(Electrolytic solution C8)
Diethyl carbonate was added to the electrolytic solution E19 for dilution to obtain an electrolytic solution C8 having a (FSO 2 ) 2 NLi concentration of 1.1 mol / L. In the electrolytic solution C8, 7 molecules of diethyl carbonate are contained per 1 molecule of (FSO 2 ) 2 NLi.
 表3に電解液E1~E21および電解液C1~C8の一覧を示す。 Table 3 shows a list of the electrolytic solutions E1 to E21 and the electrolytic solutions C1 to C8.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  (評価例1:IR測定)
 電解液E3、電解液E4、電解液E7、電解液E8、電解液E10、電解液C2、電解液C4、並びに、アセトニトリル、(CFSONLi、(FSONLiにつき、以下の条件でIR測定を行った。2100~2400cm-1の範囲のIRスペクトルをそれぞれ図1~図10に示す。さらに、電解液E11~E21、電解液C6~C8、並びに、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートにつき、下記の条件でIR測定を行った。1900~1600cm-1の範囲のIRスペクトルをそれぞれ図11~図27に示す。また、(FSONLiにつき、1900~1600cm-1の範囲のIRスペクトルを図28に示す。図の横軸は波数(cm-1)であり、縦軸は吸光度(反射吸光度)である。
(Evaluation Example 1: IR measurement)
Electrolytic solution E3, electrolytic solution E4, electrolytic solution E7, electrolytic solution E8, electrolytic solution E10, electrolytic solution C2, electrolytic solution C4, and acetonitrile, (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi are as follows: The IR measurement was performed under the following conditions. IR spectra in the range of 2100 to 2400 cm −1 are shown in FIGS. 1 to 10, respectively. Further, IR measurement was performed on the electrolytic solutions E11 to E21, the electrolytic solutions C6 to C8, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate under the following conditions. IR spectra in the range of 1900 to 1600 cm −1 are shown in FIGS. 11 to 27, respectively. In addition, FIG. 28 shows an IR spectrum in the range of 1900 to 1600 cm −1 for (FSO 2 ) 2 NLi. The horizontal axis in the figure is the wave number (cm −1 ), and the vertical axis is the absorbance (reflection absorbance).
 IR測定条件
 装置:FT-IR(ブルカーオプティクス社製)
 測定条件:ATR法(ダイヤモンド使用)
 測定雰囲気:不活性ガス雰囲気下
IR measurement conditions Device: FT-IR (Bruker Optics)
Measurement conditions: ATR method (using diamond)
Measurement atmosphere: Inert gas atmosphere
 図8で示されるアセトニトリルのIRスペクトルの2250cm-1付近には、アセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図9で示される(CFSONLiのIRスペクトルおよび図10で示される(FSONLiのIRスペクトルの2250cm-1付近には、特段のピークが観察されなかった。 In the vicinity of 2250 cm −1 in the IR spectrum of acetonitrile shown in FIG. 8, a characteristic peak derived from the stretching vibration of the triple bond between C and N of acetonitrile was observed. Note that no special peak was observed in the vicinity of 2250 cm −1 of the IR spectrum of (CF 3 SO 2 ) 2 NLi shown in FIG. 9 and the IR spectrum of (FSO 2 ) 2 NLi shown in FIG.
 図1で示される電解液E3のIRスペクトルには、2250cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00699)観察された。さらに図1のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05828で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。 In the IR spectrum of the electrolyte solution E3 shown in FIG. 1, a characteristic peak derived from the stretching vibration of the triple bond between C and N of acetonitrile is slightly observed (Io = 0.00699) in the vicinity of 2250 cm −1. It was. More IR spectrum of FIG. 1, 2250 cm characteristic peaks peak intensity derived from the stretching vibration of the triple bond between the vicinity of -1 acetonitrile near 2280 cm -1 shifted to the high frequency side C and N Is = 0 .05828. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 8 × Io.
 図2で示される電解液E4のIRスペクトルには、2250cm-1付近にアセトニトリル由来のピークが観察されず、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05234で観察された。IsとIoのピーク強度の関係はIs>Ioであった。 The IR spectrum of the electrolyte E4 shown in FIG. 2, 2250 cm -1 peak derived from acetonitrile was not observed in the vicinity, between 2250 cm from the vicinity -1 acetonitrile near 2280 cm -1 shifted to the high frequency side C and N A characteristic peak derived from the stretching vibration of the triple bond was observed at a peak intensity Is = 0.05234. The relationship between the peak intensities of Is and Io was Is> Io.
 図3で示される電解液E7のIRスペクトルには、2250cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00997)観察された。さらに図3のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.08288で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。図4で示される電解液E8のIRスペクトルについても、図3のIRチャートと同様の強度のピークが同様の波数に観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=11×Ioであった。 In the IR spectrum of the electrolytic solution E7 shown in FIG. 3, a characteristic peak derived from the stretching vibration of the triple bond between C and N of acetonitrile is slightly observed (Io = 0.00997) in the vicinity of 2250 cm −1. It was. More IR spectrum of FIG. 3, 2250 cm characteristic peaks peak intensity derived from the stretching vibration of the triple bond between the vicinity of -1 acetonitrile near 2280 cm -1 shifted to the high frequency side C and N Is = 0 .08288. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 8 × Io. Also in the IR spectrum of the electrolytic solution E8 shown in FIG. 4, the same intensity peak as that in the IR chart of FIG. 3 was observed at the same wave number. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 11 × Io.
 図5で示される電解液E10のIRスペクトルには、2250cm-1付近にアセトニトリル由来のピークが観察されず、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.07350で観察された。IsとIoのピーク強度の関係はIs>Ioであった。 FIG The IR spectrum of the electrolyte E10 represented by 5, is not a peak derived from acetonitrile observed around 2250 cm -1, inter 2250 cm from the vicinity -1 shifted acetonitrile 2280cm around -1 to the high frequency side C and N A characteristic peak derived from the stretching vibration of the triple bond was observed at a peak intensity Is = 0.07350. The relationship between the peak intensities of Is and Io was Is> Io.
 図6で示される電解液C2のIRスペクトルには、図8と同じく、2250cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04441で観察された。さらに図6のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03018で観察された。IsとIoのピーク強度の関係はIs<Ioであった。 In the IR spectrum of the electrolytic solution C2 shown in FIG. 6, a characteristic peak derived from the stretching vibration of the triple bond between C and N of acetonitrile is observed in the vicinity of 2250 cm −1 in the IR spectrum of FIG. Observed at 04441. More IR spectrum of FIG. 6, 2250 cm characteristic peaks peak intensity derived from the stretching vibration of the triple bond between the vicinity of -1 acetonitrile near 2280 cm -1 shifted to the high frequency side C and N Is = 0 .03018. The relationship between the peak intensities of Is and Io was Is <Io.
 図7で示される電解液C4のIRスペクトルには、図8と同じく、2250cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04975で観察された。さらに図7のIRスペクトルには、2250cm-1付近から高波数側にシフトした2280cm-1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03804で観察された。IsとIoのピーク強度の関係はIs<Ioであった。 In the IR spectrum of the electrolytic solution C4 shown in FIG. 7, a characteristic peak derived from the stretching vibration of the triple bond between C and N of acetonitrile is observed in the vicinity of 2250 cm −1 in the IR spectrum of FIG. Observed at 04975. More IR spectrum of Figure 7, 2250 cm characteristic peaks peak intensity derived from the stretching vibration of the triple bond between the vicinity of -1 acetonitrile near 2280 cm -1 shifted to the high frequency side C and N Is = 0 .03804. The relationship between the peak intensities of Is and Io was Is <Io.
 図25で示されるジメチルカーボネートのIRスペクトルの1750cm-1付近には、ジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図28で示される(FSONLiのIRスペクトルの1750cm-1付近には、特段のピークが観察されなかった。 In the vicinity of 1750 cm −1 of the IR spectrum of dimethyl carbonate shown in FIG. 25, a characteristic peak derived from the stretching vibration of the double bond between C and O of dimethyl carbonate was observed. Note that no special peak was observed in the vicinity of 1750 cm −1 in the IR spectrum of (FSO 2 ) 2 NLi shown in FIG.
 図11で示される電解液E11のIRスペクトルには、1750cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.16628)観察された。さらに図11のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48032で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.89×Ioであった。 In the IR spectrum of the electrolytic solution E11 shown in FIG. 11, a characteristic peak derived from the stretching vibration of the double bond between C and O of dimethyl carbonate is slightly present at around 1750 cm −1 (Io = 0.166628). Observed. More IR spectrum of Figure 11, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O of dimethyl carbonate in the vicinity of 1717 cm -1 shifted from the vicinity of 1750 cm -1 to a lower wavenumber side = 0.48032. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 2.89 × Io.
 図12で示される電解液E12のIRスペクトルには、1750cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.18129)観察された。さらに図12のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.52005で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.87×Ioであった。 In the IR spectrum of the electrolytic solution E12 shown in FIG. 12, a characteristic peak derived from stretching vibration of a double bond between C and O of dimethyl carbonate is slightly present (Io = 0.18129) in the vicinity of 1750 cm −1. Observed. More IR spectrum of Figure 12, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O of dimethyl carbonate in the vicinity of 1717 cm -1 shifted from the vicinity of 1750 cm -1 to a lower wavenumber side = 0.52005 was observed. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 2.87 × Io.
 図13で示される電解液E13のIRスペクトルには、1750cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20293)観察された。さらに図13のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.53091で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.62×Ioであった。 In the IR spectrum of the electrolytic solution E13 shown in FIG. 13, a characteristic peak derived from the stretching vibration of the double bond between C and O of dimethyl carbonate is slightly present in the vicinity of 1750 cm −1 (Io = 0.20293). Observed. More IR spectrum of Figure 13, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O of dimethyl carbonate in the vicinity of 1717 cm -1 shifted from the vicinity of 1750 cm -1 to a lower wavenumber side = 0.53091. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 2.62 × Io.
 図14で示される電解液E14のIRスペクトルには、1750cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.23891)観察された。さらに図14のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.53098で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.22×Ioであった。 In the IR spectrum of the electrolytic solution E14 shown in FIG. 14, there is a slight characteristic peak (Io = 0.38991) derived from the stretching vibration of the double bond between C and O of dimethyl carbonate in the vicinity of 1750 cm −1. Observed. More IR spectrum of Figure 14, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O of dimethyl carbonate in the vicinity of 1717 cm -1 shifted from the vicinity of 1750 cm -1 to a lower wavenumber side = 0.53098. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 2.22 × Io.
 図15で示される電解液E15のIRスペクトルには、1750cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.30514)観察された。さらに図15のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.50223で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=1.65×Ioであった。 In the IR spectrum of the electrolytic solution E15 shown in FIG. 15, a characteristic peak derived from the stretching vibration of the double bond between C and O of dimethyl carbonate is slightly present at around 1750 cm −1 (Io = 0.050514). Observed. More IR spectrum of Figure 15, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O of dimethyl carbonate in the vicinity of 1717 cm -1 shifted from the vicinity of 1750 cm -1 to a lower wavenumber side = 0.50223. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 1.65 × Io.
 図22で示される電解液C6のIRスペクトルには、1750cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.48204)観察された。さらに図22のIRスペクトルには、1750cm-1付近から低波数側にシフトした1717cm-1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.39244で観察された。IsとIoのピーク強度の関係はIs<Ioであった。 In the IR spectrum of the electrolytic solution C6 shown in FIG. 22, a characteristic peak (Io = 0.48204) derived from stretching vibration of a double bond between C and O of dimethyl carbonate is observed around 1750 cm −1. It was. More IR spectrum of Figure 22, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O of dimethyl carbonate in the vicinity of 1717 cm -1 shifted from the vicinity of 1750 cm -1 to a lower wavenumber side = 0.39244. The relationship between peak intensities of Is and Io was Is <Io.
 図26で示されるエチルメチルカーボネートのIRスペクトルの1745cm-1付近には、エチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。 In the vicinity of 1745 cm −1 of the IR spectrum of ethyl methyl carbonate shown in FIG. 26, a characteristic peak derived from the stretching vibration of the double bond between C and O of ethyl methyl carbonate was observed.
 図16で示される電解液E16のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.13582)観察された。さらに図16のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.45888で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.38×Ioであった。 In the IR spectrum of the electrolytic solution E16 shown in FIG. 16, a characteristic peak derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate is slightly observed at around 1745 cm −1 (Io = 0.13582). ) Observed. Further, in the IR spectrum of FIG. 16, a characteristic peak derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate is observed near 1711 cm −1 shifted from the vicinity of 1745 cm −1 to the lower wavenumber side. Observed at Is = 0.45888. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 3.38 × Io.
 図17で示される電解液E17のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.15151)観察された。さらに図17のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48779で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.22×Ioであった。 In the IR spectrum of the electrolytic solution E17 shown in FIG. 17, there is a slight characteristic peak (Io = 0.151151) derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate in the vicinity of 1745 cm −1. ) Observed. Further, in the IR spectrum of FIG. 17, a characteristic peak derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate is observed near 1711 cm −1 shifted from the vicinity of 1745 cm −1 to the lower wavenumber side. Observed at Is = 0.48779. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 3.22 × Io.
 図18で示される電解液E18のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20191)観察された。さらに図18のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48407で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.40×Ioであった。 In the IR spectrum of the electrolytic solution E18 shown in FIG. 18, there is a slight characteristic peak (Io = 0.20191) derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate in the vicinity of 1745 cm −1. ) Observed. Further, in the IR spectrum of FIG. 18, a characteristic peak derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate is observed near 1711 cm −1 shifted from the vicinity of 1745 cm −1 to the lower wavenumber side. Observed at Is = 0.408407. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 2.40 × Io.
 図23で示される電解液C7のIRスペクトルには、1745cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.41907)観察された。さらに図23のIRスペクトルには、1745cm-1付近から低波数側にシフトした1711cm-1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.33929で観察された。IsとIoのピーク強度の関係はIs<Ioであった。 In the IR spectrum of the electrolytic solution C7 shown in FIG. 23, a characteristic peak (Io = 0.41907) derived from stretching vibration of a double bond between C and O of ethylmethyl carbonate was observed in the vicinity of 1745 cm −1. It was done. Further, in the IR spectrum of FIG. 23, a characteristic peak derived from the stretching vibration of the double bond between C and O of ethylmethyl carbonate is observed near 1711 cm −1 shifted from the vicinity of 1745 cm −1 to the lower wavenumber side. Observed at Is = 0.33929. The relationship between the peak intensities of Is and Io was Is <Io.
 図27で示されるジエチルカーボネートのIRスペクトルの1742cm-1付近には、ジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。 In the vicinity of 1742 cm −1 of the IR spectrum of diethyl carbonate shown in FIG. 27, a characteristic peak derived from the stretching vibration of the double bond between C and O of diethyl carbonate was observed.
 図19で示される電解液E19のIRスペクトルには、1742cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.11202)観察された。さらに図19のIRスペクトルには、1742cm-1付近から低波数側にシフトした1706cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.42925で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.83×Ioであった。 In the IR spectrum of the electrolytic solution E19 shown in FIG. 19, there is a slight characteristic peak (Io = 0.12002) derived from the stretching vibration of the double bond between C and O of diethyl carbonate in the vicinity of 1742 cm −1. Observed. Furthermore, in the IR spectrum of FIG. 19, a characteristic peak derived from the stretching vibration of the double bond between C and O of diethyl carbonate is observed near 1706 cm −1 shifted from the vicinity of 1742 cm −1 to the low wavenumber side. = 0.42925. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 3.83 × Io.
 図20で示される電解液E20のIRスペクトルには、1742cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.15231)観察された。さらに図20のIRスペクトルには、1742cm-1付近から低波数側にシフトした1706cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.45679で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.00×Ioであった。 In the IR spectrum of the electrolytic solution E20 shown in FIG. 20, a characteristic peak derived from the stretching vibration of a double bond between C and O of diethyl carbonate is slightly present in the vicinity of 1742 cm −1 (Io = 0.153231). Observed. Further, in the IR spectrum of FIG. 20, a characteristic peak derived from the stretching vibration of the double bond between C and O of diethyl carbonate is observed near 1706 cm −1 shifted from the vicinity of 1742 cm −1 to the low wavenumber side. = 0.45679. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 3.00 × Io.
 図21で示される電解液E21のIRスペクトルには、1742cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20337)観察された。さらに図21のIRスペクトルには、1742cm-1付近から低波数側にシフトした1706cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.43841で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.16×Ioであった。 In the IR spectrum of the electrolytic solution E21 shown in FIG. 21, there is a slight characteristic peak (Io = 0.20337) derived from stretching vibration of the double bond between C and O of diethyl carbonate in the vicinity of 1742 cm −1. Observed. Furthermore, in the IR spectrum of FIG. 21, a characteristic peak derived from the stretching vibration of the double bond between C and O of diethyl carbonate is observed near 1706 cm −1 shifted from the vicinity of 1742 cm −1 to the lower wavenumber side. = 0.43841. The relationship between the peak intensities of Is and Io was Is> Io, and Is = 2.16 × Io.
 図24で示される電解液C8のIRスペクトルには、1742cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.39636)観察された。さらに図24のIRスペクトルには、1742cm-1付近から低波数側にシフトした1709cm-1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.31129で観察された。IsとIoのピーク強度の関係はIs<Ioであった。 In the IR spectrum of the electrolytic solution C8 shown in FIG. 24, a characteristic peak (Io = 0.396636) derived from stretching vibration of a double bond between C and O of diethyl carbonate is observed near 1742 cm −1. It was. More IR spectrum of Figure 24, characteristic peaks peak intensity Is derived from stretching vibration of double bonds between C and O in diethyl carbonate in the vicinity of 1709 cm -1 shifted from the vicinity of 1742 cm -1 to a lower wavenumber side = 0.31129. The relationship between peak intensities of Is and Io was Is <Io.
  (評価例2:イオン伝導度)
 電解液E1、E2、電解液E4~E6、E8、E11、E16およびE19のイオン伝導度を以下の条件で測定した。結果を表4に示す。
(Evaluation Example 2: Ionic conductivity)
The ionic conductivities of the electrolytic solutions E1 and E2, and the electrolytic solutions E4 to E6, E8, E11, E16, and E19 were measured under the following conditions. The results are shown in Table 4.
 イオン伝導度測定条件
 Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
Ionic conductivity measurement conditions In an Ar atmosphere, an electrolytic solution was sealed in a glass cell with a platinum constant and a known cell constant, and impedance at 30 ° C. and 1 kHz was measured. The ion conductivity was calculated from the impedance measurement result. As the measuring instrument, Solartron 147055BEC (Solartron) was used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 電解液E1、E2、電解液E4~E6、E8、E11、E16およびE19は、いずれもイオン伝導性を示した。よって、本発明の電解液は、いずれも各種の電池の電解液として機能し得ると理解できる。 Electrolytic solutions E1 and E2, electrolytic solutions E4 to E6, E8, E11, E16, and E19 all exhibited ion conductivity. Therefore, it can be understood that the electrolytic solution of the present invention can function as an electrolytic solution for various batteries.
  (評価例3:粘度)
 電解液E1、E2、電解液E4~E6、E8、E11、E16およびE19並びに電解液C1~C4、電解液C6~C8の粘度を以下の条件で測定した。結果を表5に示す。
(Evaluation Example 3: Viscosity)
The viscosities of the electrolytic solutions E1, E2, the electrolytic solutions E4 to E6, E8, E11, E16, and E19, the electrolytic solutions C1 to C4, and the electrolytic solutions C6 to C8 were measured under the following conditions. The results are shown in Table 5.
 粘度測定条件
 落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000 M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
Viscosity measurement conditions Using a falling ball viscometer (Lovis 2000 M manufactured by Anton Paar GmbH (Anton Paar)), an electrolytic solution was sealed in a test cell under an Ar atmosphere, and the viscosity was measured at 30 ° C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 電解液E1、E2、E4~E6、E8、E11、E16、E19の粘度は、電解液C1~C4、電解液C6~C8の粘度と比較して、著しく高かった。よって、本発明の電解液を用いた電池であれば、仮に電池が破損したとしても、電解液漏れが抑制される。 The viscosities of electrolytic solutions E1, E2, E4 to E6, E8, E11, E16, and E19 were significantly higher than those of electrolytic solutions C1 to C4 and electrolytic solutions C6 to C8. Therefore, if the battery uses the electrolytic solution of the present invention, leakage of the electrolytic solution is suppressed even if the battery is damaged.
  (評価例4:揮発性)
 電解液E2、E4、E8、E11、E13、C1、C2、C4およびC6の揮発性を以下の方法で測定した。
(Evaluation Example 4: Volatility)
The volatility of the electrolytic solutions E2, E4, E8, E11, E13, C1, C2, C4 and C6 was measured by the following method.
 約10mgの電解液をアルミニウム製のパンに入れ、熱重量測定装置(TAインスツルメント社製、SDT600)に配置し、室温での電解液の重量変化を測定した。重量変化(質量%)を時間で微分することで揮発速度を算出した。揮発速度のうち最大のものを選択し、表6に示した。 About 10 mg of the electrolytic solution was put in an aluminum pan and placed in a thermogravimetric apparatus (TA Instruments, SDT600), and the weight change of the electrolytic solution at room temperature was measured. The volatilization rate was calculated by differentiating the weight change (mass%) with time. The maximum volatilization rate was selected and shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 電解液E2、E4、E8、E11、E13の最大揮発速度は、電解液C1、C2、C4、C6の最大揮発速度と比較して、著しく小さかった。よって、本発明の電解液を用いた電池は、仮に損傷したとしても、電解液の揮発速度が小さいため、電池外への有機溶媒の急速な揮発が抑制される。 The maximum volatilization rates of the electrolytic solutions E2, E4, E8, E11, and E13 were significantly smaller than the maximum volatilization rates of the electrolytic solutions C1, C2, C4, and C6. Therefore, even if the battery using the electrolytic solution of the present invention is damaged, the volatilization rate of the electrolytic solution is small, so that rapid volatilization of the organic solvent to the outside of the battery is suppressed.
  (評価例5:燃焼性)
 電解液E4、電解液C2の燃焼性を以下の方法で試験した。
(Evaluation Example 5: Combustibility)
The combustibility of the electrolytic solution E4 and the electrolytic solution C2 was tested by the following method.
 電解液をガラスフィルターにピペットで3滴滴下し、電解液をガラスフィルターに保持させた。当該ガラスフィルターをピンセットで把持し、そして、当該ガラスフィルターに接炎させた。 3 drops of the electrolytic solution was dropped on the glass filter with a pipette, and the electrolytic solution was held on the glass filter. The glass filter was held with tweezers, and the glass filter was brought into contact with flame.
 電解液E4は15秒間接炎させても引火しなかった。他方、電解液C2は5秒余りで燃え尽きた。本発明の電解液は燃焼しにくいことが裏付けられた。 Electrolyte E4 did not ignite even after 15 seconds of indirect flame. On the other hand, the electrolytic solution C2 burned out in about 5 seconds. It was confirmed that the electrolytic solution of the present invention is difficult to burn.
  (評価例6:低温試験)
 電解液E11、E13、E16、E19をそれぞれ容器に入れ、不活性ガスを充填して密閉した。これらを-30℃の冷凍庫に2日間保管した。保管後に各電解液を観察した。いずれの電解液も固化せず液体状態を維持しており、塩の析出も観察されなかった。
  (評価例7:ラマンスペクトル測定)
 電解液E8、E9、C4、並びに、E11、E13、E15、C6につき、以下の条件でラマンスペクトル測定を行った。各電解液の金属塩のアニオン部分に由来するピークが観察されたラマンスペクトルをそれぞれ図29~図35に示す。図の横軸は波数(cm-1)であり、縦軸は散乱強度である。
 ラマンスペクトル測定条件
 装置:レーザーラマン分光光度計(日本分光株式会社NRSシリーズ)
 レーザー波長:532nm
 不活性ガス雰囲気下で電解液を石英セルに密閉し、測定に供した。
 図29~図31で示される電解液E8、E9、C4のラマンスペクトルの700~800cm-1には、アセトニトリルに溶解したLiFSAの(FSONに由来する特徴的なピークが観察された。ここで、図29~図31から、LiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。電解液が高濃度化するに従い、塩のアニオンに該当する(FSONがLiと相互作用する状態になる、換言すると、濃度が低い場合はLiとアニオンはSSIP(Solvent-separated ion pairs)状態を主に形成しており、高濃度化に伴いCIP(Contact ion pairs)状態やAGG(aggregate)状態を主に形成していると推察される。そして、かかる状態がラマンスペクトルのピークシフトとして観察されたと考察できる。
 図32~図35で示される電解液E11、E13、E15、C6のラマンスペクトルの700~800cm-1には、ジメチルカーボネートに溶解したLiFSAの(FSONに由来する特徴的なピークが観察された。ここで、図32~図35から、LiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。この現象は、前段落で考察したのと同様に、電解液が高濃度化することで、塩のアニオンに該当する(FSONが複数のLiと相互作用している状態がスペクトルに反映された結果であると推察される。
(Evaluation Example 6: Low temperature test)
Electrolytes E11, E13, E16, and E19 were placed in containers, filled with an inert gas, and sealed. These were stored in a freezer at −30 ° C. for 2 days. Each electrolyte was observed after storage. None of the electrolytes were solidified and maintained in a liquid state, and no salt deposition was observed.
(Evaluation Example 7: Raman spectrum measurement)
For the electrolytes E8, E9, C4, and E11, E13, E15, C6, Raman spectrum measurement was performed under the following conditions. FIGS. 29 to 35 show Raman spectra in which peaks derived from the anion portion of the metal salt of each electrolytic solution were observed. In the figure, the horizontal axis represents the wave number (cm −1 ), and the vertical axis represents the scattering intensity.
Raman spectrum measurement conditions Equipment: Laser Raman spectrophotometer (NRS series, JASCO Corporation)
Laser wavelength: 532 nm
The electrolyte was sealed in a quartz cell under an inert gas atmosphere and used for measurement.
A characteristic peak derived from (FSO 2 ) 2 N of LiFSA dissolved in acetonitrile was observed in 700 to 800 cm −1 of the Raman spectra of the electrolytic solutions E8, E9, and C4 shown in FIGS. . Here, it can be seen from FIGS. 29 to 31 that the peak shifts to the higher wavenumber side as the LiFSA concentration increases. As the electrolyte concentration increases, (FSO 2 ) 2 N corresponding to the anion of the salt interacts with Li. In other words, when the concentration is low, Li and the anion become SSIP (Solvent-separated ion pairs). ) State is mainly formed, and it is assumed that a CIP (Contact ion pairs) state and an AGG (aggregate) state are mainly formed as the concentration is increased. It can be considered that such a state was observed as a peak shift of the Raman spectrum.
A characteristic peak derived from (FSO 2 ) 2 N of LiFSA dissolved in dimethyl carbonate is observed in 700 to 800 cm −1 of the Raman spectra of the electrolytic solutions E11, E13, E15, and C6 shown in FIGS. Observed. Here, it can be seen from FIGS. 32 to 35 that the peak shifts to the higher wavenumber side as the concentration of LiFSA increases. This phenomenon is similar to that discussed in the previous paragraph. When the concentration of the electrolyte is increased, the state in which (FSO 2 ) 2 N corresponding to the anion of the salt interacts with a plurality of Li is shown in the spectrum. It is inferred that the result is reflected.
  (評価例8:Li輸率)
 電解液E2、E8、C4およびC5のLi輸率を以下の条件で測定した。
 各電解液を入れたNMR管をPFG-NMR装置(ECA-500、日本電子)に供し、500MHz、磁場勾配1.26T/mの条件で、7Li、19Fを対象として、スピンエコー法を用い、磁場パルス幅を変化させながら、各電解液中のLiイオンおよびアニオンの拡散係数を測定した。Li輸率は以下の式で算出した。
 Li輸率=(Liイオン拡散係数)/(Liイオン拡散係数+アニオン拡散係数)
 Li輸率の測定結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
(Evaluation Example 8: Li transportation rate)
The Li transport numbers of the electrolytic solutions E2, E8, C4 and C5 were measured under the following conditions.
The NMR tube containing each electrolyte solution was supplied to a PFG-NMR apparatus (ECA-500, JEOL), and the spin echo method was used for 7Li and 19F under conditions of 500 MHz and a magnetic field gradient of 1.26 T / m. The diffusion coefficient of Li ions and anions in each electrolyte was measured while changing the magnetic field pulse width. The Li transport number was calculated by the following formula.
Li transport number = (Li ion diffusion coefficient) / (Li ion diffusion coefficient + anion diffusion coefficient)
Table 7 shows the measurement results of the Li transport number.
Figure JPOXMLDOC01-appb-T000007
 電解液E2、E8のLi輸率は、電解液C4、C5のLi輸率と比較して、著しく高かった。ここで、電解液のLiイオン伝導度は、電解液に含まれるイオン伝導度(全イオン伝導度)にLi輸率を乗じて算出することができる。そうすると、本発明の電解液は同程度のイオン伝導度を示す従来の電解液と比較して、リチウムイオン(カチオン)の輸送速度が高いといえる。
 また、電解液E8につき、温度を変化させた場合のLi輸率を、上記Li輸率測定条件に準じて測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8の結果から、本発明の電解液は、温度に因らず、好適なLi輸率を保つことがわかる。本発明の電解液は、低温でも液体状態を保っているといえる。
The Li transport number of the electrolytic solutions E2 and E8 was significantly higher than the Li transport number of the electrolytic solutions C4 and C5. Here, the Li ion conductivity of the electrolytic solution can be calculated by multiplying the ionic conductivity (total ionic conductivity) contained in the electrolytic solution by the Li transport number. If it does so, it can be said that the electrolyte solution of this invention has the high transport rate of lithium ion (cation) compared with the conventional electrolyte solution which shows comparable ionic conductivity.
Moreover, about electrolyte solution E8, the Li transport number at the time of changing temperature was measured according to the said Li transport number measurement conditions. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
From the results in Table 8, it can be seen that the electrolytic solution of the present invention maintains a suitable Li transport number regardless of the temperature. It can be said that the electrolytic solution of the present invention maintains a liquid state even at a low temperature.
 本発明の電解液として、以下の電解液を具体的に挙げる。なお、以下の電解液には、既述のものも含まれている。
 (電解液A)
 本発明の電解液を以下のとおり製造した。
Specific examples of the electrolytic solution of the present invention include the following electrolytic solutions. The following electrolytes include those already described.
(Electrolytic solution A)
The electrolytic solution of the present invention was produced as follows.
 有機溶媒である1,2-ジメトキシエタン約5mLを、撹拌子および温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2-ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2-ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2-ジメトキシエタンを加えた。得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。これを電解液Aとした。電解液Aにおける(CFSONLiの濃度は3.2mol/Lであり、密度は1.39g/cmであった。密度は20℃で測定した。
 なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
About 5 mL of 1,2-dimethoxyethane, an organic solvent, was placed in a flask equipped with a stir bar and a thermometer. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to 1,2-dimethoxyethane in the flask so as to keep the solution temperature at 40 ° C. or lower and dissolved. When about 13 g of (CF 3 SO 2 ) 2 NLi was added, the dissolution of (CF 3 SO 2 ) 2 NLi temporarily stagnated. Therefore, the flask was put into a thermostat, and the solution temperature in the flask was 50 ° C. (CF 3 SO 2 ) 2 NLi was dissolved. When about 15 g of (CF 3 SO 2 ) 2 NLi was added, the dissolution of (CF 3 SO 2 ) 2 NLi stagnated again, so 1 drop of 1,2-dimethoxyethane was added with a pipette (CF 3 SO 2 ) 2 NLi dissolved. Further, (CF 3 SO 2 ) 2 NLi was gradually added, and the entire amount of predetermined (CF 3 SO 2 ) 2 NLi was added. The resulting electrolyte was transferred to a 20 mL volumetric flask and 1,2-dimethoxyethane was added until the volume was 20 mL. The obtained electrolytic solution had a volume of 20 mL, and (CF 3 SO 2 ) 2 NLi contained in this electrolytic solution was 18.38 g. This was designated as an electrolytic solution A. The concentration of (CF 3 SO 2 ) 2 NLi in the electrolytic solution A was 3.2 mol / L, and the density was 1.39 g / cm 3 . The density was measured at 20 ° C.
