JPH11154513A - Nonaqueous electrolyte secondary battery and negative electrode thereof - Google Patents

Nonaqueous electrolyte secondary battery and negative electrode thereof

Info

Publication number
JPH11154513A
JPH11154513A JP10259905A JP25990598A JPH11154513A JP H11154513 A JPH11154513 A JP H11154513A JP 10259905 A JP10259905 A JP 10259905A JP 25990598 A JP25990598 A JP 25990598A JP H11154513 A JPH11154513 A JP H11154513A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
graphite
graphite material
intensity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10259905A
Other languages
Japanese (ja)
Other versions
JP4168492B2 (en
Inventor
Shinji Kasamatsu
真治 笠松
Yoshiaki Nitta
芳明 新田
Noriki Muraoka
憲樹 村岡
Shoichiro Watanabe
庄一郎 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25990598A priority Critical patent/JP4168492B2/en
Publication of JPH11154513A publication Critical patent/JPH11154513A/en
Application granted granted Critical
Publication of JP4168492B2 publication Critical patent/JP4168492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve high-efficiency discharge characteristics and charge and discharge cycle characteristics by a material consisting essentially of graphite, and a strength ratio of peaks corresponding to its lattice faces (110) and (004) being within a specific range. SOLUTION: A peak strength ratio (I (110)/I (004)) of lattice faces (110) to (004) of a graphite material is 0.05 or more and 0.5 or less. At a negative electrode consisting essentially of this material, an edge part of a graphite crystal exists properly on an electrode surface that is an interface with an electrolyte, and therefore, lithium intercalation advances smoothly, polymerization during charging and discharging is restrained, and high-efficiency discharge characteristics are improved. In addition, since lithium moves smoothly, any part of the negative electrode react uniformly therewith, and even if charging and discharging are repeated, deterioration is small. Further, volume expansion and contraction of the graphite material due to lithium movement is not specified in one direction, and thus, deterioration such as slip-off of mix from an electrode due to a charge/discharge cycle is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵および放出することが可能な黒鉛材料を用いた負極
と、これを用いた非水電解質二次電池に関するものであ
る。
The present invention relates to a negative electrode using a graphite material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進行するに伴い、その駆動用電源
としてリチウム二次電池が注目されている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
With the rapid progress of cordless technology, lithium secondary batteries have attracted attention as power sources for driving the devices.

【0003】従来、リチウム二次電池の負極材料として
リチウム金属やリチウム合金、リチウムを吸蔵、放出可
能な炭素などが検討されたが、現在、この炭素を用いた
リチウムイオン電池が商品の主流となっている。
Conventionally, lithium metal, lithium alloys, and carbon capable of occluding and releasing lithium have been studied as negative electrode materials for lithium secondary batteries. At present, lithium ion batteries using this carbon have become mainstream products. ing.

【0004】負極に炭素を用いた場合には、充電時にリ
チウムが炭素の層間にインターカレートされるため、リ
チウムが金属状態で負極表面に存在せず、電池の安全性
を高めることができるとされている。
When carbon is used for the negative electrode, lithium is intercalated between carbon layers at the time of charging, so that lithium does not exist in a metal state on the surface of the negative electrode, and it is possible to improve the safety of the battery. Have been.

【0005】炭素の中でも黒鉛は初期の不可逆容量が小
さく、極板密度が上がりやすいなどの特徴を持ち、種々
の検討がなされている。
[0005] Among carbons, graphite has characteristics such as a small initial irreversible capacity and a tendency to increase the electrode plate density, and various studies have been made.

【0006】[0006]

【発明が解決しようとする課題】このような黒鉛材料と
しては、天然黒鉛や、ピッチ、コークスまたは有機材料
などを焼成して得られる人造黒鉛がある。一般に黒鉛粒
子は、面内方向((110)や(100)方向)やC軸
方向((004)や(002)方向)の結晶子サイズが
数nmから数百nmである黒鉛結晶子の多結晶体として
構成されている。そのような黒鉛粒子中では各結晶子の
C軸はほぼ同一方向を向く傾向にあり、粉砕、分級後の
粒子においても、その傾向のままである。そのため、黒
鉛粒子全体としてもあたかも1結晶子であるかのように
結晶の面内方向、C軸方向のそれぞれが統一されてい
る。
Such graphite materials include natural graphite and artificial graphite obtained by firing pitch, coke or organic materials. Generally, graphite particles have a large number of graphite crystallites having a crystallite size of several nm to several hundred nm in the in-plane direction ((110) or (100) direction) or the C-axis direction ((004) or (002) direction). It is configured as a crystal. In such graphite particles, the C axis of each crystallite tends to be oriented substantially in the same direction, and the tendency remains even in the particles after pulverization and classification. Therefore, the in-plane direction of the crystal and the C-axis direction are unified as if the entire graphite particle is one crystallite.

【0007】また粒子サイズを小さくするために黒鉛を
粉砕する場合、黒鉛は層間、即ち結晶子の面内方向のせ
ん断力により劈開されやすい。そのため通常数十ミクロ
ンの粒径に粉砕された黒鉛粒子は、鱗片状の形状とな
り、結晶子のC軸方向の粒子径が小さく、かつ結晶子の
面内方向の粒子径とC軸方向の粒子径とのアスペクト比
が大きくなる傾向がある。
When graphite is ground to reduce the particle size, the graphite is easily cleaved by shear forces between layers, that is, in-plane directions of crystallites. Therefore, the graphite particles which are usually pulverized to a particle size of several tens of microns have a scale-like shape, the particle size of the crystallite in the C-axis direction is small, and the particle size in the in-plane direction of the crystallite and the particle size in the C-axis direction. The aspect ratio with the diameter tends to increase.

【0008】そのような黒鉛材料を負極材料として用い
て、バインダーなどとともにペースト化し、集電体に塗
着、圧延を行うと、電極内の黒鉛材料の充填密度が上が
り、かつ、各粒子の面内方向、C軸方向との大きなアス
ペクト比が要因となって、粒子のC軸方向が集電体の垂
直方向に一致する傾向を示す。すなわち黒鉛粒子中の結
晶子の基底面(C軸(004)又は(002)方向)
は、集電体表面と同一の方向に配向する傾向を持つ。
When such a graphite material is used as a negative electrode material, it is pasted together with a binder or the like, coated on a current collector, and rolled to increase the packing density of the graphite material in the electrode and increase the surface of each particle. Due to the large aspect ratio between the inward direction and the C-axis direction, the C-axis direction of the particles tends to match the vertical direction of the current collector. That is, the basal plane of the crystallite in the graphite particles (C-axis (004) or (002) direction)
Have a tendency to be oriented in the same direction as the current collector surface.

【0009】電極内の黒鉛材料の配向性は、広角X線回
折から得られる面内方向の回折線(110)とC軸方向
の回折線(004)のピーク強度比Rより知ることがで
きる。
The orientation of the graphite material in the electrode can be known from the peak intensity ratio R of the in-plane diffraction line (110) and the C-axis direction diffraction line (004) obtained from wide-angle X-ray diffraction.

【0010】[0010]

【数1】 (Equation 1)

【0011】塗着前の粉体状態で測定した黒鉛材料の強
度比Rは、広角X線回折の測定面においてそれぞれの粒
子が配向性を持たない状態で測定しているため、黒鉛材
料の面内方向の結晶サイズとC軸方向の結晶サイズのサ
イズ比に対応した値として得られる。それに対して、集
電体に黒鉛材料のペースト状合剤を塗着し、圧延を行っ
た電極では、黒鉛粒子の基底面が集電体表面と同方向に
配向する傾向がある。従って黒鉛粒子を構成している結
晶子もその粒子の配向に準じて配向し、電極表面をX線
測定すると塗着前の粉体状態に比べ、結晶子の面内方向
のピーク強度I(110)が弱く、かつC軸方向のピー
ク強度I(110)が強くなり、ピーク強度比Rが変化
する。このように広角X線回折のピーク強度比Rの変化
から、電極での粒子の配向度合いを知ることができる。
The intensity ratio R of the graphite material measured in the powder state before coating is measured in a state where each particle has no orientation on the measurement surface of wide-angle X-ray diffraction. It is obtained as a value corresponding to the size ratio between the crystal size in the inward direction and the crystal size in the C-axis direction. On the other hand, in a rolled electrode obtained by applying a paste mixture of a graphite material to a current collector, the base surface of the graphite particles tends to be oriented in the same direction as the current collector surface. Therefore, the crystallites constituting the graphite particles are also oriented according to the orientation of the particles, and when the X-ray measurement of the electrode surface is performed, the peak intensity I (110) in the in-plane direction of the crystallites is smaller than the powder state before coating. ) Is weak, the peak intensity I (110) in the C-axis direction is strong, and the peak intensity ratio R changes. As described above, the degree of particle orientation at the electrode can be known from the change in the peak intensity ratio R of wide-angle X-ray diffraction.

【0012】従来の電極を上記の方法で測定すると、ピ
ーク強度比Rは0.01から0.05程度で、電極作製
前の粉体より得られるピーク強度比R0との比P(=R
/R0)は0.05程度の値となった。
When a conventional electrode is measured by the above-described method, the peak intensity ratio R is about 0.01 to 0.05, and the ratio P (= R) to the peak intensity ratio R 0 obtained from the powder before the electrode is prepared.
/ R 0 ) was about 0.05.

【0013】そのような電極では、電極液との界面であ
る電極表面において、黒鉛結晶の基底面の存在比が大き
く、リチウムイオンのインターカレーションが起こる黒
鉛結晶のエッジ面の存在比が小さい。そのため、充放電
反応時に電解液と電極界面でリチウムイオンがスムーズ
に移動できず、分極が生じやすいため、良好な高率充放
電特性や充放電サイクル特性が得られないという問題が
あった。
In such an electrode, the abundance ratio of the basal plane of the graphite crystal is large and the abundance ratio of the edge surface of the graphite crystal where lithium ion intercalation occurs is small on the electrode surface which is the interface with the electrode solution. Therefore, during the charge / discharge reaction, lithium ions cannot move smoothly at the interface between the electrolyte and the electrode, and polarization is likely to occur, so that there is a problem that good high-rate charge / discharge characteristics and charge / discharge cycle characteristics cannot be obtained.

【0014】このような問題に対して、特開平4−19
0556号公報、特開平4−190557号公報、特開
平6−318459号公報などに開示されているように
黒鉛結晶子の面内方向とC軸方向の結晶サイズ比(アス
ペクト比)を小さくすることなどが提案されている。し
かし、それらによっても上記課題は完全には解決され
ず、特に電極での黒鉛粒子の配向の制御については何ら
配慮されていない。
To solve such a problem, Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open Nos. 0556, 4-190557, 6-318559, etc. To reduce the crystal size ratio (aspect ratio) of graphite crystallites in the in-plane direction and the C-axis direction. And so on. However, they do not completely solve the above-mentioned problems, and no particular consideration is given to controlling the orientation of graphite particles at the electrodes.

【0015】また特開平8−83609号公報、特開平
8−180873号公報などでは、さまざまな粒子形状
を持つ黒鉛について提案されているが、やはり電極での
黒鉛粒子の配向の制御については何ら配慮されていな
い。
In Japanese Patent Application Laid-Open Nos. 8-83609 and 8-180873, graphites having various particle shapes are proposed. However, no consideration is given to controlling the orientation of the graphite particles at the electrodes. It has not been.

【0016】本発明は、このような問題を解決するもの
であり、特に高率放電特性や充放電サイクル特性に優れ
た負極を用いた非水電解質二次電池を提供することを目
的とするものである。
An object of the present invention is to solve such a problem, and in particular, to provide a nonaqueous electrolyte secondary battery using a negative electrode having excellent high rate discharge characteristics and charge / discharge cycle characteristics. It is.

