WO2015045061A1 - 無線通信システム、無線端末、無線基地局、及び、制御方法 - Google Patents

無線通信システム、無線端末、無線基地局、及び、制御方法 Download PDF

Info

Publication number
WO2015045061A1
WO2015045061A1 PCT/JP2013/076057 JP2013076057W WO2015045061A1 WO 2015045061 A1 WO2015045061 A1 WO 2015045061A1 JP 2013076057 W JP2013076057 W JP 2013076057W WO 2015045061 A1 WO2015045061 A1 WO 2015045061A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
timing
transmitted
information
wireless terminal
Prior art date
Application number
PCT/JP2013/076057
Other languages
English (en)
French (fr)
Inventor
中村 道春
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2013/076057 priority Critical patent/WO2015045061A1/ja
Publication of WO2015045061A1 publication Critical patent/WO2015045061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, a wireless terminal, a wireless base station, and a control method.
  • sensor information can be collected without human intervention, so the cost for collecting the sensor information (for example, labor cost) can be reduced. Furthermore, the collected sensor information can be quickly analyzed. As a result, it is possible to efficiently supply electric power, gas, water supply, etc., or supply goods to the vending machine. In addition, it is possible to quickly detect the occurrence of a suspicious person or abnormality.
  • a measuring device, a vending machine, or a terminal device such as a surveillance camera that acquires sensor information communicates with a computer (machine) such as a server via a communication network.
  • a computer such as a server
  • M2M machine-to-machine
  • MTC Machine Type Communication
  • the terminal device is also called an M2M device or an MTC device.
  • the information collection system can be realized by using a wireless communication network of a mobile communication system (see, for example, Non-Patent Document 1, Patent Document 1, and Patent Document 2).
  • a wireless communication network of a mobile communication system see, for example, Non-Patent Document 1, Patent Document 1, and Patent Document 2.
  • the MME when there is a request for setting information from a new MTC device, the MME, when the existing MTC device is not connected, Notify the connection time zone.
  • MME is an abbreviation for Mobility Management Entity.
  • the base station assigns different intermittent reception periods to a plurality of paging channels and notifies the mobile station of the assigned intermittent reception periods. Further, the mobile station selects a call channel corresponding to the intermittent reception cycle desired by the user and reports it to the base station.
  • a radio base station transmits broadcast information indicating MIB or the like.
  • MIB is an abbreviation for Master Information Block.
  • MIB is information used for a wireless terminal to start communication with a wireless base station.
  • the wireless terminal receives broadcast information from the wireless base station, and communicates with the wireless base station based on the received broadcast information.
  • a terminal device as a wireless terminal may be installed in a place where a wireless signal from a wireless base station of a mobile communication system is difficult to be received (for example, a basement of a building). Moreover, the terminal device is often fixed without being carried by the user. For this reason, in order to make a terminal device receive broadcast information reliably, improving the reception quality of broadcast information by increasing the frequency
  • the ratio of the portion for transmitting broadcast information to the entire radio resource increases. For this reason, it is conceivable to avoid the ratio from becoming excessive by periodically providing a period during which broadcast information can be transmitted and a period during which broadcast information cannot be transmitted.
  • the wireless terminal continues to operate to receive the broadcast information until a period in which the broadcast information can be transmitted arrives. As a result, the wireless terminal wastes power. Note that the above-described problem may occur even when a period in which information other than broadcast information can be transmitted is provided periodically. The above-described problems may also occur in a wireless communication system in which the wireless terminal is a device other than the M2M device (for example, a device carried by the user).
  • One of the objects of the present invention is to notify the wireless terminal of the timing at which the first control information is transmitted later.
  • a wireless communication system includes a wireless base station and a wireless terminal that communicates with the wireless base station.
  • the radio base station periodically transmits first control information to the radio terminal.
  • the wireless base station receives a second time from when the first control information is transmitted to the wireless terminal at a first timing until the first control information is transmitted at a second timing.
  • the second control information indicates a transmission timing of the first control information transmitted after the first timing.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system according to a first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a radio base station in FIG. 2. It is explanatory drawing which shows notionally an example of the scheduling of alerting
  • FIG. 3 is a block diagram illustrating a configuration example of a wireless terminal in FIG. 2.
  • 3 is a flowchart illustrating an example of processing executed by the radio base station in FIG. 2.
  • 3 is a flowchart illustrating an example of processing executed by the wireless terminal in FIG. 2.
  • the wireless communication system includes a wireless base station installed for each area (service area) for supplying services.
  • the radio base station performs radio communication with a radio terminal by using radio waves in a frequency band assigned to the service area.
  • Radio resources used for radio communication are managed in units called resource blocks divided in the frequency domain and the time domain.
  • a certain resource block is used to broadcast (control) control information from the radio base station to all radio terminals in the service area.
  • the other resource blocks are used for the radio base station to individually transmit (transmit or receive) control information to and from each radio terminal.
  • Still another resource block is used for transmitting communication data (for example, user data).
  • PBCH Physical Broadcast Channel
  • SFN frame number
  • MIB is 24-bit information.
  • 480-bit information (encoded MIB) obtained by applying channel coding at a coding rate of 1/12 to 40-bit information consisting of MIB and 16-bit CRC code for MIB is PBCH.
  • CRC is an abbreviation for Cyclic Redundancy Check.
  • the encoded MIB is mapped to 240 resource elements.
  • the resource element corresponds to one symbol of one subcarrier in the OFDM scheme.
  • OFDM is an abbreviation for Orthogonal Frequency Division Multiplexing.
  • the encoded MIB is repeatedly transmitted four times in 40 ms. That is, the encoded MIB is transmitted using 960 resource elements in 40 ms. In other words, the encoded MIB is transmitted using 24 resource elements per 1 ms.
  • central radio resources 72 subcarrier radio resources at the center of the system bandwidth (hereinafter also referred to as “central radio resources”) are used.
  • central radio resources 72 subcarrier radio resources at the center of the system bandwidth
  • a period of 1 ms is used as one subframe.
  • One subframe includes 14 symbols.
  • the MIB is information used for a wireless terminal to start communication with a wireless base station. Therefore, the radio base station wants the radio terminal to receive the MIB as much as possible. For this reason, it is conceivable to increase the reception quality of broadcast information by increasing the number of times broadcast information is transmitted (for example, see Non-Patent Document 2). By demodulating the repeatedly transmitted wireless signal while the wireless terminal adds, the same effect as when the transmission power is increased can be obtained.
  • Non-patent Document 2 3GPP TR 36.888 V12.0.0, “Study on provision of low-cost Machine-Type Communications (MTC) User equipment (UEs) based on LTE, Rele, se, June 2013, [Search September 11, 2013], Internet ⁇ URL: http://www.3gpp.org/ftp/Specs/html-info/36888.htm>
  • resource elements are used per 1 ms. In this case, 70% or more of the resource elements of the entire central radio resource are occupied to transmit the MIB.
  • the amount of wireless resources used to transmit the broadcast information may be excessive. Therefore, since the amount of radio resources that can be used for transmitting communication data is reduced, the utilization efficiency of radio resources is reduced.
  • the occupation ratio can be kept constant.
  • the occupation ratio is the ratio of the portion for transmitting broadcast information to the entire radio resource.
  • the time until the wireless terminal receives the broadcast information also becomes longer. Therefore, for example, a time until a newly activated wireless terminal, a wireless terminal that has returned from a standby state, and / or a wireless terminal that has moved from another service area starts communication with the wireless base station. Becomes longer.
  • a wireless terminal that is not synchronized with the transmission period of broadcast information does not know the timing at which broadcast information is transmitted. For this reason, the wireless terminal continues to operate to receive broadcast information until a period in which broadcast information is transmitted arrives. As a result, the wireless terminal wastes power. For example, when an M2M device is installed as a wireless terminal, the time until the operation of the wireless terminal is confirmed by the wireless terminal performing communication is excessively long.
  • the wireless communication system includes a wireless base station and a wireless terminal that communicates with the wireless base station.
  • the radio base station periodically transmits the first control information to the radio terminal. Further, the radio base station transmits the second control information after the first control information is transmitted at the first timing until the first control information is transmitted at the second timing.
  • the 2nd control information shows the transmission timing of the 1st control information transmitted after the 1st timing.
  • the radio communication system 1 according to the first embodiment includes a plurality of radio base stations 10,... And a plurality of radio terminals 20.
  • the number of radio base stations 10 may be one.
  • the number of wireless terminals 20 may be one.
  • the wireless communication system 1 performs wireless communication according to a predetermined wireless communication method between the wireless base station 10 and the wireless terminal 20.
  • the wireless communication system is the LTE system.
  • the wireless communication method may be a method different from the LTE method (for example, a method such as LTE-Advanced or WiMAX).
  • WiMAX is an abbreviation for Worldwide Interoperability for Microwave Access.
  • the radio base station 10 provides at least one cell (coverage area or communication area).
  • the cell is a macro cell, a micro cell, a nano cell, a pico cell, a femto cell, a home cell, a sector cell, or the like.
  • the radio base station 10 performs radio communication with the radio terminal 20 located in a cell provided by the own station 10.
  • the radio base station 10 provides radio resources (in this example, resources specified by a time domain and a frequency band) in a cell provided by the own station 10.
  • the radio base station 10 communicates with the radio terminal 20 located in a cell provided by the own station 10 by using radio resources provided in the cell.
  • the radio base station 10 may be an access point, an eNB (Evolved Node B), an NB (Node B), a femto base station, a macro base station, or a home base station.
  • the radio base station 10 is connected to the communication network NW so that wired communication is possible.
  • the radio base station 10 may be connected to the communication network NW so as to be capable of radio communication.
  • the wireless base station 10 and a portion of the wireless communication system 1 on the side of the communication network NW (that is, the higher level) than the wireless base station 10 may be referred to as E-UTRAN.
  • E-UTRAN is an abbreviation for Evolved Universal Terrestrial Radio Access Network.
  • the radio terminal 20 performs radio communication with the radio base station 10 that provides the cell by using radio resources provided in the cell including the position of the own terminal 20.
  • the wireless terminal 20 is an M2M device or an MTC device.
  • the wireless terminal 20 measures the usage amount of power, gas, water, or the like, and sends sensor information representing the measurement result to the communication network NW via the wireless base station 10 (not shown). Send to device.
  • the radio terminal 20 may be a mobile station or a user terminal (UE; User Equipment).
  • the radio base station 10 includes a control unit 11, a radio frame generation unit 12, a radio modulation unit 13, a high frequency unit 14, and an antenna 15 when focusing on the transmission system.
  • the radio frame generation unit 12, the radio modulation unit 13, the high frequency unit 14, and the antenna 15 are examples of a communication unit.
  • the function of the radio base station 10 may be realized using an LSI (Large Scale Integration).
  • at least a part of the radio base station 10 may be realized using a programmable logic circuit device (for example, PLD or FPGA).
  • PLD is an abbreviation for Programmable Logic Device.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the control unit 11 includes a timer, and controls transmission information scheduling by the radio frame generation unit 12, which will be described later, based on a time (timer value) measured by the timer.
  • the radio frame generation unit 12 generates a radio frame according to the control of the control unit 11.
  • the radio frame has a predetermined time length (10 ms in this example).
  • the radio frame generation unit 12 includes a physical broadcast channel generation unit 121, a timing information generation unit 122, a physical control channel generation unit 123, and a physical data channel generation unit 124.
  • the physical broadcast channel generation unit 121 generates broadcast information transmitted via the physical broadcast channel (PBCH).
  • the broadcast information includes operation parameters (in this example, MIB) of the wireless communication system 1.
  • the MIB includes a frame number (SFN) of a radio frame, a system bandwidth, and the like.
  • the MIB is 24-bit information.
  • the physical broadcast channel generation unit 121 generates a 16-bit CRC code for the MIB.
  • the physical broadcast channel generation unit 121 performs channel encoding (main book) on a 40-bit information including the MIB and the generated CRC code at a predetermined encoding rate (1/12 in this example). In the example, processing for adding a turbo code is performed. Accordingly, the physical broadcast channel generation unit 121 generates 480-bit information (encoded MIB) as broadcast information to be transmitted.
  • the channel coding may be a process of adding a Reed-Solomon code or a convolutional code.
  • the physical broadcast channel generation unit 121 performs data modulation on broadcast information, for example, by QPSK.
  • QPSK is an abbreviation for Quadriphase Phase-Shift Keying.
  • the notification information is an example of first control information.
  • the data modulation may be modulation according to a modulation method such as 16QAM or 64QAM.
  • 16QAM is an abbreviation for 16 Quadrature Amplitude Modulation.
  • 64QAM is an abbreviation for 64 Quadrature Amplitude Modulation.
  • the timing information generation unit 122 generates timing information.
  • the timing information indicates the transmission timing of the broadcast information.
  • the timing information is an example of second control information.
  • the timing information is first, second, third, or fourth timing information.
  • the first to fourth timing information indicate the first to fourth timings, respectively.
  • the first to fourth timings are after 150 ms, after 450 ms, after 750 ms, and after 1050 ms, respectively.
  • the timing information is assumed to be transmitted using the same number of resource elements as the broadcast information, and the first to fourth timing information is 480 bits having the same size as the encoded broadcast information.
  • the pseudo-random sequence associated with the first to fourth timing information is preferably a sequence orthogonal to each other.
  • the timing information generation unit 122 performs data modulation on the timing information by QPSK. Thereby, timing information is transmitted using 240 resource elements which are the same number as broadcast information.
  • the data modulation may be modulation according to a modulation method such as 16QAM or 64QAM.
  • the physical control channel generation unit 123 generates control information transmitted via the physical control channel.
  • the physical control channel is PDCCH (Physical Downlink Control Channel).
  • the physical control channel generation unit 123 performs channel coding and data modulation on the control information.
  • channel coding is a process of adding an error correction code such as a Reed-Solomon code, a convolutional code, or a turbo code.
  • error correction code such as a Reed-Solomon code, a convolutional code, or a turbo code.
  • the data modulation is modulation according to a modulation scheme such as QPSK, 16QAM, or 64QAM.
  • the physical data channel generation unit 124 generates user information transmitted via the physical data channel.
  • the physical data channel is PDSCH (Physical Downlink Shared Channel). Similar to the physical control channel generation unit 123, the physical data channel generation unit 124 performs channel coding and data modulation on user information.
  • PDSCH Physical Downlink Shared Channel
  • the radio frame generation unit 12 generates a radio frame by scheduling information generated by the physical broadcast channel generation unit 121 to the physical data channel generation unit 124 according to the control of the control unit 11.
  • Scheduling information is an example of determining a time region and a frequency region of a radio resource for transmitting the information, or an example of assigning a time region and a frequency region of a radio resource to the information.
  • the radio frame generator 12 schedules each piece of information so as to have a period of a predetermined time (in this example, 1.2 s, that is, a time including 120 radio frames). To do.
  • the radio frame generation unit 12 schedules 120 pieces of broadcast information in a period TP1 of the head unit time (40 ms in this example) in one cycle. Accordingly, the broadcast information is repeatedly transmitted 120 times in the first unit time period TP1 in each cycle.
  • the broadcast information is transmitted 30 times as many times as transmission in the period TP1 with respect to the LTE method described in Non-Patent Document 1. Therefore, it is possible to increase the probability that a radio terminal installed in a place where the radio wave intensity is 1/30 times (approximately 15 dB smaller) than the radio wave intensity lower limit will successfully receive the broadcast information.
  • the radio wave intensity lower limit value is a lower limit value of the radio wave intensity at which broadcast information can be received in the LTE system described in Non-Patent Document 1.
  • a period # 1 in which broadcast information can be transmitted and a period # 2 in which broadcast information cannot be transmitted are provided.
  • the period # 1 in which the broadcast information can be transmitted is the period TP1 of the head unit time in each cycle.
  • notification information is repeatedly transmitted.
  • the period # 2 during which the broadcast information cannot be transmitted is a period excluding the first unit time period TP1 in each cycle.
  • the period TP1 is an example of a first period.
  • the period excluding the period TP1 in each cycle is an example of a second period.
  • the total number of times that broadcast information is transmitted in each cycle is the number of times that broadcast information is transmitted in a period having a length equal to the cycle in the LTE scheme described in Non-Patent Document 1. Equal to the sum. Therefore, the ratio (occupation ratio) occupied by the portion for transmitting broadcast information to the entire radio resource is equal to the LTE scheme described in Non-Patent Document 1.
  • the radio frame generation unit 12 includes four fourth frames in a period TT4 between a time point 1050 ms before the end (end) in one cycle and a time point a unit time before that time point.
  • Schedule timing information Therefore, the fourth timing information is repeatedly transmitted four times in a period TT4 between a time point 1050 ms before the end of each cycle and a time point a unit time before that time point.
  • the radio frame generation unit 12 schedules one piece of fourth timing information for each radio frame in the period TT4. For example, the radio frame generation unit 12 schedules one piece of fourth timing information in the first subframe of each radio frame in the period TT4. Therefore, in this example, in the period TT4, the timing information is transmitted at the same timing as the notification information is transmitted by the LTE method described in Non-Patent Document 1.
  • the radio frame generation unit 12 has four third timings in a period TT3 between a time point 750 ms before the end in one cycle and a time point a unit time before that time point. Schedule information. Further, the radio frame generation unit 12 includes four pieces of second timing information in a period TT2 between a time point 450 ms before the end in one cycle and a time point a unit time before that time point. To schedule. In addition, the radio frame generation unit 12 has four first timings in a period TT1 between a time point 150 ms before the end in one cycle and a time point a unit time before that time point. Schedule information.
  • the timing information indicates a value corresponding to the time between the timing at which the timing information is transmitted and the timing at which the notification information is transmitted earliest after the timing.
  • the second period # 2 includes a period # 4 in which timing information can be transmitted and a period # 3 in which timing information cannot be transmitted.
  • the period # 4 in which the timing information can be transmitted is the periods TT1 to TT4 in each cycle. In each period TT1 to TT4, timing information is repeatedly transmitted.
  • the period # 3 during which the timing information cannot be transmitted is a period excluding the period TP1 and the periods TT1 to TT4 in each cycle.
  • Each of the periods TT1 to TT4 is an example of a fourth period.
  • the period excluding the period TP1 and the periods TT1 to TT4 in each cycle is an example of a third period.
  • the number of types of timing information may be a natural number different from four.
  • the second period # 2 includes the same number of fourth periods # 4 as the number of types of timing information. Further, the second period # 2 may be only a period during which timing information can be transmitted. In this case, the second period # 2 includes a third period # 3 and a fourth period # 4 in which the number of times the timing information is transmitted per unit time is greater than that in the third period. May be.
  • the radio terminal 20 can recognize the timing (transmission timing) at which the broadcast information is transmitted next only by continuing the reception operation for a maximum of 300 ms.
  • the wireless terminal 20 controls the state of the functional unit for receiving broadcast information in the wireless terminal 20 to the standby state until the transmission timing.
  • the radio terminal 20 may control the state of the radio demodulation unit and / or the high frequency unit to the standby state in addition to the function unit. As a result, the power consumption of the wireless terminal 20 can be reduced.
  • the radio resource used to transmit the timing information is 960 resource elements every 300 ms period. Therefore, the ratio of the portion for transmitting timing information to the entire radio resource is about 0.3%. Therefore, the radio resources used for transmitting the timing information are very few compared to the radio resources used for transmitting the broadcast information.