The production was performed in a glove box under an inert gas atmosphere.
 (電解液B)
 電解液Aと同様の方法で、(CFSONLiの濃度が2.8mol/Lであり、密度が1.36g/cmである、電解液Bを製造した。
(Electrolytic solution B)
By a method similar to that for the electrolytic solution A, an electrolytic solution B having a (CF 3 SO 2 ) 2 NLi concentration of 2.8 mol / L and a density of 1.36 g / cm 3 was produced.
 (電解液C)
 有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。所定の(CFSONLiを加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液Cとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液Cは、(CFSONLiの濃度が4.2mol/Lであり、密度が1.52g/cmであった。
(Electrolytic solution C)
About 5 mL of acetonitrile, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (CF 3 SO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in acetonitrile in the flask. The mixture was stirred overnight when the prescribed (CF 3 SO 2 ) 2 NLi was added. The resulting electrolyte was transferred to a 20 mL volumetric flask and acetonitrile was added until the volume was 20 mL. This was designated as an electrolytic solution C. The production was performed in a glove box under an inert gas atmosphere.
The electrolytic solution C had a (CF 3 SO 2 ) 2 NLi concentration of 4.2 mol / L and a density of 1.52 g / cm 3 .
 (電解液D)
 電解液Cと同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.31g/cmである、電解液Dを製造した。
(Electrolyte D)
By a method similar to that of the electrolytic solution C, an electrolytic solution D having a concentration of (CF 3 SO 2 ) 2 NLi of 3.0 mol / L and a density of 1.31 g / cm 3 was produced.
 (電解液E)
 有機溶媒としてスルホランを用いた以外は、電解液Cと同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.57g/cmである、電解液Eを製造した。
(Electrolyte E)
Except for using sulfolane as the organic solvent, in the same manner as the electrolytic solution C, the concentration of (CF 3 SO 2 ) 2 NLi is 3.0 mol / L and the density is 1.57 g / cm 3. Liquid E was produced.
 (電解液F)
 有機溶媒としてジメチルスルホキシドを用いた以外は、電解液Cと同様の方法で、(CFSONLiの濃度が3.2mol/Lであり、密度が1.49g/cmである、電解液Fを製造した。
(Electrolyte F)
The concentration of (CF 3 SO 2 ) 2 NLi is 3.2 mol / L and the density is 1.49 g / cm 3 except that dimethyl sulfoxide is used as the organic solvent. Electrolytic solution F was produced.
 (電解液G)
 リチウム塩として(FSONLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、電解液Cと同様の方法で、(FSONLiの濃度が4.0mol/Lであり、密度が1.33g/cmである、電解液Gを製造した。
(Electrolyte G)
The concentration of (FSO 2 ) 2 NLi is 4.0 mol / L in the same manner as in the electrolytic solution C, except that (FSO 2 ) 2 NLi is used as the lithium salt and 1,2-dimethoxyethane is used as the organic solvent. An electrolyte solution G having a density of 1.33 g / cm 3 was produced.
 (電解液H)
 電解液Gと同様の方法で、(FSONLiの濃度が3.6mol/Lであり、密度が1.29g/cmである、電解液Hを製造した。
(Electrolyte H)
In the same manner as the electrolytic solution G, an electrolytic solution H having a concentration of (FSO 2 ) 2 NLi of 3.6 mol / L and a density of 1.29 g / cm 3 was produced.
 (電解液I)
 電解液Gと同様の方法で、(FSONLiの濃度が2.4mol/Lであり、密度が1.18g/cmである、電解液Iを製造した。
(Electrolyte I)
In the same manner as the electrolytic solution G, an electrolytic solution I having a concentration of (FSO 2 ) 2 NLi of 2.4 mol / L and a density of 1.18 g / cm 3 was produced.
 (電解液J)
 有機溶媒としてアセトニトリルを用いた以外は、電解液Gと同様の方法で、(FSONLiの濃度が5.0mol/Lであり、密度が1.40g/cmである、電解液Jを製造した。
(Electrolytic solution J)
Except that acetonitrile was used as the organic solvent, an electrolytic solution J having a concentration of (FSO 2 ) 2 NLi of 5.0 mol / L and a density of 1.40 g / cm 3 in the same manner as the electrolytic solution G Manufactured.
 (電解液K)
 電解液Jと同様の方法で、(FSONLiの濃度が4.5mol/Lであり、密度が1.34g/cmである、電解液Kを製造した。
(Electrolytic solution K)
In the same manner as the electrolytic solution J, an electrolytic solution K having a concentration of (FSO 2 ) 2 NLi of 4.5 mol / L and a density of 1.34 g / cm 3 was produced.
 (電解液L)
 有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液Lとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液Lにおける(FSONLiの濃度は3.9mol/Lであり、電解液Lの密度は1.44g/cmであった。
(Electrolytic solution L)
About 5 mL of dimethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to dimethyl carbonate in the flask and dissolved. When (FSO 2 ) 2 NLi was added in a total amount of 14.64 g, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and dimethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution L. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (FSO 2 ) 2 NLi in the electrolytic solution L was 3.9 mol / L, and the density of the electrolytic solution L was 1.44 g / cm 3 .
 (電解液M)
 電解液Lと同様の方法で、(FSONLiの濃度が2.9mol/Lであり、密度が1.36g/cmである、電解液Mを製造した。
(Electrolyte M)
In the same manner as the electrolytic solution L, an electrolytic solution M having a (FSO 2 ) 2 NLi concentration of 2.9 mol / L and a density of 1.36 g / cm 3 was produced.
 (電解液N)
 有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液Nとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液Nにおける(FSONLiの濃度は3.4mol/Lであり、電解液Nの密度は1.35g/cmであった。
(Electrolytic solution N)
About 5 mL of ethyl methyl carbonate, which is an organic solvent, was placed in a flask equipped with a stir bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in ethyl methyl carbonate in the flask. When 12.81 g of (FSO 2 ) 2 NLi was added in total, the mixture was stirred overnight. The obtained electrolytic solution was transferred to a 20 mL volumetric flask, and ethyl methyl carbonate was added until the volume became 20 mL. This was designated as an electrolytic solution N. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (FSO 2 ) 2 NLi in the electrolytic solution N was 3.4 mol / L, and the density of the electrolytic solution N was 1.35 g / cm 3 .
 (電解液O)
 有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液Oとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
 電解液Oにおける(FSONLiの濃度は3.0mol/Lであり、電解液Oの密度は1.29g/cmであった。
 表9に上記電解液の一覧を示す。
(Electrolytic solution O)
About 5 mL of diethyl carbonate, which is an organic solvent, was placed in a flask equipped with a stirring bar. Under stirring conditions, (FSO 2 ) 2 NLi, which is a lithium salt, was gradually added to and dissolved in diethyl carbonate in the flask. When 11.37 g of the total amount of (FSO 2 ) 2 NLi was added, the mixture was stirred overnight. The resulting electrolyte was transferred to a 20 mL volumetric flask and diethyl carbonate was added until the volume was 20 mL. This was designated as an electrolytic solution O. The production was performed in a glove box under an inert gas atmosphere.
The concentration of (FSO 2 ) 2 NLi in the electrolytic solution O was 3.0 mol / L, and the density of the electrolytic solution O was 1.29 g / cm 3 .
Table 9 shows a list of the electrolyte solutions.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (非水電解質二次電池)
 以下、非水電解質二次電池(1)~非水電解質二次電池(5)について具体的に説明する。以下の実施例は便宜的に項目を分けて説明しているため、重複している場合がある。また、以下の実施例および後述するEB、CBは、非水電解質二次電池(1)~非水電解質二次電池(5)の複数の実施例に該当する場合がある。
 <非水電解質二次電池(1)>
 (実施例1-1)
(Non-aqueous electrolyte secondary battery)
The nonaqueous electrolyte secondary battery (1) to the nonaqueous electrolyte secondary battery (5) will be specifically described below. In the following embodiments, items are described separately for convenience, and therefore may be duplicated. The following examples and EB and CB described later may correspond to a plurality of examples of the nonaqueous electrolyte secondary battery (1) to the nonaqueous electrolyte secondary battery (5).
<Nonaqueous electrolyte secondary battery (1)>
Example 1-1
 電解液E8を用い、実施例1-1の非水電解質二次電池を作製した。
  <負極>
 SECカーボン株式会社のSNOグレード(平均粒径15μm)の黒鉛(以下、黒鉛(A)と言うことがある)と、ポリフッ化ビニリデン(PVdF)と、N-メチル-2-ピロリドン(NMP)を添加混合し、スラリー状の負極合剤を調製した。スラリー中の各成分(固形分)の組成比は、黒鉛:PVdF=90:10(質量比)である。
A nonaqueous electrolyte secondary battery of Example 1-1 was produced using the electrolytic solution E8.
<Negative electrode>
Adds SNO grade graphite (average particle size 15 μm) graphite (hereinafter sometimes referred to as graphite (A)), polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) from SEC Carbon Co., Ltd. By mixing, a slurry-like negative electrode mixture was prepared. The composition ratio of each component (solid content) in the slurry is graphite: PVdF = 90: 10 (mass ratio).
 なお、用いた黒鉛(A)粉末をラマンスペクトル分析した。装置としてナノフォトン株式会社製のRAMAN-11(励起波長λ=532nm、グレーチング:600gr/mm、レーザーパワー:0.02mW)を用いた。ラマンスペクトルにおいてG-bandとD-bandのピークの強度比であるG/D比は12.2であった。 The graphite (A) powder used was subjected to Raman spectrum analysis. As the apparatus, RAMAN-11 (excitation wavelength λ = 532 nm, grating: 600 gr / mm, laser power: 0.02 mW) manufactured by Nanophoton Co., Ltd. was used. In the Raman spectrum, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 12.2.
 このスラリーを、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。 This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 μm using a doctor blade, and a negative electrode active material layer was formed on the copper foil.
 その後、80℃で20分間乾燥し、負極活物質層から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを120℃で6時間真空乾燥して、負極活物質層の厚さが30μm程度の負極を形成した。
 なお、この負極において、負極活物質層の目付量は2.3mg/cmであり、密度は0.86g/cmであった。
Then, it dried at 80 degreeC for 20 minute (s), and the organic solvent was volatilized and removed from the negative electrode active material layer. After drying, the current collector and the negative electrode active material layer were firmly and closely joined with a roll press. This was vacuum-dried at 120 ° C. for 6 hours to form a negative electrode having a negative electrode active material layer thickness of about 30 μm.
In this negative electrode, the basis weight of the negative electrode active material layer was 2.3 mg / cm 2 and the density was 0.86 g / cm 3 .
  <非水電解質二次電池>
 作製した負極を評価極として用い、非水電解質二次電池を作製した。対極は、金属リチウム箔(厚さ500μm)とした。この非水電解質二次電池は評価用の非水電解質二次電池、所謂ハーフセルである。
<Nonaqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery was produced using the produced negative electrode as an evaluation electrode. The counter electrode was a metal lithium foil (thickness 500 μm). This nonaqueous electrolyte secondary battery is a nonaqueous electrolyte secondary battery for evaluation, a so-called half cell.
 対極をφ13mm、評価極をφ11mmに裁断し、厚さ400μmのセパレータ(Whatman ガラス繊維ろ紙)を両者の間に挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。そして電解液E8を注入し、電池ケースを密閉して実施例1-1の非水電解質二次電池を得た。実施例1-1のリチウム電池、以下の各実施例および比較例の非水電解質二次電池の詳細を、実施例の欄の文末の表41に示す。 The counter electrode was cut to φ13 mm, the evaluation electrode was cut to φ11 mm, and a separator (Whatman glass fiber filter paper) having a thickness of 400 μm was sandwiched between them to form an electrode body battery. This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). Then, electrolyte solution E8 was injected, and the battery case was sealed to obtain a nonaqueous electrolyte secondary battery of Example 1-1. Details of the lithium battery of Example 1-1 and the nonaqueous electrolyte secondary batteries of the following examples and comparative examples are shown in Table 41 at the end of the column of Examples.
 (実施例1-2)
 黒鉛(A)に代えてSECカーボン株式会社のSNOグレード(平均粒径10μm)の黒鉛(以下、黒鉛(B)と言うことがある)を用いたこと以外は実施例1-1と同様にして負極を作製し、その他は実施例1-1と同様にして実施例1-2の非水電解質二次電池を得た。なお用いた黒鉛(B)を実施例1-1と同様にラマンスペクトル分析した結果、G-bandとD-bandのピークの強度比であるG/D比は4.4であった。
Example 1-2
Example 1-1 was used except that SNO grade graphite (average particle size 10 μm) graphite (hereinafter sometimes referred to as graphite (B)) from SEC Carbon Co. was used instead of graphite (A). A negative electrode was produced, and the nonaqueous electrolyte secondary battery of Example 1-2 was obtained in the same manner as in Example 1-1. The graphite (B) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 4.4.
 (実施例1-3)
 黒鉛(A)に代えて平均粒径10μmの黒鉛(C)を用いたこと以外は実施例1-1と同様にして負極を作製し、その他は実施例1-1と同様にして実施例1-3の非水電解質二次電池を得た。なお用いた黒鉛(C)を実施例1-1と同様にラマンスペクトル分析した結果、G-bandとD-bandのピークの強度比であるG/D比は16.0であった。
(Example 1-3)
A negative electrode was prepared in the same manner as in Example 1-1 except that graphite (C) having an average particle diameter of 10 μm was used in place of graphite (A), and the other examples were the same as in Example 1-1. -3 non-aqueous electrolyte secondary battery was obtained. The graphite (C) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 16.0.
 (実施例1-4)
 電解液E11を用いたこと以外は実施例1-3と同様にして、実施例1-4の非水電解質二次電池を得た。
(Example 1-4)
A nonaqueous electrolyte secondary battery of Example 1-4 was obtained in the same manner as Example 1-3 except that the electrolytic solution E11 was used.
 (比較例1-1)
 黒鉛(A)に代えて伊藤黒鉛工業株式会社の品名SG-BH(平均粒径20μm)の黒鉛(以下、黒鉛(D)と言うことがある)を用いたこと以外は実施例1-1と同様にして負極を作製し、その他は実施例1-1と同様にして比較例1-1の非水電解質二次電池を得た。なお用いた黒鉛(D)を実施例1-1と同様にラマンスペクトル分析した結果、G-bandとD-bandのピークの強度比であるG/D比は3.4であった。
(Comparative Example 1-1)
Example 1-1 was used except that graphite of the product name SG-BH (average particle size 20 μm) (hereinafter sometimes referred to as graphite (D)) of Ito Graphite Industries Co., Ltd. was used instead of graphite (A). A negative electrode was produced in the same manner, and the nonaqueous electrolyte secondary battery of Comparative Example 1-1 was obtained in the same manner as in Example 1-1. The graphite (D) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 3.4.
 (比較例1-2)
 黒鉛(A)に代えて伊藤黒鉛工業株式会社の品名SG-BH8(平均粒径8μm)の黒鉛(以下、黒鉛(E)と言うことがある)を用いたこと以外は実施例1-1と同様にして負極を作製し、その他は実施例1-1と同様にして比較例1-2の非水電解質二次電池を得た。なお用いた黒鉛(E)を実施例1-1と同様にラマンスペクトル分析した結果、G-bandとD-bandのピークの強度比であるG/D比は3.2であった。
(Comparative Example 1-2)
Example 1-1 was used except that instead of graphite (A), graphite with the product name SG-BH8 (average particle size: 8 μm) of Ito Graphite Industries Co., Ltd. (hereinafter sometimes referred to as graphite (E)) was used. A negative electrode was produced in the same manner, and the nonaqueous electrolyte secondary battery of Comparative Example 1-2 was obtained in the same manner as in Example 1-1. The graphite (E) used was subjected to Raman spectrum analysis in the same manner as in Example 1-1. As a result, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 3.2.
 (比較例1-3)
 本発明の電解液に代えて、電解液C5を用いたこと以外は実施例1-1と同様にして比較例1-3の非水電解質二次電池を得た。
(Comparative Example 1-3)
A nonaqueous electrolyte secondary battery of Comparative Example 1-3 was obtained in the same manner as Example 1-1 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例1-4)
 本発明の電解液に代えて、電解液C5を用いたこと以外は実施例1-2と同様にして比較例1-4の非水電解質二次電池を得た。
(Comparative Example 1-4)
A nonaqueous electrolyte secondary battery of Comparative Example 1-4 was obtained in the same manner as Example 1-2 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例1-5)
 本発明の電解液に代えて、電解液C5を用いたこと以外は実施例1-3と同様にして比較例1-5の非水電解質二次電池を得た。
(Comparative Example 1-5)
A nonaqueous electrolyte secondary battery of Comparative Example 1-5 was obtained in the same manner as Example 1-3 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例1-6)
 本発明の電解液に代えて、電解液C5を用いたこと以外は比較例1-1と同様にして比較例1-6の非水電解質二次電池を得た。
(Comparative Example 1-6)
A nonaqueous electrolyte secondary battery of Comparative Example 1-6 was obtained in the same manner as Comparative Example 1-1 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例1-7)
 本発明の電解液に代えて、電解液C5を用いたこと以外は比較例1-2と同様にして比較例1-7の非水電解質二次電池を得た。
(Comparative Example 1-7)
A nonaqueous electrolyte secondary battery of Comparative Example 1-7 was obtained in the same manner as Comparative Example 1-2 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 実施例1-1~1-4および比較例1-1~1-7の非水電解質二次電池の構成を表6に示す。 Table 6 shows the configurations of the nonaqueous electrolyte secondary batteries of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-7.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
  (評価例9:サイクリックボルタンメトリー)
 実施例1-1~1-4および比較例1-1~1-7の非水電解質二次電池について、温度:25℃、掃引速度:0.1mV/sec.、電圧範囲:0.01V-2V、1~5サイクル、の条件にてサイクリックボルタンメトリー(所謂CV)測定を行った。結果を図36~図45に示す。実施例1-1~1-4の非水電解質二次電池では、比較例1-1~1-7の非水電解質二次電池(すなわち従来の非水電解質二次電池)と同様に、可逆的な酸化還元反応が確認される。また比較例1-1および1-2の非水電解質二次電池のように、G/D比が3.5未満の黒鉛を用いても可逆的な酸化還元反応が確認される。すなわち本発明の電解液は、G/D比に関わらず黒鉛を負極活物質とすれば、非水電解質二次電池に利用できることがわかる。
(Evaluation example 9: cyclic voltammetry)
For the nonaqueous electrolyte secondary batteries of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-7, the temperature was 25 ° C., the sweep rate was 0.1 mV / sec. Cyclic voltammetry (so-called CV) measurement was performed under the conditions of voltage range: 0.01V-2V, 1 to 5 cycles. The results are shown in FIGS. The nonaqueous electrolyte secondary batteries of Examples 1-1 to 1-4 are reversible in the same manner as the nonaqueous electrolyte secondary batteries of Comparative Examples 1-1 to 1-7 (ie, conventional nonaqueous electrolyte secondary batteries). A typical redox reaction is confirmed. In addition, a reversible redox reaction is confirmed even when graphite having a G / D ratio of less than 3.5 is used, as in the nonaqueous electrolyte secondary batteries of Comparative Examples 1-1 and 1-2. That is, it can be understood that the electrolytic solution of the present invention can be used for a non-aqueous electrolyte secondary battery if graphite is used as a negative electrode active material regardless of the G / D ratio.
 (実施例1-5)
 実施例1-5の非水電解質二次電池においては、実施例1-1と同様の負極を用いた。
(Example 1-5)
In the non-aqueous electrolyte secondary battery of Example 1-5, the same negative electrode as in Example 1-1 was used.
  <正極>
 正極活物質としてLi[Ni0.5Co0.2Mn0.3]Oと、アセチレンブラック(AB)と、PVdFと、NMPを添加混合し、スラリー状の正極合剤を調製した。スラリー中の各成分(固形分)の組成比は、活物質:AB:PVdF=94:3:3(質量比)である。このスラリーをアルミニウム箔(集電体)の表面にドクターブレードを用いて塗布し、乾燥させて約25μmの厚さの正極活物質層をもつ正極を作製した。以下、必要に応じて、Li[Ni0.5Co0.2Mn0.3]OをNCM523と呼ぶ。
<Positive electrode>
Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , acetylene black (AB), PVdF, and NMP were added and mixed as a positive electrode active material to prepare a slurry-like positive electrode mixture. The composition ratio of each component (solid content) in the slurry is active material: AB: PVdF = 94: 3: 3 (mass ratio). This slurry was applied to the surface of an aluminum foil (current collector) using a doctor blade and dried to produce a positive electrode having a positive electrode active material layer having a thickness of about 25 μm. Hereinafter, Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 is referred to as NCM 523 as necessary.
  <非水電解質二次電池>
 上記の正極、負極および電解液E8を用いて、非水電解質二次電池の一種であるラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとして厚み260μmの実験用濾紙を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記本発明の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。
<Nonaqueous electrolyte secondary battery>
Using the positive electrode, the negative electrode, and the electrolytic solution E8, a laminated lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery, was manufactured. Specifically, an experimental filter paper having a thickness of 260 μm was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed. Then, the electrolyte solution of the present invention was injected into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
 (実施例1-6)
 電解液E4を用いたこと以外は実施例1-5と同様にして実施例1-6の非水電解質二次電池を作製した。
(Example 1-6)
A nonaqueous electrolyte secondary battery of Example 1-6 was produced in the same manner as Example 1-5 except that the electrolytic solution E4 was used.
 (比較例1-8)
 本発明の電解液に代えて電解液C5を用いたこと以外は実施例1-5と同様にして比較例1-8の非水電解質二次電池を得た。
(Comparative Example 1-8)
A nonaqueous electrolyte secondary battery of Comparative Example 1-8 was obtained in the same manner as Example 1-5 except that the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  (評価例10:熱安定性)
 実施例1-5、1-6および比較例1-8の非水電解質二次電池に対し、電位差4.2V、定電流定電圧条件で満充電した。満充電後の非水電解質二次電池を解体し、負極を取り出した。当該負極2.8mgおよび電解液1.68μLをステンレス製のパンに入れ、該パンを密閉した。密閉パンを用いて、窒素雰囲気下、昇温速度20℃/min.の条件で示差走査熱量分析を行い、DSC曲線を観察した。実施例1-5と比較例1-8の非水電解質二次電池のDSCチャートを図46に、実施例1-6と比較例1-8の非水電解質二次電池のDSCチャートを図47にそれぞれ示す。
(Evaluation Example 10: Thermal stability)
The nonaqueous electrolyte secondary batteries of Examples 1-5 and 1-6 and Comparative Example 1-8 were fully charged under a potential difference of 4.2 V and a constant current and constant voltage condition. The fully charged nonaqueous electrolyte secondary battery was disassembled and the negative electrode was taken out. 2.8 mg of the negative electrode and 1.68 μL of the electrolytic solution were placed in a stainless steel pan, and the pan was sealed. Using a sealed pan, under a nitrogen atmosphere, the heating rate was 20 ° C./min. The differential scanning calorimetry was performed under the conditions described above, and the DSC curve was observed. 46 shows a DSC chart of the nonaqueous electrolyte secondary batteries of Example 1-5 and Comparative Example 1-8, and FIG. 47 shows a DSC chart of the nonaqueous electrolyte secondary batteries of Example 1-6 and Comparative Example 1-8. Respectively.
 黒鉛を負極活物質として用いた非水電解質二次電池では、一般的な電解液を用い満充電状態として加熱すると、比較例1-8のように300℃以下で複数の発熱反応を引き起こす。しかし本発明の電解液を用いた実施例1-5、1-6では、図の矢印位置に生じる発熱ピークが消失しており、黒鉛負極と本発明の電解液との反応性が低く熱物性に優れていることがわかる。 In a non-aqueous electrolyte secondary battery using graphite as a negative electrode active material, when heated in a fully charged state using a general electrolytic solution, multiple exothermic reactions are caused at 300 ° C. or lower as in Comparative Example 1-8. However, in Examples 1-5 and 1-6 using the electrolytic solution of the present invention, the exothermic peak generated at the position of the arrow in the figure disappears, and the reactivity between the graphite negative electrode and the electrolytic solution of the present invention is low, and the thermophysical properties. It turns out that it is excellent in.
  (評価例11:レート特性)
 実施例1-1と比較例1-1の非水電解質二次電池を用い、下記の条件のもと、レート容量特性をそれぞれ評価した。結果を図48に示す。
 (1) 負極へのリチウム吸蔵が進行する向きに電流を流す。
 (2) 電圧範囲:2V→0.01V(v.s.Li/Li
 (3) レート:0.1C、0.2C、0.5C、1C、2C、5C、10C、0.1C (0.01V到達後に電流を停止)
 (4) 各レート3回ずつ(合計24サイクル)測定
 なお、1Cは、一定電流において1時間で電池を完全充電、または放電させるために要する電流値を示す。
(Evaluation Example 11: Rate characteristics)
Using the nonaqueous electrolyte secondary batteries of Example 1-1 and Comparative Example 1-1, the rate capacity characteristics were evaluated under the following conditions. The results are shown in FIG.
(1) Current is passed in the direction in which lithium occlusion proceeds to the negative electrode.
(2) Voltage range: 2 V → 0.01 V (vs. Li / Li + )
(3) Rate: 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C, 0.1C (current is stopped after reaching 0.01V)
(4) Measurement 3 times for each rate (total 24 cycles) 1C indicates a current value required to fully charge or discharge the battery in one hour at a constant current.
 実施例1-1の非水電解質二次電池は、0.5Cから2Cの範囲で比較例1-1に対し約2倍の電流容量が得られ、高速充電が可能であることがわかる。 It can be seen that the nonaqueous electrolyte secondary battery of Example 1-1 has a current capacity approximately twice that of Comparative Example 1-1 in the range of 0.5 C to 2 C, and can be charged at high speed.
  (評価例12:レート特性、サイクル耐久性)
 実施例1-1~1-3と比較例1-1~1-3、1-7の非水電解質二次電池を用い、レート容量特性とサイクル容量維持率を評価した。
 (1) 負極へのリチウム吸蔵が進行する向きに電流を流す。
 (2) 電圧範囲:0.01V-2V(対Li)
 (3) レート:0.1C、0.2C、0.5C、1C、2C、5C、10C、0.1C (0.01V到達後に電流を停止)
 (4) 各レート3回ずつ(合計24サイクル)測定
 (5) 温度は室温
(Evaluation Example 12: Rate characteristics, cycle durability)
Using the nonaqueous electrolyte secondary batteries of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-3 and 1-7, the rate capacity characteristics and the cycle capacity retention rate were evaluated.
(1) Current is passed in the direction in which lithium occlusion proceeds to the negative electrode.
(2) Voltage range: 0.01V-2V (vs. Li)
(3) Rate: 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C, 0.1C (current is stopped after reaching 0.01V)
(4) 3 times for each rate (24 cycles in total) (5) Temperature is room temperature
 上記の条件にて0.1Cレートと2Cレートにおける電流容量を測定し、0.1Cレートの電流容量に対する2Cレートの電流容量の比をレート容量特性とした。また、0.2Cで25サイクル充放電を繰り返し、25サイクル目と初回の電流容量の比をサイクル容量維持率とした。結果を表11に示す。 The current capacities at 0.1 C rate and 2 C rate were measured under the above conditions, and the ratio of the current capacity at 2 C rate to the current capacity at 0.1 C rate was defined as the rate capacity characteristic. In addition, charge / discharge was repeated for 25 cycles at 0.2 C, and the ratio between the 25th cycle and the initial current capacity was defined as the cycle capacity retention rate. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 比較例1-1、1-2のように、G/D比が4未満の黒鉛を負極活物質とする負極と本発明の電解液を組み合わせるだけでは、サイクル容量維持率を向上させ難い。また比較例1-3、1-7のように、従来の電解液を用いると、黒鉛のG/D比に関わらずレート容量特性を向上させ難い。しかし、実施例1-1~1-3のように、本発明の電解液と、G/D比が3.5以上の黒鉛を負極活物質とする負極とを組み合わせることで、レート容量特性とサイクル容量維持率とをともに向上させ得る。また実施例どうしの比較から、G/D比が高いほどレート容量特性とサイクル容量維持率が向上する傾向が認められ、G/D比は10以上であることがより望ましいと考えられる。また、この結果から、電解液用の有機溶媒としてANを用いた場合にもDMCを用いた場合にも、電解液が本発明の電解液であり、かつ、G/D比が3.5以上の黒鉛を併用すれば、レート容量特性およびサイクル容量維持率が向上することがわかる。 As in Comparative Examples 1-1 and 1-2, it is difficult to improve the cycle capacity retention rate only by combining a negative electrode using graphite having a G / D ratio of less than 4 as a negative electrode active material and the electrolytic solution of the present invention. Further, as in Comparative Examples 1-3 and 1-7, when a conventional electrolyte is used, it is difficult to improve the rate capacity characteristics regardless of the G / D ratio of graphite. However, as in Examples 1-1 to 1-3, by combining the electrolytic solution of the present invention with a negative electrode using graphite having a G / D ratio of 3.5 or more as a negative electrode active material, Both the cycle capacity maintenance rate can be improved. Further, from the comparison between the examples, the higher the G / D ratio, the more the rate capacity characteristics and the cycle capacity retention rate tend to be improved, and it is considered that the G / D ratio is more preferably 10 or more. Also, from this result, both when using AN as the organic solvent for the electrolytic solution and when using DMC, the electrolytic solution is the electrolytic solution of the present invention, and the G / D ratio is 3.5 or more. It can be understood that the rate capacity characteristics and the cycle capacity retention ratio are improved by using the graphite together.
 (実施例1-7)
  <負極>
 負極活物質として、SECカーボン株式会社のSNOグレード(平均粒径15μm)の黒鉛(以下、黒鉛(A)と言うことがある)を用いた。負極活物質である黒鉛(A)98質量部、ならびに結着剤であるスチレンブタジエンゴム1質量部およびカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリー状の負極合剤を調製した。以下、必要に応じて、スチレンブタジエンゴムをSBRと略し、カルボキシメチルセルロースをCMCと略する。
(Example 1-7)
<Negative electrode>
As the negative electrode active material, SNO grade graphite (average particle size: 15 μm) graphite (hereinafter sometimes referred to as graphite (A)) manufactured by SEC Carbon Co., Ltd. was used. 98 parts by mass of graphite (A) as a negative electrode active material, 1 part by mass of styrene butadiene rubber as a binder, and 1 part by mass of carboxymethyl cellulose were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry-like negative electrode mixture. Hereinafter, styrene butadiene rubber is abbreviated as SBR and carboxymethyl cellulose is abbreviated as CMC as necessary.
 なお、用いた黒鉛(A)粉末をラマンスペクトル分析した。装置としてナノフォトン株式会社製のRAMAN-11(励起波長λ=532nm、グレーチング:1800gr/mm、レーザーパワーmW、)を用いた。ラマンスペクトルにおいてG-bandとD-bandのピークの強度比であるG/D比は12.2であった。 The graphite (A) powder used was subjected to Raman spectrum analysis. As the apparatus, RAMAN-11 (excitation wavelength λ = 532 nm, grating: 1800 gr / mm, laser power mW) manufactured by Nanophoton Co., Ltd. was used. In the Raman spectrum, the G / D ratio, which is the intensity ratio of the G-band and D-band peaks, was 12.2.
 このスラリーを、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。 This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 μm using a doctor blade, and a negative electrode active material layer was formed on the copper foil.
 その後、80℃で20分間乾燥し、負極活物質層から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で6時間真空乾燥して、負極活物質層の目付けが8.5mg/cm程度の負極を形成した。 Then, it dried at 80 degreeC for 20 minute (s), and the organic solvent was volatilized and removed from the negative electrode active material layer. After drying, the current collector and the negative electrode active material layer were firmly and closely joined with a roll press. This was vacuum-dried at 100 ° C. for 6 hours to form a negative electrode having a negative electrode active material layer weight of about 8.5 mg / cm 2 .
