WO2015043109A1 - 一种含永磁电磁结构 - Google Patents

一种含永磁电磁结构 Download PDF

Info

Publication number
WO2015043109A1
WO2015043109A1 PCT/CN2014/000845 CN2014000845W WO2015043109A1 WO 2015043109 A1 WO2015043109 A1 WO 2015043109A1 CN 2014000845 W CN2014000845 W CN 2014000845W WO 2015043109 A1 WO2015043109 A1 WO 2015043109A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
inner yoke
permanent magnet
yoke
permanent magnets
Prior art date
Application number
PCT/CN2014/000845
Other languages
English (en)
French (fr)
Inventor
梁慧敏
谢勇
由佳欣
谢国强
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US14/758,647 priority Critical patent/US9607796B2/en
Publication of WO2015043109A1 publication Critical patent/WO2015043109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/083External yoke surrounding the coil bobbin, e.g. made of bent magnetic sheet

Definitions

  • the invention relates to the technical field of relays, in particular to a permanent magnet-containing electromagnetic structure applicable to various electromagnetic systems such as relays.
  • the classification of permanent magnet-containing relays from the armature movement mode can be divided into rotary armature type, direct-acting armature type, etc.
  • direct-acting relay is a very important type of relay, which has simple structure and wide application. Stable performance; especially in aerospace, defense and civil applications.
  • the direct-acting type permanent magnet relay the permanent magnet provides the holding force under steady state
  • the armature is the device in which the switching action is performed
  • the yoke is the device in which the armature limit is taken
  • the coil core and the guide are connected with them as the center.
  • the entire relay magnetic circuit composed of other components such as a magnetic ring directly determines the performance of the whole machine including the permanent magnet relay.
  • the object of the present invention is to provide an electromagnetic structure design with high magnetic flux constraint, bistable magnetic retention, low coil energy consumption and simple structure, which makes the actual assembly of the product more efficient, the consistency of the same batch product is better, and the batch is reduced. The scrap rate of the secondary product.
  • the present invention provides a permanent magnet-containing electromagnetic structure comprising:
  • the outer yoke iron is a hollow cylindrical shape and is composed of an outer yoke upper base, an outer yoke lower bottom and an outer yoke iron side wall;
  • a first permanent magnet group including a plurality of permanent magnets arranged in a circle, the plurality of permanent magnets being connected to the outer yoke bottom, and each of the permanent magnets is magnetized in the axial direction ;
  • the inner yoke iron includes an inner yoke upper base, an inner yoke iron side wall and an inner yoke iron lower bottom, the inner yoke iron side wall is cylindrical, and the inner yoke upper base and the inner yoke lower bottom a ring formed horizontally outwardly from an upper end and a lower end of the inner yoke iron side wall; and the inner yoke lower bottom is connected to the first permanent magnet group;
  • the armature includes an armature upper base, an armature lower bottom and an armature barrel; the armature barrel passes through the central through hole of the inner yoke, and the height of the armature barrel is greater than the height of the inner yoke;
  • the armature upper base and the armature The lower bottom is a circle having a diameter larger than the inner diameter of the inner side of the inner yoke;
  • a second permanent magnet group comprising a plurality of permanent magnets arranged in a circle, the plurality of permanent magnets being connected to the outer yoke upper base and the inner yoke upper base, and each permanent magnet being magnetized The direction is magnetization in the axial direction.
  • a permanent magnet-containing electromagnetic structure further comprising a connecting rod, one end of the connecting rod fixedly connected to the center of the armature, and the other end passing through the upper yoke.
  • a permanent magnet-containing electromagnetic structure according to the present invention wherein the plurality of permanent magnets are all cylindrical permanent magnets.
  • a permanent magnet-containing electromagnetic structure according to the present invention wherein the material of the permanent magnet is one of neodymium iron boron, aluminum nickel cobalt or ferrite.
  • the invention is suitable for application in direct-acting electromagnetic systems such as relays, contactors, circuit breakers, solenoid valves, magnetic switches and the like.
  • the invention has the advantages of symmetrical structure, strong versatility of parts, simple assembly, bistable magnetic retention, permanent magnet adjustment and retention, and flexible configuration.
  • the force change only needs to replace the permanent magnet (within the magnetic saturation range), which is more convenient; the touch condition is low, the suction (release) process only requires short-time pulse, and the coil consumes less power.
  • the invention also has good anti-vibration performance and strong anti-centrifugal acceleration and impact capability.
  • Figure 1 is a schematic view showing the basic structure of the present invention
  • FIG. 2 is a schematic view showing the arrangement of permanent magnet groups of the present invention.
  • Figure 3 is a schematic view of the magnetic circuit in the breaking position of the present invention.
  • Figure 4 is a schematic view of the magnetic circuit when the invention is in the conducting position.