【0017】[0017]

【課題を解決するための手段】このような問題を解決す
るために、本発明は、非水電解質二次電池用負極とし
て、黒鉛を主構成材料とし、そのピーク強度比R(=I
(110)/I(004))が0.05以上0.5以下
である負極を用いるものである。これにより、集電体上
で黒鉛粒子の結晶層が集電体平面に対し、過度に平行に
配向する事を防ぎ、高率放電特性を向上させることがで
きる。
In order to solve such a problem, the present invention provides a negative electrode for a non-aqueous electrolyte secondary battery which comprises graphite as a main constituent material and a peak intensity ratio R (= I
A negative electrode having (110) / I (004)) of 0.05 or more and 0.5 or less is used. Thereby, the crystal layer of the graphite particles on the current collector is prevented from being oriented excessively parallel to the current collector plane, and the high-rate discharge characteristics can be improved.

【0018】また、黒鉛材料を集電体に塗着、圧延を行
い、負極としたときに得られるピーク強度比Rと、電極
作製前の粉体から得られるピーク強度比R0の比率P
(=R/R0)が0.1以上0.7以下である負極を用
いるものである。
A ratio P of a peak intensity ratio R obtained when a graphite material is applied to a current collector and rolled to obtain a negative electrode and a peak intensity ratio R 0 obtained from a powder before electrode preparation is obtained.
(= R / R 0 ) A negative electrode having a value of 0.1 or more and 0.7 or less is used.

【0019】これにより、電極作成工程において極板中
の黒鉛粒子を過度に配向することを制御して、高率放電
特性を向上させることができる。
Thus, it is possible to control the graphite particles in the electrode plate from being excessively oriented in the electrode forming step, thereby improving the high rate discharge characteristics.

【0020】以上のような負極を用いることによって、
高率放電特性に優れた非水電解質二次電池を作製するこ
とができる。
By using the above-described negative electrode,
A non-aqueous electrolyte secondary battery having excellent high-rate discharge characteristics can be manufactured.

【0021】[0021]

【発明の実施の形態】本発明の請求項1記載の発明は非
水電解質二次電池用負極の広角X線回折により得られる
黒鉛材料の格子面(110)、(004)のピーク強度
比R(=I(110)/I(004))が0.05以上
0.5以下である電極を用いるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a graphite material obtained by wide-angle X-ray diffraction of a negative electrode for a non-aqueous electrolyte secondary battery. An electrode in which (= I (110) / I (004)) is 0.05 or more and 0.5 or less is used.

【0022】ピーク強度比Rが0.05以上0.5以下
である負極は、電解液との界面である電極表面におい
て、黒鉛結晶の基底面とエッジ面が適度に混在した状態
である。このような負極は、特に黒鉛粒子が球状や塊状
のような形状である場合、作成しやすい。これは、その
ような粒子形状の黒鉛は、鱗片状黒鉛と比べて粒子の面
内方向に相当する方向とC軸方向に相当する方向とのア
スペクト比が小さく、電極作製時の圧延処理において圧
力を受けても、各粒子の基底面が集電体表面と同一の方
向に一様には配向されにくい。その結果、電極表面に黒
鉛結晶のエッジ部が多く存在するためと考えられる。ま
た鱗片状黒鉛であっても、電極作製時の塗着条件や圧延
処理条件等を調整することにより、粒子が同一方向に配
向するのを抑制でき、作成可能と考えられる。
The negative electrode having a peak intensity ratio R of 0.05 or more and 0.5 or less has a state in which the basal plane and the edge plane of the graphite crystal are appropriately mixed on the electrode surface which is the interface with the electrolytic solution. Such a negative electrode is easy to produce, especially when the graphite particles have a spherical or massive shape. This is because graphite having such a particle shape has a smaller aspect ratio between the direction corresponding to the in-plane direction of the particles and the direction corresponding to the C-axis direction as compared with the flaky graphite. However, the base surface of each particle is unlikely to be uniformly oriented in the same direction as the surface of the current collector. As a result, it is considered that many edges of the graphite crystal exist on the electrode surface. It is also considered that flake graphite can be produced by adjusting the application conditions, rolling conditions, and the like at the time of electrode production, whereby particles can be prevented from being oriented in the same direction.

【0023】上記負極では、黒鉛結晶のエッジ部が電解
液との界面である電極表面に適度に存在するため、リチ
ウムのインターカレーションがスムーズに進行し、充放
電時の分極が抑えられ、高率放電特性に優れた電極を構
成できる。また負極中のリチウムの移動がスムーズであ
るため、負極のいずれの部分も均一に反応し、充放電を
繰り返しても劣化が小さい。また、リチウムイオンのイ
ンターカレーション、デインターカレーションに伴う黒
鉛材料の体積膨張及び収縮が、一方向に特定されないた
め、充放電サイクルによる電極からの合剤の脱落などの
劣化が抑えられサイクル特性に優れた電極を構成でき
る。
In the above-mentioned negative electrode, the edge portion of the graphite crystal is appropriately present on the electrode surface, which is the interface with the electrolytic solution, so that the lithium intercalation proceeds smoothly, the polarization during charging and discharging is suppressed, and An electrode having excellent rate discharge characteristics can be formed. In addition, since lithium moves smoothly in the negative electrode, any part of the negative electrode reacts uniformly, and deterioration is small even when charge and discharge are repeated. In addition, since the volume expansion and shrinkage of the graphite material due to lithium ion intercalation and deintercalation are not specified in one direction, deterioration such as falling off of the mixture from the electrode due to charge and discharge cycles is suppressed, and the cycle characteristics are reduced. It is possible to form an electrode having excellent characteristics.

【0024】それに対し、ピーク強度比が0.05未満
の負極は、電解液との界面である電極表面において、黒
鉛結晶の基底面が多く存在した状態である。従って結晶
のエッジ部が少ししか存在せず、リチウムのインターカ
レーションがされにくいため分極が大きくなり、良好な
高率放電特性、サイクル特性が得られず好ましくない。
On the other hand, a negative electrode having a peak intensity ratio of less than 0.05 is a state in which a large number of basal planes of graphite crystals exist on the electrode surface which is an interface with the electrolytic solution. Therefore, there are only a few edges of the crystal, and the intercalation of lithium is difficult, so that the polarization becomes large, and good high-rate discharge characteristics and cycle characteristics cannot be obtained, which is not preferable.

【0025】また、ピーク強度比が0.5を超えると、
黒鉛粒子の基底面が特定の方向に配向せずに等方的に存
在した電極となるため、各黒鉛粒子間の接触による電子
伝導が十分に得られずやはり分極を生じ好ましくない。
When the peak intensity ratio exceeds 0.5,
Since the base surface of the graphite particles is an electrode that isotropically exists without being oriented in a specific direction, electron conduction due to contact between the graphite particles cannot be sufficiently obtained, which is also undesirable because polarization occurs.

【0026】請求項2記載の発明は請求項1記載の負極
と、リチウム含有酸化物からなる正極と、非水電解質を
組み合わせることによって、高電圧、高容量で、かつ、
高率放電特性とサイクル特性に優れた非水電解質二次電
池を提供するものである。
According to a second aspect of the present invention, a combination of the negative electrode according to the first aspect, a positive electrode made of a lithium-containing oxide, and a non-aqueous electrolyte provides a high voltage, a high capacity,
An object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent high-rate discharge characteristics and cycle characteristics.

【0027】請求項3記載の発明は、請求項2記載の非
水電解質二次電池において、その非水電解質の溶媒に環
状カーボネートと鎖状カーボネートの2種もしくはさら
に脂肪族カルボン酸エステルを含めた3種を主成分とす
るものである。
According to a third aspect of the present invention, there is provided the non-aqueous electrolyte secondary battery according to the second aspect, wherein the solvent of the non-aqueous electrolyte contains two or more aliphatic carbonates of cyclic carbonate and chain carbonate. It has three types as main components.

【0028】正極にリチウム含有酸化物を用いた場合、
正極の電位がリチウムの電位に対して4V程度であり、
有機溶媒の多くは酸化分解する電位である。そのような
高電位でも安定に存在し、かつ、高温度範囲で安定に液
体として存在し、高電導度を保持する上記電解液を使用
することにより、さらに、低温特性や保存特性にも優れ
た非水電解質二次電池を提供するものである。
When a lithium-containing oxide is used for the positive electrode,
The potential of the positive electrode is about 4 V with respect to the potential of lithium,
Many of the organic solvents have a potential for oxidative decomposition. Even at such a high potential, and stably exists as a liquid in a high temperature range, by using the above-mentioned electrolyte solution that maintains high conductivity, further excellent in low-temperature characteristics and storage characteristics A non-aqueous electrolyte secondary battery is provided.

【0029】請求項4記載の発明は、請求項2記載の非
水電解質二次電池において、正極および負極に有機電解
液および有機電解液を吸収保持するポリマーを含み、セ
パレータに正極および負極と同様の有機電解液および有
機電解液を吸収保持するポリマーを用いた構成としたも
のである。このような電池構成とすることにより、高性
能かつフレキシブルな形状をとることが可能な電池を実
現することができる。
According to a fourth aspect of the present invention, there is provided the non-aqueous electrolyte secondary battery according to the second aspect, wherein the positive electrode and the negative electrode contain an organic electrolyte and a polymer absorbing and retaining the organic electrolyte, and the separator has the same structure as the positive electrode and the negative electrode. And a polymer that absorbs and retains the organic electrolyte. With such a battery configuration, it is possible to realize a battery that can have a high-performance and flexible shape.

【0030】請求項5記載の発明は、広角X線回折によ
り得られる黒鉛材料の格子面(110)、(004)の
ピーク強度比をR(=I(110)/I(004))と
したとき、黒鉛材料を集電体に塗着後、圧延を行った負
極の測定値Rと、電極作製前の粉体の測定値R0の比率
P(=R/R0)が0.1以上0.7以下である負極を
用いたものである。
According to a fifth aspect of the present invention, the peak intensity ratio of the lattice planes (110) and (004) of the graphite material obtained by wide-angle X-ray diffraction is defined as R (= I (110) / I (004)). At this time, the ratio P (= R / R 0 ) of the measured value R of the negative electrode rolled after the graphite material is applied to the current collector and the measured value R 0 of the powder before the electrode is prepared is 0.1 or more. A negative electrode of 0.7 or less is used.