  <正極>
 正極は、正極活物質層と、正極活物質層で被覆された集電体とからなる。正極活物質層は、正極活物質と、結着剤と、導電助剤とを有する。正極活物質は、LiNi0.5Co0.2Mn0.3からなる。結着剤はPVDFからなり、導電助剤はABからなる。集電体は、厚み20μmのアルミニウム箔からなる。正極活物質層を100質量部としたときの、正極活物質と結着剤と導電助剤との含有質量比は、94:3:3である。
<Positive electrode>
The positive electrode includes a positive electrode active material layer and a current collector covered with the positive electrode active material layer. The positive electrode active material layer has a positive electrode active material, a binder, and a conductive additive. The positive electrode active material is made of LiNi 0.5 Co 0.2 Mn 0.3 O 2 . The binder is made of PVDF, and the conductive additive is made of AB. The current collector is made of an aluminum foil having a thickness of 20 μm. When the positive electrode active material layer is 100 parts by mass, the mass ratio of the positive electrode active material, the binder, and the conductive additive is 94: 3: 3.
 正極を作製するためにNCM523、PVDFおよびABを上記の質量比となるように混合し、溶剤としてのNMPを添加してペースト状の正極材とする。ペースト状の正極材を、集電体の表面にドクターブレードを用いて塗布して、正極活物質層を形成した。正極活物質層を、80℃で20分間乾燥することで、NMPを揮発により除去した。表面に正極活物質層を形成したアルミニウム箔を、ロ-ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状に切り取り、正極を得た。 In order to produce a positive electrode, NCM523, PVDF and AB are mixed so as to have the above mass ratio, and NMP as a solvent is added to obtain a paste-like positive electrode material. The paste-like positive electrode material was applied to the surface of the current collector using a doctor blade to form a positive electrode active material layer. The positive electrode active material layer was dried at 80 ° C. for 20 minutes to remove NMP by volatilization. The aluminum foil having the positive electrode active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly bonded. The joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape, and a positive electrode was obtained.
  <非水電解質二次電池>
 上記の正極、負極および電解液E8を用い、セパレータとしてセルロース不織布(厚み20μm)を用いたこと以外は実施例1-5と同様にして、実施例1-7の非水電解質二次電池を得た。
<Nonaqueous electrolyte secondary battery>
A nonaqueous electrolyte secondary battery of Example 1-7 was obtained in the same manner as Example 1-5, except that the above positive electrode, negative electrode, and electrolytic solution E8 were used, and a cellulose nonwoven fabric (thickness 20 μm) was used as the separator. It was.
 (比較例1-9)
 本発明の電解液に代えて電解液C5を用いたこと以外は実施例1-7と同様にして比較例1-9の非水電解質二次電池を得た。
(Comparative Example 1-9)
A nonaqueous electrolyte secondary battery of Comparative Example 1-9 was obtained in the same manner as Example 1-7, except that electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  (評価例13:入力特性)
 実施例1-7と比較例1-9のリチウムイオン電池を用い、以下の条件で入力(充電)特性を評価した。
 (1) 使用電圧範囲:3V-4.2V
 (2) 容量:13.5mAh
 (3) SOC80%
 (4) 温度:0℃、25℃
 (5) 測定回数:各3回
(Evaluation example 13: Input characteristics)
Using the lithium ion batteries of Example 1-7 and Comparative Example 1-9, the input (charging) characteristics were evaluated under the following conditions.
(1) Working voltage range: 3V-4.2V
(2) Capacity: 13.5mAh
(3) SOC 80%
(4) Temperature: 0 ° C, 25 ° C
(5) Number of measurements: 3 times each
 評価条件は、充電状態(SOC)80%、0℃、25℃、使用電圧範囲3V-4.2V、容量13.5mAhである。SOC80%、0℃は、例えば、冷蔵室などで使用する場合のように入力特性が出にくい領域である。実施例1-7と比較例1-9の入力特性の評価は、それぞれ2秒入力と5秒入力について3回行った。入力特性の評価結果を表12、表13に示した。表の中の「2秒入力」は、充電開始から2秒後での入力を意味し、「5秒入力」は充電開始から5秒後での入力を意味している。 Evaluation conditions are 80% charged state (SOC), 0 ° C., 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh. SOC 80%, 0 ° C. is a region in which input characteristics are difficult to be obtained, for example, when used in a refrigerator room. The input characteristics of Example 1-7 and Comparative Example 1-9 were evaluated three times for 2-second input and 5-second input, respectively. Tables 12 and 13 show the evaluation results of the input characteristics. “2-second input” in the table means an input after 2 seconds from the start of charging, and “5-second input” means an input after 5 seconds from the start of charging.
なお表12および表13には、実施例1-7に用いた本発明の電解液を「FSA」と略記し、比較例1-9に用いた電解液を「ECPF」と略記している。 In Tables 12 and 13, the electrolytic solution of the present invention used in Example 1-7 is abbreviated as “FSA”, and the electrolytic solution used in Comparative Example 1-9 is abbreviated as “ECPF”.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 0℃および25℃の両方で、実施例1-7の方が比較例1-9に比べて入力(充電)特性が向上している。これはGD比が3.5以上の黒鉛と本発明の電解液を用いたことによる効果であり、特に0℃においても高い入力(充電)特性を示すことから、低温においても電解液中のリチウムイオンの移動が円滑に進行することが示されている。 At both 0 ° C. and 25 ° C., the input (charging) characteristics of Example 1-7 are improved compared to Comparative Example 1-9. This is an effect obtained by using graphite having a GD ratio of 3.5 or more and the electrolytic solution of the present invention. In particular, since it exhibits a high input (charge) characteristic even at 0 ° C., lithium in the electrolytic solution even at a low temperature. It is shown that the movement of ions proceeds smoothly.
 (実施例1-8)
 電解液E11を用いた実施例1-8の非水電解質二次電池を以下のとおり製造した。
(Example 1-8)
A nonaqueous electrolyte secondary battery of Example 1-8 using the electrolytic solution E11 was produced as follows.
  <負極>
 活物質である平均粒径10μmの天然黒鉛90質量部、および結着剤であるPVdF10質量部を混合した。この混合物を適量のNMPに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリー2.46mgを膜状に塗布した。なお実施例1-8で用いた天然黒鉛のG/D比は4.4であった。
<Negative electrode>
90 parts by mass of natural graphite having an average particle diameter of 10 μm as an active material and 10 parts by mass of PVdF as a binder were mixed. This mixture was dispersed in an appropriate amount of NMP to prepare a slurry. A copper foil having a thickness of 20 μm was prepared as a current collector. 2.46 mg of the slurry was applied to the surface of the copper foil in the form of a film using a doctor blade. The G / D ratio of natural graphite used in Example 1-8 was 4.4.
 スラリーが塗布された銅箔を乾燥してNMPを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。なお、銅箔上の活物質の質量は2.214mgであり、銅箔1cm2あたりの活物質の質量は1.48mgであった。また、プレス前の天然黒鉛およびPVdFの密度は0.68g/cmであり、プレス後の活物質層の密度は1.025g/cmであった。 The copper foil coated with the slurry was dried to remove NMP, and then the copper foil was pressed to obtain a bonded product. The obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which an active material layer was formed. This was the working electrode. In addition, the mass of the active material on copper foil was 2.214 mg, and the mass of the active material per 1 cm <2> of copper foil was 1.48 mg. The density of natural graphite and PVdF before pressing was 0.68 g / cm 3 , and the density of the active material layer after pressing was 1.025 g / cm 3 .
  <非水電解質二次電池>
 対極は金属Liとした。
<Nonaqueous electrolyte secondary battery>
The counter electrode was metal Li.
 作用極、対極、および電解液E11を、径13.82mmの電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容して、実施例1-8の非水電解質二次電池を得た。 The working electrode, the counter electrode, and the electrolytic solution E11 were accommodated in a battery case (CR2032 type coin cell case manufactured by Hosen Co., Ltd.) having a diameter of 13.82 mm to obtain a nonaqueous electrolyte secondary battery of Example 1-8.
 (実施例1-9)
 電解液E11に代えて電解液E8を用いた以外は、実施例1-8と同様の方法で、実施例1-9の非水電解質二次電池を得た。
(Example 1-9)
A nonaqueous electrolyte secondary battery of Example 1-9 was obtained in the same manner as in Example 1-8, except that electrolytic solution E8 was used instead of electrolytic solution E11.
 (実施例1-10)
 電解液E11に代えて電解液E16を用いた以外は、実施例1-8と同様の方法で、実施例1-10の非水電解質二次電池を得た。
(Example 1-10)
A nonaqueous electrolyte secondary battery of Example 1-10 was obtained in the same manner as in Example 1-8, except that electrolytic solution E16 was used instead of electrolytic solution E11.
 (実施例1-11)
 電解液E11に代えて電解液E19を用いた以外は、実施例1-8と同様の方法で、実施例1-11の非水電解質二次電池を得た。
(Example 1-11)
A nonaqueous electrolyte secondary battery of Example 1-11 was obtained in the same manner as in Example 1-8, except that electrolytic solution E19 was used instead of electrolytic solution E11.
 (比較例1-10)
 電解液E11に代えて電解液C5を用いたこと以外は、実施例1-8と同様にして比較例1-10の非水電解質二次電池を得た。
(Comparative Example 1-10)
A nonaqueous electrolyte secondary battery of Comparative Example 1-10 was obtained in the same manner as Example 1-8 except that the electrolytic solution C5 was used instead of the electrolytic solution E11.
  (評価例14:反応の可逆性)
 実施例1-8~1-11および比較例1-10の非水電解質二次電池のそれぞれに対して、表14に示す条件で充放電試験を3回行った。その時の充放電曲線を図49~53にそれぞれ示す。
(Evaluation Example 14: Reversibility of reaction)
Each of the nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 and Comparative Example 1-10 was subjected to a charge / discharge test three times under the conditions shown in Table 14. The charge / discharge curves at that time are shown in FIGS.
 実施例1-8~1-11の非水電解質二次電池は、比較例1-10の一般的な非水電解質二次電池と同様に、可逆的に充放電反応していることがわかる。 It can be seen that the nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 are reversibly charged and discharged in the same manner as the general nonaqueous electrolyte secondary battery of Comparative Example 1-10.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
  (評価例15:レート特性)
 実施例1-8~1-11、比較例1-10の非水電解質二次電池のレート特性を以下の方法で試験した。各非水電解質二次電池に対し、0.1C、0.2C、0.5C、1C、2Cレートで充電を行った後に放電を行い、それぞれの速度における作用極の放電容量を測定した。なお、1Cとは、一定電流において1時間で電池を完全充電または放電させるために要する電流値を意味する。またここでの記述は、対極を負極、作用極を正極とみなしている。0.1Cレートでの作用極の容量に対する他のレートにおける容量の割合すなわちレート特性を算出した。結果を表15に示す。
(Evaluation Example 15: Rate characteristics)
The rate characteristics of the nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 and Comparative Example 1-10 were tested by the following method. Each non-aqueous electrolyte secondary battery was charged at a rate of 0.1 C, 0.2 C, 0.5 C, 1 C, and 2 C, and then discharged, and the discharge capacity of the working electrode at each speed was measured. 1C means a current value required to fully charge or discharge the battery in one hour at a constant current. In the description here, the counter electrode is regarded as a negative electrode, and the working electrode is regarded as a positive electrode. The ratio of the capacity at other rates to the capacity of the working electrode at the 0.1 C rate, that is, the rate characteristic was calculated. The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例1-8~1-11の非水電解質二次電池は0.2C、0.5C、1Cのレートにおいて、比較例1-10の非水電解質二次電池と比較して、容量低下が抑制されている。この結果から、各実施例の非水電解質二次電池つまり本発明の非水電解質二次電池は優れたレート特性を示すことが裏付けられた。さらに、実施例1-8、1-9の非水電解質二次電池は、2Cのレートにおいても、比較例1-10の非水電解質二次電池と比較して容量低下が抑制されている。つまり実施例1-8、1-9の非水電解質二次電池は特に優れたレート特性を示す。 The nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 had a capacity reduction at rates of 0.2 C, 0.5 C, and 1 C compared to the nonaqueous electrolyte secondary battery of Comparative Example 1-10. It is suppressed. From these results, it was confirmed that the nonaqueous electrolyte secondary battery of each example, that is, the nonaqueous electrolyte secondary battery of the present invention showed excellent rate characteristics. Furthermore, the nonaqueous electrolyte secondary batteries of Examples 1-8 and 1-9 are suppressed in capacity reduction even at the rate of 2C compared to the nonaqueous electrolyte secondary battery of Comparative Example 1-10. That is, the nonaqueous electrolyte secondary batteries of Examples 1-8 and 1-9 show particularly excellent rate characteristics.
  (評価例16:容量維持率)
 実施例1-8~1-11、比較例1-10の非水電解質二次電池の容量維持率を以下の方法で試験した。
(Evaluation Example 16: Capacity maintenance rate)
The capacity retention rates of the nonaqueous electrolyte secondary batteries of Examples 1-8 to 1-11 and Comparative Example 1-10 were tested by the following method.
 各非水電解質二次電池に対し、25℃、電圧2.0VまでCC充電(定電流充電)し、電圧0.01VまでCC放電(定電流放電)を行う2.0V-0.01Vの充放電サイクルをおこなった。詳しくは、先ず充放電レート0.1Cで3サイクル充放電し、その後、0.2C、0.5C、1C、2C、5C、10Cの順で各充放電レートにつき3サイクルずつ充放電を行い、最後に0.1Cで3サイクル充放電を行った。各非水電解質二次電池の容量維持率(%)は以下の式で求めた。
 容量維持率(%)=B/A×100
 A:最初の0.1C充放電サイクルにおける2回目の作用極の放電容量
 B:最後の0.1Cの充放電サイクルにおける2回目の作用極の放電容量
Each non-aqueous electrolyte secondary battery is CC charged (constant current charge) to 25 ° C. and a voltage of 2.0 V, and is subjected to CC discharge (constant current discharge) to a voltage of 0.01 V. A discharge cycle was performed. Specifically, first, charge / discharge is performed for 3 cycles at a charge / discharge rate of 0.1C, and then charge / discharge is performed for each charge / discharge rate in 3 cycles in the order of 0.2C, 0.5C, 1C, 2C, 5C, Finally, 3 cycles of charge and discharge were performed at 0.1 C. The capacity retention rate (%) of each non-aqueous electrolyte secondary battery was determined by the following formula.
Capacity maintenance rate (%) = B / A × 100
A: Discharge capacity of the second working electrode in the first 0.1 C charge / discharge cycle B: Discharge capacity of the second working electrode in the last 0.1 C charge / discharge cycle
 結果を表16に示す。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。 The results are shown in Table 16. In this description, the counter electrode is regarded as a negative electrode and the working electrode is regarded as a positive electrode.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 何れの非水電解質二次電池も良好に充放電反応を行い、好適な容量維持率を示した。特に、実施例1-9、1-10、1-11のハーフセルの容量維持率は著しく優れていた。 Any of the nonaqueous electrolyte secondary batteries performed a charge / discharge reaction satisfactorily and exhibited a suitable capacity retention rate. In particular, the capacity retention rates of the half cells of Examples 1-9, 1-10, and 1-11 were remarkably excellent.
 (実施例1-12)
 電解液E9を用いたこと以外は実施例1-2と同様にして、実施例1-12の非水電解質二次電池を得た。
(Example 1-12)
A nonaqueous electrolyte secondary battery of Example 1-12 was obtained in the same manner as Example 1-2 except that the electrolytic solution E9 was used.
  (評価例17:低温でのレート特性)
 実施例1-12と比較例1-4の非水電解質二次電池を用い、-20℃でのレート特性を以下のとおり評価した。結果を図54および図55に示す。
 (1) 負極(評価極)へのリチウム吸蔵が進行する向きに電流を流す。
 (2) 電圧範囲:2V→0.01V(v.s.Li/Li+)
 (3) レート:0.02C、0.05C、0.1C、0.2C、0.5C (0.01V到達後に電流を停止)
 なお、1Cは、一定電流において1時間で電池を完全充電、または放電させるために要する電流値を示す。
(Evaluation Example 17: Rate characteristics at low temperature)
Using the nonaqueous electrolyte secondary batteries of Example 1-12 and Comparative Example 1-4, the rate characteristics at −20 ° C. were evaluated as follows. The results are shown in FIGS. 54 and 55.
(1) A current is passed in the direction in which lithium occlusion proceeds to the negative electrode (evaluation electrode).
(2) Voltage range: 2V → 0.01V (vs Li / Li +)
(3) Rate: 0.02C, 0.05C, 0.1C, 0.2C, 0.5C (current stopped after reaching 0.01V)
1C represents a current value required to fully charge or discharge the battery in one hour at a constant current.
 図54および図55から、各電流レートにおける実施例1-12の非水電解質二次電池の電圧カーブは、比較例1-4の非水電解質二次電池の電圧カーブと比較して、高い電圧を示しているのがわかる。この結果から、本発明の非水電解質二次電池は、低温環境においても優れたレート特性を示すことが裏付けられた。 54 and 55, the voltage curve of the nonaqueous electrolyte secondary battery of Example 1-12 at each current rate is higher than the voltage curve of the nonaqueous electrolyte secondary battery of Comparative Example 1-4. You can see that. From this result, it was confirmed that the nonaqueous electrolyte secondary battery of the present invention exhibits excellent rate characteristics even in a low temperature environment.
  (評価例18:レート特性)
 実施例1-2および比較例1-4の非水電解質二次電池のレート特性を以下の方法で試験した。
 各非水電解質二次電池に対し、0.1C、0.2C、0.5C、1C、2Cレートで充電を行った後に放電を行い、それぞれの速度における作用極の容量(放電容量)を測定し、対極を負極、作用極を正極とみなして、上記と同様にレート特性を算出した。結果を表17に示す。
(Evaluation Example 18: Rate characteristics)
The rate characteristics of the nonaqueous electrolyte secondary batteries of Example 1-2 and Comparative Example 1-4 were tested by the following method.
Each non-aqueous electrolyte secondary battery was charged at a rate of 0.1C, 0.2C, 0.5C, 1C, 2C, then discharged, and the capacity (discharge capacity) of the working electrode at each speed was measured. The rate characteristics were calculated in the same manner as described above, assuming that the counter electrode was a negative electrode and the working electrode was a positive electrode. The results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例1-2の非水電解質二次電池は、0.2C、0.5C、1C、2Cのいずれのレートにおいても、比較例1-4の非水電解質二次電池と比較して、容量の低下が抑制されていた。つまり、実施例1-2の非水電解質二次電池は優れたレート特性を示した。この結果からも、本発明の電解液を使用した本発明の非水電解質二次電池が優れたレート特性を示すことが裏付けられた。 The nonaqueous electrolyte secondary battery of Example 1-2 has a capacity higher than that of the nonaqueous electrolyte secondary battery of Comparative Example 1-4 at any rate of 0.2C, 0.5C, 1C, and 2C. The decline of the was suppressed. That is, the non-aqueous electrolyte secondary battery of Example 1-2 exhibited excellent rate characteristics. This result also confirmed that the non-aqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention exhibits excellent rate characteristics.
(評価例19:急速充放電の繰り返しに対する応答性)
 実施例1-2および比較例1-4の非水電解質二次電池に対し、1Cレートで充放電を3回繰り返した際の、容量と電圧の変化を観察した。結果を図56に示す。
(Evaluation Example 19: Responsiveness to repeated rapid charge / discharge)
For the nonaqueous electrolyte secondary batteries of Example 1-2 and Comparative Example 1-4, changes in capacity and voltage were observed when charging and discharging were repeated three times at a 1C rate. The results are shown in FIG.
 比較例1-4の非水電解質二次電池は充放電を繰り返すに伴い、1Cレートで電流を流した場合の分極が大きくなる傾向があり、2Vから0.01Vに到達するまでに得られる容量が急速に低下した。他方、実施例1-2の非水電解質二次電池は、充放電を繰り返しても分極の増減がほとんどなく、好適に容量を維持した。このことは、図56において3本の曲線が重なっている様からも確認できる。 The nonaqueous electrolyte secondary battery of Comparative Example 1-4 has a tendency to increase the polarization when a current is passed at a rate of 1 C with repeated charge and discharge, and the capacity obtained from reaching 2 V to 0.01 V Fell rapidly. On the other hand, in the nonaqueous electrolyte secondary battery of Example 1-2, there was almost no increase or decrease in polarization even after repeated charge and discharge, and the capacity was suitably maintained. This can also be confirmed from the fact that the three curves overlap in FIG.
 比較例1-4の非水電解質二次電池において分極が増加した理由として、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。実施例1-2の非水電解質二次電池では、Li濃度が高い本発明の電解液を用いたことで、電解液のLi濃度の偏在を抑制できたものと考えられる。この結果からも、本発明の電解液を使用した本発明の非水電解質二次電池は、急速充放電に対して優れた応答性を示すことが裏付けられた。
 <非水電解質二次電池(2)>
 (実施例2-1)
  <負極>
 結晶子サイズ(L)が1.1nmのハードカーボンと、ポリフッ化ビニリデン(PVdF)と、N-メチル-2-ピロリドン(NMP)を添加混合し、スラリー状の負極合剤を調製した。スラリー中の各成分(固形分)の組成比は、ハードカーボン:PVdF=9:1(質量比)である。
The reason why the polarization increased in the nonaqueous electrolyte secondary battery of Comparative Example 1-4 is that the amount sufficient for the reaction interface with the electrode due to the uneven Li concentration generated in the electrolyte when rapidly charging and discharging was repeated. It can be considered that the electrolyte solution can no longer supply Li, that is, the Li concentration of the electrolyte solution is unevenly distributed. In the non-aqueous electrolyte secondary battery of Example 1-2, it is considered that the uneven distribution of the Li concentration of the electrolytic solution could be suppressed by using the electrolytic solution of the present invention having a high Li concentration. Also from this result, it was confirmed that the nonaqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention exhibits excellent responsiveness to rapid charge / discharge.
<Nonaqueous electrolyte secondary battery (2)>
Example 2-1
<Negative electrode>
A hard carbon having a crystallite size (L) of 1.1 nm, polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) were added and mixed to prepare a slurry-like negative electrode mixture. The composition ratio of each component (solid content) in the slurry is hard carbon: PVdF = 9: 1 (mass ratio).
 結晶子サイズの測定は、CuKα線をX線源とするX線回折法により、回折角2θ=20度~30度に検出される回折ピークの半値幅と回折角からシェラーの式を用いて算出した。測定装置はリガク製[SmartLab]、光学系は集中法を使用した。 The crystallite size is measured by the X-ray diffraction method using CuKα ray as an X-ray source, using the Scherrer equation from the half-value width and diffraction angle of the diffraction peak detected at a diffraction angle 2θ = 20 ° to 30 °. did. The measuring device was manufactured by Rigaku [SmartLab], and the optical system was a concentration method.
 このスラリーを、厚さ20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。 This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of 20 μm using a doctor blade, and a negative electrode active material layer was formed on the copper foil.
 その後、80℃で20分間乾燥し、負極活物質層から有機溶媒を揮発させて除去した。乾燥後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを真空雰囲気にて120℃で6時間加熱、乾燥させ、負極活物質層の厚さが30μm程度の負極を形成した。 Thereafter, drying was performed at 80 ° C. for 20 minutes, and the organic solvent was volatilized and removed from the negative electrode active material layer. After drying, the current collector and the negative electrode active material layer were firmly and closely joined with a roll press. This was heated and dried at 120 ° C. for 6 hours in a vacuum atmosphere to form a negative electrode having a negative electrode active material layer thickness of about 30 μm.
  <非水電解質二次電池>
 上記で作製した負極を評価極として用い、非水電解質二次電池を作製した。対極は、金属リチウム箔(厚さ500μm)とした。
<Nonaqueous electrolyte secondary battery>
Using the negative electrode produced above as an evaluation electrode, a non-aqueous electrolyte secondary battery was produced. The counter electrode was a metal lithium foil (thickness 500 μm).
 対極をφ13mm、評価極をφ11mmに裁断し、厚さ400μmのセパレータ(Whatman製ガラス繊維ろ紙)を両者の間に挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。そして電解液E8を注入し、電池ケースを密閉して実施例2-1の非水電解質二次電池を得た。実施例2-1の非水電解質二次電池、以下の各実施例および比較例の非水電解質二次電池の詳細を、実施例の欄の文末の表42に示す。 The counter electrode was cut to φ13 mm, the evaluation electrode was cut to φ11 mm, and a separator (Whatman glass fiber filter paper) having a thickness of 400 μm was sandwiched between them to form an electrode body battery. This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). Then, the electrolyte solution E8 was injected, the battery case was sealed, and the nonaqueous electrolyte secondary battery of Example 2-1 was obtained. Details of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary batteries of the following examples and comparative examples are shown in Table 42 at the end of the column of Examples.
 (比較例2-1)
 電解液E8に代えて電解液C5を用いたこと以外は実施例2-1と同様にして比較例2-1の非水電解質二次電池を得た。
(Comparative Example 2-1)
A nonaqueous electrolyte secondary battery of Comparative Example 2-1 was obtained in the same manner as in Example 2-1, except that the electrolytic solution C5 was used instead of the electrolytic solution E8.
  (評価例20:充放電の可逆性)
 実施例2-1の非水電解質二次電池および比較例2-1の非水電解質二次電池について、下記の条件のもと、レート容量特性をそれぞれ評価した。初回の充放電曲線を図57に、レート容量試験結果を図58に示す。
 (1) 負極へのリチウム吸蔵が進行する向きに電流を流す。
 (2) 電圧範囲:2V→0.01V(v.s.Li/Li
 (3) レート:0.1C、0.2C、0.5C、1C、2C、5C、10C、0.1C (0.01V到達後に電流を停止)
 (4) 各レート3回ずつ(合計24サイクル)測定
 なお、1Cは、一定電流において1時間で電池を完全充電、または放電させるために要する電流値を示す。
(Evaluation Example 20: Reversibility of charge / discharge)
The rate capacity characteristics of the nonaqueous electrolyte secondary battery of Example 2-1 and the nonaqueous electrolyte secondary battery of Comparative Example 2-1 were evaluated under the following conditions. The initial charge / discharge curve is shown in FIG. 57, and the rate capacity test results are shown in FIG.
(1) Current is passed in the direction in which lithium occlusion proceeds to the negative electrode.
(2) Voltage range: 2 V → 0.01 V (vs. Li / Li + )
(3) Rate: 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C, 0.1C (current is stopped after reaching 0.01V)
(4) Measurement 3 times for each rate (total 24 cycles) 1C indicates a current value required to fully charge or discharge the battery in one hour at a constant current.
 図57から、実施例2-1の非水電解質二次電池は充放電可能であることが明らかである。また図58から、実施例2-1の非水電解質二次電池は比較例2-1の非水電解質二次電池に対してレート容量特性に優れ、高速充電や高入出力向けの電池として機能することがわかる。 FIG. 57 clearly shows that the nonaqueous electrolyte secondary battery of Example 2-1 can be charged and discharged. Also, from FIG. 58, the nonaqueous electrolyte secondary battery of Example 2-1 has better rate capacity characteristics than the nonaqueous electrolyte secondary battery of Comparative Example 2-1, and functions as a battery for high-speed charging and high input / output. I understand that
 (実施例2-2)
 結晶子サイズ(L)が4.2nmのソフトカーボンを選び、このソフトカーボンを用いたこと以外は実施例1-1と同様にして負極を作製した。この負極を用いたこと以外は実施例1-1と同様にして実施例2-2の非水電解質二次電池を得た。
(Example 2-2)
A negative electrode was produced in the same manner as in Example 1-1 except that soft carbon having a crystallite size (L) of 4.2 nm was selected and this soft carbon was used. A nonaqueous electrolyte secondary battery of Example 2-2 was obtained in the same manner as Example 1-1 except that this negative electrode was used.
 (実施例2-3)
 電解液E11を用いたこと以外は、実施例2-1と同様にして実施例2-3の非水電解質二次電池を得た。
(Example 2-3)
A nonaqueous electrolyte secondary battery of Example 2-3 was obtained in the same manner as Example 2-1, except that the electrolytic solution E11 was used.
 (実施例2-4)
 実施例2-3と同じ電解液E11を用いたこと以外は、実施例2-2と同様にして実施例2-4の非水電解質二次電池を得た。
(Example 2-4)
A nonaqueous electrolyte secondary battery of Example 2-4 was obtained in the same manner as Example 2-2, except that the same electrolytic solution E11 as in Example 2-3 was used.
 (比較例2-2)
 結晶子サイズ(L)が28nmである黒鉛を選び、この黒鉛を用いたこと以外は実施例2-1と同様にして負極を作製した。この負極を用いたこと以外は実施例2-1と同様にして比較例2-2の非水電解質二次電池を得た。
(Comparative Example 2-2)
A negative electrode was produced in the same manner as in Example 2-1, except that graphite having a crystallite size (L) of 28 nm was selected and this graphite was used. A nonaqueous electrolyte secondary battery of Comparative Example 2-2 was obtained in the same manner as in Example 2-1, except that this negative electrode was used.
 (比較例2-3)
 結晶子サイズ(L)が42nmである黒鉛を選び、この黒鉛を用いたこと以外は実施例2-1と同様にして負極を作製した。この負極を用いたこと以外は実施例2-1と同様にして比較例2-3の非水電解質二次電池を得た。
(Comparative Example 2-3)
A negative electrode was produced in the same manner as in Example 2-1, except that graphite having a crystallite size (L) of 42 nm was selected and this graphite was used. A nonaqueous electrolyte secondary battery of Comparative Example 2-3 was obtained in the same manner as Example 2-1, except that this negative electrode was used.
 (比較例2-4)
 実施例2-1と同様のハードカーボンを用い、実施例2-1と同様にして負極を作製した。この負極を用い、本発明の電解液に代えて電解液C5を用いたこと以外は実施例2-1と同様にして比較例2-4の非水電解質二次電池を得た。
(Comparative Example 2-4)
Using the same hard carbon as in Example 2-1, a negative electrode was produced in the same manner as in Example 2-1. A nonaqueous electrolyte secondary battery of Comparative Example 2-4 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例2-5)
 実施例2-2と同様のソフトカーボンを用い、実施例2-1と同様にして負極を作製した。この負極を用い、本発明の電解液に代えて電解液C5を用いたこと以外は実施例2-1と同様にして比較例2-5の非水電解質二次電池を得た。
(Comparative Example 2-5)
Using the same soft carbon as in Example 2-2, a negative electrode was produced in the same manner as in Example 2-1. A nonaqueous electrolyte secondary battery of Comparative Example 2-5 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例2-6)
 比較例2-2と同様にして負極を作製した。この負極を用い、本発明の電解液に代えて電解液C5を用いたこと以外は実施例2-1と同様にして比較例2-6の非水電解質二次電池を得た。
(Comparative Example 2-6)
A negative electrode was produced in the same manner as in Comparative Example 2-2. A nonaqueous electrolyte secondary battery of Comparative Example 2-6 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
 (比較例2-7)
 比較例2-3と同様にして負極を作製した。この負極を用い、本発明の電解液に代えて電解液C5を用いたこと以外は実施例2-1と同様にして比較例2-7の非水電解質二次電池を得た。
(Comparative Example 2-7)
A negative electrode was produced in the same manner as in Comparative Example 2-3. A nonaqueous electrolyte secondary battery of Comparative Example 2-7 was obtained in the same manner as in Example 2-1, except that this negative electrode was used and the electrolytic solution C5 was used instead of the electrolytic solution of the present invention.