  • the present invention includes an armature a1, permanent magnets a2, a3, a4, a5, an outer yoke a6, a coil a7, an inner yoke a8, and the like.
  • the materials of the armature a1, the outer yoke a6 and the inner yoke a8 are all high magnetic materials.
  • the outer yoke a6 is also an integral outer casing of the present invention for protecting the internal structure of the present invention; the inner yoke a8 also serves as a bobbin for the coil a7 to be wound thereon.
  • the permanent magnet in the present invention actually comprises two permanent magnet groups, which are respectively located at the upper pole surface and the lower pole surface of the outer yoke a6, and each permanent magnet group is composed of a plurality of permanent magnets arranged in a circular shape (such as Figure 2), while a2, a3, a4 and a5 shown in Figure 1 are just four permanent magnets that are just on the longitudinal plane.
  • Each of the permanent magnets has a cylindrical shape, and the magnetization direction is magnetization of the upper and lower sides.
  • the material selection can be changed to various materials such as neodymium iron boron, aluminum nickel cobalt or ferrite according to design requirements, and the end support force is provided for the armature. effect.
  • the longitudinal cross-sectional structure of the inner yoke a8 is designed to be C-shaped, has two upper and lower pole faces, and has a central axis of the entire magnetic circuit as an axis of symmetry, and has the function of a coil bobbin.
  • the coil a7 is wound around the inner yoke a8.
  • the connecting rod (not shown) is fixed relative to the armature a1, and the end portion can be connected to the main contact. When the armature a1 is actuated, the signal is switched.
  • the permanent magnet magnetic field generated by the permanent magnet group When the coil is not energized, the permanent magnet magnetic field generated by the permanent magnet group generates a suction force at the pole faces of the outer yoke a6 and the inner yoke a8, and the armature a1 is fixed at the lower end position (or the upper end position); when the coil is energized, the coil generates The electromagnetic field cancels the permanent magnet magnetic field of the permanent magnet group, the magnetic flux generates an attractive force between the pole face of the outer yoke a6 and the armature a1, and the armature a1 moves until it contacts the upper pole surface of the outer yoke a6, and the armature a1 drives the upper armature thereof.
  • the connecting rod completes the direct acting action of the magnetic circuit system, and then completes the conversion of the electromagnetic device using the magnetic circuit system in an on or off state.
  • the armature a1 is at the lower end initial position, the armature a1 is in contact with the upper surface of the lower pole surface of the outer yoke a6; the coil is wound around the inner yoke a8; at this time, the magnetic flux having no current has two closed paths (as shown in the figure) 3, the figure only shows the left side, the right magnetic flux path is symmetric with the left center): where the path 1 (large ring) is: the center of the armature a1 - the inner surface of the inner yoke (coil bobbin) a8 - - permanent magnet a2 - outer yoke iron (housing) a6 - lower surface of armature a1 lower pole - center of armature a1; path 2 (small ring): armature a1 - inner yoke (coil bobbin) a8 lower pole Surface - permanent magnet a5 - outer yoke iron (housing) a6
  • the magnetic flux path is: the center of the armature a1 - the outer surface of the outer yoke iron (outer casing) a6 - the outer yoke iron (housing) a6 - - outer yoke (housing) a6 lower pole surface - - the lower surface of the lower pole of the armature a1 - the center of the armature a1; that is, the coil generates a magnetic flux that is opposite to the permanent magnet flux, so that the permanent magnet flux in the armature a1 is weakened until it is reduced to zero.
  • the electromagnetic flux increases, the magnetic flux between the upper surface of the outer yoke (housing) a6 and the upper surface of the armature a1 increases, and the electromagnetic attraction increases, the armature a1 moves, and moves upward until the upper end of the armature a1.
  • the pole face is in contact with the upper surface of the outer yoke a6 to drive the link to complete the transition of the relay on or off state.
  • the coil is kept energized, the armature a1 is at the upper end position, the armature a1 is in contact with the pole face of the outer yoke a6; the coil is wound on the bobbin a7; at this time, the magnetic flux of the coil current has two closed paths (as shown in FIG. 4).
  • path 1 large ring
  • path 2 small ring
  • the present invention can realize the corresponding functions of the action components of the direct-acting electromagnetic system (such as the armature in the relay).
  • the present invention is suitably applied to a direct-acting electromagnetic system such as a relay, a contactor, a circuit breaker, a solenoid valve, a magnetic switch, and the like.
  • a direct-acting electromagnetic system such as a relay, a contactor, a circuit breaker, a solenoid valve, a magnetic switch, and the like.
  • the invention has the advantages of symmetrical structure, strong versatility of parts, simple assembly, bistable magnetic retention, permanent magnet adjustment and retention, and flexible configuration.
  • the force change only needs to replace the permanent magnet (within the magnetic saturation range), which is more convenient; the touch condition is low, the suction (release) only requires short-time pulse, and the coil power consumption is small;
  • the invention also has good anti-vibration performance and strong anti-centrifugal acceleration and impact capability.