【0031】比率Pが0.1以上0.7以下である電極
は、電極作製前の粉体時と比べ比較的Rの変化が小さ
い。用いる黒鉛材料が球状や塊状のような形状の粒子で
ある場合、その範囲になりやすい。これは、鱗片状黒鉛
と比べてアスペクト比が小さいため、電極作製時の圧延
処理時において圧力を受けても、各粒子の基底面が集電
体表面と同一の方向に配向されにくいためである。また
黒鉛材料がアスペクト比の大きい配向しやすい鱗片状の
粒子であっても、電極作製時の塗着条件や圧延処理条件
によって、粒子が同一方向に配向することを抑制でき
る。そのような電極中では結晶子が特定の方向に配向せ
ず、電極表面に黒鉛結晶のエッジ部が多く存在してリチ
ウムイオンがインターカレートされやすく、かつ、電極
中の移動もスムーズに行われると考える。その結果、良
好な高率放電特性および良好なサイクル特性を得ること
ができる。またリチウムイオンの吸蔵、放出に伴う黒鉛
材料の膨張、収縮が、同一の方向に特定されないため、
繰り返し充放電による合剤の脱落などの極板強度の劣化
が抑えられサイクル特性に優れた電極を構成できる。
The electrode having a ratio P of 0.1 or more and 0.7 or less has a relatively small change in R as compared with the powder before the electrode is manufactured. When the graphite material to be used is spherical or massive particles, the range is likely to be in the range. This is because the aspect ratio is smaller than that of the flaky graphite, so that even when subjected to pressure during the rolling process during electrode fabrication, the base surface of each particle is unlikely to be oriented in the same direction as the current collector surface. . Even if the graphite material is flaky particles having a large aspect ratio and easy to be oriented, the particles can be prevented from being oriented in the same direction depending on the application conditions and the rolling treatment conditions at the time of manufacturing the electrode. In such an electrode, the crystallites are not oriented in a specific direction, and many edges of the graphite crystal are present on the electrode surface, so that lithium ions are easily intercalated, and the movement in the electrode is performed smoothly. Think. As a result, good high-rate discharge characteristics and good cycle characteristics can be obtained. In addition, since the expansion and contraction of the graphite material due to occlusion and release of lithium ions are not specified in the same direction,
An electrode having excellent cycle characteristics can be formed by suppressing deterioration of the electrode plate strength such as dropping of the mixture due to repeated charging and discharging.

【0032】比率Pが0.1未満の電極においては、電
極作製前後で黒鉛粒子の配向が大きく変化しており、電
極作成後の黒鉛粒子は結晶の基底面が集電体表面と同一
の方向に配向している。そのため電解液との界面で、リ
チウムイオンのインターカレーションがスムーズに行わ
れないので分極を起こしやすく、良好な高率放電特性、
サイクル特性が得られず好ましくない。
In an electrode having a ratio P of less than 0.1, the orientation of the graphite particles is largely changed before and after the electrode is formed, and the graphite particles after the electrode is formed have the basal plane of the crystal in the same direction as the current collector surface. Oriented. Therefore, at the interface with the electrolyte, the intercalation of lithium ions is not performed smoothly, so that polarization is likely to occur, and good high-rate discharge characteristics,
It is not preferable because cycle characteristics cannot be obtained.

【0033】比率Pが0.7を超える電極においては、
電極作製前の粉体時と比べRの変化は小さいものの、圧
延処理が十分でなく、黒鉛の充填密度が低い。このた
め、粒子間の接触が不十分で電子伝導が十分に得られ
ず、分極が大きくなることにより初期容量が低下し、好
ましくない。従って、比率Pは0.1以上0.7以下で
なくてはならず、より好ましくは0.2以上0.5以下
である。
In an electrode having a ratio P exceeding 0.7,
Although the change in R is smaller than that of the powder before the production of the electrode, the rolling treatment is not sufficient, and the packing density of graphite is low. For this reason, the contact between the particles is insufficient and sufficient electron conduction cannot be obtained, and the initial capacity decreases due to an increase in polarization, which is not preferable. Therefore, the ratio P must be 0.1 or more and 0.7 or less, and more preferably 0.2 or more and 0.5 or less.

【0034】また、請求項6記載の発明は請求項5記載
の負極と、リチウム含有酸化物からなる正極と、非水電
解質を組み合わせることによって、高電圧、高容量で、
かつ、高率放電特性とサイクル特性に優れた非水電解質
二次電池を提供するものである。
According to a sixth aspect of the present invention, a combination of the negative electrode according to the fifth aspect, a positive electrode made of a lithium-containing oxide, and a non-aqueous electrolyte provides a high voltage and a high capacity.
Further, the present invention provides a non-aqueous electrolyte secondary battery excellent in high-rate discharge characteristics and cycle characteristics.

【0035】請求項7記載の発明は、請求項6記載の非
水電解質二次電池において、その非水電解質の溶媒に環
状カーボネートと鎖状カーボネートの2種もしくはさら
に脂肪族カルボン酸エステルを含めた3種を主成分とす
るものである。
According to a seventh aspect of the present invention, in the non-aqueous electrolyte secondary battery according to the sixth aspect, two or more aliphatic carboxylic acid esters of cyclic carbonate and chain carbonate are contained in the solvent of the non-aqueous electrolyte. It has three types as main components.

【0036】正極にリチウム含有酸化物を用いた場合、
正極の電位がリチウムの電位に対して4V程度であり、
有機溶媒の多くは酸化分解する電位である。そのような
高電位でも安定に存在し、かつ、高温度範囲で安定に液
体として存在し、高電導度を保持する上記電解液を使用
することにより、さらに、低温特性や保存特性にも優れ
た非水電解質二次電池を提供するものである。
When a lithium-containing oxide is used for the positive electrode,
The potential of the positive electrode is about 4 V with respect to the potential of lithium,
Many of the organic solvents have a potential for oxidative decomposition. Even at such a high potential, and stably exists as a liquid in a high temperature range, by using the above-mentioned electrolyte solution that maintains high conductivity, further excellent in low-temperature characteristics and storage characteristics A non-aqueous electrolyte secondary battery is provided.

【0037】請求項8記載の発明は、請求項6記載の非
水電解質二次電池において、正極および負極に有機電解
液および有機電解液を吸収保持するポリマーを含み、セ
パレータに正極および負極と同様の有機電解液および有
機電解液を吸収保持するポリマーを用いた構成としたも
のである。このような電池構成とすることにより、高性
能かつフレキシブルな形状をとることが可能な電池を実
現することができる。
[0037] The invention according to claim 8 is the non-aqueous electrolyte secondary battery according to claim 6, wherein the positive electrode and the negative electrode contain an organic electrolyte and a polymer that absorbs and retains the organic electrolyte, and the separator has the same structure as the positive electrode and the negative electrode. And a polymer that absorbs and retains the organic electrolyte. With such a battery configuration, it is possible to realize a battery that can have a high-performance and flexible shape.

【0038】また上記負極で用いる黒鉛材料は特に限定
されないが、たとえば、天然黒鉛を粉砕、分級したも
の、またはピッチ、コークスまた有機材料を炭化した
後、バインダーピッチと混合、成形した後に2000℃
から3000℃で黒鉛化して得られる人造黒鉛を粉砕、
分級し、塊状、鱗片状の粒子形状としたもの、またはメ
ソフェーズピッチより得られる球晶を黒鉛化して得られ
る球状黒鉛などが用いられる。なお電極作製時に充填密
度を高めた条件においても、粒子の配向性を抑制できか
つ高い充填密度の電極を用いた電池を作製する上では、
粒子形状が立方体に近い球状黒鉛、塊状黒鉛が好まし
い。さらに黒鉛材料の黒鉛化度が高いため可逆容量が大
きく、高い初期容量を持つ電池を作製するためには、塊
状黒鉛がより好ましい。
The graphite material used in the negative electrode is not particularly limited. For example, natural graphite may be pulverized and classified, or may be obtained by carbonizing pitch, coke, or an organic material, mixing with a binder pitch, molding, and then 2,000 ° C.
Pulverized artificial graphite obtained by graphitizing at 3000 ° C,
The particles are classified into lumpy or scaly particles, or spherical graphite obtained by graphitizing spherulites obtained from mesophase pitch. In addition, even under the condition of increasing the packing density at the time of manufacturing the electrode, in order to manufacture a battery using an electrode having a high packing density, which can suppress the orientation of the particles,
Spherical graphite and massive graphite having a particle shape close to a cube are preferred. Further, in order to produce a battery having a high reversible capacity due to a high degree of graphitization of the graphite material and a high initial capacity, massive graphite is more preferable.

【0039】また上記黒鉛材料としては、広角X線回折
による格子面(002)面の面間隔d002が3.35
Å以上3.37Å以下であることが好ましい。3.37
Åを越える様な黒鉛材料では黒鉛化度が低いため、リチ
ウムインターカレート可逆容量が低下し、高容量化が望
めない。またメジアン径D50は10〜25μmであるこ
とが好ましい。これにより充填密度が向上し、かつ塗工
性、圧延性に優れた電極を作製することができる。また
電極表面での電解液の分解等で起こる副反応を抑制する
ため、BET吸着法により求められる比表面積は2.0
〜5.0m2/gであることが好ましい。
The graphite material has a lattice spacing (002) between the lattice planes (002) determined by wide-angle X-ray diffraction of 3.35.
It is preferable that it is {not less than 3.37}. 3.37
Since a graphite material exceeding Å has a low degree of graphitization, the reversible capacity of lithium intercalate is reduced, and a high capacity cannot be expected. It is preferable median diameter D 50 is 10 to 25 [mu] m. Thereby, the packing density is improved, and an electrode having excellent coatability and rollability can be manufactured. In addition, the specific surface area determined by the BET adsorption method is 2.0
It is preferably from 5.0 to 5.0 m 2 / g.

【0040】広角X線回折はRINT−2500(理学
電機(株)製)によりCuKαをX線源として測定を行
った。電極の測定は、電極の一部を切り出し、試料ホル
ダーに張り付け測定を行った。黒鉛粉体は、全ての方向
に配向性を持たせない試料とする測定法(X線回折の手
引改訂第四版、理学電機株式会社、p42)を用いて、
測定試料に非晶質物質であるシリカゲル粉末を約50%
混入させ、メノウ乳鉢で混合、粉砕した後、試料ホルダ
ーに充填して測定した。またこのとき用いる黒鉛粉体
は、負極作製前の粉体を用いるか、作製後の電極の合剤
を回収し、乳鉢で粒子間を十分分離させたものを用いて
測定を行っても良い。また電極、粉体の広角X線回折を
測定する際、X線が入射する試料面は平面とし、またそ
の面はゴニオメーターの回転軸に一致させ、回折角、強
度の測定誤差がないように行った。
The wide-angle X-ray diffraction was measured by RINT-2500 (manufactured by Rigaku Corporation) using CuKα as an X-ray source. For the measurement of the electrode, a part of the electrode was cut out, attached to a sample holder, and measured. Graphite powder is measured using a method that does not have orientation in all directions (X-ray Diffraction Guide, 4th Edition, Rigaku Denki Co., p42).
About 50% silica gel powder, which is an amorphous substance,
After being mixed, mixed and crushed in an agate mortar, the mixture was filled in a sample holder and measured. As the graphite powder used at this time, the measurement may be performed by using the powder before the preparation of the negative electrode or by collecting the electrode mixture after the preparation and sufficiently separating the particles in a mortar. When measuring wide-angle X-ray diffraction of electrodes and powders, the sample surface on which X-rays are incident is flat, and the surface is aligned with the rotation axis of the goniometer so that there is no measurement error in diffraction angle and intensity. went.

【0041】電極の圧延工程はどのようなプレス手法を
用いても良いが、ローラープレスなどが好適である。
Although any pressing method may be used in the electrode rolling step, a roller press or the like is preferable.

【0042】上記負極と組み合わせる正極材料として
は、リチウムを吸蔵および放出可能なものであればどの
ようなリチウム含有金属酸化物を用いてもよく特に4V
級の高電位を示すものは高エネルギー密度の点で有効で
あり、例えばLiCoO2,LiNiO2,LiMn24
などである。
As the positive electrode material to be combined with the above-mentioned negative electrode, any lithium-containing metal oxide may be used as long as it can occlude and release lithium.
Those exhibiting a high potential of a class are effective in terms of high energy density. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4
And so on.