  (評価例21:レート特性)
 実施例2-1、実施例2-2および比較例2-2~比較例2-7の非水電解質二次電池について、上記の(評価例20:充放電の可逆性)と同一条件のもと、レート容量特性をそれぞれ評価した。0.1Cレートの電流容量に対する5Cレートの電流容量の比をレート容量特性とした。結果を表18に示す。
(Evaluation Example 21: Rate characteristics)
Regarding the non-aqueous electrolyte secondary batteries of Example 2-1, Example 2-2, and Comparative Examples 2-2 to 2-7, the same conditions as in the above (Evaluation Example 20: Reversibility of charge / discharge) are used. The rate capacity characteristics were evaluated. The ratio of the 5C rate current capacity to the 0.1C rate current capacity was defined as the rate capacity characteristic. The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 比較例2-2および比較例2-3のように、結晶子サイズ(L)が20nmを超えた炭素材料と本発明の電解液との組み合わせでは、十分に大きなレート容量特性が得られない。それに対し、実施例2-1および実施例2-2のように結晶子サイズ(L)が20nm未満の炭素材料を用いることで、本発明の電解液を用いても比較例2-4~比較例2-7と同等以上の優れたレート容量特性が発現されている。また結晶子サイズ(L)が小さくなるほどレート容量特性が向上する傾向が認められ、結晶子サイズ(L)は5nm以下であるのがより望ましい。
 また実施例2-3および実施例2-4のように、電解液用の有機溶媒として鎖状カーボネートであるDMCを用いる場合にも同様に、比較例2-2および比較例2-3に比べて優れたレート容量特性が発現される。
As in Comparative Example 2-2 and Comparative Example 2-3, a combination of a carbon material having a crystallite size (L) exceeding 20 nm and the electrolytic solution of the present invention cannot provide a sufficiently large rate capacity characteristic. On the other hand, by using a carbon material having a crystallite size (L) of less than 20 nm as in Example 2-1 and Example 2-2, even when using the electrolytic solution of the present invention, Comparative Examples 2-4 to Excellent rate capacity characteristics equivalent to or better than those of Example 2-7 are exhibited. Moreover, the tendency for the rate capacity characteristics to improve as the crystallite size (L) decreases is observed, and the crystallite size (L) is more preferably 5 nm or less.
Similarly, when DMC, which is a chain carbonate, is used as the organic solvent for the electrolytic solution as in Example 2-3 and Example 2-4, it is similarly compared with Comparative Example 2-2 and Comparative Example 2-3. Excellent rate capacity characteristics.
 <非水電解質二次電池(3)>
 (実施例3-1)
 上記した電解液E8と、シリコン-炭素複合体粉末からなる負極活物質と、を用いて、実施例3-1の非水電解質二次電池を製造した。
  <負極>
 シリコン-炭素複合体粉末は、粒子径50nmのSi粉末とアセチレンブラックとを質量比6:4で混合し、遊星ボールミルを用いて複合化することで得られたものである。
<Nonaqueous electrolyte secondary battery (3)>
Example 3-1
A nonaqueous electrolyte secondary battery of Example 3-1 was manufactured using the above-described electrolytic solution E8 and a negative electrode active material made of silicon-carbon composite powder.
<Negative electrode>
The silicon-carbon composite powder is obtained by mixing Si powder having a particle diameter of 50 nm and acetylene black at a mass ratio of 6: 4 and using a planetary ball mill to form a composite.
 負極活物質としてのシリコン-炭素複合体粉末90質量部と、結着剤としてのポリアミドイミド(PAI)10質量部とを混合した。この混合物を適量のNMPに分散させてスラリー状の負極合剤を調製した。ドクターブレードを用いて、このスラリーを負極集電体に膜状に塗布した。負極集電体としては、厚さ20μmの銅箔を用いた。スラリー状の負極合剤を塗布した負極集電体を80℃で20分間乾燥後、ローラープレス機を用いてプレスした。プレス後の接合物を真空乾燥機内で200℃、2時間加熱し、所定の形状に裁断して負極を得た。 90 parts by mass of silicon-carbon composite powder as a negative electrode active material and 10 parts by mass of polyamideimide (PAI) as a binder were mixed. This mixture was dispersed in an appropriate amount of NMP to prepare a slurry-like negative electrode mixture. This slurry was applied to the negative electrode current collector in a film form using a doctor blade. As the negative electrode current collector, a copper foil having a thickness of 20 μm was used. The negative electrode current collector coated with the slurry-like negative electrode mixture was dried at 80 ° C. for 20 minutes and then pressed using a roller press. The bonded product after pressing was heated in a vacuum dryer at 200 ° C. for 2 hours, and cut into a predetermined shape to obtain a negative electrode.
 対極としてはリチウム箔(金属リチウム)を用い、電解液としては電解液E8を用いた。 As the counter electrode, lithium foil (metallic lithium) was used, and as the electrolytic solution, electrolytic solution E8 was used.
 上記の負極、正極および電解液を用いて非水電解質二次電池を製作した。詳しくは、正極および負極の間に、セパレータとして厚さ400μmのWhatmanガラス繊維濾紙を挟装して極板群とした。この極板群を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。電池ケースには、さらに、電解液を注入した。電解液を注入した後に電池ケースを密閉して、実施例3-1の非水電解質二次電池を得た。実施例4-1の非水電解質二次電池および以下の各電池の詳細を、実施例の欄の文末の表43に示す。 A non-aqueous electrolyte secondary battery was manufactured using the above negative electrode, positive electrode and electrolyte. Specifically, a Whatman glass fiber filter paper having a thickness of 400 μm was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. This electrode group was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). An electrolytic solution was further injected into the battery case. After injecting the electrolyte, the battery case was sealed to obtain the nonaqueous electrolyte secondary battery of Example 3-1. Details of the nonaqueous electrolyte secondary battery of Example 4-1 and each of the following batteries are shown in Table 43 at the end of the column of the example.
(実施例3-2)
 実施例3-2の非水電解質二次電池は、負極合剤の組成以外は実施例3-1の非水電解質二次電池と同じものである。実施例3-2の非水電解質二次電池における負極合剤は、負極活物質としてのシリコン-炭素複合体粉末75質量部と、同じく負極活物質としての黒鉛15質量部と、結着剤としてのポリアミドイミド(PAI)10質量部とを含む。
(Example 3-2)
The nonaqueous electrolyte secondary battery of Example 3-2 is the same as the nonaqueous electrolyte secondary battery of Example 3-1, except for the composition of the negative electrode mixture. The negative electrode mixture in the non-aqueous electrolyte secondary battery of Example 3-2 was 75 parts by mass of silicon-carbon composite powder as the negative electrode active material, 15 parts by mass of graphite as the negative electrode active material, and as the binder. And 10 parts by mass of polyamideimide (PAI).
(実施例3-3)
 実施例3-3の非水電解質二次電池は電解液E11を用いた以外は実施例3-2の非水電解質二次電池と同じものである。
(Example 3-3)
The nonaqueous electrolyte secondary battery of Example 3-3 is the same as the nonaqueous electrolyte secondary battery of Example 3-2 except that the electrolytic solution E11 is used.
(比較例3-1)
 比較例3-1の非水電解質二次電池は、電解液C5を用いたこと以外は実施例3-1の非水電解質二次電池と同じものである。
(Comparative Example 3-1)
The non-aqueous electrolyte secondary battery of Comparative Example 3-1 is the same as the non-aqueous electrolyte secondary battery of Example 3-1 except that the electrolytic solution C5 was used.
(比較例3-2)
 比較例3-2の非水電解質二次電池は、比較例3-1と同じ電解液C5を用いたこと以外は実施例3-2の非水電解質二次電池と同じものである。
(Comparative Example 3-2)
The nonaqueous electrolyte secondary battery of Comparative Example 3-2 is the same as the nonaqueous electrolyte secondary battery of Example 3-2 except that the same electrolytic solution C5 as Comparative Example 3-1 was used.
  (評価例22:充放電特性)
 実施例3-1~実施例3-3、比較例3-1および比較例3-2の非水電解質二次電池の充放電特性を以下の方法で評価した。
(Evaluation Example 22: Charge / Discharge Characteristics)
The charge / discharge characteristics of the nonaqueous electrolyte secondary batteries of Example 3-1 to Example 3-3, Comparative Example 3-1 and Comparative Example 3-2 were evaluated by the following methods.
 各非水電解質二次電池に対し、定電流(CC)充放電を行なった。電圧範囲は2V~0.01Vであり、Cレートは0.1Cであった。各非水電解質二次電池の放電容量を表19に示す。実施例3-2および比較例3-2の非水電解質二次電池の充放電曲線を図59に示す。実施例3-3の非水電解質二次電池の充放電曲線を図60に示す。 The constant current (CC) charge / discharge was performed with respect to each nonaqueous electrolyte secondary battery. The voltage range was 2V to 0.01V, and the C rate was 0.1C. Table 19 shows the discharge capacity of each non-aqueous electrolyte secondary battery. The charge / discharge curves of the nonaqueous electrolyte secondary batteries of Example 3-2 and Comparative Example 3-2 are shown in FIG. A charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 3-3 is shown in FIG.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表19に示すように、実施例3-1と比較例3-1とは同じ負極合剤を用いており、実施例3-2と比較例3-2とは同じ負極合剤を用いている。同じ負極合剤を用いた実施例3-1の非水電解質二次電池と比較例3-1の非水電解質二次電池とを比較するとともに、同じ負極合剤を用いた実施例3-2の非水電解質二次電池と比較例3-2の非水電解質二次電池とを比較すると、電解液として本発明の電解液を併用することで、非水電解質二次電池の放電容量が向上することがわかる。この結果から、ケイ素と炭素との複合材料と本発明の電解液とを組み合わせることで、非水電解質二次電池の放電容量を向上させ得ることがわかる。その理由は定かではないが、本発明の電解液においては溶媒およびアニオンの配位環境が一般的な電解液とは異なることから、電気二重層構造が変化すること等が理由の一つと推測される。 As shown in Table 19, Example 3-1 and Comparative Example 3-1 use the same negative electrode mixture, and Example 3-2 and Comparative Example 3-2 use the same negative electrode mixture. . The non-aqueous electrolyte secondary battery of Example 3-1 using the same negative electrode mixture was compared with the non-aqueous electrolyte secondary battery of Comparative Example 3-1, and Example 3-2 using the same negative electrode mixture When comparing the non-aqueous electrolyte secondary battery of Example 3-2 with the non-aqueous electrolyte secondary battery of Comparative Example 3-2, the discharge capacity of the non-aqueous electrolyte secondary battery is improved by using the electrolyte solution of the present invention as the electrolyte solution. I understand that This result shows that the discharge capacity of a nonaqueous electrolyte secondary battery can be improved by combining the composite material of silicon and carbon and the electrolytic solution of the present invention. The reason is not clear, but in the electrolyte solution of the present invention, the coordinating environment of the solvent and anion is different from that of a general electrolyte solution. The
 さらに、実施例3-3の非水電解質二次電池のように、電解液用の有機溶媒としてDMCを用いた非水電解質二次電池においても、実施例の非水電解質二次電池と同様に充分に充放電することがわかる。そしてこの結果から、有機溶媒に鎖状カーボネートを用いた本発明の電解液もまた、ケイ素と炭素との複合材料に組み合わせるのに有用であることがわかる。 Further, as in the nonaqueous electrolyte secondary battery of Example 3-3, the nonaqueous electrolyte secondary battery using DMC as the organic solvent for the electrolytic solution is similar to the nonaqueous electrolyte secondary battery of the example. It turns out that it fully charges / discharges. From this result, it can be seen that the electrolytic solution of the present invention using a chain carbonate as an organic solvent is also useful for combining with a composite material of silicon and carbon.
 <非水電解質二次電池(4)>
 (実施例4-1)
 上記した電解液E8を用いて実施例4-1の非水電解質二次電池を製造した。
<Nonaqueous electrolyte secondary battery (4)>
Example 4-1
A nonaqueous electrolyte secondary battery of Example 4-1 was manufactured using the above-described electrolytic solution E8.
  <負極>
 実施例4-1の非水電解質二次電池における負極は、負極活物質、バインダおよび導電助剤を含む。負極活物質としてチタン酸リチウム(LiTi12、所謂LTO)を90質量部、バインダとしてSBRを2質量部、同じくバインダとしてCMCを2質量部、および、導電助剤としてケッチェンブラック(KB)を6質量部とり、これらを混合した。この混合物を適量のイオン交換水に分散させてスラリー状の負極合剤を調製した。ドクターブレードを用いて、この負極合剤を負極集電体に膜状に塗布した。負極集電体としては、厚さ20μmの銅箔を用いた。負極合剤と負極集電体との複合体を乾燥後、ローラープレス機を用いてプレスして、接合物を得た。プレス後の接合物を、真空乾燥機内で100℃、6時間加熱し、所定の形状に裁断して負極を得た。
<Negative electrode>
The negative electrode in the nonaqueous electrolyte secondary battery of Example 4-1 includes a negative electrode active material, a binder, and a conductive additive. 90 parts by mass of lithium titanate (Li 4 Ti 5 O 12 , so-called LTO) as a negative electrode active material, 2 parts by mass of SBR as a binder, 2 parts by mass of CMC as a binder, and ketjen black (as a conductive additive) 6 parts by weight of KB) was taken and mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry-like negative electrode mixture. This negative electrode mixture was applied to the negative electrode current collector in a film form using a doctor blade. As the negative electrode current collector, a copper foil having a thickness of 20 μm was used. The composite of the negative electrode mixture and the negative electrode current collector was dried and then pressed using a roller press to obtain a bonded product. The bonded product after pressing was heated in a vacuum dryer at 100 ° C. for 6 hours, and cut into a predetermined shape to obtain a negative electrode.
 実施例4-1の非水電解質二次電池における正極としてはリチウム箔(金属リチウム)を用いた。つまり、実施例4-1の非水電解質二次電池は、評価用のハーフセルである。当該ハーフセルを充放電させることで、負極および電解液が非水電解質二次電池の電池特性に与える効果を評価できる。 As the positive electrode in the nonaqueous electrolyte secondary battery of Example 4-1, lithium foil (metallic lithium) was used. That is, the nonaqueous electrolyte secondary battery of Example 4-1 is a half cell for evaluation. By charging and discharging the half cell, the effect of the negative electrode and the electrolyte on the battery characteristics of the nonaqueous electrolyte secondary battery can be evaluated.
 上記の負極、正極および電解液E8を用いて、非水電解質二次電池を製作した。詳しくは、正極および負極の間に、セパレータとして厚さ400μmのWhatmanガラス繊維濾紙を挟装して極板群とした。この極板群を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。電池ケースには、さらに、電解液を注入した。電解液を注入した後に電池ケースを密閉して、実施例4-1の非水電解質二次電池を得た。実施例4-1の非水電解質二次電池および以下の各電池の詳細を、実施例の欄の文末の表44に示す。 A non-aqueous electrolyte secondary battery was manufactured using the above negative electrode, positive electrode, and electrolytic solution E8. Specifically, a Whatman glass fiber filter paper having a thickness of 400 μm was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. This electrode group was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.). An electrolytic solution was further injected into the battery case. After injecting the electrolytic solution, the battery case was sealed to obtain the nonaqueous electrolyte secondary battery of Example 4-1. Details of the nonaqueous electrolyte secondary battery of Example 4-1 and each of the following batteries are shown in Table 44 at the end of the column of the example.
(実施例4-2)
 実施例4-2の非水電解質二次電池は、電解液E8に代えて電解液E11を用いた事以外は実施例4-1と同様に製造した。
(実施例4-3)
 実施例4-3の非水電解質二次電池は、電解液E8に代えて電解液E13を用いた事以外は実施例4-1と同様に製造した。
(Example 4-2)
The nonaqueous electrolyte secondary battery of Example 4-2 was manufactured in the same manner as Example 4-1, except that the electrolytic solution E11 was used instead of the electrolytic solution E8.
(Example 4-3)
The nonaqueous electrolyte secondary battery of Example 4-3 was manufactured in the same manner as Example 4-1, except that the electrolytic solution E13 was used instead of the electrolytic solution E8.
(比較例4-1)
 比較例1の非水電解質二次電池は、電解液の成分が実施例4-1と相違する。比較例4-1の非水電解質二次電池では電解液C5を用いた。その他の構成は実施例4-1と同様である。
(Comparative Example 4-1)
The nonaqueous electrolyte secondary battery of Comparative Example 1 is different from Example 4-1 in the components of the electrolytic solution. In the nonaqueous electrolyte secondary battery of Comparative Example 4-1, the electrolytic solution C5 was used. Other configurations are the same as those of the embodiment 4-1.
  (評価例23:エネルギー密度および充放電効率)
 実施例4-1および比較例4-1の非水電解質二次電池のエネルギー密度および充放電効率を以下の方法で評価した。
(Evaluation Example 23: Energy density and charge / discharge efficiency)
The energy density and charge / discharge efficiency of the nonaqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1 were evaluated by the following methods.
 各非水電解質二次電池に対し、0.1Cの速度で充電を行なった後に放電を行ない、作用極の容量(充電容量および放電容量)を測定した。実施例4-1の非水電解質二次電池の充放電曲線(2サイクル目)を図61に示し、比較例4-1のハーフセルの充放電曲線(2サイクル目)を図62に示す。図61および図62に示す充放電曲線を基に、対極として平均電圧4Vの正極を用いたことを想定して、実施例4-1および比較例4-1の非水電解質二次電池の放電時のエネルギー密度(mWh/g)および充放電効率(%)を算出した。また、エネルギー密度は、負極活物質層(つまりLTO、バインダ等の固形分質量)1g当りの密度である。さらに、充放電効率については、(放電時のエネルギー密度/充電時のエネルギー密度)×100(%)に基づいて算出した。 Each non-aqueous electrolyte secondary battery was charged at a rate of 0.1 C and then discharged, and the working electrode capacity (charge capacity and discharge capacity) was measured. FIG. 61 shows the charge / discharge curve (second cycle) of the nonaqueous electrolyte secondary battery of Example 4-1, and FIG. 62 shows the charge / discharge curve (second cycle) of the half cell of Comparative Example 4-1. Based on the charge / discharge curves shown in FIG. 61 and FIG. 62, assuming that a positive electrode having an average voltage of 4 V was used as the counter electrode, discharge of the nonaqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1 The energy density at the time (mWh / g) and the charge / discharge efficiency (%) were calculated. The energy density is a density per 1 g of the negative electrode active material layer (that is, solid mass of LTO, binder, etc.). Furthermore, the charge / discharge efficiency was calculated based on (energy density during discharge / energy density during charge) × 100 (%).
 実施例4-1および比較例4-1の非水電解質二次電池におけるエネルギー密度および充放電効率を表20に示す。充放電効率はエネルギー効率と言い換えることもできる。 Table 20 shows the energy density and charge / discharge efficiency of the nonaqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1. Charge / discharge efficiency can also be rephrased as energy efficiency.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 負極活物質としてリチウムチタン酸化物(LTO)を用いた実施例4-1および比較例4-1の非水電解質二次電池においては電解液のみが異なる。そして、表20に示すように、電解液の違いによって、エネルギー密度および充放電効率に大きな違いが生じる。具体的には、本発明の電解液を用いた実施例4-1の非水電解質二次電池は、通常の電解液を用いた比較例4-1の非水電解質二次電池に比べてエネルギー密度が高く、充放電効率に優れている。図61および図62に示されるように、同じレートで電流を流したときに、実施例4-1の非水電解質二次電池における分極の大きさは、比較例4-1の非水電解質二次電池における分極の大きさよりも小さい。このため、実施例4-1の非水電解質二次電池は比較例4-1の非水電解質二次電池に比べて、エネルギー密度および充放電効率に優れると考えられる。また、実施例4-1の非水電解質二次電池に用いた本発明の電解液には支持塩のカチオンが多く含まれており、実施例4-1の非水電解質二次電池においては当該カチオンが負極に十分に供給されるために反応抵抗が低下し分極が抑制されると推測される。 The non-aqueous electrolyte secondary batteries of Example 4-1 and Comparative Example 4-1 using lithium titanium oxide (LTO) as the negative electrode active material differ only in the electrolyte solution. As shown in Table 20, the energy density and the charge / discharge efficiency vary greatly depending on the electrolyte. Specifically, the non-aqueous electrolyte secondary battery of Example 4-1 using the electrolytic solution of the present invention has a higher energy than the non-aqueous electrolyte secondary battery of Comparative Example 4-1 using a normal electrolytic solution. High density and excellent charge / discharge efficiency. As shown in FIGS. 61 and 62, when the current is passed at the same rate, the magnitude of polarization in the nonaqueous electrolyte secondary battery of Example 4-1 is the same as that of the nonaqueous electrolyte 2 of Comparative Example 4-1. It is smaller than the magnitude of polarization in the secondary battery. Therefore, it is considered that the nonaqueous electrolyte secondary battery of Example 4-1 is superior in energy density and charge / discharge efficiency as compared with the nonaqueous electrolyte secondary battery of Comparative Example 4-1. In addition, the electrolyte solution of the present invention used in the nonaqueous electrolyte secondary battery of Example 4-1 contains a large amount of cation of the supporting salt. In the nonaqueous electrolyte secondary battery of Example 4-1, It is presumed that since the cation is sufficiently supplied to the negative electrode, the reaction resistance is lowered and the polarization is suppressed.
 なお、実施例4-1の非水電解質二次電池は、負極活物質としてリチウムチタン酸化物を用いている。このため、実施例4-1の非水電解質二次電池にはリチウムチタン酸化物に由来する優れたサイクル特性が付与されている。 Note that the non-aqueous electrolyte secondary battery of Example 4-1 uses lithium titanium oxide as the negative electrode active material. For this reason, the non-aqueous electrolyte secondary battery of Example 4-1 is provided with excellent cycle characteristics derived from lithium titanium oxide.
 さらに、実施例4-2の非水電解質二次電池および実施例4-3の非水電解質二次電池につき、使用電圧範囲1.3V―2.5V(Li基準)、Cレート0.1CでCC充放電を3サイクル繰り返した。実施例4-2の非水電解質二次電池の充放電曲線を図63に示し、実施例4-3の非水電解質二次電池の充放電曲線を図64に示す。図63および図64に示すように、負極活物質としてLTOを用いた負極を、鎖状カーボネートつまりDMCを用いた本発明の電解液に組み合わせた場合にも、可逆的な充放電反応が得られた。つまりこの結果から、当該負極活物質と電解液の組み合わせは、本発明の非水電解質二次電池に適用可能であることがわかる。 Further, with respect to the non-aqueous electrolyte secondary battery of Example 4-2 and the non-aqueous electrolyte secondary battery of Example 4-3, the working voltage range was 1.3 V to 2.5 V (Li standard), and the C rate was 0.1 C. CC charging / discharging was repeated 3 cycles. The charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 4-2 is shown in FIG. 63, and the charge / discharge curve of the nonaqueous electrolyte secondary battery of Example 4-3 is shown in FIG. As shown in FIGS. 63 and 64, when a negative electrode using LTO as a negative electrode active material is combined with the electrolytic solution of the present invention using a chain carbonate, that is, DMC, a reversible charge / discharge reaction is obtained. It was. That is, from this result, it can be seen that the combination of the negative electrode active material and the electrolytic solution can be applied to the nonaqueous electrolyte secondary battery of the present invention.
 <非水電解質二次電池(5)>
 (実施例5-1)
 電解液E8を用い、実施例5-1の非水電解質二次電池を作製した。
<Nonaqueous electrolyte secondary battery (5)>
Example 5-1
A nonaqueous electrolyte secondary battery of Example 5-1 was produced using the electrolytic solution E8.
  <負極>
 伊藤黒鉛工業株式会社製品名SG-BH8(平均粒径8μm)98質量部、ならびに結着剤であるSBR1質量部およびCMC1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。なお、用いた黒鉛粒子のアスペクト比は2.1であり、X線回折で測定したI(110)/I(004)が0.035であった。
<Negative electrode>
98 parts by mass of Ito Graphite Industries Co., Ltd. product name SG-BH8 (average particle size 8 μm), and 1 part by mass of SBR and 1 part by mass of CMC as a binder were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. The graphite particles used had an aspect ratio of 2.1, and I (110) / I (004) measured by X-ray diffraction was 0.035.
 なおアスペクト比は、日本電子製クロスセクションポリッシャを用いて電極断面観察サンプルを作製した後、走査型電子顕微鏡(SEM)を用いて活物質断面の長軸と短軸を測長し算出した。X線回折は、リガク製[SmartLab]、光学系には集中法を用いて測定し、I(110)/I(004)はI(110)およびI(004)の積分強度の比から算出した。 The aspect ratio was calculated by measuring the major axis and the minor axis of the active material section using a scanning electron microscope (SEM) after preparing an electrode section observation sample using a JEOL cross section polisher. X-ray diffraction was measured by Rigaku [SmartLab], using an optical system using a concentration method, and I (110) / I (004) was calculated from the ratio of integrated intensities of I (110) and I (004). .
 このスラリーを、厚さ20μmの電解銅箔(集電体)の表面に、ドクターブレードを用いて、膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。 The slurry was applied in the form of a film using a doctor blade on the surface of an electrolytic copper foil (current collector) having a thickness of 20 μm. The copper foil coated with the slurry was dried to remove water, and then the copper foil was pressed to obtain a bonded product.
 得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。この負極における負極活物質層の目付けは8.5mg/cm程度であった。 The obtained joined product was dried by heating at 100 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which a negative electrode active material layer was formed. This was used as a negative electrode. The basis weight of the negative electrode active material layer in this negative electrode was about 8.5 mg / cm 2 .
  <正極>
 正極は、正極活物質層と、正極活物質層で被覆された集電体とからなる。正極活物質層は、正極活物質と、結着剤と、導電助剤とを有する。正極活物質はNCM523からなる。結着剤は、PVdFからなる。導電助剤は、ABからなる。集電体は、厚み20μmのアルミニウム箔からなる。正極活物質層を100質量部としたときの、正極活物質と結着剤と導電助剤との含有質量比は、94:3:3である。
<Positive electrode>
The positive electrode includes a positive electrode active material layer and a current collector covered with the positive electrode active material layer. The positive electrode active material layer has a positive electrode active material, a binder, and a conductive additive. The positive electrode active material is NCM523. The binder is made of PVdF. The conductive auxiliary agent is made of AB. The current collector is made of an aluminum foil having a thickness of 20 μm. When the positive electrode active material layer is 100 parts by mass, the mass ratio of the positive electrode active material, the binder, and the conductive additive is 94: 3: 3.
 正極を作製するために、NCM523、PVdFおよびABを上記の質量比となるように混合し、溶剤としてのNMPを添加してペースト状の正極材とする。ペースト状の正極材を、集電体の表面にドクターブレードを用いて塗布して、正極活物質層を形成した。正極活物質層を、80℃で20分間乾燥することで、NMPを揮発により除去した。表面に正極活物質層を形成したアルミニウム箔を、ロ-ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状に切り取り、正極を得た。 In order to produce a positive electrode, NCM523, PVdF and AB are mixed so as to have the above mass ratio, and NMP as a solvent is added to obtain a paste-like positive electrode material. The paste-like positive electrode material was applied to the surface of the current collector using a doctor blade to form a positive electrode active material layer. The positive electrode active material layer was dried at 80 ° C. for 20 minutes to remove NMP by volatilization. The aluminum foil having the positive electrode active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly bonded. The joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape, and a positive electrode was obtained.
  <非水電解質二次電池>
 上記の正極、負極および電解液E8を用いて、非水電解質二次電池の一種であるラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてセルロース不織布(厚み20μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以下、便宜上、このリチウムイオン二次電池を実施例5-1の非水電解質二次電池という。実施例5-1の非水電解質二次電池および以下の各電池の詳細を、実施例の欄の文末の表45に示す。
<Nonaqueous electrolyte secondary battery>
Using the positive electrode, the negative electrode, and the electrolytic solution E8, a laminated lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery, was manufactured. Specifically, a cellulose nonwoven fabric (thickness 20 μm) was sandwiched as a separator between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution was poured into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Hereinafter, for convenience, this lithium ion secondary battery is referred to as the nonaqueous electrolyte secondary battery of Example 5-1. Details of the non-aqueous electrolyte secondary battery of Example 5-1 and each of the following batteries are shown in Table 45 at the end of the column of the example.
 (比較例5-1)
 活物質にアスペクト比が6.5の黒鉛(SECカーボン株式会社のSNOグレード(平均粒径10μm))を用いたこと以外は実施例5-1と同様にして負極を作製し、負極活物質層の目付けが実施例5-1と同程度の負極を形成した。その他は実施例5-1と同様にして比較例5-1の非水電解質二次電池を得た。X線回折で測定したI(110)/I(004)は0.027であった。
(Comparative Example 5-1)
A negative electrode was produced in the same manner as in Example 5-1, except that graphite having an aspect ratio of 6.5 (SNO grade (average particle size: 10 μm) from SEC Carbon Co., Ltd.) was used as the active material. A negative electrode having the same basis weight as in Example 5-1 was formed. Other than that, a nonaqueous electrolyte secondary battery of Comparative Example 5-1 was obtained in the same manner as Example 5-1. I (110) / I (004) measured by X-ray diffraction was 0.027.
 (比較例5-2)
 電解液E8に代えて電解液C5を用いたこと以外は実施例5-1と同様にして比較例5-2の非水電解質二次電池を得た。
(Comparative Example 5-2)
A nonaqueous electrolyte secondary battery of Comparative Example 5-2 was obtained in the same manner as in Example 5-1, except that the electrolytic solution C5 was used instead of the electrolytic solution E8.
  (評価例24:入力特性)
 実施例5-1、比較例5-1、および比較例5-2の非水電解質二次電池を用い、以下の条件で入力(充電)特性を評価した。
 (1) 使用電圧範囲:3V-4.2V
 (2) 容量:13.5mAh
 (3) SOC80%
 (4) 温度:0℃、25℃
 (5) 測定回数:各3回
(Evaluation Example 24: Input characteristics)
Using the nonaqueous electrolyte secondary batteries of Example 5-1, Comparative Example 5-1, and Comparative Example 5-2, the input (charging) characteristics were evaluated under the following conditions.
(1) Working voltage range: 3V-4.2V
(2) Capacity: 13.5mAh
(3) SOC 80%
(4) Temperature: 0 ° C, 25 ° C
(5) Number of measurements: 3 times each
 評価条件は、充電状態(SOC)80%、0℃、25℃、使用電圧範囲3V-4.2V、容量13.5mAhである。SOC80%、0℃は、例えば、冷蔵室などで使用する場合のように入力特性が出にくい領域である。実施例5-1と比較例5-1、5-2の入力特性の評価は、それぞれ2秒入力と5秒入力について3回行った。入力特性の評価結果を表21、表22に示した。表の中の「2秒入力」は、充電開始から2秒後での入力を意味し、「5秒入力」は充電開始から5秒後での入力を意味している。 Evaluation conditions are 80% charged state (SOC), 0 ° C., 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh. SOC 80%, 0 ° C. is a region in which input characteristics are difficult to be obtained, for example, when used in a refrigerator room. The input characteristics of Example 5-1 and Comparative Examples 5-1 and 5-2 were evaluated three times for 2-second input and 5-second input, respectively. Tables 21 and 22 show the evaluation results of the input characteristics. “2-second input” in the table means an input after 2 seconds from the start of charging, and “5-second input” means an input after 5 seconds from the start of charging.
表21および表22には、実施例5-1および比較例5-1に用いた本発明の電解液を「FSA」と略記し、比較例5-2に用いた電解液を「ECPF」と略記している。 In Table 21 and Table 22, the electrolytic solution of the present invention used in Example 5-1 and Comparative Example 5-1 is abbreviated as “FSA”, and the electrolytic solution used in Comparative Example 5-2 is designated as “ECPF”. Abbreviated.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 0℃および25℃の両方で、実施例5-1の方が比較例5-1および比較例5-2に比べて入出力特性が向上している。これは所定のアスペクト比を有する黒鉛と本発明の電解液を用いたことによる効果であり、特に0℃においても高い入出力特性を示すことから、低温においても電解液中のリチウムイオンの移動が円滑に進行することが示されている。 At both 0 ° C. and 25 ° C., the input / output characteristics of Example 5-1 are improved compared to Comparative Example 5-1 and Comparative Example 5-2. This is an effect obtained by using graphite having a predetermined aspect ratio and the electrolytic solution of the present invention. In particular, since it exhibits high input / output characteristics even at 0 ° C., the migration of lithium ions in the electrolytic solution can be achieved even at low temperatures. It has been shown to proceed smoothly.