  • timing information may have a larger amount of information than one piece of broadcast information.
  • the timing information may be a 1920-bit pseudo-random sequence that is four times 480 bits.
  • the radio frame generation unit 12 may divide the pseudo-random sequence, which is timing information, into four partial sequences, and schedule the four partial sequences to four radio frames included in a unit time period.
  • the radio modulation unit 13 performs radio modulation on the radio frame generated by the radio frame generation unit 12, for example, according to the OFDM scheme.
  • the radio modulation includes an inverse fast Fourier transform (IFFT) and the like.
  • the high frequency unit 14 performs digital / analog conversion, frequency conversion from the baseband to the radio frequency band, and the like on the radio frame radio-modulated by the radio modulation unit 13 so that a sufficient transmission output is obtained. Perform amplification.
  • the antenna 15 transmits the radio signal converted by the high frequency unit 14.
  • the radio base station 10 may transmit the timing information so that the reception quality of the timing information is equal to or lower than the reception quality of the broadcast information.
  • the radio base station 10 may control the reception quality by controlling at least one of a coding rate in channel coding, a modulation scheme in data modulation, and transmission power of a radio signal.
  • the radio base station 10 periodically transmits the broadcast information as the first control information to the radio terminal 20. Further, the radio base station 10 transmits the broadcast information to the radio terminal 20 at the first timing and before the broadcast information is transmitted at the second timing, the timing as the second control information. Send information.
  • the first timing is a timing within the period TP1 in the first period
  • the second timing is a timing within the period TP1 in the second period subsequent to the first period.
  • the timing information is information indicating the second timing.
  • the timing information may indicate a timing at which the first control information is transmitted after the second timing.
  • the timing information may indicate the timing within the period TP1 in a period later than the second period.
  • the radio terminal 20 includes an antenna 21, a high frequency unit 22, a radio demodulation unit 23, a physical channel extraction unit 24, and a control unit 25 when focusing on the reception system.
  • the antenna 21, the high frequency unit 22, the radio demodulation unit 23, and the physical channel extraction unit 24 are examples of a communication unit.
  • the function of the wireless terminal 20 may be realized using an LSI. Further, at least a part of the wireless terminal 20 may have a function realized by using a programmable logic circuit device (for example, PLD or FPGA).
  • the high frequency unit 22 performs filtering processing for extracting a signal in a desired radio band from the reception signal received by the antenna 21, low noise amplification, frequency conversion from a radio frequency band to a base band, analog / digital conversion, and the like. To do.
  • the radio demodulator 23 performs radio demodulation on the received signal converted by the high frequency unit 22 according to, for example, the OFDM method.
  • radio demodulation includes Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical channel extraction unit 24 performs data demodulation and channel decoding on the reception signal wirelessly demodulated by the wireless demodulation unit 23 according to the control of the control unit 25.
  • data demodulation is demodulation according to a modulation scheme such as QPSK, 16QAM, or 64QAM.
  • channel decoding is an error correction process based on an error correction code such as a Reed-Solomon code, a convolutional code, or a turbo code.
  • the physical channel extraction unit 24 includes a physical broadcast channel demodulation unit 241, a timing information demodulation unit 242, a physical control channel demodulation unit 243, and a physical data channel demodulation unit 244.
  • the physical broadcast channel demodulator 241 performs a demodulation process on a part of the received signal corresponding to the radio resource specified by the controller 25.
  • the control unit 25 identifies a radio resource in which 120 pieces of broadcast information may be transmitted in a unit time period.
  • the physical broadcast channel demodulator 241 adds a received signal portion corresponding to a radio resource to which each broadcast information may be transmitted, and performs demodulation processing on the addition result.
  • the demodulation process includes data demodulation and channel decoding.
  • Data demodulation is demodulation according to the modulation scheme (QPSK in this example) used by the physical broadcast channel generation unit 121 of FIG.
  • Channel decoding includes error correction processing and CRC check based on an error correction code (in this example, a turbo code) added by the physical broadcast channel generation unit 121.
  • the physical broadcast channel demodulation unit 241 determines that broadcast information has been received if the CRC check result is a pass (pass).
  • the timing information demodulator 242 performs demodulation processing on a portion of the received signal corresponding to the radio resource specified by the controller 25.
  • the control unit 25 identifies a radio resource in which four pieces of timing information may be transmitted in a unit time period.
  • the timing information demodulation unit 242 adds the received signal portion corresponding to each timing information, and performs a demodulation process on the addition result.
  • the demodulation process is a process of calculating a correlation coefficient between the addition result and each of the first to fourth reference signals, and detecting and acquiring timing information based on the correlation coefficient.
  • the first to fourth reference signals are signals corresponding to the first to fourth timing information, respectively.
  • the timing information demodulator 242 stores the first to fourth reference signals in advance in association with the first to fourth timing information, respectively.
  • the timing information demodulator 242 determines that the timing information has been detected when the calculated maximum value of the correlation coefficient is greater than a predetermined coefficient threshold value, and associates it with the reference signal having the maximum correlation coefficient. Timing information obtained as a result of the demodulation process. On the other hand, the timing information demodulation unit 242 determines that the timing information has not been detected as a result of the demodulation process when the calculated maximum value of the correlation coefficient is equal to or less than the coefficient threshold.
  • timing information demodulation unit 242 calculates correlation coefficients for each of the four portions of the received signal corresponding to the four pieces of timing information, and calculates the calculated correlation coefficients for the four portions.
  • the timing information may be acquired based on the calculated sum.
  • the signal processing for detecting timing information that is substantially 2-bit information is processing for detecting one of four predetermined reference signal sequences.
  • the signal processing for detecting broadcast information is a decoding process and CRC check of an error correction code for extracting information of substantially 40 bits. Therefore, the demodulation process for timing information has a lighter processing load than the demodulation process for broadcast information.
  • the physical control channel demodulation unit 243 performs a demodulation process on a portion of the received signal corresponding to the radio resource specified by the control unit 25.
  • the demodulation process includes data demodulation and channel decoding.
  • Data demodulation is demodulation according to the modulation method used by the physical control channel generation unit 123 of FIG.
  • Channel decoding is error correction processing based on the error correction code added by the physical control channel generation unit 123.
  • the physical data channel demodulator 244 performs demodulation processing on a portion of the received signal corresponding to the radio resource specified by the controller 25.
  • the demodulation process includes data demodulation and channel decoding.
  • Data demodulation is demodulation according to the modulation method used by the physical data channel generation unit 124 of FIG.
  • Channel decoding is an error correction process based on the error correction code added by the physical data channel generation unit 124.
  • the control unit 25 controls the terminal operation based on the timing information until the timing indicated by the timing information.
  • the timing indicated by the timing information may be described as notification timing.
  • the notification timing is an example of transmission timing.
  • the control unit 25 controls the state of the physical channel extraction unit 24 to the standby state until the standby time corresponding to the notification timing elapses.
  • the standby state is a state in which processing for a signal is not executed.
  • the control unit 25 may cut off the power supplied to the physical channel extraction unit 24 while controlling the state of the physical channel extraction unit 24 to the standby state.
  • the control unit 25 reduces the power supplied to the physical channel extraction unit 24 compared to the case where the state is not controlled to the standby state. You may let them.
  • the control unit 25 may control at least one state of the radio demodulation unit 23 and the high frequency unit 22 to a standby state.
  • the control unit 25 outputs information notified to the user before the notification timing.
  • the information notified to the user is an example of output information.
  • the output information is information indicating the notification timing obtained by acquiring the timing information.
  • the control part 25 notifies a user by outputting output information via a display or a speaker.
  • an LED (Light Emitting Diode) lamp that shines or changes color when the timing is notified may be used as the display.
  • the control unit 25 may output the output information to a higher layer function (for example, an application program).
  • the timing information is four types of information, it is substantially 2-bit information.
  • the broadcast information is 40-bit information including a CRC code.
  • the apparent coding rate of the broadcast information is smaller than the apparent coding rate of the timing information. Furthermore, since the broadcast information is subjected to channel coding using error correction processing, if the modulation scheme in data modulation and the transmission power of the radio signal are the same, the reception quality of the timing information is the same as that of the broadcast information. Below the reception quality.
  • the radio base station 10 appropriately sets the coding rate, the modulation scheme in data modulation, and the transmission power of the radio signal, and transmits the timing information so that the reception quality of the timing information is equal to or less than the reception quality of the broadcast information To do. Therefore, when the wireless terminal 20 can demodulate the timing information, there is a high probability that the wireless terminal 20 can also demodulate the broadcast information.
  • control unit 25 may output information indicating that the broadcast information can be demodulated when the timing information is demodulated.
  • Information indicating that the broadcast information can be demodulated is an example of output information.
  • being able to demodulate broadcast information is an example of being able to receive broadcast information.
  • the wireless terminal 20 receives the second information from the time when the notification information as the first control information is transmitted at the first timing until the time when the notification information is transmitted at the second timing.
  • Timing information which is an example of control information, is received from the radio base station 10.
  • the radio frame generation unit 12 converts the first to fourth timing information, which is substantially 2-bit information (“00”, “01”, “10”, or “11”), from each other 4 You may make it correspond to 960 resource elements which performed data modulation by one phase (for example, 0 degree, 90 degree
  • the timing information demodulating unit 242 adds a portion corresponding to 960 resource elements in the received signal that may be transmitted with timing information, and adds the addition result and each of the four phases.
  • the timing information may be acquired based on the degree of coincidence (matching degree). At this time, when the addition result is smaller than a predetermined threshold, the timing information demodulation unit 242 may not detect the timing information.
  • the radio base station 10 performs timing information and broadcast information scheduling by transmitting the process shown in the flowchart of FIG. 6 and transmits the timing information and broadcast information.
  • the radio base station 10 sets the timer value to an initial value (1.2 s in this example), and starts measuring time using the timer (step S101 in FIG. 6).
  • the timer is a countdown timer that measures, as a timer value, a value obtained by subtracting the time elapsed from the measurement start time from the initial value. This starts one cycle.
  • the radio base station 10 repeatedly transmits the broadcast information 120 times in the unit time period TP1 (step S102 in FIG. 6). Thereafter, the radio base station 10 determines whether or not the timer value is equal to or less than the fourth time threshold (step S103 in FIG. 6).
  • the fourth time threshold is 1090 ms obtained by adding unit time (40 ms in this example) to 1050 ms.
  • the radio base station 10 waits for transmission of timing information while the timer value is larger than the fourth time threshold (“No” route in step S103 in FIG. 6).
  • the radio base station 10 determines “Yes” and sets the timing information (fourth timing information) indicating the fourth timing to the unit time period.
  • transmission is repeated four times (step S104 in FIG. 6).
  • the radio base station 10 determines whether or not the timer value is equal to or smaller than the third time threshold (step S105 in FIG. 6).
  • the third time threshold is 790 ms obtained by adding unit time (40 ms in this example) to 750 ms.
  • the radio base station 10 waits for transmission of timing information while the timer value is larger than the third time threshold (“No” route in step S105 in FIG. 6).
  • the radio base station 10 determines “Yes” and sets the timing information (third timing information) indicating the third timing to the unit time period. At TT3, transmission is repeated four times (step S106 in FIG. 6).
  • the radio base station 10 determines whether or not the timer value is equal to or smaller than the second time threshold (step S107 in FIG. 6).
  • the second time threshold is 490 ms obtained by adding unit time (40 ms in this example) to 450 ms.
  • the radio base station 10 waits for transmission of timing information while the timer value is larger than the second time threshold (“No” route in step S107 in FIG. 6).
  • the radio base station 10 determines “Yes” and sets the timing information (second timing information) indicating the second timing to the unit time period.
  • the transmission is repeated four times (step S108 in FIG. 6).
  • the radio base station 10 determines whether or not the timer value is equal to or less than the first time threshold (step S109 in FIG. 6).
  • the first time threshold is 190 ms obtained by adding unit time (40 ms in this example) to 150 ms.
  • the radio base station 10 waits for the process to proceed while the timer value is greater than the first time threshold (“No” route in step S109 in FIG. 6).
  • the radio base station 10 determines “Yes” and sets the timing information (first timing information) indicating the first timing to the unit time period. Transmission is repeated four times at TT1 (step S110 in FIG. 6).
  • the radio base station 10 determines whether or not the timer value is 0 (step S111 in FIG. 6).
  • the radio base station 10 waits for the process to proceed while the timer value is greater than 0 (“No” route in step S111 in FIG. 6).
  • the radio base station 10 determines “Yes”, completes one cycle, returns to step S101 in FIG. 6, and executes the processing after step S101 again.
  • the wireless terminal 20 receives the timing information and the broadcast information by executing the processing shown by the flowchart in FIG. 7, and controls the terminal operation based on the timing information.
  • the radio terminal 20 performs broadcast information demodulation processing on the portion of the received signal corresponding to the unit time period (step S201 in FIG. 7). Next, the radio terminal 20 determines whether broadcast information has been detected by executing the demodulation process (step S202 in FIG. 7).
  • the broadcast information may be detected by error correction processing based on an error correction code, error detection processing based on a CRC code, or the like. Further, the detection of the broadcast information may be performed based on the content of information acquired as a result of executing the demodulation process.
  • the wireless terminal 20 determines “Yes” and ends the process of FIG. On the other hand, when the broadcast information is not detected, the radio terminal 20 determines “No” and executes timing information demodulation processing on the portion of the received signal corresponding to the unit time period ( Step S203 in FIG.
  • the wireless terminal 20 determines whether timing information has been detected by executing demodulation processing (step S204 in FIG. 7). If the timing information is not detected, the wireless terminal 20 determines “No”, returns to step S201 in FIG. 7, and executes the processing from step S201 onward again.
  • the wireless terminal 20 determines “Yes” in step S204 of FIG. 7 and determines whether or not the detected timing information indicates the first timing (step of FIG. 7). S205). When the timing information indicates the first timing, the wireless terminal 20 determines “Yes” and outputs the output information indicating the first standby time (in this example, 150 ms) (for example, displayed on the display). . Furthermore, the wireless terminal 20 waits until the first waiting time elapses (step S206 in FIG. 7). In this example, the radio terminal 20 controls the state of the physical channel extraction unit 24 to the standby state until the first standby time elapses. In addition to the physical channel extraction unit 24, the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state.
  • the wireless terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state.
  • the wireless terminal 20 returns to step S201 in FIG. 7 and executes the processing after step S201 again.
  • the wireless terminal 20 determines “No” in step S205 of FIG. 7 and determines whether or not the timing information indicates the second timing ( Step S207 in FIG. When the timing information indicates the second timing, the wireless terminal 20 determines “Yes” and outputs output information indicating the second waiting time (450 ms in this example). Further, the wireless terminal 20 waits until the second waiting time elapses (step S208 in FIG. 7). In this example, the radio terminal 20 controls the state of the physical channel extraction unit 24 to the standby state until the second standby time elapses. In addition to the physical channel extraction unit 24, the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state. After that, the wireless terminal 20 returns to step S201 in FIG. 7 and executes the processes after step S201 again.
  • the wireless terminal 20 determines “No” in step S207 of FIG. 7 and determines whether or not the timing information indicates the third timing ( Step S209 in FIG. 7).
  • the wireless terminal 20 determines “Yes” and outputs output information indicating the third standby time (750 ms in this example). Further, the wireless terminal 20 waits until the third waiting time elapses (step S210 in FIG. 7).
  • the wireless terminal 20 controls the state of the physical channel extraction unit 24 to the standby state until the third standby time elapses.
  • the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state. After that, the wireless terminal 20 returns to step S201 in FIG. 7 and executes the processes after step S201 again.
  • the wireless terminal 20 determines “No” in step S209 in FIG. 7 and determines whether or not the timing information indicates the fourth timing ( Step S211 in FIG.
  • the wireless terminal 20 determines “Yes” and outputs output information indicating the fourth standby time (1050 ms in this example). Further, the wireless terminal 20 waits until the fourth waiting time elapses (step S212 in FIG. 7).
  • the radio terminal 20 controls the state of the physical channel extraction unit 24 to the standby state until the fourth standby time elapses.
  • the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state. After that, the wireless terminal 20 returns to step S201 in FIG. 7 and executes the processes after step S201 again.
  • the wireless terminal 20 determines “No” in step S211 of FIG. 7, returns to step S201 of FIG. 7, and executes the processes after step S201 again. To do.
  • the wireless base station 10 periodically transmits broadcast information to the wireless terminal 20. Furthermore, the radio base station 10 transmits the broadcast information to the radio terminal 20 at the first timing and before the broadcast information is transmitted at the second timing than the first timing. Timing information indicating the transmission timing of the broadcast information transmitted later is transmitted.
  • the radio terminal 20 can recognize the transmission timing of the broadcast information transmitted after the first timing earlier than the second timing.
  • the wireless terminal 20 controls the terminal operation until the transmission timing based on the received timing information.
  • the wireless terminal 20 controls the state of the communication unit to the standby state until the transmission timing. According to this, the power consumption of the wireless terminal 20 can be reduced. Furthermore, broadcast information can be received reliably.
  • the wireless terminal 20 outputs notification information indicating that notification information can be received or notification timing before the notification timing.
  • notification information can be received, or output information indicating the notification timing can be notified, for example, to a user or a function of an upper layer earlier than the notification timing.
  • the total number of bits of information transmitted as timing information per unit time is smaller than the total number of bits of information transmitted as broadcast information per unit time.
  • the timing information is transmitted as follows. According to this, the amount of radio resources used for transmitting information can be reduced compared to the case where broadcast information is transmitted instead of timing information even in a period in which timing information is transmitted.
  • the radio base station 10 transmits the timing information so that the reception quality of the timing information is equal to or lower than the reception quality of the broadcast information. According to this, even if the wireless terminal 20 can receive the timing information, it is possible to reduce the probability of occurrence of a situation where the broadcast information cannot be received.
  • the timing information indicates the timing at which the notification information is transmitted next (immediately after) the timing at which the timing information is transmitted.
  • the timing information may indicate a timing at which the notification information is transmitted after a timing at which the notification information is transmitted next (immediately after) the timing at which the timing information is transmitted.
  • the timing information may indicate a timing at which the notification information is transmitted in a period subsequent to a period following the period including the timing at which the timing information is transmitted.