Abstract

一种含永磁电磁结构,包括:外轭铁(a6),为空心圆筒形;第一永磁体组(a3,a5),包括排列成圆形的多个永磁体,多个永磁体与外轭铁相连接,且每个永磁体的充磁方向为沿轴向方向充磁;内轭铁(a8),包括内轭铁上底,内轭铁侧壁和内轭铁下底,内轭铁上底和内轭铁下底分别从内轭铁侧壁的上端和下端向外水平延伸成圆环;衔铁(a1),包括衔铁上底、衔铁下底和衔铁筒身,衔铁筒身从内轭铁侧壁中穿过,衔铁筒身的高度大于内轭铁的高度,衔铁上底和衔铁下底均为直径大于内轭铁侧壁内径的圆形;第二永磁体组(a2,a4),包括排列成圆形的多个永磁体,多个永磁体与外轭铁和内轭铁相连接,且每个永磁体的充磁方向为沿轴向方向充磁。该电磁结构线圈功耗低,具有良好的抗振性能,抗离心加速度冲击能力较强。

Description

一种含永磁电磁结构 技术领域
本发明涉及继电器技术领域,具体涉及一种可应用于继电器等多种电磁系统的含永磁电磁结构。
背景技术
从衔铁的运动模式对含永磁继电器进行分类,可分为转动衔铁式,直动衔铁式等类等;其中直动式继电器是非常重要的一大类继电器,它具有结构简单,应用广泛,性能稳定的特点;尤其在航天、国防及民用领域中有着广泛的应用。直动式含永磁继电器中,永磁体提供稳定状态下的保持力,衔铁是其中承担开关动作的器件,轭铁是其中承担衔铁限位的器件,以它们为中心,连接线圈铁芯、导磁环等其它器件组成的整个继电器磁路直接决定着含永磁继电器的整机性能。
因此,如何设计出一种磁通约束高效、双稳态磁保持、线圈耗能低、结构简易的电磁结构,成为本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种磁通约束高、双稳态磁保持、线圈耗能低、结构简易的电磁结构设计,使得产品实际装配更加高效,同批次产品一致性更好,并降低批次产品的废品率。
为达上述目的,本发明提出一种含永磁电磁结构,包括:
外轭铁,为空心圆筒形,由外轭铁上底、外轭铁下底和外轭铁侧壁组成;
第一永磁体组,包括排列成圆形的多个永磁体,所述多个永磁体与所述外轭铁下底相连接,且每个永磁体的充磁方向为沿轴向方向充磁;
内轭铁,包括内轭铁上底,内轭铁侧壁和内轭铁下底,所述内轭铁侧壁为圆筒形,所述内轭铁上底和所述内轭铁下底为分别从所述内轭铁侧壁的上端和下端向外水平延伸形成的圆环;且所述内轭铁下底与所述第一永磁体组相连接;
衔铁,包括衔铁上底、衔铁下底和衔铁筒身;所述衔铁筒身从所述内轭铁的中心通孔中穿过,所述衔铁筒身的高度大于所述内轭铁的高度;所述衔铁上底和所述衔铁 下底均为直径大于所述内轭铁侧壁内径的圆形;
第二永磁体组,包括排列成圆形的多个永磁体,所述多个永磁体与所述外轭铁上底和所述内轭铁上底相连接,且每个永磁体的充磁方向为沿轴向方向充磁。
根据本发明提出的一种含永磁电磁结构,其中,还包括连杆,所述连杆一端固定连接于所述衔铁的中心,另一端从所述上轭铁中穿出。
根据本发明提出的一种含永磁电磁结构,其中,所述多个永磁体均为圆柱形永磁体。
根据本发明提出的一种含永磁电磁结构,其中,所述永磁体的材料为钕铁硼、铝镍钴或铁氧体中的一种。
本发明适宜应用在直动式电磁系统如继电器、接触器、断路器、电磁阀、磁开关等设备中。与现有技术相比,本发明结构对称、零件通用性强、装配简单;具有双稳态磁保持、永磁体调整保持力,配置灵活的特点。且本发明应用于某电磁系统后,力的更改只需更换永磁体(在磁饱和范围内),更加便捷;触动条件低,吸合(释放)过程仅需短时脉冲,线圈功耗更低。本发明还具有良好的抗振性能,抗离心加速度冲击能力较强。
附图说明
图1为本发明的基本结构示意图;
图2为本发明的永磁体组排布示意图;
图3为本发明处于分断位置的磁路示意图;
图4为本发明处于导通位置时的磁路示意图。
附图标记说明:a1-衔铁;a2、a3、a4、a5-永磁体;a6-外轭铁;a7-线圈;a8-内轭铁。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创作性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明在具体结构上包括衔铁a1,永磁体a2、a3、a4、a5,外轭铁a6,线圈a7、内轭铁a8等。其中衔铁a1、外轭铁a6和内轭铁a8的材料均为高导磁材料。外轭铁a6同时也是本发明的整体外壳,用于保护本发明的内部结构;内轭铁a8同时也兼作为线圈骨架,供线圈a7缠绕其上。