 (実施例5-2)
  <正極>
 正極は、正極活物質層と、正極活物質層で被覆された集電体とからなる。正極活物質層は、正極活物質と、結着剤と、導電助剤とを有する。正極活物質は、NCM523からなる。結着剤はPVdFからなる。導電助剤はABからなる。集電体は、厚み20μmのアルミニウム箔からなる。正極活物質層を100質量部としたときの、正極活物質と結着剤と導電助剤との含有質量比は、94:3:3である。
(Example 5-2)
<Positive electrode>
The positive electrode includes a positive electrode active material layer and a current collector covered with the positive electrode active material layer. The positive electrode active material layer has a positive electrode active material, a binder, and a conductive additive. The positive electrode active material is NCM523. The binder is made of PVdF. The conductive auxiliary agent is made of AB. The current collector is made of an aluminum foil having a thickness of 20 μm. When the positive electrode active material layer is 100 parts by mass, the mass ratio of the positive electrode active material, the binder, and the conductive additive is 94: 3: 3.
 正極を作製するために、NCM523、PVdFおよびABを上記の質量比となるように混合し、溶剤としてのNMPを添加してペースト状の正極合剤とした。ペースト状の正極合剤を、集電体の表面にドクターブレードを用いて塗布して、正極活物質層を形成した。正極活物質層を、80℃で20分間乾燥することで、NMPを揮発により除去した。表面に正極活物質層を形成したアルミニウム箔を、ロ-ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状に切り取り、正極を得た。 In order to produce a positive electrode, NCM523, PVdF and AB were mixed at the above mass ratio, and NMP as a solvent was added to obtain a paste-like positive electrode mixture. The paste-like positive electrode mixture was applied to the surface of the current collector using a doctor blade to form a positive electrode active material layer. The positive electrode active material layer was dried at 80 ° C. for 20 minutes to remove NMP by volatilization. The aluminum foil having the positive electrode active material layer formed on the surface thereof was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly bonded. The joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape, and a positive electrode was obtained.
  <負極>
 負極は、負極活物質層と、負極活物質層で被覆された集電体とからなる。負極活物質層は、負極活物質と、結着剤とを有する。負極を作製するために、負極活物質としての黒鉛98質量部と、結着剤としてSBR1質量部およびCMC1質量部とを混合した。この混合物を適量のイオン交換水に分散させてスラリー状の負極合剤を作製した。このスラリー状の負極合剤を負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布して負極活物質層を形成した。負極活物質層と集電体との複合材を乾燥後プレスし、プレス後の接合物を100℃で6時間、真空乾燥機で加熱し、所定の形状に切り取り、負極とした。
<Negative electrode>
The negative electrode includes a negative electrode active material layer and a current collector covered with the negative electrode active material layer. The negative electrode active material layer has a negative electrode active material and a binder. In order to produce a negative electrode, 98 parts by mass of graphite as a negative electrode active material and 1 part by mass of SBR and 1 part by mass of CMC were mixed as a binder. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry-like negative electrode mixture. The slurry-like negative electrode mixture was applied to a copper foil having a thickness of 20 μm, which is a negative electrode current collector, so as to form a film using a doctor blade to form a negative electrode active material layer. The composite material of the negative electrode active material layer and the current collector was dried and pressed, and the bonded product after pressing was heated in a vacuum dryer at 100 ° C. for 6 hours, cut into a predetermined shape, and used as a negative electrode.
 なお、用いた黒鉛粒子のアスペクト比は2.1であった。 The graphite particles used had an aspect ratio of 2.1.
  <非水電解質二次電池>
 上記した正極と負極を用い、電解液として前述の電解液E11を用いたこと以外は実施例5-1と同様にして実施例5-2の非水電解質二次電池を得た。
<Nonaqueous electrolyte secondary battery>
A nonaqueous electrolyte secondary battery of Example 5-2 was obtained in the same manner as in Example 5-1, except that the above positive electrode and negative electrode were used and the above-described electrolytic solution E11 was used as the electrolytic solution.
 (比較例5-3)
 電解液E11にかえて、電解液C5を用いたこと以外は実施例5-2と同様にして比較例5-3の非水電解質二次電池を得た。
(Comparative Example 5-3)
A nonaqueous electrolyte secondary battery of Comparative Example 5-3 was obtained in the same manner as in Example 5-2 except that the electrolytic solution C5 was used instead of the electrolytic solution E11.
  (評価例25:サイクル耐久性)
 実施例5-2、比較例5-3の非水電解質二次電池を用い、それぞれ温度25℃、1CのCC充電の条件下において4.1Vまで充電し、1分間休止した後、1CのCC放電で3.0Vまで放電し、1分間休止するサイクルを500サイクル繰り返すサイクル試験を行った。500サイクル目における放電容量維持率を測定し、結果を表23に示す。放電容量維持率は、500サイクル目の放電容量を初回の放電容量で除した値の百分率((500サイクル目の放電容量)/(初回の放電容量)×100)で求められる値である。サイクル試験中の放電容量維持率の変化を図65に示す。
(Evaluation Example 25: Cycle durability)
Using the non-aqueous electrolyte secondary batteries of Example 5-2 and Comparative Example 5-3, the battery was charged to 4.1 V under the conditions of CC charging at a temperature of 25 ° C. and 1 C, and after resting for 1 minute, the CC of 1 C A cycle test was conducted by repeating 500 cycles of discharging to 3.0 V and resting for 1 minute. The discharge capacity retention ratio at the 500th cycle was measured, and the results are shown in Table 23. The discharge capacity retention ratio is a value obtained as a percentage of the value obtained by dividing the discharge capacity at the 500th cycle by the initial discharge capacity ((discharge capacity at the 500th cycle) / (initial discharge capacity) × 100). FIG. 65 shows the change in the discharge capacity retention rate during the cycle test.
 また、初期および200サイクル目において、温度25℃、0.5CのCCCVで電圧3.5Vに調整した後、3Cで10秒のCC放電をした際の電圧変化量(放電前電圧と放電10秒後電圧との差)および電流値からオームの法則により直流抵抗(放電)を測定した。 In addition, at the initial stage and the 200th cycle, after adjusting the voltage to 3.5 V with a CCCV of 25 ° C. and 0.5 C, the amount of voltage change when the CC discharge was performed for 10 seconds at 3 C (the voltage before discharge and the discharge for 10 seconds) The DC resistance (discharge) was measured from the difference between the post-voltage and the current value according to Ohm's law.
 さらに、初期および200サイクル目において、温度25℃、0.5CのCCCVで電圧3.5Vに調整した後、3Cで10秒のCC充電をした際の電圧変化量(充電前電圧と充電10秒後電圧との差)および電流値からオームの法則により直流抵抗(充電)を測定した。それぞれの結果を表23に示す。 Furthermore, at the initial stage and the 200th cycle, after adjusting the voltage to 3.5 V with a CCCV of 25 ° C. and 0.5 C, the amount of voltage change when the CC charge is performed for 10 seconds at 3 C (the pre-charge voltage and the charge 10 seconds) The DC resistance (charging) was measured from Ohm's law from the difference between the post-voltage and the current value. The results are shown in Table 23.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 実施例5-2の非水電解質二次電池は、サイクル後においても抵抗が小さいことがわかる。また実施例5-2の非水電解質二次電池は、容量維持率が高く、劣化しにくいといえる。 It can be seen that the non-aqueous electrolyte secondary battery of Example 5-2 has a low resistance even after cycling. In addition, it can be said that the nonaqueous electrolyte secondary battery of Example 5-2 has a high capacity retention rate and is hardly deteriorated.
 (その他の態様I)
 以下、試験例および参考試験例を挙げて、本発明の非水電解質二次電池が採り得るその他の態様をさらに詳しく説明する。以下、試験例の非水電解質二次電池をEBとし、参考試験例の非水電解質二次電池をCBとする。EBとCBとの違いは電解液にあり、EBは本発明の電解液を用いたものである。
 上述したように、本発明の電解液を用いた非水電解質二次電池の負極には、皮膜(S,O含有皮膜)が形成される。参考までに、S,O含有皮膜の分析結果を以下に挙げる。なお、以下の非水電解質二次電池には、既述のものも含まれている。
(Other aspects I)
Hereinafter, other embodiments that the nonaqueous electrolyte secondary battery of the present invention can take will be described in more detail with reference to test examples and reference test examples. Hereinafter, the non-aqueous electrolyte secondary battery of the test example is EB, and the non-aqueous electrolyte secondary battery of the reference test example is CB. The difference between EB and CB lies in the electrolytic solution, and EB uses the electrolytic solution of the present invention.
As described above, a film (S, O-containing film) is formed on the negative electrode of the nonaqueous electrolyte secondary battery using the electrolytic solution of the present invention. For reference, the analysis results of the S, O-containing coating are listed below. The following nonaqueous electrolyte secondary batteries include those described above.
 (EB1)
 電解液E8を用いた非水電解質二次電池EB1を以下のとおり製造した。正極は、実施例5-1の非水電解質二次電池の正極と同様に製造し、負極は実施例5-2の非水電解質二次電池の負極と同様に製造した。その他、セパレータとして実験用濾紙(東洋濾紙株式会社、セルロース製、厚み260μm)を用いた事以外は、実施例5-1と同様にして、非水電解質二次電池EB1を得た。
(EB1)
A nonaqueous electrolyte secondary battery EB1 using the electrolytic solution E8 was produced as follows. The positive electrode was produced in the same manner as the positive electrode of the non-aqueous electrolyte secondary battery in Example 5-1, and the negative electrode was produced in the same manner as the negative electrode in the non-aqueous electrolyte secondary battery in Example 5-2. In addition, a nonaqueous electrolyte secondary battery EB1 was obtained in the same manner as in Example 5-1, except that experimental filter paper (Toyo Filter Paper Co., Ltd., cellulose, thickness: 260 μm) was used as the separator.
 (EB2)
 非水電解質二次電池EB2は、電解液E4を用いたこと以外はEB1と同様である。
(EB2)
The nonaqueous electrolyte secondary battery EB2 is the same as EB1 except that the electrolytic solution E4 is used.
 (EB3)
 非水電解質二次電池EB3は、電解液E11を用いたこと以外はEB1と同様である。
(EB3)
The nonaqueous electrolyte secondary battery EB3 is the same as EB1 except that the electrolytic solution E11 is used.
 (EB4)
 非水電解質二次電池EB4は電解液E11を用いたこと、正極活物質と導電助剤と結着剤との混合比、およびセパレータ以外はEB1と同様である。正極については、NCM523:AB:PVdF=90:8:2とした。正極における活物質層の目付量は5.5mg/cmであり、密度は2.5g/cmであった。これは以下のEB5~EB7およびCB2、CB3についても同様である。
 負極については、天然黒鉛:SBR:CMC=98:1:1とした。負極における活物質層の目付量は3.8mg/cmであり、密度は1.1g/cmであった。これは以下のEB5~EB7およびCB2、CB3についても同様である。セパレータとしては厚さ20μmのセルロース製不織布を用いた。
(EB4)
The nonaqueous electrolyte secondary battery EB4 is the same as EB1 except that the electrolytic solution E11 is used, the mixing ratio of the positive electrode active material, the conductive additive and the binder, and the separator. About the positive electrode, it was set as NCM523: AB: PVdF = 90: 8: 2. The basis weight of the active material layer in the positive electrode was 5.5 mg / cm 2 and the density was 2.5 g / cm 3 . The same applies to the following EB5 to EB7, CB2 and CB3.
The negative electrode was natural graphite: SBR: CMC = 98: 1: 1. The basis weight of the active material layer in the negative electrode was 3.8 mg / cm 2 , and the density was 1.1 g / cm 3 . The same applies to the following EB5 to EB7, CB2 and CB3. A cellulose nonwoven fabric with a thickness of 20 μm was used as the separator.
 (EB5)
 非水電解質二次電池EB5は、電解液E8を用いたこと以外はEB4と同様である。
(EB5)
The nonaqueous electrolyte secondary battery EB5 is the same as EB4 except that the electrolytic solution E8 is used.
 (EB6)
 非水電解質二次電池EB6は、負極用の結着材の種類、および負極活物質と結着剤との混合比はEB4と同様である。負極については、天然黒鉛:ポリアクリル酸(PAA)=90:10とした。
(EB6)
In the nonaqueous electrolyte secondary battery EB6, the type of the binder for the negative electrode and the mixing ratio of the negative electrode active material and the binder are the same as those of EB4. The negative electrode was natural graphite: polyacrylic acid (PAA) = 90: 10.
 (EB7)
 非水電解質二次電池EB7は電解液E8を用いたこと以外はEB6と同様である。
(EB7)
The nonaqueous electrolyte secondary battery EB7 is the same as EB6 except that the electrolytic solution E8 is used.
 (CB1)
 非水電解質二次電池CB1は、電解液C5を用いた以外は、EB1と同様である。
(CB1)
The nonaqueous electrolyte secondary battery CB1 is the same as EB1 except that the electrolytic solution C5 is used.
 (CB2)
 非水電解質二次電池CB2は、電解液C5を用いたこと以外はEB4と同様である。
(CB2)
The nonaqueous electrolyte secondary battery CB2 is the same as EB4 except that the electrolytic solution C5 is used.
 (CB3)
 非水電解質二次電池CB3は電解液C5を用いたこと以外はEB6と同様である。
(CB3)
The nonaqueous electrolyte secondary battery CB3 is the same as EB6 except that the electrolytic solution C5 is used.
  (評価例26:S,O含有皮膜の分析)
 以下、必要に応じて、EB1~EB7における負極の表面に形成されている皮膜をEB1~EB7の負極S,O含有皮膜と略し、CB1~CB3における負極の表面に形成されている皮膜をCB1~CB3の負極皮膜と略する。また、同様に、EB1~EB7における正極の表面に形成されている皮膜をEB1~EB7の正極S,O含有皮膜と略し、CB1~CB3における正極の表面に形成されている皮膜をCB1~CB3の正極皮膜と略する。
(Evaluation Example 26: Analysis of S, O-containing film)
Hereinafter, the film formed on the negative electrode surface of EB1 to EB7 is abbreviated as the negative electrode S, O-containing film of EB1 to EB7, and the film formed on the negative electrode surface of CB1 to CB3 is referred to as CB1 to CB3. Abbreviated as CB3 negative electrode film. Similarly, the film formed on the surface of the positive electrode in EB1 to EB7 is abbreviated as the film containing the positive electrode S, O of EB1 to EB7, and the film formed on the surface of the positive electrode in CB1 to CB3 is made of CB1 to CB3. Abbreviated as positive electrode film.
(負極S,O含有皮膜および負極皮膜の分析)
 EB1、EB2およびCB1について、100サイクル充放電を繰り返した後に、電圧3.0Vの放電状態でX線光電子分光分析(X-ray Photoelectron Spectroscopy、XPS)によりS,O含有皮膜または皮膜表面の分析を行った。前処理としては以下の処理を行った。先ず、各非水電解質二次電池を解体して負極を取出し、この負極を洗浄および乾燥して、分析対象となる負極を得た。洗浄は、DMC(ジメチルカーボネート)を用いて3回行った。また、セルの解体から分析対象としての負極を分析装置に搬送するまでの全ての工程を、Arガス雰囲気下で、負極を大気に触れさせることなく行った。以下の前処理をEB1、EB2およびCB1の各々について行い、得られた負極検体をXPS分析した。装置としては、アルバックファイ社 PHI5000 VersaProbeIIを用いた。X線源は単色AlKα線(15kV、10mA)であった。XPSにより測定されたEB1、EB2の負極S,O含有皮膜およびCB1の負極皮膜の分析結果を図66~図70に示す。具体的には、図66は炭素元素についての分析結果であり、図67はフッ素元素についての分析結果であり、図68は窒素元素についての分析結果であり、図69は酸素元素についての分析結果であり、図70は硫黄元素についての分析結果である。
(Analysis of negative electrode S, O-containing film and negative electrode film)
For EB1, EB2, and CB1, after repeating 100 cycles of charge and discharge, analysis of the S, O-containing film or film surface was performed by X-ray photoelectron spectroscopy (XPS) in a discharge state of voltage 3.0V. went. The following processing was performed as preprocessing. First, each non-aqueous electrolyte secondary battery was disassembled, the negative electrode was taken out, this negative electrode was washed and dried, and a negative electrode to be analyzed was obtained. Washing was performed 3 times using DMC (dimethyl carbonate). In addition, all steps from disassembling the cell to conveying the negative electrode as the analysis target to the analyzer were performed in an Ar gas atmosphere without exposing the negative electrode to the atmosphere. The following pretreatment was performed for each of EB1, EB2, and CB1, and the obtained negative electrode specimen was subjected to XPS analysis. As the apparatus, ULVAC-PHI PHI5000 VersaProbeII was used. The X-ray source was monochromatic AlKα radiation (15 kV, 10 mA). The analysis results of the negative electrode S, O-containing film of EB1 and EB2 and the negative electrode film of CB1 measured by XPS are shown in FIGS. Specifically, FIG. 66 shows the analysis result for carbon element, FIG. 67 shows the analysis result for fluorine element, FIG. 68 shows the analysis result for nitrogen element, and FIG. 69 shows the analysis result for oxygen element. FIG. 70 shows the result of analysis for elemental sulfur.
 EB1における電解液、およびEB2における電解液は、塩に硫黄元素(S)、酸素元素および窒素元素(N)を含む。これに対してCB1における電解液は、塩にこれらを含まない。さらに、EB1、EB2およびCB1における電解液は、いずれも、塩にフッ素元素(F)炭素元素(C)および酸素元素(O)を含む。 The electrolytic solution in EB1 and the electrolytic solution in EB2 contain sulfur element (S), oxygen element and nitrogen element (N) in the salt. On the other hand, the electrolyte solution in CB1 does not contain these in the salt. Furthermore, the electrolyte solutions in EB1, EB2, and CB1 all contain a fluorine element (F), a carbon element (C), and an oxygen element (O) in the salt.
 図66~図70に示すように、EB1の負極S,O含有皮膜およびEB2の負極S,O含有皮膜を分析した結果、Sの存在を示すピーク(図70)およびNの存在を示すピーク(図68)が観察された。つまり、EB1の負極S,O含有皮膜およびEB2の負極S,O含有皮膜はSおよびNを含んでいた。しかし、CB1の負極皮膜の分析結果においてはこれらのピークは確認されなかった。つまり、CB1の負極皮膜はSおよびNの何れについても、検出限界以上の量を含んでいなかった。なお、F、C、およびOの存在を示すピークは、EB1、EB2の負極S,O含有皮膜およびCB1の負極皮膜の分析結果全てにおいて観察された。つまり、EB1、EB2の負極S,O含有皮膜およびCB1の負極皮膜は何れもF、C、およびOを含んでいた。 As shown in FIGS. 66 to 70, as a result of analyzing the negative electrode S, O-containing film of EB1 and the negative electrode S, O-containing film of EB2, a peak indicating the presence of S (FIG. 70) and a peak indicating the presence of N ( FIG. 68) was observed. That is, the negative electrode S, O-containing film of EB1 and the negative electrode S, O-containing film of EB2 contained S and N. However, these peaks were not confirmed in the analysis results of the negative electrode film of CB1. That is, the negative electrode film of CB1 did not contain an amount exceeding the detection limit for both S and N. Note that peaks indicating the presence of F, C, and O were observed in all analysis results of the negative electrode S, O-containing films of EB1 and EB2 and the negative electrode film of CB1. That is, the negative electrode S, O-containing film of EB1 and EB2 and the negative electrode film of CB1 all contained F, C, and O.
 これらの元素は何れも電解液に由来する成分である。特にS、OおよびFは電解液の金属塩に含まれる成分であり、具体的には金属塩のアニオンの化学構造に含まれる成分である。したがって、これらの結果から、各負極S,O含有皮膜および負極皮膜には金属塩(つまり支持塩)のアニオンの化学構造に由来する成分が含まれることがわかる。
 図70に示した硫黄元素(S)の分析結果について、更に詳細に解析した。EB1およびEB2の分析結果について、ガウス/ローレンツ混合関数を用いてピーク分離を行った。EB1の解析結果を図71に示し、EB2の解析結果を図72に示す。
These elements are all components derived from the electrolytic solution. In particular, S, O and F are components contained in the metal salt of the electrolytic solution, specifically, components contained in the chemical structure of the anion of the metal salt. Therefore, it can be seen from these results that each of the negative electrode S, O-containing film and the negative electrode film contains a component derived from the chemical structure of the anion of the metal salt (that is, the supporting salt).
The analysis result of elemental sulfur (S) shown in FIG. 70 was analyzed in more detail. About the analysis result of EB1 and EB2, peak separation was performed using the Gauss / Lorentz mixed function. 71 shows the analysis result of EB1, and FIG. 72 shows the analysis result of EB2.
 図71および図72に示すように、EB1およびEB2の負極S,O含有皮膜を分析した結果、165~175eV付近に比較的大きなピーク(波形)が観察された。そして、図71および図72に示すように、この170eV付近のピーク(波形)は、4つのピークに分離された。そのうちの一つはSO(S=O構造)の存在を示す170eV付近のピークである。この結果から、本発明の非水電解質二次電池において負極表面に形成されているS,O含有皮膜はS=O構造を有するといえる。そして、この結果と上記のXPS分析結果とを考慮すると、S,O含有皮膜のS=O構造に含まれるSは金属塩すなわち支持塩のアニオンの化学構造に含まれるSだと推測される。 As shown in FIGS. 71 and 72, as a result of analyzing the negative electrode S, O-containing films of EB1 and EB2, a relatively large peak (waveform) was observed in the vicinity of 165 to 175 eV. As shown in FIGS. 71 and 72, the peak (waveform) near 170 eV was separated into four peaks. One of them is a peak around 170 eV indicating the presence of SO 2 (S═O structure). From this result, it can be said that the S, O-containing film formed on the negative electrode surface in the nonaqueous electrolyte secondary battery of the present invention has an S = O structure. In consideration of this result and the above XPS analysis result, it is presumed that S contained in the S═O structure of the S, O-containing coating is S contained in the chemical structure of the metal salt, that is, the anion of the supporting salt.
(負極S,O含有皮膜のS元素比率)
 上記した負極S,O含有皮膜のXPS分析結果を基に、EB1およびEB2の負極S,O含有皮膜およびCB1の負極皮膜における放電時のS元素の比率を算出した。具体的には、各々の負極S,O含有皮膜および負極皮膜につき、S、N、F、C、Oのピーク強度の総和を100%としたときのSの元素比を算出した。結果を表24に示す。
(S element ratio of negative electrode S, O-containing coating)
Based on the XPS analysis results of the negative electrode S and O-containing coating described above, the ratio of the S element during discharge in the negative electrode S and O-containing coating of EB1 and EB2 and the negative electrode coating of CB1 was calculated. Specifically, for each negative electrode S, O-containing film and negative electrode film, the element ratio of S was calculated when the sum of the peak intensities of S, N, F, C, and O was 100%. The results are shown in Table 24.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 上記したようにCB1の負極皮膜は検出限界以上のSを含んでいなかったが、EB1の負極S,O含有皮膜およびEB2の負極S,O含有皮膜からはSが検出された。また、EB1の負極S,O含有皮膜はEB2の負極S,O含有皮膜に比べて多くのSを含んでいた。なお、CB1の負極S,O含有皮膜からSが検出されなかったことから、各試験例の負極S,O含有皮膜に含まれるSは正極活物質に含まれる不可避不純物やその他の添加物に由来するものではなく、電解液中の金属塩に由来するものであるといえる。 As described above, the negative electrode film of CB1 did not contain S exceeding the detection limit, but S was detected from the negative electrode S, O-containing film of EB1 and the negative electrode S, O-containing film of EB2. Further, the negative electrode S, O-containing film of EB1 contained more S than the negative electrode S, O-containing film of EB2. Since S was not detected from the negative electrode S, O-containing film of CB1, S contained in the negative electrode S, O-containing film of each test example was derived from inevitable impurities and other additives contained in the positive electrode active material. It can be said that it originates from the metal salt in the electrolyte solution.
 また、EB1の負極S,O含有皮膜におけるS元素比率が10.4原子%であり、EB2の負極S,O含有皮膜におけるS元素比率が3.7原子%であることから、本発明の非水電解質二次電池において、負極S,O含有皮膜におけるS元素比率は2.0原子%以上であり、好ましくは2.5原子%以上であり、より好ましくは3.0原子%以上であり、さらに好ましくは3.5原子%以上である。なお、Sの元素比率(原子%)とは、上述したようにS、N、F、C、Oのピーク強度の総和を100%としたときのSのピーク強度比を指す。Sの元素比率の上限値は特に定めないが、強いて言うとすれば、25原子%以下であるのが良い。 Further, since the S element ratio in the negative electrode S, O-containing film of EB1 is 10.4 atomic% and the S element ratio in the negative electrode S, O-containing film of EB2 is 3.7 atomic%, In the water electrolyte secondary battery, the S element ratio in the negative electrode S, O-containing film is 2.0 atomic% or more, preferably 2.5 atomic% or more, more preferably 3.0 atomic% or more, More preferably, it is 3.5 atomic% or more. The elemental ratio (atomic%) of S indicates the peak intensity ratio of S when the sum of the peak intensities of S, N, F, C, and O is 100% as described above. The upper limit value of the element ratio of S is not particularly defined, but to be strong, it should be 25 atomic% or less.
(負極S,O含有皮膜の厚さ)
 EB1について、100サイクル充放電を繰り返した後に電圧3.0Vの放電状態にしたもの、および、100サイクル充放電を繰り返した後に電圧4.1Vの充電状態にしたものを準備し、上記のXPS分析の前処理と同様の方法で分析対象となる負極検体を得た。得られた負極検体をFIB(集束イオンビーム:Focused Ion Beam)加工することにより、厚み100nm程度のSTEM分析用検体を得た。なお、FIB加工の前処理として、負極にはPtを蒸着した。以上の工程は負極を大気に触れさせることなくおこなった。
(Thickness of negative electrode S, O-containing film)
About EB1, the thing which was made into the discharge state of voltage 3.0V after repeating 100 cycles charging / discharging, and the thing made into the charge state of voltage 4.1V after repeating 100 cycles charging / discharging are prepared, and said XPS analysis A negative electrode specimen to be analyzed was obtained in the same manner as in the pretreatment. The obtained negative electrode specimen was processed by FIB (Focused Ion Beam) to obtain a specimen for STEM analysis having a thickness of about 100 nm. In addition, Pt was vapor-deposited on the negative electrode as a pretreatment for FIB processing. The above steps were performed without exposing the negative electrode to the atmosphere.
 各STEM分析用検体をEDX(エネルギ分散型X線分析:Energy Dispersive X-ray spectroscopy)装置が付属したSTEM(走査透過電子顕微鏡:Scanning Transmission Electron Microscope)により分析した。結果を図73~図76に示す。このうち図73はBF(明視野:Bright-field)-STEM像であり、図74~図76は、図73と同じ観察領域のSTEM-EDXによる元素分布像である。さらに、図74はCについての分析結果であり、図75はOについての分析結果であり、図76はSについての分析結果である。なお、図74~図76は、放電状態の非水電解質二次電池における負極の分析結果である。 Each STEM analysis specimen was analyzed by STEM (Scanning Transmission Electron Microscope) with an EDX (Energy Dispersive X-ray spectroscopy) apparatus. The results are shown in FIGS. 73 is a BF (Bright-field) -STEM image, and FIGS. 74 to 76 are element distribution images by STEM-EDX in the same observation region as FIG. 74 shows the analysis result for C, FIG. 75 shows the analysis result for O, and FIG. 76 shows the analysis result for S. 74 to 76 show the analysis results of the negative electrode in the discharged nonaqueous electrolyte secondary battery.
 図73に示すように、STEM像の左上部には黒色の部分が存在する。この黒色の部分は、FIB加工の前処理で蒸着されたPtに由来する。各STEM像において、このPt由来の部分(Pt部と呼ぶ)よりも上側にある部分は、Pt蒸着後に汚染された部分とみなし得る。したがって、図74~図76においては、Pt部よりも下側にある部分についてのみ検討した。 As shown in FIG. 73, there is a black portion in the upper left part of the STEM image. This black part is derived from Pt deposited in the pretreatment of FIB processing. In each STEM image, a portion above the Pt-derived portion (referred to as a Pt portion) can be regarded as a contaminated portion after Pt deposition. Therefore, in FIGS. 74 to 76, only the portion below the Pt portion was examined.
 図74に示すように、Pt部よりも下側において、Cは層状をなしていた。これは、負極活物質たる黒鉛の層状構造だと考えられる。図75において、Oは黒鉛の外周および層間に相当する部分にある。図76においてもまた、Sは黒鉛の外周および層間に相当する部分にある。これらの結果から、S=O構造等のSおよびOを含有する負極S,O含有皮膜は、黒鉛の表面および層間に形成されていると推測される。 As shown in FIG. 74, C was layered below the Pt portion. This is considered to be a layered structure of graphite as a negative electrode active material. In FIG. 75, O exists in the part corresponding to the outer periphery and interlayer of graphite. Also in FIG. 76, S exists in the part corresponding to the outer periphery and interlayer of graphite. From these results, it is surmised that the negative electrode S, O-containing film containing S and O, such as the S═O structure, is formed between the surface and the interlayer of graphite.
 黒鉛の表面に形成されている負極S,O含有皮膜を無作為に10箇所選び、負極S,O含有皮膜の厚さを測定し、測定値の平均値を算出した。充電状態の非水電解質二次電池における負極についても同様に分析し、各分析結果を基に、黒鉛の表面に形成されている負極S,O含有皮膜の厚さの平均値を算出した。結果を表25に示す。 Ten negative electrode S, O-containing films formed on the surface of graphite were randomly selected, the thickness of the negative electrode S, O-containing film was measured, and the average value of the measured values was calculated. The negative electrode in the charged nonaqueous electrolyte secondary battery was analyzed in the same manner, and the average value of the thicknesses of the negative electrode S and O-containing coating formed on the surface of the graphite was calculated based on each analysis result. The results are shown in Table 25.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表25に示すように、負極S,O含有皮膜の厚みは充電後に増加している。この結果から、負極S,O含有皮膜には充放電に対して安定して存在する定着部と、充放電に伴って増減する吸着部が存在すると推測される。そして、吸着部が存在することで、負極S,O含有皮膜は充放電に際して厚さが増減したと推測される。 As shown in Table 25, the thickness of the negative electrode S, O-containing film increases after charging. From this result, it is presumed that the negative electrode S, O-containing film has a fixing portion that stably exists with respect to charging and discharging and an adsorption portion that increases and decreases with charging and discharging. And it is estimated that the thickness of the negative electrode S, O-containing film increased or decreased during charging / discharging due to the presence of the adsorbing portion.
(正極皮膜の分析)
 EB1について、3サイクル充放電を繰り返した後に電圧3.0Vの放電状態にしたもの、3サイクル充放電を繰り返した後に電圧4.1Vの充電状態にしたもの、100サイクル充放電を繰り返した後に電圧3.0Vの放電状態にしたもの、100サイクル充放電を繰り返した後に電圧4.1Vの充電状態にしたもの、の4つを準備した。4つのEB1について、それぞれ上述したのと同様の方法を用いて、分析対象となる正極を得た。そして得られた各正極をXPS分析した。結果を図77および図78に示す。なお、図77は酸素元素についての分析結果であり、図78は硫黄元素についての分析結果である。
(Analysis of positive electrode film)
For EB1, after 3 cycles of charge / discharge, a voltage of 3.0V was discharged, after 3 cycles of charge / discharge was repeated, a voltage of 4.1V was charged, after 100 cycles of charge / discharge was repeated Four were prepared: a 3.0V discharge state and a 100V charge state after repeated charge and discharge for 100 cycles. Using the same method as described above for each of the four EB1, positive electrodes to be analyzed were obtained. Then, each obtained positive electrode was analyzed by XPS. The results are shown in FIGS. 77 and 78. Note that FIG. 77 shows the analysis results for the oxygen element, and FIG. 78 shows the analysis results for the sulfur element.
 図77および図78に示すように、EB1の正極S,O含有皮膜もまた、SおよびOを含むことがわかる。また、図78には170eV付近のピークが認められるため、EB1の正極S,O含有皮膜もまたEB1の負極S,O含有皮膜と同様に本発明の電解液に由来するS=O構造を有することがわかる。 77 and 78, it can be seen that the positive electrode S, O-containing film of EB1 also contains S and O. In addition, since a peak near 170 eV is recognized in FIG. 78, the positive electrode S, O-containing film of EB1 also has an S═O structure derived from the electrolytic solution of the present invention, like the negative electrode S, O-containing film of EB1. I understand that.