  • the wireless terminal 20 controls the physical channel extraction unit 24 to the standby state, the wireless demodulation unit 23 and / or the high-frequency unit 22 to the standby state, and Although operations such as output of output information have been performed, it is not necessary to perform all of these operations, and they may be performed selectively.
  • the first control information is broadcast information broadcasted by the wireless base station 10, but information other than broadcast information may be used.
  • the radio terminal 20 Even if the radio terminal 20 receives the broadcast information, the radio terminal 20 cannot establish a connection with the radio base station 10 unless radio resources for transmitting the random access preamble are allocated. Therefore, the radio terminal 20 waits for transmission of the random access preamble until the radio resource is assigned. For this reason, as the frequency of the allocation decreases, the time that the wireless terminal 20 waits becomes longer. Therefore, it is conceivable that the wireless terminal 20 controls the terminal operation by notifying the wireless terminal 20 of the timing at which the assignment is performed.
  • the first control information may be information indicating a radio resource allocated by the radio base station 10 so that the radio terminal 20 transmits information to the radio base station 10 in the random access procedure.
  • the random access procedure is a contention based random access procedure or a non-contention based random access procedure.
  • the information that the wireless terminal 20 transmits to the wireless base station 10 in the random access procedure is information (for example, random access preamble) that the wireless terminal 20 requests connection with the wireless base station 10.
  • a paging signal is transmitted from the base station to the terminal. If the paging signal can be transmitted at a sufficiently short interval, the possibility that the user feels unnatural about the call can be reduced. However, in particular, when M2M communication is started, it is only necessary that the paging signal can be transmitted at a longer interval than in the case of a call. For this reason, it is conceivable that information indicating the radio resource allocated for transmitting the paging signal is also transmitted at a relatively long interval. Therefore, it is conceivable that the radio terminal 20 controls the terminal operation by notifying the radio terminal 20 of the timing at which information indicating the radio resource allocated for transmitting the paging signal is transmitted.
  • the first control information may be information indicating a radio resource allocated by the radio base station 10 to transmit a paging signal to the radio terminal 20.
  • the first control information is information for controlling communication between the radio base station 10 and the radio terminal 20, or for starting communication or connection between the radio base station 10 and the radio terminal 20. It may be the information.
  • the first control information is broadcast information
  • information indicating a radio resource in the random access procedure or information indicating a radio resource allocated to transmit a paging signal is shown.
  • the second control information indicating the transmission timing is not attached to each information, It can be used as transmission timing information.
  • a radio resource for transmitting a paging signal or a radio resource in a random access procedure is assigned in the same radio frame as the radio frame that transmitted the broadcast information, a subsequent frame, or a frame that is separated by a certain interval.
  • the transmission timing information for the radio resource for transmitting the radio resource or the paging signal in the random access procedure is given only by transmitting the transmission timing information for the broadcast information.
  • the wireless communication system according to the first modification of the first embodiment is different from the wireless communication system according to the first embodiment in that timing information is transmitted and timing information indicates a timing range. ing.
  • this difference will be mainly described.
  • the radio base station 10A according to the first modification is different from the radio base station 10 of FIG. 3 in that a radio frame generation unit 12A is provided instead of the radio frame generation unit 12.
  • the radio frame generation unit 12A is different from the radio frame generation unit 12 of FIG. 3 in that a timing information generation unit 122A is provided instead of the timing information generation unit 122.
  • the timing information generation unit 122A generates timing information.
  • the timing information indicates the transmission timing of the broadcast information.
  • the timing information is an example of second control information.
  • the timing information is first, second, third, or fourth timing information.
  • the first to fourth timing information indicate first to fourth timing ranges, respectively.
  • the first to fourth timing ranges are 150 to 300 ms later, 300 to 600 ms later, 600 to 1200 ms later, and 1200 to 2400 ms later, respectively.
  • the timing information is 480-bit information (sequence) having the same number of bits (data size) as the broadcast information.
  • the first to fourth timing information may be, for example, pseudo-random sequences that are orthogonal to each other.
  • the timing information generation unit 122A performs data modulation on the timing information using, for example, QPSK. Therefore, the timing information is transmitted using 240 resource elements as many as the broadcast information.
  • the data modulation may be modulation according to a modulation method such as 16QAM or 64QAM.
  • the radio frame generation unit 12A schedules each information so as to have a period of a predetermined time (in this example, 2.4 s, that is, a time including 240 radio frames). To do.
  • the radio frame generation unit 12A schedules 120 pieces of broadcast information in a period TP1 of the head unit time (40 ms in this example) in one cycle. Accordingly, the broadcast information is repeatedly transmitted 120 times in the first unit time period TP1 in each cycle.
  • the first unit time period TP1 in each cycle is an example of a first period.
  • the period excluding the period TP1 in each cycle is an example of a second period.
  • the total number of times that broadcast information is transmitted in each cycle is the number of times that broadcast information is transmitted in a period having a length equal to the cycle in the LTE scheme described in Non-Patent Document 1.
  • Half of the sum. Therefore, the ratio (occupancy ratio) occupied by the portion for transmitting broadcast information to the entire radio resource is half that of the LTE scheme described in Non-Patent Document 1 (about 1.2%).
  • the radio frame generation unit 12A sets the timing information so that a unit time period in which the timing information can be transmitted and a unit time period in which the timing information cannot be transmitted are alternately provided. Schedule.
  • the radio frame generation unit 12A schedules four pieces of timing information for each unit time period in which timing information can be transmitted.
  • the second period is divided into first to fourth partial periods.
  • the first partial period PP1 is a period between the end in one cycle and the time point 300 ms before the end.
  • the second partial period PP2 is a period between a time point 300 ms before the end in one cycle and a time point 600 ms before the end.
  • the third partial period PP3 is a period between a time point 600 ms before the end in one cycle and a time point 1200 ms before the end.
  • the fourth partial period PP4 is a period from the end of the period TP1 to the time point 1200 ms before the end in one cycle.
  • the length of the partial period is set shorter as it goes from the beginning (starting period) to the end (ending period) of the second period.
  • the radio frame generation unit 12A schedules the first to fourth timing information in the first to fourth partial periods PP1 to PP4, respectively.
  • the radio frame generation unit 12A schedules four pieces of first timing information in a unit time period TT1 included in the first partial period PP1 and capable of transmitting timing information.
  • the radio frame generation unit 12A schedules four pieces of second timing information in a unit time period TT2 included in the second partial period PP2 in which timing information can be transmitted.
  • the radio frame generation unit 12A schedules four pieces of third timing information in a unit time period TT3 in which timing information can be transmitted, which is included in the third partial period PP3.
  • the radio frame generation unit 12A schedules four pieces of fourth timing information in a unit time period TT4 included in the fourth partial period PP4 and capable of transmitting timing information.
  • the timing information indicates a value corresponding to the time between the partial period including the timing at which the timing information is transmitted and the timing at which the notification information is transmitted earliest after the timing. .
  • the period during which the timing information cannot be transmitted is a period excluding the period TP1 and the periods TT1 to TT4 in each cycle.
  • Each of the periods TT1 to TT4 is an example of a fourth period.
  • the period excluding the period TP1 and the periods TT1 to TT4 in each cycle is an example of a third period.
  • the number of types of timing information may be a natural number different from four.
  • a period between the end in one cycle and the time point 150 ms before the end may be set as a period during which the timing information cannot be transmitted.
  • the notification information is transmitted and the timing information is not transmitted only in the period TP1.
  • the wireless terminal 20 when the wireless terminal 20 is activated immediately after the period TP1, the wireless terminal 20 continues to operate to receive broadcast information until the next period TP1 arrives. As a result, the wireless terminal 20 consumes power wastefully.
  • the radio terminal 20 can recognize the timing (transmission timing) at which the broadcast information is transmitted next only by continuing the reception operation for a maximum of 40 ms.
  • the wireless terminal 20 controls the state of the functional unit for receiving the broadcast information in the wireless terminal 20 to the standby state until the transmission timing.
  • the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state in addition to the function unit. As a result, the power consumption of the wireless terminal 20 can be reduced.
  • the radio resource used for transmitting the timing information is 960 resource elements every 80 ms period. Accordingly, the ratio of the portion for transmitting timing information to the entire radio resource is about 1.2%. That is, the radio resource used for transmitting timing information is equal to the radio resource used for transmitting broadcast information.
  • the ratio (occupation ratio) of the portion for transmitting both broadcast information and timing information to the entire radio resource is equal to the occupation ratio for the broadcast information in the LTE scheme described in Non-Patent Document 1.
  • 10 A of radio base stations perform the process shown with a flowchart in FIG. 10 instead of the process of FIG. 6, schedule timing information and alerting
  • the radio base station 10A sets the timer value to an initial value (in this example, 2.4 s), and starts measuring time using the timer (step S301 in FIG. 10).
  • the timer is a countdown timer that measures, as a timer value, a value obtained by subtracting the time elapsed from the measurement start time from the initial value. This starts one cycle.
  • the radio base station 10A repeatedly transmits the broadcast information 120 times in a period TP1 of unit time (40 ms in this example) (step S302 in FIG. 10). Thereafter, the radio base station 10A waits for the process to proceed until the unit time elapses based on the timer value (“No” route in step S303 in FIG. 10).
  • the radio base station 10A determines whether or not the timer value is 0 (step S304 in FIG. 10). When the timer value is 0, the radio base station 10A determines “Yes”, returns to step S301 in FIG. 10, and executes the processing after step S301 again.
  • the radio base station 10A determines “No” in step S304, and determines whether or not the timer value is equal to or smaller than the fourth time threshold (step in FIG. 10). S305).
  • the fourth time threshold is 1200 ms.
  • the radio base station 10A determines “Yes”, and obtains timing information (fourth timing information) indicating a fourth timing range as a unit time period TT4.
  • the data is repeatedly transmitted four times (step S306 in FIG. 10). After that, the radio base station 10A returns to step S303 in FIG. 10 and executes the processing after step S303 again.
  • the radio base station 10A determines “No” in step S305 in FIG. 10 and determines whether the timer value is equal to or smaller than the third time threshold. (Step S307 in FIG. 10).
  • the third time threshold is 600 ms.
  • the radio base station 10A determines “Yes” and sets the timing information (third timing information) indicating the third timing range to the unit time period TT3. Then, the transmission is repeated four times (step S308 in FIG. 10). After that, the radio base station 10A returns to step S303 in FIG. 10 and executes the processing after step S303 again.
  • the radio base station 10A determines “No” in step S307 in FIG. 10 and determines whether the timer value is equal to or smaller than the second time threshold. (Step S309 in FIG. 10).
  • the second time threshold is 300 ms.
  • the radio base station 10A determines “Yes” and sets the timing information (second timing information) indicating the second timing range to the unit time period TT2.
  • the data is repeatedly transmitted four times (step S310 in FIG. 10). After that, the radio base station 10A returns to step S303 in FIG. 10 and executes the processing after step S303 again.
  • the radio base station 10A determines “No” in step S309. Then, the radio base station 10A repeatedly transmits the timing information (first timing information) indicating the first timing range four times in the unit time period TT1 (step S311 in FIG. 10). After that, the radio base station 10A returns to step S303 in FIG. 10 and executes the processing after step S303 again.
  • the timing information indicates a timing range. Therefore, the wireless terminal 20 according to the first modification of the first embodiment differs in operation from the wireless terminal 20 according to the first embodiment in the following differences. The difference is that output information indicating the time until the early arrival timing is output, and that the state of the physical channel extraction unit 24 is controlled to a standby state until the early arrival timing.
  • the early arrival timing is the earliest arrival timing in the timing range indicated by the timing information.
  • the wireless terminal 20 when receiving the fourth timing information, the wireless terminal 20 can recognize that the timing at which the broadcast information is transmitted later is a timing after 1200 ms or more. Therefore, in this example, the radio terminal 20 controls the state of the physical channel extraction unit 24 to the standby state for 1200 ms. In addition to the physical channel extraction unit 24, the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state. Thereafter, the radio terminal 20 performs an operation for receiving broadcast information and timing information again.
  • the wireless terminal 20 can recognize that the timing at which the broadcast information is transmitted later is a timing after 300 ms or more. Therefore, in this example, the radio terminal 20 controls the state of the physical channel extraction unit 24 to the standby state for 300 ms. In addition to the physical channel extraction unit 24, the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state. And the radio
  • the wireless terminal 20 can recognize that the timing at which the broadcast information is transmitted later is a timing after 150 ms or more. Therefore, in this example, the radio terminal 20 controls the state of the physical channel extraction unit 24 to the standby state for 150 ms. In addition to the physical channel extraction unit 24, the radio terminal 20 may control the state of the radio demodulation unit 23 and / or the high frequency unit 22 to a standby state. And the radio
  • the wireless communication system 1 according to the first modification can exhibit the same operations and effects as the wireless communication system 1 according to the first embodiment. Furthermore, according to the wireless communication system 1 according to the first modification, the occupation ratio with respect to broadcast information and timing information can be made equal to the occupation ratio with respect to broadcast information in the LTE scheme described in Non-Patent Document 1.
  • the period during which neither the broadcast information nor the timing information is transmitted is 40 ms at the maximum. Therefore, the radio terminal 20 can recognize the timing when the broadcast information is transmitted later by continuing the reception operation for a maximum of 40 ms.
  • the timing range represented by the timing information may be twice or more the range of other timings, or may be a range in which no upper limit is set.
  • the first to fourth timing ranges may be 0 to 80 ms later, 80 to 300 ms later, 300 to 1200 ms later, and 1200 ms or more later, respectively.
  • the first partial period PP1 is a period between the end in one cycle and the time point 80 ms before the end.
  • the second partial period PP2 is a period between a time point 80 ms before the end in one cycle and a time point 300 ms before the end.
  • the third partial period PP3 is a period between a time point 300 ms before the end in one cycle and a time point 1200 ms before the end.
  • the fourth partial period PP4 is a period from the end of the period TP1 to the time point 1200 ms before the end in one cycle.
  • the length of the cycle may be set to 240 s, for example.
  • the first to fourth timing ranges may be 0 to 4 seconds later, 4 to 15 seconds later, 15 to 60 seconds later, and 60 seconds or more later, respectively.
  • the first partial period PP1 is a period between the end in one cycle and the time point 4s before the end.
  • the second partial period PP2 is a period between a time point 4s before the end in one cycle and a time point 15s before the end.
  • the third partial period PP3 is a period between a time point 15s before the end in one cycle and a time point 60s before the end.
  • the fourth partial period PP4 is a period from the end of the period TP1 to the time point 60s before the end in one cycle.
  • the values and value ranges are set in advance so as to be shared between the base station and the terminal. Alternatively, it may be notified by an upper layer control signal.
  • the wireless communication system according to the second modification of the first embodiment is different from the wireless communication system according to the first embodiment in that the timing information indicates the transmission timing of the broadcast information by using the frame number of the wireless frame. It is different. If the wireless terminal has already obtained information on the frame number of the wireless frame and the broadcast information that is about to be received does not provide information on the frame number, the frame number can be used for time-related control. It is. Hereinafter, this difference will be mainly described.
  • the radio base station 10 according to the second modification transmits broadcast information and timing information at the same timing as the radio base station 10 according to the first embodiment.
  • the radio base station 10 according to the second modification uses information indicating a frame number of a radio frame (broadcast information frame) in which broadcast information is transmitted as timing information.
  • the wireless terminal 20 according to the second modification uses the frame number of the received wireless frame and the frame number of the broadcast information frame indicated by the received timing information to transmit the broadcast information later (transmission timing). To get.
  • the wireless terminal 20 according to the second modification controls the terminal operation based on the acquired transmission timing, similarly to the wireless terminal 20 according to the first embodiment.
  • the frame number of the radio frame is associated with the passage of time. Therefore, also with the wireless communication system 1 according to the second modified example, the efficiency of the wireless communication system 1 can be increased as with the wireless communication system 1 according to the first embodiment.
  • the wireless communication system according to the third modification of the first embodiment transmits broadcast information in a wireless frame whose frame number satisfies the transmission condition, compared to the wireless communication system according to the second modification of the first embodiment Are different.
  • this difference will be mainly described.
  • the radio base station 10 transmits broadcast information in the radio frame when the frame number of the radio frame satisfies a predetermined transmission condition. Further, when the frame number of the radio frame does not satisfy the transmission condition, the radio base station 10 transmits timing information in the radio frame.
  • the timing information is information indicating the transmission condition.
  • the wireless terminal 20 transmits the notification information later (transmission) based on the frame number of the received wireless frame and the transmission condition indicated by the received timing information. Timing). Further, the wireless terminal 20 controls the terminal operation based on the acquired transmission timing, similarly to the wireless terminal 20 according to the first embodiment.
  • the transmission condition is a condition that the N bits at the end of the frame number of the radio frame (N is a natural number, 4 in this example) matches the predetermined transmission number information.
  • the radio base station 10 transmits transmission number information as timing information.
  • the transmission number information is an example of information indicating transmission conditions.
  • the radio base station 10 uses 16 types of mutually orthogonal information (for example, pseudo-random sequences) as timing information.
  • the transmission condition is that the M bit at the end of the frame number of the radio frame matches the predetermined first transmission number information, and the upper N bits of the M bit at the end of the frame number
  • the condition is that it matches the second transmission number information.
  • M is a natural number and is 2 in this example.
  • N is a natural number and is 4 in this example.
  • the radio base station 10 transmits second transmission number information as timing information.
  • the second transmission number information is an example of information indicating a transmission condition.
  • the radio base station 10 uses 16 types of mutually orthogonal information (for example, pseudo-random sequences) as timing information.
  • the first transmission number information is held in advance by the radio base station 10 and the radio terminal 20.
  • Radio communication system 10 10A radio base station 11 control unit 12, 12A radio frame generation unit 121 physical broadcast channel generation unit 122, 122A timing information generation unit 123 physical control channel generation unit 124 physical data channel generation unit 13 radio modulation unit 14 High-frequency unit 15 Antenna 20 Radio terminal 21 Antenna 22 High-frequency unit 23 Radio demodulation unit 24 Physical channel extraction unit 241 Physical broadcast channel demodulation unit 242 Timing information demodulation unit 243 Physical control channel demodulation unit 244 Physical data channel demodulation unit 25 Control unit NW Communication network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信システム(1)は、無線基地局(10)と、無線基地局(10)と通信を行なう無線端末(20)と、を備える。無線基地局(10)は、無線端末(20)に対して、第1の制御情報を周期的に送信する。無線基地局(10)は、無線端末(20)に対して、第1のタイミングで第1の制御情報が送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、第2の制御情報を送信する。第2の制御情報は、第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す。