【0043】前記有機溶媒としては、環状カーボネート
は、エチレンカーボネート(EC)、プロピレンカーボ
ネート(PC)、ブチレンカーボネート(BC)など、
鎖状カーボネートは、ジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)、エチルメチル
カーボネート(EMC)など、脂肪族カルボン酸エステ
ルとしては、プロピオン酸メチル、プロピオン酸エチル
等が好適である。
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
Chain carbonate is dimethyl carbonate (DM
As aliphatic carboxylic acid esters such as C), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), methyl propionate, ethyl propionate, and the like are preferable.

【0044】前記電解質としては、例えば、過塩素酸リ
チウム(LiClO4)、六フッ化リン酸リチウム(L
iPF6)、ホウフッ化リチウム(LiBF4)、六フッ
化砒素リチウム(LiAsF6)、トリフルオロメタン
スルホン酸リチウム(LiCF3SO3)、ビストリフル
オロメチルスルホニルイミドリチウム[LiN(CF 3
SO22]等のリチウム塩を単独、もしくは適宜数種類
を組み合わせて用いることができるが、中でも六フッ化
リン酸リチウム(LiPF6)が好適である。
As the electrolyte, for example, perchloric acid
Titanium (LiClOFour), Lithium hexafluorophosphate (L
iPF6), Lithium borofluoride (LiBFFour), Six foot
Lithium arsenide (LiAsF)6), Trifluoromethane
Lithium sulfonate (LiCFThreeSOThree), Bistriflu
Lithium olomethylsulfonylimide [LiN (CF Three
SOTwo)Two] Or a plurality of lithium salts as appropriate.
Can be used in combination.
Lithium phosphate (LiPF6) Are preferred.

【0045】前記電解質の前記有機溶媒に対する溶解量
は、0.2mol/l〜2mol/l、特に0.5mo
l/l〜1.5mol/lとすることが望ましい。
The amount of the electrolyte dissolved in the organic solvent is 0.2 mol / l to 2 mol / l, particularly 0.5 mol / l.
It is desirably 1 / l to 1.5 mol / l.

【0046】前記請求項4および8の発明における有機
電解液を吸収保持するポリマーとしては、揮発性有機溶
媒及び揮発性液体が揮散後の結晶化度が0〜60重量
%、好ましくは5〜50重量%になるようなポリマー重
合体もしくは機械的に混練配合するか部分的な化学的結
合を有するポリマーアロイを用いることができる。中で
もフッ素系ポリマー重合体もしくはフッ素系ポリマーア
ロイを用いるのが好ましい。前記ポリマー重合体及び前
記ポリマーアロイとしては、例えば、結晶相を形成する
成分としてエチレンのフッ素置換体及びその共重合体か
ら選ばれる1種以上のポリマーと、非晶質相を形成する
成分としてプロピレンのフッ素置換体及び主鎖にけい素
を有するフッ素置換体から選ばれる1種以上のポリマー
とから形成されるものを用いることができる。前記結晶
相を形成するポリマーとしては、例えば、ポリフッ化ビ
ニリデン(PVdF)、1フッ化エチレン重合体(PV
F)、ポリ塩化3フッ化重合体(PCTFE)、4フッ
化エチレン重合体(PTFE)、ポリエチレン(PE)
等を挙げることができる。
The polymer which absorbs and retains the organic electrolyte solution according to the fourth and eighth aspects of the present invention has a crystallinity of 0 to 60% by weight, preferably 5 to 50% by weight after the volatile organic solvent and the volatile liquid are volatilized. It is possible to use a polymer polymer or a polymer alloy which is kneaded and compounded mechanically or has a partial chemical bond so as to give a weight%. Among them, it is preferable to use a fluorine-based polymer or a fluorine-based polymer alloy. Examples of the polymer polymer and the polymer alloy include, for example, one or more polymers selected from a fluorine-substituted product of ethylene and a copolymer thereof as a component forming a crystalline phase, and propylene as a component forming an amorphous phase. And one or more polymers selected from the group consisting of a fluorine-substituted product and a fluorine-substituted product having silicon in the main chain. Examples of the polymer forming the crystal phase include polyvinylidene fluoride (PVdF) and monofluoroethylene polymer (PVD).
F), polychlorinated trifluoride polymer (PCTFE), tetrafluoroethylene polymer (PTFE), polyethylene (PE)
And the like.

【0047】一方、前記非晶質相を形成するポリマーと
しては、ポリヘキサフロロプロピレン(PHFP)、パ
ーフロロアルキルビニルエーテル(PVE)、主鎖にけ
い素結合を含むフッ素置換ポリマーであるPVMQ(A
STMによる材料記号)等を挙げることができる。但
し、これらに限定されるものではない。特に、結晶相を
形成する成分であるフッ化ビニリデンが60〜97重量
%と、非晶質相を形成する成分であるヘキサフロロプロ
ピレンが40〜3重量%を共重合させて得られるフッ素
系ポリマーを用いるのが好ましい。このビニリデンフロ
ライド(VdF)とヘキサフルオロプロピレン(HF
P)との共重合体において、VdFは共重合体の骨格部
で機械的強度の向上に寄与し、HFPは前記共重合体に
非晶質の状態で取り込まれ、有機電解液の保持とリチウ
ムイオンの透過部として機能する。
On the other hand, examples of the polymer forming the amorphous phase include polyhexafluoropropylene (PHFP), perfluoroalkyl vinyl ether (PVE), and PVMQ (A) which is a fluorine-substituted polymer containing a silicon bond in the main chain.
Material symbol by STM). However, it is not limited to these. Particularly, a fluoropolymer obtained by copolymerizing 60 to 97% by weight of vinylidene fluoride as a component forming a crystalline phase and 40 to 3% by weight of hexafluoropropylene as a component forming an amorphous phase. It is preferable to use This vinylidene fluoride (VdF) and hexafluoropropylene (HF)
In the copolymer with P), VdF contributes to the improvement of the mechanical strength in the skeleton of the copolymer, and HFP is taken in the copolymer in an amorphous state, and the organic electrolyte is retained and lithium is added. It functions as an ion transmission part.

【0048】前記揮発性の有機溶媒としては、成膜工程
において速やかに揮散され、かつ良好なセパレータ層や
正負極層のバインダーの形成に役立つものを用いるのが
好ましい。具体的には、ケトン類(例えば、アセトン、
メチルエチルケトン(MEK)、メチルイソブチルケト
ン(MIBK)、メチルイソアミルケトン)、炭化水素
類(例えば、エトラヒドロフラン(THF)、メチルテ
トラヒドロフラン)、エステル類(例えば、酢酸メチ
ル、酢酸エチル)、ジクロロメタン、1,2−ジメトキ
シエタン、1,3−ジオキソラン、イソホロン、シクロ
ヘキサノン等の沸点が100℃前後の有機溶媒を挙げる
ことができる。また、沸点が202℃と高いものの、高
い蒸気圧を有するために揮発性があり、前記ポリマーの
溶解性が大きいN−メチルピロリドンも有効である。
As the volatile organic solvent, it is preferable to use a volatile organic solvent which volatilizes quickly in the film-forming step and helps to form a good binder for the separator layer and the positive and negative electrode layers. Specifically, ketones (for example, acetone,
Methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), methyl isoamyl ketone), hydrocarbons (eg, etrahydrofuran (THF), methyl tetrahydrofuran), esters (eg, methyl acetate, ethyl acetate), dichloromethane, 1, Organic solvents having a boiling point of about 100 ° C. such as 2-dimethoxyethane, 1,3-dioxolan, isophorone, and cyclohexanone can be given. Further, N-methylpyrrolidone, which has a high boiling point of 202 ° C. but is volatile because of its high vapor pressure and has high solubility of the polymer, is also effective.

【0049】前記揮発性有機溶媒と親和性を有する揮発
性液体としては、前記揮発性有機溶媒よりも高い沸点を
有し、かつプロトン性が大きく、さらには前記ポリマー
より低い融点を有するものを用いることができる。具体
的には、水、アルコール類、エステル類及び炭酸類から
選ばれる1種以上の液体を挙げることができる。中で
も、水を用いるのが望ましい。
As the volatile liquid having an affinity for the volatile organic solvent, a volatile liquid having a higher boiling point than the volatile organic solvent, a higher proticity, and a lower melting point than the polymer is used. be able to. Specific examples include one or more liquids selected from water, alcohols, esters, and carbonates. Among them, it is desirable to use water.

【0050】かかる揮発性液体を添加することによりポ
リマーへの有機電解液含浸量を向上させるためには、前
記揮発性液体はポリマーが溶解された揮発性有機溶媒に
対して0.2重量%以上添加することが望ましい。ま
た、前記揮発性液体の添加量が増加するに従って、前記
揮発性液体を揮散後のセパレータ層表面及び断面構造を
電子顕微鏡(SEM)で観察すると、ミクロポーラスな
空隙が多くなり、電解液含浸量の増加と良い相関性が見
られる。前記添加量の上限はポリマーが溶解された揮発
性有機溶媒の15重量%にすることが好ましい。より好
ましい揮発性液体の添加量は、ポリマーが溶解された揮
発性有機溶媒に対して0.5重量%〜10重量%であ
る。
In order to improve the amount of the organic electrolyte impregnated in the polymer by adding such a volatile liquid, the volatile liquid is required to be 0.2% by weight or more based on the volatile organic solvent in which the polymer is dissolved. It is desirable to add. As the amount of the volatile liquid increases, the surface and the cross-sectional structure of the separator layer after the volatile liquid is volatilized are observed with an electron microscope (SEM). And a good correlation is seen. The upper limit of the amount is preferably 15% by weight of the volatile organic solvent in which the polymer was dissolved. A more preferred amount of the volatile liquid is 0.5% by weight to 10% by weight based on the volatile organic solvent in which the polymer is dissolved.

【0051】また、前記有機電解液を含有するポリマー
からなるセパレータは、有機電解液を前記ポリマーが溶
解された揮発性有機溶媒およびこの揮発性有機溶媒と親
和性を有する揮発性液体からなるポリマー混合溶液に添
加し、これを前記揮発性有機溶媒および前記揮発性液体
を揮発させて成膜する方法により作製することもでき
る。
Further, the separator made of a polymer containing the organic electrolytic solution may be formed by mixing the organic electrolytic solution with a polymer mixed with a volatile organic solvent in which the polymer is dissolved and a volatile liquid having an affinity for the volatile organic solvent. It can also be prepared by adding to a solution and evaporating the volatile organic solvent and the volatile liquid to form a film.

【0052】前記ポリマー及び前記揮発性有機溶媒とし
ては、前述したのと同様なものを用いることができる。
As the polymer and the volatile organic solvent, the same ones as described above can be used.

【0053】また電池の形状は円筒型、角型、扁平型な
ど、どのような電池形状、サイズで構成しても同様の効
果が得られる。
The same effect can be obtained regardless of the battery shape and size, such as a cylindrical shape, a square shape, and a flat shape.

【0054】[0054]

【実施例】(実施例1)以下、実施例により本説明を詳
しく述べる。
(Embodiment 1) Hereinafter, the present description will be described in detail with reference to embodiments.

【0055】図1に本実施例で用いた円筒形電池の縦断
面図を示す。図において1は耐有機電解液性のステンレ
ス鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極及び負極がセパレータを介して渦巻き状に巻き回され
たもので、ケース1内に収納されている。そして上記正
極からは正極リード5が引き出されて封口板2に接続さ
れ、負極からは負極リード6が引き出されて電池ケース
1の底部に接続されている。7は絶縁リングで極板群4
の上下部にそれぞれ設けられている。以下正、負極電極
等について詳しく説明する。
FIG. 1 is a longitudinal sectional view of the cylindrical battery used in this embodiment. In the figure, reference numeral 1 denotes a battery case processed from a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode and a negative electrode are spirally wound via a separator, and are housed in the case 1. A positive electrode lead 5 is drawn from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn from the negative electrode and connected to the bottom of the battery case 1. 7 is an insulating ring for electrode group 4
Are provided at the upper and lower portions, respectively. Hereinafter, the positive and negative electrodes will be described in detail.