 ところで、図77に示すように、529eV付近に存在するピークの高さはサイクル経過後に減少している。このピークは正極活物質に由来するOの存在を示すものと考えられ、具体的には、XPS分析において正極活物質中のO原子で励起された光電子がS,O含有皮膜を通過して検出されたものと考えられる。このピークがサイクル経過後に減少したことから、正極表面に形成されたS,O含有皮膜の厚さはサイクル経過に伴って増大したと考えられる。 By the way, as shown in FIG. 77, the height of the peak existing in the vicinity of 529 eV decreases after the cycle. This peak is considered to indicate the presence of O derived from the positive electrode active material. Specifically, in XPS analysis, photoelectrons excited by O atoms in the positive electrode active material pass through the S, O-containing coating and are detected. It is thought that it was done. Since this peak decreased after the cycle, it is considered that the thickness of the S, O-containing film formed on the positive electrode surface increased with the cycle.
 また、図77および図78に示すように、正極S,O含有皮膜中のOおよびSは放電時に増加し充電時に減少した。この結果から、OおよびSは充放電に伴って正極S,O含有皮膜を出入りすると考えられる。そしてこのことから、充放電に際して正極S,O含有皮膜中のSやOの濃度が増減しているか、または、負極S,O含有皮膜と同様に正極S,O含有皮膜においても吸着部の存在により厚さが増減すると推測される。 In addition, as shown in FIGS. 77 and 78, O and S in the positive electrode S and O-containing film increased during discharging and decreased during charging. From this result, it is considered that O and S enter and leave the positive electrode S and O-containing film with charge and discharge. From this fact, the concentration of S and O in the positive electrode S and O-containing coating is increased or decreased during charging or discharging, or the presence of an adsorbing portion in the positive electrode S and O-containing coating as well as the negative electrode S and O-containing coating. It is estimated that the thickness increases or decreases.
 さらに、EB4についても正極S,O含有皮膜および負極S,O含有皮膜をXPS分析した。
 EB4を、25℃、使用電圧範囲3.0V~4.1Vとし、レート1CでCC充放電を500サイクル繰り返した。500サイクル後、3.0Vの放電状態、および、4.0Vの充電状態で正極S,O含有皮膜のXPSスペクトルを測定した。また、サイクル試験前(つまり初回充放電後)における3.0Vの放電状態の負極S,O含有皮膜、および、500サイクル後における3.0Vの放電状態の負極S,O含有皮膜について、XPSによる元素分析をおこない、当該負極S,O含有皮膜に含まれるS元素比率を算出した。XPSにより測定されたEB4の正極S,O含有皮膜の分析結果を図79および図80に示す。具体的には、図79は硫黄元素についての分析結果であり、図80は酸素元素についての分析結果である。また、負極S,O含有皮膜のS元素比率(原子%)を表26に示す。なお、S元素比率は、上記の「負極S,O含有皮膜のS元素比率」の項と同様に算出した。
Further, for EB4, the positive electrode S, O-containing coating and the negative electrode S, O-containing coating were analyzed by XPS.
EB4 was set to 25 ° C. and a working voltage range of 3.0 V to 4.1 V, and CC charge / discharge was repeated 500 cycles at a rate of 1C. After 500 cycles, the XPS spectrum of the positive electrode S, O-containing film was measured in a discharge state of 3.0 V and a charge state of 4.0 V. Further, the negative electrode S, O-containing coating in the 3.0V discharge state before the cycle test (that is, after the first charge / discharge) and the negative electrode S, O-containing coating in the 3.0V discharge state after 500 cycles are measured by XPS. Elemental analysis was performed, and the S element ratio contained in the negative electrode S, O-containing film was calculated. FIG. 79 and FIG. 80 show the analysis results of the positive electrode S, O-containing film of EB4 measured by XPS. Specifically, FIG. 79 shows the analysis result for sulfur element, and FIG. 80 shows the analysis result for oxygen element. Table 26 shows the S element ratio (atomic%) of the negative electrode S, O-containing coating. The S element ratio was calculated in the same manner as the above-mentioned item “S element ratio of negative electrode S, O-containing film”.
 図79および図80に示すように、EB4における正極S,O含有皮膜からもまた、Sの存在を示すピークおよびOの存在を示すピークが検出された。また、SのピークおよびOのピークが何れも放電時に増大し充電時に減少していた。この結果からも、正極S,O含有皮膜がS=O構造を有し、正極S,O含有皮膜中のOおよびSは充放電に伴って正極S,O含有皮膜を出入りすることが裏付けられる。 As shown in FIGS. 79 and 80, a peak indicating the presence of S and a peak indicating the presence of O were also detected from the positive electrode S, O-containing film in EB4. In addition, both the S peak and the O peak increased during discharging and decreased during charging. This result also confirms that the positive electrode S, O-containing film has an S = O structure, and O and S in the positive electrode S, O-containing film enter and exit the positive electrode S, O-containing film with charge and discharge. .
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 また、表26に示すように、EB4の負極S,O含有皮膜は、初回充放電後にも、500サイクル経過後にも、2.0原子%以上のSを含んでいた。この結果から、本発明の非水電解質二次電池における負極S,O含有皮膜は、サイクル経過前であってもサイクル経過後であっても2.0原子%以上のSを含むことがわかる。 As shown in Table 26, the negative electrode S, O-containing film of EB4 contained 2.0 atomic% or more of S even after the first charge / discharge and after 500 cycles. From this result, it can be seen that the negative electrode S, O-containing film in the nonaqueous electrolyte secondary battery of the present invention contains 2.0 atomic% or more of S before or after the cycle.
 EB4~EB7およびCB2、CB3について、60℃で1週間貯蔵する高温貯蔵試験を行い、当該高温貯蔵試験後のEB4~EB7の正極S,O含有皮膜および負極S,O含有皮膜、ならびにCB2、CB3の正極皮膜および負極皮膜を分析した。高温貯蔵試験開始前に、3.0V~4.1Vにまでレート0.33CでCC-CV充電した。このときの充電容量を基準(SOC100)とし、当該基準に対して20%分をCC放電してSOC80に調整した後、高温貯蔵試験を開始した。高温貯蔵試験後に1Cで3.0VまでCC-CV放電した。そして、放電後の正極S,O含有皮膜および負極S,O含有皮膜ならびに正極皮膜および負極皮膜のXPSスペクトルを測定した。XPSにより測定されたEB4~EB7の正極S,O含有皮膜、ならびに、CB2およびCB3の正極皮膜の分析結果を図81~図84に示す。また、XPSにより測定されたEB4~EB7負極S,O含有皮膜、ならびに、CB2およびCB3の負極皮膜の分析結果を図85~図88に示す。 EB4 to EB7 and CB2 and CB3 were subjected to a high temperature storage test that was stored at 60 ° C. for 1 week. After the high temperature storage test, the positive electrode S, O-containing film and negative electrode S, O-containing film of EB4 to EB7, and CB2, CB3 The positive electrode film and the negative electrode film were analyzed. Before starting the high temperature storage test, CC-CV charging was performed at a rate of 0.33 C from 3.0 V to 4.1 V. The charge capacity at this time was set as a standard (SOC100), 20% of the standard was CC discharged and adjusted to SOC80, and then a high-temperature storage test was started. After the high temperature storage test, CC-CV discharge was performed to 3.0V at 1C. And the XPS spectrum of the positive electrode S, O containing film | membrane and negative electrode S, O containing film | membrane after a discharge and a positive electrode film | membrane and a negative electrode film | membrane was measured. 81 to 84 show the analysis results of the positive electrode S, O-containing films of EB4 to EB7 and the positive electrode films of CB2 and CB3 measured by XPS. 85 to 88 show the analysis results of the EB4 to EB7 negative electrode S, O-containing films and the CB2 and CB3 negative electrode films measured by XPS.
 具体的には、図81はEB4、EB5の正極S,O含有皮膜およびCB2の正極皮膜の硫黄元素についての分析結果である。図82はEB6、EB7の正極S,O含有皮膜およびCB3の正極皮膜の硫黄元素についての分析結果である。図83はEB4、EB5の正極S,O含有皮膜およびCB2の正極皮膜の酸素元素についての分析結果である。図84はEB6、EB7の正極S,O含有皮膜およびCB3の正極皮膜の酸素元素についての分析結果である。また、図85はEB4、EB5の負極S,O含有皮膜およびCB2の負極皮膜の硫黄元素についての分析結果である。図86はEB6、EB7の負極S,O含有皮膜およびCB3の負極皮膜の硫黄元素についての分析結果である。図87はEB4、EB5の負極S,O含有皮膜およびCB2の負極皮膜の酸素元素についての分析結果である。図88はEB6、EB7の負極S,O含有皮膜およびCB3の負極皮膜の酸素元素についての分析結果である。 Specifically, FIG. 81 shows the analysis results for the elemental sulfur in the positive electrode S, O-containing coatings of EB4 and EB5 and the positive electrode coating of CB2. FIG. 82 shows the analysis results of the elemental sulfur of the positive electrode S, O-containing film of EB6 and EB7 and the positive electrode film of CB3. FIG. 83 shows the analysis results of oxygen elements in the positive electrode S, O-containing film of EB4 and EB5 and the positive electrode film of CB2. FIG. 84 shows analysis results of oxygen elements in the positive electrode S, O-containing films of EB6 and EB7 and the positive electrode film of CB3. FIG. 85 shows the analysis results of sulfur elements in the negative electrode S, O-containing films of EB4 and EB5 and the negative electrode film of CB2. FIG. 86 shows the analysis results of sulfur elements in the negative electrode S, O-containing films of EB6 and EB7 and the negative electrode film of CB3. FIG. 87 shows the results of analysis of oxygen elements in the negative electrode S, O-containing films of EB4 and EB5 and the negative electrode film of CB2. FIG. 88 shows the analysis results of oxygen elements in the negative electrode S, O-containing films of EB6 and EB7 and the negative electrode film of CB3.
 図81および図82に示すように、従来の電解液を用いたCB2およびCB3は正極皮膜にSを含まないのに対して、本発明の電解液を用いたEB4~EB7は正極S,O含有皮膜にSを含んでいた。また、図83および図84に示すように、EB4~EB7は何れも正極S,O含有皮膜にOを含んでいた。さらに、図81および図82に示すように、EB4~EB7における正極S,O含有皮膜からは、何れも、SO(S=O構造)の存在を示す170eV付近のピークが検出された。これらの結果から、本発明の非水電解質二次電池においては、電解液用の有機溶媒としてANを用いた場合にも、DMCを用いた場合にも、SとOとを含む安定した正極S,O含有皮膜が形成されることがわかる。また、この正極S,O含有皮膜は負極バインダの種類に影響されないことから、正極S,O含有皮膜中のOはCMCに由来するものではないと考えられる。さらに、図83および図84に示すように、電解液用の有機溶媒としてDMCを用いる場合には、530eV付近に、正極活物質由来のOピークが検出された。このため、電解液用の有機溶媒としてDMCを用いる場合には、ANを用いる場合に比べて正極S,O含有皮膜の厚さが薄くなると考えられる。 As shown in FIGS. 81 and 82, CB2 and CB3 using the conventional electrolytic solution do not contain S in the positive electrode film, whereas EB4 to EB7 using the electrolytic solution of the present invention contain positive electrodes S and O. The film contained S. Further, as shown in FIGS. 83 and 84, EB4 to EB7 all contained O in the positive electrode S, O-containing coating. Further, as shown in FIGS. 81 and 82, a peak around 170 eV indicating the presence of SO 2 (S═O structure) was detected from the positive electrode S, O-containing films in EB4 to EB7. From these results, in the non-aqueous electrolyte secondary battery of the present invention, a stable positive electrode S containing S and O is used both when AN is used as the organic solvent for the electrolytic solution and when DMC is used. It can be seen that an O-containing film is formed. Moreover, since this positive electrode S, O containing film is not influenced by the kind of negative electrode binder, it is thought that O in the positive electrode S, O containing film does not originate in CMC. Further, as shown in FIGS. 83 and 84, when DMC was used as the organic solvent for the electrolyte, an O peak derived from the positive electrode active material was detected in the vicinity of 530 eV. For this reason, when DMC is used as the organic solvent for the electrolytic solution, it is considered that the thickness of the positive electrode S, O-containing film is thinner than when AN is used.
 同様に、図85~図88に示すように、従来の電解液を用いたCB2およびCB3は負極皮膜にSを含まないのに対して、本発明の電解液を用いたEB4~EB7は負極S,O含有皮膜にSおよびOを含んでいた。また、図85および図86に示すように、EB4~EB7における負極S,O含有皮膜からは、何れも、SO(S=O構造)の存在を示す170eV付近のピークが検出された。これらの結果から、本発明の非水電解質二次電池においては、電解液用の有機溶媒としてANを用いた場合にも、DMCを用いた場合にも、SとOとを含む安定した負極S,O含有皮膜が形成されることがわかる。 Similarly, as shown in FIGS. 85 to 88, CB2 and CB3 using the conventional electrolytic solution do not contain S in the negative electrode film, whereas EB4 to EB7 using the electrolytic solution of the present invention are negative electrode S. The O-containing film contained S and O. As shown in FIGS. 85 and 86, a peak around 170 eV indicating the presence of SO 2 (S═O structure) was detected from the negative electrode S, O-containing films in EB4 to EB7. From these results, in the non-aqueous electrolyte secondary battery of the present invention, a stable negative electrode S containing S and O, both when AN is used as the organic solvent for the electrolytic solution and when DMC is used. It can be seen that an O-containing film is formed.
 EB4、EB5およびCB2について、上記の高温貯蔵試験および放電後の各負極S,O含有皮膜ならびに負極皮膜のXPSスペクトルを測定し、EB4、EB5の負極S,O含有皮膜およびCB2の負極皮膜における放電時のS元素の比率を算出した。具体的には、各々の負極S,O含有皮膜または負極皮膜につき、S、N、F、C、Oのピーク強度の総和を100%としたときのSの元素比を算出した。結果を表27に示す。 For EB4, EB5, and CB2, the XPS spectra of the negative electrode S, O-containing film and the negative electrode film after the above high-temperature storage test and discharge were measured, and the discharge in the negative electrode S, O-containing film of EB4, EB5 and the negative electrode film of CB2 The ratio of S element at the time was calculated. Specifically, for each negative electrode S, O-containing film or negative electrode film, the element ratio of S was calculated when the sum of the peak intensities of S, N, F, C, and O was 100%. The results are shown in Table 27.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表27に示すように、CB2の負極皮膜は検出限界以上のSを含んでいなかったが、EB4およびEB5の負極S,O含有皮膜からはSが検出された。また、EB5の負極S,O含有皮膜はEB4の負極S,O含有皮膜に比べて多くのSを含んでいた。また、この結果から、高温貯蔵後においても負極S,O含有皮膜におけるS元素比率は2.0原子%以上であることがわかる。 As shown in Table 27, the negative electrode film of CB2 did not contain S exceeding the detection limit, but S was detected from the negative electrode S, O-containing films of EB4 and EB5. Further, the negative electrode S, O-containing film of EB5 contained more S than the negative electrode S, O-containing film of EB4. Further, from this result, it is understood that the S element ratio in the negative electrode S, O-containing film is 2.0 atomic% or more even after high temperature storage.
 (EB8)
 EB8は、電解液E11を用いたものである。EB8は、負極合剤の組成、負極活物質と導電助剤の混合比、セパレータおよび電解液以外は実施例5-1の非水電解質二次電池と同様である。正極については、NCM523:AB:PVdF=90:8:2とした。
(EB8)
EB8 uses the electrolytic solution E11. EB8 is the same as the nonaqueous electrolyte secondary battery of Example 5-1, except for the composition of the negative electrode mixture, the mixing ratio of the negative electrode active material and the conductive additive, the separator, and the electrolytic solution. About the positive electrode, it was set as NCM523: AB: PVdF = 90: 8: 2.
 (EB9)
 EB9は電解液E13を用いたものである。EB9は、電解液以外はEB8と同様である。
(EB9)
EB9 uses the electrolytic solution E13. EB9 is the same as EB8 except for the electrolytic solution.
 (EB10)
 EB10は電解液E8を用いたこと以外はEB8と同様である。
(EB10)
EB10 is the same as EB8 except that electrolytic solution E8 is used.
 (CB4)
 CB4は電解液C5を用いたこと以外はEB8と同様である。
(CB4)
CB4 is the same as EB8 except that electrolytic solution C5 is used.
  (評価例27:電池の内部抵抗)
 EB8、EB9、EB10およびCB4を用い、電池の内部抵抗を評価した。
(Evaluation Example 27: Internal resistance of battery)
Using EB8, EB9, EB10 and CB4, the internal resistance of the battery was evaluated.
 各非水電解質二次電池について、室温、3.0V~4.1V(vs.Li基準)の範囲でCC充放電(つまり定電流充放電)を繰り返した。そして、初回充放電後の交流インピーダンス、および、100サイクル経過後の交流インピーダンスを測定した。得られた複素インピーダンス平面プロットを基に、電解液、負極および正極の反応抵抗を各々解析した。図89に示すように、複素インピーダンス平面プロットには、二つの円弧がみられた。図中左側(つまり複素インピーダンスの実部が小さい側)の円弧を第1円弧と呼ぶ。図中右側の円弧を第2円弧と呼ぶ。第1円弧の大きさを基に負極の反応抵抗を解析し、第2円弧の大きさを基に正極の反応抵抗を解析した。第1円弧に連続する図89中最左側のプロットを基に電解液の抵抗を解析した。解析結果を表28および表29に示す。なお、表28は、初回充放電後の電解液の抵抗(所謂溶液抵抗)、負極の反応抵抗、正極の反応抵抗を示し、表29は100サイクル経過後の各抵抗を示す。 For each non-aqueous electrolyte secondary battery, CC charging / discharging (that is, constant current charging / discharging) was repeated at room temperature in the range of 3.0 V to 4.1 V (vs. Li standard). Then, the AC impedance after the first charge / discharge and the AC impedance after 100 cycles were measured. Based on the obtained complex impedance plane plot, the reaction resistances of the electrolytic solution, the negative electrode, and the positive electrode were each analyzed. As shown in FIG. 89, two circular arcs were seen in the complex impedance plane plot. The arc on the left side of the figure (that is, the side where the real part of the complex impedance is small) is called the first arc. The arc on the right side in the figure is called the second arc. The reaction resistance of the negative electrode was analyzed based on the size of the first arc, and the reaction resistance of the positive electrode was analyzed based on the size of the second arc. The resistance of the electrolytic solution was analyzed based on the leftmost plot in FIG. 89 continuous with the first arc. The analysis results are shown in Table 28 and Table 29. Table 28 shows the resistance (so-called solution resistance) of the electrolytic solution after the first charge / discharge, the reaction resistance of the negative electrode, and the reaction resistance of the positive electrode, and Table 29 shows each resistance after 100 cycles.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表28および表29に示すように、各非水電解質二次電池において、100サイクル経過後の負極反応抵抗および正極反応抵抗は、初回充放電後の各抵抗に比べて低下する傾向にある。 As shown in Table 28 and Table 29, in each non-aqueous electrolyte secondary battery, the negative electrode reaction resistance and the positive electrode reaction resistance after 100 cycles tend to be lower than the respective resistances after the first charge / discharge.
 また、各非水電解質二次電池は、負極用のバインダとして親水基を有する同じポリマー(CMC-SBR)を用いているにもかかわらず、その耐久性には違いがある。つまり、表29に示す100サイクル経過後では、EB8、EB9、EB10の非水電解質二次電池の負極反応抵抗および正極反応抵抗は、CB4の非水電解質二次電池の負極反応抵抗および正極反応抵抗に比べて低い。これは、CB4の非水電解質二次電池では本発明の電解液を用いていなかったのに対して、EB8、EB9、EB10の非水電解質二次電池では本発明の電解液を用いていたことに起因すると考えられる。つまり、本発明の電解液を用いた本発明の非水電解質二次電池は、サイクル経過後に反応抵抗が低減するために、耐久性に優れるといえる。 Further, each non-aqueous electrolyte secondary battery has a difference in durability even though the same polymer (CMC-SBR) having a hydrophilic group is used as a binder for the negative electrode. That is, after 100 cycles shown in Table 29, the negative electrode reaction resistance and the positive electrode reaction resistance of the nonaqueous electrolyte secondary batteries of EB8, EB9, and EB10 are the negative electrode reaction resistance and the positive electrode reaction resistance of the nonaqueous electrolyte secondary battery of CB4. Low compared to This is because the non-aqueous electrolyte secondary battery of CB4 did not use the electrolytic solution of the present invention, whereas the non-aqueous electrolyte secondary batteries of EB8, EB9, and EB10 used the electrolytic solution of the present invention. It is thought to be caused by. That is, it can be said that the nonaqueous electrolyte secondary battery of the present invention using the electrolytic solution of the present invention is excellent in durability because the reaction resistance is reduced after the cycle.
 さらに、EB8、EB9、EB10は本発明の電解液を用いたものであり、負極および正極の表面には本発明の電解液に由来するS,O含有皮膜が形成されている。これに対して、本発明の電解液を用いていないCB4においては、負極および正極の表面には当該S,O含有皮膜は形成されていない。そして、表29に示すように、EB8、EB9、EB10の負極反応抵抗および正極反応抵抗はCB4よりも低い。このことから、各試験例においては、本発明の電解液に由来するS,O含有皮膜の存在により負極反応抵抗および正極反応抵抗が低減したと推察される。 Furthermore, EB8, EB9, and EB10 use the electrolytic solution of the present invention, and S and O-containing films derived from the electrolytic solution of the present invention are formed on the surfaces of the negative electrode and the positive electrode. On the other hand, in CB4 which does not use the electrolytic solution of the present invention, the S, O-containing film is not formed on the surfaces of the negative electrode and the positive electrode. And as shown in Table 29, the negative electrode reaction resistance and the positive electrode reaction resistance of EB8, EB9, and EB10 are lower than CB4. From this, in each test example, it is guessed that the negative electrode reaction resistance and the positive electrode reaction resistance were reduced due to the presence of the S, O-containing film derived from the electrolytic solution of the present invention.
 なお、EB10およびCB4における電解液の溶液抵抗はほぼ同じであり、EB8およびEB9における電解液の溶液抵抗は、EB10およびCB4に比べて高い。また、各非水電解質二次電池における各電解液の溶液抵抗は初回充放電後も100サイクル経過後もほぼ同じである。このため、各電解液の耐久劣化は生じていないと考えられ、上記した参考試験例および試験例において生じた負極反応抵抗および正極反応抵抗の差は、電解液の耐久劣化に関係するものでなく電極自体に生じているものであると考えられる。 In addition, the solution resistance of the electrolyte solution in EB10 and CB4 is substantially the same, and the solution resistance of the electrolyte solution in EB8 and EB9 is higher than that of EB10 and CB4. The solution resistance of each electrolyte solution in each non-aqueous electrolyte secondary battery is substantially the same after the first charge / discharge and after 100 cycles. For this reason, it is considered that durability deterioration of each electrolyte solution does not occur, and the difference between the negative electrode reaction resistance and the positive electrode reaction resistance generated in the above reference test examples and test examples is not related to the durability deterioration of the electrolyte solution. It is thought that this occurs in the electrode itself.
 非水電解質二次電池の内部抵抗は、電解液の溶液抵抗、負極の反応抵抗および正極の反応抵抗から総合的に判断できる。表28および表29の結果を基にすると、非水電解質二次電池の内部抵抗増大を抑制する観点からは、EB8およびEB9が特に耐久性に優れ、次いでEB10が耐久性に優れているといえる。 The internal resistance of the non-aqueous electrolyte secondary battery can be comprehensively determined from the solution resistance of the electrolytic solution, the reaction resistance of the negative electrode, and the reaction resistance of the positive electrode. Based on the results of Table 28 and Table 29, it can be said that EB8 and EB9 are particularly excellent in durability, and then EB10 is excellent in durability from the viewpoint of suppressing the increase in internal resistance of the nonaqueous electrolyte secondary battery. .
 (評価例28:電池のサイクル耐久性)
 EB8、EB9、EB10およびCB4について、室温、3.0V~4.1V(vs.Li基準)の範囲でCC充放電を繰り返し、初回充放電時の放電容量、100サイクル時の放電容量、および500サイクル時の放電容量を測定した。そして、初回充放電時の各非水電解質二次電池の容量を100%とし、100サイクル時および500サイクル時の各非水電解質二次電池の容量維持率(%)を算出した。結果を表30に示す。
(Evaluation Example 28: Battery cycle durability)
For EB8, EB9, EB10, and CB4, CC charge / discharge was repeated at room temperature in the range of 3.0 V to 4.1 V (vs. Li standard), the discharge capacity at the first charge / discharge, the discharge capacity at 100 cycles, and 500 The discharge capacity during the cycle was measured. And the capacity | capacitance maintenance factor (%) of each nonaqueous electrolyte secondary battery at the time of 100 cycles and 500 cycles was computed by making the capacity | capacitance of each nonaqueous electrolyte secondary battery at the time of initial charge / discharge into 100%. The results are shown in Table 30.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表30に示すように、EB8、EB9、EB10は、100サイクル経過後にも、CB4と同等の容量維持率を示した。つまり、各試験例の非水電解質二次電池はCB4と同様にサイクル耐久性に優れていた。 As shown in Table 30, EB8, EB9, and EB10 showed a capacity retention rate equivalent to CB4 even after 100 cycles. That is, the nonaqueous electrolyte secondary battery of each test example was excellent in cycle durability like CB4.
 サイクル耐久性の向上には、電極表面のSEI皮膜が関与すると考えられている。電解液中のECはSEI皮膜の材料となると考えられており、一般には、SEI皮膜を形成しサイクル耐久性を向上させるために、電解液にECを配合している。
 しかし、EB8、EB9、EB10は、SEIの材料となるECを含まないにも拘わらず、ECを含むCB4と同等の容量維持率を示した。これは、各試験例の非水電解質二次電池における正極および負極には、本発明の電解液に由来するS,O含有皮膜が存在するためだと考えられる。そして、EB8については、特に500サイクル経過時にも極めて高い容量維持率を示し、特に耐久性に優れていたため、有機溶媒としてDMCを選択する場合には、ANを選択する場合に比べて、より耐久性が向上するといえる。
It is considered that the SEI film on the electrode surface is involved in improving the cycle durability. EC in the electrolytic solution is considered to be a material for the SEI film. In general, in order to form a SEI film and improve cycle durability, EC is blended in the electrolytic solution.
However, although EB8, EB9, and EB10 did not include EC as a material for SEI, they exhibited a capacity retention rate equivalent to that of CB4 including EC. This is thought to be because the S and O-containing coating derived from the electrolytic solution of the present invention is present on the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of each test example. And for EB8, it showed a very high capacity retention rate even after 500 cycles, and was particularly excellent in durability. Therefore, when DMC was selected as the organic solvent, it was more durable than when AN was selected. It can be said that the property is improved.
  (評価例29:電池の高温貯蔵耐性)
 EB8、EB10およびCB4について、60℃で1週間貯蔵する高温貯蔵試験を行った。高温貯蔵試験開始前に、3.0Vから4.1VにまでCC-CV(定電流定電圧)充電した。このときの充電容量を基準(SOC100)とし、当該基準に対して20%分をCC放電してSOC80に調整した後、高温貯蔵試験を開始した。高温貯蔵試験後に1Cで3.0VまでCC-CV放電した。このときの放電容量と貯蔵前のSOC80容量との比から、次式のように残存容量を算出した。結果を表31に示す。
 残存容量=100×(貯蔵後のCC-CV放電容量)/(貯蔵前のSOC80容量)
(Evaluation Example 29: High temperature storage resistance of battery)
EB8, EB10 and CB4 were subjected to a high-temperature storage test in which they were stored at 60 ° C. for 1 week. Before starting the high-temperature storage test, CC-CV (constant current constant voltage) charging was performed from 3.0 V to 4.1 V. The charge capacity at this time was set as a standard (SOC100), 20% of the standard was CC discharged and adjusted to SOC80, and then a high-temperature storage test was started. After the high temperature storage test, CC-CV discharge was performed to 3.0V at 1C. From the ratio of the discharge capacity at this time and the SOC 80 capacity before storage, the remaining capacity was calculated as follows. The results are shown in Table 31.
Remaining capacity = 100 × (CC-CV discharge capacity after storage) / (SOC 80 capacity before storage)
Figure JPOXMLDOC01-appb-T000031
 EB8およびEB10の残存容量は、CB4の残存容量に比べて大きい。この結果から、本発明の電解液に由来し正極および負極に形成されたS,O含有皮膜が、残存容量増大にも寄与するといえる。
Figure JPOXMLDOC01-appb-T000031
The remaining capacity of EB8 and EB10 is larger than the remaining capacity of CB4. From this result, it can be said that the S, O-containing coating derived from the electrolytic solution of the present invention and formed on the positive electrode and the negative electrode contributes to an increase in the remaining capacity.
 (EB11)
 非水電解質二次電池EB11は、正極および負極の目付量以外はEB1と同様に製造した。正極における活物質層の目付量は5.5mg/cmであり、負極における活物質層の目付量は4.0mg/cmであった。ここでいう活物質層の目付量とは、ロールプレスおよび乾燥後の目付量を指す。なお、EB1において、正極における活物質層の目付量は11.0mg/cmであり、負極における活物質層の目付量は8.0mg/cmであった。
(EB11)
Nonaqueous electrolyte secondary battery EB11 was produced in the same manner as EB1 except for the basis weight of the positive electrode and the negative electrode. The basis weight of the active material layer in the positive electrode was 5.5 mg / cm 2 , and the basis weight of the active material layer in the negative electrode was 4.0 mg / cm 2 . The basis weight of the active material layer here refers to the basis weight after roll press and drying. In EB1, the basis weight of the active material layer in the positive electrode was 11.0 mg / cm 2 , and the basis weight of the active material layer in the negative electrode was 8.0 mg / cm 2 .
 (CB5)
 非水電解質二次電池CB5は、正極および負極の目付量以外はCB1と同様に製造した。正極における活物質層の目付量はEB11と同じく5.5mg/cmであり、負極における活物質層の目付量もまたEB11と同じく4.0mg/cmであった。なお、EB11およびCB5の正極における活物質層の目付量および負極における活物質層の目付量は、EB1およびCB1の半分であった。また、比較例5-2の非水電解質二次電池における正極および負極の目付量は、実施例5-1の非水電解質二次電池と同様であった。
(CB5)
Nonaqueous electrolyte secondary battery CB5 was produced in the same manner as CB1 except for the weights of the positive electrode and the negative electrode. The basis weight of the active material layer in the positive electrode was 5.5 mg / cm 2 as in EB11, and the basis weight of the active material layer in the negative electrode was also 4.0 mg / cm 2 as in EB11. Note that the basis weight of the active material layer in the positive electrodes of EB11 and CB5 and the basis weight of the active material layer in the negative electrode were half of EB1 and CB1. In addition, the basis weight of the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of Comparative Example 5-2 was the same as that of the nonaqueous electrolyte secondary battery of Example 5-1.
  (評価例30:電池の入出力特性)
 上記のEB11およびCB5の出力特性を評価した。
 評価時の使用電圧範囲は3V-4.2V、容量は13.5mAhであり、各電池について充電状態(SOC)30%かつ-30℃、SOC30%かつ-10℃、SOC80%かつ25℃、の三水準で評価した。また、評価は2秒出力と5秒出力についてそれぞれ3回行った。出力特性の評価結果を表32に示した。以下、「2秒出力」は、放電開始から2秒後での出力を意味し、「5秒入力」は放電開始から5秒後での入力を意味する。
(Evaluation Example 30: Battery input / output characteristics)
The output characteristics of EB11 and CB5 described above were evaluated.