Description

無線通信システム、無線端末、無線基地局、及び、制御方法
 本発明は、無線通信システム、無線端末、無線基地局、及び、制御方法に関する。
 電力、ガス、若しくは、水道等の使用量を測定する測定器による測定値、自動販売機における商品の販売に関する情報、又は、監視カメラにより撮影された映像等のセンサ情報を通信網を介して取得する情報収集システムが知られている。
 情報収集システムによれば、人間が介在することなく、センサ情報を収集することができるので、センサ情報を収集するためのコスト(例えば、人件費等)を低減できる。更に、収集されたセンサ情報を迅速に解析することができる。その結果、電力、ガス、若しくは、水道等の供給、又は、自動販売機への商品の補給を、効率的に行なうことができる。また、不審者又は異常の発生等を迅速に検知することができる。
 情報収集システムを実現するために、センサ情報を取得する、測定器、自動販売機、又は、監視カメラ等の端末装置(機械)は、通信網を介してサーバ等のコンピュータ(機械)と通信を行なう。この通信は、機械対機械(M2M;Machine-to-Machine)通信、又は、MTC(Machine Type Communicationとも呼ばれる。また、端末装置は、M2Mデバイス、又は、MTCデバイスとも呼ばれる。
 ところで、情報収集システムは、移動体通信システムの無線通信網を利用することにより実現され得る(例えば、非特許文献1、特許文献1、及び、特許文献2等を参照)。
 例えば、第1の情報収集システムにおいて、新規MTCデバイスから設定情報の要求があった場合、MMEは、既存MTCデバイスが接続されていない場合には、新規MTCデバイスに対して、新規MTCデバイスの次回接続時間帯を通知する。MMEは、Mobility Management Entityの略記である。
 また、第2の情報収集システムにおいて、基地局は、複数の呼出チャネルに異なる間欠受信周期を割り当て、割り当てられた間欠受信周期を移動局に通知する。更に、移動局は、ユーザが所望する間欠受信周期に応じた呼出チャネルを選択し、基地局へ報告する。
国際公開第2011/121921号 特開平11-46162号公報
3GPP TS 36.331 V8.4.0、"Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8)"、[online]、2008年12月、[平成25年9月11日検索]、インターネット〈URL:http://www.3gpp.org/ftp/Specs/html-info/36331.htm〉
 移動体通信システムにおいて、無線基地局は、MIB等を示す報知情報を送信する。MIBは、Master Information Blockの略記である。MIBは、無線端末が無線基地局と通信を開始するために用いられる情報である。無線端末は、無線基地局から報知情報を受信し、受信した報知情報に基づいて無線基地局と通信を行なう。
 ところで、無線端末としての端末装置が、移動体通信システムの無線基地局からの無線信号が受信されにくい場所(例えば、建物の地下等)に設置される場合がある。また、端末装置は、ユーザにより携帯されることなく固定されていることが多い。このため、報知情報を確実に端末装置に受信させるために、報知情報の送信回数を増加させることにより、報知情報の受信品質を高めることが検討されている。
 この場合、無線リソースの全体に対して、報知情報を送信するための部分が占める割合が増加する。このため、報知情報を送信可能な期間と、報知情報を送信不能な期間と、を周期的に設けることにより、上記割合が過大になることを回避することが考えられる。
 しかしながら、この場合、無線端末は、報知情報を送信可能な期間が到来するまでの間、報知情報を受信するために動作し続ける。その結果、無線端末が無駄に電力を消費してしまう。なお、報知情報以外の情報を送信可能な期間が周期的に設けられる場合においても、上述した課題は生じ得る。また、無線端末がM2Mデバイス以外の装置(例えば、ユーザにより携帯される装置)である無線通信システムにおいても、上述した課題は生じ得る。
 本発明の目的の一つは、無線端末に、後に第1の制御情報が送信されるタイミングを通知することにある。
 一つの側面では、無線通信システムは、無線基地局と、上記無線基地局と通信を行なう無線端末と、を備える。
 上記無線基地局は、上記無線端末に対して、第1の制御情報を周期的に送信する。
 上記無線基地局は、上記無線端末に対して、第1のタイミングで第1の制御情報が送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、第2の制御情報を送信する。第2の制御情報は、上記第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す。
 無線端末に、後に第1の制御情報が送信されるタイミングを通知できる。
関連技術に係る無線通信システムにおける報知情報のスケジューリングを概念的に示す説明図である。 第1実施形態に係る無線通信システムの構成例を表すブロック図である。 図2の無線基地局の構成例を表すブロック図である。 図2の無線基地局における報知情報及びタイミング情報のスケジューリングの一例を概念的に示す説明図である。 図2の無線端末の構成例を表すブロック図である。 図2の無線基地局が実行する処理の一例を表すフローチャートである。 図2の無線端末が実行する処理の一例を表すフローチャートである。 第1実施形態の第1変形例に係る無線基地局の構成例を表すブロック図である。 図8の無線基地局における報知情報及びタイミング情報のスケジューリングの一例を概念的に示す説明図である。 図8の無線基地局が実行する処理の一例を表すフローチャートである。
<関連技術の課題の一例>
 先ず、LTE(Long Term Evolution)方式に従った無線通信システムについて説明する。
 無線通信システムは、サービスを供給する領域(サービスエリア)毎に設置された無線基地局を備える。無線基地局は、当該サービスエリアに割り当てられた周波数帯域の電波を使用することにより、無線端末との間で無線通信を行なう。無線通信に使用される無線リソースは、周波数領域及び時間領域において分割したリソースブロックと呼ばれる単位にて管理される。
 あるリソースブロックは、無線基地局からサービスエリア内のすべての無線端末に向けて、制御情報を報知(ブロードキャスト)するために用いられる。また、他のリソースブロックは、無線基地局が各無線端末との間で個別に制御情報を伝送(送信又は受信)するために用いられる。また、更に他のリソースブロックは、通信データ(例えば、ユーザデータ)を伝送するために用いられる。
 LTE方式においては、報知される制御情報を伝送するための物理無線チャネルとしてPBCH(Physical Broadcast Channel)が規定されている。以下、報知される制御情報は、「報知情報」と表記され得る。報知情報は、無線通信システムの運用パラメータ(例えば、MIB)を含む。MIBは、例えば、無線フレームのフレーム番号(SFN;System Frame Number)、及び、システム帯域幅等を含む。
 図1に示すように、MIBは、24ビットの情報である。MIBと、MIBに対する16ビットのCRC符号と、からなる40ビットの情報に対して、1/12の符号化率にてチャネル符号化を適用した480ビットの情報(符号化後MIB)がPBCHを介して送信される。CRCは、Cyclic Redundancy Checkの略記である。符号化後MIBは、240個のリソースエレメントにマッピングされる。リソースエレメントは、OFDM方式における、1つのサブキャリアの1つのシンボルに相当する。OFDMは、Orthogonal Frequency Division Multiplexingの略記である。
 非特許文献1に記載のLTE方式においては、符号化後MIBは、40msの間に4回繰り返して送信される。即ち、符号化後MIBは、40msの間に960個のリソースエレメントを用いて送信される。換言すると、符号化後MIBは、1ms間あたり24個のリソースエレメントを用いて送信される。
 LTE方式においては、システム帯域幅の中心の72個のサブキャリアの無線リソース(以下、「中心無線リソース」とも表記され得る)が用いられる。また、時間領域においては、1msの期間が一つのサブフレームとして用いられる。1つのサブフレームは、14個のシンボルを含む。従って、中心無線リソースは、1msの期間において、72*14=1008個のリソースエレメントを含む。即ち、符号化後MIBは、中心無線リソースの全体の約2.4%を占有している。
 ところで、MIBは、無線端末が無線基地局と通信を開始するために用いられる情報である。従って、無線基地局は、MIBを可能な限り無線端末に受信させたい。
 このため、報知情報の送信回数を増加させることにより、報知情報の受信品質を高めることが考えられる(例えば、非特許文献2を参照)。繰り返し送信された無線信号を、無線端末が加算しながら復調することによって、送信電力を増大させた場合と同様の効果が奏され得る。
 [非特許文献2] 3GPP TR 36.888 V12.0.0、”Study on provision of low-cost  Machine-Type Communications (MTC) User Equipments (UEs) based on LTE(Release 12)”、[online]、2013年6月、[平成25年9月11日検索]、インターネット〈URL:http://www.3gpp.org/ftp/Specs/html-info/36888.htm〉
 例えば、100倍の送信回数を用いることは、100倍の(20dB大きい)送信電力を用いることと等価である。従って、上記LTE方式に対して100倍の送信回数を用いることにより、電波強度下限値に対して電波の強度が1/100倍である(20dB小さい)場所に設置された無線端末が報知情報の受信に成功する確率を高めることができる。電波強度下限値は、上記LTE方式において報知情報を受信可能な電波の強度の下限値である。
 従って、電波強度下限値に対して電波の強度が1/100倍である場所に設置された無線端末が、符号化後MIBの受信に成功する確率を十分に高めるためには、上記LTE方式において定められている4回の送信回数を400回に変更することが考えられる。
 ところで、符号化後MIBの送信回数を400回に設定した場合、符号化後MIBが送信されるために、1msあたりに2400個のリソースエレメントが用いられる。即ち、この場合、中心無線リソースの全体よりも多くのリソースエレメントが必要とされる。
 また、例えば、電波強度下限値に対して電波の強度が15dB小さい(約1/30倍である)場所に設置された無線端末が、符号化後MIBの受信に成功する確率を十分に高めるためには、1msあたり720個のリソースエレメントが用いられる。この場合、中心無線リソースの全体の70%以上のリソースエレメントが、MIBを送信するために占有される。
 このように、無線通信システムにおける通信可能な領域を拡大するため、報知情報の送信回数を増加させた場合、報知情報が送信されるために用いられる無線リソースの量が過大になる虞がある。従って、通信データを伝送するために使用可能な無線リソースの量が減少するので、無線リソースの利用効率が低下してしまう。
 そこで、報知情報を送信可能な期間と、報知情報を送信不能な期間と、を周期的に設けることにより、無線リソースの利用効率が過度に低下することを回避することが考えられる。例えば、報知情報の送信回数を上記LTE方式に対して100倍にした場合であっても、報知情報を送信可能な期間を上記LTE方式に対して1/100倍の長さに制限することにより、占有割合を一定に維持することができる。占有割合は、無線リソースの全体に対して、報知情報を送信するための部分が占める割合である。
 しかしながら、報知情報が送信されない期間が長くなると、無線端末が報知情報を受信するまでの時間も長くなる。従って、例えば、新たに起動された無線端末、待機状態から復帰した無線端末、及び/又は、他のサービスエリアから移動してきた無線端末、が無線基地局との間で通信を開始するまでの時間が長くなる。
 また、報知情報の送信周期と同期していない無線端末は、報知情報が送信されるタイミングを知らない。このため、無線端末は、報知情報が送信される期間が到来するまでの間、報知情報を受信するために動作し続ける。その結果、無線端末が無駄に電力を消費してしまう。また、例えば、無線端末としてM2Mデバイスを設置する場合、無線端末が通信を行なうことにより無線端末の動作が確認されるまでの時間が過度に長くなってしまう。
 以下、図面を参照して本発明の実施形態を説明する。ただし、以下に説明される実施形態は例示である。従って、以下に明示しない種々の変形や技術が実施形態に適用されることは排除されない。なお、以下の実施形態で用いる図面において、同一の符号を付した部分は、変更又は変形が明示されない限り、同一若しくは同様の部分を表す。
<第1実施形態>
(概要)
 第1実施形態に係る無線通信システムは、無線基地局と無線基地局と通信を行なう無線端末と、を備える。
 無線基地局は、無線端末に対して、第1の制御情報を周期的に送信する。更に、無線基地局は、第1のタイミングで第1の制御情報が送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、第2の制御情報を送信する。第2の制御情報は、第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す。
 これによれば、無線端末に、第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを通知することができる。
 以下、第1実施形態に係る無線通信システムについて詳細に説明する。
(構成)
 図2に示すように、第1実施形態に係る無線通信システム1は、複数の無線基地局10,…と、複数の無線端末20,…と、を備える。なお、無線基地局10の数は、1つであってもよい。また、無線端末20の数は、1つであってもよい。
 無線通信システム1は、無線基地局10と無線端末20との間で、予め定められた無線通信方式に従った無線通信を行なう。例えば、無線通信方式は、LTE方式である。なお、無線通信方式は、LTE方式と異なる方式(例えば、LTE-Advanced、又は、WiMAX等の方式)であってもよい。WiMAXは、Worldwide Interoperability for Microwave Accessの略記である。
 無線基地局10は、少なくとも1つのセル(カバレッジ・エリア又は通信領域)を提供する。本例では、セルは、マクロセル、マイクロセル、ナノセル、ピコセル、フェムトセル、ホームセル、又は、セクタセル等である。無線基地局10は、自局10が提供するセル内に位置する無線端末20と無線通信を行なう。
 具体的には、無線基地局10は、自局10が提供するセルにおいて無線リソース(本例では、時間領域及び周波数帯域により特定されるリソース)を提供する。無線基地局10は、自局10が提供するセル内に位置する無線端末20と、当該セルにおいて提供されている無線リソースを用いることにより通信を行なう。なお、無線基地局10は、アクセスポイント、eNB(Evolved Node B)、NB(Node B)、フェムト基地局、マクロ基地局、又は、ホーム基地局であってもよい。
 本例では、無線基地局10は、有線通信可能に通信網NWに接続されている。なお、無線基地局10は、無線通信可能に通信網NWに接続されていてもよい。なお、無線基地局10、及び、無線通信システム1のうちの無線基地局10よりも通信網NW(即ち、上位)側の部分は、E-UTRANと呼ばれてもよい。E-UTRANは、Evolved Universal Terrestrial Radio Access Networkの略記である。
 無線端末20は、自端末20の位置を含むセルにおいて提供されている無線リソースを用いることにより、当該セルを提供する無線基地局10と無線通信を行なう。無線端末20は、M2Mデバイス又はMTCデバイスである。本例では、無線端末20は、電力、ガス、若しくは、水道等の使用量を測定し、測定結果を表すセンサ情報を、無線基地局10を介して、通信網NWに接続された図示しないサーバ装置へ送信する。なお、無線端末20は、移動局、又は、ユーザ端末(UE;User Equipment)であってもよい。
(構成:無線基地局)
 図3に示すように、無線基地局10は、送信系に着目すると、制御部11と、無線フレーム生成部12と、無線変調部13と、高周波部14と、アンテナ15と、を備える。無線フレーム生成部12、無線変調部13、高周波部14、及び、アンテナ15は、通信部の一例である。
 無線基地局10は、LSI(Large Scale Integration)を用いて機能が実現されてよい。また、無線基地局10の少なくとも一部は、プログラム可能な論理回路装置(例えば、PLD、又は、FPGA)を用いて機能が実現されてもよい。PLDは、Programmable Logic Deviceの略記である。FPGAは、Field-Programmable Gate Arrayの略記である。
 制御部11は、タイマを備え、タイマにより計測される時間(タイマ値)に基づいて、後述する、無線フレーム生成部12による送信情報のスケジューリングを制御する。
 無線フレーム生成部12は、制御部11の制御に従って、無線フレームを生成する。無線フレームは、予め定められた時間長(本例では、10ms)を有する。
 無線フレーム生成部12は、物理報知チャネル生成部121と、タイミング情報生成部122と、物理制御チャネル生成部123と、物理データチャネル生成部124と、を備える。
 物理報知チャネル生成部121は、物理報知チャネル(PBCH)を介して伝送される報知情報を生成する。例えば、報知情報は、無線通信システム1の運用パラメータ(本例では、MIB)を含む。本例では、MIBは、無線フレームのフレーム番号(SFN;System Frame Number)、及び、システム帯域幅等を含む。
 本例では、MIBは、24ビットの情報である。物理報知チャネル生成部121は、MIBに対する16ビットのCRC符号を生成する。物理報知チャネル生成部121は、MIBと、生成したCRC符号と、からなる40ビットの情報に対して、予め定められた符号化率(本例では、1/12)にてチャネル符号化(本例では、ターボ符号を付加する処理)を行なう。これにより、物理報知チャネル生成部121は、480ビットの情報(符号化後MIB)を送信すべき報知情報として生成する。なお、チャネル符号化は、リード・ソロモン符号、又は、畳み込み符号等を付加する処理であってもよい。
 更に、物理報知チャネル生成部121は、報知情報を、例えば、QPSKによりデータ変調する。QPSKは、Quadriphase Phase-Shift Keyingの略記である。なお、報知情報は、第1の制御情報の一例である。なお、データ変調は、16QAM、又は、64QAM等の変調方式に従った変調であってもよい。16QAMは、16 Quadrature Amplitude Modulationの略記である。64QAMは、64 Quadrature Amplitude Modulationの略記である。