【0056】正極はLi2CO3とCo34とを混合し、
900℃で10時間焼成して合成したLiCoO2の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にした。このペ
ーストを厚さ0.03mmのアルミ箔の両面に塗着し、
乾燥後圧延して厚さ幅37mm、長さ240mmの正極
板を作製した。
The cathode mixes Li 2 CO 3 and Co 3 O 4 ,
3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder were mixed with 100 parts by weight of LiCoO 2 powder synthesized by firing at 900 ° C. for 10 hours, and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. . This paste is applied to both sides of a 0.03 mm thick aluminum foil,
After drying and rolling, a positive electrode plate having a thickness of 37 mm and a length of 240 mm was prepared.

【0057】負極は石油系コークスを炭化した後、バイ
ンダーピッチと混合、成型した後に2800℃で黒鉛化
して得られた人造黒鉛を粉砕、分級し、塊状の粒子形状
を持つ黒鉛としたものを黒鉛合剤の主成分とした。
The negative electrode is obtained by carbonizing petroleum coke, mixing with a binder pitch, molding, and then graphitizing at 2800 ° C., pulverizing and classifying the resulting artificial graphite to obtain graphite having a massive particle shape. The main component of the mixture.

【0058】この塊状の黒鉛100重量部にスチレン/
ブタジエンゴム3重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にした。そし
て、ペーストを厚さ0.02mmの銅箔の両面に塗着
し、乾燥した。この負極にローラープレス機による圧延
を数回行い、厚さ0.20mm、幅39mm、長さ26
0mmの負極電極を作製した。その後一部この極板を切
り出し、広角X線回折の試料として測定したところ、
(110)と(004)の強度比Rは0.07であっ
た。
Styrene / 100 parts by weight of this massive graphite
3 parts by weight of butadiene rubber were mixed and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then, the paste was applied to both sides of a copper foil having a thickness of 0.02 mm and dried. The negative electrode was rolled several times by a roller press to obtain a thickness of 0.20 mm, a width of 39 mm, and a length of 26.
A 0 mm negative electrode was produced. Then, a part of this electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction.
The intensity ratio R between (110) and (004) was 0.07.

【0059】そして正極にはアルミニウム製、負極には
ニッケル製のリードをそれぞれ取り付け、厚さ0.02
5mm、幅45mm、長さ730mmのポリプロピレン
製セパレータを介して渦巻き状に巻回して極板群を構成
し、この極板群を直径14.0mm、高さ50mmの電
池ケースに納入した。電解液にはECとDECを1:1
の体積比で混合した溶媒に1モル/リットルのLiPF
6を溶解したものを用い、これを注液した後封口し、本
発明の電池Aとした。
A lead made of aluminum was attached to the positive electrode, and a nickel lead was attached to the negative electrode.
The electrode plate group was formed by spirally winding through a polypropylene separator having a size of 5 mm, a width of 45 mm and a length of 730 mm, and this electrode plate group was delivered to a battery case having a diameter of 14.0 mm and a height of 50 mm. EC and DEC are 1: 1 for electrolyte.
1 mol / L LiPF in a solvent mixed at a volume ratio of
Using a solution of No. 6 , the solution was injected, and the solution was sealed to obtain a battery A of the present invention.

【0060】(実施例2)黒鉛材料として天然黒鉛を粉
砕、分級して得られた塊状黒鉛を使用した以外は、(実
施例1)と同様の負極電極及び電池を作製し、これを本
発明の電池Bとした。
(Example 2) A negative electrode and a battery were prepared in the same manner as in (Example 1) except that a massive graphite obtained by pulverizing and classifying natural graphite was used as a graphite material. Of battery B.

【0061】また極板の一部を切り出し、広角X線回折
の試料として測定、(110)と(004)の強度比R
を求めた。
A part of the electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction. The intensity ratio R of (110) and (004) was measured.
I asked.

【0062】(実施例3)黒鉛材料としてメゾフェース
ピッチを原料として2800℃で黒鉛化を行った球状黒
鉛を粉砕、分級して使用した以外は、(実施例1)と同
様の負極電極及び電池を作製し、これを比較の電池Cと
した。また極板の一部を切り出し、広角X線回折の試料
として測定、(110)と(004)の強度比Rを求め
た。
(Example 3) A negative electrode and a battery similar to (Example 1) except that spheroidal graphite which was graphitized at 2800 ° C using mesophase pitch as a graphite material was used after pulverization and classification. This was used as Comparative Battery C. Further, a part of the electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction, and the intensity ratio R between (110) and (004) was determined.

【0063】(比較例1)黒鉛材料として鱗片状黒鉛を
使用した以外は、(実施例1)と同様の負極電極及び電
池を作製し、これを比較の電池Dとした。また極板の一
部を切り出し、広角X線回折の試料として測定、(11
0)と(004)の強度比Rを求めた。
Comparative Example 1 A negative electrode and a battery were produced in the same manner as in (Example 1) except that flaky graphite was used as a graphite material, and this was used as Comparative Battery D. A part of the electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction.
The intensity ratio R between (0) and (004) was determined.

【0064】(比較例2)黒鉛材料としてメゾフェース
ピッチを原料として2800℃で黒鉛化を行った球状黒
鉛を粉砕、分級して使用して負極電極を作製する際、圧
延を行わなかった以外は(実施例1)と同様の負極電極
及び電池を作製し、これを比較の電池Eとした。また極
板の一部を切り出し、広角X線回折の試料として測定、
(110)と(004)の強度比Rを求めた。
Comparative Example 2 Spheroidal graphite which was graphitized at 2800 ° C. using a mesoface pitch as a graphite material was pulverized, classified and used to produce a negative electrode, except that rolling was not performed. A negative electrode and a battery similar to (Example 1) were produced, and this was designated as Comparative Battery E. Also, a part of the electrode plate is cut out and measured as a sample for wide-angle X-ray diffraction.
The intensity ratio R of (110) and (004) was determined.

【0065】(実施例4)図2に本実施例で用いた薄型
電池の断面構造を示す。図2において8は正極シート、
9は正極集電体、10は負極シート、11は負極集電
体、12はセパレータである。
Example 4 FIG. 2 shows a cross-sectional structure of a thin battery used in this example. In FIG. 2, 8 is a positive electrode sheet,
Reference numeral 9 denotes a positive electrode current collector, 10 denotes a negative electrode sheet, 11 denotes a negative electrode current collector, and 12 denotes a separator.

【0066】8の正極シートは以下のようにして作製し
た。まず、フッ化ビニリデンと6フッ化プロピレンの共
重合体(P(VDF−HFP),6フッ化プロピレン比
率12重量%)140gをアセトン640g中に溶解し
た後、ジブチルフタレート(DBP)を220g加えて
攪拌し、電極用ポリマー溶液を調整した。次に、活物質
としてLiCoO2を754gと導電剤としてアセチレ
ンブラック(AB)を40g混合し、アセトン425g
を加えて30分練合した後、上記の電極用ポリマー溶液
430gを少量づつ1時間かけて加えながら混合し、正
極ペーストを得た。この正極ペーストをガラス板上に厚
み0.5mmで塗布し、室温でアセトンを乾燥除去させ
ることで0.22mmのシートを作製した。これを2本
ローラで圧延し、所定の大きさに打ち抜き正極シートを
得た。
The positive electrode sheet of No. 8 was produced as follows. First, 140 g of a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP), propylene hexafluoride ratio 12% by weight) was dissolved in 640 g of acetone, and 220 g of dibutyl phthalate (DBP) was added. The mixture was stirred to prepare a polymer solution for an electrode. Next, 754 g of LiCoO 2 as an active material and 40 g of acetylene black (AB) as a conductive agent were mixed, and 425 g of acetone was mixed.
Was added and kneaded for 30 minutes. Then, 430 g of the above-mentioned polymer solution for an electrode was added little by little over 1 hour and mixed to obtain a positive electrode paste. This positive electrode paste was applied on a glass plate to a thickness of 0.5 mm, and acetone was dried and removed at room temperature to prepare a 0.22 mm sheet. This was rolled by two rollers and punched to a predetermined size to obtain a positive electrode sheet.

【0067】次に負極として石油系コークスを炭化した
後、バインダーピッチと混合、成型した後に2800℃
で黒鉛化して得られた人造黒鉛を粉砕、分級し、塊状の
粒子形状を持つ黒鉛を100gにアセトン100gを加
え30分練合した。次に、上記の電極用ポリマーペース
ト145gを少量づつ1時間かけて混合し、負極ペース
トを作製した。この負極ペーストをガラス板上に厚み
0.4mmで塗布し、室温でアセトンを乾燥除去させる
ことで0.2mmのシートを作製した。これを2本ロー
ラで圧延し、所定の大きさに打ち抜き負極シートを得
た。そのとき一部この極板を切り出し、広角X線回折の
試料として測定したところ、(110)と(004)の
強度比Rは0.19であった。
Next, after petroleum-based coke was carbonized as a negative electrode, it was mixed with a binder pitch and molded, and then 2800 ° C.
The artificial graphite obtained by graphitization was pulverized and classified, and 100 g of graphite having a massive particle shape was added to 100 g of acetone and kneaded for 30 minutes. Next, 145 g of the above-mentioned polymer paste for an electrode was mixed little by little over 1 hour to prepare a negative electrode paste. The negative electrode paste was applied on a glass plate at a thickness of 0.4 mm, and acetone was dried and removed at room temperature to prepare a 0.2 mm sheet. This was rolled with two rollers and punched to a predetermined size to obtain a negative electrode sheet. At this time, a part of this electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction. As a result, the intensity ratio R of (110) and (004) was 0.19.

【0068】前記正極シートとアルミニウム製正極集電
体9を積層し、これらをポリテトラフルオロエチレンシ
ート(PTFE,厚み0.05mm)ではさみ、150
℃に加熱した2本ローラに通して加熱・加圧することで
熱融着させて正極板を作製した。なお、PTFEは正極
シートがローラに付着するのを防ぐため用いたものであ
り、銅箔またはアルミ箔などの他の材料を用いてもよ
い。同様にして負極シートと銅製負極集電体11とを加
熱・加圧することで熱融着させ、負極板を作製した。
The positive electrode sheet and the positive electrode current collector 9 made of aluminum are laminated, and these are sandwiched between polytetrafluoroethylene sheets (PTFE, thickness 0.05 mm).
The mixture was passed through two rollers heated to ° C. and heated and pressurized to perform heat fusion to produce a positive electrode plate. PTFE is used to prevent the positive electrode sheet from adhering to the roller, and other materials such as copper foil or aluminum foil may be used. Similarly, the negative electrode sheet and the negative electrode current collector 11 made of copper were thermally fused by heating and pressing to produce a negative electrode plate.

【0069】前記アルミニウム製正極集電体9、および
銅製負極集電体11にはあらかじめ以下のような表面処
理を施した。すなわち、アセトンに1時間浸漬して集電
体表面の有機物を除去し、10重量%の水酸化カリウム
水溶液に1時間浸漬して集電体表面の酸化膜を除去し、
イオン交換水で洗浄した。
The aluminum positive electrode current collector 9 and the copper negative electrode current collector 11 were previously subjected to the following surface treatment. That is, the collector was immersed in acetone for 1 hour to remove organic substances on the current collector surface, and then immersed in a 10% by weight aqueous potassium hydroxide solution for 1 hour to remove an oxide film on the current collector surface.
Washed with ion exchanged water.