本发明中的永磁体实际包含两个永磁体组,分别位于外轭铁a6的上极面处和下极面处,每个永磁体组由排列成圆形的多个永磁体所组成(如图2所示),而图1中所显示的a2、a3、a4和a5只是恰好处于纵切面上的四个永磁体。其中,每个永磁体为圆柱形,充磁方向为上下充磁,其选材可根据设计要求改为钕铁硼、铝镍钴或铁氧体等多种材质,为衔铁提供端部的保持力作用。
本发明中内轭铁a8的纵向截面结构设计为对C形,拥有上下两个极面,以整个磁路的中心轴为对称轴,兼具线圈骨架的功能。当衔铁a1处于上端位置时,衔铁a1上极面的上表面与外轭铁a6的上极面的下表面接触;当衔铁a1处于下端位置时,衔铁a1下极面的下表面与外轭铁a6的下极面的上表面接触。线圈a7缠绕在内轭铁a8上。连杆(图中未示)与衔铁a1相对位置固定,端部可连接主触点,当衔铁a1动作时,用以实现信号的切换。
当线圈未通电时,永磁体组产生的永磁磁场在外轭铁a6和内轭铁a8极面处产生吸力作用,衔铁a1固定在下端位置(或上端位置);当线圈通电时,线圈产生的电磁磁场抵消永磁体组的永磁磁场,磁通在外轭铁a6上极面与衔铁a1间产生吸引力,衔铁a1运动,直到与外轭铁a6的上极面接触,衔铁a1带动其上的连杆,完成磁路系统的直动动作,继而完成应用该磁路系统的电磁设备接通或断开状态的转换。
本发明的具体工作过程如下:
衔铁a1处在下端初始位置,衔铁a1与外轭铁a6下极面的上表面接触;线圈缠绕在内轭铁a8上;此时不加电流的磁路磁通具有两条闭合路径(如图3所示,图中仅标示出左侧,右侧磁通路径与左侧中心对称):其中路径1(大环)为:衔铁a1中心——内轭铁(线圈骨架)a8上极面——永磁体a2——外轭铁(外壳)a6——衔铁a1下极面下表面——衔铁a1中心;路径2(小环)为:衔铁a1——内轭铁(线圈骨架)a8下极面——永磁体a5——外轭铁(外壳)a6——衔铁a1下极面下表面。在闭合磁通回路的作用下,极面间的吸力使得衔铁a1保持在该位置;
线圈通电,线圈产生的磁通如图3中右侧磁路所示,其磁通路径为:衔铁a1中心——外轭铁(外壳)a6上极面——外轭铁(外壳)a6——外轭铁(外壳)a6下极面— —衔铁a1下极面下表面——衔铁a1中心;即线圈产生与永磁磁通反向的磁通,使得衔铁a1内永磁磁通减弱,直至减少到0。之后随着电磁磁通的增加,外轭铁(外壳)a6上极面与衔铁a1上极面上表面间的磁通增加,产生电磁吸力增大,衔铁a1动作,向上运动,直至衔铁a1上端极面与外轭铁a6上极面接触,带动连杆完成继电器接通或断开状态的转换。
线圈保持通电,衔铁a1处在上端位置,衔铁a1与外轭铁a6上极面接触;线圈缠绕在线圈骨架a7上;此时线圈电流的磁路磁通具有两条闭合路径(如图4所示,图中仅标示出左侧,右侧磁通路径与左侧中心对称):路径1(大环),衔铁a1中心——内轭铁(线圈骨架)a8上极面——永磁体a5——外轭铁(外壳)a6——衔铁a1上极面上表面——衔铁a1中心;路径2(小环),衔铁a1——内轭铁(线圈骨架)a8——永磁体a2——外轭铁(外壳)a6上极面——衔铁a1上极面上表面——衔铁a1;在闭合磁通回路的作用下,极面间的吸力使得衔铁a1保持在该位置,若使衔铁返回图3所示位置,则需线圈中通入反向电流。
通过上述动作,本发明可实现直动式电磁系统动作件(如继电器中衔铁)的相应功能。
综上所述,本发明适宜应用在直动式电磁系统如继电器、接触器、断路器、电磁阀、磁开关等设备中。与现有技术相比,本发明结构对称、零件通用性强、装配简单;具有双稳态磁保持、永磁体调整保持力,配置灵活的特点。且本发明应用于某电磁系统后,力的更改只需更换永磁体(在磁饱和范围内),更加便捷;触动条件低,吸合(释放)仅需短时脉冲,线圈功耗小;本发明还具有良好的抗振性能,抗离心加速度冲击能力较强。
以上对本发明的描述是说明性的,而非限制性的,本专业技术人员理解,在权利要求限定的精神与范围之内可对其进行许多修改、变化或等效,但是它们都将落入本发明的保护范围内。