 タイミング情報生成部122は、タイミング情報を生成する。タイミング情報は、報知情報の送信タイミングを示す。タイミング情報は、第2の制御情報の一例である。
 本例では、タイミング情報は、第1、第2、第3、又は、第4のタイミング情報である。第1乃至第4のタイミング情報は、第1乃至第4のタイミングをそれぞれ示す。例えば、第1乃至第4のタイミングは、それぞれ、150ms後、450ms後、750ms後、及び、1050ms後である。
 本例では、タイミング情報は、報知情報と同数のリソースエレメントを使用して送信することを想定し、第1乃至第4のタイミング情報に対し、符号化後の報知情報と同じサイズである480ビットの疑似ランダムシーケンスを対応づける。第1乃至第4のタイミング情報に対応づけた疑似ランダムシーケンスは、互いに直交するシーケンスであることが望ましい。
 タイミング情報生成部122は、タイミング情報を、QPSKによりデータ変調する。これにより、タイミング情報は、報知情報と同数である240個のリソースエレメントを用いて送信される。なお、データ変調は、16QAM、又は、64QAM等の変調方式に従った変調であってもよい。
 物理制御チャネル生成部123は、物理制御チャネルを介して伝送される制御情報を生成する。例えば、物理制御チャネルは、PDCCH(Physical Downlink Control Channel)である。物理制御チャネル生成部123は、制御情報に対してチャネル符号化及びデータ変調を行なう。
 例えば、チャネル符号化は、リード・ソロモン符号、畳み込み符号、又は、ターボ符号等の誤り訂正符号を付加する処理である。例えば、データ変調は、QPSK、16QAM、又は、64QAM等の変調方式に従った変調である。
 物理データチャネル生成部124は、物理データチャネルを介して伝送されるユーザ情報を生成する。例えば、物理データチャネルは、PDSCH(Physical Downlink Shared Channel)である。物理データチャネル生成部124は、物理制御チャネル生成部123と同様に、ユーザ情報に対してチャネル符号化及びデータ変調を行なう。
 無線フレーム生成部12は、物理報知チャネル生成部121乃至物理データチャネル生成部124により生成された情報を、制御部11の制御に従ってスケジューリングすることにより、無線フレームを生成する。情報をスケジューリングすることは、当該情報を送信するための無線リソースの時間領域及び周波数領域を決定することの一例、又は、当該情報に無線リソースの時間領域及び周波数領域を割り当てることの一例である。
 無線フレーム生成部12は、図4に示すように、予め定められた時間(本例では、1.2s、即ち、120個の無線フレームを含む時間)の周期を有するように、各情報をスケジューリングする。
 本例では、無線フレーム生成部12は、1つの周期における先頭の単位時間(本例では、40ms)の期間TP1にて、120個の報知情報をスケジューリングする。従って、報知情報は、各周期における先頭の単位時間の期間TP1にて、120回繰り返し送信される。
 このように、本例では、非特許文献1に記載のLTE方式に対して、期間TP1において、30倍の送信回数にて報知情報が送信される。従って、電波強度下限値に対して電波の強度が1/30倍である(約15dB小さい)場所に設置された無線端末が、報知情報の受信に成功する確率を高めることができる。電波強度下限値は、非特許文献1に記載のLTE方式において報知情報を受信可能な電波の強度の下限値である。
 仮に、各周期の全体に亘って、単位時間の期間毎に120個の報知情報が送信される場合(第1仮想例)を想定する。この場合、1個の報知情報を送信するために240個のリソースエレメントが用いられるので、単位時間の期間毎に、240*120=28800個のリソースエレメントが使用される。ところで、中心無線リソースの、単位時間の期間におけるすべてのリソースエレメントは、1008*40=40320個である。従って、上記第1仮想例における占有割合は、約71%(=28800/40320*100)である。占有割合は、無線リソースの全体に対して、報知情報を送信するための部分が占める割合である。
 一方、本例では、非特許文献1に記載のLTE方式と異なり、報知情報を送信可能な期間#1と、報知情報を送信不能な期間#2と、が設けられる。本例では、報知情報を送信可能な期間#1は、各周期における先頭の単位時間の期間TP1である。期間TP1において、報知情報が繰り返し送信される。また、本例では、報知情報を送信不能な期間#2は、各周期における先頭の単位時間の期間TP1を除いた期間である。期間TP1は、第1の期間の一例である。また、各周期における、期間TP1を除いた期間は、第2の期間の一例である。
 このように、本例では、各周期において報知情報が送信される回数の総和は、非特許文献1に記載のLTE方式において当該周期と等しい長さの期間にて報知情報が送信される回数の総和と等しい。従って、無線リソースの全体に対して、報知情報を送信するための部分が占める割合(占有割合)は、非特許文献1に記載のLTE方式と等しい。
 更に、無線フレーム生成部12は、1つの周期における末尾(終期)から1050msだけ前の時点と、その時点よりも単位時間だけ前の時点と、の間の期間TT4にて、4個の第4のタイミング情報をスケジューリングする。従って、第4のタイミング情報は、各周期における末尾から1050msだけ前の時点と、その時点よりも単位時間だけ前の時点と、の間の期間TT4にて、4回繰り返し送信される。
 本例では、無線フレーム生成部12は、期間TT4にて、無線フレーム毎に1個の第4のタイミング情報をスケジューリングする。例えば、無線フレーム生成部12は、期間TT4にて、各無線フレームの先頭のサブフレームに、1個の第4のタイミング情報をスケジューリングする。従って、本例では、期間TT4においては、非特許文献1に記載のLTE方式にて報知情報が送信されるタイミングと同じタイミングにてタイミング情報が送信される。
 同様に、無線フレーム生成部12は、1つの周期における末尾から750msだけ前の時点と、その時点よりも単位時間だけ前の時点と、の間の期間TT3にて、4個の第3のタイミング情報をスケジューリングする。更に、無線フレーム生成部12は、1つの周期における末尾から450msだけ前の時点と、その時点よりも単位時間だけ前の時点と、の間の期間TT2にて、4個の第2のタイミング情報をスケジューリングする。加えて、無線フレーム生成部12は、1つの周期における末尾から150msだけ前の時点と、その時点よりも単位時間だけ前の時点と、の間の期間TT1にて、4個の第1のタイミング情報をスケジューリングする。
 このように、タイミング情報は、当該タイミング情報が送信されるタイミングと、そのタイミングの後に最も早期に報知情報が送信されるタイミングと、の間の時間に応じた値を示している。
 また、本例では、第2の期間#2は、タイミング情報を送信可能な期間#4と、タイミング情報を送信不能な期間#3と、を含む。本例では、タイミング情報を送信可能な期間#4は、各周期における期間TT1~TT4である。各期間TT1~TT4において、タイミング情報が繰り返し送信される。また、本例では、タイミング情報を送信不能な期間#3は、各周期における、期間TP1、及び、期間TT1~TT4を除いた期間である。各期間TT1~TT4は、第4の期間の一例である。各周期における、期間TP1、及び、期間TT1~TT4を除いた期間は、第3の期間の一例である。
 なお、タイミング情報の種類の数は、4と異なる自然数であってもよい。この場合、第2の期間#2は、タイミング情報の種類の数と同じ数の第4の期間#4を含む。
 また、第2の期間#2は、タイミング情報を送信可能な期間のみであってもよい。この場合、第2の期間#2は、第3の期間#3と、タイミング情報が単位時間あたりに送信される回数が当該第3の期間よりも多い第4の期間#4と、を含んでいてもよい。
 仮に、期間TP1のみにおいて報知情報が送信されるとともにタイミング情報が送信されない場合(第2仮想例)を想定する。この場合において、上記期間TP1の直後に、無線端末20が起動された場合、無線端末20は、次に期間TP1が到来するまでの間、報知情報を受信するために動作し続ける。その結果、無線端末20が無駄に電力を消費してしまう。
 一方、本例では、報知情報及びタイミング情報のいずれもが送信されない期間は、最大でも300msである。従って、無線端末20は、最大で300msの間、受信動作を継続するだけで、次に報知情報が送信されるタイミング(送信タイミング)を認識することができる。後述するように、無線端末20は、送信タイミングまでの間、無線端末20のうちの報知情報を受信するための機能部の状態を待機状態に制御する。なお、無線端末20は、当該機能部に加えて、無線復調部、及び/又は、高周波部の状態を待機状態に制御してもよい。この結果、無線端末20の消費電力を低減できる。
 タイミング情報を送信するために用いられる無線リソースは、300msの期間毎に960個のリソースエレメントである。従って、無線リソースの全体に対して、タイミング情報を送信するための部分が占める割合は、約0.3%である。従って、タイミング情報を送信するために用いられる無線リソースは、報知情報を送信するために用いられる無線リソースに対して非常に少ない。
 本例では、タイミング情報が送信される単位時間の期間(期間TT1、TT2、TT3、又は、TT4)において、送信されるタイミング情報の総ビット数は、4*480ビット=1920ビットである。また、報知情報が送信される単位時間の期間(期間TP1)において、送信される報知情報の総ビット数は、120*480ビット=57600ビットである。従って、期間TT1、TT2、TT3、又は、TT4において単位時間あたりに送信されるタイミング情報の総ビット数は、期間TP1において単位時間あたりに送信される報知情報の総ビット数よりも少ない。
 なお、1個のタイミング情報は、1個の報知情報よりも大きい情報量を有していてもよい。例えば、タイミング情報は、480ビットの4倍の1920ビットの疑似ランダムシーケンスであってもよい。この場合、無線フレーム生成部12は、タイミング情報である疑似ランダムシーケンスを4つの部分シーケンスに分割し、4つの部分シーケンスを単位時間の期間に含まれる4つの無線フレームにそれぞれスケジューリングしてもよい。
 再び図3を参照すると、無線変調部13は、無線フレーム生成部12により生成された無線フレームに対して、例えば、OFDM方式に従った無線変調を行なう。例えば、無線変調は、逆高速フーリエ変換(IFFT;Inverse Fast Fourier Transform)等を含む。
 高周波部14は、無線変調部13により無線変調された無線フレームに対して、デジタル・アナログ変換、及び、基底帯域から無線周波数帯域への周波数変換等を行ない、十分な送信出力が得られるように増幅を行なう。
 アンテナ15は、高周波部14により変換された無線信号を送信する。
 更に、本例では、無線基地局10は、タイミング情報の受信品質が報知情報の受信品質以下となるようにタイミング情報を送信してよい。例えば、無線基地局10は、チャネル符号化における符号化率、データ変調における変調方式、及び、無線信号の送信電力、の少なくとも1つを制御することにより、受信品質を制御してもよい。
 このように、無線基地局10は、無線端末20へ、第1の制御情報としての報知情報を周期的に送信する。更に、無線基地局10は、無線端末20へ、第1のタイミングで報知情報が送信されてから、第2のタイミングで報知情報が送信されるまでの間に、第2の制御情報としてのタイミング情報を送信する。ここで、第1のタイミングは、第1の周期における期間TP1内のタイミングであり、第2のタイミングは、第1の周期に後続する第2の周期における期間TP1内のタイミングである。また、タイミング情報は、第2のタイミングを示す情報である。
 なお、タイミング情報は、第2のタイミングよりも後に、第1の制御情報が送信されるタイミングを示してもよい。例えば、タイミング情報は、第2の周期よりも後の周期における期間TP1内のタイミングを示してもよい。
(構成:無線端末)
 図5に示すように、無線端末20は、受信系に着目すると、アンテナ21と、高周波部22と、無線復調部23と、物理チャネル抽出部24と、制御部25と、を備える。アンテナ21、高周波部22、無線復調部23、及び、物理チャネル抽出部24は、通信部の一例である。
 無線端末20は、LSIを用いて機能が実現されてよい。また、無線端末20の少なくとも一部は、プログラム可能な論理回路装置(例えば、PLD、又は、FPGA)を用いて機能が実現されてもよい。
 高周波部22は、アンテナ21により受信された受信信号に対して、所望の無線帯域の信号を取り出すフィルタ処理、低雑音増幅、無線周波数帯域から基底帯域への周波数変換、及び、アナログ・デジタル変換等を行なう。
 無線復調部23は、高周波部22により変換された受信信号に対して、例えば、OFDM方式に従った無線復調を行なう。例えば、無線復調は、高速フーリエ変換(FFT;Fast Fourier Transform)等を含む。
 物理チャネル抽出部24は、制御部25の制御に従って、無線復調部23により無線復調された受信信号に対して、データ復調及びチャネル復号を行なう。例えば、データ復調は、QPSK、16QAM、又は、64QAM等の変調方式に従った復調である。例えば、チャネル復号は、リード・ソロモン符号、畳み込み符号、又は、ターボ符号等の誤り訂正符号に基づく誤り訂正処理である。
 物理チャネル抽出部24は、物理報知チャネル復調部241と、タイミング情報復調部242と、物理制御チャネル復調部243と、物理データチャネル復調部244と、を備える。
 物理報知チャネル復調部241は、受信信号のうちの、制御部25により特定された無線リソースに対応する部分に対して、復調処理を行なう。本例では、制御部25は、単位時間の期間における、120個の報知情報が送信されている可能性がある無線リソースを特定する。物理報知チャネル復調部241は、各報知情報が送信されている可能性がある無線リソースに対応する、受信信号の部分を加算し、加算結果に対して復調処理を行なう。本例では、復調処理は、データ復調及びチャネル復号を含む。
 データ復調は、図3の物理報知チャネル生成部121により用いられた変調方式(本例では、QPSK)に従った復調である。チャネル復号は、物理報知チャネル生成部121により付加された誤り訂正符号(本例では、ターボ符号)に基づく誤り訂正処理及びCRC検査を含む。物理報知チャネル復調部241は、CRC検査の結果がパス(合格)であれば、報知情報が受信されたと判定する。
 タイミング情報復調部242は、受信信号のうちの、制御部25により特定された無線リソースに対応する部分に対して、復調処理を行なう。本例では、制御部25は、単位時間の期間における、4個のタイミング情報が送信されている可能性がある無線リソースを特定する。タイミング情報復調部242は、各タイミング情報に対応する、受信信号の部分を加算し、加算結果に対して復調処理を行なう。
 本例では、復調処理は、上記加算結果と、第1乃至第4の基準信号のそれぞれと、の間の相関係数を算出し、相関係数に基づいてタイミング情報を検出・取得する処理である。第1乃至第4の基準信号は、第1乃至第4のタイミング情報にそれぞれ対応する信号である。タイミング情報復調部242は、第1乃至第4の基準信号を第1乃至第4のタイミング情報とそれぞれ対応付けて予め記憶している。
 タイミング情報復調部242は、算出された相関係数の最大値が予め定められた係数閾値よりも大きい場合、タイミング情報が検出されたと判断し、相関係数が最大である基準信号と対応付けられたタイミング情報を復調処理の結果として取得する。一方、タイミング情報復調部242は、算出された相関係数の最大値が上記係数閾値以下である場合、復調処理の結果としてタイミング情報が検出されなかったと判定する。
 なお、タイミング情報復調部242は、4個のタイミング情報に対応する、受信信号の4つの部分のそれぞれに対して相関係数を算出し、当該4つの部分に対して、算出された相関係数の和を算出し、算出された和に基づいてタイミング情報を取得してもよい。
 ところで、実質的に2ビットの情報であるタイミング情報を検出するための信号処理は、予め定められた4個の基準信号シーケンスのうちの1つを検出する処理である。一方、報知情報を検出するための信号処理は、実質的に40ビットの情報を取り出す誤り訂正符号の復号処理及びCRC検査である。従って、タイミング情報に対する復調処理は、報知情報に対する復調処理に対して、処理負荷が軽い。
 物理制御チャネル復調部243は、受信信号のうちの、制御部25により特定された無線リソースに対応する部分に対して、復調処理を行なう。本例では、復調処理は、データ復調及びチャネル復号を含む。データ復調は、図3の物理制御チャネル生成部123により用いられた変調方式に従った復調である。チャネル復号は、物理制御チャネル生成部123により付加された誤り訂正符号に基づく誤り訂正処理である。
 物理データチャネル復調部244は、受信信号のうちの、制御部25により特定された無線リソースに対応する部分に対して、復調処理を行なう。本例では、復調処理は、データ復調及びチャネル復号を含む。データ復調は、図3の物理データチャネル生成部124により用いられた変調方式に従った復調である。チャネル復号は、物理データチャネル生成部124により付加された誤り訂正符号に基づく誤り訂正処理である。
 制御部25は、タイミング情報復調部242によりタイミング情報が取得された場合、当該タイミング情報に基づいて、当該タイミング情報が示すタイミングまでの間、端末動作を制御する。以下、タイミング情報が示すタイミングは、通知タイミングと表記され得る。通知タイミングは、送信タイミングの一例である。
 本例では、制御部25は、通知タイミングに応じた待機時間が経過するまでの間、物理チャネル抽出部24の状態を待機状態に制御する。待機状態は、信号に対する処理を実行しない状態である。例えば、制御部25は、物理チャネル抽出部24の状態を待機状態に制御している間、物理チャネル抽出部24に供給される電力を遮断してもよい。また、制御部25は、物理チャネル抽出部24の状態を待機状態に制御している間、物理チャネル抽出部24に供給される電力を、当該状態が待機状態に制御されていない場合よりも減少させてもよい。なお、制御部25は、物理チャネル抽出部24に加えて、無線復調部23及び高周波部22の少なくとも1つの状態も待機状態に制御してもよい。
 制御部25は、通知タイミングの前にユーザに通知する情報を出力する。ユーザに通知される情報は、出力情報の一例である。本例では、出力情報は、タイミング情報の取得によって得た通知タイミングを示す情報である。本例では、制御部25は、出力情報をディスプレイ又はスピーカを介して出力することによりユーザに通知する。例えば、ディスプレイとして、タイミングが通知されたときに、光る、又は、色が変わるLED(Light Emitting Diode)ランプを用いてもよい。なお、制御部25は、出力情報を上位レイヤの機能(例えば、アプリケーションプログラム等)へ出力してもよい。