【0070】次にアセチレンブラック3gとポリフッ化
ビニリデンのN−メチルピロリドン溶液(8重量%)8
7.5gを混合して導電性炭素材と結着剤の混合物を調
整した。この混合物を集電体に塗着した後、80℃、1
時間でN−メチルピロリドンを乾燥除去し、表面処理さ
れた集電体を得た。
Next, an N-methylpyrrolidone solution (8% by weight) of 3 g of acetylene black and polyvinylidene fluoride was added.
7.5 g was mixed to prepare a mixture of a conductive carbon material and a binder. After this mixture was applied to a current collector,
The N-methylpyrrolidone was dried and removed over a period of time to obtain a surface-treated current collector.

【0071】セパレータ12は以下の様にして作製し
た。まず、P(VDF−HFP)40g、アセトン20
0gを混合した後、DBP40gを加え攪拌すること
で、P(VDF−HFP)セパレータ用ペーストを調整
した。このペーストをガラス板上に厚さ150μmで塗
布し、室温でアセトンを乾燥除去することで0.02m
mのP(VDF−HFP)セパレータを得た。
The separator 12 was manufactured as follows. First, P (VDF-HFP) 40 g, acetone 20
After mixing 0 g, 40 g of DBP was added and stirred to prepare a paste for a P (VDF-HFP) separator. This paste was applied on a glass plate at a thickness of 150 μm, and acetone was dried and removed at room temperature to obtain 0.02 m.
m of P (VDF-HFP) separator were obtained.

【0072】最後に、P(VDF−HFP)セパレータ
を正極板と負極板ではさんだものをPTFEシートでは
さみ、120℃に加熱した2本ローラに通して加熱・加
圧することで熱融着させて、一体化構成した電池を作製
した。
Finally, a P (VDF-HFP) separator sandwiched between a positive electrode plate and a negative electrode plate is sandwiched between PTFE sheets, passed through two rollers heated to 120 ° C., and heated and pressed to be thermally fused. In this way, an integrated battery was produced.

【0073】上記の一体化構成した電池をジエチルエー
テル中に12時間浸漬し、DBPを抽出除去し、真空下
50℃で1時間乾燥した後、アルミニウム集電体にアル
ミニウムリード(厚さ0.1mm)を、銅集電体に銅リ
ード(厚さ0.1mm)をそれぞれスポット溶接して取
り付けた。
The integrated battery was immersed in diethyl ether for 12 hours to extract and remove DBP, dried at 50 ° C. under vacuum for 1 hour, and then subjected to an aluminum lead (0.1 mm thick) on an aluminum current collector. ) Were attached to a copper current collector by spot welding copper leads (thickness: 0.1 mm).

【0074】乾燥後の電池をあらかじめ一方を残してシ
ールしたアルミニウム製のラミネート袋に挿入し、電解
液を注入して、3分間の真空含浸を3回行った後、さら
に真空下60℃で10分間含浸して電池に電解液を注液
した。ここで電解液は、1モル/リットルのLiPF6
をECとDECの1:1の体積比に混合した溶媒に溶解
したものを用いた。
The dried battery was inserted into an aluminum laminate bag sealed in advance, leaving one of the batteries sealed. The electrolyte was injected, and vacuum impregnation was performed three times for three minutes. The battery was impregnated with the electrolyte for 5 minutes and the electrolyte was injected into the battery. Here, the electrolytic solution is 1 mol / liter of LiPF 6
Was dissolved in a solvent in which EC and DEC were mixed at a volume ratio of 1: 1.

【0075】注液後、ラミネート袋の残り一方をシール
して、電池Fとした。
After the injection, the remaining one of the laminate bags was sealed to obtain a battery F.

【0076】(実施例5)黒鉛材料として天然黒鉛を粉
砕、分級して得られた塊状黒鉛を使用した以外は、(実
施例4)と同様の負極及び電池を作製し、これを本発明
の電池Gとした。また極板の一部を切り出し、広角X線
回折の試料として測定、(110)と(004)の強度
比Rを求めた。
(Example 5) A negative electrode and a battery were produced in the same manner as in (Example 4) except that a massive graphite obtained by pulverizing and classifying natural graphite was used as a graphite material. Battery G was used. Further, a part of the electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction, and the intensity ratio R between (110) and (004) was determined.

【0077】(比較例3)黒鉛材料として鱗片状黒鉛を
使用した以外は、(実施例4)と同様の負極電極及び電
池を作製し、これを比較の電池Hとした。また極板の一
部を切り出し、広角X線回折の試料として測定、(11
0)と(004)の強度比Rを求めた。
Comparative Example 3 A negative electrode and a battery were produced in the same manner as in (Example 4) except that flaky graphite was used as a graphite material, and this was used as Comparative Battery H. A part of the electrode plate was cut out and measured as a sample for wide-angle X-ray diffraction.
The intensity ratio R between (0) and (004) was determined.

【0078】次に本発明のA,B,C,F,Gおよび比
較の電池D,E,Hを各3個用意して初期容量、高率放
電容量、サイクル特性を測定した。充放電条件は20℃
において、電池A,B,C,D,Eについては制限電流
を350mAとして充電電圧4.1V、充電時間2時間
の定電圧充電を行い、放電は初期充放電試験では放電電
流100mA、高率放電試験では放電電流1000mA
で行った。また、電池F,G,Hについては定電流充電
を20mA、充電電圧4.2Vカットとし、放電は初期
充放電試験では放電電流20mA、高率放電試験では放
電電流200mAとした。このときそれぞれ高率放電特
性の評価として、初期放電容量と高率放電容量との比を
求めた。またサイクル特性試験として電池A,B,C,
D,Eについては放電電流500mAで放電終止電圧
3.0Vの定電流放電、電池F,G,Hについては放電
電流100mAで放電終止電圧3.0Vの定電流放電を
行った。このときサイクル特性試験の評価として、初期
容量の半分以下の容量に劣化した時点をサイクル寿命と
した。これらの結果を(表1)に示した。
Next, three batteries A, B, C, F, and G of the present invention and three comparative batteries D, E, and H were prepared, and the initial capacity, high-rate discharge capacity, and cycle characteristics were measured. Charge and discharge conditions are 20 ° C
, Batteries A, B, C, D, and E were charged at a constant current of 350 V with a charging voltage of 4.1 V and a charging time of 2 hours. In the test, the discharge current was 1000 mA
I went in. The batteries F, G, and H were charged at a constant current of 20 mA and cut at a charge voltage of 4.2 V. Discharge was performed at a discharge current of 20 mA in the initial charge / discharge test and at a discharge current of 200 mA in the high-rate discharge test. At this time, the ratio between the initial discharge capacity and the high-rate discharge capacity was determined as the evaluation of the high-rate discharge characteristics. In addition, batteries A, B, C,
For D and E, constant current discharge was performed at a discharge current of 500 mA and a discharge end voltage of 3.0 V, and for cells F, G and H, constant current discharge was performed at a discharge current of 100 mA and a discharge end voltage of 3.0 V. At this time, as the evaluation of the cycle characteristic test, the point at which the capacity was reduced to half or less of the initial capacity was defined as the cycle life. These results are shown in (Table 1).

【0079】[0079]

【表1】 [Table 1]

【0080】本発明の電池A,B,C,F,Gでは、高
率放電特性に優れ、またサイクル寿命が500サイクル
以上と良好であった。ところが、電池D,E,Hでは、
良好な高率放電特性、サイクル特性が得られなかった。
電池D,Hの負極で用いた黒鉛材料は鱗片状の粒子形状
を持つため、電極作製の際、負極の配向性が著しく高く
なりやすく、インタカレーションに関与する粒子面内方
向のエッジ部の存在比が電解液界面で減少し、高率放電
特性、サイクル特性が低下したものと考えられる。また
電池Eでは、負極は配向しておらず電極界面にエッジ部
が十分存在していたが、圧延処理が十分でなかったた
め、粒子間の接触による電子伝導性が低下してしまい、
リチウムイオンの拡散による分極が大きくなって、高率
放電特性、サイクル特性が低下したものと考えられる。
The batteries A, B, C, F, and G of the present invention were excellent in high-rate discharge characteristics and excellent in cycle life of 500 cycles or more. However, for batteries D, E, and H,
Good high rate discharge characteristics and good cycle characteristics could not be obtained.
Since the graphite material used for the negative electrodes of the batteries D and H has a flaky particle shape, the orientation of the negative electrode tends to be extremely high during electrode fabrication, and the edge of the in-plane direction of the particles involved in the intercalation. It is considered that the abundance ratio decreased at the electrolyte interface and the high-rate discharge characteristics and cycle characteristics were reduced. In the battery E, the negative electrode was not oriented and the edge portion was sufficiently present at the electrode interface. However, since the rolling treatment was not sufficient, the electron conductivity due to the contact between the particles was reduced,
It is considered that the polarization due to the diffusion of lithium ions increased and the high-rate discharge characteristics and the cycle characteristics decreased.

【0081】以上より広角X線回折測定により得られる
黒鉛材料の格子面(110)、(004)のピーク強度
比R(I(110)/I(004))が0.05以上
0.5以下である負極を用いたとき、黒鉛粒子が電極作
製前の黒鉛粉体で見られるような粒子の配向がない状態
に近く、良好な高率放電特性、サイクル特性を有する非
水電解質二次電池を提供できる。
As described above, the peak intensity ratio R (I (110) / I (004)) between the lattice planes (110) and (004) of the graphite material obtained by wide-angle X-ray diffraction measurement is 0.05 or more and 0.5 or less. When a negative electrode is used, graphite particles are close to a state where there is no particle orientation as seen in graphite powder before electrode preparation, a non-aqueous electrolyte secondary battery having good high rate discharge characteristics, cycle characteristics. Can be provided.

【0082】(実施例6)黒鉛材料として人造黒鉛を粉
砕、分級して得られた塊状黒鉛を使用し、(実施例1)
と同様の負極電極及び電池を作製し、これを本発明の電
池Iとした。またこの塊状黒鉛を電極作製前の粉体で広
角X線回折の試料として測定したところ、(110)と
(004)の強度比はR0=0.43であった。また電
極作製後の電極の一部を切りだし、同様に測定したとこ
ろ、R=0.07であり、それより電極前の粉体から電
極としたときの変化率はP=0.19と求められた。
(Example 6) Lumpy graphite obtained by pulverizing and classifying artificial graphite was used as a graphite material (Example 1).
A negative electrode and a battery similar to those described above were produced, and this was designated as Battery I of the present invention. Further, when this massive graphite was measured as a sample for wide-angle X-ray diffraction using powder before producing the electrode, the intensity ratio between (110) and (004) was R 0 = 0.43. Further, a part of the electrode after the electrode was prepared was cut out and measured in the same manner. As a result, R = 0.07, and the rate of change from the powder before the electrode to the electrode was P = 0.19. Was done.

【0083】(実施例7)黒鉛材料として(実施例6)
と同様の黒鉛材料を使用し、圧延により負極厚みを0.
19mmとした負極電極を用いた以外は、(実施例6)
と同様の電池を作製し、これを本発明の電池Jとした。
またこの塊状黒鉛の粉体状態から電極としたときの変化
率はP=0.12であった。
(Example 7) As a graphite material (Example 6)
The same graphite material as that described above was used, and the thickness of the negative electrode was reduced to 0.1 by rolling.
(Example 6) Except that a negative electrode of 19 mm was used.
A battery similar to the above was produced, and this was designated as Battery J of the present invention.
The rate of change when this massive graphite powder was converted into an electrode was P = 0.12.