The operating voltage range at the time of evaluation is 3V-4.2V, and the capacity is 13.5 mAh. For each battery, the state of charge (SOC) is 30% and -30 ° C, the SOC is 30% and -10 ° C, the SOC is 80% and 25 ° C. Three levels were evaluated. The evaluation was performed three times for each of the 2 second output and the 5 second output. Table 32 shows the evaluation results of the output characteristics. Hereinafter, “output in 2 seconds” means output after 2 seconds from the start of discharge, and “input in 5 seconds” means input after 5 seconds from the start of discharge.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表32に示すように、EB1に比べて目付量を約半分にした場合にも、本発明の電解液を用いたEB11は、本発明の電解液を用いていないCB5に比べて入出力特性に優れる。 As shown in Table 32, even when the basis weight is about half that of EB1, EB11 using the electrolytic solution of the present invention has input / output characteristics compared to CB5 not using the electrolytic solution of the present invention. Excellent.
  (評価例31:レート容量特性)
 EB1およびCB1のレート容量特性を以下の方法で評価した。各電池の容量は160mAh/gとなるように調整した。評価条件は、各非水電解質二次電池につき、0.1C、0.2C、0.5C、1C、2Cの速度で充電を行った後に放電を行い、それぞれの速度における作用極の容量(放電容量)を測定した。0.1C放電後および1C放電後の放電容量を表33に示す。なお表33に示した放電容量は、正極活物質の質量(g)当りの容量を算出したものである。
(Evaluation Example 31: Rate capacity characteristics)
The rate capacity characteristics of EB1 and CB1 were evaluated by the following methods. The capacity of each battery was adjusted to 160 mAh / g. The evaluation condition was that each non-aqueous electrolyte secondary battery was charged at a rate of 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, and then discharged, and the capacity of the working electrode at each rate (discharge) Capacity). Table 33 shows the discharge capacity after 0.1 C discharge and after 1 C discharge. The discharge capacity shown in Table 33 is the capacity calculated per mass (g) of the positive electrode active material.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表33に示すように、放電速度が遅い場合(0.1C)には、EB1とCB1との間に放電容量の違いは殆どない。しかし、放電速度が速い場合(1.0C)には、EB1の放電容量は、CB1の放電容量に比べて大きい。この結果から、本発明の非水電解質二次電池がレート容量特性に優れることが裏づけられる。これは、上述したように、本発明の非水電解質二次電池における電解液が従来のものとは異なり、本発明の非水電解質二次電池の負極および/または正極に形成されるS,O含有皮膜もまた、従来のものと異なるためだと考えられる。 As shown in Table 33, when the discharge rate is slow (0.1 C), there is almost no difference in discharge capacity between EB1 and CB1. However, when the discharge rate is fast (1.0 C), the discharge capacity of EB1 is larger than the discharge capacity of CB1. This result supports that the nonaqueous electrolyte secondary battery of the present invention is excellent in rate capacity characteristics. As described above, this is because the electrolyte in the non-aqueous electrolyte secondary battery of the present invention is different from the conventional one, and S, O formed on the negative electrode and / or the positive electrode of the non-aqueous electrolyte secondary battery of the present invention. It is thought that the contained film is also different from the conventional film.
  (評価例32:0°、SOC20%での出力特性評価)
 上記のEB1およびCB1の出力特性を評価した。評価条件は、充電状態(SOC)20%、0℃、使用電圧範囲3V-4.2V、容量13.5mAhである。SOC20%、0℃は、例えば、冷蔵室などで使用する場合のように出力特性が出にくい領域である。EB1およびCB1の出力特性の評価は、2秒出力と5秒出力についてそれぞれ3回行った。出力特性の評価結果を表34に示した。
(Evaluation Example 32: Output characteristic evaluation at 0 °, SOC 20%)
The output characteristics of EB1 and CB1 described above were evaluated. The evaluation conditions are a state of charge (SOC) 20%, 0 ° C., a working voltage range 3V-4.2V, and a capacity 13.5 mAh. SOC 20%, 0 ° C. is a region where output characteristics are difficult to be obtained, for example, when used in a refrigerator room. Evaluation of the output characteristics of EB1 and CB1 was performed three times for each of the 2-second output and the 5-second output. The evaluation results of the output characteristics are shown in Table 34.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表34に示すように、EB1の0℃、SOC20%の出力は、CB1の出力に比べて、1.2倍~1.3倍高かった。 As shown in Table 34, the output of EB1 at 0 ° C. and SOC 20% was 1.2 to 1.3 times higher than the output of CB1.
  (評価例33:25℃、SOC20%での出力特性評価)
 EB1およびCB1の出力特性を、充電状態(SOC)20%、25℃、使用電圧範囲3V―4.2V、容量13.5mAhの条件で評価した。EB1およびCB1の出力特性の評価は、2秒出力と5秒出力についてそれぞれ3回行った。評価結果を表35に示した。
(Evaluation Example 33: Output characteristic evaluation at 25 ° C. and SOC 20%)
The output characteristics of EB1 and CB1 were evaluated under the conditions of a state of charge (SOC) of 20%, 25 ° C., a working voltage range of 3 V to 4.2 V, and a capacity of 13.5 mAh. Evaluation of the output characteristics of EB1 and CB1 was performed three times for each of the 2-second output and the 5-second output. The evaluation results are shown in Table 35.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表35に示すように、EB1の25℃、SOC20%の出力は、CB1の出力に比べて、1.2倍~1.3倍高かった。 As shown in Table 35, the output of EB1 at 25 ° C. and SOC 20% was 1.2 to 1.3 times higher than the output of CB1.
  (評価例34:出力特性に対する温度の影響)
 また、上記のEB1およびCB1の出力特性に対する、測定時の温度の影響を調べた。0℃と25℃で測定し、いずれの温度下での測定においても、評価条件は、充電状態(SOC)20%、使用電圧範囲3V~4.2V、容量13.5mAhとした。25℃での出力に対する0℃での出力の比率(0℃出力/25℃出力)をもとめた。その結果を表36に示した。
(Evaluation Example 34: Effect of temperature on output characteristics)
Moreover, the influence of the temperature at the time of measurement on the output characteristics of EB1 and CB1 was examined. Measurement was performed at 0 ° C. and 25 ° C. In any measurement, the evaluation conditions were a state of charge (SOC) of 20%, a working voltage range of 3 V to 4.2 V, and a capacity of 13.5 mAh. The ratio of the output at 0 ° C. to the output at 25 ° C. (0 ° C. output / 25 ° C. output) was determined. The results are shown in Table 36.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表36に示すように、EB1は、2秒出力および5秒出力における25℃での出力に対する0℃での出力の比率(0℃出力/25℃出力)が、CB1と同程度であり、EB1はCB1と同程度には低温での出力低下を抑制できることがわかった。 As shown in Table 36, the ratio of the output at 0 ° C. to the output at 25 ° C. (0 ° C. output / 25 ° C. output) at the output of 2 seconds and 5 seconds is about the same as CB1, and EB1 Was found to be able to suppress a decrease in output at a low temperature to the same extent as CB1.
  (評価例35:正極S,O含有皮膜分析)
 TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry:飛行時間型二次イオン質量分析法)を用いて、EB4の正極S,O含有皮膜に含まれる各分子の構造情報を分析した。
(Evaluation Example 35: Analysis of coating film containing positive electrode S and O)
Using TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry), the structural information of each molecule contained in the positive electrode S, O-containing coating of EB4 was analyzed.
 EB4を25℃で3サイクル充放電した後、3V放電状態で解体し正極を取り出した。これとは別に、EB4を25℃で500サイクル充放電した後、3V放電状態で解体し正極を取り出した。さらにこれとは別に、EB4を25℃で3サイクル充放電した後、60℃で一か月間放置し、3V放電状態で解体し正極を取り出した。各正極をDMCで3回洗浄し、分析用の正極を得た。なお、当該正極には正極S,O含有皮膜が形成され、以下の分析では正極S,O含有皮膜に含まれる分子の構造情報が分析された。 EB4 was charged and discharged at 25 ° C. for 3 cycles, then disassembled in a 3V discharge state, and the positive electrode was taken out. Separately, EB4 was charged and discharged at 25 ° C. for 500 cycles, then disassembled in a 3V discharge state, and the positive electrode was taken out. Separately from this, EB4 was charged and discharged at 25 ° C. for 3 cycles, then left at 60 ° C. for one month, disassembled in a 3V discharge state, and the positive electrode was taken out. Each positive electrode was washed with DMC three times to obtain a positive electrode for analysis. In addition, the positive electrode S and O containing film was formed in the said positive electrode, and the structural information of the molecule | numerator contained in the positive electrode S and O containing film was analyzed in the following analysis.
 分析用の各正極を、TOF-SIMSにより分析した。質量分析計としては飛行時間型二次イオン質量分析計を用い、正二次イオンおよび負二次イオンを測定した。一次イオン源としてはBiを用い、一次加速電圧は25kVであった。スパッタイオン源としてはAr-GCIB(Ar1500)を用いた。測定結果を表37~表39に示す。なお、表38における各フラグメントの正イオン強度(相対値)とは、検出された全てのフラグメントの正イオン強度の総和を100%とした相対値である。同様に、表39に記載した各フラグメントの負イオン強度(相対値)とは、検出された全てのフラグメントの負イオン強度の総和を100%とした相対値である。 Each positive electrode for analysis was analyzed by TOF-SIMS. A time-of-flight secondary ion mass spectrometer was used as a mass spectrometer, and positive secondary ions and negative secondary ions were measured. Bi was used as the primary ion source, and the primary acceleration voltage was 25 kV. Ar-GCIB (Ar1500) was used as the sputter ion source. The measurement results are shown in Tables 37 to 39. In Table 38, the positive ion intensity (relative value) of each fragment is a relative value with the total positive ion intensity of all detected fragments as 100%. Similarly, the negative ionic strength (relative value) of each fragment described in Table 39 is a relative value where the sum of the negative ionic strengths of all the detected fragments is 100%.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表37に示すように電解液の溶媒由来と推定されるフラグメントは、正二次イオンとして検出されたCおよびCのみであった。また、電解液の塩由来と推定されるフラグメントは、主に負二次イオンとして検出され、上記した溶媒由来のフラグメントに比べてイオン強度が大きい。さらに、Liを含むフラグメントは主に正二次イオンとして検出され、Liを含むフラグメントのイオン強度は、正二次イオンおよび負二次イオンのなかでも大きな割合を占める。 As shown in Table 37, the fragments presumed to be derived from the solvent of the electrolytic solution were only C 3 H 3 and C 4 H 3 detected as positive secondary ions. In addition, a fragment presumed to be derived from a salt of the electrolytic solution is mainly detected as a negative secondary ion, and has a higher ionic strength than the above-described fragment derived from a solvent. Furthermore, fragments containing Li are mainly detected as positive secondary ions, and the ionic strength of the fragments containing Li accounts for a large proportion of positive secondary ions and negative secondary ions.
 以上のことから、S,O含有皮膜の主成分は電解液に含まれる金属塩由来の成分であり、かつ、S,O含有皮膜には多くのLiが含まれると推測される。 From the above, it is presumed that the main component of the S, O-containing film is a component derived from the metal salt contained in the electrolytic solution, and that the S, O-containing film contains a large amount of Li.
 さらに、表37に示すように、塩由来と推定されるフラグメントとしてはSNO,SFO,SNO等も検出されている。これらは何れもS=O構造を有し、かつSに対してNやFが結合した構造である。つまり、S,O含有皮膜において、SはOと二重結合しているだけでなく、SNO,SFO,SNO等のように、他の元素と結合した構造をもとり得る。したがって、S,O含有皮膜は少なくともS=O構造を有していれば良く、S=O構造に含まれるSが他の元素と結合していても良いといえる。なお、当然乍ら、S,O含有皮膜はS=O構造をとらないSおよびOを含んでいても良い。 Furthermore, as shown in Table 37, SNO 2 , SFO 2 , S 2 F 2 NO 4, and the like have also been detected as fragments estimated to be derived from salts. Each of these has an S═O structure, and N or F is bonded to S. That is, in the S, O-containing film, S is not only double-bonded with O, but can also have a structure bonded to other elements such as SNO 2 , SFO 2 , S 2 F 2 NO 4, etc. . Therefore, it is sufficient that the S, O-containing film has at least the S═O structure, and it can be said that S contained in the S═O structure may be bonded to other elements. Needless to say, the S, O-containing film may contain S and O which do not take the S = O structure.
 ところで、例えば特開2013-145732に紹介されているような従来型の電解液、つまり、有機溶媒としてのECと金属塩としてのLiPFと添加剤としてLiFSAとを含有する従来の電解液では、Sは有機溶媒の分解物に取り込まれる。このためSは、負極皮膜および/または正極皮膜中においてCS(p、qはそれぞれ独立した整数)等のイオンとして存在すると考えられる。これに対して、表37~表39に示すように、S,O含有皮膜から検出されたSを含有するフラグメントは、CSフラグメントではなくアニオン構造を反映したフラグメントが主体である。このことからも、S,O含有皮膜が従来の非水電解質二次電池に形成される皮膜とは根本的に異なることが明らかになる。 By the way, in the conventional electrolyte solution introduced in, for example, JP-A-2013-145732, that is, a conventional electrolyte solution containing EC as an organic solvent, LiPF 6 as a metal salt, and LiFSA as an additive, S is taken into the decomposition product of the organic solvent. For this reason, S is considered to exist as ions such as C p H q S (p and q are independent integers) in the negative electrode film and / or the positive electrode film. On the other hand, as shown in Tables 37 to 39, the fragment containing S detected from the S, O-containing film is mainly a fragment reflecting the anion structure, not the C p H q S fragment. This also reveals that the S, O-containing coating is fundamentally different from the coating formed on the conventional nonaqueous electrolyte secondary battery.
(EB12)
 電解液E8を用いた非水電解質二次電池を以下のとおり製造した。
 径13.82mm、面積1.5cm、厚み20μmのアルミニウム箔(JIS A1000番系)を作用極とし、対極は金属Liとした。セパレータは厚さ400μmのWhatmanガラス繊維濾紙:品番1825-055を用いた。
 作用極、対極、セパレータおよびE8の電解液を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容して非水電解質二次電池EB12とした。
(EB12)
A nonaqueous electrolyte secondary battery using the electrolytic solution E8 was produced as follows.
An aluminum foil (JIS A1000 series) having a diameter of 13.82 mm, an area of 1.5 cm 2 and a thickness of 20 μm was used as a working electrode, and the counter electrode was metal Li. As the separator, Whatman glass fiber filter paper having a thickness of 400 μm: No. 1825-055 was used.
A working electrode, a counter electrode, a separator, and an electrolyte solution of E8 were housed in a battery case (CR2032-type coin cell case manufactured by Hosen Co., Ltd.) to obtain a nonaqueous electrolyte secondary battery EB12.
  (評価例36:Alの溶出確認)
 EB12に対して、1mV/sの速度で3.1V~4.6V(vs.Li基準)の範囲でリニアスイープボルタンメトリー測定(所謂LSV)を10回繰り返した際の、電流と電極電位の変化を観察した。EB12の充放電1回目、2回目、3回目の電流と電極電位との関係を示すグラフを図90に示す。
(Evaluation example 36: Confirmation of elution of Al)
Changes in current and electrode potential when linear sweep voltammetry measurement (so-called LSV) is repeated 10 times in a range of 3.1 V to 4.6 V (vs. Li reference) at a speed of 1 mV / s with respect to EB12. Observed. A graph showing the relationship between the first and second, third and third currents and the electrode potential of EB12 is shown in FIG.
 図90から、作用極をAlとしたEB12では、4.0Vでは電流が殆ど確認されず、
4.3Vで一旦僅かに電流が増大するが、その後4.6Vまで大幅な増大は見られなかった。また、充放電の繰返しによって電流量は減少し定常化に向った。
 以上の結果から、本発明の電解液を使用するとともに正極にアルミニウム集電体を用いた非水電解質二次電池は、高電位でもAlの溶出が起こり難いと考えられる。Alの溶出が起こり難いとされる理由は明確ではないが、本発明の電解液は、従来の電解液とは金属塩と有機溶媒の種類、存在環境および金属塩濃度が異なり、従来の電解液に比べて、本発明の電解液に対するAlの溶解性が低いのではないかと推測する。
From FIG. 90, in EB12 in which the working electrode is Al, almost no current is confirmed at 4.0V,
The current once increased slightly at 4.3 V, but no significant increase was observed up to 4.6 V thereafter. In addition, the amount of current decreased due to repeated charging and discharging, and it became a steady state.
From the above results, it is considered that the nonaqueous electrolyte secondary battery using the electrolytic solution of the present invention and using the aluminum current collector for the positive electrode hardly causes elution of Al even at a high potential. Although it is not clear why the elution of Al is unlikely to occur, the electrolytic solution of the present invention differs from the conventional electrolytic solution in the types of metal salt and organic solvent, the existing environment and the metal salt concentration. In comparison with this, it is presumed that the solubility of Al in the electrolytic solution of the present invention is low.
(EB13)
 電解液E8にかえて電解液E11を用いた以外は、EB12と同様にして、非水電解質二次電池EB13を得た。
(EB13)
A nonaqueous electrolyte secondary battery EB13 was obtained in the same manner as EB12 except that the electrolytic solution E11 was used instead of the electrolytic solution E8.
(EB14)
 電解液E8にかえて電解液E16を用いた以外は、EB12と同様にして、非水電解質二次電池EB14を得た。
(EB14)
A nonaqueous electrolyte secondary battery EB14 was obtained in the same manner as EB12 except that the electrolytic solution E16 was used instead of the electrolytic solution E8.
(EB15)
 電解液E8にかえて電解液E19を用いた以外は、EB12と同様にして、非水電解質二次電池EB15を得た。
(EB15)
A nonaqueous electrolyte secondary battery EB15 was obtained in the same manner as EB12 except that the electrolytic solution E19 was used instead of the electrolytic solution E8.
(EB16)
 電解液E8にかえて電解液E13を用いた以外は、EB12と同様にして、非水電解質二次電池EB16を得た。
(EB16)
A nonaqueous electrolyte secondary battery EB16 was obtained in the same manner as EB12 except that the electrolytic solution E13 was used instead of the electrolytic solution E8.
(CB6)
 電解液E8にかえて電解液C5を用いた以外は、EB12と同様にして、非水電解質二次電池CB6を得た。
(CB6)
A nonaqueous electrolyte secondary battery CB6 was obtained in the same manner as EB12 except that the electrolytic solution C5 was used instead of the electrolytic solution E8.
(CB7)
 電解液E8にかえて電解液C6を用いた以外は、EB12と同様にして、非水電解質二次電池CB7を得た。
(CB7)
A nonaqueous electrolyte secondary battery CB7 was obtained in the same manner as EB12 except that the electrolytic solution C6 was used instead of the electrolytic solution E8.
  (評価例37:作用極Alでのサイクリックボルタンメトリー評価)
 EB12~EB15およびCB6に対して、3.1V~4.6V、1mV/sの条件で5サイクルのサイクリックボルタンメトリー評価を行い、その後、3.1V~5.1V、1mV/sの条件で5サイクルのサイクリックボルタンメトリー評価を行った。
(Evaluation Example 37: Cyclic voltammetry evaluation with working electrode Al)
For EB12 to EB15 and CB6, cyclic voltammetry evaluation was performed for 5 cycles under conditions of 3.1 V to 4.6 V and 1 mV / s, and thereafter, 5 conditions were applied under conditions of 3.1 V to 5.1 V and 1 mV / s. Cyclic voltammetric evaluation of the cycle was performed.
 また、EB13、EB16およびCB7に対して、3.0V~4.5V、1mV/sの条件で、10サイクルのサイクリックボルタンメトリー評価を行い、その後、3.0V~5.0V、1mV/sの条件で、10サイクルのサイクリックボルタンメトリー評価を行った。 In addition, for EB13, EB16 and CB7, 10 cycles of cyclic voltammetry was evaluated under the conditions of 3.0 V to 4.5 V and 1 mV / s, and then 3.0 V to 5.0 V and 1 mV / s. Under conditions, 10 cycles of cyclic voltammetry evaluation was performed.
 EB12~EB15およびCB6に対する電位と応答電流との関係を示すグラフを図91~図99に示す。また、EB13、EB16およびCB7に対する電位と応答電流との関係を示すグラフを図100~図105に示す。 91 to 99 are graphs showing the relationship between the potential and response current for EB12 to EB15 and CB6. Further, graphs showing the relationship between the potential and response current with respect to EB13, EB16, and CB7 are shown in FIGS.
 図99から、CB6では、2サイクル以降も3.1Vから4.6Vにかけて電流が流れ、高電位になるに従い電流が増大しているのがわかる。また、図104および図105から、CB7においても同様に、2サイクル以降も3.0Vから4.5Vにかけて電流が流れ、高電位になるに従い電流が増大している。この電流は、作用極のアルミニウムが腐食したことによるAlの酸化電流と推定される。 From FIG. 99, it can be seen that in CB6, the current flows from 3.1 V to 4.6 V after the second cycle, and the current increases as the potential increases. In FIGS. 104 and 105, similarly, in CB7, the current flows from 3.0 V to 4.5 V in the second and subsequent cycles, and the current increases as the potential increases. This current is presumed to be the oxidation current of Al due to the corrosion of the working electrode aluminum.
 他方、図91~図98から、EB12~EB15では2サイクル以降は3.1Vから4.6Vにかけてほとんど電流が流れていないことがわかる。4.3V以上では電位上昇に伴いわずかに電流の増大が観察されるものの、サイクルを繰り返すに従い、電流の量は減少し、定常状態に向かった。特に、EB13~EB15は、高電位である5.1Vまで電流の顕著な増大が観察されず、しかも、サイクルの繰り返しに伴い電流量の減少が観察された。 On the other hand, it can be seen from FIGS. 91 to 98 that in EB12 to EB15, almost no current flows from 3.1 V to 4.6 V after two cycles. Although a slight increase in current was observed as the potential increased at 4.3 V or higher, the amount of current decreased as the cycle was repeated, and the steady state was reached. In particular, in EB13 to EB15, no significant increase in current was observed up to 5.1 V, which is a high potential, and a decrease in the amount of current was observed as the cycle was repeated.
 また、図100~図103から、EB13およびEB16においても同様に、2サイクル以降は3.0Vから4.5Vにかけてほとんど電流が流れていないことがわかる。特に3サイクル目以降では4.5Vに至るまで電流の増大はほぼない。そして、EB16では高電位となる4.5V以降に電流の増大がみられるが、これはCB7における4.5V以降の電流値に比べると遙かに小さい値である。EB13については、4.5V以降も5.0Vに至るまで電流の増大はほぼなく、EB13~EB15と同様に、サイクルの繰り返しに伴い電流量の減少が観察された。 Also, from FIG. 100 to FIG. 103, it can be seen that in EB13 and EB16 as well, almost no current flows from 3.0 V to 4.5 V after two cycles. In particular, after the third cycle, there is almost no increase in current up to 4.5V. In EB16, an increase in current is observed after 4.5V, which is a high potential, which is much smaller than the current value after 4.5V in CB7. For EB13, there was almost no increase in current from 4.5V to 5.0V, and a decrease in the amount of current was observed as the cycle was repeated, as in EB13 to EB15.
 サイクリックボルタンメトリー評価の結果から、5Vを超える高電位条件でも、電解液E8、E11、E16、およびE19のアルミニウムに対する腐食性は低いといえる。すなわち、電解液E8、E11、E16、およびE19は、集電体などにアルミニウムを用いた電池に対し、好適な電解液といえる。 From the results of cyclic voltammetry evaluation, it can be said that the corrosiveness of the electrolytes E8, E11, E16, and E19 to aluminum is low even under high potential conditions exceeding 5V. That is, the electrolytes E8, E11, E16, and E19 can be said to be suitable electrolytes for batteries using aluminum as a current collector or the like.
(EB17)
 電解液E8を用いた非水電解質二次電池EB17を以下のとおり製造した。
 正極活物質であるNCM523を94質量部、導電助剤であるABを3質量部、および結着剤であるPVdFを3質量部とり、これらを混合した。この混合物を適量のNMPに分散させて、スラリー状の正極合剤を得た。正極集電体として厚み20μmのアルミニウム箔(JIS A1000番系)を準備した。この正極集電体の表面に、ドクターブレードを用いて上記正極合剤が膜状になるように塗布した。正極合剤が塗布された正極集電体を80℃で20分間乾燥することでNMPを揮発により除去した。その後、この正極合剤と正極集電体との複合体をプレスし接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、正極集電体上に正極活物質層が形成された正極を得た。
 負極活物質である天然黒鉛を98質量部、結着剤であるSBRおよびCMCをそれぞれ1質量部とり、これらを混合した。この混合物を適量のイオン交換水に分散させて、スラリー状の負極合剤を得た。負極集電体として厚み20μmの銅箔を準備した。この負極集電体の表面に、ドクターブレードを用いて、上記負極合剤を膜状に塗布した。負極合剤が塗布された負極集電体を乾燥して水を除去し、その後、負極合剤と負極集電体との複合体をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極集電体上に負極活物質層が形成された負極を得た。
 セパレータとして、厚さ20μmのセルロース製不織布を準備した。
 正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液E8を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉された非水電解質二次電池EB17を得た。
(EB17)
A nonaqueous electrolyte secondary battery EB17 using the electrolytic solution E8 was produced as follows.
94 parts by mass of NCM523 as a positive electrode active material, 3 parts by mass of AB as a conductive additive, and 3 parts by mass of PVdF as a binder were mixed. This mixture was dispersed in an appropriate amount of NMP to obtain a slurry-like positive electrode mixture. An aluminum foil (JIS A1000 series) having a thickness of 20 μm was prepared as a positive electrode current collector. The surface of the positive electrode current collector was applied using a doctor blade so that the positive electrode mixture was in the form of a film. NMP was removed by volatilization by drying the positive electrode current collector coated with the positive electrode mixture at 80 ° C. for 20 minutes. Thereafter, the composite of the positive electrode mixture and the positive electrode current collector was pressed to obtain a bonded product. The obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a positive electrode in which a positive electrode active material layer was formed on the positive electrode current collector.
98 parts by mass of natural graphite as a negative electrode active material and 1 part by mass of SBR and CMC as binders were taken and mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to obtain a slurry-like negative electrode mixture. A copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The negative electrode mixture was applied to the surface of the negative electrode current collector in the form of a film using a doctor blade. The negative electrode current collector coated with the negative electrode mixture was dried to remove water, and then a composite of the negative electrode mixture and the negative electrode current collector was pressed to obtain a bonded product. The obtained joined product was heat-dried at 100 ° C. for 6 hours with a vacuum dryer to obtain a negative electrode in which a negative electrode active material layer was formed on the negative electrode current collector.
A cellulose nonwoven fabric having a thickness of 20 μm was prepared as a separator.
A separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution E8 was injected into the laminated film in a bag shape. Thereafter, the remaining one side was sealed to obtain a nonaqueous electrolyte secondary battery EB17 in which the four sides were hermetically sealed, and the electrode plate group and the electrolyte were sealed.
(EB18)
 電解液E8を用いた非水電解質二次電池EB18を以下のとおり製造した。
 正極はEB17の正極と同様に製造した。
 負極活物質である天然黒鉛90質量部、および結着剤であるPVdF10質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリー状の負極合剤を得た。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記負極合剤を膜状に塗布した。負極合剤と負極集電体との複合体を乾燥して水を除去し、その後プレスして接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極集電体上に負極活物質層が形成された負極を得た。この負極を用い、EB17と同様にして、非水電解質二次電池EB18を得た。
(EB18)
A nonaqueous electrolyte secondary battery EB18 using the electrolytic solution E8 was produced as follows.
The positive electrode was manufactured in the same manner as the positive electrode of EB17.
90 parts by mass of natural graphite as a negative electrode active material and 10 parts by mass of PVdF as a binder were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to obtain a slurry-like negative electrode mixture. A copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The negative electrode mixture was applied to the surface of the copper foil in the form of a film using a doctor blade. The composite of the negative electrode mixture and the negative electrode current collector was dried to remove water, and then pressed to obtain a bonded product. The obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a negative electrode in which a negative electrode active material layer was formed on the negative electrode current collector. Using this negative electrode, a nonaqueous electrolyte secondary battery EB18 was obtained in the same manner as EB17.
(CB8)
 電解液C5を用いた以外は、EB17と同様に、非水電解質二次電池CB8を得た。
(CB8)
A nonaqueous electrolyte secondary battery CB8 was obtained in the same manner as EB17 except that the electrolytic solution C5 was used.
(CB9)
 電解液C5を用いた以外は、EB18と同様に、非水電解質二次電池CB9を得た。
(CB9)
A nonaqueous electrolyte secondary battery CB9 was obtained in the same manner as EB18 except that the electrolytic solution C5 was used.
  (評価例38:非水電解質二次電池の入出力特性)
 EB17、EB18、CB8、CB9の出力特性を以下の条件で評価した。
(1)0℃または25℃、SOC80%での入力特性評価
 評価条件は、充電状態(SOC)80%、0℃または25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。入力特性の評価は、2秒入力と5秒入力について電池毎にそれぞれ3回行った。
 また、各電池の体積に基づき、25℃、2秒入力における電池出力密度(W/L)を算出した。
 入力特性の評価結果を表40に示す。表40の中の「2秒入力」は、充電開始から2秒後での入力を意味し、「5秒入力」は充電開始から5秒後での入力を意味している。
 表40に示すように、温度の違いに関わらず、EB17の入力はCB8の入力に比べて著しく高かった。同様に、EB18の入力はCB9の入力に比べて著しく高かった。
 またEB17の電池入力密度はCB8の電池入力密度に比べて著しく高かった。同様にEB18の電池入力密度はCB9の電池入力密度に比べて著しく高かった。
(Evaluation Example 38: Input / Output Characteristics of Nonaqueous Electrolyte Secondary Battery)
The output characteristics of EB17, EB18, CB8, and CB9 were evaluated under the following conditions.
(1) Evaluation of input characteristics at 0 ° C. or 25 ° C. and SOC 80% Evaluation conditions were 80% charge state (SOC), 0 ° C. or 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh. The input characteristics were evaluated three times for each battery for a 2-second input and a 5-second input.
Moreover, based on the volume of each battery, the battery output density (W / L) in 25 degreeC and 2 second input was computed.
Table 40 shows the evaluation results of the input characteristics. In Table 40, “2 second input” means an input after 2 seconds from the start of charging, and “5 seconds input” means an input after 5 seconds from the start of charging.
As shown in Table 40, the input of EB17 was significantly higher than the input of CB8 regardless of the difference in temperature. Similarly, the EB18 input was significantly higher than the CB9 input.
The battery input density of EB17 was significantly higher than that of CB8. Similarly, the battery input density of EB18 was significantly higher than the battery input density of CB9.
(2)0℃または25℃、SOC20%での出力特性評価
 評価条件は、充電状態(SOC)20%、0℃または25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。SOC20%、0℃は、例えば、冷蔵室などで使用する場合のように出力特性が出にくい領域である。出力特性の評価は、2秒出力と5秒出力について電池毎にそれぞれ3回行った。
 また、各電池の体積に基づき、25℃、2秒出力における電池出力密度(W/L)を算出した。
 出力特性の評価結果を表40に示す。表40の中の「2秒出力」は、放電開始から2秒後での出力を意味し、「5秒出力」は放電開始から5秒後での出力を意味している。
 表40に示すように、温度の違いに関わらずEB17の出力はCB8の出力に比べて著しく高かった。同様にEB18の出力はCB9の出力に比べて著しく高かった。
 また、EB17の電池出力密度はCB8の電池出力密度に比べて著しく高かった。同様に、EB18の電池出力密度はCB9の電池出力密度に比べて著しく高かった。
(2) Evaluation of output characteristics at 0 ° C. or 25 ° C. and SOC 20% The evaluation conditions were the state of charge (SOC) 20%, 0 ° C. or 25 ° C., operating voltage range 3V-4.2V, and capacity 13.5 mAh. SOC 20%, 0 ° C. is a region where output characteristics are difficult to be obtained, for example, when used in a refrigerator room. The output characteristics were evaluated three times for each battery for the 2-second output and 5-second output.
Moreover, based on the volume of each battery, the battery output density (W / L) in 25 degreeC and a 2-second output was computed.
Table 40 shows the evaluation results of the output characteristics. In Table 40, “2 seconds output” means an output 2 seconds after the start of discharge, and “5 seconds output” means an output 5 seconds after the start of discharge.