 ところで、タイミング情報は、4種類の情報であるから、実質的に2ビットの情報である。しかしながら、本例では、タイミング情報は、480ビットのシーケンス(例えば、疑似ランダムシーケンス)を用いて送信される。更に、タイミング情報は、4回繰り返して送信される。従って、タイミング情報は、2ビットの情報が、1920ビットのシーケンスにより送信される、と考えてよい。このため、タイミング情報は、1/960(=2/1920)の符号化率にてチャネル符号化が行なわれた後に送信される、と考えてよい。
 一方、報知情報は、CRC符号を含めて40ビットの情報である。本例では、報知情報は、480ビットのシーケンスを用いて送信される。更に、報知情報は、120回繰り返して送信される。従って、報知情報は、1/1440(=40/(120*480))の符号化率にてチャネル符号化が行なわれた後に送信される、と考えてよい。
 即ち、報知情報の見かけ上の符号化率は、タイミング情報の見かけ上の符号化率よりも小さい。更に、報知情報は、誤り訂正処理を使用したチャネル符号化が施されているので、データ変調における変調方式、及び、無線信号の送信電力が同じであれば、タイミング情報の受信品質は報知情報の受信品質以下となる。無線基地局10は、符号化率、データ変調における変調方式、及び、無線信号の送信電力を適切に設定して、タイミング情報の受信品質が報知情報の受信品質以下となるようにタイミング情報を送信する。従って、無線端末20がタイミング情報を復調可能である場合、無線端末20が報知情報も復調可能である確率が高い。
 従って、制御部25は、タイミング情報が復調された時点にて、報知情報を復調可能であることを示す情報を出力してもよい。報知情報を復調可能であることを示す情報は、出力情報の一例である。また、報知情報を復調可能であることは、報知情報を受信可能であることの一例である。
 このように、無線端末20は、第1の制御情報としての報知情報が第1のタイミングにて送信されてから、第2のタイミングにて報知情報が送信されるまでの間に、第2の制御情報の一例であるタイミング情報を無線基地局10から受信する。
 なお、無線フレーム生成部12は、実質的に2ビットの情報(「00」、「01」、「10」、又は、「11」)である第1乃至第4のタイミング情報を、互いに異なる4つの位相(例えば、0度、90度、180度、及び、270度)によるデータ変調を行なった960個のリソースエレメントに対応づけてもよい。更に、無線フレーム生成部12は、それら960個のリソースエレメントを、各期間TT1~TT4にてスケジューリングしてもよい。
 更に、タイミング情報復調部242は、受信信号のうちの、タイミング情報が送信されている可能性がある960個のリソースエレメントに対応する部分を加算し、加算結果と、上記4つの位相のそれぞれと、が一致する程度(一致度)に基づいてタイミング情報を取得してもよい。このとき、タイミング情報復調部242は、加算結果が予め定められた閾値よりも小さい場合、タイミング情報を検出しなかったものとしてよい。
(動作)
 次に、無線通信システム1の動作について説明する。ここでは、無線通信システム1の動作のうちの、タイミング情報及び報知情報の送信及び受信に係る部分について説明する。
 無線基地局10は、図6にフローチャートにより示す処理を実行することにより、タイミング情報及び報知情報のスケジューリングを行ない、タイミング情報及び報知情報を送信する。
 無線基地局10は、タイマ値を初期値(本例では、1.2s)に設定し、タイマによる時間の計測を開始する(図6のステップS101)。タイマは、計測の開始時点から経過した時間を初期値から減じた値をタイマ値として計測するカウントダウンタイマである。これにより、1つの周期が開始する。
 次いで、無線基地局10は、単位時間の期間TP1にて、報知情報を120回繰り返し送信する(図6のステップS102)。
 その後、無線基地局10は、タイマ値が第4の時間閾値以下であるか否かを判定する(図6のステップS103)。第4の時間閾値は、1050msに単位時間(本例では、40ms)を加えた1090msである。無線基地局10は、タイマ値が第4の時間閾値よりも大きい間、タイミング情報の送信を待機する(図6のステップS103の「No」ルート)。
 タイマ値が第4の時間閾値と等しくなった時点にて、無線基地局10は、「Yes」と判定し、第4のタイミングを示すタイミング情報(第4のタイミング情報)を、単位時間の期間TT4にて、4回繰り返し送信する(図6のステップS104)。
 次いで、無線基地局10は、タイマ値が第3の時間閾値以下であるか否かを判定する(図6のステップS105)。第3の時間閾値は、750msに単位時間(本例では、40ms)を加えた790msである。無線基地局10は、タイマ値が第3の時間閾値よりも大きい間、タイミング情報の送信を待機する(図6のステップS105の「No」ルート)。
 タイマ値が第3の時間閾値と等しくなった時点にて、無線基地局10は、「Yes」と判定し、第3のタイミングを示すタイミング情報(第3のタイミング情報)を、単位時間の期間TT3にて、4回繰り返し送信する(図6のステップS106)。
 その後、無線基地局10は、タイマ値が第2の時間閾値以下であるか否かを判定する(図6のステップS107)。第2の時間閾値は、450msに単位時間(本例では、40ms)を加えた490msである。無線基地局10は、タイマ値が第2の時間閾値よりも大きい間、タイミング情報の送信を待機する(図6のステップS107の「No」ルート)。
 タイマ値が第2の時間閾値と等しくなった時点にて、無線基地局10は、「Yes」と判定し、第2のタイミングを示すタイミング情報(第2のタイミング情報)を、単位時間の期間TT2にて、4回繰り返し送信する(図6のステップS108)。
 次いで、無線基地局10は、タイマ値が第1の時間閾値以下であるか否かを判定する(図6のステップS109)。第1の時間閾値は、150msに単位時間(本例では、40ms)を加えた190msである。無線基地局10は、タイマ値が第1の時間閾値よりも大きい間、処理の進行を待機する(図6のステップS109の「No」ルート)。
 タイマ値が第1の時間閾値と等しくなった時点にて、無線基地局10は、「Yes」と判定し、第1のタイミングを示すタイミング情報(第1のタイミング情報)を、単位時間の期間TT1にて、4回繰り返し送信する(図6のステップS110)。
 その後、無線基地局10は、タイマ値が0であるか否かを判定する(図6のステップS111)。無線基地局10は、タイマ値が0よりも大きい間、処理の進行を待機する(図6のステップS111の「No」ルート)。タイマ値が0になった時点にて、無線基地局10は、「Yes」と判定し、1つの周期を完了し、図6のステップS101へ戻り、ステップS101以降の処理を再び実行する。
 一方、無線端末20は、図7にフローチャートにより示す処理を実行することにより、タイミング情報及び報知情報を受信し、タイミング情報に基づいて端末動作を制御する。
 無線端末20は、受信信号のうちの、単位時間の期間に対応する部分に対して、報知情報の復調処理を実行する(図7のステップS201)。次いで、無線端末20は、復調処理の実行によって、報知情報が検出されたか否かを判定する(図7のステップS202)。報知情報の検出は、誤り訂正符号に基づく誤り訂正処理、及び、CRC符号に基づく誤り検出処理等によって行なわれてもよい。また、報知情報の検出は、復調処理の実行結果として取得された情報の内容に基づいて行なわれてもよい。
 無線端末20は、報知情報が検出された場合、「Yes」と判定し、図7の処理を終了する。一方、無線端末20は、報知情報が検出されなかった場合、「No」と判定し、受信信号のうちの、単位時間の期間に対応する部分に対して、タイミング情報の復調処理を実行する(図7のステップS203)。
 次いで、無線端末20は、復調処理の実行によって、タイミング情報が検出されたか否かを判定する(図7のステップS204)。無線端末20は、タイミング情報が検出されなかった場合、「No」と判定し、図7のステップS201へ戻り、ステップS201以降の処理を再び実行する。
 タイミング情報が検出された場合、無線端末20は、図7のステップS204にて「Yes」と判定し、検出されたタイミング情報が第1のタイミングを示すか否かを判定する(図7のステップS205)。タイミング情報が第1のタイミングを示す場合、無線端末20は、「Yes」と判定し、第1の待機時間(本例では、150ms)を示す出力情報を出力する(例えば、ディスプレイに表示させる)。更に、無線端末20は、第1の待機時間が経過するまでの間、待機する(図7のステップS206)。本例では、無線端末20は、第1の待機時間が経過するまでの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。
 その後、無線端末20は、図7のステップS201へ戻り、ステップS201以降の処理を再び実行する。
 検出されたタイミング情報が第1のタイミングを示さない場合、無線端末20は、図7のステップS205にて「No」と判定し、タイミング情報が第2のタイミングを示すか否かを判定する(図7のステップS207)。タイミング情報が第2のタイミングを示す場合、無線端末20は、「Yes」と判定し、第2の待機時間(本例では、450ms)を示す出力情報を出力する。更に、無線端末20は、第2の待機時間が経過するまでの間、待機する(図7のステップS208)。本例では、無線端末20は、第2の待機時間が経過するまでの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。
 その後、無線端末20は、図7のステップS201へ戻り、ステップS201以降の処理を再び実行する。
 検出されたタイミング情報が第2のタイミングを示さない場合、無線端末20は、図7のステップS207にて「No」と判定し、タイミング情報が第3のタイミングを示すか否かを判定する(図7のステップS209)。タイミング情報が第3のタイミングを示す場合、無線端末20は、「Yes」と判定し、第3の待機時間(本例では、750ms)を示す出力情報を出力する。更に、無線端末20は、第3の待機時間が経過するまでの間、待機する(図7のステップS210)。本例では、無線端末20は、第3の待機時間が経過するまでの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。
 その後、無線端末20は、図7のステップS201へ戻り、ステップS201以降の処理を再び実行する。
 検出されたタイミング情報が第3のタイミングを示さない場合、無線端末20は、図7のステップS209にて「No」と判定し、タイミング情報が第4のタイミングを示すか否かを判定する(図7のステップS211)。タイミング情報が第4のタイミングを示す場合、無線端末20は、「Yes」と判定し、第4の待機時間(本例では、1050ms)を示す出力情報を出力する。更に、無線端末20は、第4の待機時間が経過するまでの間、待機する(図7のステップS212)。本例では、無線端末20は、第4の待機時間が経過するまでの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。
 その後、無線端末20は、図7のステップS201へ戻り、ステップS201以降の処理を再び実行する。
 検出されたタイミング情報が第4のタイミングを示さない場合、無線端末20は、図7のステップS211にて「No」と判定し、図7のステップS201へ戻り、ステップS201以降の処理を再び実行する。
 以上、説明したように、第1実施形態に係る無線通信システム1において、無線基地局10は、無線端末20に対して、報知情報を周期的に送信する。更に、無線基地局10は、無線端末20に対して、第1のタイミングで報知情報が送信されてから、第2のタイミングで報知情報が送信されるまでの間に、第1のタイミングよりも後に送信される報知情報の送信タイミングを示すタイミング情報を送信する。
 これによれば、無線端末20に、第1のタイミングよりも後に報知情報が送信されるタイミングを通知できる。この結果、無線端末20は、第1のタイミングよりも後に送信される報知情報の送信タイミングを第2のタイミングよりも早期に認識することができる。
 更に、第1実施形態に係る無線通信システム1において、無線端末20は、受信したタイミング情報に基づいて、送信タイミングまでの間、端末動作を制御する。
 加えて、第1実施形態に係る無線端末20は、送信タイミングまでの間、通信部の状態を待機状態に制御する。
 これによれば、無線端末20の消費電力を低減できる。更に、報知情報を確実に受信できる。
 更に、第1実施形態に係る無線端末20は、通知タイミングの前に、報知情報を受信可能であること、又は、通知タイミングを示す出力情報を出力する。
 これによれば、報知情報を受信可能であること、又は、通知タイミングを示す出力情報を、通知タイミングよりも早期に、例えば、ユーザ又は上位レイヤの機能等に通知することができる。
 加えて、第1実施形態に係る無線基地局10は、単位時間あたりにタイミング情報として送信される情報の総ビット数が、単位時間あたりに報知情報として送信される情報の総ビット数よりも少なくなるようにタイミング情報を送信する。
 これによれば、タイミング情報が送信される期間においてもタイミング情報に代えて報知情報が送信される場合と比較して、情報を送信するために使用される無線リソースの量を低減できる。
 更に、第1実施形態に係る無線基地局10は、タイミング情報の受信品質が、報知情報の受信品質以下となるようにタイミング情報を送信する。
 これによれば、無線端末20が、タイミング情報を受信できても、報知情報を受信できない事態が生じる確率を低減できる。
 なお、第1実施形態に係る無線通信システム1においては、タイミング情報は、当該タイミング情報が送信されるタイミングの次に(直後に)報知情報が送信されるタイミングを示す。ところで、タイミング情報は、当該タイミング情報が送信されるタイミングの次に(直後に)報知情報が送信されるタイミングよりも後に報知情報が送信されるタイミングを示してもよい。例えば、タイミング情報は、当該タイミング情報が送信されるタイミングを含む周期の次の周期に後続する周期において報知情報が送信されるタイミングを示してもよい。
 なお、第1実施形態に係る無線通信システム1において、無線端末20は、物理チャネル抽出部24の待機状態への制御、無線復調部23及び/又は高周波部22の待機状態への制御、並びに、出力情報の出力等の動作を行なっていたが、これらすべてを行なう必要はなく、選択的に行なってもよい。
 また、第1実施形態に係る無線通信システム1において、第1の制御情報は、無線基地局10によって報知される報知情報であったが、報知情報以外の情報であってもよい。
 無線端末20は、報知情報を受信しても、ランダムアクセスプリアンブルを送信するための無線リソースが割り当てられない限り、無線基地局10との間で接続を確立することができない。従って、この無線リソースの割り当てが行なわれるまで、無線端末20は、ランダムアクセスプリアンブルの送信を待機する。このため、当該割り当ての頻度が少なくなるほど、無線端末20が待機する時間が長くなる。そこで、上記割り当てが行なわれるタイミングを無線端末20に通知することにより、無線端末20が端末動作を制御することが考えられる。
 このため、例えば、第1の制御情報は、ランダムアクセス手順において、無線端末20が無線基地局10へ情報を送信するために、無線基地局10によって割り当てられた無線リソースを示す情報であってもよい。例えば、ランダムアクセス手順は、競合ベースランダムアクセス手順、又は、非競合ベースランダムアクセス手順である。例えば、ランダムアクセス手順において無線端末20が無線基地局10へ送信する情報は、無線端末20が無線基地局10との間の接続を要求する情報(例えば、ランダムアクセスプリアンブル)である。
 ユーザを呼び出して通話を開始する場合、基地局から端末にページング信号が送信される。十分に短い間隔にてページング信号が送信可能であれば、ユーザが呼び出しに関して不自然さを感じる可能性を低減できる。しかしながら、特に、M2M通信を開始する場合、通話の場合よりも長い間隔にてページング信号が送信可能であればよい。このため、ページング信号を送信するために割り当てられた無線リソースを示す情報も比較的長い間隔にて送信されることが考えられる。そこで、ページング信号を送信するために割り当てられた無線リソースを示す情報が送信されるタイミングを無線端末20に通知することにより、無線端末20が端末動作を制御することが考えられる。
 このため、例えば、第1の制御情報は、無線基地局10が無線端末20へページング信号を送信するために割り当てた無線リソースを示す情報であってもよい。
 また、第1の制御情報は、無線基地局10と無線端末20との間の通信を制御するための情報、又は、無線基地局10と無線端末20との間の通信若しくは接続を開始するための情報であってもよい。
 第1の制御情報が、報知情報、ランダムアクセス手順における無線リソースを示す情報、あるいは、ページング信号を送信するために割り当てた無線リソースを示す情報である例を示した。ここで、これらの情報のうちの、2つ以上の情報の送信タイミングをあらかじめ対応づけておけば、送信タイミングを示す第2の制御情報は、それぞれの情報に対して付随させることなく、共通の送信タイミング情報として用いることができる。
 例えば、報知情報を送信した無線フレームと同じ無線フレーム、後続するフレーム、又は、一定間隔隔てたフレームでランダムアクセス手順における無線リソース又はページング信号を送信するための無線リソースを割り当てることを予め定めておけば、報知情報に対する送信タイミング情報を送信するだけで、ランダムアクセス手順における無線リソース又はページング信号を送信するための無線リソースに対する送信タイミング情報を与えたことにもなる。
<第1実施形態の第1変形例>
 次に、第1実施形態の第1変形例に係る無線通信システムについて説明する。第1実施形態の第1変形例に係る無線通信システムは、第1実施形態に係る無線通信システムに対して、タイミング情報が送信されるタイミング及びタイミング情報がタイミングの範囲を示す点等において相違している。以下、かかる相違点を中心として説明する。
 図8に示すように、第1変形例に係る無線基地局10Aは、図3の無線基地局10に対して、無線フレーム生成部12に代えて無線フレーム生成部12Aを備える点で相違する。無線フレーム生成部12Aは、図3の無線フレーム生成部12に対して、タイミング情報生成部122に代えてタイミング情報生成部122Aを備える点で相違する。
 タイミング情報生成部122Aは、タイミング情報を生成する。タイミング情報は、報知情報の送信タイミングを示す。タイミング情報は、第2の制御情報の一例である。
 本例では、タイミング情報は、第1、第2、第3、又は、第4のタイミング情報である。第1乃至第4のタイミング情報は、第1乃至第4のタイミングの範囲をそれぞれ示す。例えば、第1乃至第4のタイミングの範囲は、それぞれ、150~300ms後、300~600ms後、600~1200ms後、及び、1200~2400ms後である。
 本例では、タイミング情報は、報知情報と同じビット数(データサイズ)である480ビットの情報(シーケンス)である。第1乃至第4のタイミング情報は、例えば、互いに直交する疑似ランダムシーケンスとしてよい。