【0084】(比較例4)黒鉛材料として(実施例6)
と同様の黒鉛材料を使用し、圧延により負極厚みを0.
18mmとした負極電極を用いた以外は、(実施例6)
と同様の電池を作製し、これを本発明の電池Kとした。
またこの塊状黒鉛の粉体状態から電極としたときの変化
率はP=0.07であった。
(Comparative Example 4) As a graphite material (Example 6)
The same graphite material as that described above was used, and the thickness of the negative electrode was reduced to 0.1 by rolling.
(Example 6) Except that a negative electrode of 18 mm was used.
A battery similar to the above was produced, and this was designated as Battery K of the present invention.
The rate of change when the electrode was changed from the powdered state of the massive graphite was P = 0.07.

【0085】(比較例5)黒鉛材料として(実施例6)
と同様の黒鉛材料を使用して負極電極を作製する際、圧
延を行わなかった以外は(実施例6)と同様の負極電極
及び電池を作製し、これを本発明の電池Lとした。また
この塊状黒鉛の粉体状態から電極としたときの変化率は
P=0.86であった。
(Comparative Example 5) As a graphite material (Example 6)
A negative electrode and a battery were produced in the same manner as in (Example 6) except that rolling was not carried out when producing a negative electrode using the same graphite material as in Example 1, and this was designated as Battery L of the present invention. The rate of change when this massive graphite powder was used as an electrode was P = 0.86.

【0086】(実施例8)黒鉛材料として鱗片状黒鉛を
使用し、圧延により負極厚みを0.20mmとした負極
電極を用いた以外は、(実施例4)と同様の電池を作製
し、これを本発明の電池Mとした。またこの鱗片状黒鉛
の粉体状態から電極としたときの変化率はP=0.15
であった。
(Example 8) A battery similar to that of (Example 4) was prepared except that flaky graphite was used as a graphite material and a negative electrode having a negative electrode thickness of 0.20 mm was obtained by rolling. Was designated as Battery M of the present invention. The rate of change when the electrode was changed from the powdery state of the flaky graphite was P = 0.15.
Met.

【0087】(比較例6)黒鉛材料として(実施例8)
と同様の鱗片状黒鉛材料を使用し、圧延により負極厚み
を0.19mmとした負極電極を用いた以外は、(実施
例6)と同様の電池を作製し、これを本発明の電池Nと
した。またこの鱗片状黒鉛の粉体状態から電極としたと
きの変化率はP=0.04であった。
(Comparative Example 6) As a graphite material (Example 8)
A battery similar to (Example 6) was prepared, except that the same flaky graphite material as in Example 1 was used and a negative electrode having a negative electrode thickness of 0.19 mm was obtained by rolling, and this was referred to as Battery N of the present invention. did. The rate of change when the electrode was changed from the powdery state of the flaky graphite was P = 0.04.

【0088】(実施例9)黒鉛材料として人造黒鉛を粉
砕、分級して得られた塊状黒鉛を使用し、(実施例4)
と同様の負極電極及び非水電解質電池を作製し、これを
本発明の電池Oとした。またこの塊状黒鉛を電極作製前
の粉体で広角X線回折の試料として測定したところ、
(110)と(004)の強度比はR0=0.43であ
った。また電極作製後の電極の一部を切りだし、同様に
測定したところ、R=0.19であり、それより電極前
の粉体から電極としたときの変化率はP=0.44と求
められた。
(Example 9) Lumpy graphite obtained by pulverizing and classifying artificial graphite was used as a graphite material (Example 4).
A negative electrode and a nonaqueous electrolyte battery similar to those described above were produced, and this was designated as Battery O of the present invention. In addition, when this massive graphite was measured as a sample for wide-angle X-ray diffraction using powder before producing the electrode,
The intensity ratio between (110) and (004) was R 0 = 0.43. A part of the electrode after the electrode was prepared was cut out and measured in the same manner. As a result, R = 0.19, and the rate of change from the powder before the electrode to the electrode was P = 0.44. Was done.

【0089】(比較例7)黒鉛材料として(実施例4)
と同様の黒鉛材料を使用し、圧延により負極厚みを0.
18mmとした負極電極を用いた以外は、(実施例9)
と同様の電池を作製し、これを本発明の電池Pとした。
またこの塊状黒鉛の粉体状態から電極としたときの変化
率はP=0.09であった。
(Comparative Example 7) As a graphite material (Example 4)
The same graphite material as that described above was used, and the thickness of the negative electrode was reduced to 0.1 by rolling.
(Example 9) except that a negative electrode of 18 mm was used.
A battery similar to the above was produced, and this was designated as Battery P of the present invention.
The rate of change when the electrode was changed from the powdered state of the massive graphite was P = 0.09.

【0090】次に本発明の実施例、比較例I〜Pを各3
個用意して(実施例1)と同様に初期容量、高率放電容
量、サイクル特性を測定した。これらの結果を(表2)
に示した。
Next, Examples of the present invention and Comparative Examples I to P were
The initial capacity, high rate discharge capacity, and cycle characteristics were measured in the same manner as in Example 1 (Example 1). These results (Table 2)
It was shown to.

【0091】[0091]

【表2】 [Table 2]

【0092】本発明の電池I,J,M,Oでは、高率放
電特性に優れ、またサイクル寿命が500サイクル以上
と良好であった。ところが、電池K,L,N,Pでは、
良好な高率放電特性、サイクル特性が得られなかった。
電池K,Pの負極電極では、変化率Pが小さいことから
電極作製時の圧延により黒鉛粒子の基底面が集電体表面
と同一の方向に配向したためインタカレーションに関与
するエッジ部の存在比が電極表面で減少し、高率放電特
性、サイクル特性が低下したものと考えられる。また電
池Lでは圧延処理が十分でなかったため、黒鉛粒子間の
接触による電子伝導が不十分になり分極を生じてしまっ
たと考えられる。また電池Nの負極電極では電池Jと同
条件の電極作製条件で行っても、良好な高率放電特性、
サイクル特性が得られなかった。これは黒鉛材料が塊状
黒鉛と鱗片状黒鉛と異なった粒子形状を持つため、同条
件であっても配向性の変化率が塊状黒鉛の0.12に対
して鱗片状黒鉛が0.04とさらに基底面が集電体表面
と同一の方向に配向しているためと考えられる。
The batteries I, J, M, and O of the present invention were excellent in high-rate discharge characteristics and excellent in cycle life of 500 cycles or more. However, in the batteries K, L, N, and P,
Good high rate discharge characteristics and good cycle characteristics could not be obtained.
In the negative electrodes of the batteries K and P, since the rate of change P was small, the basal plane of the graphite particles was oriented in the same direction as the surface of the current collector by the rolling at the time of electrode fabrication, so that the abundance ratio of the edge part involved in the intercalation It is considered that the amount decreased on the electrode surface, and the high-rate discharge characteristics and the cycle characteristics decreased. Further, it is considered that the rolling treatment was not sufficient in the battery L, so that the electron conduction due to the contact between the graphite particles was insufficient and the polarization occurred. In the negative electrode of the battery N, good high-rate discharge characteristics can be obtained even under the same electrode manufacturing conditions as those of the battery J.
No cycle characteristics were obtained. This is because the graphite material has a different particle shape from the massive graphite and the flaky graphite, so that even under the same conditions, the rate of change in orientation is 0.12 for the massive graphite and 0.04 for the flaky graphite. This is probably because the basal plane is oriented in the same direction as the current collector surface.

【0093】以上より広角X線回折によるピーク強度比
Rの変化率Pが0.1以上0.7以下であるとき、黒鉛
粒子が電極作製前の黒鉛粉体で見られるような粒子の配
向がない状態に近く、良好な高率放電特性、サイクル特
性を有する非水電解質二次電池を提供できる。
As described above, when the rate of change P of the peak intensity ratio R by wide-angle X-ray diffraction is 0.1 or more and 0.7 or less, the orientation of the particles is such that the graphite particles can be seen in the graphite powder before the production of the electrode. A non-aqueous electrolyte secondary battery having good high-rate discharge characteristics and good cycle characteristics is provided.

【0094】なお、本実施例では、正極をLiCoO2
とした電池を用いたが、その他LiNiO2,LiMn
2,LiMn24などのリチウムを吸蔵・放出可能な
いわゆるロッキングチェアタイプのリチウム含有金属酸
化物を用いても同様の効果が得られる。
In this example, the positive electrode was LiCoO 2
Was used, but LiNiO 2 , LiMn
A similar effect can be obtained by using a so-called rocking chair type lithium-containing metal oxide capable of inserting and extracting lithium such as O 2 and LiMn 2 O 4 .

【0095】また本実施例では円筒型電池および薄型電
池を用いたが、この形状に限定されるものではなく、そ
の他角型、扁平型など、どのような電池形状、サイズで
構成しても同様の効果が得られる。
In this embodiment, a cylindrical battery and a thin battery are used. However, the present invention is not limited to this shape, and other battery shapes and sizes, such as a square battery and a flat battery, may be used. The effect of is obtained.

【0096】[0096]

【発明の効果】以上説明したように、本発明により得ら
れる電極を負極とすると、高率放電特性、サイクル特性
に優れた非水電解質二次電池が提供できる。
As described above, when the electrode obtained by the present invention is a negative electrode, a non-aqueous electrolyte secondary battery having excellent high rate discharge characteristics and cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】負極の評価用円筒型電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery for evaluation of a negative electrode.