As shown in Table 40, the output of EB17 was significantly higher than the output of CB8 regardless of the difference in temperature. Similarly, the output of EB18 was significantly higher than that of CB9.
In addition, the battery output density of EB17 was significantly higher than that of CB8. Similarly, the battery output density of EB18 was significantly higher than that of CB9.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
(EB19)
 電解液E8を用いた非水電解質二次電池EB19を以下のとおり製造した。正極はEB17の正極と同様に製造した。
 負極活物質である天然黒鉛98質量部、ならびに結着剤であるSBR1質量部およびCMC1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリー状の負極合剤を得た。この負極合剤を用い、EB17と同様にして負極を得た。セパレータとして、実験用濾紙(東洋濾紙株式会社、セルロース製、厚み260μm)を準備した。上記の正極、負極およびセパレータを用い、EB17と同様にして、非水電解質二次電池EB19を得た。
(EB19)
A nonaqueous electrolyte secondary battery EB19 using the electrolytic solution E8 was produced as follows. The positive electrode was manufactured in the same manner as the positive electrode of EB17.
98 parts by mass of natural graphite, which is a negative electrode active material, and 1 part by mass of SBR and 1 part by mass of CMC, which are binders, were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to obtain a slurry-like negative electrode mixture. Using this negative electrode mixture, a negative electrode was obtained in the same manner as in EB17. As a separator, experimental filter paper (Toyo Filter Paper Co., Ltd., cellulose, thickness 260 μm) was prepared. Using the above positive electrode, negative electrode and separator, a nonaqueous electrolyte secondary battery EB19 was obtained in the same manner as EB17.
(CB10)
 電解液C5を用いたこと以外は、EB19と同様にして非水電解質二次電池CB10を得た。
(CB10)
A nonaqueous electrolyte secondary battery CB10 was obtained in the same manner as EB19 except that the electrolytic solution C5 was used.
  (評価例39:電池の熱安定性)
 EB19およびCB10の充電状態の正極に対する電解液の熱安定性を以下の方法で評価した。
 各非水電解質二次電池に対し、充電終止電圧4.2V、定電流定電圧条件で満充電した。満充電後の非水電解質二次電池を解体し、正極を取り出した。当該正極から得られた正極活物質層3mgおよび電解液1.8μLをステンレス製のパンに入れ、該パンを密閉した。密閉パンを用いて、窒素雰囲気下、昇温速度20℃/min.の条件で示差走査熱量分析を行い、DSC曲線を観察した。示差走査熱量測定装置としてRigaku DSC8230を使用した。EB19の充電状態の正極活物質層と電解液を共存させた場合のDSCチャートを図106に示す。また、CB10の充電状態の正極活物質層と電解液を共存させた場合のDSCチャートを図107にそれぞれ示す。
(Evaluation Example 39: Thermal stability of battery)
The thermal stability of the electrolyte solution with respect to the charged positive electrodes of EB19 and CB10 was evaluated by the following method.
Each nonaqueous electrolyte secondary battery was fully charged under a charge end voltage of 4.2 V and a constant current and constant voltage condition. The fully charged nonaqueous electrolyte secondary battery was disassembled and the positive electrode was taken out. 3 mg of the positive electrode active material layer obtained from the positive electrode and 1.8 μL of the electrolytic solution were placed in a stainless steel pan, and the pan was sealed. Using a sealed pan, under a nitrogen atmosphere, the heating rate was 20 ° C./min. The differential scanning calorimetry was performed under the conditions described above, and the DSC curve was observed. A Rigaku DSC8230 was used as a differential scanning calorimeter. FIG. 106 shows a DSC chart when the positive electrode active material layer in the charged state of EB19 and the electrolyte coexist. In addition, FIG. 107 shows DSC charts when the positive electrode active material layer in the charged state of CB10 and the electrolyte coexist, respectively.
 図106および図107の結果から明らかなように、EB19における充電状態の正極と電解液を共存させた場合のDSC曲線はほとんど吸発熱ピークが観察されなかったのに対し、CB10の充電状態の正極と電解液を共存させた場合のDSC曲線においては300℃付近に発熱ピークが観察された。この発熱ピークは、正極活物質と電解液とが反応した結果、生じたものと推定される。
 これらの結果から、本発明の電解液を用いた非水電解質二次電池は、従来の電解液を用いた非水電解質二次電池と比較して、正極活物質と電解液との反応性が低く、熱安定性に優れていることがわかる。 
As is apparent from the results of FIGS. 106 and 107, the DSC curve in the case where the positive electrode in the charged state and the electrolyte in EB19 coexist hardly showed an endothermic peak, whereas the positive electrode in the charged state of CB10. An exothermic peak was observed at around 300 ° C. in the DSC curve in the case of coexisting with electrolyte. This exothermic peak is presumed to have occurred as a result of the reaction between the positive electrode active material and the electrolytic solution.
From these results, the non-aqueous electrolyte secondary battery using the electrolytic solution of the present invention is more reactive with the positive electrode active material and the electrolytic solution than the non-aqueous electrolyte secondary battery using the conventional electrolytic solution. It can be seen that it is low and has excellent thermal stability.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 本発明の非水電解質二次電池は、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタなどに利用できる。また電気自動車やハイブリッド自動車のモータ駆動用、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器などに利用される非水電解質二次電池として有用であり、特に、大容量、大出力が必要な電気自動車やハイブリッド自動車のモータ駆動用に最適に用いることができる。 The nonaqueous electrolyte secondary battery of the present invention can be used for secondary batteries, electric double layer capacitors, lithium ion capacitors, and the like. It is also useful as a non-aqueous electrolyte secondary battery for motor drive of electric vehicles and hybrid vehicles, personal computers, portable communication devices, home appliances, office equipment, industrial equipment, etc. Especially, large capacity and high output are required. It can be optimally used for driving a motor of a simple electric vehicle or hybrid vehicle.

Claims (23)

  1.  負極と電解液とを含み、
     前記電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
     前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
     前記負極は、負極活物質に、ラマンスペクトルにおいてG-bandとD-bandのピークの比であるG/D比が3.5以上の黒鉛を含む非水電解質二次電池。
    Including a negative electrode and an electrolyte,
    The electrolytic solution includes a salt having an alkali metal, an alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element,
    Regarding the peak intensity derived from the organic solvent in the vibrational spectrum of the electrolyte solution, when the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the peak is Is, Is> Io,
    The negative electrode is a non-aqueous electrolyte secondary battery in which a negative electrode active material includes graphite having a G / D ratio of 3.5 or more, which is a ratio of G-band and D-band peaks in a Raman spectrum.
  2.  前記G/D比は10以上である請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the G / D ratio is 10 or more.
  3.  負極と電解液とを含み、
     前記電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
     前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
     前記負極は、負極活物質に、X線回折法で測定されるX線回折プロファイルにおいて2θ=20度~30度に現れるピークの半値幅から算出された結晶子サイズが20nm以下の炭素材料を含む非水電解質二次電池。
    Including a negative electrode and an electrolyte,
    The electrolytic solution includes a salt having an alkali metal, an alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element,
    Regarding the peak intensity derived from the organic solvent in the vibrational spectrum of the electrolyte solution, when the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the peak is Is, Is> Io,
    The negative electrode includes, in the negative electrode active material, a carbon material having a crystallite size of 20 nm or less calculated from a half width of a peak appearing at 2θ = 20 degrees to 30 degrees in an X-ray diffraction profile measured by an X-ray diffraction method. Non-aqueous electrolyte secondary battery.
  4.  前記結晶子サイズは5nm以下である請求項3に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 3, wherein the crystallite size is 5 nm or less.
  5.  負極と電解液とを含み、
     前記電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
     前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
     前記負極は、負極活物質に、ケイ素元素および/またはスズ元素を含む非水電解質二次電池。
    Including a negative electrode and an electrolyte,
    The electrolytic solution includes a salt having an alkali metal, an alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element,
    Regarding the peak intensity derived from the organic solvent in the vibrational spectrum of the electrolyte solution, when the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the peak is Is, Is> Io,
    The negative electrode is a non-aqueous electrolyte secondary battery in which a negative electrode active material contains a silicon element and / or a tin element.
  6.  前記負極活物質は、ケイ素元素を含む請求項5に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 5, wherein the negative electrode active material contains silicon element.
  7.  前記負極活物質は、ケイ素元素と、酸素元素および/または炭素元素とを含む請求項5または請求項6に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 5 or 6, wherein the negative electrode active material includes a silicon element, an oxygen element and / or a carbon element.
  8.  負極と電解液とを含み、
     前記電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
     前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
     前記負極は、負極活物質として、リチウムイオンを吸蔵および放出可能な金属酸化物を含む非水電解質二次電池。
    Including a negative electrode and an electrolyte,
    The electrolytic solution includes a salt having an alkali metal, an alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element,
    Regarding the peak intensity derived from the organic solvent in the vibrational spectrum of the electrolyte solution, when the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the peak is Is, Is> Io,
    The negative electrode is a non-aqueous electrolyte secondary battery including a metal oxide capable of inserting and extracting lithium ions as a negative electrode active material.
  9.  前記金属酸化物は、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズケイ素酸化物から選ばれる少なくとも一種を主成分とする請求項8に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 8, wherein the metal oxide is mainly composed of at least one selected from titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, and tin silicon oxide. .
  10.  前記金属酸化物は、Li4+xTi5+y12(xは-1≦x≦4、yは-1≦y≦1)で表されるリチウムチタン酸化物を主成分とする請求項8または請求項9に記載の非水電解質二次電池。 The metal oxide mainly comprises lithium titanium oxide represented by Li 4 + x Ti 5 + y O 12 (x is -1≤x≤4, y is -1≤y≤1). 9. The nonaqueous electrolyte secondary battery according to 9.
  11.  負極と電解液とを含み、
     前記電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
     前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
     前記負極は、負極活物質に、長軸と短軸の比(長軸/短軸)が1~5である黒鉛を含む非水電解質二次電池。
    Including a negative electrode and an electrolyte,
    The electrolytic solution includes a salt having an alkali metal, an alkaline earth metal or aluminum as a cation, and an organic solvent having a hetero element,
    Regarding the peak intensity derived from the organic solvent in the vibrational spectrum of the electrolyte solution, when the intensity of the original peak of the organic solvent is Io and the intensity of the peak shifted from the peak is Is, Is> Io,
    The negative electrode is a non-aqueous electrolyte secondary battery in which a negative electrode active material includes graphite having a major axis / minor axis ratio (major axis / minor axis) of 1 to 5.
  12.  前記黒鉛の粒子はX線回折で測定したI(110)/I(004)が0.03~1の範囲にある請求項11に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 11, wherein the graphite particles have an I (110) / I (004) measured by X-ray diffraction in a range of 0.03 to 1.
  13.  前記電解液は、前記塩のカチオンがリチウムである請求項1~12の何れか一項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 12, wherein in the electrolytic solution, a cation of the salt is lithium.
  14.  前記電解液は、前記塩のアニオンの化学構造が、ハロゲン、ホウ素、窒素、酸素、硫黄または炭素から選択される少なくとも1つの元素を含む請求項1~13の何れか一項に記載の非水電解質二次電池。 The non-aqueous solution according to any one of claims 1 to 13, wherein the electrolytic solution contains at least one element selected from halogen, boron, nitrogen, oxygen, sulfur or carbon, in the chemical structure of the anion of the salt. Electrolyte secondary battery.
  15.  前記電解液は、前記塩のアニオンの化学構造が下記一般式(1)、一般式(2)または一般式(3)で表される請求項1~14の何れか一項に記載の非水電解質二次電池。
      (R)(R)N・・・・・・一般式(1)
    (Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     また、RとRは、互いに結合して環を形成しても良い。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、Rは、RまたはRと結合して環を形成しても良い。)
      RY・・・・・・一般式(2)
    (Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、Rは、Rと結合して環を形成しても良い。
     Yは、O、Sから選択される。)
      (R)(R)(R)C・・・・・・一般式(3)
    (Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
     また、R、R、Rのうち、いずれか二つまたは三つが結合して環を形成しても良い。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、R、R、Rは、R、RまたはRと結合して環を形成しても良い。)
    The non-aqueous electrolyte according to any one of claims 1 to 14, wherein the electrolyte has a chemical structure of the anion of the salt represented by the following general formula (1), general formula (2), or general formula (3). Electrolyte secondary battery.
    (R 1 X 1 ) (R 2 X 2 ) N... General formula (1)
    (R 1 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted with, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, or an alkoxy group which may be substituted with a substituent , An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
    R 2 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, an alkoxy group which may be substituted with a substituent, Selected from an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, CN, SCN, OCN The
    R 1 and R 2 may be bonded to each other to form a ring.
    X 1 is selected from SO 2 , C = O, C = S, R a P = O, R b P = S, S = O, Si = O.
    X 2 is, SO 2, C = O, C = S, R c P = O, R d P = S, S = O, is selected from Si = O.
    R a , R b , R c , and R d are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent. An unsaturated alkyl group which may be substituted, an unsaturated cycloalkyl group which may be substituted with a substituent, an aromatic group which may be substituted with a substituent, or a heterocyclic group which may be substituted with a substituent , An alkoxy group that may be substituted with a substituent, an unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, and a non-optionally substituted substituent. Selected from saturated thioalkoxy groups, OH, SH, CN, SCN, OCN.
    R a , R b , R c , and R d may combine with R 1 or R 2 to form a ring. )
    R 3 X 3 Y: General formula (2)
    (R 3 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted with, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, or an alkoxy group which may be substituted with a substituent , An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
    X 3 is selected from SO 2 , C = O, C = S, R e P = O, R f P = S, S = O, and Si = O.
    R e and R f are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent. A saturated alkyl group, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, a heterocyclic group that may be substituted with a substituent, and a substituent An alkoxy group which may be substituted, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, OH , SH, CN, SCN, and OCN.
    R e and R f may combine with R 3 to form a ring.
    Y is selected from O and S. )
    (R 4 X 4 ) (R 5 X 5 ) (R 6 X 6 ) C ... General formula (3)
    (R 4 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted with, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, or an alkoxy group which may be substituted with a substituent , An unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, an unsaturated thioalkoxy group that may be substituted with a substituent, CN, SCN, or OCN Is done.
    R 5 represents hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, an alkoxy group which may be substituted with a substituent, Selected from an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, CN, SCN, OCN The
    R 6 is hydrogen, halogen, an alkyl group which may be substituted with a substituent, a cycloalkyl group which may be substituted with a substituent, an unsaturated alkyl group which may be substituted with a substituent, or a substituent. An unsaturated cycloalkyl group which may be substituted, an aromatic group which may be substituted with a substituent, a heterocyclic group which may be substituted with a substituent, an alkoxy group which may be substituted with a substituent, Selected from an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, CN, SCN, OCN The
    Further, any two or three of R 4 , R 5 and R 6 may be bonded to form a ring.
    X 4 is, SO 2, C = O, C = S, R g P = O, R h P = S, S = O, is selected from Si = O.
    X 5 is selected from SO 2 , C = O, C = S, R i P = O, R j P = S, S = O, Si = O.
    X 6 is selected from SO 2 , C = O, C = S, R k P = O, R 1 P = S, S = O, Si = O.
    R g , R h , R i , R j , R k , and R l are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent. Group, an unsaturated alkyl group that may be substituted with a substituent, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent A heterocyclic group which may be substituted, an alkoxy group which may be substituted with a substituent, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, and a substituent It is selected from an unsaturated thioalkoxy group which may be substituted, OH, SH, CN, SCN, OCN.
    R g , R h , R i , R j , R k , and R l may combine with R 4 , R 5, or R 6 to form a ring. )
  16.  前記電解液は、前記塩のアニオンの化学構造が下記一般式(4)、一般式(5)または一般式(6)で表される請求項1~15の何れか一項に記載の非水電解質二次電池。
      (R)(R)N・・・・・・一般式(4)
    (R、Rは、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
     n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
     また、RとRは、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、Rは、RまたはRと結合して環を形成しても良い。)
      RY・・・・・・一般式(5)
    (Rは、CClBr(CN)(SCN)(OCN)である。
     n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
     Xは、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、Rは、Rと結合して環を形成しても良い。
     Yは、O、Sから選択される。)
      (R1010)(R1111)(R1212)C・・・一般式(6)
    (R10、R11、R12は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
     R10、R11、R12のうちいずれか二つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の三つが結合して環を形成しても良く、その場合、三つのうち二つの基が2n=a+b+c+d+e+f+g+hを満たし、一つの基が2n-1=a+b+c+d+e+f+g+hを満たす。
     X10は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     X11は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     X12は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
     R、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
     また、R、R、R、R、R、Rは、R10、R11またはR12と結合して環を形成しても良い。)
    The non-aqueous electrolyte according to any one of claims 1 to 15, wherein the electrolyte has a chemical structure of the anion of the salt represented by the following general formula (4), general formula (5), or general formula (6). Electrolyte secondary battery.
    (R 7 X 7 ) (R 8 X 8 ) N ... General formula (4)
    (R 7 and R 8 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h .
    n, a, b, c, d, e, f, g, and h are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e + f + g + h.
    R 7 and R 8 may combine with each other to form a ring, in which case 2n = a + b + c + d + e + f + g + h is satisfied.
    X 7 is, SO 2, C = O, C = S, R m P = O, R n P = S, S = O, is selected from Si = O.
    X 8 is selected from SO 2 , C = O, C = S, R o P = O, R p P = S, S = O, Si = O.
    R m , R n , R o , and R p are each independently substituted with hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a substituent. An unsaturated alkyl group which may be substituted, an unsaturated cycloalkyl group which may be substituted with a substituent, an aromatic group which may be substituted with a substituent, or a heterocyclic group which may be substituted with a substituent , An alkoxy group that may be substituted with a substituent, an unsaturated alkoxy group that may be substituted with a substituent, a thioalkoxy group that may be substituted with a substituent, and a non-optionally substituted substituent. Selected from saturated thioalkoxy groups, OH, SH, CN, SCN, OCN.
    R m , R n , R o , and R p may combine with R 7 or R 8 to form a ring. )
    R 9 X 9 Y: General formula (5)
    (R 9 is a C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h.
    n, a, b, c, d, e, f, g, and h are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e + f + g + h.
    X 9 is, SO 2, C = O, C = S, R q P = O, R r P = S, S = O, is selected from Si = O.
    R q and R r are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, a cycloalkyl group that may be substituted with a substituent, or a group that may be substituted with a substituent. A saturated alkyl group, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, a heterocyclic group that may be substituted with a substituent, and a substituent An alkoxy group which may be substituted, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, an unsaturated thioalkoxy group which may be substituted with a substituent, OH , SH, CN, SCN, and OCN.
    R q and R r may combine with R 9 to form a ring.
    Y is selected from O and S. )
    (R 10 X 10) (R 11 X 11) (R 12 X 12) C ··· formula (6)
    (R 10 , R 11 , R 12 are each independently C n H a F b Cl c Br d I e (CN) f (SCN) g (OCN) h . N, a, b, c, d, e, f, g, and h are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e + f + g + h.
    Any two of R 10 , R 11 , and R 12 may combine to form a ring, in which case the group forming the ring satisfies 2n = a + b + c + d + e + f + g + h. Three of R 10 , R 11 and R 12 may combine to form a ring, in which case two of the three satisfy 2n = a + b + c + d + e + f + g + h, and one group satisfies 2n−1 = a + b + c + d + e + f + g + h. Fulfill.
    X 10 is, SO 2, C = O, C = S, R s P = O, R t P = S, S = O, is selected from Si = O.
    X 11 is, SO 2, C = O, C = S, R u P = O, R v P = S, S = O, is selected from Si = O.
    X 12 is, SO 2, C = O, C = S, R w P = O, R x P = S, S = O, is selected from Si = O.
    R s , R t , R u , R v , R w , and R x are each independently hydrogen, halogen, an alkyl group that may be substituted with a substituent, or a cycloalkyl that may be substituted with a substituent. Group, an unsaturated alkyl group that may be substituted with a substituent, an unsaturated cycloalkyl group that may be substituted with a substituent, an aromatic group that may be substituted with a substituent, or a substituent that is substituted with a substituent A heterocyclic group which may be substituted, an alkoxy group which may be substituted with a substituent, an unsaturated alkoxy group which may be substituted with a substituent, a thioalkoxy group which may be substituted with a substituent, and a substituent It is selected from an unsaturated thioalkoxy group which may be substituted, OH, SH, CN, SCN, OCN.
    R s , R t , R u , R v , R w , and R x may combine with R 10 , R 11, or R 12 to form a ring. )
  17.  前記電解液は、前記塩のアニオンの化学構造が下記一般式(7)、一般式(8)または一般式(9)で表される請求項1~16の何れか一項に記載の非水電解質二次電池。
      (R13SO)(R14SO)N・・・・・・一般式(7)
    (R13、R14は、それぞれ独立に、CClBrである。
     n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
     また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
      R15SO・・・・・・一般式(8)
    (R15は、CClBrである。
     n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
     (R16SO)(R17SO)(R18SO)C・・一般式(9)
    (R16、R17、R18は、それぞれ独立に、CClBrである。
     n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
     R16、R17、R18のうちいずれか二つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の三つが結合して環を形成しても良く、その場合、三つのうち二つの基が2n=a+b+c+d+eを満たし、一つの基が2n-1=a+b+c+d+eを満たす。)
    The non-aqueous electrolyte according to any one of claims 1 to 16, wherein the electrolyte has a chemical structure of the salt anion represented by the following general formula (7), general formula (8), or general formula (9). Electrolyte secondary battery.
    (R 13 SO 2 ) (R 14 SO 2 ) N... General formula (7)
    (R 13 and R 14 are each independently C n H a F b Cl c Br d I e .
    n, a, b, c, d, and e are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e.
    R 13 and R 14 may combine with each other to form a ring, in which case 2n = a + b + c + d + e is satisfied. )
    R 15 SO 3 ... General formula (8)
    (R 15 is a C n H a F b Cl c Br d I e.
    n, a, b, c, d, and e are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e. )
    (R 16 SO 2 ) (R 17 SO 2 ) (R 18 SO 2 ) C. General formula (9)
    (R 16 , R 17 , and R 18 are each independently C n H a F b Cl c Br d I e .
    n, a, b, c, d, and e are each independently an integer of 0 or more, and satisfy 2n + 1 = a + b + c + d + e.
    Any two of R 16 , R 17 and R 18 may combine to form a ring, in which case the group forming the ring satisfies 2n = a + b + c + d + e. Three of R 16 , R 17 and R 18 may combine to form a ring, in which case two of the three satisfy 2n = a + b + c + d + e, and one group satisfies 2n−1 = a + b + c + d + e. Fulfill. )
  18.  前記電解液は、前記塩が(CFSONLi、(FSONLi、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、または(SOCFCFCFSO)NLiである請求項1~17の何れか一項に記載の非水電解質二次電池。 In the electrolytic solution, the salt is (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, FSO 2 (CF 3 SO 2 ) NLi, (SO 2 CF 2 CF 2 SO 2) NLi or (SO 2 CF 2 CF 2 CF 2 SO 2) non-aqueous electrolyte secondary battery according to any one of claims 1 to 17 which is a NLi,.
  19.  前記電解液は、前記有機溶媒のヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである請求項1~18の何れか一項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 18, wherein the electrolytic solution is at least one selected from nitrogen, oxygen, sulfur, and halogen as a hetero element of the organic solvent.
  20.  前記電解液は、前記有機溶媒が非プロトン性溶媒である請求項1~19の何れか一項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 19, wherein in the electrolytic solution, the organic solvent is an aprotic solvent.
  21.  前記電解液は、前記有機溶媒がアセトニトリルまたは1,2-ジメトキシエタンから選択される請求項1~20の何れか一項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 20, wherein the organic solvent is selected from acetonitrile or 1,2-dimethoxyethane.
  22.  前記有機溶媒が下記一般式(10)で示される鎖状カーボネートから選択される請求項1~20の何れか一項に記載の非水電解質二次電池。
      R19OCOOR20・・・・・・一般式(10)
    (R19、R20は、それぞれ独立に、鎖状アルキルであるCClBr、または、環状アルキルを化学構造に含むCClBrのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
    The nonaqueous electrolyte secondary battery according to any one of claims 1 to 20, wherein the organic solvent is selected from chain carbonates represented by the following general formula (10).
    R 19 OCOOR 20 ··· General formula (10)
    (R 19 and R 20 are each independently C n H a F b Cl c Br d I e which is a chain alkyl, or C m H f F g Cl h Br i I containing a cyclic alkyl in the chemical structure. .n selected from any of j, a, b, c, d, e, m, f, g, h, i, j are each independently an integer of 0 or more, 2n + 1 = a + b + c + d + e, 2m = f + g + h + i + j Meet)
  23.  前記有機溶媒がジメチルカーボネート、エチルメチルカーボネートまたはジエチルカーボネートから選択される請求項1~20、22の何れか一項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 20 and 22, wherein the organic solvent is selected from dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
PCT/JP2014/004911 2013-09-25 2014-09-25 Non-aqueous electrolyte secondary battery WO2015045387A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014004442.3T DE112014004442T5 (en) 2013-09-25 2014-09-25 Non-aqueous electrolyte secondary battery
KR1020167010615A KR101901675B1 (en) 2013-09-25 2014-09-25 Non-aqueous electrolyte secondary battery
CN201480053195.4A CN105580184B (en) 2013-09-25 2014-09-25 Non-aqueous electrolyte secondary battery
US15/024,415 US11011781B2 (en) 2013-09-25 2014-09-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP2013-198284 2013-09-25
JP2013-198282 2013-09-25
JP2013198282 2013-09-25
JP2013198283 2013-09-25
JP2013-198283 2013-09-25
JP2013198285 2013-09-25
JP2013198284 2013-09-25
JP2013198599 2013-09-25
JP2013-198599 2013-09-25
JP2013-198285 2013-09-25
JP2014065817 2014-03-27
JP2014065799 2014-03-27
JP2014-065817 2014-03-27
JP2014-065799 2014-03-27
JP2014186340A JP5817003B2 (en) 2013-09-25 2014-09-12 Nonaqueous electrolyte secondary battery
JP2014186341A JP5817004B2 (en) 2013-09-25 2014-09-12 Lithium ion secondary battery
JP2014186342A JP5817005B2 (en) 2013-09-25 2014-09-12 Non-aqueous secondary battery
JP2014-186341 2014-09-12
JP2014-186342 2014-09-12
JP2014186339A JP5817002B2 (en) 2013-09-25 2014-09-12 Non-aqueous secondary battery
JP2014-186340 2014-09-12
JP2014186338A JP5817001B2 (en) 2013-09-25 2014-09-12 Non-aqueous secondary battery
JP2014-186338 2014-09-12
JP2014-186339 2014-09-12

Publications (1)

Publication Number Publication Date
WO2015045387A1 true WO2015045387A1 (en) 2015-04-02

Family

ID=52742556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004911 WO2015045387A1 (en) 2013-09-25 2014-09-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
WO (1) WO2015045387A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022731A1 (en) * 2015-07-31 2017-02-09 日立化成株式会社 Lithium ion secondary battery
WO2017179411A1 (en) * 2016-04-15 2017-10-19 国立大学法人東京大学 Lithium ion secondary battery
CN108140894A (en) * 2015-10-05 2018-06-08 国立大学法人东京大学 Has the manufacturing method of the secondary cell of overlay film in electrode surface
US20180204686A1 (en) * 2015-08-04 2018-07-19 Nippon Electric Glass Co., Ltd. Negative electrode active material for power storage device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPH07320783A (en) * 1991-01-25 1995-12-08 Japan Storage Battery Co Ltd Nonaqueous electrolytic secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH11154513A (en) * 1997-09-19 1999-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2001507043A (en) * 1997-07-25 2001-05-29 アセップ・インク Ionic compounds with delocalized anionic charge and their use as ionic conductive components or catalysts
JP2001266878A (en) * 2000-03-21 2001-09-28 Nippon Steel Corp Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2002203562A (en) * 2000-12-28 2002-07-19 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2002523879A (en) * 1998-08-25 2002-07-30 スリーエム イノベイティブ プロパティズ カンパニー Cyano-substituted methide and amide salts
WO2006115023A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPH07320783A (en) * 1991-01-25 1995-12-08 Japan Storage Battery Co Ltd Nonaqueous electrolytic secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JP2001507043A (en) * 1997-07-25 2001-05-29 アセップ・インク Ionic compounds with delocalized anionic charge and their use as ionic conductive components or catalysts
JPH11154513A (en) * 1997-09-19 1999-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2002523879A (en) * 1998-08-25 2002-07-30 スリーエム イノベイティブ プロパティズ カンパニー Cyano-substituted methide and amide salts
JP2001266878A (en) * 2000-03-21 2001-09-28 Nippon Steel Corp Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2002203562A (en) * 2000-12-28 2002-07-19 Toshiba Corp Non-aqueous electrolyte secondary battery
WO2006115023A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYO YAEGASHI: "Yobai Bunshi no Haii Jotai Seigyo ni yoru Yuki Yoeki no Shinkino Hatsugen", ABSTRACTS, THE 53RD BATTERY SYMPOSIUM IN JAPAN , THE COMMITTEE OF BATTERY TECHNOLOGY, 13 November 2012 (2012-11-13), pages 507 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022731A1 (en) * 2015-07-31 2017-02-09 日立化成株式会社 Lithium ion secondary battery
CN107534186A (en) * 2015-07-31 2018-01-02 日立化成株式会社 Lithium rechargeable battery
US20180204686A1 (en) * 2015-08-04 2018-07-19 Nippon Electric Glass Co., Ltd. Negative electrode active material for power storage device
US10522299B2 (en) * 2015-08-04 2019-12-31 Nippon Electric Glass Co., Ltd. Negative electrode active material for power storage device
CN108140894A (en) * 2015-10-05 2018-06-08 国立大学法人东京大学 Has the manufacturing method of the secondary cell of overlay film in electrode surface
US10797350B2 (en) 2015-10-05 2020-10-06 Kabushiki Kaisha Toyota Jidoshokki Method for producing secondary battery including coating on electrode surface
CN108140894B (en) * 2015-10-05 2021-06-22 株式会社丰田自动织机 Method for manufacturing secondary battery having coating film on electrode surface
WO2017179411A1 (en) * 2016-04-15 2017-10-19 国立大学法人東京大学 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US11011781B2 (en) Nonaqueous electrolyte secondary battery
KR101901676B1 (en) Nonaqueous electrolyte secondary battery
JP5965445B2 (en) Nonaqueous electrolyte secondary battery
KR101967677B1 (en) Nonaqueous secondary battery
JP5967781B2 (en) Nonaqueous electrolyte secondary battery
JP2016167408A (en) Electrolyte
WO2015045387A1 (en) Non-aqueous electrolyte secondary battery
JP5817009B1 (en) Non-aqueous secondary battery
WO2015045389A1 (en) Electrolyte solution for electricity storage devices such as batteries and capacitors containing salt, wherein alkali metal, alkaline earth metal or aluminum serves as cations, and organic solvent having hetero element, method for producing same, and capacitor provided with said electrolyte solution
JP6575022B2 (en) Electrolytic solution containing a salt having alkali metal, alkaline earth metal or aluminum as a cation and an organic solvent having a hetero element
JP5965444B2 (en) Non-aqueous secondary battery
JP6437399B2 (en) Non-aqueous secondary battery
WO2015045386A1 (en) Nonaqueous secondary battery
JP5817004B2 (en) Lithium ion secondary battery
JP5817001B2 (en) Non-aqueous secondary battery
JP5817002B2 (en) Non-aqueous secondary battery
WO2015045393A1 (en) Nonaqueous electrolyte secondary battery
JP5817003B2 (en) Nonaqueous electrolyte secondary battery
JP5817006B1 (en) Non-aqueous secondary battery
JP5965446B2 (en) Power storage device
JP2016189340A (en) Nonaqueous electrolyte secondary battery
JP5817008B1 (en) Non-aqueous secondary battery
JP5817007B1 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053195.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024415

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014004442

Country of ref document: DE

Ref document number: 1120140044423

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167010615

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14848238

Country of ref document: EP

Kind code of ref document: A1