 タイミング情報生成部122Aは、タイミング情報を、例えば、QPSKによりデータ変調する。従って、タイミング情報は、報知情報と同数の240個のリソースエレメントを用いて送信される。なお、データ変調は、16QAM、又は、64QAM等の変調方式に従った変調であってもよい。
 無線フレーム生成部12Aは、図9に示すように、予め定められた時間(本例では、2.4s、即ち、240個の無線フレームを含む時間)の周期を有するように、各情報をスケジューリングする。
 本例では、無線フレーム生成部12Aは、1つの周期における先頭の単位時間(本例では、40ms)の期間TP1にて、120個の報知情報をスケジューリングする。従って、報知情報は、各周期における先頭の単位時間の期間TP1にて、120回繰り返し送信される。各周期における先頭の単位時間の期間TP1は、第1の期間の一例である。また、各周期における、期間TP1を除いた期間は、第2の期間の一例である。
 このように、本例では、各周期において報知情報が送信される回数の総和は、非特許文献1に記載のLTE方式において当該周期と等しい長さの期間にて報知情報が送信される回数の総和の半分である。従って、無線リソースの全体に対して、報知情報を送信するための部分が占める割合(占有割合)は、非特許文献1に記載のLTE方式の半分(約1.2%)である。
 更に、無線フレーム生成部12Aは、第2の期間において、タイミング情報を送信可能な単位時間の期間と、タイミング情報を送信不能な単位時間の期間と、が交互に設けられるように、タイミング情報をスケジューリングする。無線フレーム生成部12Aは、タイミング情報を送信可能な単位時間の期間毎に、4個のタイミング情報をスケジューリングする。
 また、第2の期間は、第1乃至第4の部分期間に分割される。第1の部分期間PP1は、1つの周期における末尾と、当該末尾から300msだけ前の時点と、の間の期間である。第2の部分期間PP2は、1つの周期における末尾から300msだけ前の時点と、当該末尾から600msだけ前の時点と、の間の期間である。第3の部分期間PP3は、1つの周期における末尾から600msだけ前の時点と、当該末尾から1200msだけ前の時点と、の間の期間である。第4の部分期間PP4は、期間TP1の終期から、1つの周期における末尾から1200msだけ前の時点までの期間である。
 本例では、部分期間の長さは、第2の期間の先頭(始期)から末尾(終期)へ向かうにつれて短く設定されている。
 無線フレーム生成部12Aは、第1乃至第4の部分期間PP1~PP4において、第1乃至第4のタイミング情報をそれぞれスケジューリングする。
 本例では、無線フレーム生成部12Aは、第1の部分期間PP1に含まれる、タイミング情報を送信可能な単位時間の期間TT1にて、4個の第1のタイミング情報をスケジューリングする。同様に、無線フレーム生成部12Aは、第2の部分期間PP2に含まれる、タイミング情報を送信可能な単位時間の期間TT2にて、4個の第2のタイミング情報をスケジューリングする。同様に、無線フレーム生成部12Aは、第3の部分期間PP3に含まれる、タイミング情報を送信可能な単位時間の期間TT3にて、4個の第3のタイミング情報をスケジューリングする。同様に、無線フレーム生成部12Aは、第4の部分期間PP4に含まれる、タイミング情報を送信可能な単位時間の期間TT4にて、4個の第4のタイミング情報をスケジューリングする。
 このように、タイミング情報は、当該タイミング情報が送信されるタイミングを含む部分期間と、そのタイミングの後に最も早期に報知情報が送信されるタイミングと、の間の時間に応じた値を示している。
 本例では、タイミング情報を送信不能な期間は、各周期における、期間TP1、及び、期間TT1~TT4を除いた期間である。各期間TT1~TT4は、第4の期間の一例である。各周期における、期間TP1、及び、期間TT1~TT4を除いた期間は、第3の期間の一例である。
 なお、タイミング情報の種類の数は、4と異なる自然数であってもよい。
 また、1つの周期における末尾と、当該末尾から150msだけ前の時点と、の間の期間は、タイミング情報を送信不能な期間として設定されていてもよい。
 仮に、期間TP1のみにおいて報知情報が送信されるとともにタイミング情報が送信されない場合を想定する。この場合において、上記期間TP1の直後に、無線端末20が起動された場合、無線端末20は、次に期間TP1が到来するまでの間、報知情報を受信するために動作し続ける。その結果、無線端末20が無駄に電力を消費してしまう。
 一方、本例では、報知情報及びタイミング情報のいずれもが送信されない期間は、最大でも40msである。従って、無線端末20は、最大で40msの間、受信動作を継続するだけで、次に報知情報が送信されるタイミング(送信タイミング)を認識することができる。上述したように、無線端末20は、送信タイミングまでの間、無線端末20のうちの報知情報を受信するための機能部の状態を待機状態に制御する。なお、無線端末20は、当該機能部に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。この結果、無線端末20の消費電力を低減できる。
 タイミング情報を送信するために用いられる無線リソースは、80msの期間毎に960個のリソースエレメントである。従って、無線リソースの全体に対して、タイミング情報を送信するための部分が占める割合は、約1.2%である。即ち、タイミング情報を送信するために用いられる無線リソースは、報知情報を送信するために用いられる無線リソースと等しい。
 従って、無線リソースの全体に対して、報知情報及びタイミング情報の両方を送信するための部分が占める割合(占有割合)は、非特許文献1に記載のLTE方式における報知情報に対する占有割合と等しい。
(動作)
 次に、第1変形例に係る無線基地局10Aの動作について説明する。
 無線基地局10Aは、図6の処理に代えて図10にフローチャートにより示す処理を実行することにより、タイミング情報及び報知情報のスケジューリングを行ない、タイミング情報及び報知情報を送信する。
 無線基地局10Aは、タイマ値を初期値(本例では、2.4s)に設定し、タイマによる時間の計測を開始する(図10のステップS301)。タイマは、計測の開始時点から経過した時間を初期値から減じた値をタイマ値として計測するカウントダウンタイマである。これにより、1つの周期が開始する。
 次いで、無線基地局10Aは、単位時間(本例では、40ms)の期間TP1にて、報知情報を120回繰り返し送信する(図10のステップS302)。
 その後、無線基地局10Aは、タイマ値に基づいて単位時間が経過するまで処理の進行を待機する(図10のステップS303の「No」ルート)。
 そして、単位時間が経過すると、無線基地局10Aは、タイマ値が0であるか否かを判定する(図10のステップS304)。タイマ値が0である場合、無線基地局10Aは、「Yes」と判定し、図10のステップS301へ戻り、ステップS301以降の処理を再び実行する。
 一方、タイマ値が0よりも大きい場合、無線基地局10Aは、ステップS304にて「No」と判定し、タイマ値が第4の時間閾値以下であるか否かを判定する(図10のステップS305)。第4の時間閾値は、1200msである。無線基地局10Aは、タイマ値が第4の時間閾値以下である場合、「Yes」と判定し、第4のタイミングの範囲を示すタイミング情報(第4のタイミング情報)を、単位時間の期間TT4にて、4回繰り返し送信する(図10のステップS306)。その後、無線基地局10Aは、図10のステップS303へ戻り、ステップS303以降の処理を再び実行する。
 タイマ値が第4の時間閾値よりも大きい場合、無線基地局10Aは、図10のステップS305にて「No」と判定し、タイマ値が第3の時間閾値以下であるか否かを判定する(図10のステップS307)。第3の時間閾値は、600msである。無線基地局10Aは、タイマ値が第3の時間閾値以下である場合、「Yes」と判定し、第3のタイミングの範囲を示すタイミング情報(第3のタイミング情報)を、単位時間の期間TT3にて、4回繰り返し送信する(図10のステップS308)。その後、無線基地局10Aは、図10のステップS303へ戻り、ステップS303以降の処理を再び実行する。
 タイマ値が第3の時間閾値よりも大きい場合、無線基地局10Aは、図10のステップS307にて「No」と判定し、タイマ値が第2の時間閾値以下であるか否かを判定する(図10のステップS309)。第2の時間閾値は、300msである。無線基地局10Aは、タイマ値が第2の時間閾値以下である場合、「Yes」と判定し、第2のタイミングの範囲を示すタイミング情報(第2のタイミング情報)を、単位時間の期間TT2にて、4回繰り返し送信する(図10のステップS310)。その後、無線基地局10Aは、図10のステップS303へ戻り、ステップS303以降の処理を再び実行する。
 タイマ値が第2の時間閾値よりも大きい場合、無線基地局10Aは、ステップS309にて「No」と判定する。そして、無線基地局10Aは、第1のタイミングの範囲を示すタイミング情報(第1のタイミング情報)を、単位時間の期間TT1にて、4回繰り返し送信する(図10のステップS311)。その後、無線基地局10Aは、図10のステップS303へ戻り、ステップS303以降の処理を再び実行する。
 上述したように、第1実施形態の第1変形例において、タイミング情報は、タイミングの範囲を示す。そこで、第1実施形態の第1変形例に係る無線端末20は、下記の相違点において、第1実施形態に係る無線端末20と動作が相違する。相違点は、早期到来タイミングまでの間の時間を示す出力情報を出力する点、及び、早期到来タイミングまでの間、物理チャネル抽出部24の状態を待機状態に制御する点である。ここで、早期到来タイミングは、タイミング情報が示すタイミングの範囲の、最も早期に到来するタイミングである。
 例えば、無線端末20は、第4のタイミング情報を受信した場合、後に報知情報が送信されるタイミングが、1200ms以上後のタイミングであることを認識できる。そこで、本例では、無線端末20は、1200msの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。その後、無線端末20は、再び、報知情報及びタイミング情報を受信するための動作を行なう。
 その後、無線端末20は、第3のタイミング情報を受信した場合、後に報知情報が送信されるタイミングが、600ms以上後のタイミングであることを認識できる。そこで、本例では、無線端末20は、600msの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。そして、無線端末20は、再び、報知情報及びタイミング情報を受信するための動作を行なう。
 その後、無線端末20は、第2のタイミング情報を受信した場合、後に報知情報が送信されるタイミングが、300ms以上後のタイミングであることを認識できる。そこで、本例では、無線端末20は、300msの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。そして、無線端末20は、再び、報知情報及びタイミング情報を受信するための動作を行なう。
 その後、無線端末20は、第1のタイミング情報を受信した場合、後に報知情報が送信されるタイミングが、150ms以上後のタイミングであることを認識できる。そこで、本例では、無線端末20は、150msの間、物理チャネル抽出部24の状態を待機状態に制御する。なお、無線端末20は、物理チャネル抽出部24に加えて、無線復調部23、及び/又は、高周波部22の状態を待機状態に制御してもよい。そして、無線端末20は、再び、報知情報及びタイミング情報を受信するための動作を行なう。
 このようにして、無線端末20は、報知情報が送信されるタイミングを正確且つ効率的に認識することができる。
 以上、説明したように、第1変形例に係る無線通信システム1は、第1実施形態に係る無線通信システム1と同様の作用及び効果を奏することができる。更に、第1変形例に係る無線通信システム1によれば、報知情報及びタイミング情報に対する占有割合を、非特許文献1に記載のLTE方式における報知情報に対する占有割合と等しくすることができる。
 更に、第1変形例に係る無線通信システム1においては、報知情報及びタイミング情報のいずれもが送信されない期間は、最大でも40msである。従って、無線端末20は、最大で40msの間、受信動作を継続することにより、後に報知情報が送信されるタイミングを認識することができる。
 なお、タイミング情報が表すタイミングの範囲は、他のタイミングの範囲の2倍以上の範囲であってもよく、上限が定められていない範囲であってもよい。例えば、第1乃至第4のタイミングの範囲は、それぞれ、0~80ms後、80~300ms後、300~1200ms後、及び、1200ms以上後であってもよい。この場合、例えば、第1の部分期間PP1は、1つの周期における末尾と、当該末尾から80msだけ前の時点と、の間の期間である。第2の部分期間PP2は、1つの周期における末尾から80msだけ前の時点と、当該末尾から300msだけ前の時点と、の間の期間である。第3の部分期間PP3は、1つの周期における末尾から300msだけ前の時点と、当該末尾から1200msだけ前の時点と、の間の期間である。第4の部分期間PP4は、期間TP1の終期から、1つの周期における末尾から1200msだけ前の時点までの期間である。
 また、周期の長さは、例えば、240sに設定されていてもよい。この場合、例えば、第1乃至第4のタイミングの範囲は、それぞれ、0~4s後、4~15s後、15~60s後、及び、60s以上後であってもよい。この場合、例えば、第1の部分期間PP1は、1つの周期における末尾と、当該末尾から4sだけ前の時点と、の間の期間である。第2の部分期間PP2は、1つの周期における末尾から4sだけ前の時点と、当該末尾から15sだけ前の時点と、の間の期間である。第3の部分期間PP3は、1つの周期における末尾から15sだけ前の時点と、当該末尾から60sだけ前の時点と、の間の期間である。第4の部分期間PP4は、期間TP1の終期から、1つの周期における末尾から60sだけ前の時点までの期間である。このように、第1乃至第4のタイミング情報が様々な値や値の範囲を示す場合、それらの値や値の範囲が、基地局と端末の間で共有されるように、あらかじめ、設定しておくか、あるいは、上位レイヤ制御信号にて通知しておくとよい。
<第1実施形態の第2変形例>
 次に、第1実施形態の第2変形例に係る無線通信システムについて説明する。第1実施形態の第2変形例に係る無線通信システムは、第1実施形態に係る無線通信システムに対して、タイミング情報が無線フレームのフレーム番号を用いることにより報知情報の送信タイミングを示す点において相違している。無線端末が既に無線フレームのフレーム番号の情報を得ており、受信しようとしている報知情報がフレーム番号に関する情報を提供するものでない場合には、時間に係る制御のためにフレーム番号を用いることが可能である。以下、かかる相違点を中心として説明する。
 第2変形例に係る無線基地局10は、第1実施形態に係る無線基地局10と同様のタイミングにて、報知情報及びタイミング情報をそれぞれ送信する。第2変形例に係る無線基地局10は、タイミング情報として、報知情報が送信される無線フレーム(報知情報フレーム)のフレーム番号を示す情報を用いる。
 第2変形例に係る無線端末20は、受信した無線フレームのフレーム番号と、受信したタイミング情報が示す報知情報フレームのフレーム番号と、に基づいて、後に報知情報が送信されるタイミング(送信タイミング)を取得する。
 第2変形例に係る無線端末20は、取得した送信タイミングに基づいて、第1実施形態に係る無線端末20と同様に、端末動作を制御する。
 無線フレームのフレーム番号は、時間の経過と対応付けられている。従って、第2変形例に係る無線通信システム1によっても、第1実施形態に係る無線通信システム1と同様に、無線通信システム1の効率を高めることができる。
<第1実施形態の第3変形例>
 次に、第1実施形態の第3変形例に係る無線通信システムについて説明する。第1実施形態の第3変形例に係る無線通信システムは、第1実施形態の第2変形例に係る無線通信システムに対して、フレーム番号が送信条件を満足する無線フレームにて報知情報が送信される点において相違している。以下、かかる相違点を中心として説明する。
 第3変形例に係る無線通信システム1において、無線基地局10は、無線フレームのフレーム番号が予め定められた送信条件を満足する場合に、当該無線フレームにおいて報知情報を送信する。更に、無線基地局10は、無線フレームのフレーム番号が上記送信条件を満足しない場合に、当該無線フレームにおいてタイミング情報を送信する。タイミング情報は、上記送信条件を表す情報である。
 第3変形例に係る無線通信システム1において、無線端末20は、受信した無線フレームのフレーム番号と、受信したタイミング情報が示す送信条件と、に基づいて、後に報知情報が送信されるタイミング(送信タイミング)を取得する。更に、無線端末20は、取得した送信タイミングに基づいて、第1実施形態に係る無線端末20と同様に、端末動作を制御する。
 例えば、送信条件は、無線フレームのフレーム番号の末尾のNビット(Nは自然数であり、本例では、4)が、所定の送信番号情報と一致する、という条件である。無線基地局10は、タイミング情報として、送信番号情報を送信する。送信番号情報は、送信条件を表す情報の一例である。例えば、無線基地局10は、16種類の互いに直交する情報(例えば、疑似ランダムシーケンス)をタイミング情報として用いる。
 また、例えば、送信条件は、無線フレームのフレーム番号の末尾のMビットが、所定の第1送信番号情報と一致し、且つ、当該フレーム番号の末尾のMビットの上位のNビットが、所定の第2送信番号情報と一致する、という条件である。ここで、Mは、自然数であり、本例では、2である。また、Nは、自然数であり、本例では、4である。
 無線基地局10は、タイミング情報として、第2送信番号情報を送信する。第2送信番号情報は、送信条件を表す情報の一例である。例えば、無線基地局10は、16種類の互いに直交する情報(例えば、疑似ランダムシーケンス)をタイミング情報として用いる。第1送信番号情報は、無線基地局10及び無線端末20により予め保持される。
 第3変形例に係る無線通信システム1によれば、第2変形例に係る無線通信システム1の効果に加えて、タイミング情報の実質的な情報量を低減できるという効果が奏される。
1   無線通信システム
10,10A 無線基地局
11  制御部
12,12A 無線フレーム生成部
121 物理報知チャネル生成部
122,122A タイミング情報生成部
123 物理制御チャネル生成部
124 物理データチャネル生成部
13  無線変調部
14  高周波部
15  アンテナ
20  無線端末
21  アンテナ
22  高周波部
23  無線復調部
24  物理チャネル抽出部
241 物理報知チャネル復調部
242 タイミング情報復調部
243 物理制御チャネル復調部
244 物理データチャネル復調部
25  制御部
NW  通信網