Claims (4)

  1. 一种含永磁电磁结构,其特征在于,包括:
    外轭铁,为空心圆筒形,由外轭铁上底、外轭铁下底和外轭铁侧壁组成;
    第一永磁体组,包括排列成圆形的多个永磁体,所述多个永磁体与所述外轭铁下底相连接,且每个永磁体的充磁方向为沿轴向方向充磁;
    内轭铁,包括内轭铁上底,内轭铁侧壁和内轭铁下底,所述内轭铁侧壁为圆筒形,所述内轭铁上底和所述内轭铁下底为分别从所述内轭铁侧壁的上端和下端向外水平延伸形成的圆环;且所述内轭铁下底与所述第一永磁体组相连接;
    衔铁,包括衔铁上底、衔铁下底和衔铁筒身;所述衔铁筒身从所述内轭铁的通孔中心中穿过,所述衔铁筒身的高度大于所述内轭铁的高度;所述衔铁上底和所述衔铁下底均为直径大于所述内轭铁侧壁内径的圆形;
    第二永磁体组,包括排列成圆形的多个永磁体,所述多个永磁体与所述外轭铁上底和所述内轭铁上底相连接,且每个永磁体的充磁方向为沿轴向方向充磁。
  2. 根据权利要求1所述的一种含永磁电磁结构,其特征在于,还包括连杆,所述连杆一端固定连接于所述衔铁的中心,另一端从所述外轭铁中穿出。
  3. 根据权利要求1所述的一种含永磁电磁结构,其特征在于,所述多个永磁体均为圆柱形永磁体。
  4. 根据权利要求1所述的一种含永磁电磁结构,其特征在于,所述永磁体的材料为钕铁硼、铝镍钴或铁氧体中的一种。
PCT/CN2014/000845 2013-09-27 2014-09-16 一种含永磁电磁结构 WO2015043109A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/758,647 US9607796B2 (en) 2013-09-27 2014-09-16 Electromagnetic structure comprising a permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310449443.4A CN103500688B (zh) 2013-09-27 2013-09-27 一种含永磁电磁结构
CN201310449443.4 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015043109A1 true WO2015043109A1 (zh) 2015-04-02

Family

ID=49865885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000845 WO2015043109A1 (zh) 2013-09-27 2014-09-16 一种含永磁电磁结构

Country Status (3)

Country Link
US (1) US9607796B2 (zh)
CN (1) CN103500688B (zh)
WO (1) WO2015043109A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236376B (zh) * 2013-03-29 2015-06-17 厦门宏发电力电器有限公司 一种非对称螺线管式结构的磁保持继电器
DE102013013585B4 (de) * 2013-06-20 2020-09-17 Rhefor Gbr Selbsthaltemagnet mit besonders kleiner elektrischer Auslöseleistung
CN103500688B (zh) * 2013-09-27 2016-04-27 哈尔滨工业大学 一种含永磁电磁结构
DE112015000795T5 (de) * 2014-02-13 2016-12-22 Panasonic Intellectual Property Management Co., Ltd. Elektromagnetisches Relais
CN105090596B (zh) * 2014-05-14 2018-04-27 浙江三花制冷集团有限公司 电磁阀及双稳态电磁线圈
DE102014209322A1 (de) * 2014-05-16 2015-11-19 Robert Bosch Gmbh Magnetbaugruppe für ein Magnetventil sowie Verfahren zur Herstellung einer Magnet-baugruppe
KR101592271B1 (ko) * 2014-06-30 2016-02-11 현대중공업 주식회사 전자접촉기
CN107093509A (zh) * 2016-03-03 2017-08-25 株洲悍威磁电科技有限公司 一种电永磁铁
CN106601423A (zh) * 2016-07-11 2017-04-26 岳阳市永金起重永磁铁有限公司 单一磁路多功能开关式永磁磁力单元
EP3706152B1 (en) * 2017-11-01 2023-06-14 Panasonic Intellectual Property Management Co., Ltd. Electromagnetic relay
KR102001939B1 (ko) * 2017-12-28 2019-10-01 효성중공업 주식회사 고속 솔레노이드
CN108081246B (zh) * 2017-12-29 2021-01-15 南通市一家人大药房有限公司 一种人工肌肉装置及其驱动方法
CN110142793A (zh) * 2018-07-18 2019-08-20 浙江力帅磁电科技有限公司 一种便携式电控永磁捡拾器及捡拾方法
WO2020257213A1 (en) * 2019-06-17 2020-12-24 Sigma Powertrain, Inc. Electromagnetic actuation assembly
CN112173176B (zh) * 2019-07-02 2022-02-18 中国科学院宁波材料技术与工程研究所 一种电永磁对接分离装置及其对接分离方法
CN112185647B (zh) * 2019-07-04 2021-12-31 华中科技大学 一种周期性背景磁场的产生装置及方法
EP3982379A1 (fr) * 2020-10-08 2022-04-13 The Swatch Group Research and Development Ltd Micro-actionneur a solenoïde a retraction magnetique
CN115050536B (zh) * 2022-07-19 2023-10-27 南京航空航天大学 一种双稳态电磁铁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635431C1 (de) * 1986-10-17 1988-01-28 Sds Relais Ag Polarisierter Magnetantrieb fuer ein elektromagnetisches Schaltgeraet
JP2007059843A (ja) * 2005-08-26 2007-03-08 Matsushita Denko Denro System Kk 電磁石装置
JP2008066602A (ja) * 2006-09-08 2008-03-21 Toshiba Corp 電磁アクチュエータ
CN102956397A (zh) * 2011-08-22 2013-03-06 吉林永大电气开关有限公司 具有辅助电磁回路的永磁操动机构
CN103295843A (zh) * 2013-05-23 2013-09-11 哈尔滨工业大学 含永磁双c型轭铁结构
CN103500688A (zh) * 2013-09-27 2014-01-08 哈尔滨工业大学 一种含永磁电磁结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482607A (en) * 1987-09-25 1989-03-28 Matsushita Electric Works Ltd Electromagnet device
CN201387783Y (zh) * 2009-04-02 2010-01-20 天水二一三电器有限公司 磁保持电磁铁装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635431C1 (de) * 1986-10-17 1988-01-28 Sds Relais Ag Polarisierter Magnetantrieb fuer ein elektromagnetisches Schaltgeraet
JP2007059843A (ja) * 2005-08-26 2007-03-08 Matsushita Denko Denro System Kk 電磁石装置
JP2008066602A (ja) * 2006-09-08 2008-03-21 Toshiba Corp 電磁アクチュエータ
CN102956397A (zh) * 2011-08-22 2013-03-06 吉林永大电气开关有限公司 具有辅助电磁回路的永磁操动机构
CN103295843A (zh) * 2013-05-23 2013-09-11 哈尔滨工业大学 含永磁双c型轭铁结构
CN103500688A (zh) * 2013-09-27 2014-01-08 哈尔滨工业大学 一种含永磁电磁结构

Also Published As

Publication number Publication date
US20160172137A1 (en) 2016-06-16
CN103500688B (zh) 2016-04-27
US9607796B2 (en) 2017-03-28
CN103500688A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2015043109A1 (zh) 一种含永磁电磁结构
US20130135067A1 (en) Magnet substance holder including a combination of a permanent magnet and an electromagnet
WO2015184791A1 (zh) 大功率双向无返簧的含永磁电磁阀
CN105070586B (zh) 一种外置碟簧的长行程高压单稳态永磁操动机构
CN103311052B (zh) 直动式含永磁t型衔铁结构
CN103560052B (zh) 一种用于直动式电磁系统的下置环形永磁磁路
CN203179712U (zh) 一种带永磁体的电磁铁装置
CN102789928B (zh) 驱动机构
CN103311051B (zh) 直动式上置永磁t型衔铁结构
CN208027981U (zh) 密封式高压直流磁保持接触器
CN103500689B (zh) 一种大功率继电器的电磁结构
CN205081051U (zh) 一种外置碟簧的长行程高压单稳态永磁操动机构
CN103489718A (zh) 一种接触器的双稳态永磁电磁系统
CN103295843B (zh) 含永磁双c型轭铁结构
CN103474287B (zh) 双动铁心永磁操动机构
CN106024529B (zh) 一种单永磁负荷开关双稳态电磁机构
CN205406399U (zh) 同步真空接触器专用自复位单线圈单稳态永磁机构
CN108253180A (zh) 一种衔铁密封型双稳态电磁阀及运行方法
CN103310944B (zh) 含永磁e型轭铁结构
CN105304403A (zh) 一种快速分闸的单稳态永磁操动机构及其控制方法
RU82929U1 (ru) Электромагнитный привод вакуумного выключателя
CN100468588C (zh) 动态三线圈式双稳态永磁操动机构
CN105304402A (zh) 一种组合式长行程高压单稳态永磁操动机构及分闸合闸方法
CN105914104B (zh) 一种双永磁长短轭铁极面单稳态电磁机构
RU121642U1 (ru) Бистабильный электромагнит привода коммутационного устройства

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14758647

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848829

Country of ref document: EP

Kind code of ref document: A1