【図2】負極の評価用薄型電池の縦断面図FIG. 2 is a longitudinal sectional view of a thin battery for evaluation of a negative electrode.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング 8 正極シート 9 正極集電体 10 負極シート 11 負極集電体 12 セパレータ DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulating packing 4 Electrode plate group 5 Positive electrode lead 6 Negative electrode lead 7 Insulating ring 8 Positive electrode sheet 9 Positive electrode current collector 10 Negative electrode sheet 11 Negative electrode current collector 12 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡邊 庄一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shoichiro Watanabe 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンの吸蔵および放出が可能
な黒鉛材料を主構成材料とする負極であって、前記負極
の広角X線回折測定により得られる黒鉛材料の格子面
(110)と(004)に対応するピークの強度比R
(=I(110)/I(004))が0.05以上0.
5以下である非水電解質二次電池用負極。
1. A negative electrode comprising a graphite material capable of occluding and releasing lithium ions as a main constituent material, wherein the lattice planes (110) and (004) of the graphite material obtained by wide-angle X-ray diffraction measurement of the negative electrode Intensity ratio R of the peak corresponding to
(= I (110) / I (004)) is 0.05 or more.
A negative electrode for a non-aqueous electrolyte secondary battery of 5 or less.
【請求項2】 リチウム含有酸化物からなる正極と、リ
チウムイオンの吸蔵および放出が可能な黒鉛材料を主構
成材料とし、広角X線回折測定により得られる黒鉛材料
の格子面(110)と(004)に対応するピークの強
度比R(=I(110)/I(004))が0.05以
上0.5以下である負極と、非水電解質から少なくとも
構成される非水電解質二次電池。
2. A positive electrode comprising a lithium-containing oxide and a graphite material capable of inserting and extracting lithium ions as main constituent materials, and the lattice planes (110) and (004) of the graphite material obtained by wide-angle X-ray diffraction measurement. And a non-aqueous electrolyte secondary battery comprising at least a non-aqueous electrolyte and a negative electrode having a peak intensity ratio R (= I (110) / I (004)) of 0.05 to 0.5.
【請求項3】 非水電解質がリチウム塩を有機溶媒に溶
解した有機電解液であって、前記有機溶媒が環状カーボ
ネートと鎖状カーボネートの2種もしくはさらに脂肪族
カルボン酸エステルを含めた3種を主成分とする請求項
2記載の非水電解質二次電池。
3. A non-aqueous electrolyte comprising an organic electrolyte obtained by dissolving a lithium salt in an organic solvent, wherein the organic solvent comprises two kinds of cyclic carbonates and chain carbonates or three kinds including an aliphatic carboxylic acid ester. The non-aqueous electrolyte secondary battery according to claim 2, which is a main component.
【請求項4】 リチウム含有酸化物、有機電解液および
有機電解液を吸収保持するポリマーを含む正極と、リチ
ウムイオンの吸蔵および放出が可能な黒鉛材料、有機電
解液および有機電解液を吸収保持するポリマーを含み、
広角X線回折測定により得られる黒鉛材料の格子面(1
10)と(004)に対応するピークの強度比R(=I
(110)/I(004))が0.05以上0.5以下
である負極と、有機電解液および有機電解液を保持する
ポリマーからなるセパレータを備えた非水電解質二次電
池。
4. A positive electrode containing a lithium-containing oxide, an organic electrolyte and a polymer that absorbs and retains the organic electrolyte, and a graphite material capable of occluding and releasing lithium ions, and absorbs and retains the organic electrolyte and the organic electrolyte. Including a polymer,
The lattice plane (1) of the graphite material obtained by wide-angle X-ray diffraction measurement
10) and intensity ratio R of peaks corresponding to (004) R (= I
A nonaqueous electrolyte secondary battery including a negative electrode having (110) / I (004)) of 0.05 or more and 0.5 or less, and a separator made of an organic electrolyte and a polymer holding the organic electrolyte.
【請求項5】 リチウムイオンの吸蔵および放出が可能
な黒鉛材料を主構成材料とし、前記黒鉛材料と結着剤を
含むペースト状合剤を金属箔からなる集電体上に塗着
後、圧延して作製される負極であって、広角X線回折に
より得られる黒鉛材料の格子面(110)と(004)
に対応するピークの強度比をR(=I(110)/I
(004))が0.05以上0.5以下としたとき、電
極作製前の黒鉛粉体を測定して得られるピーク強度比R
0と前記負極の測定値から得られるピーク強度比Rの比
率P(=R/R0)が0.1以上0.7以下である非水
電解質二次電池用負極。
5. A graphite material capable of occluding and releasing lithium ions as a main constituent material, and a paste mixture containing the graphite material and a binder is applied on a current collector made of metal foil, and then rolled. And (004) and (004) of graphite material obtained by wide-angle X-ray diffraction.
The intensity ratio of the peak corresponding to R (= I (110) / I
When (004)) is 0.05 or more and 0.5 or less, the peak intensity ratio R obtained by measuring the graphite powder before producing the electrode is obtained.
A negative electrode for a non-aqueous electrolyte secondary battery, wherein a ratio P (= R / R 0 ) of a peak intensity ratio R obtained from 0 to the measured value of the negative electrode is 0.1 or more and 0.7 or less.
【請求項6】 リチウム含有酸化物からなる正極と、リ
チウムイオンの吸蔵および放出が可能な黒鉛材料を主構
成材料とし、前記黒鉛材料と結着剤を含むペースト状合
剤を金属箔からなる集電体上に塗着後、圧延して作製さ
れる負極であって、広角X線回折により得られる黒鉛材
料の格子面(110)と(004)に対応するピークの
強度比をR(=I(110)/I(004))としたと
き、電極作製前の黒鉛粉体を測定して得られるピーク強
度比R0と前記負極の測定値から得られるピーク強度比
Rの比率P(=R/R0)が0.1以上0.7以下であ
る負極と、非水電解質から少なくとも構成される非水電
解質二次電池。
6. A positive electrode comprising a lithium-containing oxide, a graphite material capable of occluding and releasing lithium ions as a main constituent material, and a paste mixture containing the graphite material and a binder comprising a metal foil. A negative electrode prepared by rolling after coating on an electric body, and the intensity ratio of the peaks corresponding to the lattice planes (110) and (004) of the graphite material obtained by wide-angle X-ray diffraction is represented by R (= I (110) / I (004)), the ratio P (= R) of the peak intensity ratio R 0 obtained by measuring the graphite powder before preparing the electrode and the peak intensity ratio R obtained from the measured value of the negative electrode / R 0 ) a non-aqueous electrolyte secondary battery comprising at least a negative electrode having a value of 0.1 or more and 0.7 or less, and a non-aqueous electrolyte.
【請求項7】 非水電解質がリチウム塩を有機溶媒に溶
解した有機電解液であって、前記有機溶媒が環状カーボ
ネートと鎖状カーボネートの2種もしくはさらに脂肪族
カルボン酸エステルを含めた3種を主成分とする請求項
6記載の非水電解質二次電池。
7. An organic electrolytic solution in which a non-aqueous electrolyte is a lithium salt dissolved in an organic solvent, wherein the organic solvent is two kinds of cyclic carbonates and chain carbonates or three kinds including further aliphatic carboxylic acid esters. The non-aqueous electrolyte secondary battery according to claim 6, which is a main component.
【請求項8】 リチウム含有酸化物、有機電解液および
有機電解液を吸収保持するポリマーを含む正極と、リチ
ウムイオンの吸蔵および放出が可能な黒鉛材料、有機電
解液および有機電解液を吸収保持するポリマーを含み、
広角X線回折測定により得られる黒鉛材料の格子面(1
10)と(004)に対応するピークの強度比をR(=
I(110)/I(004))としたとき、電極作製前
の黒鉛粉体を測定して得られるピーク強度比R0と前記
負極の測定値から得られるピーク強度比Rの比率P(=
R/R0)が0.1以上0.7以下である負極と、有機
電解液および有機電解液を保持するポリマーからなるセ
パレータを備えた非水電解質二次電池。
8. A positive electrode containing a lithium-containing oxide, an organic electrolyte and a polymer capable of absorbing and retaining the organic electrolyte, and a graphite material capable of inserting and extracting lithium ions, absorbing and retaining the organic electrolyte and the organic electrolyte. Including a polymer,
The lattice plane (1) of the graphite material obtained by wide-angle X-ray diffraction measurement
The intensity ratio of the peaks corresponding to 10) and (004) is represented by R (=
I (110) / I (004)), the ratio P (= P) of the peak intensity ratio R 0 obtained by measuring the graphite powder before preparing the electrode and the peak intensity ratio R obtained from the measured value of the negative electrode
A nonaqueous electrolyte secondary battery including a negative electrode having an R / R 0 ) of 0.1 or more and 0.7 or less, and a separator made of an organic electrolyte and a polymer holding the organic electrolyte.
JP25990598A 1997-09-19 1998-09-14 Negative electrode for non-aqueous electrolyte secondary battery and battery using the same Expired - Lifetime JP4168492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25990598A JP4168492B2 (en) 1997-09-19 1998-09-14 Negative electrode for non-aqueous electrolyte secondary battery and battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-254534 1997-09-19
JP25453497 1997-09-19
JP25990598A JP4168492B2 (en) 1997-09-19 1998-09-14 Negative electrode for non-aqueous electrolyte secondary battery and battery using the same

Publications (2)

Publication Number Publication Date
JPH11154513A true JPH11154513A (en) 1999-06-08
JP4168492B2 JP4168492B2 (en) 2008-10-22

Family

ID=26541719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25990598A Expired - Lifetime JP4168492B2 (en) 1997-09-19 1998-09-14 Negative electrode for non-aqueous electrolyte secondary battery and battery using the same

Country Status (1)

Country Link
JP (1) JP4168492B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
WO2005043653A1 (en) 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2005209394A (en) * 2004-01-20 2005-08-04 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2006025376A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP2011086617A (en) * 2009-09-15 2011-04-28 Mitsubishi Chemicals Corp Carbon material for lithium-ion secondary battery
JP2012114201A (en) * 2010-11-24 2012-06-14 Nec Tokin Corp Power storage device
WO2015045387A1 (en) * 2013-09-25 2015-04-02 国立大学法人東京大学 Non-aqueous electrolyte secondary battery
JP2015195164A (en) * 2013-09-25 2015-11-05 国立大学法人 東京大学 nonaqueous secondary battery
JP2016184534A (en) * 2015-03-26 2016-10-20 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode and nonaqueous secondary battery
US9620784B2 (en) 2011-07-14 2017-04-11 Nec Energy Devices, Ltd. Negative electrode including platy graphite conductive additive for lithium ion battery, and lithium ion battery using the same
JP6206611B1 (en) * 2017-03-03 2017-10-04 Tdk株式会社 Negative electrode and lithium ion secondary battery
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery
JP2019175712A (en) * 2018-03-28 2019-10-10 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
WO2005043653A1 (en) 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2005209394A (en) * 2004-01-20 2005-08-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP4992425B2 (en) * 2004-08-30 2012-08-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
WO2006025376A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JPWO2006025376A1 (en) * 2004-08-30 2008-05-08 三菱化学株式会社 Non-aqueous secondary battery negative electrode material, non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP2011238622A (en) * 2004-08-30 2011-11-24 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR101106966B1 (en) 2004-08-30 2012-01-20 도까이 카본 가부시끼가이샤 Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
US8404383B2 (en) 2004-08-30 2013-03-26 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP2011086617A (en) * 2009-09-15 2011-04-28 Mitsubishi Chemicals Corp Carbon material for lithium-ion secondary battery
JP2014146607A (en) * 2009-09-15 2014-08-14 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2012114201A (en) * 2010-11-24 2012-06-14 Nec Tokin Corp Power storage device
US9620784B2 (en) 2011-07-14 2017-04-11 Nec Energy Devices, Ltd. Negative electrode including platy graphite conductive additive for lithium ion battery, and lithium ion battery using the same
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery
WO2015045387A1 (en) * 2013-09-25 2015-04-02 国立大学法人東京大学 Non-aqueous electrolyte secondary battery
JP2015195164A (en) * 2013-09-25 2015-11-05 国立大学法人 東京大学 nonaqueous secondary battery
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
JP2016184534A (en) * 2015-03-26 2016-10-20 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode and nonaqueous secondary battery
JP6206611B1 (en) * 2017-03-03 2017-10-04 Tdk株式会社 Negative electrode and lithium ion secondary battery
JP2018147672A (en) * 2017-03-03 2018-09-20 Tdk株式会社 Negative electrode and lithium ion secondary battery
JP2019175712A (en) * 2018-03-28 2019-10-10 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery

Also Published As

Publication number Publication date
JP4168492B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP6197029B2 (en) Active material for nonaqueous electrolyte storage element
US8748036B2 (en) Non-aqueous secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
EP0903799B1 (en) Nonaqueous electrolyte secondary battery and its anode
WO2012001845A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and production method for same
JPH05190209A (en) Liquid electrolyte and rechargeable chemical cell with lithium/carbon anode
JP2005123107A (en) Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JP4595145B2 (en) Non-aqueous electrolyte battery
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4168492B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP5245201B2 (en) Negative electrode, secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
CN110168787B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2083463B1 (en) Lithium primary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2017022731A1 (en) Lithium ion secondary battery
JP4810794B2 (en) Nonaqueous electrolyte secondary battery
JPWO2017068985A1 (en) Lithium ion battery
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
JP2005071938A (en) Negative electrode activator for secondary battery, negative electrode and secondary battery using the same, and manufacturing method of negative electrode activator for secondary battery and negative electrode for secondary battery using the activator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

EXPY Cancellation because of completion of term