Claims (26)

  1.  無線基地局と
     前記無線基地局と通信を行なう無線端末と、
     を備え、
     前記無線基地局は、前記無線端末に対して、第1の制御情報を周期的に送信するとともに、第1のタイミングで第1の制御情報が送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、前記第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す第2の制御情報を送信する、無線通信システム。
  2.  請求項1に記載の無線通信システムであって、
     前記無線端末は、受信した前記第2の制御情報に基づいて、前記送信タイミングまでの間、端末動作を制御する、無線通信システム。
  3.  請求項1又は請求項2に記載の無線通信システムであって、
     前記周期は、第1の制御情報が繰り返し送信される第1の期間と、第1の制御情報が送信されない第2の期間と、を含む、無線通信システム。
  4.  無線基地局と通信を行なう無線端末であって、
     前記無線基地局により周期的に送信される第1の制御情報が第1のタイミングで送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、前記第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す第2の制御情報を前記無線基地局から受信する通信部を備える、無線端末。
  5.  請求項4に記載の無線端末であって、
     前記受信された第2の制御情報に基づいて、前記送信タイミングまでの間、端末動作を制御する制御部を備える、無線端末。
  6.  請求項5に記載の無線端末であって、
     前記制御部は、前記送信タイミングまでの間、前記通信部の状態を待機状態に制御する、無線端末。
  7.  請求項5又は請求項6に記載の無線端末であって、
     前記制御部は、前記送信タイミングの前に、前記第1の制御情報を受信可能であること、又は、前記送信タイミングを示す出力情報を出力する、無線端末。
  8.  請求項4乃至請求項7のいずれか一項に記載の無線端末であって、
     前記第2の制御情報の送信に用いられる単位時間あたりの無線リソースは、前記第1の制御情報の送信に用いられる単位時間あたりの無線リソースよりも少ない、無線端末。
  9.  請求項4乃至請求項8のいずれか一項に記載の無線端末であって、
     前記第2の制御情報の受信品質は、前記第1の制御情報の受信品質以下となるように設定された、無線端末。
  10.  請求項4乃至請求項9のいずれか一項に記載の無線端末であって、
     前記第2の制御情報は、当該第2の制御情報が送信されたタイミングと、前記送信タイミングと、の間の時間に応じた値を示す、無線端末。
  11.  請求項4乃至請求項10のいずれか一項に記載の無線端末であって、
     前記第2の制御情報は、無線フレームのフレーム番号を用いることにより、前記送信タイミングを示す、無線端末。
  12.  請求項4乃至請求項11のいずれか一項に記載の無線端末であって、
     前記周期は、第1の制御情報が繰り返し送信される第1の期間と、第1の制御情報が送信されない第2の期間と、を含む、無線端末。
  13.  請求項12に記載の無線端末であって、
     前記第2の期間は、複数の部分期間に分割され、
     前記第2の制御情報は、当該第2の制御情報が送信されるタイミングを含む前記部分期間と、前記送信タイミングと、の間の時間に応じた値を示す、無線端末。
  14.  請求項13に記載の無線端末であって、
     前記部分期間の長さは、前記第2の期間の始期から終期へ向かうにつれて短くなる、無線端末。
  15.  請求項12乃至請求項14のいずれか一項に記載の無線端末であって、
     前記第2の期間は、第3の期間と、前記第2の制御情報が単位時間あたりに送信される回数が当該第3の期間よりも多い第4の期間と、を含む、無線端末。
  16.  請求項15に記載の無線端末であって、
     前記第3の期間は、前記第2の制御情報が送信されない期間である、無線端末。
  17.  請求項15又は請求項16に記載の無線端末であって、
     前記第2の期間は、前記第4の期間を複数含む、無線端末。
  18.  請求項4乃至請求項17のいずれか一項に記載の無線端末であって、
     前記第1の制御情報は、前記無線基地局によって報知される情報である、無線端末。
  19.  請求項4乃至請求項17のいずれか一項に記載の無線端末であって、
     前記第1の制御情報は、ランダムアクセス手順において情報を送信するために割り当てられた無線リソースを示す情報である、無線端末。
  20.  請求項4乃至請求項17のいずれか一項に記載の無線端末であって、
     前記第1の制御情報は、ページング信号を送信するために割り当てられた無線リソースを示す情報である、無線端末。
  21.  無線端末と通信を行なう無線基地局であって、
     前記無線端末に対して、第1の制御情報を周期的に送信するとともに、第1のタイミングで第1の制御情報が送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、前記第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す第2の制御情報を送信する通信部を備える、無線基地局。
  22.  請求項21に記載の無線基地局であって、
     前記通信部は、前記第2の制御情報を送信するために使用する単位時間あたりの無線リソースの使用量が、前記第1の制御情報を送信するために使用する単位時間あたりの無線リソースの使用量よりも少なくなるように前記第2の制御情報を送信する、無線基地局。
  23.  請求項21又は請求項22に記載の無線基地局であって、
     前記通信部は、前記第2の制御情報の受信品質が、前記第1の制御情報の受信品質以下となるように当該第2の制御情報を送信する、無線基地局。
  24.  請求項21乃至請求項23のいずれか一項に記載の無線基地局であって、
     前記周期は、第1の制御情報が繰り返し送信される第1の期間と、第1の制御情報が送信されない第2の期間と、を含む、無線基地局。
  25.  無線基地局と通信を行なう無線端末の制御方法であって、
     前記無線基地局により周期的に送信される第1の制御情報が第1のタイミングで送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、前記第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す第2の制御情報を前記無線基地局から受信する、無線端末の制御方法。
  26.  無線端末と通信を行なう無線基地局の制御方法であって、
     前記無線端末に対して、第1の制御情報を周期的に送信し、
     前記無線端末に対して、第1のタイミングで第1の制御情報が送信されてから、第2のタイミングで第1の制御情報が送信されるまでの間に、前記第1のタイミングよりも後に送信される第1の制御情報の送信タイミングを示す第2の制御情報を送信する、無線基地局の制御方法。
PCT/JP2013/076057 2013-09-26 2013-09-26 無線通信システム、無線端末、無線基地局、及び、制御方法 WO2015045061A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076057 WO2015045061A1 (ja) 2013-09-26 2013-09-26 無線通信システム、無線端末、無線基地局、及び、制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076057 WO2015045061A1 (ja) 2013-09-26 2013-09-26 無線通信システム、無線端末、無線基地局、及び、制御方法

Publications (1)

Publication Number Publication Date
WO2015045061A1 true WO2015045061A1 (ja) 2015-04-02

Family

ID=52742265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076057 WO2015045061A1 (ja) 2013-09-26 2013-09-26 無線通信システム、無線端末、無線基地局、及び、制御方法

Country Status (1)

Country Link
WO (1) WO2015045061A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122751A1 (ja) * 2016-01-15 2017-07-20 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128654A (ja) * 2002-09-30 2004-04-22 Sony Corp 無線通信システム
WO2010001577A1 (ja) * 2008-06-30 2010-01-07 パナソニック株式会社 無線通信装置,端末,システム,プログラム
WO2012085958A1 (ja) * 2010-12-20 2012-06-28 富士通株式会社 無線基地局装置、無線端末装置、及び、無線送信方法
JP2013115494A (ja) * 2011-11-25 2013-06-10 Kyocera Corp 無線通信システムおよび無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128654A (ja) * 2002-09-30 2004-04-22 Sony Corp 無線通信システム
WO2010001577A1 (ja) * 2008-06-30 2010-01-07 パナソニック株式会社 無線通信装置,端末,システム,プログラム
WO2012085958A1 (ja) * 2010-12-20 2012-06-28 富士通株式会社 無線基地局装置、無線端末装置、及び、無線送信方法
JP2013115494A (ja) * 2011-11-25 2013-06-10 Kyocera Corp 無線通信システムおよび無線通信方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122751A1 (ja) * 2016-01-15 2017-07-20 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10555280B2 (en) 2016-01-15 2020-02-04 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
RU2734168C2 (ru) * 2016-01-15 2020-10-13 Нтт Докомо, Инк. Терминал пользователя, базовая радиостанция и способ радиосвязи

Similar Documents

Publication Publication Date Title
TWI744550B (zh) 用於喚醒信號設計和資源配置的技術和裝置
KR102178611B1 (ko) 웨이크업 신호 송신을 위한 기법들 및 장치들
US11218353B2 (en) Paging in beamformed wireless communication system
CN110226351B (zh) 用于寻呼接收的时间和频率跟踪方法及用户设备
EP3691374B1 (en) Communication method and communication device
US20220070783A1 (en) Nr paging early indicator
JP7050670B2 (ja) システム情報を送信するための方法、基地局、端末、およびシステム
EP3437412B1 (en) Wireless communication involving a wake time period for a station
EP3281423B1 (en) Communication system
TW201921995A (zh) 用於喚醒信號設計及資源分配的技術及設備
JP2022513947A (ja) システム情報を更新する方法、及びそれを使用するワイヤレス送信/受信ユニット
JP6631697B2 (ja) 無線通信システム、無線機器、リレーノード、及び、基地局
EP3457779A1 (en) Base station, user equipment, and related method
CN116319224A (zh) 关于多个载波数字方案的载波能力信令
CN109587759A (zh) 一种系统信息的更新方法、基站及终端
CN105530604B (zh) 基于位置信息的通信控制方法和系统
WO2018028576A1 (zh) 一种寻呼方法、装置及系统、用户设备
CN107148799A (zh) 用户装置及d2d同步信号发送方法
KR102516332B1 (ko) 디바이스 투 디바이스 통신을 위한 리소스 배제
WO2015045061A1 (ja) 無線通信システム、無線端末、無線基地局、及び、制御方法
KR20180025277A (ko) 협대역 사물 인터넷 단말의 채널 추정 방법 및 장치
KR102179107B1 (ko) 기계형 통신 기술에서 전자 장치의 전력 소모를 절약하는 방법 및 장치
CN111656822B (zh) 用于在无线通信中传输唤醒信号的方法、装置和系统
CN116569494A (zh) 增强型频率范围2(fr2)侧行链路重新发现
US20230164672A1 (en) Uplink-only or downlink-only downlink control information mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP